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Dynamical Ising-like model for the two-step spin-crossover systems
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In order to reproduce the two-step relaxation observed experimentally in spin-crossover systems, we
investigate analytically the static and the dynamic properties of a two-sublattice Ising-like
Hamiltonian. The formalism is based on a stochastic master equation approach. It is solved in the
mean-field approximation, and yields two coupled differential equations that correspond to the HS
fractions of the sublattice& andB. © 2003 American Institute of Physics.
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I. INTRODUCTION between pairsA—A, B—B, and A—B are independent of
their position in the lattice. In the mean-field approach, the

; 1,2 : . .
Recently a new spin-crossove(SC compound one site Hamiltonian becomes

{Fe(pmd [Ag(CN),] [Ag,(CN)3]} that shows a thermal

double step tra_msition ha_s been syntheti%M_zl_e r_eport here_ HiCM: _SiA(J2<SB>+‘]l<SA>_ é+ k—TIn g)
on the relaxation behavior of the nonequilibrium photoin- 2 2
duced high-spin state. A strong nonlinear character of the

. i ) A kT
relaxation curve has been observed: two regimes are ob- —sB| Jx(sp)+Ii(sg)— =+ —=Ing], 2
tained, reminiscent of the associated equilibrium double step 2 2
character. whereJ; andJ, include the contributions of the coordination

To explain this behavior, we propose a microscopic dy-number z.  Self-consistent equations are then obtained
namical model for a two sublattice system that takes intdhrough the average valuets,)=tr(sxe #") and (sg)
account two interaction parameters: a “ferromagnetic” intra- =tr(sge” #"i) giving the following system of coupled non-
sublattice §;) and a “antiferromagnetic” intersublattice linear equations:

(J2). (spy=tanhX, (sg)=tanhy, (3)
with
A kT
II. ISING-LIKE MODEL FOR THE TWO-STEP SPIN X=,8(J2<SB>+J1(SA)— E+ 7In g);
TRANSITION
. I . A kT
The spin Hamiltonian that describes the two-step SC Y=3<J2<5A)+Jl<38>—§+7|n g)_ (4)
transitions can be written in the form of the Ising Hamil-
tonian of a ferrimagnetic systefriVe denote byA andB the The staticthermodynamical equilibriuinversion of this
two sublattices. model has been well studied in the past by Bousseksou

Associated with these two quantities are the followinget al? It is quite easy to demonstrate that this system repro-
fictitious two-state operatoss* ands® for which eigenvalues duces the thermal double step SC transitions observed in
—1 and+1 correspond, respectively, to the LS and the HSMossbauer and magnetic experiments. These two transitions

states. are in fact due to the two sublattices which make the spin
For the present model, the Hamiltonian of the system idransition at different temperatures because of the antifer-
written as roelastic coupling which breaks the symmetry at the transi-
tion. Let us denote byl¢; and T, the two transition tem-
H=—J,> siAs]A—le sPsB—J,>, SiAS? peratures responsible for the existence of a plateau. These
(.5 (0.5 (0.5 two temperatures can cancel the effective field acting on
A KT each sublattice, which gives the following relations defining
+ =5 g)EI (sh+sP), (1)  Te andTe,:

A KTy
where A and g are the ligand field energy and the degen- 5~ Ze Ing+J,mg(Te1) =0,
eracy.J; andJ, are coupling parameters with the following
signs:J; >0 (ferro) andJ,<O0 (antiferrg. We will assume in A KkTe

the rest of this work that the intensities of the interactions 2 2

It is straightforward that if we pul,=0 (no antiferroelastic
dElectronic mail: jlinares@physique.uvsa.fr coupling, we obtain immediately two equivalent sublattices

In g+J2mA(Tez):O. (5)
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with the same transition temperaturg,= A/kg In g. To have

a two-sublattice system in the low spin state at 0 K, we must

consider the following condition:

A

It is also interesting to note thdt,; and T, can be approxi-
mated well by the following analytical formulas:

_A-2]3,|
17 kgslng

_A+2]3y
27 kgling

()

It follows that the width of the plateau is given b§T,
=4|J,|/kgIng. The latter is directly proportional to antifer-
roelastic couplingl,.

Boukheddaden et al.

lII. DYNAMICAL ASPECTS

The dynamical propertiésof the adapted lIsing-like
model for the two-step spin crossover system is studied in
the general stochastic formalism of the master equation in-
troduced by GlaubérThe latter is based on the simple idea
that each individual site interacts with a thermal bath which
changes its state randomly over time. In the present case, the
thermal bath spontaneously induces spin flip of the fictitious

spins froms?(sB) to —s*(—sB).
Let us denote by W(sl,.. S SN AST . SK
—sh ... —s SN ,sl ,...,S%) the transition rate of thgth

spin from state; to — s for any value ofsB The dynamics
of the model are completely fixed by knowledge of the func-
tion W which is assumed independent of the previous history
of the system(Markovian process

The time evolution of this probability function is given
by the following general master equation

d
ap(s’f,...,sﬁ,s?, SRt
N
:_szlWJ'(SJA’SJB_> S ST IP(ST S ST 8 i) — E W(s,sP =, —SP)p(Sy ... S .87 ... it)
_2 W(sf,sP— —sf —s?)p(sﬁ,...,sﬁ,...,s?,...,sJ-B;t)+JZlWj(—s SP—S8 SHIP(SY =S ST LS
N N
+2W(SJ,—S —sP,sHp(sh,... P 8T, st +EW( s, —sp——s,s7)
XP(SEree =S eSS ). )

Taking into account only one spin transitions, the previ-ratio of the probabilities of opposite transition rates. Taking

ous master equation leads to detailed balance equations,

Wi(s}',sP——s',s7) _ pe(— S}
Wj(— SJ'SJ_’SJ'J) e(sl’l)
Wi(s},si—s!' —sP)  pels),—s) ©
W'(S' _S _)S] ’ J) pe(sl ’ J)

where pe(sf,s?) =exi —BH(s' s%)] are canonical Boltz-

into account the specificity of the spin-crossover problem, in
which the dynamics are of Arrhenius type at relatively high
temperature, simple transformation allows us to obtain a pos-
sible choice for the transition rate that obeys the previous
constraints:

Wg(sf——s7)

sP—sp,—s))

tr{sA}W (SJ 'S

mann probabilities. Inserting these probabilities in the last

detailed balance, we arrive at.

pe( SJ ’ J ) _ eXF[_BS]A(S]'A_’— Eﬁ)] .
Pe(s;.sy)  exdBs)(e] +ED)]
Pe(—Si,s J _exl— Bs](e] +ED)] 10
Pe(s;.s;)  exdBs;(e] +E])]
W|th Ef=J,3is"—(A—kTIng) and e}'=J,3;s”. E and

can be expressed from expressmnsE@fands by in-
terchanglng exponents and B.

1
=Z[coshﬁ(sB+ EB)—sBsinhpB(eB+EB)], (11)
Wa(s)——sf)
—tr{SBAW(s] ,sJ —— s S| B)
=%_[COShB(SA'FEA)—SASiﬂhB(8A+EA)]. (12)

The symbol tr, represents the partial trace on the spin
]

It is well known that several dynamic choices are pos-statessjA. The factor 1/2=(1/27y) exp(— EglkT) defines the

sible according to Eqg9) and (10) which only provide the

individual spin flip rate between HS and LS states and fixes
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FIG. 1. Simulated relaxation curve of the high-spin fraction obtained from ) )
numerical solution of the coupled differential equatipBgs.(16) and(17)]. /G- 2. Experimental relaxation —curve for{Fe(pmd [AG(CN);]
The parameters used alg=220 K, J,= —70 K, A=900 K, g=400, EA X[Ag,(CN)3]} at T=44 K. The inset shows the double step thermody-

—1150 K. 7.=0.001 andT =44 K namical equilibrium behavior.
= , 7o=0. = .

the time scale of the thermally activated phenomenon oveft thermodynamical equilibriumdm,/dt=0 anddmg/dt
the intramolecular energy barridi® of the SC molecule. =0), dynamical Eqs(14) and(15) lead exactly to the self-
Generally the Arrhenius prefactor 73/ results from the in-  Consistent equation3) obtained in the static approach of
trinsic phonon frequency of the system. However in our case>€C- l.
1/, must be seen as a temperature dependent frequency
prefactor that originated from a thermal tunnelifiganck— v Low TEMPERATURE REGIME
Condon process over the vibronic intramolecular barrier. ) )
Therefore this quantity depends on the strength of the vi- At low temperature, the equations of motion, E¢fs4)
bronic coupling and the overlapping of the vibrational func-and(15), become
tions localized around the HS and LS stéités. dm, 1+my

Next we adopt the mean-field approach to solve this dy-  —5~ =~ Ko(T) ——exi —(azmg+ ayma)],  (16)
namical problem. In that case the expressionEfbfand sjA
can be rewritten as follows: dmg 1+mg

a0 T

with a;=8J; (1=1,2) and Ky(T)=1/rexps—E2+A

ma andmg are the average value of the “magnetization” in —(k?;/?)ln g],tk\INItht'ﬁ b?;}ngt 1ka'. q in by this simple mi-
each sublattice, directly related to the associated HS fraction IS worth noting that we Tind again by this simple mi
by nys=(1+m)/2. Now, in order to determine the evolution croscopic approach exagtly the game Macroscopic equations
equations ofm,(t) andmg(t), we use the expression of one of motion we have used in the pasb describe phenomeno-

. - ; : : . logically the irradiation effect in these systems.

site probabilityp(s;;t) given in the mean-field approxima- . . o ; : L

e p X. yE( BUR X - PP With the intersublattice interactiod, being negative, it
tion by p(s™;t) = (1+my(t)s:)/2 whereX=A, B andmy(t) . " '

) AR ow . becomes possible beyond a critical value Jof to obtain

is the magnetization of sublatticéat timet. . : ; . L

. . . , relaxation curves with two regimes. This relaxation in two
The equations of motion associated with,(t) and

. . . steps is shown in Fig. 1, in which we have reported the
mg(t) can be obtained from the master equation using th?empporal evolution ofgthe total high-spin fractimm:: nAs

mean-field approach and assuming the lattice to be spatiall B bserved experimental Fig. 2
invariant. After some development we arrive at the following = HS as observed experime fsee Fig.
system of nonlinear coupled differential equations

exd —(a,mpt+aimg)],  (17)

kT
EA:ZJlmA_ A_?Ing y SA:JZmB: (13)
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