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The impedance model for a one-carrier space-charge-limited �SCL� current has been applied to
explain some experimental features of double carrier organic light-emitting diodes. We report the
analytical model of impedance of bipolar drift transport in SCL regime in the limit of infinite
recombination. In this limit the ac impedance function is identical to that of a single carrier device,
with a transit time modified by the sum of mobilities for electrons and holes, �n+�p. The static
capacitance C��→0� is a factor of 3

4 lower than the geometric capacitance, as observed for single
carrier devices, but it is shifted to higher frequencies. It follows that impedance measurements in the
dual-carrier organic diodes with strong recombination provide the combination of �n+�p. For the
mobilities of the different carriers to be determined separately, additional information is required.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2358302�

I. INTRODUCTION

Since the discovery of electroluminescence in poly-
mers,1 the study and understanding of optical and electronic
properties of organic light-emitting diodes �OLEDs� have re-
ceived considerable attention. Their potential for low cost
manufacturing and mechanical flexibility makes these mate-
rials promising for many display applications.

In order to optimize the device efficiency of OLEDs a
balanced distribution of the injected carriers is required. Im-
pedance spectroscopy is a powerful tool to investigate the
charge transport and relaxation processes in solid state de-
vices. By means of this technique one can discern the differ-
ent processes that occur on different time scales and get ex-
tended information about the carrier and field distributions
inside the OLED. Several studies of impedance spectroscopy
were interpreted with models for one-carrier space-charge-
limited current2,3 �SCLC� to explain some features in
OLEDs.4–9 Although useful to explain the phenomena ob-
served in hole only devices, it has limited use for emitting,
thus double carrier, devices. Therefore, it is of great interest
to have a model capable of describing the experimental phe-
nomena observed for double carrier light-emitting displays.

General ac impedance models of bipolar devices with
arbitrary recombination, constitute a complex problem due to
partial neutralization of the space charge if restricted recom-
bination permits the coexistence of electrons and holes in
extended regions of the organic layer. In this paper we
present a model that provides a significant step towards a
general understanding of ac impedance of OLEDs under nor-
mal light-emitting conditions. The assumption that there ex-

ists a large recombination rate simplifies the problem be-
cause carrier distributions completely separate in n and p
regions that meet at the recombination plane. Such an as-
sumption is realistic for a number of experimental OLEDs,
as it has been reported that a rather narrow recombination
zone exists.10 Here we derive and discuss the impedance
model of double injection SCLC in this case. We give an
equivalent circuit explaining the impedance spectra at the
low frequency limit for two-carrier devices11 and compare it
with the case of one-carrier device. There have been attemps
to derive the minority carrier mobility from ac impedance
using two-carrier models.5,11 However, Poplavskyy and So10

have reported evidence that the space-charge-related imped-
ance response of dual-carrier diodes is dominated by com-
bined electron-hole response, as proposed in the theory pre-
sented below.

In the next section we revise the characteristics of both
dc and ac characteristics in single-carrier devices. In Sec. III
we solve the model for double injection in the frequency
domain in order to determine an analytical expression for the
impedance.

II. SINGLE CARRIER MODEL

Single carrier devices, formed by using external contacts
that allow only the injection of one type of carrier, are useful
to investigate the transport properties of organic semiconduc-
tors. The ac impedance model for SCLC regime of a single
carrier is well known.2,3 The basic equations describing elec-
tron transport and distribution are the current-flow equation
for carrier drift and the Poisson equation,

J0 = e�nE , �1�
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�

e

dE

dx
= − n , �2�

where � is the drift mobility, which is assumed constant, n is
the electron carrier density, e is the elementary charge, J0 is
the steady-state current density, which is constant across the
sample, � is the dielectric constant, and E is the electric field
intensity. The solution of the above equations with boundary
condition E=0 at the cathode is given by the Mott-Gurney
square-law equation,

J0 =
9

8
��

V0
2

L3 , �3�

where V0 the voltage across the organic layer.
In order to treat the time-dependent situation, we add the

displacement current in the current-flow equation,

J = e�nE + �
�E

�t
. �4�

The impedance measurement corresponds to a small
sinusoidal perturbation over a steady state. We separate the
steady-state and modulated contributions by defining E�x , t�
=E0�x�+E1�x , t�, V�x , t�=V0�x�+V1�x , t�, J�x , t�=J0�x�
+J1�x , t�, and n�x , t�=n0�x�+n1�x , t�. From the solution of the
above equations the ac impedance is given as2,12

Z��� =
6

g0�i���3�1 − i�� +
1

2
�i���2 − e−i��� . �5�

Expanding the exponential terms, we obtain the low fre-
quency limit of the admittance,

Y = g0 + i�
g0�

4
, �6�

with the low frequency conductance

g0 =
dJ0

dV0
=

9

4
��

V0

L3 �7�

and the transit time

� =
4

3

L2

�V0
. �8�

The admittance in Eq. �6� represents a capacitance

C� =
3

4
Cg, �9�

where Cg=� /L is the geometric capacitance and resistance
R=g0

−1 in parallel, as shown in Fig. 1�a�. The high frequency
limit for the complex admittance is

Y =
2g0

3
+ i�Cg, �10�

which represents the same equivalent circuit with different
parameters.

III. TWO-CARRIER MODEL

In the model for two carriers, we consider the OLED as
an insulator with double injection through Ohmic injecting

contacts, free both of traps, and thermally free carriers. In
this approximation we ignore the injection barriers. In the
best working OLEDs under normal driving conditions this
approximation is valid as the onset of light emission is close
to the photonic gap. Electrons are injected in the conduction
band at the cathode and holes are injected in the valence
band at the anode, and both of them drift to the plane of
recombination at xp, where they meet and recombine. We
consider an infinite recombination rate, therefore on the an-
ode side �0�x�xp� there are only holes and current is a
pure hole current. Similarly, on the cathode side �xp�x
�L� we have only electrons, and thus the current is purely
based on electrons.

The equations characterizing double injection into a per-
fect insulator are the current-flow equation and the Poisson
equation, similar as in the case of the one-carrier model. In
the hole region, they are

J0 = J0p = e�ppE , �11�

�

e

dE

dx
= p . �12�

Similarly, in the electron region,

J0 = J0n = e�nnE , �13�

FIG. 1. Equivalent circuits of impedance models discussed in this work. �a�
Low frequency limit of one-carrier device model. �b� Low frequency limit
for two-carrier device model, indicating spatial and potential distributions of
n and p regions. �c� Alternative representation of low frequency limit for
two-carrier device model.
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�

e

dE

dx
= − n , �14�

where �n and �p are the electron and hole drift mobility,
respectively, n and p the free electron and hole densities,
respectively, and J0p and J0n the hole and electron steady-
state current density, respectively, both of them being con-
stant across their corresponding region.

The solutions in both regions are tied together by conti-
nuity of the E field in the recombination plane,

Ep�xp� = En�xp� , �15�

where

Ep�xp� = −
3

2

V0p

xp
, En�xp� = −

3

2

V0n

xn
. �16�

From the last boundary condition, we derive the useful
next relations,

V0p

xp
=

V0n

xn
, �17�

xp =
�p

�p + �n
L . �18�

The steady-state solution of the above equation �Eqs.
�11�–�14�� is given by the Mott-Gurney law in both regions,

J0p =
9

8
��p

V0p
2

xp
3 , J0n =

9

8
��n

V0n
2

xn
3 , �19�

with V0p and V0n the voltage in the hole and electron regions,
respectively, and xp and xn the width of each region. By
means of Eqs. �17� and �18� and the fact that V0=V0p+V0n,
we can give the potential drop in both regions as a function
of mobilities and V0:

V0p = V0
�p

�n + �p
, �20�

V0n = V0
�n

�n + �p
. �21�

Using these relationships, we obtain the J-V characteris-
tic in a simple form,13

J0 =
9

8
���n + �p�

V0
2

L3 . �22�

It means that the total current density can be viewed as
the sum of two SCL currents which traverse the entire
sample independent of each other.

The strength of the electrical field increases from both
contacts �where E=0� towards the recombination plane,
whose position is determined by the carrier mobilities, as
stated in Eq. �18�. Accordingly the concentration of electrons
and holes decreases, respectively, from the cathode and an-
ode towards the recombination plane, as shown in Fig. 2.14

In the case of low electron mobility, holes reach the cathode
before electrons can leave it. As electron mobility increases,

recombination plane shifts to the anode. When carrier mo-
bilities are equal, electrons and holes recombine in the center
of the film.

Next we solve the drift-Poisson equations in the fre-
quency domain by adding the displacement current like in
the case of one carrier and proceeding in the same way. The
steady-state and time-dependent contributions are separated
similarly as in the previous case. The two transport regions
are linked by continuity of electrical field and potential at the
recombination plane. The solution provides us an analytical
expression for the frequency dependent impedance,

FIG. 2. Simulations of the electron �n� and hole �p� carrier distributions in
a bipolar device with drift transport and infinite recombination. Parameters
�=10−12 F/m, j=5�10−8 A/m2, L=80 nm, �p=10−10 m2 V−1 s−1, and elec-
tron mobilities, as indicated.
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Z��� =
6

gp�i��p�3�1 − i��p +
1

2
�i��p�2 − e−i��p�

+
6

gn�i��n�3�1 − i��n +
1

2
�i��n�2 − e−i��n� , �23�

where

gp =
9

4
��p

V0p

xp
3 , gn =

9

4
��n

V0n

�L − xp�3 �24�

�p =
4

3

xp
2

�pV0p
, �n =

4

3

xn
2

�nV0n
. �25�

Equation �23� corresponds to two impedances in series
under SCLC regime, one for the hole region and the other
one to the electron region. This is a logical result because
V0=V0p+V0n and the current is constant across the sample.
Using the Eqs. �18�, �20�, and �21�, it is found that the sepa-
rate transit times �p and �n have the same value:

�n = �p � �np =
4

3

L2

��p + �n�V0
. �26�

It should be remarked that the transit time in two-carrier
devices is always shorter than the transit time of a one-carrier
device with the same length, since each carrier has to travel
a shorter path. The low frequency limit of the admittance
takes the form

Y = gt + i�
gt

2

4
� �p

gp
+

�n

gn
	 , �27�

where

gt = �gn
−1 + gp

−1�−1 =
dJ0

dV0
=

9

4
���n + �p�

V0

L3
. �28�

That is, gt corresponds to two resistances in series, each
one describing one different region �hole and electron region,
respectively�. The complete impedance expression of Eq.
�23� can be given in a simplified form,

Z��� =
6

gt�i��np�3�1 − i��np +
1

2
�i��np�2 − e−i��np� .

�29�

At low frequencies the capacitance reaches a frequency
independent value.

C� =
gt

2

4
� �p

gp
+

�n

gn
	 . �30�

Equation �30� can be expressed as two capacitances in
series, each one corresponding to one different region �holes
or electron region�,

1

C�
=

1

Cn
+

1

Cp
, �31�

where

Cp =
3

4

�

xp
, Cn =

3

4

�

xn
. �32�

Finally, we obtain the simplified form of C�,

C� =
3

4

�

L
, �33�

It means that the low frequency capacitance is identical
to that for the one-carrier case and, consequently, is indepen-
dent of the features of the n and p regions. As expected, the
equivalent circuit for low frequency admittance corresponds
to two equivalent circuits bounded together in series, each of
them describing the low frequency limit for the hole and
electron regions respectively �see Fig. 1�b��.

It is also possible to represent the impedance at the low
frequency limit in another way. Note that gt

−1 represents two
resistances in parallel as shown in Fig. 1�c�,

gt = g0p + g0n, �34�

each one being the resistance of the one-carrier model across
the whole sample thickness for holes and electrons, respec-
tively,

g0p =
9

4
��p

V0

L3 , g0n =
9

4
��n

V0

L3 . �35�

Figure 3�a� illustrates the frequency dependence of the
capacitance, C����=Re�1/ i�Z����, according to Eq. �29�,
showing the transition of the capacitance from the geometri-
cal value at high frequencies to Eq. �33� at low frequencies.
We show the capacitance spectra for different mobilities in
order to compare the shift to higher frequencies when the
mobility increases. Figure 3�b� shows the same data in terms
of the change of susceptance, −�B���=−��C����−Cg�, that
peaks at a frequency fmax, which relates with the transit time

FIG. 3. �a� Simulations of capacitance spectra for different hole carrier
mobilities, as indicated. �b� Same data as in �a� in terms of the change of
susceptance. Parameters: �=2.7�10−12 F/m, j=10−2 A/m2, and L=80 nm.
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�np according to an approximate relation �np
0.72fmax
−1 .5

Here the shift of the transit time is more clearly appreciated
in the displacement of the major peak.

It is obvious that the impedance and capacitance of two-
carrier devices are formally the same as the impedance of
one-carrier device in Eq. �5� but with a different apparent
mobility ��p+�n instead of ��, and as a consequence the
spectra are shifted to higher frequencies. This shift is due to
a lower characteristic time in the case of two-carrier devices,
which relates to the fact that carriers in two-carrier devices
have to traverse a shorter way �equivalent to the distance
required to recombine with the opposite charge carrier�.
These results imply that the mobilities of the different carri-
ers cannot be separated from impedance measurements in the
dual-carrier diodes with strong recombination, as discussed
in Ref. 10. Therefore, the analysis of double carrier, working,
OLEDs using impedance spectroscopy is by itself not suit-
able for the determination of the individual carrier mobility.
Nonetheless the sum of mobilities may constitute a valuable
piece of information in combination with other measure-
ments. For example, by combining impedance analysis of
hole-only and double-injection devices with equal polymer
active layer thickness, one could have access to the electron
mobility by simple subtraction �n=�−�p. In practice this
approach may encounter additional problems as the low fre-
quency impedance usually measured yields more featured
responses than the ideal expression derived here. The low
frequency limit of the capacitance is reported to exhibit ei-
ther positive values in excess of the geometric capacitance or
negative �induction� responses.9,15

IV. CONCLUSION

The impedance model for double carrier SCLC in
OLEDs has been derived using the assumption of a large
recombination rate. In this case the impedance is readily cal-
culated as the series combination of two SCLC transport

layers. The equivalent circuit at low frequencies corresponds
to two equivalent circuits bounded together in series, each of
them describing the low frequency limit for hole and electron
regions, respectively. The analytical expression for imped-
ance of two-carrier devices reduces to the same analytical
expression of one-carrier device, but �p+�n instead of �,
and a shift to higher frequencies in the capacitance spectra.
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