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Phenomenological models have been quite successful in characterizing both the various complex
phases and the corresponding phase diagrams of microemulsions. In some approaches, e.g., the
random mixing model (RMM), the lattice parameter is of the order of the dimension of an oil
or water domain and has been used as a length scale for computing a configurational entropy,
the so-called entropy of mixing, of the microemulsion. In the central and material section of this
paper (Sec. III), we show that the fundamental length scale for the calculation of the entropy
of mixing is of the order of the cube root of the volume per molecule—orders of magnitude
smaller than the dimension of such a domain. This length scale is specifically the scale for the
configurational entropy—not that which measures either the curvature of the interface, the
“granularity” of the microemulsion, or the persistence length. Furthermore, we demonstrate, in
general, that mixing entropy, evaluated in configuration space as opposed to phase space, will
not be physically correct unless it is made to be consistent with the phase space evaluation.
Following this core section, we give a one-dimensional illustration of the problem (Sec. IV), and
discuss the consequences of our general result with respect to the RMM (Sec. V). The RMM
not only seriously underestimates the entropy of mixing but exhibits a dependence on
composition that is qualitatively very different from the correct dependence. Furthermore, for
oil or water rich compositions of the microemulsion, the correct mixing entropy reinforces

effects that would normally be attributed to bending energy, i.e., it destabilizes the system.

i. INTRODUCTION

During the past decade, considerable progress has been
made in the understanding of microemulsions. An impor-
tant approach underlying much of this progress has been
the use of phenomenological lattice methods, or more
broadly, a phenomenological model in the description of
the microemulsion. This model views the microemulsion
phase as either a dispersion of oil in water (Winsor 1), a
dispersion of water in oil {Winsor II), or a bicontinuous
mixture of oil and water phases (Winsor I1I).! In all cases
the oil and water are mesophases, having dimensions on an
intermediate scale, e.g., 50 nm. On the macroscopic level
the microemulsion behaves as a stable phase subject to the
ordinary laws of thermodynamics. Figure 1 provides a
schematic view of this system in which the shaded regions
represent domains of oil, while the unshaded region repre-
sents water. In the actual system there are surfactant, and
frequently cosurfactant, molecules localized to the ex-
tended interface between the two mesophases. These re-
duce the interfacial tension to a vanishingly small value.

Some aspects of this approach go back to Reiss,? and
Talmon and Prager,? although none of these authors em-
ployed a lattice. Reiss performed his analysis in the con-
tinuum, while Talmon and Prager utilized a system of
Voronoi polyhedra.

Phenomenological lattice models have been investi-
gated by Ruckenstein,* De Gennes and Taupin,” Jouffroy,
Levinson, and De Gennes,® Widom,” and Andelman et al.?
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These models employ a lattice parameter & as a length scale
to calculate the configurational (mixing) entropy of the
microemulsion. The lattice parameter is typically of the
order of the dimension of an oil or water mesophase. How-
ever, in the core section (Sec. III) of this paper, we show
that the fundamental length scale for the calculation of the
entropy of mixing is of the order of the cube root of the
volume per molecule—orders of magnitude smaller than
the dimension of a mesophase domain. Following this cen-
tral theme, we give a simple illustration of the length scale
calculation, and discuss the consequences of our result
with respect to phenomenological models of microemul-
sions, specifically the random mixing model (RMM).>-8

ll. THE PHENOMENOLOGICAL MODEL

In the phenomenological model, the Gibbs free energy
of the microemulsion is approximated by the following ex-
pression:’

G=Nau'o+quw+'y2—TSmix’ (1)

where N, and N, are the total numbers of oil and water
molecules in the system, u, and p,, are the chemical po-
tentials of oil and water in the corresponding bulk phases,
y is the interfacial tension between the mesophases, £ is the
area of the extended interface, and T is the temperature.
Thus, the first two terms on the right-hand side of Eq. (1)
represent the free energy of the oil and water mesophases,
respectively, while the third term represents the surface
free energy. The rationale for the first three terms on the
right-hand side of Eq. (1) is that, to a high degree of
approximation, the mesophases are large enough to possess
intensive properties identical to those of the bulk phases.
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FIG. 1. Schematic representation of a region within a microemulsion
(Winsor I). Shaded regions are oil domains. Unshaded region represents
water.

As is conventional, the effects of bending energy are in-
cluded in the value of y. However, this does not imply that
bending energy effects are merely included in a multiplica-
tive factor y that is itself independent of 2. As indicated
below, bending energy effects also appear in S,;,, since the
allowable configurations of the system are affected by
bending energy.

The last term on the right-hand side of Eq. (1) is
something new, and its inclusion represents a subtle com-
bination of microscopic and macroscopic ideas. Sy, is a
configurational entropy, in this case the so-called entropy
of mixing, which is supposed to correspond to the enor-
mous number of patterns (), that can be generated by
translating and deforming the domains of oil and water
through all possible configurations that conserve the re-
spective volumes of oil and water, as well as the total in-
terfacial area 3. Bending energy may also affect the allow-
able configurations so that its effects appear in both the
next to the last, and the last term of Eq. (1). Different
patterns are generated by the continuous movement of the
surfaces that represent the interface so that an infinite
value for Q would result. Clearly then, not all such pat-
terns contribute to 1. Before a new pattern can be consid-
ered to have been generated an element of interface must
be displaced some minimum distance defined by a length
scale A. Thus the entropy of mixing is defined as

Soin(A) =k In Q(A), (2)

where k is Boltzmann’s constant. Assuming that p,, 1., 7,
and 2 are known, S, is essentially the residual entropy
after the first three terms on the right-hand side of Eq. (1)
have been accounted for.

This characterization of .S, is not sufficient for spec-
ifying either its functional form or the magnitude of A. As
we emphasize later, fundamentals require that physical en-
tropy be evaluated through the counting of quantum states
in phase space, and the contribution of configuration space
to this process cannot be separated in an absolute manner.
As a result, that part of the entropy which is configura-
tional must be defined, and this is usually done within the
context of some model. Although the intent of the phe-
nomenological model with respect to the definition of con-

figurational entropy is fairly clear, a precise definition does
not seem to have been advanced. Therefore, it is useful to
sharpen this intent into a clear definition.

For this purpose it is convenient to begin with consid-
eration of the random mixing model,>® a particular exam-
ple of the phenomenological model. The RMM introduces
a course-grained lattice of cells in which each cell is filled
with continuous fluid, all cil or all water. If the volume
fractions of oil and water are denoted by ¢ and (1—¢),
respectively, then ) for the entropy of mixing is obtained
by counting the random permutations of oil and water cells
over the lattice.

The lattice parameter & has been chosen in a number of
ways. It has been set equal to the so-called persistence
length,>® or obtained through a variational method,” or
determined so that upon “random mixing” the interfacial
area would be exactly equal to area required to accommo-
date a saturated layer of all the available surfactant.® The
lattice parameter & serves as a scale for the dispersion, and
its value is typically of the order of the dimension of the oil
and water mesophases, e.g., 50 nm—much larger than the
size of a molecule. If the third method (above) for deter-

mining £ is used, one finds®10
§_2U1/3<P(1“‘<P) (3)
- (Nsurf/N) ’

where N is the total number of molecules (oil and water)
in the system, v is the average volume per molecule in the
system, z is the lattice coordination number, and N, is
the number of surfactant molecules assumed to occupy an
interfacial area Ny, w*>. An obvious modification of the
RMM would involve the abandonment of the random per-
mutations of the oil and water cells in favor of allowing
only those permutations that conserve X, whatever the
value of &.

In the continuum version of the phenomenological
model, as we have indicated, we are faced with a contin-
uum of patterns that amounts to an infinite value for Q
which must then be rationalized by the introduction of the
length scale. But the use of the length scale is really equiv-
alent to the use of the phenomenological lattice, as in the
case of the RMM, with the difference that A is not deter-
mined, as in the RMM, by Eq. (3), i.e., oil and water cells
are no longer mixed randomly! Thus A remains a lattice
parameter.

If the correct value of A proves to be small enough, the
precise symmetry of the lattice will not be crucial to its
determination or to the evaluation of S_;,(4). There will
be a small latitude in the specification of the interfacial area
3. For example, one might choose for X, as in the case of
the RMM, the sum of the cell faces that have oil on one
side and water on the other. If the lattice parameter was of
the size of a molecule this would lead to an interface that
was irregular on the molecular scale, and therefore not
very representative of the usual transition zone between
two coexisting liquid phases. A smooth surface traced
through the neighborhood of this irregular surface would
be preferable, and irregularities would then become part of
the interfacial entropy. In any event the extents of the
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irregular and the smooth surfaces would differ at most by
a factor of the order of the coordination number of the
lattice.

We are now in a position to provide a firm definition
for Spix(4) in the phenomenological model. S, (1) is
kln Q(A), where Q(A) is the number of permutations of oil
and water cells on a phenomenological lattice of lattice pa-
rameter A where the permutations are restricted to those
that conserve the interfacial area required to accommodate
a saturated layer of surfactant, If the requirement of satu-
ration is relaxed or replaced, or others are added to it, then
Q(A) is the number of permutations allowed by whatever
alternative set of constraints (if any) are applied. It should
be noted that the continuum limit is included in this defi-
nition by setting A =0.

It is still necessary to introduce the condition that de-
termines A. The possibility of introducing this condition is
a consequence of the degree of freedom released by aban-
doning Eq. (3), and the obvious way to use it is to choose
a condition that insures that S_;,(A) is physically consis-
tent with the fundamental requirement that entropy be
evaluated through the counting of quantum states in phase
space. One way to do this would be to require that S, (1)
satisfy Eq. (1), given that the exact Gibbs free energy G is
known. While the exact G is not known for a real micro-
emulsion, it is known for simple models of microemulsions
so that some general idea of the proper length scale may be
obtained. Furthermore, as we demonstrate below, a fairly
good estimate can be derived from the consideration of real
systems that are not exactly solvable.

If we denote by G, , the exact value of the Gibbs free
energy, then, using Eq. (1), the condition that S (1)
must satisfy in order to be physically consistent can be
expressed as

Smix(’l)=(Nol‘o+Nuzuw+7/2_chact)/T- 4)

Before leaving this section, we emphasize that the follow-
ing section contains the core of our argument, and that the
later sections follow as a consequence of the result.

lll. AN ESTIMATE OF THE LENGTH SCALE A

The functional form of S.,;,(1) and the length scale 4
cannot be specified by Eq. (4). However, we can make
further progress in this regard by considering the sche-
matic illustration of a microemulsion (here, Winsor I)
given in Fig. 2. The figure is a “snapshot” of the microe-
mulsion that presents one of the possible configurations of
the oil and water domains. Specifically, the figure shows
two oil globules, whose molecules are represented by filled
circles, surrounded by water, whose molecules are repre-
sented by empty circles. The interface between the oil and
water domains is delineated by shaded lines.

We can refine this picture of the interface by referring
to Fig. 3, which is a highly magnified view of a tiny piece
of interface. Here, we have sketched “boundaries” about
the molecules, such that a close-packed array of irregular
cells is produced, each cell containing one, and only one
molecule. This array of imaginary cells is drawn purely for
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FIG. 2. A microscopic view of a region within a microemulsion (Winsor
I). Two oil globules, whose molecules are represented by filled circles, lie
in the water domain, whose molecules are represented by empty circles.
The oil-water interface is represented by the shaded lines.

visualization, and is not physical—we are dealing with a
fluid. Indeed, there is no unique way to construct the array!

The interface itself might be defined as the set of cell
faces that separate imaginary cells of oil from imaginary
cells of water, shown as the dark line in Fig. 3. Because the
construction of the array is itself nonunique, this interface
will also not be unique. On the other hand, it is clear that
in the thermodynamic limit the possible variation of the
area of this interface, allowed by the nonuniqueness, will be
small. Thus, we can talk meaningfully in this picture about
a constant interface area 2, defined by the adjacent oil-
water imaginary cell faces. The actual interface between
phases in a physical system is of course not a mathematical
surface but a transition zone that may be several molecular
diameters in thickness. Therefore, it may include more
than one cell on either side of the mathematical interface
shown in Fig. 3. This will have little effect on the general
argument presented below, and any energetic and entropic
contributions due to this finite thickness will appear in the
Y= term on the right-hand side of Eq. (1).

Now, suppose we fix the interfacial boundaries be-
tween the oil and water domains shown in Fig. 2 at a given

FIG. 3. A highly magnified microscopic view of a tiny piece of the oil-
water interface. The filled and empty circles represent oil and water mol-
ecules, respectively. The array of irregular cells, each containing a single
molecule, is an abstraction useful for defining the interface between oil
and water domains. The array is not unique.
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interfacial area Z and given bending energy, and then allow
the oil and water molecules to move freely within their
respective domains. It is clear from Fig. 2 that, except at
the interface, oil molecules are surrounded by oil mole-
cules, and water molecules by water molecules. Thus, if we
ignore the interaction between molecules at the interface,
the oil molecules are completely decoupled from the water
molecules. The partition function Q* for this decoupled,
two-component, system of oil and water molecules is then
given by the product,

Q*=0Q,(N,, Vo, T)Qu(N ¥y, T), (5)

of the partition function @, for the oil molecules in their
multiply connected domain, times the partition function
Q,, for the water molecules in their domain, where ¥, and
V, are the corresponding volumes of oil and water. It is
important to understand that the configuration integrals
corresponding to Q, and Q,, “count” configurations of the
molecules within their respective domains, but do not
“count” the possible configurations of those domains, since
the domain boundaries are fixed. It is important to empha-
size that in spite of the above appeal to imaginary cells as
an expository tool, the problem of the absence of commu-
nal entropy” does not arise, since the molecules are not
confined to individual cells, but are free to move through
the multiply connected domain.

As it stands, O* of Eq. (5) is also the partition func-
tion for one particular configuration of a microemulsion
with a given interfacial area and bending energy (again,
ignoring interfacial effects). O* will have the same value
for all possible configurations of the oil and water domains,
provided that each and every such configuration has the
same constant values of the interfacial area X, and bending
energy. Furthermore, since X is constant, the energetic cor-
rection due to those molecules at the interface will be con-
stant in all allowable configurations of the domains. As a
result, all such allowed configurations will have the same
energy.

The total partition function Q of the microemulsion
must include all possible configurations & of the oil and
water domains, constrained by a constant interfacial area
=, and a constant bending energy. Thus, not only 7, but
2, is affected by bending effects. Although for simplicity
of notation we will write & as a function of N,, N,,, and
2., when additional constraints such as those due to bend-
ing are involved, & must also be a function of the ther-
modynamic variable (variables) corresponding to the new
constraint (constraints).

The number of possible configurations & of the oil and
water domains is just the number of permutations of the oil
and water molecules, among the frozen arrangement of the
positions of the molecules within the snapshot (Fig. 3),
subject to the above constraints, that lead to new patterns
of the mesophase domains, or, in other words, new inter-
facial boundaries as represented by the gray lines of Fig. 3.
It is to be emphasized that we are permuting molecules and
not imaginary cells, so that we are indeed generating and
counting quantum states to complete the specification of
the true physical partition function.
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Another equivalent way of looking at the situation in-
volves thinking about the molecules in Figs. 2 and 3 as
bearing oil and water “labels.” Then, in order to evaluate
&, we can think of permuting the labels among the frozen
positions, subject to the constraints discussed above.

Without compromising our estimate of the length scale
we can, for simplicity, assume that the densities of oil and
water are identical, or, in other words,

Po=N/V,=py=N,/V,=p, (6)

so that the average volume (v) of an imaginary cell is just
the average volume per molecule p_l. The partition func-
tion of the microemulsion Q then follows immediately as

Q(N,,N,,2,V.T)
= (NoyNy,2)Qo(Noy Vo, T) (N Vi T, @)

where V=V _+V,, and where it is understood that
#(N,,N,,2) is the number of permutations allowed un-
der the constraints discussed above.

Using Eq. (7), we can derive an estimate for G,
appearing in Eq. (4). Standard relations between G and Q
in the canonical ensemble allow us to write

Gestimate= —kT In Q+P v, (8)
which yields, upon substitution of Eq. (7),

Gestimate=—kT In Z +(—kT In Q,+pV,)
+(—kT In Qu+pV,)
=—kTIn Z4+G,(N,p,T)+G(N,.p,T)
=—kTIn Z+Nu,+N,u,. 9

In this equation, p is the common pressure to which the
microemulsion and its pure components are subjected, and
the quantities p, and p,, are the chemical potentials of the
pure components, the same as in Eq. (1). The final form of
Gestimare follows immediately when we add the surface con-
tribution,

Gestimate=—KT In & + N o+ Ny, + V2. (10)

The free energy G imae 18 Only an estimate of G,,,,
since the surface free energy is not treated in detail, but is
simply added afterwards as the term y=. However, this
estimate is physically consistent in that it is based on the
partition function Q that represents the sum over states in
phase space. Thus the central requirement of Eq. (4) will
be satisfied. The estimate is also consistent with the phe-
nomenological model, as epitomized by Eq. (1), where the
interfacial effects are summarized by the separate term y=,
and where the remaining free energy is handled as though
it corresponded to that of a bulk system augmented by
“mixing” effects.

Substitution of Egs. (2) and (10) into Eq. (4) then
yields

QA)=Q(N,Ny,2)=P?(N,N,,Z), (11)

where we use = to indicate the mild approximations that
have led to Eq. (10), approximations that do not change
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the order of magnitude of the result. Equation (11) also
indicates that the physically consistent entropy of mixing is
prescribed essentially by

So=kln 2. (12)

Now, Q in Eq. (11) is computed by permuting cells
that are filled with continuous fluids of oil or water while
Z in Eq. (11) is derived from the permutation of mole-
cules, both types of permutation restricted by the exact
same requirements. Under what conditions can these dif-
ferent types of permutations be nearly equal in number so
that Eq. (11) will be satisfied? The answer is fairly simple.
Think of each fluid molecule involved in the evaluation of
#(N,,N,,2) as having been “smeared-out” throughout
its imaginary cell in Fig. 3. All cells will then be filled with
imaginary continuous fluids, each with an average volume
given by the average volume per molecule,

(Wy=p~}, (13)

as discussed above. Now consider the phenomenological
model. For simplicity, assume that we use a simple cubic
lattice so that the cell volume will be

v=2A% (14)

Since the phenomenological model cells and the imaginary
cells (involving ‘“smeared-out” molecules) are now both
filled with continuous fluid, the permutations in both cases
can be thought of as permutations of fluids among cells.
The respective numbers of permutations will be almost
equal if the numbers of cells are almost equal. This requires

ve=(v), (15)
or, from Egs. (13) and (14),
Amp3, (16)

Equation (11) assures that kIn {} is a physical entropy
and will be satisfied by choosing the length scale prescribed
by Eq. (16).

At this point, it should be re-emphasized that the
length scale that forms the subject of this paper is specifi-
cally the scale for the configurational entropy, and is not
that which measures either the curvature of the interface,
the “granularity” of the microemulsion, or the persistence
length.

IV. A SIMPLE EXAMPLE OF THE LENGTH SCALE A

In this section we present a concrete example of the
general argument advanced above, but emphasize that the
above estimate is not restricted by the conditions of this
convenient, but simple, example. For this purpose we focus
on a one-dimensional microemulsion of length L. The me-
sophases may now be referred to as globules, and X is
simply the number of interfaces between globules or, alter-
natively, the number of “ends” of the globules of one com-
ponent. Thus, in one-dimension, the number of oil globules
=the number of water globules=M=23/2.

First, we use the phenomenological model and calcu-
late O by using a lattice having parameter A. It follows
immediately that the system will contain C,=¢@L/A oil

Reiss, Ellerby, and Manzanares: Entropy of microemulsions

cells, and C,,=(1—¢)L/A water cells. Then, it is easy to
show!'! that the number of distinct configurations (permu-
tations of cells—random except for the constraint of fixed
2)is

(C,—1)! (C,— )
(C,— M) (M-I (C,— M) (M-1)!"

Q(A) = (17)

Now we evaluate & for the one-dimensional micro-
emulsion as a system of N, oil molecules and N, water
molecules confined to the length L, and limited to the same
number of interfaces 2. The number of allowed permuta-
tions of molecules is'!

Z(N,,N,,Z)
(N,—1)! (N, —1)!
TN, —2/DE2— 1) (Ny—2/2)HE/2— 1)

(18)

Since M=32/2, Q(A) in Eq. (17) and Z(¥N,,N,,2) in
Eq. (18) are of the same form, and Eq. (13) will be sat-
isfied when C,=N, and C,=N, that is, when

(19)

where p is the linear number density. Thus, for the one-
dimensional case, the proper length scale is 1/p, or the
length per particle in the fluid! This result, for the one-
dimensional case, is exact, since & (N,,N,,2) in Eq. (18)
is exact, because, for the one-dimensional system, the spec-
ification of the “surface area” is unique, since it is equal to
the total number of globules.

Some recent work by Sturgeon and Reiss,” in which
Eq. (4) was used, produced a length scale that displayed a
factor whose size was on the order of 1/p multiplied by an
exponential factor that became dramatically small as {(n),
(the average number of molecules in an oil globule) in-
creased. This factor can now be shown to be due to the
omission of the second component in the microemulsion.
Although the analysis of Sturgeon and Reiss was correct,
the system they treated represented as assembly of super-
heated drops rather than a microemulsion.

Before leaving this section, we emphasize that one-
dimensional examples, though useful for certain illustrative
purposes, for example to illustrate the qualitative proper-
ties of the mixing entropy, can only represent limited de-
scriptions of microemulsions since they cannot incorporate
bending energy, or exhibit phase transitions.

V. THE ERROR IN THE RANDOM MIXING MODEL

Having found the proper length scale, it is clear that
the RMM overestimates it. We examine the implications of
this fact by considering, again, a one-dimensional case. Be-
fore proceeding, it is useful to emphasize that we will be
dealing with three different mixing entropies although two
of them will be almost the same. First, there is the RMM
mixing entropy, evaluated by the RMM method, and
which we denote by S ;; (RMM). Second, there is the
entropy which, like S ;, (RMM), is evaluated within the
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TABLE I. Values of the ratio: S, (PM)/S,,;; (RMM) for different values of (n}, with ¢=0.5.

(n), 10 50

100 500 1000

Smix (PM)/Sp;; (RMM) 2.34

3.54

4.04 3.20 5.70

phenomenological model (PM), but using the correct
scale. We denote this quantity by S, (PM). Finally, there
is the actual physical entropy, evaluated in a manner con-
sistent with the phase space (PS) requirement and involv-
ing the permutation of molecules and prescribed by Eq.
(12). This entropy we denote by S, (PS).

From the previous discussion we know that

Smix(RMM) =k 1In Q(§), (20)
Smix(PM) =k In Q(4), (21)
Snix(PS)=kIn 2. (22)

Since A is to be chosen so that Q(A) =2, it follows that

Six(PM) =5, (PS). (23)

However, S, (RMM) may have a very different value,
and it is this difference that we now study. Furthermore,
since we want to focus on the correct use of the phenom-
enological model, it is Sp;, (PM) rather than S ;, (PS)
that should be compared with S_,;, (RMM), even though
in accordance with Eq. (23), both entropies have almost
the same value.

We already know that the correct (1) is given by Eq.
(17) with C,, C,,, and M set equal to N,, N, and 2/2,
respectively, i.e., by the right-hand side of Eq. (18). Fur-
thermore, under these conditions 4 is given by Eq. (19).
Substituting this value of A into Eq. (21), as well as N,
=Nep=M(n),, where (n), is the average number of oil
molecules per oil globule, and N ,=N(1—¢@)=M(n),,
where (n), is the average number of water molecules per
water globule, we find, using Stirling’s approximation,

Smix(PM)=kM[{(n),In (n),+{n), In (n),—({n),—1)
XID((”)O— 1) "'(<n>w_1)1n(<n>w— 1)]

1 1
ol i)
P P
X[‘“(l—qo)(nx, ==,
@ @
MO hcwes eI -

In the RMM the number of permutations of oil and
water cells is

_M ],
a [<P(1—<,v)]'

C,,!C,,;_( M )'(M)"
i—o )7

Q)= 25)

where C=L/§, C,=¢L/§, and C,=(1—¢@)L/£ are the
total number of cells, the number of oil cells, and the num-
ber of water cells, respectively, and where we have used

L
M=C<P(1—§D)=E p(1—p). (26)
Note that Eq. (26) is the one-dimensional equivalent of
Eq. (3). Introduction of Eq. (25) into Eq. (20), again
using Stirling’s approximation, leads to the following ex-
pression for S;, (RMM),

Nep [Ing In(l—¢)
+ .
(myo|l—@ @

Table I lists values of the ratio Sp;; (PM)/S.ix
(RMM) for different values of (n), with ¢=0.5. Since
(n), in one dimension is usually of the order of 100,!! we
see that the ratio of the values of S, is of the order of 4.
In three dimensions we might expect the ratio to be of the
order of 12. Thus, there is a large difference between the
entropy evaluated by means of the RMM and that using
the PM with the correct scale. The RMM fails to count a
very large number of configurations.

Figure 4 also shows the difference between S;, (PM)
and S, (RMM). In this case @ is varied while keeping
N=N,+N, and M constant such that N/M =200. Note
that because M is constant, the thermodynamic states in
Fig. 1 lie on a horizontal line in a Gibbs triangle. The
values for the entropy of mixing for the two cases are
significantly different, as they are in Table I, but the strik-
ing feature is that the entropies also behave qualitatively
differently. While S;, (RMM) is minimum for the equi-

S (RMM) = —k

(27)

T

1211-,1-‘].-1||..
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FIG. 4. Plots of S,;;, (PS) and S, (RMM) (upper and lower curves,
respectively) vs oil fraction g, for fixed interfacial area . Inset illustrates
the lower limit of Sy, if the upper curve is considered to represent
Snix (PS).
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molecular solution (¢=0.5) and increases as ¢ tends to 0
or 1, S (PM) exhibits the opposite behavior.

The thermodynamic consequences of this disparate be-
havior of the mixing entropies is best considered by refer-
ring to Eq. (1), and, especially to the last two terms, G,
=y, — TSpmix in that equation. Assume that at ¢=0.5,
Gnix (RMM) and G, (PM) are of about the same mag-
nitude [perhaps because in G;; (RMM) a value of ¥
somewhat higher than the actual value had been used—a
distinct possibility since y is known to be very small and its
value is not known with absolute accuracy]. Then as g is
varied to either the oil or water rich compositions, Gp,
(RMM) will decrease while G;, (PM) will increase, thus
stabilizing and destabilizing the system, respectively. How-
ever, other factors such as bending energy act to destabilize
the system and the range of stability is limited to interme-
diate values of @. On the other hand, in the correct treat-
ment, both entropy and bending energy act in the same
direction so that the predicted range of stability is nar-
rower. Thus the error implicit in the random mixing ap-
proach leads to the prediction of a range of stability that is
too broad. Such concerns involving the entropy of mixing
in both oil rich and water rich domains have been voiced
qualitatively by Gompper and Schick.?

Figure 4 shows that the values of S;, (RMM) and
Smix (PM) are very close in the oil and water rich domains.
It is apparent from Eq. (26) that this must be the case,
since the length scale in the RMM becomes of molecular
size (i.e., close to the exact length scale) when ¢—0 or
@ - 1. For most values of N/M, it can be shown that .S,
(RMM) and S_;, (PM) are equal at two values of ¢ (sym-
metric with respect to ¢==0.5). The physical reason for
this behavior is the following. For any choice of £, the
random mixing of oil and water cells leads to a particular
average or most probable extent of interface 2 given by Eq.
(26). If the amount of surfactant were such as to require
this value of = for a saturated layer, then the surfactant
would not be exercising any constraint on the system. Now
suppose that both £ and = were fixed arbitrarily, e.g., sup-
pose that £=A=1/p so that & represented the correct
length scale. Then, the only way in which Eq. (26) could
be satisfied would be to have ¢ in the equation set to a
value to maintain the equality. Equation (27) then be-
comes a quadratic equation in ¢ whose roots specify the
two compositions at which the RMM gives (by accident)
the correct result.

A few remarks concerning Sy, (PS) are appropriate.
As we have indicated, this quantity is essentially repre-
sented by the upper curve in Fig. 4. However, since in the
evaluation of S;, (PS) the system is viewed as consisting
of discrete molecules rather than as cells occupied by con-
tinuous fluid, {n),and {n}), cannot be less than unity. This
means that the curve for S;, (PS) must terminate at suf-
ficiently oil or water rich compositions. Such termination is
illustrated by the magnified inset in Fig. 4. In the inset the
solid curve shows the decreasing S, (PS) while the dot-
ted curve shows S, (RMM). The latter continues up-
wards to the absurd result of an infinite value for the mix-
ing entropy in a single component system where there can

be no such entropy, but the former terminates at a lower
limit and the curves never cross.

The departure from a relatively constant length scale
has serious implications. According to Egs. (1) and (2),
AG;;, the Gibbs free energy difference between two mac-
roscopic thermodynamic states / and j of the system will
contain the term AS iy ;i =Snix; — Smix; = K In(Q;/Q)).
Because only the ratio (Q;/€);) appears, the length scale
will cancel out of ASy, ;; if it is constant and independent
of the thermodynamic state. Thus knowledge of its magni-
tude will be unnecessary. The proper length scale is almost
independent of thermodynamic state whereas, the scale in-
troduced in the RMM is very dependent, since it is given
by Eq. (26).

It might be argued that even if the length scale were
not constant, and depended on thermodynamic state, no
great harm would result as long as the variation of scale
added nothing to the free energy of the microemulsion
phase beyond terms linear in ¢ and/or (1—¢). Compari-
son of Eqs. (24) and (27) [note that ¢{(n),= (1—¢@){(n),]
shows that is not the case.

It might also be argued that the variation in S;,/kM
as a function of ¢ far from the edges of the diagram in Fig.
4 is small enough to be unimportant with regard to the
stability of the microemulsion. On the other hand, this
variation must be balanced against a surface free energy
per surface molecule which is also very small, so that the
variation in Sp;,/kM remains relatively important in de-
termining stability. Note that in one dimension, 2M is of
the order of the number of surface molecules so that S,/
kM is of the order of the mixing entropy per surface mol-
ecule.

VI. CONCLUSION AND ASSESSMENT

There exists a large and successful community vigor-
ously addressing the subject of microemulsions. Sophisti-
cated theory has been advanced for the interpretation of
experimental results. The concepts of bending energy, per-
sistence length, and related ideas have added much to the
field, but mixing entropy remains a central issue in char-
acterizing the stability behavior of the microemulsion
phase.!?

It is therefore remarkable that (apparently), with the
exception of Ref. 9, previous authors have not subjected
their definitions of mixing entropy to the test of physical
consistency. Instead, the mixing entropy, introduced in an
intuitive manner, becomes the subject of intense mathemat-
ical manipulation. Sometimes the intuition is very good.
For example, in the case of the strict lattice model,”’15 as
opposed to the phenomenological lattice, when the lattice
parameter is chosen approximately equal to p~'/>, the as-
sociated entropy of mixing will very nearly meet the test of
physical consistency. In contrast, in the case of the RMM,
the associated mixing entropy fails seriously to meet this
test except at the unique compositions indicated in Sec. III.
Of course, this is not to depreciate the outstanding work in
the field, but only to call attention to the fact that, due to
the large values of the length scale used, the RMM ac-
counts for only part of the actual entropy of mixing. Only
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through the use of the fundamental length scale for con-
figurational entropy, estimated in Sec. III, can the proper
entropy of mixing be evaluated.

How does the problem of physical consistency with
Smix arise? As Eq. (3) implies, kIn Q is a (configura-
tional) entropy, and () is a number of “states” in config-
uration space. However, the proper way to evaluate phys-
ical entropy is through the counting of quantum states in
phase space. In the semiclassical phase integral'' the de
Broglie wavelength A is the natural scale of length that is
used to transform the configuration integral into a pure
number, specifically, into the partition function. When
configurational entropy, in this case mixing entropy, is
evaluated in configuration space as opposed to a more fun-
damental evaluation in phase space, there is a need for a
length scale, and the physical consistency of the entropy of
mixing is not assured unless the choice of this length scale
is consistent with the fundamental definition involving
phase space. The problem is compounded by the fact that
configurational entropy cannot be extracted from the total
entropy in any absolute manner. It must always be defined
and then usually within the confines of a particular model.

Phenomenological models of microemulsions that use
“large” length scales, such as the RMM, seriously under-
estimate the entropy of mixing. Where does this omitted
entropy come from? When a cell is permuted on a lattice,
say for example, when a cell is moved to the adjacent cell
on the right, it must be translated a distance A, exactly.
Yet, a continuum of intermediate positions are possible in
the real system, but they are not counted. Each and every
one of these possible positions should contribute to the
configurational entropy, but do not.

In the core derivation in Sec. III, physical consistency
is assured through the satisfaction of Eq. (4). The use of
Gexacr @ssures that the enumeration of configurations in
configuration space is consistent with the enumeration of
quantum states in phase space. Failure to meet this test can
reduce the defined entropy of mixing to a counting of fuzz-
ily defined patterns of the microemulsion so that it be-
comes an information theoretic rather than a physical en-
tropy. Again, it is to be emphasized that the strict test of
consistency has, to our knowledge, not been applied, ex-
cept in Ref. 9.
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It may be argued that the conventional approaches
have nevertheless yielded results that are reasonably con-
sistent with experiment. Even though this may be the case,
the problem cannot be ignored, since without the test of
consistency there is actually no physics in the theory of
mixing entropy! Features such as bending energy and per-
sistence length do of course contain physics, but the mixing
entropy is usually fundamental to the entire theory. In fact,
while bending energy is a well-defined physical concept, for
example in the physics of membranes, its use in some phe-
nomenological theories of microemulsions, for example the
RMM, may actually obscure an incorrect evaluation of the
mixing entropy. Figure 4 hints at this since the decline of
the correct entropy, in the oil and water rich emulsions,
has the same qualitative effect as bending energy.
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