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Magnetic exchange interaction in a pair of orbitally degenerate ions:
Magnetic anisotropy of †Ti2Cl9‡
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The theory of the kinetic exchange in a pair of orbitally degenerate ions developed by the authors
@J. Phys. Chem. A102, 200~1998!# is applied to the case of face-shared bioctahedral dimer~overall
D3h-symmetry!. The effective kinetic exchange Hamiltonian is found for a2T2–2T2 system taking
into account all relevant transfer pathways and charge-transfer crystal field states. The influence of
different transfer integrals involved in the kinetic exchange on the energy pattern and magnetic
properties of the system is examined. The role of other related interactions~trigonal crystal field,
spin–orbit coupling! is also discussed in detail. Using the pseudoangular momentum representation
and the technique of the irreducible tensor operators ofR3-group we give a general outlook on the
nontrivial symmetry properties of the effective Hamiltonian for theD3h-pair, and on the magnetic
anisotropy arising from the orbital interactions specific for the case of orbital degeneracy. The
magnetic properties of the binuclear unit@Ti2Cl9#

23 in Cs3Ti2Cl9 are discussed with a special
emphasis on the magnetic anisotropy experimentally observed in this system. The existing exchange
models for@Ti2Cl9#

23 and the concept of the effective Hamiltonian are discussed in the context of
the present study. ©2001 American Institute of Physics.@DOI: 10.1063/1.1329892#
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I. INTRODUCTION

In the case of orbital degeneracy of the constituent io
the isotropic spin-Hamiltonian of the magnetic exchan
~Heisenberg–Dirac–VanVleck, HDVV model! becomes in-
valid even as a zeroth order approximation. The effect
exchange Hamiltonian cannot be expressed in terms of
operators only and contains also operators acting within
orbital spaces of interaction ions. For the first time Khoms
and Kugel derived the kinetic exchange Hamiltonian for
bitally degenerate ions and considered the problem of
orbital ordering in solids~see the review paper of Khomsk
and Kugel1 and references therein!. The theory of the kinetic
exchange was developed by Drillon and Georges2 and
Leuenberger and Gu¨del.3 Because of the lack in the use o
symmetry arguments and simplifications in the energy sp
trum of the charge transfer states the models so far con
ered prove to be restricted in their applicability to the re
systems.

In our recent paper4 we proposed a new approach to t
problem of the kinetic exchange between orbitally degen
ate multielectron transition metal ions. Our considerat
takes into account explicitly complex energy spectrum
charge transfer crystal field states exhibited by the Tana
Sugano diagrams. Taking advantage from the symmetry
guments we have deduced the effective exchange Ha
tonian in its general form for an arbitrary overall symme
of the dimer taking into account all relevant electron trans

a!Electronic mail: eugenio.coronado@uv.es
b!On leave from the Quantum Chemistry Department, Institute of Chemis
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pathways. The effective Hamiltonian was constructed
terms of spin-operators and standard orbital operators~cubic
irreducible tensors!. All parameters of the Hamiltonian in
corporate physical characteristics of the magnetic ions
their crystal surroundings. In fact, they are expressed
terms of the relevant~in a given overall symmetry! transfer
integrals and crystal field and Racah parameters for the c
stituent ions.

In the present paper we apply the effective Hamilton
deduced4 to the case of the face-shared bioctahed
d1(2T2) –d1(2T2) dimer ~D3h overall symmetry!. Trivalent
titanium ions form these kind of well isolated dimers in th
crystal structure of Cs3Ti2Cl9 ~Refs. 5, 6! and Cs3Ti2Br9

~Ref. 7! whose magnetic and spectroscopic properties we
subject of the discussion for almost two decades.4,8–12One of
the most spectacular features of the magnetic behavior o
@Ti2Cl9#

23 entity is a significant magnetic anisotropy th
clearly indicates the importance of the orbital interaction6

Since the proposed effective Hamiltonian takes into acco
all relevant orbital interactions, this relatively simple syste
exhibiting distinct qualitative peculiarities could be a go
test for the theory based on the effective Hamiltonian. H
we will discuss the magnetic properties of@Ti2Cl9#

23 taking
into account also relevant one-center interactions, nam
spin–orbit coupling and local low-symmetry~trigonal! com-
ponents of the crystal field.

We will show briefly how the effective Hamiltonian de
duced by the authors4 and adapted to the point groupD3h can
be treated using the irreducible tensor operator techniqu
the R3 group. This allows us to introduce a pseudoangu
momentum representation that provides clear insight on

y,
8 © 2001 American Institute of Physics
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1149J. Chem. Phys., Vol. 114, No. 3, 15 January 2001 Magnetic exchange
role of orbital interactions in the magnetic anisotropy of t
system and to reveal some nontrivial symmetry propertie
the effective Hamiltonian. Taking advantage of the effect
Hamiltonian approach combined with the irreducible ten
operator technique inR3 , we will consider also some gener
properties of the face-shared dimers, and will discuss
existing models of the kinetic exchange in such kinds
systems.

II. EXCHANGE HAMILTONIAN OF THE FACE-SHARED
BIOCTAHEDRAL D3h PAIR

We start from the general expression for the effect
exchange Hamiltonian for a pair of the metal ionsA andB
possessing orbitally degenerate ground terms,4

Hex522 (
GAGBGA8GB8

(
gAgBgA8gB8

(
Gg

(
G8g8

^GguGAgAGA8gA8 &

3^G8g8uGBgBGB8gB8 &OGg
A OG8g8

B

3@JGG8
(0)

~GAgA ,GBgB ,GA8gA8 ,GB8gB8 !

1JGG8
(1)

~GAgA ,GBgB ,GA8gA8 ,GB8gB8 !SASB#, ~1!

whereGA(B)gA(B) are the symmetry labels for the magne
orbitals connected by the transfer integralst(GAgA ,GBgB),
OGg

A and OGg
B are the irreducible cubic tensors ofGg-type

acting in the orbital spaces of the magnetic ions,SA andSB

are the full spin operators. The parameters of the effec
Hamiltonian JGG8

(k) (GAgA ,GBgB ,GA8gA8 ,GB8gB8 ) are propor-
tional to the products of the transfer integra
t(GAgA ,GBgB)t8(GA8gA8 ,GB8gB8 ) and depend on the crysta
field and Racah parameters of the ions in their normal
duced and oxidized forms; the receipt for their evaluation
given in the paper by Borra´s et al.4 @in this paperJGG8

(0) (¯)
and JGG8

(1) (¯) were denoted asU(¯) and J(¯), respec-
tively#.

The binuclear unit@Ti2Cl9#
23 represents a face-share

2T2(t2) –2T2(t2) cluster with D3h overall symmetry.6 The
molecular structure of@Ti2Cl9#

23 and the local coordinate
systems associated with the metal ions in their local s
roundings are shown in Fig. 1~a!. Following the general
consideration,4 we will use the cubic one-site basis related
C4 axes ~tetragonal basis! defined as j}yz, h}xz, z
}xy(T2), u}3z22r 2, y})(x22y2)(E), a}Lx , b
}Ly , g}Lz(T1).

Figure 2 illustrates two different types of transfer int
grals. The transfer integrals of the first typet(jA ,jB)
5t(hA ,hB)5t(zA ,zB)[t ~diagonal transfer pathways! are
shown in Fig. 2~a!. Figure 2~b! shows off-diagonal transfe
integrals, namely,t(jA ,hB)5t(hA ,zB)5t(jA ,zB)[t8.

In order to deduce the Hamiltonian for theD3h system
one should substitute into the general expression of
Hamiltonian@Eq. ~1!# the Clebsch–Gordan coefficients an
to choose a definite set of relevant transfer integrals. In o
to adapt this Hamiltonian to the2T2(t2) –2T2(t2) system one
should restrict the set of transfer parameters to those
t2– t2-types. One has also to incorporate into the parame
Downloaded 29 Jan 2010 to 147.156.182.23. Redistribution subject to AI
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@Eq. ~1!# the relationship between transfer integrals impli
by D3h symmetry. Then the Hamiltonian of the system c
be presented as a sum of three terms,

H5Ht1Ht81Htt8 . ~2!

The first term of the Hamiltonian involving the diagon
transfer integrals is of the following form:

FIG. 1. Cartesian tetragonal and trigonal frames for a face-shared binu
system: local tetragonal frames~a!, local trigonal frames for the sites A~b!
and B ~c!.

FIG. 2. Overlaps associated to different types of transfer integrals: diag
transfert~a!, off-diagonal transfert8 ~b!, ta transfer in trigonal basis~c!.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Ht522t2$FE
(0)~Ou

AOu
B1Oy

AOy
B!1FT1

(0)~Oa
AOa

B1Ob
AOb

B1Og
AOg

B!

1FT2

(0)~Oj
AOj

B1Oh
AOh

B1Oz
AOz

B!1@FA1

(1)OA1

A OA1

B 1FE
(1)~Ou

AOu
B1Oy

AOy
B!

1FT1

(1)~Oa
AOa

B1Ob
AOb

B1Og
AOg

B!1FT2

(1)~Oj
AOj

B1Oh
AOh

B1Oz
AOz

B!#SASB%. ~3!

The second term involves only off-diagonal transfer integrals,

Ht852t82H FE
(0)~Ou

AOu
B1Oy

AOy
B!1FT1

(0)~Oa
AOa

B1Ob
AOb

B1Og
AOg

B!2FT2

(0)~Oj
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B1Oh
AOh

B1Oz
AOz

B!
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2
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~0! @~Oj
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A1Oz
A!OA1

B 1OA1

A ~Oj
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B1Oz
B!#1

1

)
FET2

(0) @~Oj
A1Oh

A22Oz
A!Ou

B1Ou
A~Oj

B1Oh
B22Oz

B!#J
12t82H 2FA1

(1)OA1

A OA1

B 1FE
(1)~Ou

AOu
B1Oy

AOy
B!1FT1

(1)~Oa
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B1Og
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B!2FT2

(1)~Oj
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B1Oh
AOh

B1Oz
AOz

B!

2
2

A6
FA1T2

(1) @~Oj
A1Oh

A1Oz
A!OA1

B 1OA1

A ~Oj
B1Oh

B1Oz
B!#1

1

)
FET2

(1) @~Oj
A1Oh

A22Oz
A!Ou

B1Ou
A~Oj

B1Oh
B22Oz

B!#J SASB .

~4!

Finally, the third term contains the product of two types of transfer integrals,

Htt8522tt8H 4

A6
FA1T2

(0) @~Oj
A1Oh

A1Oz
A!OA1

B 1OA1

A ~Oj
B1Oh

B1Oz
B!#1

1

)
FET2

(0) @~Oj
A1Oh

A22Oz
A!Ou

B1Ou
A~Oj

B1Oh
B22Oz

B!#J
22tt8H 4

A6
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(1) @~Oj
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1
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In Eqs. ~3!–~5! the transfer integrals are shown expli
itly. That is why instead of the paramete
JGG8

(n) (GAgA ,GBgB ,GA8gA8 ,GB8gB8 ) involved in the genera
Hamiltonian @Eq. ~1!#, we have introduced the paramete
FGG8

(n) (¯) defined as follows:

JGG8
(n)

@~ t2j!A~ t2j!B~ t2j!A~ t2j!B#

5JGG8
(n)

@~ t2h!A~ t2h!B~ t2h!A~ t2h!B#

5JGG8
(n)

@~ t2z!A~ t2z!B~ t2z!A~ t2z!B#[t2FGG8
(n) ,

JGG8
(n)

@~ t2j!A~ t2j!B~ t2j!A~ t2h!B#5tt8FGG8
(n) ,

~6!
JGG8

(n)
@~ t2j!A~ t2h!B~ t2j!A~ t2h!B#5t82FGG8

(n) .

We have denoted alsoFGG
(n)[FG

(n) . Symbol G in Eqs.
~3!–~5! is omitted in the notations of the matricesOGg

i , and
they are identified through the symbolg for the basis,
namely,OGg

i [Og
i with g5u,y for G5E, g5j,h,z for G

5T2 , and g5a,b,g for G5T1 . The matricesOGg
i are

given in Appendix A.
The Hamiltonian ~2! is valid for the many-electron

face-shared 2S11T2(t2
n) –2S11T2(t2

n)-dimers. It operates
in the space of the states, uLA

g5T2 ,lA
g&uLB

g

Downloaded 29 Jan 2010 to 147.156.182.23. Redistribution subject to AI
5T2,lB
g&uSA

gMA
g&uSB

gMB
g& representing the direct products of th

ground one-center orbital and spin states. In the case of31

ions SA(B)
g 51/2 ~the total spinS50,1!.

III. EXCHANGE HAMILTONIAN IN THE TRIGONAL
BASIS

In the previous section we have deduced the effec
Hamiltonian relating the operators to the local tetragonal
ordinate systems. For the subsequent calculations and dis
sion it is convenient to introduce the trigonal local coordina
systemsXA ,YA ,ZA and XB ,YB ,ZB with ZA(ZB) axes di-
rected alongC3 , as shown in Figs. 1~b! and 1~c!. The com-
mon ~molecular! coordinate system is taken to be coincide
with the local trigonal systemXA ,YA ,ZA . We pass to the
complex trigonal basisx0 ,x1 ,x2 for T2 , a0 ,a1 ,a2 for T1

andu1 ,u2 for E. The unitary transformations are given b
the following matrices:13

1

)

x1~a1! x2~a2! x0~a0!

F 2v v* 1

2v* v 1

21 1 1
G j~a!

h~b!

z~g!
, v5expS 2p i

3 D ,
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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1

&

u1 u2

F21 1

2 i 2 i Guy , ~7!

where* indicates the complex conjugation.
In the trigonal basis there are two transfer integrals

lowed by the symmetry conditions:t(x0
A ,x0

B)[ta and
t(x1

A ,x1
B )5t(x2

A ,x2
B )[te . The ta and te transfer integrals

~we use the notations introduced in Ref. 10! connecta-type
(x0) and e-type (x6) orbitals appearing under the trigon
splitting of the cubict2-manifold. a-type orbitals overlap
along C3-axis @Fig. 2~c!# while the e-type orbitals are in
perpendicular planes to theC3-axis. Using the transforma
tion ~7! for one-electronT2-basis one can find the following
f
e
rg

s
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l-

relationship between the transfer integrals defined in trigo
and tetragonal bases,

ta5t12t8,te5t2t8. ~8!

In the subsequent discussion we will use both sets
transfer parameters. After some simple but cumbersome
culations one can express the Hamiltonian in the trigo
coordinates as a sum of three contributions,

H5Ha1He1Hae . ~9!

The first term is proportional tota
2 , the second one is

proportional tote
2 , and the third one contains the produ

tate . These three contributions are given by Eqs.~10!, ~11!
and ~12!,
Ha52 2
3 ta

2$2FT2

(0)Ox0

A Ox0

B 1&FA1T2

(0) ~OA1

A Ox0

B 1Ox0

A OA1

B !1@FA1

(1)OA1

A OA1

B 12FT2

(1)Ox0

A Ox0

B 1&FA1T2

(1) ~OA1

A Ox0

B 1Ox0

A OA1

B !#SASB%,

~10!

He5 2
3 te

2$FE
(0)~Ou1

A Ou2

B 1Ou2

A Ou1

B !22FT2

(0)~2Ox1

A Ox2

B 2Ox2

A Ox1

B 1Ox0

A Ox0

B !23FT1

(0)Oa0

A Oa0

B 1FT2

(0)Ox0

A Ox0

B

1&FA1T2

(0) ~OA1

A Ox0

B 1Ox0

A OA1

B !1&FET2

(0) ~Ox1

A Ou2

B 1Ox2

A Ou1

B 1Ou2

A Ox1

B 1Ou1

A Ox2

B !

1@22FA1

(1)OA1

A OA1

B 1FE
(1)~Ou1

A Ou2

B 1Ou2

A Ou1

B !

22FT2

(1)~2Ox1

A Ox2

B 2Ox2

A Ox1

B 1Ox0

A Ox0

B !23FT1

(1)Oa0

A Oa0

B 1FT2

(1)Ox0

A Ox0

B 1&FA1T2

(1) ~OA1

A Ox0

B 1Ox0

A OA1

B !

1&FET2

(1) ~Ox1

A Ou2

B 1Ox2

A Ou1

B 1Ou2

A Ox1

B 1Ou1

A Ox2

B !#SASB%, ~11!

Hae5
2
3 tate$2FE

(0)~Ou1

A Ou2

B 1Ou2

A Ou1

B !23FT1

(0)~2Oa1

A Oa2

B 2Oa2

A Oa1

B 1Oa0

A Oa0

B !2FT2

(0)~2Ox1

A Ox2

B 2Ox2

A Ox1

B 1Ox0

A Ox0

B !

13FT1

(0)Oa0

A Oa0

B 1FT2

(0)Ox0

A Ox0

B 2&FET2

(0) ~Ox1

A Ou2

B 1Ox2

A Ou1

B 1Ou2

A Ox1

B 1Ou1

A Ox2

B !

1@2FE
(1)~Ou1

A Ou2

B 1Ou2

A Ou1

B !23FT1

(1)~2Oa1

A Oa2

B 2Oa2

A Oa1

B 1Oa0

A Oa0

B !2FT2

(1)~2Ox1

A Ox2

B 2Ox2

A Ox1

B 1Ox0

A Ox0

B !

13FT1

(1)Oa0

A Oa0

B 1FT2

(1)Ox0

A Ox0

B 2&FET2

(1) ~Ox1

A Ou2

B 1Ox2

A Ou1

B 1Ou2

A Ox1

B 1Ou1

A Ox2

B !#SASB%. ~12!
-
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The orbital matricesOGg in the trigonalT2 basis are
given in Appendix B.

IV. THE PARAMETERS OF THE EXCHANGE
HAMILTONIAN

Let us express the parametersFGG8
(n) involved in Ha ,He ,

and Hae in terms of the crystal field parametersDq and
Racah parametersA, B, C defining the energy spectrum o
the constituent ions in their ground, oxidized and reduc
configurations. In the case under consideration the cha
transfer configurations aredA

2 –dB
0 anddA

0 –dB
2 so that all rel-

evant parametersA, B, C, andDq are related to thed2 ion.
The 3T1(t2

2 ,t2e), 1E(t2
2 ,e2), 1A1(t2

2 ,e2), and 1T2(t2
2 ,t2e)

terms of thed2 ion ~reducedS̃G̃ states! should be taken into
account. This is because only these charge transfer state
be mixed with the ground one by means of thet2

A→t2
B trans-

fer processes that are allowed in the overallD3h symmetry.
In fact, considering for example the reduced state3T2(t2e)
one can see that this can be obtained fromt2– t2 ground
d
e-

can

configuration only via thet2→e transfer process that is ir
relevant in the case of interest. By means of the proced
described in Ref. 1 we arrive at the following formula fo
FGG8

(n) -parameters:

FGG8
(n)

5N1
(n)~GG8!F11N2

(n)~GG8!F21N3
(n)~GG8!F3

1N4
(n)~GG8!F4 , ~13!

whereNi
(n)(GG8) are the numerical coefficients collected

Table I, the parametersFi are defined by

F152F cos2 d

«1~1T2!
1

sin2 d

«2~1T2!G , F252F cos2 u

«1~3T1!
1

sin2 u

«2~3T1!G ,
~14!

F352F cos2 a

«1~1A1!
1

sin2 a

«2~1A1!G , F452F cos2 b

«1~1E!
1

sin2 b

«2~1E!G .

P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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EachFi parameter is associated with one kind of ter
of the reduced ion. In Eq.~14! the anglesu, a, b, andd are
the functions of the crystal field and Racah parameters~Ap-
pendix C!. These angles characterize the mixing of the
peating terms arising from the different strong cubic fie
configurations. The parametersFi

21 play the same role in ou
consideration as the energyU in the Anderson’s theory o
the kinetic exchange. The energies of charge transfer s
in the denominators in Eq.~14! contain the common termA

and crystal field energies«m8 (S̃G̃),

«m~S̃G̃ !5A1«m8 ~S̃G̃ !, ~15!

where

«1(2)8 ~3T1!5 1
2 $10Dq2B7@~10Dq19B!21144B2#1/2%,

«1(2)8 ~1A1!5 1
2 $20Dq19~2B1C!7@~20Dq22B2C!2

124~2B1C!2#1/2%,
~16!

«1(2)8 ~1E!5 1
2 $20Dq1B14C7@~20Dq2B!2

148B2#1/2%,

«1(2)8 ~1T2!5 1
2 $10Dq1B14C7@~10Dq2B!2

148B2#1/2%.

The energies in Eq.~15! are counted from the energie
of the pair of noninteracting2T2-ions.

TABLE I. The numerical factorsNi
(n)(GG8) in Eq. ~13!.

G G8 i Ni
(0)(GG8) Ni

(1)(GG8)

A1 A1 1 1/12 21/3
2 1/4 1/3
3 1/36 21/9
4 1/18 22/9

E E 1 21/12 1/3
2 21/4 21/3
3 1/18 22/9
4 1/9 24/9

T1 T1 1 21/8 1/2
2 3/8 1/2
3 1/12 21/3
4 21/12 1/3

T2 T2 1 1/8 21/2
2 23/8 21/2
3 1/12 21/3
4 21/12 1/3

A1 T2 1 )/16 2)/4
2 )/16 1/4)
3 1/12) 21/3)
4 1/24) 21/6)

E T2 1 0 0
2 2)/4& 21/A6
3 1/6A6 2&/3)
4 1/12A6 21/3A6
Downloaded 29 Jan 2010 to 147.156.182.23. Redistribution subject to AI
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V. ENERGY LEVELS OF THE FACE-SHARED 2T2 – 2T2
BIOCTAHEDRON

The effective exchange Hamiltonian~9! can be diagonal-
ized using the symmetry adapted two-center orbital ba
This basis and the corresponding terms of the face-sh
2T2–2T2 bioctahedron are given in Table II. The energy le
els in terms of the parametersFi and two transfer integralsta

and te are given in Appendix D, along with the 232 matri-
ces for the repeating terms 23A29(2

1A18) and 23E9(21E8).
These energies and matrices contain also the trigonal cry
field terms that will be discussed below and contributions
the intersite Coulomb repulsion between unfilled electro
shells that will be briefly discussed in the context of th
influence on the magnetic behavior.

In the calculations of the energy pattern we use
Racah parameters evaluated for the free Ti21 ion by
Clementi et al.,14 namely, A514 100 cm21, B5900 cm21,
C53300 cm21 ~these values are close to those found in
crystal field13!. An independent estimation ofA can be found
comparing the ionization potentials for the configuratio
Ti12–Ti13 ~2.6525 MJ/mol! and Ti13–Ti14 ~4.1746
MJ/mol!.15 This estimation givesA515.03 eV that is close
to the value calculated for the free Ti12 ion. Similar estima-
tion can be obtained from the formulaA5F0249F10 ~Ref.
13! with the Slater–Condon parameters expressed in termB
and C by the use of Eq.~5.3! of Tanabe–Sugano’s book.13

The cubic field splitting parameterDq is taken to beDq

TABLE II. Orbital basis for the effective Hamiltonian~9! in the case of the
2T2–2T2 system and related terms. Upper~lower! function for orbital dou-
bletsE8 andE9 corresponds tou1(u2).

Terms Symmetry adapted orbital basis

3A28 , 1A19
1

&
~x2

Ax1
B 2x1

Ax2
B !

@I# 3A29 , 1A18
1

)
~x0

Ax0
B2x2

Ax1
B 2x1

Ax2
B !

@II # 3A29 , 1A18
1

A6
~2x0

Ax0
B1x2

A x1
B 1x1

A x2
B !

@I# 3E9, 1E8
1

)
~x1

Ax0
B1x0

Ax1
B 2x2

Ax2
B !

1

)
~x1

Ax1
B 1x0

Ax2
B 1x2

Ax0
B!

@II # 3E9, 1E8 2
1

A6
~x1

A x0
B1x0

Ax1
B 12x2

A x2
B !

1

A6
~2x1

A x1
B 2x0

Ax2
B 2x2

A x0
B!

3E8, 1E9
1

&
~x0

Ax1
B 2x1

Ax0
B!

1

&
~x2

Ax0
B2x0

Ax2
B !
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51000 cm21 that is typical for divalent metal ions13 ~reduced
ion in the case under consideration!.

Figure 3 shows the energy levels as a function of
ratio te /ta in the range21<te /ta<1. One can see that th
energy pattern is symmetric with respect to the change of
sign of te /ta . In a wide range ofte /ta the ground state is the
spin singlet1A18 . Only at te /ta.0.9(te /ta,20.9) the or-
bital doublet3E8(3E9) becomes the ground state. The hig
est excited state is accidentally degenerate and comp
several multiplets, mainly spin-triplets. It is to be noted th

FIG. 3. Energy pattern of the face-shared2T2–2T2 system as a function of
te /ta .
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the full gap of exchange splitting~except terminal parts o
the diagram! is almost independent of the ratiote /ta and
mainly depends onta .

Three special high-symmetric cases are seen in Fig
namely:

~i! Pseudospherical case:te /ta51 (ta5te5t,t850);
~ii ! Spherical case:te /ta521 (t52ta/3,t8522t);
~iii ! Axial case:te /ta50 (t5t85ta/3).

In each of these cases the energy pattern exhibits a
degree of accidental degeneracy that shows that the effe
Hamiltonian belongs to a more general symmetry group t
the point symmetry groupD3h . The reasons for the use o
terms pseudospherical, spherical and axial will be clarifi
below in the context of the discussion of the magnetic ch
acteristics.

Let us consider first the cases~i! and~ii !. Since the dia-
gram is symmetric, the energy patterns for spherical a
pseudospherical limits are the same. This is depicted in
4, where the terms are shown for cases~i! and~ii ! in the left
and right sides, correspondingly. One can see that the en
gaps in these two cases are determined by four parame
Ji , related to the parametersFi by

J152ta
2F1 , J25ta

2F2 , J352ta
2F3 , J452ta

2F4 .
~17!

It should be noted that the parametersJ1 andJ4 are very
close due to the fact that1E and 1T2 reduced states are a
most degenerate in a wide range ofDq/B values with the
exception of a narrow region of weak crystal field~see the
Sugano–Tanabe diagram ford2!.13 Therefore the splitting of
the first excited group of levels is also very sma
('0.01 cm21 for a reasonable set of parameters!. This gap is
-
FIG. 4. Energy pattern of the face
shared2T2–2T2 system in the spheri-
cal ~left-side labels! and pseudospheri-
cal ~right-side labels! limits.
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artificially increased in Fig. 4. Since this small splitting do
not affect the magnetic properties, we will consider in t
following that the first excited group contains degener
levels.

For the subsequent discussion it is very useful to pas
the angular momentum representation applying the irred
ible tensor operators technique for theR3-group.16–22 The
full description of this new approach and its applications w
be published elsewhere.23 Here we will mention concisely
only the main ideas and results that will be used in
present discussion. In theO-group three cyclic component
of the orbital angular momentum operator, namely,L10

5LZ and L16157(1/&) (LX6 iL Y) quantizied along the
C3 axis form the trigonal basis ofT1 and the matricesOT1g

are related to the matrices ofL1q with L51 ~T–P isomor-
phism orT–P analogy! as follows:

Oa0
5

i

&
L10, Oa6

5
i

&
L161 . ~18!

Since the direct productT13T1 in O containsE andT2 ,
the matricesOEg and OT2g can be expressed through th
bilinear forms ofOT1g using the Clebsch–Gordan decomp
sition,

OGg5KG (
g1g2

OT1g1
OT1g2

^T1g1T1g2uGg&, ~19!

whereKG are the numerical coefficients. In this way allOGg

matrices in the Hamiltonian~9! can be expressed in terms
the bilinear formsL1q1

L1q2
. Taking into account thatL1q

[T1q(L) is the first rank irreducible tensor of spheric
group R3 , one can express all one-site operators,OGg ,
through the irreducible tensorsTkq(L) of ranksk50,1,2,

L1q1
L1q2

5(
kq

Tkq~L !^kqu1q11q2&, ~20!

where^kqu1q11q2& are the Wigner coefficients.
The last step is to express the direct productsOGg

A OG8g8
B

~two site operators! involved in the Hamiltonian~9! through
the irreducible tensor products$TkA

A (LA) ^ TkB

B (LB)%kq . This

can be done using the Clebsch–Gordon decomposition o
more,

TkAqA

A ~LA!TkBqB

B ~LB!5 (
k5ukA2kBu

kA1kB

$TkA

A ~LA!

^ TkB

B ~LB!%kq^kqukAqAkBqB&.

~21!

For instance, the productOx0

A Ox0

B can be expresse

through the tensor products of ranksk50, 2, and 4 andq
50,

Ox0

A Ox0

B 5
1

A5
$T2

A
^ T2

B%002
2

A14
$T2

A
^ T2

B%20

1
6

A70
$T2

A
^ T2

B%40. ~22!
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The Hamiltonian expressed in terms of the irreducib
tensor operators acts within the basis s
uLALBSASB ,SMSLML&[uSMS ,LML& with fictious LA5LB

51 andL50,1,2 ~Russell–Saunders coupling scheme!. This
provides an alternative way to calculate the energy lev
applying the powerful technique of the irreducible tensor o
erators ofR3 , and extend also the effective Hamiltonian a
proach to the polynuclear clusters. All related interactio
~low-symmetry crystal fields, spin–orbit coupling, Zeem
interactions! are also incorporated in the unified comput
tional scheme.23

The results obtained in this way allows us to show
Fig. 4, along with the irreducible representations ofD3h , the
correspondinguSMS ,LML&[uS;LML& labels related to the
pseudoangular momentum representation. Using this la
ing we can make some qualitative conclusion about the m
netic anisotropy of the system.

Let us start with the pseudospherical case~i!. The
ground level comprises two terms3A28 and 3E8 that can be
associated withu1;10& andu1;261& functions. The spin part
of the exchange Hamiltonian is evidently isotropic, so t
anisotropy comes from the orbital contributions. One can
that u1;261& states give strong orbital contribution tox i ,
meanwhile the matrix elements ofLx and Ly disappear
within the ground manifold~L51 for 3A28 and L52 for
3E8!. Inspecting in the same way alluS;LML& labels one can
see that the operatorLz has nonvanishing matrix elemen
within all levels with MLÞ0(L51,2). On the contrary, the
matrix elements ofLx andLy vanish within each exactly and
accidentally degenerate level in Fig. 4. The matrix eleme
of these operators vanish also within the basis belonging
six low-lying levels. The nonvanishing matrix elements lin
only the low-lying states with the highest group of states. F
these reasons the perpendicular component of the orbital
of the magnetic susceptibility appears as the second-o
effect and hence one can expect thatx i.x' , so the mag-
netic anisotropy defined asDx5x i2x' proves to be posi-
tive.

Our conclusion that the exchange interaction produce
strong magnetic anisotropy in a face-shared bioctahe
molecule under the conditiont850 @case~i!# is in striking
contradiction with the statement of Drillon and Georges.8 In
fact, in their model, the exchange anisotropy does not e
providing t850; it can appear only as a minor effect due
the contributions of the crossing transfer terms}tt8 andt82.
The origin of this discrepancy will be discussed later on.

Finally, we would like to underline that each level i
case~i! is (2ML11)-fold degenerate~like in the spherically
symmetric system! but does not correspond to a defini
value of L5ML max ~for example,L51 and L52 in the
ground state withML521,0,1! as indicated in Fig. 4. For
this reason, we refer to this case as pseudospherical~but not
spherical! limit. Indeed, from the point of view of magneti
anisotropy so far discussed this case should be referred
completely anisotropic. It is to be noted that the pseu
spherical limit occurs under the ‘‘spherical’’ conditionta

5te for the transfer integrals.
Let us consider now the spherical case~ii !. The energy

levels are the same as in the previous case~Fig. 3! but the
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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wave functions are different~see labels in the left part of Fig
4!. The general feature of this energy pattern is that e
level can be associated to one or several atomic termsSL as
shown in Fig. 4. In fact, the ground state containing accid
tally degenerate levels3A28(u1;10&), 3E9(u1;1,61&) can be
regarded as an atomic term withL51 and S51, the first
excited state possessesL52 andS50, etc. This shows that
as distinguished from the previous case, the system in
limit ta /te521 is magnetically isotropic. Therefore, th
case can be referred to as true spherical limit.

The last case we consider here is the axial limitte

50). In this case the ground state is the orbital and s
singlet 1A18 @that corresponds to the wave-functio

2 (1/)) u0;00&1A2
3u0;20& in pseudoangular momentum

representation~Fig. 5!#. The first excited group of levels con
sists of two closely spaced sublevels. One of them~lower!
comprises spin triplets3E8, 3E9, and another spin singlet
1E8, 1E9. Finally, the highest level comprises both spin tri
lets and spin singlets. A similar energy diagram was obtai
by Leuenberger and Gu¨del,4 but in their energy scheme th
first excited level was not split. This is a result of ignorin
the differences in energies of charge-transfer states. S
ML50 andS50 in the ground state,x i50 in the low tem-
perature limit. At the same time the perpendicular magn
susceptibility appears as a second order effect~temperature
independent Van Vleck paramagnetism! due to the mixing of
the ground state with the excited statesu0;261&(1E9)
through the orbital part of Zeeman interaction. The anis
ropy Dx proves to be negative, i.e., it has the reverse s
with respect to the pseudospherical case.

This conclusion about negative magnetic anisotropy
valid also for the range ofte /ta ~Fig. 3! in which the ground
term is1A18 ~superposition ofu0;00& andu0;20&). When3E9
(te /ta,20.9) or 3E8 (te /ta.0.9) are the ground term
(ML561), Dx is positive. In all cases~with the exception
of the true spherical limitte /ta521! the magnetic anisot
ropy is axial ~uMLu is a good quantum number! and Dx

FIG. 5. Energy pattern of the face-shared2T2–2T2 system in the axial limit.
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depends on the ratiote /ta . In this view, it should be noted
that we have used the term ‘‘axial’’ for the case~iii ! only to
indicate axial interrelation betweente and ta . It should be
noted also that in all cases the states of the system are
eigenvectors ofLz so that no second order Zeeman effect
possible in the parallel field.

VI. TRIGONAL CRYSTAL FIELD

For the realistic description of the magnetic properties
the @Ti2Cl9#

23 binuclear unit one should take into accou
along with the exchange interaction also the contribution
the trigonal crystal fields acting on each metal site and sp
orbit coupling. Let us consider first the energy pattern res
ing from the combined effect of exchange interaction a
local trigonal crystal field~site symmetryC3V!. We define
the trigonal crystal fieldVtrig5Vtrig

A 1Vtrig
B introducing the en-

ergy separation between the orbitalsx0
A(B) ~A1 in C3V! and

x6
A(B)(E),

^x0
A(B)uVtrig

A(B)ux0
A(B)&5D,^x6

A(B)uVtrig
A(B)ux6

A(B)&50. ~23!

The trigonal crystal field mixes the repeated term
2 3A29 , 2 3E9, 2 1A18 and 21E8 ~see Appendix D!.

The correlation diagram in Fig. 6 illustrates how the p
tern of the energy levels formed by the exchange interac
in 2T2–2T2-pair in the pseudospherical limit is modified un
der the influence of the trigonal crystal field providin
D,0 ~orbital singlet2A1 in the ground state of each ion!. As
one can see from Fig. 6 the trigonal field partially remov
the accidental degeneracy of the exchange multiplets con
uting antiferromagnetically to the low-lying group of level
The increase of the absolute value of the trigonal field
rameteruDu leads to the crossing of the spin levels1A18 and
3E8 so that the system becomes antiferromagnetic, even f
very weak trigonal field. In the limit of strong trigonal field
the low-lying group of levels proves to be well isolated a
consists of the orbitally nondegenerate spin singlet1A18
~ground! and the spin triplet3A29 ; the energy separation be

FIG. 6. Influence of the trigonal field (D,0) on the energy pattern in the
pseudospherical limit.
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tween them is found to be«(3A29)2«(1A18)52(J11J3).
This pair of levels can be described by the isotropic HDV
Hamiltonian22JeffSASB with Jeff5

1
2 (J11J3). The exchange

interaction proves to be antiferromagnetic (Jeff,0) and this
is just what one could expect according to the Anderso
theory24 and Goodenough–Kanamori rules25 for a pair of
ions possessing half-filled nondegenerate orbitalsx0

A , x0
B

well separated from the excited states. The energy levels
be conventionally subdivided into three groups depending
their sensitivity to the trigonal field. Singlet–triplet pair1A18 ,
3A29 can be assigned toa3a-group, orbital doublets1E9,
1E8, 3E8, 3E9 belong toa3e, and the rest arises from th
e3e-group.

Concerning the influence of trigonal field on the ma
netic behavior two points should be mentioned. First,
trigonal field should strongly reduce the magnetic susce
bility because of the stabilization of the state1A18 that carries
neither spin nor orbital magnetic moment. Second, the tri
nal field tends to change the sign of the anisotropy. At
low temperaturesx i tends to zero, meanwhilex' tends to
the nonzero value due to a second order Zeeman effec
fact, inspecting theS;LML-labels in Fig. 6 one can see th

the ground state1A18 (2 (1/)) u0;00&1A2
3u0;20&) can be

mixed throughL' with the state1E9(u0;261&), whereasLz

cannot mix the ground state with the excited states. With
further increase ofuDu the second-order effect decreases a
the system becomes more isotropic.

Providing D.0 ~the orbital doublet2E is the ground
state for each ion! the ground state of the system is the sp
triplet 3A28 independently of the trigonal fieldD, i.e., the
face-shared2T2–2T2 pair in this case is always ferromag
netic. In the limit of strong trigonal field the pattern of low
lying levels comprises three levels3A28 , 1E8, 1A18 and acci-
dentally degenerate level3E9, 3A29 , 1A19 . These four low-
lying levels are obviously the solutions of th
2E(x6) –2E(x6) exchange problem.

FIG. 7. Influence of the trigonal field (D,0) on the energy pattern in the
axial limit.
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In the axial case the trigonal fieldD,0 does not change
the ground state1A18 leading to its additional stabilization
~Fig. 7!. The spin triplet3A29 arising from the highest group
of levels is stabilized in the same way, so in the strong cr
tal field limit singlet–triplet pair proves to be well isolated
Therefore, in the limit of strong negative crystal field th
axial and pseudospherical cases are similar. At the same
the situation forD.0 in axial case is quite different from th
pseudospherical one because the ground level now is a
dentally degenerate (1A18 ,1E8,3A28 ,3E9,3A29 ,1A19). This is
obviously due to the fact that onlyte transfer is responsible
for the splitting of thee3e group.

VII. SPIN–ORBIT AND ZEEMAN INTERACTIONS

The adequate description of the magnetic properties,
particularly the magnetic anisotropy demands to take i
account the spin–orbit interaction. This interaction for t
A–B pair can be described by the operator,

HSO5kl~LASA1LBSB8 !

5kl~L10
A S10

A 2L11
A S121

A 2L121
A S11

A 1L10
B S108

B

2L11
B S1218B 2L121

B S118
B!, ~24!

wherek is the orbital reduction factor arising from the effe
of covalence andl is the spin–orbit parameter for the fre
ion. In Eq. ~24! the orbital angular momentum operato
L1q

A(B) @as well as the orbital matricesOGg
A(B) in the effective

exchange Hamiltonian# are defined in the local trigonal co
ordinate systems@Figs. 1~b! and 1~c!#. The operatorSA is
defined in the same way as in the exchange Hamiltonian~9!,
i.e., in the molecular coordinate system coinciding with t
local trigonal system for the site A. On the contrary,SB8
relates to the local trigonal system of the site B, that diffe
from the molecular one, the directions of X and Y-axes be
opposite. Using the relationships S108

B5S10
B ,S1218B

52S121
B ,S118

B52S11
B one can represent the operatorHSO as

follows:

HSO5kl~L10
A S10

A 2L11
A S121

A 2L121
A S11

A 1L10
B S10

B

1L11
B S121

B 1L121
B S11

B !. ~25!

Now the orbital operators are defined in the local co
dinate systems and the spin operators are defined in the
lecular system just as in the effective exchange Hamilton
~9!.

The nonvanishing matrix elements of theL1q
i ( i 5A,B)

operators in the one-center trigonal basis are the followin

^x6
i uL10

i ux6
i &571,̂ x0

i uL161
i ux7

i &

561,̂ x6
i uL161

i ux0
i &561. ~26!

The matrix of the spin–orbit interaction has been bu
using Eq.~26! and taking as a basis the set of symme
adapted wave functions~Table II!.

Finally, one should add to the total Hamiltonian of th
pair the Zeeman termHZ . The orbital part ofHZ can be
written as follows:
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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kb~LAH1LBH8!

5kb~L10
A H102L11

A H1212L121
A H111L10

B H108

2L11
B H1218 2L121

B H118 ! ~27!

5kb@~L10
A 1L10

B !H101~L11
B 2L11

A !H121

1~L121
B 2L121

A !H11#,

whereLA andLB are related to the local coordinate system
H is defined in the molecular system, andH8 relates to the
local systemB. In the spin part ofHZ both local spin opera-
tors are defined in the molecular coordinate system and
they can be coupled to give total spinS,

bge~SA1SB!H5bgeSH

5bge~S10H102S11H1212S121H111!.

~28!

Now spin–orbit and Zeeman interactions are represen
in the same coordinate frames as the effective excha
Hamiltonian~9!.

VIII. MAGNETIC MANIFESTATIONS OF THE MAIN
INTERACTIONS

In the discussion of the magnetic properties we will
Dq and Racah parameters taking for the Racah parame
their values for the free-ion~see Sec. VII!. The results will
be discussed considering the sample calculations perfor
at ta524000 cm21 ~this is within the Anderson’s estimatio
of transfer parameter24!, k51 and some selected values
te /ta and D. We will consider especially the role of spin
orbit coupling, so the results will be presented for two cas
l50 andl5155 cm21 ~free Ti13-ion!.9 This discussion will
allow us to reveal the role of different relevant paramet
before fitting the experimental data.

A. The role of the ratio t e Õt a

Figure 8 shows thexT vs T dependence for the pseud
spherical limit (te /ta51) provided thatl50 andD50. One
can observe that the magnetic susceptibility is anisotro
with positive anisotropy. The low-temperature limit ofx'T

FIG. 8. xT vs T in the pseudospherical limit. Here and in the followin
figuresx i is shown by solid lines andx' by dashed lines.
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shows pure spin (S51) value, meanwhilex iTuT→051.25
exhibits strong orbital contribution. The reason for this b
havior was qualitatively explained above with the use
pseudoangular momentum representation. One can note
that x iT decreases monotonically with the increase of te
perature, meanwhilex'T passes through the maximum
T515 K.

Figure 9 demonstrates how the magnetic anisotropy
pends on the ratiote /ta in the region where the ground sta
is the orbital and spin singlet1A18 ~Fig. 3!. The following
main features ofx vs T curves should be noted:~1! the sign
of the anisotropy in this region ofte /ta is negative,~2! x i

tends to zero with the decrease of temperature,~3! the an-
isotropy increases with the decrease ofte /ta , ~4! x i does not
depend on the sign ofte /ta ~compare the caseste /ta

560.2!. The first two features have already been explain
in the discussion of the axial limit. The features 3 and 4 c
be realized considering the correlation diagram in Fig. 3. T
ground state1A18 is a superposition of twouS;LML& states:
u0;00& and u0;20&. The stateu0;20& is mixed in a perpen-
dicular field with the state1E9(u0;261&). The efficiency of
this mixing depends both on the weight of the wave funct
u0;20& in 1A18-state and on the energy separation betwe
1A18 and1E9. The calculation shows that in the range ofte /ta

under consideration the contribution ofu0;20& in the ground
state increases slightly with the decrease ofte /ta . At the
same time the gap1A18 , 1E9 decreases, and hencex' ~and
Dx! goes up. To realize the fact thatx i is independent of the
sign of te /ta one should take into account that passing fro
ute /tau to 2ute /tau we change only four levels:1E8↔1E9
and3E8↔3E9 and the coefficients in the linear combinatio
of u0;00& and u0;20& defining two1A18 terms. SinceE8 and
E9 relate to the sameML and1A18 terms do not contribute to
the x i , this changes does not influencex i .

FIG. 9. Influence of the ratiote /ta on the magnetic susceptibility.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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B. The role of spin–orbit coupling

Spin–orbit interaction in the pseudospherical lim
changes dramatically the magnetic behavior~Fig. 10!. The
main effect is thatx is strongly reduced. Spin–orbit couplin
results in the nonmagnetic ground state arising from3A28 ,
3E8 manifold, sox i goes to zero at low temperatures andx'

appears as a second order effect. Therefore as distingui
from the casel50 ~Fig. 8! the magnetic anisotropy be
comes negative.

The spin–orbit interaction in the intermediate region
te /ta ~ground 1A18! gives rise to the nonvanishing low
temperature limit ofx i ~Fig. 10! due to spin–orbit mixing
with the excited spin triplets carrying orbital magnetic m
menta. The low-temperaturex i increases whente /ta de-
creases~mainly as a result of the increase of1A18 , 3E8 gap!.

FIG. 10. Influence of the ratiote /ta on x(T) in the presence of spin–orbi
coupling.

FIG. 11. Influence of the trigonal field onx(T) in the pseudospherical limit
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At the same time spin–orbit interaction slightly modifie
x' , so thatDx remains positive. Due to spin–orbit couplin
x i becomes dependent on the sign ofte /ta ~compare with the
casel50, Fig. 9!.

C. The influence of trigonal crystal field

Figure 11 clearly shows that trigonal crystal field und
the conditions of pseudospherical limit changes the gro
state reversing thus the sign ofDx. The anisotropy disap-
pears with the increase ofuDu in accordance with the argu
ments given in Sec. VI. The maximum ofx vs T curve
moves to the high-temperature region with simultaneous
crease of the maximum values ofx. One can see that nega
tive trigonal crystal field restores the Heisenberg-type m
netic behavior~Bleaney–Bowers equation!9 peculiar for a
well isolated singlet–triplet spin pair.

In the intermediate region ofte /ta ~Fig. 12! we observe
also the decrease of anisotropy at low temperatures with
increase ofuDu. The remarkable features of the magne
behavior of the system in the moderate temperature ra
should be noted. First, the slope of the increase ofx',i(T)
strongly depends onD increasing~decreasing! with the de-
crease~increase! of uDu. This effect is obviously due to the
changes in the gap between the ground state and the s
exchange levels contributing tox(T) when these levels are
thermally populated. Second, the maximum values ofx(T)
depend onD similarly. Third, the degree of anisotropy de
creases with the increase of T. This important effect appe
due to the thermal population of the levels (uS;161&,
uS;262&) exhibiting first order orbital Zeeman splitting an
contributing thus tox i . The low-temperature limits of
x'(T) and the slope inx(T) depend strongly also on th
energy gap between1A8 and 3A29 . Finally, it can be noted
that in the presence of trigonal crystal fieldx i ~T! remains
independent of the sign ofte /ta providing l50.

FIG. 12. Influence of the trigonal field onx(T).
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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IX. DISCUSSION OF THE MODELS AND MAGNETIC
BEHAVIOR OF †Ti2Cl9‡

À3

The first study of magnetic and spectroscopic proper
of the salts@M2X9#

23 (X5Br, I) containing first-row transi-
tion metal ions were reported more then 30 years ago
Saillant and Wentworth.5 Later on Briat, Kahnet al.6 per-
formed a detailed magnetic and spectroscopic study on c
talline samples of Cs3Ti2Cl9. They observed that the infrare
absorption spectra exhibited a broad featureless band loc
in the region 800– 3000 cm21 that cannot be assigned to
single Ti31 ion transition. This band seems to be close
related to the group of levels created by the exchange in
action in a dimer. The magnetic data indicated that the lo
temperature magnetic susceptibility is small and strongly
isotropic with x'.x i . A remarkable feature of the
experimental data is that the magnetic anisotropy decre
with the increase of temperature. Bothx i and x' decrease
when the samples cool down and they become tempera
independent atT,100 K. These data clearly show that th
ground state of the pair is nonmagnetic.

The measurements of the infrared reflectivity from
single crystal of Cs3Ti2Cl9 showed the broad signals betwe
350 cm21 and 950 cm21.26 Since no vibration transitions
could be expected in this energy range these signals ar
magnetic origin indicating that the first excited level has
energy of at least 450 cm21. Similar conclusion was mad
for polycrystalline sample of Rb3Ti2Br9 on the basis of the
inelastic neutron scattering experiments exhibiting a br
band of magnetic origin between 400 cm21 and 600 cm21.26

Briat, Kahn et al.6 employed the theoretical model o
Kahn27 involving trigonal crystal field stabilizing the loca
orbital singlets, isotropic exchange, and spin–orbit coupli
An attempt was also made to take into account the deg
eracy of the Ti13 ions by introducing orbit-orbit interaction
of the form 2KLALB . Although this model does not tak
into account all relevant terms involved in the Hamiltoni
of T2–T2-interaction it provides an important indication o
the range of parameters that are responsible for thex(T)
dependence. Particularly the gap between1A8 and 3A29 is
estimated to be 630 cm21, this value provides a satisfactor
explanation of the slope ofx(T) observed atT.100 K.

The concept of the effective kinetic exchange Ham
tonian for orbitally degenerate ions was developed by D
lon and Georges.3 For the first time they applied their ap
proach to the face-sharedD3h system and analyzed th
magnetic behavior of@Ti2Cl9#

23 taking into account also
spin–orbit interaction and the trigonal component of t
crystal field.8 The effective Hamiltonian obtained by Drillo
and Georges8 is expressed in terms of the orbital operato
LA(B) acting inT2 and spin operatorsSA(B) . In the fit proce-
dure Drillon and Georges neglected crossing transfer i
grals (t850), that corresponds to the relationshipta5te

~pseudospherical limit in our classification!. In this case the
effective Hamiltonian contains the scalar products:LALB ,
(LALB)2, LALBSASB , (LALB)2SASB , and SASB . For this
reason, this Hamiltonian was regarded as isotropic, andLS
labels (L50,1,2) for the eigenvalues have been used. At
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same time according to the authors8 the inclusion of the
crossing transfer terms (t8Þ0) leads to the magnetic aniso
ropy due to the appearance of the contributions likeL10

A L10
B ,

etc. Since the crossing transfer terms were regarded as s
corrections these authors8 came to the conclusion that th
exchange anisotropy is a minor effect and the main rea
for the observed anisotropy of@Ti2Cl9#

23 is the combined
effect of trigonal crystal field and spin–orbit coupling, i.e
local ~one-site! anisotropy. This conclusion is in clear con
tradiction with our results. In fact, we have shown that t
exchange Hamiltonian is fully anisotropic even providin
t850 andDx is negative (x',x i). The inclusion of cross-
ing terms is shown to change the sign of anisotropy. In t
respect, it should be emphasized that the crossing te
themselves cannot be considered as a source of the exch
anisotropy.

The origin of the descrepancy in the understanding
the anisotropic properties of the exchange Hamiltonian in
cited paper8 and in the present one can be clarified by co
sidering a selected orbital contribution toH, for instance, the
term

H8522tateFT1

(0)~2Oa1

A Oa2

B 2Oa2

A Oa1

B 1Oa0

A Oa0

B !. ~29!

Passing to the orbital angular momenta operators@Eq.
~18!# one can present this term as

H85J~Lz
ALz

B1Lx
ALx

B1Ly
ALy

B!, ~30!

whereJ5tateFT1

(0) . The operator part in Eq.~30! looks like

scalar productLALB but in fact it is not a scalar product
becauseLA andLB are defined in different trigonal framesA
andB. TransformingLB to the molecular frame~A! we ar-
rive at the anisotropic operator,

H85J~2LALB12Lz
ALz

B!. ~31!

Figure 13 represents the diagram correlating the eig
values of the anisotropic operatorH8 ~b! ~good quantum
numberuMLu! with those of scalar operatorJLALB ~a! ~good
quantum numberL, with L50,1,2!. It is to be noted paren-
thetically that in this special case the anisotropic opera

FIG. 13. Correlation diagram for the isotropic~a! and anisotropic~b! opera-
tors of orbital interactions.@~0, 0!, ~2, 0!# is the notation for mixed states
with L50 andL52.
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gives the same scheme of the energy levels, obeying
Lande’s rule, as the isotropic operator does.

The above consideration shows that the conclusion m
by Drillon and Georges8 about the isotropic character of th
exchange Hamiltonian and misleading labeling of the eig
states could be the result of overlooking of the assignmen
the operatorsLA andLB to different frames. In this view ou
conclusion about the role of crossing transfer terms also
fers from their conclusion.

Inferring this discussion we would like to mention th
critical comments of Ceulemanset al.10 addressed to the
study of Drillon and Georges. According to the statemen
Ceulemanset al., the isotropy of the exchange Hamiltonia
in the approach of Drillon and George is the consequenc
ignoring the difference~in sign and magnitude! between
hopping integralsta and te . On the contrary, as we hav
proven in Sec. V, the modelta5te corresponds to the pseu
dospherical~but not true spherical! limit that is absolutely
magnetically anisotropic. In view of this result, the abo
mentioned comment of Ceulemanset al. seems to be errone
ous. On the other hand, as we have just demonstrated
artificial isotropy in Ref. 8 proved to be a result of the m
understanding in treating of the coordinate systems in
D3h case and the correct application of the model sugge
by Drillon and Georges8 would lead to the anisotropic ex
change Hamiltonian.

Leuenberger and Gu¨del4 proposed the approach that
similar to that of Drillon and Georges in its background b
different in mathematical procedure and in the model
transfer pathways. They suggested a new model imply
strong difference between two transfer integrals (ta

2@te
2).

This is quite different from the assumption made in Ref.
where the pseudospherical limit was considered. At the s
time, as distinguished from Ref. 8, the model of Leuenber
and Güdel ignores the differences in the energies of s
singlets and spin triplets in the reduced states, that is im
tant for the adequate description of the kinetic excha
splittings.

Ceulemanset al.10 constructed a second order perturb
tional Hamiltonian and presented a series ofab initio calcu-
lations for@Ti2Cl9#

23. These calculations confirmed the co
clusion of Ref. 4 about strong differences in the magnitu
of ta and te . Moreover, these calculations clearly demo
strated thatta and te should have opposite signs.

In order to restrict the number of the adjustable para
eters in fitting of the experimental data we will use the ra
of two transfer integralsta andte extracted from theab initio
calculations of Ceulemans and co-workers.10 They roughly
estimated this ratio asta /te'26.5 ~27 in Refs. 11 and 12!,
that corresponds tot8/t51.67.

In the best fit procedure we use the same values for
crystal field and Racah parameters as in Sec. VII,l
5155 cm21, and varyta , D, andk. Figure 14 displays the
experimental temperature dependencies ofx i and x' for
Cs3Ti2Cl9 obtained by Briat, Kahnet al.6 and the theoretica
curves. The best fit is achieved forta525208 cm21,
D52320 cm21, andk50.71. One can see that the theor
ical curve forx' is in an excellent agreement with the e
perimental data in the low-temperature region~below 170
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K!. The calculatedx i at low temperature is in satisfactor
agreement with the experimental values. It is remarkable a
that the theory well reproduces the slopes ofx i and x' .
Another important feature of the magnetic behavior
Cs3Ti2Cl9 is the temperature dependence of the magnetic
isotropy. Figure 14~insert! shows that in a good agreeme
with the experimental dataDx theor remains constant below
100 K and decreases with the increase ofT at T.150 K. The
calculated values ofDx ~590 cm3 mol21 at 100 K and
410 cm3 mol21 at 320 K! are close to the experimental one
~540 and 410 cm3 mol21, respectively!.

Figure 15 shows the energy scheme~without spin–orbit
coupling! calculated with the set of best fit parameters. T
ground state1A18 , the first excited state3A29 is separated by
706 cm21 from the ground one~a3a-group!. The next four
orbital doublets ~3

E9,
1E9, 3E8, and 1E8! fill the gap

135 cm21 ~a3e-manifold!. This group of levels is close to
3A29 . Finally, e3e-group of levels forms a narrow band a
about 1340 cm21. One remark should be made concerni
the Coulomb repulsion. Analyzing the joint action of th
repulsion and trigonal field~Appendix D! one can see tha
the main effect of the Coulomb repulsion is to redeterm
the gaps betweena3a, a3e, ande3e levels. Particularly,
the gap betweena3a and a3e becomes2D2U01U1 .
Since thee3e levels are not thermally populated atT
,300 K they do not contribute tox(T), so the information
about these levels cannot be extracted from the best fit
this view, the parameter2D could be regarded as an effe
tive crystal field parameter associated with the (a3e)
– (a3a) gap reduced by the Coulomb repulsion due to
predominant destabilization effect ona3a levels.

Several versions ofab initio calculations presented b
Ceulemanset al.10 give quite different results for the1A18 ,
3A29 gap and relative positions ofa3a, a3e, and e3e
groups. For the description of the magnetic properties in R
12, the results of CASPT2~v!C calculations were used. Com

FIG. 14. Magnetic behavior of the@Ti2Cl9#
23 unit, comparison with the

theoretical curve ~solid line! calculated at te /ta520.154, ta5
25208 cm21, D52320 cm21, l5155 cm21, and k50.71. Insert: Tem-
perature dependence of the degree of anisotropy, comparison with the
oretical curve~solid line!.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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paring our best fit scheme of levels~Fig. 15! with these re-
sults, we can note that our scheme is most close~at least
qualitatively! to the result obtained by CASPT2~v!A, mainly
in the positions of the levels arising froma3a and a3e
groups that are responsible for the magnetic behavior be
300 K. Particularly, the1A18

3A29 gap (718 cm21) is close to
our result. At the same time we have obtained the oppo
order of3E9 and1E8 levels originating froma3e. Since the
gap3E9, 1E8 is small in allab initio calculations as well as
in our scheme, the estimation of this gap is probably bey
the accuracy of theoretical predictions.

Finally, one should mention theab initio study of Chen
et al.28 The1A18 , 3A29 gap reported in their paper (320 cm21)
is too small to account for the experimentally observed sl
of x(T) at T.150 K and the position of the excited leve
~a3e-group in the range of 1680– 1850 cm21! is too high to
be able to explain the low temperature magnetic anisotr
and its temperature dependence.

Concluding this discussion we would like to make som
general comments concerning the effective Hamiltoni
Ceulemanset al.10 constructed a second order kinetic e
change Hamiltonian acting within the ground manifold. Th
Hamiltonian contains creation~annihilation! operators acting
thus on spin–orbitals, i.e., one-electron states. For this rea
it cannot be regarded as an effective Hamiltonian to the
extent. On the contrary, our effective Hamiltonian is e
pressed in terms of many-electron operators acting within
space specified by the total quantum numbers of the cons
ent ions. From this point of view our Hamiltonian represe

FIG. 15. Energy pattern for the set of best fit parameters.
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a genuine effective Hamiltonian. This can be illustrated
ing the HDVV spin Hamiltonian and comparing two form

H522(
ab

JAa,BbSAaSBb

and

H522JSASB J5~nAnB!21(
ab

JAaBb ;

nA and nB are the numbers of magnetic orbitals andJAaBb

are pairwise exchange parameters. The first one contains
plicitly all exchange pathways and one-electron operato
while the second one~true effective Hamiltonian! is ex-
pressed in terms of the full spin operatorsSA and SB and
involves the only many-electron exchange parameterJ. Al-
though these two forms of the exchange Hamiltonian
physically equivalent, only the second one can be useful
the parametrization of the experimental data and has an
futable advantage as a computational tool.

X. CONCLUDING REMARKS

In this paper we have applied the effective kine
exchange Hamiltonian deduced in Ref. 1 to the case of
face-shared (D3h) bioctahedral2T2–2T2-dimer. The analyti-
cal expressions are found for the parameters of the excha
Hamiltonian as a function of two relevant transfer int
grals ta and te ~or t and t8!, cubic crystal field and Racah
parameters for the charge-transfer states. Using pse
angular momentum representation and irreducible ten
operator technique, we have analyzed the influence of dif
ent transfer pathways, trigonal crystal field, and spi
orbit coupling on the magnetic anisotropy of theD3h pair
arising from the orbital interactions. We have shown th
at some special values of the ratiote /ta the system jumps
to some high-symmetric limits in which it could be magne
cally fully-symmetric ~spherical limit! and completely
magnetically axial~pseudospherical limit!. In both cases
the energy pattern exhibits high degree of accidental deg
eracy.

The developed theory well reproduces the magnetic
havior of the binuclear units@Ti2Cl9#

23 in Cs3Ti2Cl9 and
particularly the temperature dependence of the degree o
magnetic anisotropy.
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APPENDIX A: ORBITAL MATRICES O Gg IN THE TETRAGONAL T2-BASIS jhz
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APPENDIX B: ORBITAL MATRICES O Gg IN THE TRIGONAL T2-BASIS x¿xÀx 0
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APPENDIX C: THE WAVE FUNCTIONS FOR
THE REPEATING S̃G̃ TERMS OF d 2 ION IN A CUBIC
FIELD

u1,3T1&5cosuut2
2 , 3T1&2sinuut2e, 3T1&,

u2,3T1&5sinuut2
2 , 3T1&1cosuut2e, 3T1&,

u1,1A1&5cosaut2
2 , 1A1&2sinaue2, 1A1&,

u2,1A1&5sinaut2
2 , 1A1&1cosaue2, 1A1&,

u1,1E&5cosbut2
2 , 1E&2sinbue2, 1E&,

u2,1E&5sinbut2
2 , 1E&1cosbue2, 1E&,

u1,1T2&5cosdut2
2 , 1T2&2sindut2e, 1T2&,

u2,1T2&5sindut2
2 , 1T2&1cosdut2e, 1T2&,

where

tan~2u!5
12B

10Dq19B
, tan~2a!5

2A6~2B1C!

20Dq22B2C
,

tan~2b!52
4)B

20Dq2B
, tan~2d!5

4)B

10Dq2B
.

The expressions of the wave-function
ut2

2 ,S̃G̃M̃ g̃&, ut2e,S̃G̃M̃ g̃&, and ue2,S̃G̃M̃ g̃& in terms of
Slater determinants are given in Ref. 13~pp. 53 and 54!.

APPENDIX D: EIGENVALUES AND ENERGY
MATRICES OF THE EFFECTIVE EXCHANGE
HAMILTONIAN †EQ. „9…‡: TRIGONAL CRYSTAL FIELD
AND INTERSITE COULOMB REPULSION „VC…

ARE ALSO INCLUDED
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The following notations for Coulomb integrals are use
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