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Abstract. This paper is concerned with small angular scale experiments for the observation of cosmic microwave
background anisotropies. In the absence of beam, the effects of partial coverage and pixelisation are disentangled
and analyzed (using simulations). Then, appropriate maps involving the CMB signal plus the synchrotron and dust
emissions from the Milky Way are simulated, and an asymmetric beam – which turns following different strategies
– is used to smooth the simulated maps. An associated circular beam is defined to estimate the deviations in the
angular power spectrum produced by beam asymmetry without rotation and, afterwards, the deviations due to
beam rotation are calculated. For a certain large coverage, the deviations due to pure asymmetry and asymmetry
plus rotation appear to be very systematic (very similar in each simulation). Possible applications of the main
results of this paper to data analysis in large coverage experiments – as PLANCK – are outlined.
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1. Introduction

Many experiments are being designed for the obser-
vation of the Cosmic Microwave Background (CMB)
anisotropies. From the maps of a given experiment op-
erating with a non-circular (asymmetric) rotating beam,
a certain angular power spectrum (C` quantities) can be
extracted. Different rotations can lead to distinct C` coef-
ficients and, the question is: how different are these coeffi-
cients? In other words, how relevant is the effect of the ro-
tation strategy on the resulting angular power spectrum?

In a previous paper (Arnau & Sáez 2000), it was shown
that, in the absence of rotation and when the level of in-
strumental noise is low enough, the effect of a non-circular
beam can be subtracted – namely, the beam can be de-
convolved – using the Fourier transform. This subtraction
can be performed in such a way that the resulting spec-
trum, after deconvolution, is very similar to the true one.
That is possible if the number of pixels inside the beam,
Nin, is not too great. Indeed, Nin cannot be much greater
than 10; however, if the beam rotates, the deconvolution is
not possible. Nobody has described either the importance
of beam rotation or a method to eliminate its effects. The
main goal of this paper is the estimation of the effects
due to rotation. In Arnau & Sáez 2000 (and also in Sáez
et al. 1996; Sáez & Arnau 1997), a sort of modified angular

Send offprint requests to: D. Sáez, e-mail: diego.saez@uv.es

power spectrum was used. Here, we extract the standard
C` quantities from a certain number of squared patches
of the sky. Recently, Wu et al. (2001) have proposed a
method for data analysis in the case of asymmetric beams.
This method is based on an optimal circular beam associ-
ated to the asymmetric one. The effects of beam rotation
are not studied at all by these authors.

Although our methods apply to CMB anisotropy ex-
periments in general, we will pay particular attention to
PLANCK mission (scheduled by ESA for 2007). As it was
emphasized in Burigana et al. (1998), beam responses are
typically nonsymmetric for detectors de-centred from the
telescope focus. Taking into account that CMB anisotropy
experiments require observations at different frequen-
cies, various detectors are necessary, which must be dis-
tributed as close as possible from the focus; for instance,
in the PLANCK mission, around one hundred of detec-
tor (bolometers and radiometers) must be distributed in
the focal plane. If the focal plane rotates (rotation of
the telescope around the spin axis), the beams do. The
effect of this rotation deserves attention. Furthermore,
there are various identical detectors for each frequency,
which are located at different positions in the focal plane
and, consequently, the deformations of these beams would
be different (identical) if they are located at different
(the same) distances from the optical focus; nevertheless,
even for identical deformations, the orientations of the
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resulting asymmetric beams would be different. The mo-
tion of the line of sight through the sky also produces a
beam asymmetry. The effective beam diameter θFWHM ap-
pears to be enhanced in the direction of this motion (see
Hanany et al. 1998). This small effect is due to the beam
displacement during the measurement process. It is not
taken into account in this paper.

Beam rotation depends on the particular experiment
under consideration. Given a pixelisation, the beam cen-
tre points towards a given pixel a certain number of times,
Np, and, then, the temperature assigned to this pixel is an
average of the temperatures corresponding to each of the
Np measurements. The fact that measurements from var-
ious beam orientations are averaged could be important.

In the case of PLANCK mission, a rough estimate of
number Np is given in Sáez & Arnau (2000). Here, it is
worthwhile to improve a little on that estimate. The satel-
lite has been designed in such a way that: (i) it will cover
the full sky in seven months, with a coverage which can be
considered as uniform in most part of the sky, (ii) its line of
sight will move around a big circle on the sky completing
a turn each minute and, (iii) it will move around the same
circle for two hours (120 turns). On account of these facts,
if the pixel size is ∆ and the angle subtended by the motion
of the line of sight between two successive measurements
is ∆α = ζθFWHM , where θFWHM is the beam diameter,
then, the average number of measurements per pixel (in
a seven months observing period) is Np = 42∆2/ζθFWHM ,
where all the angles are given in arc-minutes (see Sáez &
Arnau 2000, for comparison) and, furthermore, the aver-
age number of measurements per pixel performed while
the line of sight turns 120 times around a given circle is
Npc = 120∆/ζθFWHM. From these formulae, it follows that
the average number of circles passing by a pixel – during
seven months – is Nc = Np/Npc ' ∆/3, this result is
consistent with the fact that, for a given observational
strategy, the number Nc is expected to be dependent only
on the pixelisation. Of course, it is independent on beam
asymmetry. The number of measurements corresponding
to different orientations could be important for the effect
we are looking for, which is produced by the rotation of
asymmetric beams. The larger the pixel size, the better
the situation (the greater Nc).

Since the detectors are rigidly attached to the focal
plane, any beam has almost the same orientation each
time it crosses a given pixel during its motion (120 turns)
along a given circle; however, this orientation changes from
circle to circle. From the above comments and estimates, it
follows that the average number of measurements per pixel
corresponding to different beam orientations is Nc. If the
full sky is covered two times and, the second coverage is
not identical to the first one, this average number would
be 2∆/3. For 5′ < ∆ < 10′, this number ranges from
3.3 to 6.6. Nevertheless, there are various detectors in the
focal plane for each frequency and, by assuming that all
the beams have the same shape but different orientations,
the above Nc number can be multiplied by the number of
beams.

2. Beam

Our asymmetric beam is assumed to be of the form:

W (θ, φ) = WNe

[
− (θ−θ′)2

2σ2
θ

− (φ−φ′)2

2σ2
φ

]
(1)

as in Burigana et al. (1998). It is hereafter called an ellip-
tical beam. Estimations of the effects due to asymmetry
require the definition of an associated circularly symmet-
ric beam for comparisons. Here the associated beam is de-
fined as follows: given a circle of radius R = (θ2 + φ2)1/2,
the weight W (R) corresponding to the circular beam is
the average value of the weights W (θ, φ) assigned by the
elliptical beam to the points of the circle; namely,

W (R) = 〈W (θ, φ)〉C . (2)

There are arguments suggesting that the circular beam
given by Eq. (2) is very appropriate. Let us discuss this
point in some detail. Suppose an uniform temperature
field T (θ, φ) = constant. Place the centre of the ellipti-
cal beam at point P with arbitrary orientation and, then,
consider various circles centred at P with radius Ri. The
averages inside each of these circles performed with the
asymmetrical beam and with the associated circular one
are identical (except for errors produced by discretisation
in Eqs. (1) and (2)). These averages coincide whatever
the radius Ri and the orientation of the asymmetric beam
may be. With any other circular beam, there would be de-
viations between the measurements of both beams, which
would depend on the spatial scale (on Ri), that feature
does not seem to be appropriate because scale dependent
differences would appear as an artifact. It could be argued
that we are considering a very special uniform field which
is very different from the true CMB maps; nevertheless,
in spite of the fact that the cosmological signal has fluc-
tuations at different scales, this signal is expected to be
an homogeneous and isotropic statistical field and, con-
sequently, the above associated beams seem to be appro-
priate in order to avoid artifacts after measurements and
averages; namely, from a statistical point of view. The
differences between the angular power spectra after av-
eraging with the two associated beams are not artifacts
due to a bad association, but small differences produced
by other numerical or physical reasons. For example, as a
result of pixelisation (a type of discretisation) beams (1)
and (2) deviate. It is worthwhile to notice that the associ-
ated circular beam can be easily obtained – using Eq. (2) –
whatever the asymmetric beam may be and, also, that this
association does not depend on the features of the maps to
be smoothed by the beam (which are not known a priori).
In the case of the beam defined by Eq. (1), the associated
circular beam appears to have the following form:

W (R) =
2WN

π
e−R

2σ−2
φ
/2

∫ π/2

0

e[R2(σ−2
θ
−σ−2

φ
) sin2 ξ]/2dξ, (3)

which is used below in numerical estimates.
The total signal – measured in a certain frequency –

also involves components which are not statistically homo-
geneous and isotropic; for instance, dust and synchrotron
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radiations from our galaxy; nevertheless, we cannot use
two different circular associated beams, but only one, and
the fact that we are particularly interested in the CMB
signal strongly suggests the use of beam (2).

3. Map making algorithm and power spectrum
estimator

We are concerned with a ΛCDM model, which is a stan-
dard inflationary (flat) one with cold dark matter, having
Ωb = 0.05, Ωd = 0.25, ΩΛ = 0.7, and h = 0.65, where
quantities Ωb, Ωd and ΩΛ stand for the density parameters
corresponding to baryons, dark matter, and vacuum en-
ergy densities, respectively, and quantity h is the reduced
Hubble constant. In this model, the CMB temperature
is a Gaussian homogeneous and isotropic statistical two
dimensional field. In such a case, a certain method pro-
posed by Bond & Efstathiou (1987) can be used to make
the 18◦ × 18◦ maps used in this paper. This method is
based on the following formula:

δT

T
=

N∑
s1,s2=−N

D(`1, `2)e−i(θ`1+φ`2), (4)

where `1 = 2πs1/Λ, `2 = 2πs2/Λ, and Λ stands for the
angular size of the square to be mapped. This equation
defines a Fourier transform from the position space (θ, φ)
to the momentum space (`1, `2). The Gaussian quantities
D(`1, `2) have zero mean, and their variance is propor-
tional to C`, where ` = (`21 + `22)1/2. Since δT/T is real,
the relation D(−`1,−`2) = D∗(`1, `2) must be satisfied.
From given C` coefficients, the above D(`1, `2) quantities
can be easily calculated and, then, according to Eq. (4), a
Fourier transform leads to the map. Sáez et al. (1996) used
this map making algorithm to get very good simulations
of 20◦ × 20◦ squared regions.

In the case of small squared maps, the above map mak-
ing method suggests a power spectrum estimator. Given
one of these maps δT/T (θ, φ), an inverse Fourier trans-
form leads to quantities D(`1, `2) and, then, the aver-
age 〈|D(`1, `2)|2〉 can be calculated on the circumference
`2 = `21 + `22. Some interpolations are necessary to get the
D(`1, `2) values at the points located on the circumfer-
ence. The resulting average is proportional to C`, where `
is the radius of the circumference.

Another map making algorithm and a different power
spectrum estimator have been also used for comparisons.
A few comments about these methods, which play an aux-
iliary role in this paper, are worthwhile.

The effect of partial coverage – without considering
pixelisation – was studied by Scott et al. (1994). In an ex-
periment covering a fraction, fsky, of the sky, these authors
showed that the sample variance is just the cosmic one en-
hanced by the factor f−1

sky. The meaning of the cosmic vari-
ance was discussed in detail by L. Nox (1995). From these
papers it follows that, in an experiment with partial cov-
erage, the deviations of the estimated angular power spec-
trum Cest

` with respect to the averageC` = 〈Cest
` 〉 obey the

relation 〈(Cest
` −C`)(Cest

`′ −C`′)〉 = [2/(2`+ 1)fsky]C2
` δ``′

and, consequently, the relative errors of the resulting C`
quantities are:

∆C`
C`

=
[

2
(2`+ 1)fsky

]1/2

· (5)

Fig. 1. Dotted line shows the angular power spectrum Cest
` ,

which involves high frequency oscillations (sample variance),
whereas solid line approaches the true spectrum C` = 〈Cest

` 〉.

In Fig. 1, two angular power spectra are displayed. One
of them (dotted line) has been directly calculated us-
ing the HEALPIX (Hierarchical Equal Area isoLatitude
Pizelisation) package. First, a full sky simulation has been
made using the code SYNFAST with the following inputs:
(1) the C` coefficients of the ΛCDM model under consid-
eration, and (2) a pixel size ∆ = 3.435 (Nside = 1024)
and, then, the resulting map has been analyzed using
the code ANAFAST, which gives the angular power spec-
trum. We have excluded an equatorial band in the analy-
sis and, consequently, the resulting spectrum corresponds
to two polar regions covering a part of the sky with
fsky ' 0.39. Since ANAFAST gives the quantities Cest

`

defined above, the dotted line shows high frequency os-
cillations (sample variance). We can now use some ap-
propriate numerical method to estimate the quantities
C` = 〈Cest

` 〉. A simple method suffices for us, we have
taken 〈Cest

` 〉 = 1
21

∑`+10
i=`−10C

est
i . The resulting smooth

spectrum is that of the solid line. The high frequency os-
cillations due to partial coverage have been partially sub-
tracted from the spectrum displayed in the dotted line;
thus, the solid line shows a spectrum which only involves
a residual part of the effect due to partial coverage. This
residual effect should be also proportional to f−1

sky.
The power spectrum estimator based on the Fourier

transform directly approaches quantities C` = 〈Cest
` 〉;

namely, the spectrum given by this estimator does not
involve high frequency oscillations, but only a residual



J. V. Arnau et al.: Non-circular rotating beams and CMB experiments 1141

effect of partial coverage proportional to f−1
sky (see below).

This spectrum is comparable to that of the solid line of
Fig. 1. Hereafter, only this type of spectra are considered
and, consequently, we are concerned with the Residual
Effect of Partial Coverage (REPC). Using these spectra,
results obtained from squared patches can be compared
with results corresponding to the HEALPIX package.

4. Results

We first consider simulated maps containing only the
CMB signal. The CMB angular power spectrum is used to
built up 18◦×18◦ maps which have either 256 or 128 nodes
per edge. For 256 (128) nodes, the pixel size is ∆ = 4.7′

(∆ = 9.4′) and, in the PLANCK case, the average num-
ber of measurements per pixel corresponding to distinct
orientations of a given beam is Nc = 3.13 (Nc = 6.26).
Hereafter, the elliptical beam is – implicitly – assumed to
be an asymmetric one of the form (1) with σθ = 6′ and
σφ = 10′, excepting a few cases where other beams are ex-
plicitly defined. Moreover, any set of n 18◦×18◦ simulated
maps is called a n-simulation.

4.1. Pixelisation and partial coverage

First of all, the superposition of the REPC and the pix-
elisation effect is estimated in the absence of any beam.
The REPC depends on the coverage and the pixelisation
effect depends on the pixel size ∆. Pixelisation is a math-
ematical discretisation and, consequently, any discretised
mathematical formula used in our numerical procedures
may induce an effect, which could appear as a deviation
of the resulting angular power spectrum with respect to
the true one. Discretised mathematical formulae can be
involved in the method to extract the spectrum from the
maps and even in the simulation procedure. That makes
no possible the definition of a pixelisation effect depend-
ing only on the pixelisation itself; in each case (signal plus
mathematical methods of simulation and analysis), the ef-
fect of discretisation (pixelisation) must be estimated. We
do that below (for squared patches) and the resulting ef-
fect appears to be very systematic, namely, it appears to
be almost the same in any simulation. The same occurs
when the HEALPIX package is used. Of course, the spec-
tra obtained from our simulations include both the REPC
and the pixelisation effect. In Fig. 2, all the spectra are
obtained from fifty 18◦×18◦ maps (50-simulation) having
256 nodes per edge, namely from a partial sky coverage
with fsky ' 0.39 and ∆ = 4.7′. The effect of pixelisa-
tion becomes dramatic for ` > π/∆, where ∆ is the pixel
size and, consequently, the spectra are only showed for
` < `max = π/∆ = 2550. Each spectrum is displayed in
two panels (left and right) to make visible some details.
In the top panel of Fig. 2, the solid line corresponds to
the spectra obtained from a 50-simulation, the dotted line
shows the true C` coefficients used in the simulations and,
finally, the dashed and dotted-dashed lines correspond to
C`−∆C` and C`+∆C`, where ∆C` is given by Eq. (5). The

effect produced by pixelisation is expected to be dominant
for large `-values and this effect appears always mixed
with the REPC. For ` > 1600 (see top right panel), the
solid line is well outside the region limited by C` − ∆C`
and C` + ∆C`, which suggests that the effect due to pix-
elisation is clearly dominant. For 1600 > ` > 100, there
is a mixing of the two effects under consideration (which
are disentangled below). Finally, the largest values of the
REPC should be found for 100 < ` < 300 (see top and
middle left panels).

In the middle panel of Fig. 2, the dotted line shows the
true C` coefficients, whereas each of the other two lines
corresponds to the spectrum obtained from a different 50-
simulation (these two spectra are denoted C1

` and C2
` in

this Section). It is noticeable that the deviations of these
two lines with respect to the dotted line (true spectrum)
are very similar. This fact indicates that – for our signal
and numerical procedures –, the addition of the REPC
and the pixelisation effect has a dominant systematic part.
The average deviations are the quantities D` = C`−(C1

` +
C2
` )/2, and the quantities C̃` = C1

` −D` (hereafter named
the corrected spectrum) are given in the bottom panels of
Fig. 2 (solid line), where we can verify that quantities C̃`
are very similar to the true C` coefficients (dotted line)
all along the interval (100, lmax). The dashed and doted-
dashed lines of this panel have the same meaning that
those of the top panel.

In order to give quantitative estimates, some relative
deviations ∆C`/C` are calculated for appropriate pairs of
spectra. These deviations are presented in Fig. 3. The top
panel of this figure shows the deviations of the spectra C1

`

and C2
` of Fig. 2 with respect to the true C` coefficients.

In both cases, quantities ∆C`/C` are similar, which sug-
gests a systematic effect (deviation with respect to the
true spectrum). Furthermore, the maxima and minima of
∆C`/C` seems to be associate to the minima and maxima
in `(` + 1)C`, respectively. Finally, the bottom panel of
Fig. 3 shows the relative deviations between C̃` and C`,
which are hereafter called residual deviations. The largest
residual deviations are now of a few percent for any `, and
the peaks of this curve do not correspond to maxima and
minima in the angular power spectrum. The systematic
deviations have been ruled out, and the residual deviations
depend on the pair of simulations under consideration.

In order to separate the pixelisation effect and the
REPC, the above study has been repeated in two cases:
(i) the previous pixelisation is maintained, whereas a 500-
simulation is used; hence, the new coverage is ten times
larger than the previous one. For the sake of briefness,
no figures are presented. We only describe our main con-
clusions: (1) The systematic deviations has kept almost
unaltered and, (2) after subtracting these deviations, the
residual ones range in the interval (−0.07, 0.07); namely,
they are a factor 10−1/2 smaller than those of the bot-
tom panel of Fig. 3. These facts suggest that the system-
atic effect is due to pixelisation, not to partial coverage,
whereas after subtraction, the resulting effect is due to
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Fig. 2. Left (right) top panel shows four spectra for ` < 1000 (` > 1000): dotted lines display the theoretical spectrum used to
simulate 18◦ × 18◦ maps with 256 nodes per edge and no beam. Solid line is the spectrum obtained from 50 simulated maps
(50-simulation). Dashed (dotted-dashed) lines corresponds to C` − ∆C` (C` + ∆C`), where ∆C` is given by Eq. (5). Middle
panels show three spectra: dotted line is the theoretical spectrum and solid and dashed lines are the spectra obtained from two
independent 50-simulations. In bottom panels, dotted, dashed and dotted-dashed lines show the same spectra as in top panel,
but solid line is the spectrum obtained from simulations after subtracting (see text) the systematic effect due to pixelisation.
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Fig. 3. Solid and dashed lines of the top panel give the relative
deviations between the theoretical spectrum and those corre-
sponding to the solid and dashed lines of the middle panels of
Fig. 2. Bottom panel gives the residual deviations defined in
the text.

partial coverage (it is the REPC proportional to f−1/2
sky ).

In the case (ii) a 50-simulation is used (the initial cover-
age), and a new pixelisation with 128 nodes per edge is
assumed. In such a case, the spectrum can be only ob-
tained for ` < `max = π/∆ = 1275 and, for these ` values
we observe that: (a) a systematic effect appears again,
(b) the maxima and minima of ∆C`/C` are again associ-
ated to the minima and maxima in `(`+1)C`, respectively,
and (c) after subtraction of the systematic deviations, the
residual deviations are very similar to those of the bottom
panel of Fig. 3, as it should occur if such deviations are
due to the unaltered partial coverage.

From the above considerations it follows that – after es-
timating and eliminating systematic effects due to pixeli-
sation – the spectrum extracted from fifty 18◦×18◦ maps
is very accurate for 100 < ` < `max.

The above study about the REPC and the pixeli-
sation effect has been repeated using the HEALPIX

Fig. 4. Top panel is the same as the middle panels of Fig. 2, and
middle (bottom) panel is the same as the top (bottom) panel
of Fig. 3. All the simulations are performed using HEALPIX
with ∆ = 3.435.

package (see Sect. 3). Two polar regions have been con-
sidered in each simulation (fsky ' 0.39). The pixel size is
∆ ' 3.435; hence, we work with the same total sky cover-
age as in the case of squared patches, but with a different
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∆ value compatible with HEALPIX. Results from two in-
dependent simulations are presented in Fig. 4. In the top
panel, the solid and dashed lines show the spectra obtained
from these two simulations. These lines are almost indis-
tinguishable and, consequently, they deviate almost the
same with respect to the dotted line (true spectrum). The
relative deviations (residual deviations) defined above are
given in the middle (bottom) panel. Residual deviations
are similar to those obtained using patches, which is not
surprising because the same sky coverage (fsky ' 0.39)
has been assumed in both cases. Using simulations with
20 polar regions (sky coverage enhanced by a factor ten),
we have verified that the residual deviations reduce by a
factor ∼101/2. We have also used two polar regions with
(fsky ' 0.39) and a greater pixel size ∆ = 6.87 to get
comparable residual deviations. In short, using HEALPIX
and polar regions (where the pixel shapes are more irregu-
lar), the same qualitative results as in the case of squared
patches have been obtained: (1) the pixelisation effect ap-
pears to be very systematic, (2) the residual deviations
correspond to the REPC and, (3) the pixelisation effect
and the REPC (residual deviations) can be easily disen-
tangled. In next sections, only methods based on squared
patches are used.

4.2. Asymmetric non-rotating beam

The effect due to beam asymmetry is first estimated in
the absence of rotation. Maps are smoothed with both
the elliptical beam (which is oriented in the same way
everywhere) and its circular associated one (see Sect. 2).
These beams lead to different averages at each node and,
consequently, they produce different alterations of the
true angular power spectrum. Results are presented in
Fig. 5, whose top (middle) panel corresponds to maps
with 256 (128) nodes per edge. In these panels, the spec-
tra are only shown in the ` interval where the differences
among them are more relevant: ` > 1000 (` > 360) for
256 nodes (128 nodes). The solid line gives the spectrum
after smoothing with the spherical associated beam (which
is denoted C` in this section). The dotted and dashed
lines give the spectra obtained from two independent 50-
simulations after smoothing with the nonrotating asym-
metric beam (these spectra are denoted C1

` and C2
` along

this section). These two lines are very similar and, con-
sequently, they deviate almost the same with respect to
the solid line. This means that the effect due to asymme-
try (without rotation) is a very systematic one. The rel-
ative deviations between C` and C1

` and between C` and
C2
` measure the effect of beam asymmetry without rota-

tion. These deviations are displayed in the bottom panel
of Fig. 5, where curves I and II (III and IV) correspond to
the C1

` and C2
` spectra displayed in the top (middle) panel.

For the 256× 256 pixelisation (top panel), the deviations
are smaller than ∼8% all along the interval (100, `max),
whereas for the 128×128 pixelisation (middle panel), these
deviations are greater than ∼8% for ` > 700, reaching

Fig. 5. Top (middle) panel shows three spectra obtained from
50-simulations with 256 × 256 (128 × 128) nodes per edge. In
both panels, solid line is the spectrum obtained from a 50-
simulation after smoothing with the circular associated beam
and the other lines correspond to the same and to another in-
dependent 50-simulation after smoothing with the asymmetric
non-rotating beam. Lines I and II (III and IV) of the bottom
panel give the relative deviations between the solid line and
each of the other two lines in the top (middle) panel.
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values close to ∼20% near ` = `max. There is a dependence
on the pixelisation in the sense that, the smaller the pixel
size the smaller the relative deviations (in the part of the
spectrum common to both pixelisations). Curves I and II
are very similar, and the same occurs with curves III and
IV, which means that the effect under consideration is ac-
tually systematic. If the systematic effect is subtracted as
in Sect. 4.1; namely, if the quantities D`, the corrected
spectrum C̃`, and the residual deviations are calculated,
these last deviations are very similar to those showed in
the bottom panel of Fig. 3, (associated to the REPC in
Sect. 4.1); they are oscillations having amplitudes of a few
per cent. Indeed, when 500-simulations are considered, the
amplitude of the residual deviations appear divided by
101/2 as it is expected in the case of any deviation due
to partial coverage (see Eq. (5)). Finally, the deviations
between C` and C1

` (or C2
` ) decrease as the assumed level

of beam asymmetry does.

Fig. 6. Relative deviations between the spectrum obtained
from a 50-simulation – with 256 × 256 nodes per edge – af-
ter smoothing with the circular associated beam, and that ob-
tained from the same 50-simulation after smoothing with the
asymmetric non-rotating beam. From top to bottom, curves
correspond to different elliptical beams, in which the ratio
σφ:σθ is 10:6, 10:7, 10:8, and 10:9.

In Fig. 6, these deviations are shown for the 256× 256
pixelisation and different elliptical beams. All these beams
have σφ = 10′, whereas σθ takes on the values 6′, 7′, 8′,
and 9′. The decreasing has been also tested for the 128×
128 pixelisation but no figure is presented by the sake of
briefness.

4.3. Asymmetric rotating beam

Various types of rotation strategies – of the asymmetric
beam – are now introduced with the essential aim of esti-
mating the rotation effects on the resulting angular power
spectra. Of course, these effects are deviations with re-
spect to the spectrum obtained – for the same asymmetric

beam – in the absence of rotation (C` quantities in this
section). Two kinds of rotation strategies are considered:
in the first one, the beam orientation in each pixel is that
corresponding to a beam that does not rotate around its
centre, but it describes a big circle on the sky with and
aperture angle of 85◦. This first case mimics PLANCK ob-
servational strategy and it is hereafter named Systematic
Rotation (SR); in the second strategy, the angle defin-
ing the beam orientation in each pixel is assumed to be a
random uniformly distributed variable; hereafter, Random
Rotation (RR). In each case, the rotating beam smoothes
fifty 18◦ × 18◦ regions of the sky which are distributed
without overlapping and with random orientations. In this
section, C1

` and C2
` stand for two spectra obtained from in-

dependent 50-simulations after a smoothing based on one
of the above rotation strategies (in each case, this strat-
egy must be explicitly chosen). Each of the fifty 18◦× 18◦

regions is smoothed only one time with the asymmetric
rotating beam. That is a good procedure for experiments
where the beam orientation varies from pixel to pixel (ac-
cording to SR and RR strategies), but measurements are
always performed with the same orientation in each pixel.
Results are displayed in Fig. 7, where left (right) panel cor-
responds to SR (RR) strategy. Left and right panels have
the same structure, which is identical to that of Fig. 5;
hence, on account of the definitions of C`, C1

` and C2
`

given in this section, the meaning of each line (and mark
type) is known and we can begin with the necessary discus-
sion. Top panels (∆ = 4.7′) show very different behaviours
for ` > 1600; while the RR produces an important devi-
ation of the dotted and dashed lines (two independent
simulations) with respect to the solid one (no rotation)
for ` > 1600, the SR does not produces such a devia-
tion. The deviations are described by quantities ∆C`/C`,
which are displayed in curves I and II (bottom panel).
Although these curves correspond to two independent 50-
simulations, they are very similar, which means that the
effect under consideration is very systematic; in fact, the
residual deviations (after subtraction of the systematic ef-
fect) are of a few percent as in Sect. 4.1 (see the bottom
panel of Fig. 3).

Middle panels show that, for ∆ = 9.4′, SR and RR
produce similar effects in all the interval (100, `max), where
`max = 1275. For these ` values, top panels also show
similar effects for SR and RR. Relative errors are given
in curves III and IV of the bottom panels. The effect is
again a systematic one and the residual deviations has the
same characteristics as in the case ∆ = 4.7′ (top panels),
which is easily understood taken into account that top and
middle panels correspond to the same partial coverage.

Finally, a pair of numerical experiments whose results
are not displayed in figures: (i) we have increased the cov-
erage using 500-simulations and the main effect is that
the new spectra are very similar to those of Fig. 7, but
they have much smaller high frequency oscillations (all the
curves are much more smooth), which is associated to the
decreasing of the residual deviations (the same behaviour
have been already found in Sects. 4.1 and 4.2), and (ii)
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Fig. 7. Top left panel shows three spectra for ` > 1000: solid line is the spectrum obtained from a 50-simulation with
256 × 256 nodes per edge after smoothing with the asymmetric non-rotating beam. Dashed and dotted lines are the spec-
tra obtained from the same simulation and another independent one, after smoothing with the same asymmetric beam following
the SR strategy defined in text. Top right panel is the same as the top left one for the RR strategy. Middle panels are as the top
ones but simulations have 128×128 nodes per edge. Lines I and II (III and IV) of the bottom panel gives the relative deviations
between the solid line and each of the other two lines in the top (middle) panel.
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in the second experiment, each of the fifty 18◦ × 18◦ re-
gions have been smoothed Nc times. Now, the orientation
varies from pixel to pixel in each smoothing (according to
SR and RR strategies) and, furthermore, the orientation
changes inside a given pixel from smoothing to smoothing.
Thus, we account for the fact that, in the framework of
some experiments (PLANCK mission), each pixel is ob-
served Nc times with different orientations. For the SR
strategy (which is similar to that of PLANCK), the mini-
mum Nc value is taken to be equal to the entire part of the
number Nc estimated in Sect. 1; hence, we take Nc = 3
for ∆ = 4.7′ and Nc = 6 for ∆ = 9.4′; we also take the
values Nc = 30 (for ∆ = 4.7′) and Nc = 60 (for ∆ = 9.4′)
in order to consider the existence of multiple detectors
in current or future experiments. In the case of the RR
strategy, we take the same Nc-values. Even for the great-
est Nc values, no appreciable differences are observed with
respect to the case Nc = 1. The same residual deviations
and high frequency oscillations appear in all the cases; this
result is not surprising taking into account that: (1) the
partial coverage is that of a 50-simulation whatever the Nc

value may be and, consequently, the residual deviations do
not decrease as we smooth the same 50-simulation various
times and, (2) the effect produced by beam rotation is
a systematic one which is obtained very accurately from
the first smoothing of the 50-simulation. This means that,
if a second smoothing is performed, the resulting spec-
trum must be very similar to the first one, and the average
spectrum should be also almost identical to that of each
smoothing (with no cancellation of the contribution due
to the REPC); this means that, if the coverage is large
(very systematic deviations), the Nc value is irrelevant.

4.4. Including galactic foregrounds

In previous sections, the effects produced by beam asym-
metry and rotation have been described in detail for 50-
simulations of the CMB signal. These effects appear to be
rather small and very systematic. Is that due to the ho-
mogeneous and isotropic statistical character of the CMB
temperature distribution?

What happens with other types of distributions? The
CMB is contaminated by galactic and extragalactic fore-
grounds which are not homogeneous and isotropic statisti-
cal fields and, consequently, the following question arises:
what can we say about asymmetry and rotation effects in
the presence of the most important galactic foregrounds?
Are these effects very different from those estimated in
previous sections?

The galaxy produces an unique temperature distribu-
tion on the sky at a given frequency, which must be known
(from observations) before possible subtraction. We are
interested in a frequency channel involving small galactic
contamination. The chosen frequency is 100 GHz. We have
used synchrotron and dust maps of the full sky, which were
taken from ESA (the maps and their technical description
are freely available at astro.estec.esa.nl). These maps

Fig. 8. In all panels, solid line shows the spectrum of the CMB
plus synchrotron and dust radiation from a part of the Milky
Way, and dotted and dashed lines are the spectra extracted
from two independent 50-realizations of pure CMB. No beam
has been used at all. All the spectra have been found from fifty
18◦×18◦ regions of the sky with 256×256 nodes per edge. Top,
middle and bottom panels corresponds to the regions of the
sky G4–G5, G1–G2, and G3–G4, respectively. These regions
are defined in the text.
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Fig. 9. Left (right) panels correspond to 50f-simulations – see text – containing synchrotron and dust radiations from regions G1
and G2 (G3 and G4) defined in the text. Top panels show deviations between the spectra extracted from a 50f-simulation in two
cases: after smoothing with the circular associated beam, and after using the non-rotating asymmetric beam. Middle (bottom)
panels also show deviations, but the compared spectra are obtained after smoothing with the non-rotating asymmetric beam
and with the rotating one in the case of SR (RR). Solid (dotted) lines correspond to 256 × 256 (128× 128) nodes per edge.
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were designed by G. Giardino and P. Fosalba and they
have HEALPIX structure and a pixel size ∆ = 1.7′. Using
these maps and an appropriate smoothing, we have built
up one hundred and fifty 18◦ × 18◦ maps with ∆ = 4.7′

and the same number of maps with ∆ = 9.4′.
50-Simulations of the CMB signal are obtained as in

previous Sections, and groups of fifty 18◦×18◦ maps with
the galactic foregrounds are appropriately selected (see
below); then, each of the 18◦ × 18◦ CMB maps is su-
perimposed to one of the 18◦ × 18◦ foreground maps to
get a 50f-simulation (which includes the CMB signal plus
synchrotron and dust from the Milky Way). Then, the
study of previous sections is performed on the resulting
50f-simulation.

In order to get 18◦ × 18◦ maps with the foregrounds,
a cube is inscribed in the celestial sphere in such a way
that the centres of the faces are distributed as follows:
(i) centres 1 and 2 point towards the centre of the Milky
Way and its opposite direction, centres 3 and 4 point to-
ward two opposite directions which are contained in the
galactic plane and are orthogonal to the direction joining
centres 1 and 2 and, (iii) centres 5 and 6 point towards
the two galactic poles. Each of the six faces is divided
in 25 regions, in such a way that after projection on the
sphere, our 150 maps are almost squared and have similar
areas and a small overlapping. The 25 maps correspond-
ing to the face with centre at i are hereafter named the
25-group Gi.

The first 50f-simulation is built up using the 25-groups
G5 and G6 localized around the galactic poles. The solid
line in the top panel of Fig. 8 gives the spectrum corre-
sponding to this 50f-simulation, which can be compared
with the two spectra showed in the pointed and dashed
lines, which correspond to two independent 50-simulations
without galactic foregrounds. No beam has been consid-
ered at all. The small differences among these curves ap-
pear as a result of the REPC, and the galactic contribution
contained in the continuous line is hidden by this domi-
nant effect.

The second (third) 50f-simulation includes the 25-
groups G1 and G2 (G3 and G4); hence, the second (third)
50f-simulation includes the Milky Way centre (a part of
the galactic disk). The effect of the galactic foregrounds
is not negligible. That can be seen in the middle (second
50f-simulation) and bottom (third 50f-simulation) panels
of Fig. 8, where the spectra containing the galactic fore-
grounds (solid line) are very different from the spectra
corresponding to 50-simulations of pure CMB (dotted and
dashed lines). No beam has been used.

The same asymmetric beam and rotational strategies
as in previous sections have been used to smooth each
50f-simulation. Results are presented in Fig. 9. Left (right)
panels corresponds to the second (third) 50f-simulation. In
all the panels, the solid (dotted) line shows results from
256× 256 (128× 128) simulations. All the panels give rel-
ative deviations between two spectra, which are obtained
after smoothing with: (i) the non rotating beam and the
circular associated one in the top panels, (ii) the non

rotating beam and the rotating one with SR strategy in
the middle panel and, (iii) the non rotating beam and the
rotating one with RR strategy in the bottom panels. The
top panel measures the effect of beam asymmetry without
rotation, this panel should be compared with the bottom
panel of Fig. 5, which shows the same effect in the ab-
sence of galactic foregrounds. The middle (bottom) panel
gives the effect due to SR (RR) strategy and, consequently,
this panel must be compared with the left (right) bottom
panel of Fig. 7. The comparisons show some appreciable
differences produced by the presence of significant galac-
tic foregrounds (see Fig. 8). In Fig. 9, the high frequency
oscillations are most important that in the figures used for
comparison; particularly, for large ` values. That could be
due to the presence of oscillations in the angular power
spectrum of the galactic foregrounds (see Fig. 8 for the
same ` values). For small and intermediate ` values, the
foreground contributions to the angular power spectrum
are significant (see Fig. 8) and, consequently, there are
also appreciable differences between the ∆C`/C` devia-
tions displayed in Fig. 9 and those of the figures used
for comparison (without foregrounds). In spite of the fact
that the assumed foregrounds are not homogeneous and
isotropic statistical fields, the mentioned differences are
not very large. They are more important in the case of
the left panels, in which, directions pointing close to the
Milky Way centre have been considered. For the first 50f-
simulation (galactic poles) the ∆C`/C` deviations are not
presented in figures because no appreciable differences ap-
pear in this case with respect to 50-simulations without
foregrounds.

5. Discussion

In the absence of beam, the pixelisation effect and the
REPC have been disentangled to conclude that pixeli-
sation produces very systematic deviations with respect
to the true angular power spectrum. This conclusion has
been obtained using two very different methods for simu-
lations and data analysis (see Sect. 3)

We have studied the deviations in the angular power
spectrum produced by the rotation of an asymmetric
beam. Two rotation strategies have been considered. One
of them (SR) is similar to that of future experiments
as PLANCK. The second strategy (RR) is very differ-
ent from SR, and it has been introduced for comparisons.
Maps with and without the dust and synchrotron radia-
tions from the Milky Way (at 100 GHz) have been con-
sidered. In Sect. 4, the rotation effects corresponding to
different cases have been described and compared, now let
us present some general comments.

If radiation from the galaxy is not considered, the most
important conclusion is that rotation effects are very sys-
tematic for any rotation strategy and fsky = 0.39. They
are so systematic that we can subtract the deviations ap-
peared in a 50-simulation, from the spectrum of another
one, to recover very well the spectrum corresponding to
the nonrotating beam (except for small deviations which
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seem to be essentially due to the REPC). Furthermore,
the resulting effects depend on the rotation strategy, in
particular, for large ` values and, consequently, they must
be estimated – using simulations – in each particular case.

Radiation from the galaxy – which can be seen as a
non homogeneous an non isotropic statistical field – con-
tributes significantly to the observable signal, except in the
case of the polar galactic regions (G5–G6). In the G1–G2
and G3–G4 cases, the effect of beam rotation is signifi-
cantly, but not dramatically, different from that obtained
in the absence of foregrounds.

After the deviations in the angular power spectrum
due to beam asymmetry and rotation have been estimated
and characterized (the main goal of this paper) and, af-
ter proving that beam effects are very systematic, some
practical applications can be easily outlined.

Take the CMB power spectrum corresponding to a cer-
tain theoretical model of structure formation in a given
universe, take also a model for the foregrounds, a pixelisa-
tion, the asymmetric beam for a given frequency, and the
rotation strategy of an experiment with a large enough
coverage (i.e. PLANCK), and then, use a simulation –as
the 50-simulations of this paper or similar – to find the
spectrum C

CMB

` after smoothing with the asymmetric
rotating beam. Repeat the simulation a large enough
number of times and verify that the resulting C

CMB

` spec-
tra are similar in all cases (systematic character). Finally,
use the deviations among the resulting spectra to assign
an error bar to 〈CCMB

` 〉. Use these data – obtained from
simulations – to answer the following question: is the the-
oretical model under consideration compatible with the
observational data from the experiment? In order to find
the answer, the observational data could be analyzed as
follows: (i) Eliminate a part of the instrumental noise us-
ing an appropriate method (wavelets, Fourier transform,
and so on), (ii) Separate components (CMB, synchrotron

from our galaxy, and so on) taking into account the
frequency dependences, but keeping beam smoothings
unaltered (usually, the beams are eliminated at this stage
under simplifying assumptions and without considering
rotation), (iii) use the map of the CMB component –
which has already been separated from foregrounds – to
extract the experimental spectra, C

CMB

` (exp), and finally
(iv) compare C

CMB

` with C
CMB

` (exp) and study if these
spectra can be identified taking into account the error
bars. If they can, the theoretical model is compatible with
observations. Note that – at the last step of the process –
we compare a simulated spectrum with an observational
one, and note also that both spectra are obtained from
maps which have been smoothed with the same rotating
asymmetric beam; hence, the proposed method for data
analysis includes beam rotation, treating it (after verifica-
tion) as the source of a very systematic effect. Of course,
this method has been only outlined, and much more work
would be necessary before implementation.
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