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Dynamical Ising-like model for the two-step spin-crossover systems
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In order to reproduce the two-step relaxation observed experimentally in spin-crossover systems, we
investigate analytically the static and the dynamic properties of a two-sublattice Ising-like
Hamiltonian. The formalism is based on a stochastic master equation approach. It is solved in the
mean-field approximation, and yields two coupled differential equations that correspond to the HS
fractions of the sublatticesA andB. © 2003 American Institute of Physics.
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I. INTRODUCTION

Recently a new spin-crossover~SC!1,2 compound
$Fe~pmd! @Ag(CN)2# @Ag2(CN)3#% that shows a therma
double step transition has been synthetized.3 We report here
on the relaxation behavior of the nonequilibrium photo
duced high-spin state. A strong nonlinear character of
relaxation curve has been observed: two regimes are
tained, reminiscent of the associated equilibrium double s
character.

To explain this behavior, we propose a microscopic d
namical model for a two sublattice system that takes i
account two interaction parameters: a ‘‘ferromagnetic’’ int
sublattice (J1) and a ‘‘antiferromagnetic’’ intersublattice
(J2).

II. ISING-LIKE MODEL FOR THE TWO-STEP SPIN
TRANSITION

The spin Hamiltonian that describes the two-step
transitions can be written in the form of the Ising Ham
tonian of a ferrimagnetic system.2 We denote byA andB the
two sublattices.

Associated with these two quantities are the followi
fictitious two-state operatorssA andsB for which eigenvalues
21 and11 correspond, respectively, to the LS and the
states.

For the present model, the Hamiltonian of the system
written as

H52J1(
^ i , j &

si
Asj

A2J1(
^ i , j &

si
Bsj

B2J2(
^ i , j &

si
Asj

B

1S D

2
2

kT

2
ln gD(

i
~si

A1si
B!, ~1!

where D and g are the ligand field energy and the dege
eracy.J1 andJ2 are coupling parameters with the followin
signs:J1.0 ~ferro! andJ2,0 ~antiferro!. We will assume in
the rest of this work that the intensities of the interactio
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between pairsA–A, B–B, and A–B are independent o
their position in the lattice. In the mean-field approach,
one site Hamiltonian becomes

Hi
CM52si

AS J2^sB&1J1^sA&2
D

2
1

kT

2
ln gD

2si
BS J2^sA&1J1^sB&2

D

2
1

kT

2
ln gD , ~2!

whereJ1 andJ2 include the contributions of the coordinatio
number z. Self-consistent equations are then obtain
through the average valueŝsA&5tr(sAe2bHi) and ^sB&
5tr(sBe2bHi) giving the following system of coupled non
linear equations:

^sA&5tanhX, ^sB&5tanhY, ~3!

with

X5bS J2^sB&1J1^sA&2
D

2
1

kT

2
ln gD ;

Y5bS J2^sA&1J1^sB&2
D

2
1

kT

2
ln gD . ~4!

The static~thermodynamical equilibrium! version of this
model has been well studied in the past by Boussek
et al.2 It is quite easy to demonstrate that this system rep
duces the thermal double step SC transitions observe
Mössbauer and magnetic experiments. These two transit
are in fact due to the two sublattices which make the s
transition at different temperatures because of the anti
roelastic coupling which breaks the symmetry at the tran
tion. Let us denote byTe1 and Te2 the two transition tem-
peratures responsible for the existence of a plateau. Th
two temperatures can cancel the effective field acting
each sublattice, which gives the following relations defini
Te1 andTe2 :

D

2
2

kTe1

2
ln g1J2mB~Te1!50,

D

2
2

kTe2

2
ln g1J2mA~Te2!50. ~5!

It is straightforward that if we putJ250 ~no antiferroelastic
coupling!, we obtain immediately two equivalent sublattic
3 © 2003 American Institute of Physics
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with the same transition temperatureTe05D/kB ln g. To have
a two-sublattice system in the low spin state at 0 K, we m
consider the following condition:

J2,J11
D

2
. ~6!

It is also interesting to note thatTe1 andTe2 can be approxi-
mated well by the following analytical formulas:

Te1>
D22uJ2u
kB ln g

and Te2>
D12uJ2u
kB ln g

. ~7!

It follows that the width of the plateau is given bydTe

>4uJ2u/kB ln g. The latter is directly proportional to antifer
roelastic couplingJ2 .
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III. DYNAMICAL ASPECTS

The dynamical properties4 of the adapted Ising-like
model for the two-step spin crossover system is studied
the general stochastic formalism of the master equation
troduced by Glauber.5 The latter is based on the simple ide
that each individual site interacts with a thermal bath wh
changes its state randomly over time. In the present case
thermal bath spontaneously induces spin flip of the fictitio
spins fromsA(sB) to 2sA(2sB).

Let us denote by Wj (s1
A ,...,sj

A ,...,sN
A ,s1

B ,...,sN
B

→s1
A ,...,2sj

A ,...,sN
A ,s1

B ,...,sN
B) the transition rate of thej th

spin from statesj
A to 2sj

A for any value ofsj
B . The dynamics

of the model are completely fixed by knowledge of the fun
tion W which is assumed independent of the previous hist
of the system~Markovian process!.

The time evolution of this probability function is give
by the following general master equation
d

dt
p~s1

A ,...,sN
A ,s1

B ,...,sN
B ;t !

52(
j 51

N

Wj~sj
A ,sj

B→2sj
A ,sj

B!p~s1
A ,...,sj

A ,...,s1
B ,...,sj

B ;t !2(
j 51

N

Wj~sj
A ,sj

B→sj
A ,2sj

B!p~s1
A ,...,sj

A ,...,s1
B ,...,sj

B ;t !

2(
j 51

N

Wj~sj
A ,sj

B→2sj
A ,2sj

B!p~s1
A ,...,sj

A ,...,s1
B ,...,sj

B ;t !1(
j 51

N

Wj~2sj
A ,sj

B→sj
A ,sj

B!p~s1
A ,...,2sj

A ,...,s1
B ,...,sj

B ;t !

1(
j51

N

Wj~sj
A,2sj

B→sj
A ,sj

B!p~s1
A,...,sj

A,...,s1
B,...,2sj

B ;t !1(
j51

N

Wj~2sj
A ,2sj

B→2sj
A ,sj

B!

3p~s1
A,...,2sj

A ,...,s1
B,...,2sj

B ;t !. ~8!
ng
, in
gh
os-
us

in

xes
Taking into account only one spin transitions, the pre
ous master equation leads to detailed balance equations

Wj~sj
A ,sj

B→2sj
A ,sj

B!

Wj~2sj
A ,sj

B→sj
A ,sj

B!
5

pe~2sj
A ,sj

B!

pe~sj
A ,sj

B!
;

Wj~sj
A ,sj

B→sj
A ,2sj

B!

Wj~sj
A ,2sj

B→sj
A ,sj

B!
5

pe~sj
A ,2sj

B!

pe~sj
A ,sj

B!
, ~9!

where pe(sj
A ,sj

B)5exp@2bH(sj
A ,sj

B)# are canonical Boltz-
mann probabilities. Inserting these probabilities in the l
detailed balance, we arrive at.

pe~2sj
A ,sj

B!

pe~sj
A ,sj

B!
5

exp@2bsj
A~« j

A1Ej
A!#

exp@bsj
A~« j

A1Ej
A!#

;

pe~2sj
A ,sj

B!

pe~sj
A ,sj

B!
5

exp@2bsj
B~« j

B1Ej
B!#

exp@bsj
B~« j

B1Ej
B!#

, ~10!

with Ej
A5J1( isi

A2(D2kT ln g) and « j
A5J2( isi

B . Ej
B and

« j
B can be expressed from expressions ofEj

A and « j
A by in-

terchanging exponentsA andB.
It is well known that several dynamic choices are po

sible according to Eqs.~9! and ~10! which only provide the
-

t

-

ratio of the probabilities of opposite transition rates. Taki
into account the specificity of the spin-crossover problem
which the dynamics are of Arrhenius type at relatively hi
temperature, simple transformation allows us to obtain a p
sible choice for the transition rate that obeys the previo
constraints:

WB~sj
B→2sj

B!

5tr$sj
A%Wj~sj

A ,sj
B→sj

A ,2sj
B!

5
1

2t
@coshb~«B1EB!2sB sinhb~«B1EB!#, ~11!

WA~sj
A→2sj

A!

5tr$sj
BAWj~sj

A ,sj
B→2sj

A ,sj
B!

5
1

2t
@coshb~«A1EA!2sA sinhb~«A1EA!#. ~12!

The symbol tr$sj
A% represents the partial trace on the sp

statessj
A . The factor 1/2t5(1/2t0) exp(2Ea

0/kT) defines the
individual spin flip rate between HS and LS states and fi
P license or copyright; see http://jap.aip.org/jap/copyright.jsp
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the time scale of the thermally activated phenomenon o
the intramolecular energy barrierEa

0 of the SC molecule.
Generally the Arrhenius prefactor 1/t0 results from the in-
trinsic phonon frequency of the system. However in our ca
1/t0 must be seen as a temperature dependent frequ
prefactor that originated from a thermal tunneling~Franck–
Condon! process over the vibronic intramolecular barri
Therefore this quantity depends on the strength of the
bronic coupling and the overlapping of the vibrational fun
tions localized around the HS and LS states.6,7

Next we adopt the mean-field approach to solve this
namical problem. In that case the expressions ofEj

A and« j
A

can be rewritten as follows:

EA5zJ1mA2S D2
kT

2
ln gD , «A5J2mB , ~13!

mA andmB are the average value of the ‘‘magnetization’’
each sublattice, directly related to the associated HS frac
by nHS5(11m)/2. Now, in order to determine the evolutio
equations ofmA(t) andmB(t), we use the expression of on
site probabilityp(sj ;t) given in the mean-field approxima
tion by p(sj

X ;t)5(11mX(t)sj
X)/2 whereX5A, B andmX(t)

is the magnetization of sublatticeX at time t.
The equations of motion associated withmA(t) and

mB(t) can be obtained from the master equation using
mean-field approach and assuming the lattice to be spat
invariant. After some development we arrive at the followi
system of nonlinear coupled differential equations

dmA

dt
5

1

t
@sinhb~EA1«A!2mA coshb~EA1«A!#, ~14!

dmB

dt
5

1

t
@sinhb~EB1«B!2mB coshb~EB1«B!#, ~15!

where

EA1«A5J1mA1J2mB2D1~1/2!kT ln g

and

EB1«B5J1mB1J2mA2D1~1/2!kT ln g.

FIG. 1. Simulated relaxation curve of the high-spin fraction obtained fr
numerical solution of the coupled differential equations@Eqs.~16! and~17!#.
The parameters used areJ15220 K, J25270 K, D5900 K, g5400, E0

A

51150 K, t050.001 andT544 K.
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At thermodynamical equilibrium (dmA /dt50 anddmB /dt
50), dynamical Eqs.~14! and ~15! lead exactly to the self-
consistent equations~3! obtained in the static approach o
Sec. II.

IV. LOW TEMPERATURE REGIME

At low temperature, the equations of motion, Eqs.~14!
and ~15!, become

dmA

dt
52K0~T!

11mA

2
exp@2~a2mB1a1mA!#, ~16!

dmB

dt
52K0~T!

11mB

2
exp@2~a2mA1a1mB!#, ~17!

with a i5bJi (I 51,2) and K0(T)51/t expb@2Ea
01D

2(kT/2)lng#; with b being 1/kT.
It is worth noting that we find again by this simple m

croscopic approach exactly the same macroscopic equa
of motion we have used in the past8 to describe phenomeno
logically the irradiation effect in these systems.

With the intersublattice interactionJ2 being negative, it
becomes possible beyond a critical value ofJ2 to obtain
relaxation curves with two regimes. This relaxation in tw
steps is shown in Fig. 1, in which we have reported
temporal evolution of the total high-spin fractionnHS5nHS

A

1nHS
B as observed experimentally3 ~see Fig. 2!.
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FIG. 2. Experimental relaxation curve for$Fe~pmd! @Ag~CN!2#
3@Ag2(CN)3#% at T544 K. The inset shows the double step thermod
namical equilibrium behavior.
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