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The theory of the kinetic exchange in a pair of orbitally degenerate ions developed by the authors
[J. Phys. Chem. A02 200(1998] is applied to the case of face-shared bioctahedral dimarall
Da-symmetry. The effective kinetic exchange Hamiltonian is found fdiTa—2T, system taking

into account all relevant transfer pathways and charge-transfer crystal field states. The influence of
different transfer integrals involved in the kinetic exchange on the energy pattern and magnetic
properties of the system is examined. The role of other related intera¢tragmnal crystal field,
spin—orbit couplingis also discussed in detail. Using the pseudoangular momentum representation
and the technique of the irreducible tensor operatoR;efroup we give a general outlook on the
nontrivial symmetry properties of the effective Hamiltonian for ihg,-pair, and on the magnetic
anisotropy arising from the orbital interactions specific for the case of orbital degeneracy. The
magnetic properties of the binuclear ufifi,Clg] "3 in Cs;Ti,Cly are discussed with a special
emphasis on the magnetic anisotropy experimentally observed in this system. The existing exchange
models for{ Ti,Clg] ~2 and the concept of the effective Hamiltonian are discussed in the context of
the present study. @001 American Institute of Physic§DOI: 10.1063/1.1329892

I. INTRODUCTION pathways. The effective Hamiltonian was constructed in
terms of spin-operators and standard orbital operdtarsic
In the case of orbital degeneracy of the constituent ionsirreducible tensops All parameters of the Hamiltonian in-
the isotropic spin-Hamiltonian of the magnetic exchangecorporate physical characteristics of the magnetic ions in
(Heisenberg—Dirac—VanVleck, HDVV modebecomes in-  their crystal surroundings. In fact, they are expressed in
valid even as a zeroth order approximation. The eﬁectiVQerms of the relevarm'n a given overall Symmetbytransfer
exchange Hamiltonian cannot be expressed in terms of spitegrals and crystal field and Racah parameters for the con-
operators only and contains also operators acting within theit,ent ions.
orbital spaces of interaction ions. For the first time Khomskii In the present paper we apply the effective Hamiltonian
and Kugel derived the kinetic exchange Hamiltonian for or-yoquced to the case of the face-shared bioctahedral
bitally degenerate ions and considered the problem of thal(z-l-z)_d1(z-|-2) dimer (D, overall symmetry. Trivalent
orbital ordering in solidssee the review paper of Khomskii yjianiym jons form these kind of well isolated dimers in the
and Kuget and references thergirThe theory of the kinetic crystal structure of GJi,Cly (Refs. 5, 6 and CsTi,Brq

exchange was developed by Drillon and Geofgesd (Ref. 7) whose magnetic and spectroscopic properties were a

13 .
Leuenberger and Glel.” Because of the lack in the use of subject of the discussion for almost two decatf&s?One of

symmetry arguments and simplifications in the energy spe he most spectacular features of the magnetic behavior of the

trum of the charge transfer states the models so far consid-

. 73 B - . g . .
ered prove to be restricted in their applicability to the real TioClo] * entity is a significant magnetic anisotropy that
systems clearly indicates the importance of the orbital interactibns.

In our recent papérwe proposed a new approach to the Since the proposed effective Hamiltonian takes into account
problem of the kinetic exchange between orbitally degenerf’l” relevant orbital interactions, this relatively simple system

ate multielectron transition metal ions. Our considerationexhibiting distinct qualitative peculiarities could be a good

takes into account explicitly complex energy spectrum oftest for the theory based on the effective Hamiltonian. Here

. . B B _3 B
charge transfer crystal field states exhibited by the TanabeWe Will discuss the magnetic properties[dii,Clo] ~ taking

Sugano diagrams. Taking advantage from the symmetry aflt0 account also relevant one-center interactions, namely,
guments we have deduced the effective exchange HamifPin—orbit coupling aﬂd local low-symmetirigonal) com-
tonian in its general form for an arbitrary overall symmetry Ponents of the crystal field.

of the dimer taking into account all relevant electron transfer ~ We will show briefly how the effective Hamiltonian de-
duced by the authotend adapted to the point groiy, can

a o . be treated using the irreducible tensor operator technique in
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Academy of Sciences of Moldova, MD-2028 Kishinev, Moldova. momentum representation that provides clear insight on the
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role of orbital interactions in the magnetic anisotropy of the
system and to reveal some nontrivial symmetry properties of
the effective Hamiltonian. Taking advantage of the effective
Hamiltonian approach combined with the irreducible tensor
operator technique iR5, we will consider also some general
properties of the face-shared dimers, and will discuss the
existing models of the kinetic exchange in such kinds of
systems.

Il. EXCHANGE HAMILTONIAN OF THE FACE-SHARED
BIOCTAHEDRAL D3, PAIR

We start from the general expression for the effective
exchange Hamiltonian for a pair of the metal iohsand B
possessing orbitally degenerate ground tetms,

Hoe—2 X Y 2 2 (TyITayalava)

TALBT ALl YavBYAYE L7 T
r A B
X(I'"y'|Tgysl'v8)OF,Or
0 ’ ’
X[J(rr)r(FAJ’A,FBYBIA?”A,Fé?’B)

+ 30, (Caya Teyve Tava Teve)SaSel, (D)

wherel' 55 vae) are the symmetry labels for the magnetic
orbitals connected by the transfer integrel o ya,I'svg),
Or, and Of,, are the irreducible cubic tensors Bfy-type
acting in the O_I’bltal spaces of the magnetic io8g.and Sg . FIG. 1. Cartesian tetragonal and trigonal frames for a face-shared binuclear
are the full spin operators. The parameters of the effectivgystem: local tetragonal framés), local trigonal frames for the sites @)
Hamiltonian J(Fkr),(FAyA,FByB T ava,.T'gys) are propor- andB(c).
tional to the products of the transfer integrals
t(Taya . Teye)t’ (Taya,I'gyg) and depend on the crystal
field and Racah parameters of the ions in their normal refgq, (1)] the relationship between transfer integrals implied
. . - . . 0

g|ven(|1r)1 the paper by Borseet al* [in this paperd{,(--)  be presented as a sum of three terms,
and J --+) were denoted a8J(---) and J(---), respec-

() () andJ(-), resp H=H,+Hy +Hy . )

Ir’
tively].

The binuclear uni{Ti,Clg] 2 represents a face-shared The first term of the Hamiltonian involving the diagonal
2T,(t,)—2T,(t,) cluster with Dy, overall symmetry. The  transfer integrals is of the following form:
molecular structure ofTi,Clg] " and the local coordinate
systems associated with the metal ions in their local sur-
roundings are shown in Fig.(d). Following the general PIY G
consideratiodf,we will use the cubic one-site basis related to 46 — "M ~ “¢¢
C, axes (tetragonal basjs defined aséxyz, nxxz, ¢
axy(Ty), ux3z2—r2, vxv3(x2—y?)(E), axlL,, B
ocl_y, Y=L ,(Ty).

Figure 2 illustrates two different types of transfer inte-
grals. The transfer integrals of the first typgéé,,é&g)
=t(7a,7p) =1({a,{g)=t (diagonal transfer pathwaysre
shown in Fig. 2Za). Figure 2Zb) shows off-diagonal transfer
integrals, namelyt(éa, 78) =t(7a,{s) =t(éa.{8)=t".

In order to deduce the Hamiltonian for tie;, system
one should substitute into the general expression of the
Hamiltonian[Eqg. (1)] the Clebsch—Gordan coefficients and
to choose a definite set of relevant transfer integrals. In order
to adapt this Hamiltonian to thl ,(t,) —2T(t,) System one @ (b) ©

should restrict the set of tre_meer parar_neters to those afig. 2. overlaps associated to different types of transfer integrals: diagonal
t,—t,-types. One has also to incorporate into the parametensansfert(a), off-diagonal transfet’ (b), t, transfer in trigonal basit).
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H=—2t%{F)(0(0] + 0,07) + F{?(0,05 + 0505 + 050%)
+F(070F+050%+0708) +[F{UOR OF +F(0f0]+0703)
+F{(0505+ 0505+ 050%) + F{)(070F + 0,05 + 07 0F) 1S:Ss}- ©)

The second term involves only off-diagonal transfer integrals,

Hy=2t"2) FPY(0(0] +0,0%) + F{(0,05 + 0505+ 0505) — F{)(070¢ + 0405+ 070¢)

2 1
— —=F i [(0+0%+07)OR +0j (OF+05+07) ]+ ‘/—jF<E°T>2[(o§+ 0 —202)05+05(0g+0%-208)]

J6 A2
+ 2t’2[ —FJ0op OR, +FEI(0f0f +0508) + F{(0505 + 0505+ 0505) — F{)(0;0F + 05,05+ 070F)
2 (1) A A A\ ~B A B B B 1 (1) A A A\~ B A/ ~B B B
~ JgFAmA(08+ 0+ OO, + 04, (OF+ 07+ O T+~ FER[(Of + O~ 207) OF + O)(OF + 03~ 207)] | SaSe.
(4)

Finally, the third term contains the product of two types of transfer integrals,

4 1
Hyo = —2tt’ [ —F{h [(07+0,+07)03 +0p (OF+05+08)]+ %ng[(o’y 0}, —20%)05+0j(0z+0°%~-207)]

G

4
_ ] (1) A A A\ B A B B B
2tt |\/€FA1T2 (Of+04+0})0R +0R (0F+05+08)]

1
+ S FE(0f+0,-200) 07+ O{(Of + 07~ 200)] | 2S5 o

In Egs. (3)—(5) the transfer integrals are shown explic- =T, \g)|SIMR)|SEME) representing the direct products of the
ity. That is why instead of the parameters ground one-center orbital and spin states. In the case®sf Ti
IO (Caya,Teye.Tava.Tays) involved in the general ions S} g =1/2 (the total spinS=0,1).

Hamiltonian[Eqg. (1)], we have introduced the parameters
F,(-++) defined as follows:
Ill. EXCHANGE HAMILTONIAN IN THE TRIGONAL

IV (t26) A(t28)B(126) A(12) ] BASIS
=D [ (tam)altam)a(tam) altan)e] In the previous section we have deduced the effective
M) _20(n) Hamiltonian relating the operators to the local tetragonal co-
=Jrr [ (120 a(t20)8(t20) a2 )] =Frps ordinate systems. For the subsequent calculations and discus-
- e sion it is convenient to introduce the trigonal local coordinate
I [ (t28) a(t286)(t26) a(ta )] =tt'Frp, systemsXu,Ya,Za and Xg,Yg,Zg With ZA(Zg) axes di-
(6) rected alongC5, as shown in Figs. (b) and Xc). The com-
J(F”F),[(tzg)A(tzn)B(tzg)A(tzn)B]=t’2F(F”F), . mon (moleculaj coordinate system is taken to be coincident

with the local trigonal systenX,,Ya,Za. We pass to the
We have denoted alsB{=F{". SymbolT in Eqs. complex trigonal basig,,x, ,x_ for T,, ag,a. ,a_ for T,
(3)—(5) is omitted in the notations of the matric€,, and  andu, ,u_ for E. The unitary transformations are given by
they are identified through the symbal for the basis, the following matrices?
namely, O, =0, with y=u,v for T'=E, y=§,7,{ for T

=T,, and y=a,B,y for T=T,. The matricesOr., are xi(as) x_(a) xo(ap)
given in Appendix A. —w o 1

The Hamiltonian (2) is valid for the many-electron 1 . &) 2mi
face-shared 25" 1T,(t5)—25*1T,(t5)-dimers. It operates 7 T w 1 |»(B), w=ex;{T),
in the space of the states,|AR=T, A%)|AZ -1 1 1 ]
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u, u_ relationship between the transfer integrals defined in trigonal
1[-1 1y and tetragonal bases,
— . o 7
Vil =i —ilv @ t,=t+2t' t,=t—t’". (8)
where= indicates the complex conjugation. In the subsequent discussion we will use both sets of

In the trigonal basis there are two transfer integrals aliransfer parameters. After some simple but cumbersome cal-
lowed by the symmetry conditionst(xj,x5)=t, and culations one can express the Hamiltonian in the trigonal
t(x’i ,xE)=t(xﬁ ,xﬁ)zte_ The t, andt, transfer integrals coordinates as a sum of three contributions,

(we use the notations inFroduced in Ref.) mnnecta-type H=H,+ Hot Hae. 9)

(xo) ande-type (x.) orbitals appearing under the trigonal
splitting of the cubict,-manifold. a-type orbitals overlap The first term is proportional tdﬁ, the second one is
along Cs-axis [Fig. 2(c)] while the e-type orbitals are in proportional toti, and the third one contains the product
perpendicular planes to th@;-axis. Using the transforma- t,t.. These three contributions are given by EGD), (11)
tion (7) for one-electronT ,-basis one can find the following and(12),

Ha=— St3{2F )L OF,+v2F L, (04,05 + 05 02 +[FR)0R, 0%, +2F )0, OF + V2R (OR, OF + 0§‘0021>JSASB(}1,0)
He=5te{FE(Of OF +0[ OF ) ~2FF)(~ 0} OF ~Of OF +0;,00) ~3FF)05 05 + Fr)OL OF

+V2FP) (Op OF +05 0F ) +V2F( (O} OF +05 OF +0f Of +0f OF )

+[—2F{)0R O +FE)(0] Of +07 Of )

—2F{(-0} O —0} OF +05 0F )—3F{0S OF +F{OL OF +V2F: (0) OF +04 OR )

+V2F( (0 OF +0f Of +0f OF +07 OF )ISsSe}, (11)
Hae=2tate{2F(?(0} OF +0} 0f )—3F({?(-0; OF —04 Of +0408)~F{® (-0} of —0f Of +0L0f)

+3F{Y04 OF +F{0f Of —v2F() (OF OF +0} OF +0] OF +0f O )

+[2FE)(0f, 0F +07 Of )—3Ff)(-0f 05 —0% 0F +0,0%)~F{) (-0} OF —0f Of +050%)

+3F{P04 OF +F{0g Of —v2F() (OF OF +0} OF +0] OF +0f OF )]SsSe}- (12

The orbital matricer,, in the trigonal T, basis are configuration only via theé,—e transfer process that is ir-

given in Appendix B. relevant in the case of interest. By means of the procedure
described in Ref. 1 we arrive at the following formula for
IV. THE PARAMETERS OF THE EXCHANGE F{},-parameters:
HAMILTONIAN
. . () _ () ' (n) ’ (n) '
Let us express the parametér, involved inH,,He, Frr =N’ (T F+NP(IT)Fo+ Ny (IT7)Fg
and H,e in terms of the crystal field parameteq and +NO(TT)F,, (13)

Racah parametes, B, C defining the energy spectrum of
the constituent ions in their ground, oxidized and reduced Ay , . _
configurations. In the case under consideration the chargd!nereNi”(I'l"") are the numerical coefficients collected in
transfer configurations a2 —d® andd%—d2 so that all rel- | aPl€ |, the parameteis; are defined by

evant parameters, B, C, andDq are related to the? ion.

The 3T,(t3,t,e), *E(t3,€?), A (t3,€?), and T,(t3,t,€)

terms of thed? ion (reducedSI" state$ should be taken into
account. This is because only these charge transfer states can
be mixed with the ground one by means of the-t5 trans- (14)
fer processes that are allowed in the oveEdd}, symmetry.
In fact, considering for example the reduced stifg(t,e)
one can see that this can be obtained fromt, ground

cog 8 . sinzﬁ} B
81(1T2) 82(1T2) ’ 2

cos 6 . Sir 6 }
81(3T1) 82(3T1) '

cog « . Sir? «
e1(*Ay)  ex(*A))

3=

R PN

cos B sinZ,B}
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TABLE I. The numerical factor®N{"”(I'T") in Eq. (13). TABLE Il. Orbital basis for the effective Hamiltonia¢®) in the case of the
2T,—2T, system and related terms. Upgéawer) function for orbital dou-
r r’ i NO(TT") NAO(TT) bletsE’ andE” corresponds tai, (u_).
A A 1 112 —13 Terms Symmetry adapted orbital basis
2 1/4 1/3
3 1/36 -1/9 1
4 118 —2/9 Ay, A 00 —8)
V2
E E 1 —1/12 1/3
2 —-1/4 -1/3 a7 1p7 1 B B B
3 118 209 (11742, "Ay 7 006 EEx0)
4 1/9 —4/9
T T 1 -1/8 12 SIVIEYY: 1
L L 5 a8 e (°Az, "A %(Zxéxg+xf\x3+xﬁxg)
3 1/12 -1/3
4 -1/12 13 s 1e, 1
[11°E","E — (G XEE —xAxB)
T, T, 1 1/8 ~1/2 V3
2 —-3/8 -1/2
3 1/12 -1/3 1 am . oAm 8
4 ~112 13 7 0 e Hax)
Ay T, 1 v3/16 —v3/4 [11]3€E”, E’ _ 1 as..apB A B
5 V36 143 \/g(x+x0+xox++2x,x,)
3 1173 -1/3/3
4 1/24/3 -1/6v3 1
— (2x}xB —xGxB —x2x8)
E T, 1 0 0 G
2 —V3/4v2 -11\6 3e) 1en 1
3 166 ~V2I3V3 E.E 5 005 —Xix0)
4 1126 -1/3/6 L
— (G —xpE
— 006 —xC)

EachF; parameter is associated with one kind of terms
of the reduced ion. In Eq14) the angles, «, B, and 6 are
the fgnctlons of the crystal field anq Racah pa.rame(tAps V. ENERGY LEVELS OF THE FACE-SHARED 2T,—2T,
pendix Q. These angles characterize the mixing of the re-
. . . ... BIOCTAHEDRON
peating terms arising from the different strong cubic field
configurations. The parametéfs * play the same role in our The effective exchange Hamiltoni&®) can be diagonal-
consideration as the enerdy in the Anderson’s theory of ized using the symmetry adapted two-center orbital basis.
the kinetic exchange. The energies of charge transfer statdshis basis and the corresponding terms of the face-shared
in the denominators in Eq14) contain the common terA  2T,—2T, bioctahedron are given in Table Il. The energy lev-

and crystal field energiasl’i(’éf“), els in terms of the parameteffs and two transfer integralg
andt, are given in Appendix D, along with theX22 matri-
&, (1) =A+z(3D), (15)  ces for the repeating terms®23(2'A}) and 2°E"(2'E").
These energies and matrices contain also the trigonal crystal
where field terms that will be discussed below and contributions of

) ) the intersite Coulomb repulsion between unfilled electronic
e1(2(°T1)=3{10Dq—B+[(10Dq+9B)*+144B°]"%,  shells that will be briefly discussed in the context of their
influence on the magnetic behavior.

8:’[(2)(1A1): 3{20Dq+9(2B+C)*[(20Dq—2B—C)? In the calculations of the energy pattern we use the
211/ Racah parameters evaluated for the freé” Tion by
+24(2B+C)%)"3, Clementi et al,** namely, A=14100cm?, B=900cm %,
(16)  c=3300cm! (these values are close to those found in the
e1(2('E)= 3{20Dq+B+4C+[(20Dq~-B)? crystal field®). An independent estimation &f can be found
+4882]112, comparing the ionization potentials for the configurations

Ti*z—Tﬁf5 (2.6525 MJ/mol and Ti*-Ti™* (4.1746
, . _ MJ/mol).™ This estimation give#A=15.03 eV that is close
81(2)(1T2): 2{10Dg+B+4CF[(10Dq~B)” to the value calculated for the free Fiion. Similar estima-
+48B2)12. tion can be obtained from the formuke=F,—49F 4 (Ref.
13) with the Slater—Condon parameters expressed in t&rms
The energies in Eq15) are counted from the energies andC by the use of Eq(5.3) of Tanabe—Sugano’s bodk.
of the pair of noninteractingT ,-ions. The cubic field splitting parametddq is taken to beDq
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60 the full gap of exchange splittingexcept terminal parts of
the diagram is almost independent of the ratig/t, and
40 1A1 " Sgn 23A2" mainly depends ot .
‘ Three special high-symmetric cases are seen in Fig. 3,
20+ namely:
= (i) Pseudospherical case/t,=1 (t,=t.=t,t'=0);
x 07 (i)  Spherical casety/t,=—1 (t=—t,/3t'=—2t);
§ 204 (i) Axial case:ity/t,=0 (t=t'=t,/3).
In each of these cases the energy pattern exhibits a high
-40 degree of accidental degeneracy that shows that the effective
Hamiltonian belongs to a more general symmetry group than
-60 the point symmetry grous,. The reasons for the use of
terms pseudospherical, spherical and axial will be clarified
-80 below in the context of the discussion of the magnetic char-
acteristics.
-100 : | . Let us consider first the casé$ and(ii). Since the dia-
1.0 05 0.0 0.5 1.0 gram is symmetric, the energy patterns for spherical and
tA, pseudospherical limits are the same. This is depicted in Fig.

2 _ 4, where the terms are shown for caggsand(ii) in the left
f'/C;" 3. Energy pattern of the face-shareig—"T, system as a function of 54 right sides, correspondingly. One can see that the energy
e gaps in these two cases are determined by four parameters,
J;, related to the parameteFs by

=1000 cm * that is typical for divalent metal ioh$(reduced Ji=—t2Fy, J,=t2F,, Js=—t%F5, J,=—t2F,.

ion in the case under consideratjion (17)
Figure 3 shows the energy levels as a function of the

ratiot./t, in the range—1<t./t,<1. One can see that the It should be noted that the parameté&fsandJ, are very

energy pattern is symmetric with respect to the change of thelose due to the fact thdE and'T, reduced states are al-
sign ofte/t,. In a wide range of,/t, the ground state is the most degenerate in a wide range @§/B values with the
spin singlet'A;. Only att./t,>0.9(t./t,<—0.9) the or- exception of a narrow region of weak crystal figkke the
bital doublet®E’ (°E”) becomes the ground state. The high- Sugano—Tanabe diagram fdt).1® Therefore the splitting of
est excited state is accidentally degenerate and compriséise first excited group of levels is also very small
several multiplets, mainly spin-triplets. It is to be noted that(~0.01 cn ! for a reasonable set of paramejeiEhis gap is

o h2+2) 3E" SE' #2=2)
10 )A 21) 3E 3E" f1x1)
12 m20) 3A; JPA, h20)
11 o1=1) 1E 'E’ Ij221)
10- o10) 1A A, 1010)
3 " "
N Kooy 3A;) [2A; 100)
l_
FIG. 4. Energy pattern of the face-
74 shared?T,—2T, system in the spheri-
cal (left-side labels and pseudospheri-
8 cal (right-side labelslimits.
5 0, 00) 1A'1 A, Ja_lm;m)af 210,20)
4
ad m222) g 'E 0222)
'D B2 'E v 'E 0121)
27 020) TA, \ A \[ 1
3 10:00)~ —=(0;20)
17 ] g [ 1 3 IE
o [510) 3A{,V_{3A2 [10)
B1£1)3E 3E h2=1)
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artificially increased in Fig. 4. Since this small splitting does =~ The Hamiltonian expressed in terms of the irreducible
not affect the magnetic properties, we will consider in thetensor  operators acts  within the basis set
following that the first excited group contains degeneratdLLgSaSg,SMsLM )=|SMg,LM ) with fictious Lyo=Lg
levels. =1 andL=0,1,2 (Russell-Saunders coupling schemkhis
For the subsequent discussion it is very useful to pass tprovides an alternative way to calculate the energy levels
the angular momentum representation applying the irreducapplying the powerful technique of the irreducible tensor op-
ible tensor operators technique for tRg-group?®=?2 The  erators ofR;, and extend also the effective Hamiltonian ap-
full description of this new approach and its applications will proach to the polynuclear clusters. All related interactions
be published elsewhefé.Here we will mention concisely (low-symmetry crystal fields, spin—orbit coupling, Zeeman
only the main ideas and results that will be used in theinteraction$ are also incorporated in the unified computa-
present discussion. In th@-group three cyclic components tional schemé?
of the orbital angular momentum operator, namelyg The results obtained in this way allows us to show in
=Lz and L;.,=7(1WM2) (Lx*iLy) quantizied along the Fig. 4, along with the irreducible representationdaf, , the
C3 axis form the trigonal basis of; and the matrice®r ,  correspondingSMg, LM )=|S;LM_) labels related to the
are related to the matrices bf, with L=1 (T—P isomor-  pseudoangular momentum representation. Using this label-
phism orT—P analogy as follows: ing we can make some qualitative conclusion about the mag-
) ) netic anisotropy of the system.
| | Let us start with the pseudospherical cage The

Oa=—Lig Oy =—7Lqsq. 18 X
RV Y, (18 ground level comprises two termié, andE’ that can be

. . . . associated withl;10) and|1;2+ 1) functions. The spin part
Since the direct produdt; X T, in O containsE andT,, ;10 | ) pin p

th tricesO 40 b d th b th of the exchange Hamiltonian is evidently isotropic, so the
€ malricesLe, and Ur,, can be expressed through e gnisotropy comes from the orbital contributions. One can see

bilinear forms ofOr,, using the Clebsch—Gordan decompo-that |1;2+1) states give strong orbital contribution fg,

sition, meanwhile the matrix elements df, and L, disappear
within the ground manifoldL=1 for A}, and L=2 for
Or,=Kp > O1,5,01,7(T171T172lT' ), (190  °E’). Inspecting in the same way &8;LM /) labels one can
172 see that the operatdr, has nonvanishing matrix elements

whereK - are the numerical coefficients. In this way @, within all levels withM, #0(L=1,2). On the contrary, the
matrices in the Hamiltoniaf®) can be expressed in terms of matrix elements ok, andL, vanish within each exactly and
the bilinear formSqulqu2' Taking into account thak accidentally degeneratc_e level in Eig_. 4. The matrix elements
=Ty4(L) is the first rank irreducible tensor of spherical Of these operators vanish also V_V'th'” the bg5|s belongmg to
group Ry, one can express all one-site operatd®s;,, six low-lying levels. The nonvanishing matrix elements link

through the irreducible tensofq(L) of ranksk=0,1,2, only the low-lying states with the highest group of states. For
these reasons the perpendicular component of the orbital part
(20) of the magnetic susceptibility appears as the second-order
effect and hence one can expect that x, , so the mag-
. - netic anisotropy defined asy= x,— x. proves to be posi-
where(kq|1q,1q,) are the Wigner coefficients. . tive.

The last step is to express the direct prOd@ﬁOF’y’ Our conclusion that the exchange interaction produces a
(two site operatopsinvolved in the Hamiltoniant9) through g5y magnetic anisotropy in a face-shared bioctahedral

. . A B .
the irreducible tfansor productdy, (La) © T (Le) fkq- Th's molecule under the conditiotf =0 [case(i)] is in striking
can be done using the Clebsch—Gordon decomposition onggntradiction with the statement of Drillon and Geor§és.

qulqu;qu Ti(L)(ka|1a110p),

more, fact, in their model, the exchange anisotropy does not exist
kot kg providingt’=0; it can appear only as a minor effect due to
Tﬁ . (LA)TEBqB(LB)z E {T/QA(LA) the corlltr_ibutionfs of.the crossing _transfgr termis’ andt’?.
k=[ka—kg| The origin of this discrepancy will be discussed later on.

Finally, we would like to underline that each level in
case(i) is (2M_+1)-fold degeneratéike in the spherically
(21 symmetric systembut does not correspond to a definite
value of L=M| . (for example,L=1 andL=2 in the
ground state withM| =—1,0,1) as indicated in Fig. 4. For
through the tensor products of ranks-0, 2, and 4 and]  {hjs reason, we refer to this case as pseudosphétiganot

® TEB( Le)}ka(kalkadaksds)-

For instance, the produd®; OP can be expressed
0 0

=0, spherical limit. Indeed, from the point of view of magnetic
1 > anisotropy so far discussed this case should be referred to as
QQOQEO: —={T58 T3 o~ —={T5®T5}20 compl_etely. anisotropic. It is to be noteq that the.pseudo-
5 V14 spherical limit occurs under the ‘“spherical” conditidn
=t for the transfer integrals.

(22) Let us consider now the spherical cdg¢. The energy

6
+ —{T2®TE} 4.
\/ﬁ){ 2@ T2} levels are the same as in the previous oddg. 3 but the
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FIG. 6. Influence of the trigonal fieldX<0) on the energy pattern in the

FIG. 5. Energy pattern of the face-shafdg—2T, system in the axial limit. pseudospherical fimit.

) ] ] ~depends on the ratip/t,. In this view, it should be noted
wave functions are differerisee labels in the left part of Fig. hat we have used the term “axial” for the caéi) only to

4). The general feature of this energy pattern is that eackygjcate axial interrelation betwee andt,. It should be
level can be associated to one or several atomic 8BS oted also that in all cases the states of the system are the

shown in Fig. 4. In fact, t,he groundastate containing accidengjgenvectors of, so that no second order Zeeman effect is
tally degenerate leve®A5(|1;10), ®E”(]1;1,=1)) can be possible in the parallel field.

regarded as an atomic term with=1 and S=1, the first
excited state possesdes 2 andS=0, etc. This shows that,
as distinguished from the previous case, the system in th¥l- TRIGONAL CRYSTAL FIELD

limit t,/te=—1 is magnetically isotropic. Therefore, this  For the realistic description of the magnetic properties of
case can be referred to as true spherical limit. the [Ti,Clg] 2 binuclear unit one should take into account
The last case we consider here is the axial linif ( ajong with the exchange interaction also the contribution of
=0). In this case the ground state is the orbital and spiRhe trigonal crystal fields acting on each metal site and spin—
singlet 'A; [that corresponds to the wave-function orbit coupling. Let us consider first the energy pattern result-
— (1W3)|0;00 + \/§|O;20> in pseudoangular momentum ing from the combined effect of exchange interaction and
representatioFig. 5)]. The first excited group of levels con- local trigonal crystal field(site symmetryCs,). We define
sists of two closely spaced sublevels. One of thgmwer)  the trigonal crystal field/t,ig=Vﬁi(‘]ﬁrvﬁ’i introducing the en-
comprises spin tripletdE’, 3E”, and another spin singlets ergy separation between the orbitafg® (A, in Cg,) and
1’ 1E”. Finally, the highest level comprises both spin trip- XA®)(E),
lets and spin singlets. A similar energy diagram was obtained A(B) [\ JA(B) | LA(B)\ _ A(B) [\ JA(B)| LA(B)\ _
by Leuenberger and @iel? but in their energy scheme the o )|V"‘(9 o) =4, )lv“i(g pEP)=0. 23
first excited level was not split. This is a result of ignoring The trigonal crystal field mixes the repeated terms
the differences in energies of charge-transfer states. Sin@3®A;, 23E”, 21A] and 2'E’ (see Appendix D
M_ =0 andS=0 in the ground statey,=0 in the low tem- The correlation diagram in Fig. 6 illustrates how the pat-
perature limit. At the same time the perpendicular magnetit¢ern of the energy levels formed by the exchange interaction
susceptibility appears as a second order effegnperature in 2T,—2T,-pair in the pseudospherical limit is modified un-
independent Van Vleck paramagnetistue to the mixing of  der the influence of the trigonal crystal field providing
the ground state with the excited statf®;2+1)(*E") A <0 (orbital singlet?A; in the ground state of each iprAs
through the orbital part of Zeeman interaction. The anisotone can see from Fig. 6 the trigonal field partially removes
ropy Ay proves to be negative, i.e., it has the reverse sigrthe accidental degeneracy of the exchange multiplets contrib-
with respect to the pseudospherical case. uting antiferromagnetically to the low-lying group of levels.
This conclusion about negative magnetic anisotropy isThe increase of the absolute value of the trigonal field pa-
valid also for the range df,/t, (Fig. 3) in which the ground rameter|A| leads to the crossing of the spin levés; and
term is'A] (superposition 0f0;00 and|0;20)). When®E”  3E’ so that the system becomes antiferromagnetic, even for a
(to/t;<—0.9) or 3E’ (t./t,>0.9) are the ground terms very weak trigonal field. In the limit of strong trigonal field,
(M ==1), Ay is positive. In all case¢with the exception the low-lying group of levels proves to be well isolated and
of the true spherical limity/t,= — 1) the magnetic anisot- consists of the orbitally nondegenerate spin singiaf
ropy is axial (M| is a good quantum numbeand Ay  (ground and the spin triplefA’; the energy separation be-

Downloaded 29 Jan 2010 to 147.156.182.23. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



1156 J. Chem. Phys., Vol. 114, No. 3, 15 January 2001 Borras-Almenar et al.

Eflt,l 0.02 A, 'E, %A, B, A, A, In the axial case the t.rigonalifiektd<Q'does not 9hange
the ground statéA; leading to its additional stabilization
(Fig. 7). The spin tripletA} arising from the highest group
0.00 . - . .
%, It |/t 1=0 of Ieyels is _stgblllzed in the same way, SO in the st_rong crys-
tal field limit singlet—triplet pair proves to be well isolated.
-0.02 Therefore, in the limit of strong negative crystal field the
axial and pseudospherical cases are similar. At the same time
-0.04 1 the situation forA>0 in axial case is quite different from the
pseudospherical one because the ground level now is acci-
-0.06 dentally degenerate!d\;,'E’,3A},%E",2A} ,1A]). This is
obviously due to the fact that only transfer is responsible
-0.08 for the splitting of theeX e group.
-0.10 A
012 VIl. SPIN-ORBIT AND ZEEMAN INTERACTIONS
T T T 1 H ) :
0 10 20 30 40 The adequate description of the magnetic properties, and

-AVIt | (x109) particularly the magnetic anisotropy demands to take into
a account the spin—orbit interaction. This interaction for the

FIG. 7. Influence of the trigonal field<0) on the energy pattern in the A—B pair can be described by the operator,

axial limit. ,
Hso=KN(LaSaA+LgSg)

=K\ (L9oSho— L15St- 1~ L1 1St LigSio
tween them is found to be(3Aj)—e(*A})=—(J;+J3). (LioS0™ LarSt-1~ka-aSit LioSo
This pair of levels can be described by the isotropic HDVV —L3SB —LP SiD), (24)
Hamiltonian — 2J,4SxSg With Jog=13(J;+J3). The exchange
interaction proves to be antiferromagnetit,§<0) and this
is just what one could expect according to the Anderson

theory* and Goodenough—Kanamori rufesfor a pair of ~ “\) : , : :
ions possessing half-filed nondegenerate orbitds x®  L1q ~ [as well as the orbital matriceSr; ™ in the effective

well separated from the excited states. The energy levels Caq?(change Hamiltonignare defined in the local trigonal co-

be conventionally subdivided into three groups depending Olgrd_ina(tje. system@Figs. 1b) a-mdhj(c)]. 'rl;he operatqlrSA Is
their sensitivity to the trigonal field. Singlet—triplet pai, , efined in the same way as in the exchange Hamilto(8an

SAL can be assigned tax a-group, orbital doubletdE”, i.e., in the molecular coordinate system coinciding with the

e’ 3E’, 3E” belong toaxe, and the rest arises from the local trigonal system for the site A. On the contraf,
ex e-group. relates to the local trigonal system of the site B, that differs

Concerning the influence of trigonal field on the mag_from the molecular one, the directions of X and Y-axes being

netic behavior two points should be mentioned. First, the?PPOSte.  Using the  relationships Sjg=Sj5,S;°;
trigonal field should strongly reduce the magnetic suscepti-~  SL-1+S11 = —S1, 0ne can represent the operakbgo as
bility because of the stabilization of the sta#] that carries ollows:

neither spin nor orbital magnetic moment. Second, the trigo- Hso= kk('—fosfo— Li\lsé\—l— Li\—ls/fﬁ‘ L?os?o

nal field tends to change the sign of the anisotropy. At the

low temperatures, tends to zero, meanwhilg, tends to +L3S? +LT Sh). (25

the nonzero value due to a second order Zeeman effect. In Now the orbital operators are defined in the local coor-

fact, inspecting thé5;LM  -labels in Fig. 6 one can see that dinate systems and the spin operators are defined in the mo-

the ground statdA; (— (143)[0;00 +/30;20) can be  |ecular system just as in the effective exchange Hamiltonian
mixed throughL, with the state'E”(|0;2+ 1)), wheread,  (9).

cannot mix the ground state with the excited states. With the  The nonvanishing matrix elements of théq (i=A,B)
further increase ofA| the second-order effect decreases anthperators in the one-center trigonal basis are the following:
the system becomes more isotropic. Co _ o :
Providing A>0 (the orbital doublefE is the ground (X L3glXh ) = F 1(xp[L7 4 [X5)
state for each ionthe ground state of the system is the spin " iy i
. . . 4 . =+ 1(X5|Lys ==*1. 2

triplet A} independently of the trigonal field, i.e., the {X:L1zalx0) 26
face-sharedT,—2T, pair in this case is always ferromag- The matrix of the spin—orbit interaction has been built
netic. In the limit of strong trigonal field the pattern of low- using Eq.(26) and taking as a basis the set of symmetry
lying levels comprises three leveld,, 'E’, *A] and acci- adapted wave function@able I)).

wherek is the orbital reduction factor arising from the effect
,Sof covalence ana is the spin—orbit parameter for the free

ion. In Eq. (24) the orbital angular momentum operators
A(B)

dentally degenerate levéE”, 3A}, A]. These four low- Finally, one should add to the total Hamiltonian of the
lying levels are obviously the solutions of the pair the Zeeman ternt,. The orbital part ofH, can be
2E(x.)—2E(x.) exchange problem. written as follows:
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FIG. 8. xT vs T in the pseudospherical limit. Here and in the following @)t st,=-02
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FIG. 9. Influence of the ratit, /t, on the magnetic susceptibility.

+ (L — LY DH1l, shows pure spin§=1) value, meanwhiley,T|_,=1.25
whereL , andL  are related to the local coordinate systems,eXhibitS strong orbital contribution. The reason for this be-
H is defined in the molecular system, aHd relates to the havior was qualitatively explained above with the use of
local systenB. In the spin part oH, both local spin opera- Pseudoangular momentum representation. One can note also
tors are defined in the molecular coordinate system and thu§at x; T decreases monotonically with the increase of tem-

they can be coupled to give total s perature, meanwhilg/, T passes through the maximum at
T=15K.
BYe(Sa+Sg)H=Bg.SH Figure 9 demonstrates how the magnetic anisotropy de-
ends on the ratit,/t, in the region where the ground state
=B9e(S1gH10~=S1H1-1—=S1-1H141). P G/la g

is the orbital and spin singlétA; (Fig. 3. The following

(28)  main features of vs T curves should be notett) the sign

Now spin—orbit and Zeeman interactions are representef the anisotropy in this region dt/t, is negative,(2) y,

in the same coordinate frames as the effective exchangé@nds to zero with the decrease of temperat(ethe an-

Hamiltonian(9). isotropy increases with the decreasegt,, (4) x, does not
depend on the sign of./t, (compare the cases./t,

VIIl. MAGNETIC MANIFESTATIONS OF THE MAIN ==0.2). The first two features have already been explained

INTERACTIONS in the discussion of the axial limit. The features 3 and 4 can

be realized considering the correlation diagram in Fig. 3. The
In the discussion of the magnetic properties we will fix ground stat¢'A] is a superposition of twgS;LM, ) states:
Dqg and Racah parameters taking for the Racah parameter§;00> and|0;20). The state0;20) is mixed in a perpen-
their values for the free-iofsee Sec. VIl The results will dicular field with the statéE”(|0;2+1)). The efficiency of

be discussed co_nlside_ring the sample calculations performeffis ixing depends both on the weight of the wave function
att,=—4000cm - (this is within the Anderson’s estimation 10;20) in Al-state and on the energy separation between
of transfer paramet&), k=1 and some selected values of 1Ai and'E”. The calculation shows that in the rangetgft

. a

te/t.a and A We will consider gspemally the role of spin- under consideration the contribution |@f;20) in the ground
orbit coupling, so the results will be presented for two cases:

=0 and\ =155 cni ! (free Ti*%-ion).? This discussion will  Ste increases sligh’tlylwith the decreasett,. At the
allow us to reveal the role of different relevant parametersaMe time the gaﬂJA%, E" decreases, and henge (and
before fitting the experimental data. A}() goes up. To realize the fa}ct thaf is mdependent'of the
sign oft./t, one should take into account that passing from
te/t,] to —|te/t,] we change only four levels:E’ —'E”

Figure 8 shows thgT vs T dependence for the pseudo- and®E’ —°3E” and the coefficients in the linear combinations
spherical limit ¢./t,=1) provided thah =0 andA=0. One  of |0;00 and|0;20) defining two'A; terms. SinceE’ and
can observe that the magnetic susceptibility is anisotropi€” relate to the samdl, and'A; terms do not contribute to
with positive anisotropy. The low-temperature limit f T~ the yx,, this changes does not influengg.

A. The role of the ratio t./t,

Downloaded 29 Jan 2010 to 147.156.182.23. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



1158 J. Chem. Phys., Vol. 114, No. 3, 15 January 2001 Borras-Almenar et al.

o k=1,1=0
T A=0,k=1,A=155cm" th,=-0.2;t,=-4000cm™ . __.
104 % t, = -4000 cm™ 61y az0 s oo,
. (2) A= -100 cnr! e,
K 5 @a=200em  ° (1) *
8- '-‘ (1)t yt,=1.0 @a=800em e
& 5 @1 gt,= 06
= (1) @)t 4t,=02 :é_
% 6 ‘.‘ @t gt,= 0.2 *
S S -
£ (2 RO
O o Py
< 41| =k {"::. 8
s -_,—::: """"" = =
Ny A 3
” @)
4
o T T T T T 1
0 50 100 150 200 250 300
T T T T T
. ) ) ) 50 100 150 200
FIG. 10. Influence of the ratit,/t, on x(T) in the presence of spin—orbit T
coupling.

FIG. 12. Influence of the trigonal field op(T).
B. The role of spin—orbit coupling

Spin—orbit interaction in the pseudospherical limit At the same time spin—orbit interaction slightly modifies
changes dramatically the magnetic behaviig. 10. The  y, , so thatA y remains positive. Due to spin—orbit coupling

main effect is thaj is strongly reduced. Spin—orbit coupling y, becomes dependent on the sigrt gft, (compare with the
results in the nonmagnetic ground state arising fn"tmg, casex=0, Fig. 9.

3E’ manifold, soy, goes to zero at low temperatures and
appears as a second order effect. Therefore as distinguished

from the case=0 (Fig. 8 the magnetic anisotropy be- C. The influence of trigonal crystal field
comes negative.

: . . , ) ) Figure 11 clearly shows that trigonal crystal field under
The spm—?rb,n mFeracU_on in the |ntermed|§\te. region Ofthe conditions of pseudospherical limit changes the ground
te/ta (ground “A;) gives rise to the nonvanishing low- 40 reversing thus the sign Afy. The anisotropy disap-
temperature limit ofy, (Fig. 10 due to spin—orbit mixing pears with the increase ¢A| in accordance with the argu-
with the excited spin triplets cqrrying orbital magnetic mo- e given in Sec. VI. The maximum of vs T curve
menta. Th? low-temperaturg, Increases Wber;e/,ta de- moves to the high-temperature region with simultaneous de-
creasegmainly as a result of the increase %1, °E’ gap.  (rease of the maximum values of One can see that nega-
tive trigonal crystal field restores the Heisenberg-type mag-
netic behavior(Bleaney—Bowers equatighpeculiar for a
k=1,1=0 well isolated singlet—triplet spin pair.
tfty = 1; t, = -4000 cm™ In the intermediate region df./t, (Fig. 12 we observe
(1) A= 0 om glso the decrease of anisotropy at low temperatures with 'the
(2) A= -100 o increase of|A|. The remarkable features of the magnetic
(3) A= -200 cm? behavior of the system in the moderate temperature range
(@) A= -800 cm! should be noted. First, the slope of the increase of(T)
strongly depends oA increasing(decreasingwith the de-
crease(increasg of |A|. This effect is obviously due to the
changes in the gap between the ground state and the set of
exchange levels contributing te(T) when these levels are
thermally populated. Second, the maximum valueg ©F)
depend onA similarly. Third, the degree of anisotropy de-
creases with the increase of T. This important effect appears
--------------- due to the thermal population of the level$S1+1),
"""""" . |S;2+2)) exhibiting first order orbital Zeeman splitting and
() contributing thus toy,. The low-temperature limits of
) ! x.(T) and the slope iny(T) depend strongly also on the
13_0 150 200 energy gap betweebA’ and®A). Finally, it can be noted
that in the presence of trigonal crystal field (T) remains
independent of the sign af/t, providing A\ =0.

20 !

15

10

% (cm3 mol-! x 108)

__________
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PL e

FIG. 11. Influence of the trigonal field op(T) in the pseudospherical limit.

Downloaded 29 Jan 2010 to 147.156.182.23. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 114, No. 3, 15 January 2001 Magnetic exchange 1159

IX. DISCUSSION OF THE MODELS AND MAGNETIC EN

BEHAVIOR OF [Ti,Clg] ™3 2 i’ LMy
The first study of magnetic and spectroscopic properties 11 2 ©) & “[’(3%’),((22',3%)'

of the salt§ M,Xq] 2 (X=Br, 1) containing first-row transi-

tion metal ions were reported more then 30 years ago by 7 2 2J

Saillant and Wentwortf.Later on Briat, Kahnet al® per- A4 1 @) @) (1,0, 2,21)

formed a detailed magnetic and spectroscopic study on crys- J ) J @)

talline samples of Gi,Clg. They observed that the infrared 27 ¢ 1(0,0),(2,0)]

absorption spectra exhibited a broad featureless band located Jals J-tals +2prke]

in the region 800—3000 cnt that cannot be assigned to a
single TF* ion transition. This band seems to be closely (@) (b)
related to the group of levels created by the exchange intefIG. 13. Correlation diagram for the isotrog@ and anisotropi¢b) opera-
action in a dimer. The magnetic data indicated that the lowtors of orbital interactions(0, 0), (2, 0] is the notation for mixed states
temperature magnetic susceptibility is small and strongly anth - =0 andL.=2.
isotropic with x,>yx,. A remarkable feature of the
experimental data is that the magnetic anisotropy decreases
with the increase of temperature. Bogh and y, decrease same time according to the authbrhe inclusion of the
when the samples cool down and they become temperaturgossing transfer termg’(0) leads to the magnetic anisot-
independent aT <100 K. These data clearly show that the ropy due to the appearance of the contributions Lig 7,
ground state of the pair is nonmagnetic. etc. Since the crossing transfer terms were regarded as small
The measurements of the infrared reflectivity from acorrections these auth8rsame to the conclusion that the
single crystal of CgTi,Clg showed the broad signals between exchange anisotropy is a minor effect and the main reason
350cm!t and 950cm®.2® Since no vibration transitions for the observed anisotropy ¢fi,Clg] 2 is the combined
could be expected in this energy range these signals are effect of trigonal crystal field and spin—orbit coupling, i.e.,
magnetic origin indicating that the first excited level has anlocal (one-sit¢ anisotropy. This conclusion is in clear con-
energy of at least 450 cm. Similar conclusion was made tradiction with our results. In fact, we have shown that the
for polycrystalline sample of RFi,Brq on the basis of the €xchange Hamiltonian is fully anisotropic even providing
inelastic neutron scattering experiments exhibiting a broad’ =0 andAy is negative f, <x;). The inclusion of cross-
band of magnetic origin between 400 chrand 600 ct.28  ing terms is shown to change the sign of anisotropy. In this

Briat, Kahn et al® employed the theoretical model of '€Spect, it should be emphasized that the crossing terms
Kahr?’ involving trigonal crystal field stabilizing the local themselves cannot be considered as a source of the exchange

orbital singlets, isotropic exchange, and spin—orbit coupling@MiSOtropy.

An attempt was also made to take into account the degen- 1 Ne Origin of the descrepancy in the understanding of
eracy of the Ti3 ions by introducing orbit-orbit interaction the anisotropic properties of the exchange Hamiltonian in the

of the form —KL 4L g. Although this model does not take c?ted_papesr and in the _present one can be c_larified by con-
into account all relevant terms involved in the Hamiltonian sidering a selected orbital contributionltt for instance, the

of T,—T,-interaction it provides an important indication on erm

the range of parameters that are responsible fortfE)

dependence. Particularly the gap betwéér and 3Aj is H':—2tateF(T?(—O§+OE,_OQ,OE++OQOOEO)- (29)
estimated to be 630 cm, this value provides a satisfactory
explanation of the slope gf(T) observed af >100K.

The concept of the effective kinetic exchange Hamil-
tonian for orbitally degenerate ions was developed by Dril- ) AB. AB. . AB
lon and George3.For the first time they applied their ap- H'=J(L L +LL+LyLy), (30
proach to the face-shareDs, Ssyst_em and analyzed the WhereJ=tateF(T01). The operator part in E¢30) looks like
ma.1gnet|c. b_ehawor. Of Ti;Clo] tqkmg into account also scalar producl 5L but in fact it is not a scalar product,
spin—orbit interaction and the trigonal component of thebecauseLA andL g are defined in different trigonal framés

crystal field® The effective Hamiltonian obtained by Drillon andB. TransformingL g to the molecular framéA) we ar-
and Georgésis expressed in terms of the orbital operators e at the anisotropicBoperator

Lacg) acting inT, and spin operatorS,g) . In the fit proce-
dure Drillon and Georges neglected crossing transfer inte-

Passing to the orbital angular momenta operaféi.
(18)] one can present this term as

’r_ _ A B
grals ¢’=0), that corresponds to the relationship=t, H'=J(=LalgT2L,L,). (3D
(pseudospherical limit in our classificatiorin this case the Figure 13 represents the diagram correlating the eigen-
effective Hamiltonian contains the scalar produdtsl g, values of the anisotropic operatét’ (b) (good quantum

(Lalg)? LaLgSaSs, (LaLg)?SaSe, and S,Sz. For this  number|M|) with those of scalar operatdt AL g (a) (good
reason, this Hamiltonian was regarded as isotropic,l88d quantum numbek, with L=0,1,2). It is to be noted paren-
labels L =0,1,2) for the eigenvalues have been used. At thehetically that in this special case the anisotropic operator

Downloaded 29 Jan 2010 to 147.156.182.23. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



1160 J. Chem. Phys., Vol. 114, No. 3, 15 January 2001 Borras-Almenar et al.

gives the same scheme of the energy levels, obeying the

Lande’s rule, as the isotropic operator does. 1.6+ .
The above consideration shows that the conclusion made 144 %
by Drillon and Georgésabout the isotropic character of the 2 N
exchange Hamiltonian and misleading labeling of the eigen- 7 1.2
states could be the result of overlooking of the assignment of - 104
the operators 4 andL g to different frames. In this view our g ’
conclusion about the role of crossing transfer terms also dif- & 0.8
fers from their conclusion. i:; .

Inferring this discussion we would like to mention the 0.6
critical comments of Ceulemanst all® addressed to the 0.4
study of Drillon and Georges. According to the statement of ’
Ceulemanset al,, the isotropy of the exchange Hamiltonian 0.2
in the approach of Drillon and George is the consequence of
ignoring the difference(in sign and magnitudebetween T T T T T T
hopping integrals, andt.. On the contrary, as we have 50 100 11?’8() 200 250 300
proven in Sec. V, the mode,=t, corresponds to the pseu-
dospherical(but not true sphericallimit that is absolutely FIG. 14. Magnetic behavior of thgTi,Clg]~® unit, comparison with the
magnetically anisotropic. In view of this result, the abovethg‘z’geéizﬂ ) szve Sgg‘imjilnei iﬂg“c';[eld a;‘(tj |t<e“o@a;1_0|ﬁlsse4ri- %e:m
mentioned comment of Ceulemaeisal. S_eems to be errone- perature de;’)endence of the'degree of ani’sotropy, cc;mp.arison With the the-
ous. On the other hand, as we have just demonstrated, thgtical curve(solid line).
artificial isotropy in Ref. 8 proved to be a result of the mis-

understanding in treating of the coordinate systems in the

D3p case and the correct application of the model suggesteR). The calculatedy, at low temperature is in satisfactory
by Drillon and Georgéswould lead to the anisotropic ex- agreement with the experimental values. It is remarkable also
change Hamiltonian. that the theory well reproduces the slopesygfand ; .
Leuenberger and Giel" proposed the approach that is Another important feature of the magnetic behavior of
similar to that of Drillon and Georges in its background butCs,Ti,Cl, is the temperature dependence of the magnetic an-
different in mathematical procedure and in the model ofisotropy. Figure 14insery shows that in a good agreement
transfer pathways. They suggested a new model implyingvith the experimental data yyeor Femains constant below
strong difference between two transfer integrai§(t2). ~ 100 K and decreases with the increasd at T>150K. The
This is quite different from the assumption made in Ref. 8,calculated values ofAy (590cnimol ™! at 100 K and
where the pseudospherical limit was considered. At the samg10 cn? mol™* at 320 K) are close to the experimental ones
time, as distinguished from Ref. 8, the model of Leuenberge(540 and 410 ciimol ™%, respectively.
and Gudel ignores the differences in the energies of spin  Figure 15 shows the energy schefméthout spin—orbit
singlets and spin triplets in the reduced states, that is impoteoupling calculated with the set of best fit parameters. The
tant for the adequate description of the kinetic exchangground statéA;, the first excited statdA’ is separated by
splittings. 706 cm * from the ground onéa X a-group. The next four
Ceulemanset all® constructed a second order perturba-orbital doublets (3e”, 'E”, 3€E’, and 'E’) fill the gap
tional Hamiltonian and presented a seriesabfinitio calcu-  135cm ! (ax e-manifold). This group of levels is close to
lations for[ Ti,Clg] 3. These calculations confirmed the con- A% . Finally, ex e-group of levels forms a narrow band at
clusion of Ref. 4 about strong differences in the magnitudesbout 1340 cm®. One remark should be made concerning
of t, andt,. Moreover, these calculations clearly demon-the Coulomb repulsion. Analyzing the joint action of this
strated that, andt, should have opposite signs. repulsion and trigonal fieldAppendix D one can see that
In order to restrict the number of the adjustable paramthe main effect of the Coulomb repulsion is to redetermine
eters in fitting of the experimental data we will use the ratiothe gaps betweeax a, axe, andeXxe levels. Particularly,
of two transfer integrals, andt, extracted from theb initio ~ the gap betweemXa and axXe becomes—A—-Uy,+U;.
calculations of Ceulemans and co-work&€tshey roughly ~ Since theexe levels are not thermally populated at
estimated this ratio ag /t;~—6.5(—7 in Refs. 11 and 12  <300K they do not contribute tg(T), so the information
that corresponds to'/t=1.67. about these levels cannot be extracted from the best fit. In
In the best fit procedure we use the same values for ththis view, the parameter A could be regarded as an effec-
crystal field and Racah parameters as in Sec. WI, tive crystal field parameter associated with thaX()
=155cm %, and varyt,, A, andk. Figure 14 displays the —(axa) gap reduced by the Coulomb repulsion due to a
experimental temperature dependenciesypfand y, for ~ predominant destabilization effect ax a levels.
Cs;Ti,Cly obtained by Briat, Kahmet al® and the theoretical Several versions ofb initio calculations presented by
curves. The best fit is achieved fdr,=—5208cm?, Ceulemanset al1? give quite different results for théA; ,
A=-320cm}, andk=0.71. One can see that the theoret-3A}, gap and relative positions aixa, axe, and exe
ical curve fory, is in an excellent agreement with the ex- groups. For the description of the magnetic properties in Ref.
perimental data in the low-temperature regigrelow 170 12, the results of CASPT2)C calculations were used. Com-
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San 3pn 1w a genuine effective Hamiltonian. This can be illustrated us-
2 P ing the HDVV spin Hamiltonian and comparing two forms

1400 1 A, _/ 11::
1E 1329 H= _2% 'JAa,BBSAaSB,B
—_ - 3
A 1200 Al 1327
S and
w
1000 - 'E!
3E\/ 895 H=—2J5Ss J=(NaNg) ' Jnees
T~ — 883 ap
E" 782
800 760 na andng are the numbers of magnetic orbitals ahg,gs
Sgr— are pairwise exchange parameters. The first one contains ex-
/'\ 706 plicitly all exchange pathways and one-electron operators,
600 3A'2 while the second onédtrue effective Hamiltonianis ex-

pressed in terms of the full spin operat@®gs and Sz and
involves the only many-electron exchange paramétehl-
though these two forms of the exchange Hamiltonian are
400 physically equivalent, only the second one can be useful for
the parametrization of the experimental data and has an irre-
futable advantage as a computational tool.

200

X. CONCLUDING REMARKS

i wW— 0
0 ! In this paper we have applied the effective kinetic
FIG. 15. Energy pattern for the set of best fit parameters. exchange Hamiltonian deduced in Ref. 1 to the case of the
face-shared ;) bioctahedrafT,—2T,-dimer. The analyti-
cal expressions are found for the parameters of the exchange
paring our best fit scheme of levelBig. 15 with these re- Hamiltonian as a function of two relevant transfer inte-
sults, we can note that our scheme is most cl@eleast gralst, andte (ort andt’), cubic crystal field and Racah
qualitatively) to the result obtained by CASPRA, mainly ~ parameters for the charge-transfer states. Using pseudo-
in the positions of the levels arising fromxa andaxe  angular momentum representation and irreducible tensor
groups that are responsible for the magnetic behavior belowperator technique, we have analyzed the influence of differ-
300 K. Particularly, théA; 3A} gap (718cm?) is close to  ent transfer pathways, trigonal crystal field, and spin—
our result. At the same time we have obtained the oppositerbit coupling on the magnetic anisotropy of tBey, pair
order of3E” andE’ levels originating fromax e. Since the arising from the orbital interactions. We have shown that
gap®E”, E’ is small in allab initio calculations as well as at some special values of the ratig't, the system jumps
in our scheme, the estimation of this gap is probably beyond Some high-symmetric limits in which it could be magneti-
the accuracy of theoretical predictions. cally fully-symmetric (spherical limi} and completely
Finally, one should mention theb initio study of Chen ~magnetically axial(pseudospherical limit In both cases
et al?® The'A], 3A} gap reported in their paper (320 ch) the energy pattern exhibits high degree of accidental degen-
is too small to account for the experimentally observed slop&racy.
of x(T) at T>150 K and the position of the excited levels ~ The developed theory well reproduces the magnetic be-
(ax e-group in the range of 1680— 1850 cf is too high to  havior of the binuclear unit§Ti,Clg] * in CsTi,Clg and
be able to explain the low temperature magnetic anisotropparticularly the temperature dependence of the degree of the
and its temperature dependence. magnetic anisotropy.
Concluding this discussion we would like to make some
general comments concerning the effective Hamiltonian.
Ceulemanset al1° constructed a second order kinetic ex- ACKNOWLEDGMENTS
change Hamiltonian acting within the ground manifold. This
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extent. On the contrary, our effective Hamiltonian is ex-versity of Valencia for a visiting professor grant and Gener-
pressed in terms of many-electron operators acting within thalitat of Valencia for the financial support. The authors are
space specified by the total quantum numbers of the constitgrateful to A. Ceulemans and L. Chibotaru for the preprints
ent ions. From this point of view our Hamiltonian representsof their papergRefs. 11, 12 and for discussion.
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APPENDIX A: ORBITAL MATRICES O ., IN THE TETRAGONAL T,-BASIS &7n{

1 V3
& n L —— 0 0 — 0 0
1 0 O 2 2
Op,= 0 1 0|, Ogs= 0 1 ol O, = 0 _ﬁ ol
0 0 2 2
0 0 1 0 0 0
0 0 0 1 1
L 0 O —7 0 7 0
0 0 1 2 2
or,i- 2l ol 00 0 ol 1
1 1
O —— 0 — 0 0 V2
V2 V2 0 0 O
0O 0 O 1 1
L 0 O 7 0 7 0
0 o -+ 2 2
OT2§: V21, OTz’I 0 0 0f, OT25_ i 0O 0
1 1
o — O — 0 O v2
V2 V2 0O 0 O

1 1
0 0 — 0 -— 0
Xy X_ X VI V2
0 O
1 1
OA1: 0 1 0f, OEu+ E 0 0, Og, = 0 0 E ,
0 O
1 1
0O —— O - — 0 0
V2 V2
0O 0 O i i
0 0 — 7 7 0 0
|
0 o0 2 2
OTla— = V21, OT13+ =[ 0 0 0 ’ OTlao= 0o - I_ o’
i i
— 0 O 0O —— 0 V2
V2 V2 0 0 0
0 V2 0 0 0 ! ! 0 0
% V6 J6
0 0 1 V2 0 0 0 ! 0
Osz - % ) OT2x+ _3 ) OszO: - %
! 0 0 0 ! 0 0 0 v2
V6 V6 %
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APPENDIX C: THE WAVE FUNCTIONS FOR ([173A 1Ai)|H+Vtrig+Vc|[|]3AZ 1AL)
THE REPEATING ST' TERMS OF d? ION IN A CUBIC
FIELD =34+ 3(Upt2Ug) +t5(— 5gFa+ §F2— 57Fs

1,3Ty)=cosé|t3, °T1)—sind|t,e, °Ty),
11.7T0) =cosfltz, "Ty)—sinfltze, "Ty) +HF)+EEF BFat R+ Ett(F1—Fy)

2,3T,)=sing|t3, 3T,)+ cosd|t.e, °T,),
12.°T2) LMY [to8, T + §[t3(2F 1+ F3) +2t5(F,+ 2F3)

|1,%A;)=cos a|t3, *A;) —sina|e?, A,),
— 4t te(F1—F3)][S(S+1)— 3],

|2,*A,)=sinalt3, 'A;)+ cosal€?, 1A,),

|1,YE)=cosp|t2, 'E) —sinB|e?, 1E), ([NTPACADIH+ Vg + V| [I1TPAZ(*AD)
|2,'E)=sing|t3, ‘E)+ cosp|e?, ‘E), = 3A+ 5(2Ug+Ug) +t3(— §F1+ §Fo— &F3
|1,1T,) =cosd|t3, 1T,y —sin d|t,e, 1T,), +EF )+t EF +iF,— 2F3+ 2F,)
e 2
12.1T2)=sind]ts, *To) + cossltze, T), — 3tate(Fy—Fa) + 3[2t2(2F 1+ Fo) +t2(F1 + 2Fy)
where 3
+atate(F1—F3)[S(S+1) - 3],
@20, 1 a2 2\/6(2B+C)
a =— =, fa = oo~
) 10Dq+9B (2 20Dgq—-2B—-C ([ITPASCAAD [H+ Vg + Vel [T 2AS(PAY))
4v3B 4v3B 22 V2 V2
- — —_— = ——--"> = — _ — _— — 2
tan(23) 200q-B’ tan(29) 100q-B" =3 A+ 5 (Uo=Us)+ 5 [~ti(2F 1 +Fy)
,ahe o expressions - of  the —wave-functions 4 i3(F,+2Fs)+tto(Fy—F3)l[2- S(S+1)],
[t5,STM7¥), |t,e,STM%), and |e?>,STM?¥) in terms of
Slater determinants are given in Ref. (. 53 and 5% ([1T3E"(*E")|H+ Vyig+ VI [1T3E"(E"))

= 5A+ 3(2U +Uy) +t3(35F1— 5 Fo+ &F3— 5Fa)

APPENDIX D: EIGENVALUES AND ENERGY

201 1 e _ 4
MATRICES OF THE EFFECTIVE EXCHANGE tte(zFit Rt 57Fs— 7Fa)

HAMILTONIAN [EQ. (9)]: TRIGONAL CRYSTAL FIELD 4+ Lt t (Fy+9F,— 4F,)

AND INTERSITE COULOMB REPULSION (V)

ARE ALSO INCLUDED + &[t2(F,—3F,+2F ) +t3(F,— 3F,+8F,)
e[*Az(*AD)]

+ 2t te(—F1+3F,+4F,)][S(S+1)— &,

1 1 1 1
— 2 _ —_ —
—U3+ta 18F1+ 6F2+ 54F3+ 27F4> <[”] 3E”(1E,)|H+Vtrig+VC|[”] 3E//(1E/)>

i = 34+ 3(Us+2Up) +t5(5Fu+ 5aFot 5iFs

L e e 2
§ ' 6 ’ 2_7 ’ 2_7 ! 1 2 17 5 1 5
3 + 1osFa) tte(— F1+ 23F o+ 55F3+ 105F4)
_ 2 _ _
teFZ[S(SJF 1) 2}' + & tote(—5F,+9F 4+ 2F )
8[3E,(1E”)] + 31_6[':5(_F1+3F2_2F4)+t§(23F1+3F2_2F4)

=A+U,+t2 +2tate(7TF 1= 3F2+2F,)][S(S+1) - 3],

1 5
722 2 E e WsF“)

o5 - - - - ([°E"(*E")[H+Viig+ V[T °E"(*E"))
el 72T 222 27 108 s .
__ = - _ T r+2
1 3 1 =3z A+5 (U, U1)+3M[ta(F1+9F2+2F4)
+tate 1_2F1_ZF2+ €F4
+12(—5F +9F ,— 4F )+ 2t,to(2F 1 — 9F ,+ F )]
+[ = (2+1d) A
- or1t aeF2T =Fa 1
%120 36 7 6 +ﬁ[tg(—F1+3F2—2F4)+t§(5F1+3F2
= S+1)- o
Tlate| gFa 7gFat gFa] | S(STD =3, +4F )~ 2t,ta(2F 1+ 3F ,+ F ) [[S(S+1) - 3].
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The following notations for Coulomb integrals are used:

1
Uo=(xoX0lIXoX5) = f [xé(l)]zr—lz[x8<2>]2dndrz,

U, =(x2xg[x2x5),

U,=(x2x8

IXex2),

U= (xEx2x2x2).
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