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We report here a general solution of the double-exchange problem in the high-nuclearity mixed
valence systems containing arbitrary numBeof the electrons delocalized over the network\bf
(P<N) localized spins. The developed approach is based on the succdssiamlike
spin-coupling scheme and takes full advantage from the quantum angular momentum theory. In the
framework of this approach the closed-form analytical expressions are deduced for the matrix
elements of the double exchange interaction, two-electron transfer, and three-center interaction that
can be referred to as the potential exchange transfer. For the arbitrary nuclearity mixed-valence
systems the matrix elements of all named interactions are expressed in terms of all relevant spin
quantum numbers andjGsymbols and do not contain higher order recoupling coefficients. We
describe also the combined approach taking into account both angular momentum consideration and
advantages of point symmetry adapted basis set.1986 American Institute of Physics.
[S0021-960606)00637-X]

I. INTRODUCTION coupled metal sites(dimers®111°-22 trimers*-3%0 and
The interplay between electron delocalization and mag:[etramerg;%l‘%basically. However, even for these simple
netic interactions play a crucial role in the properties Ofcgses th? role of the glectron delocallzatlor) h"_"S provgd to be
many mixed-valencéVlV) compounds of current interest in different in each particular case. Thus, while in MV dimers
areas as diverse as solid state physibslk magnets, the electron transfer process results always in a strong stabi-
superconductoty, inorganic chemistrymixed-valence clus- lization of the higher spir(ferromagnetig states, in higher
ters, heteropolyblués®, and biology (iron—sulfur  nuclearity systems this process can also favor the stabiliza-
protein§~19. These kinds of systems are formally formed by tion of other spin states different from the ferromagnetic one,
localized magnetic moments and itinerant “extra” electronsdepending on the sign of the electron transfer integral and on
that can undergo a rapid hopping over the magnetic siteshe topology of the MV cluster. That is why the conclusions
The main effect of this electron transfer is to couple tWogptained for the relatively simple clusters can not be ex-
localized magnetic moments through a kind of exchange ingegeq to high-nuclearity systems involving localized and

teraction namely double exchange. Since the itinerant elecdelocalized spins in a complicated molecular and crystal

tron keeps the orientation of its spin in course of transfer,
. ) L ?tructures.

double exchange results in a strong spin polarization effec , , )
A second important difference between dimers and

which favors a ferromagnetic spin alignment in the system. ] i
This mechanism of electron-spin interaction was first sughigher nuclearity systems comes from the fact that in the

gested by Zenéf to explain the ferromagnetism observed in later some additional electronic processes, should be also
MV manganites of perovskite structure, such asconsidered for the correct evaluation of the electron delocal-

(La,Ca _,)(Mn*3Mn*4,_)O;. The concept of the double ization effects. One of these processes is associated with the
exchange has been formulated in Refs. 17 and 18. Anders@o called exchange-transfer interaction involving three cen-
and Hasegawd suggested a general solution of the doubleters. The parameters of the magnétiteisenbergexchange
exchange problem for a MV dimer deducing the spin depenand exchange transfer are of the same order of magnitude
dence of the double exchange splitting. and thus the exchange transfer cannot be neglected so far as
Till now the quantum evaluation of energy pattern yo magnetic exchange is taken into account. In clusters con-

formed by the double exchange has been restricted to Con‘Eélining more than one delocalized electron, two-electron

aratively simple systems comprising one or two electron . .
b y pie sy prsing 1?ransfer can be also important when the ground state is de-
(or holes delocalized over a restricted number of exchange-

generate and the one-electron processes increase Coulomb
energy of the system.

30n leave from the Quantum Chemistry Department, Institute of Chemistry, : et
Academy of Sciences of Moldova, 277028 Kishinev, Moldova. The previous remarks allows us to justify the need to
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develop a general approach to treat the problem of doublesheret is the transfer integral.
exchange in multinuclear MV magnetic clusters containing  The conventionally adopted basis for calculation of the
several delocalized electrons. But besides this reason, we canergy spectrum of MV trimeric clusters contains the states
find at least two more reasons of interest. The first reason isf  three  types: (1)  |SaSe(Sh)Sp(Sap)SM),  (2)
related to the existence of a variety chemical systems of larges,ss(Sy ) Sc(Spc)SaSM), and (3) |SSe(St ) Sa(Sca) SbSM)
nuclearites in which localized and delocalized electrons coeorresponding to the following three coupling schemes of
exist and interact. That includes large magnetic MV clustergour spins(1)s, + &= Sk, St + S = Sap, SapTS=S 2 s
and MV magnetic chains, which are systems of current in+ s, =, + 5= Spc, Spc+S:=S andB)s. + =S , S
terest in molecular magnetism and magnetochemistry. We- s, = S.;, S.,+S=S. The wave functions and the corre-
can mention in this context the polyoxometalate clust&érs sponding spin addition schemes can be transformed one into
which are molecular metal oxides of high nuclearity thatthe another by means of cyclic permutations of the symbols
resemble discrete fragments of extended metal oxide strue, b, andc (corresponding td&5 rotations. From this point
tures. The ability of polyoxometalates to accept various speef view it may be said that each spin-coupling scheme is
cific numbers of electrons, which are delocalized over a siglinked with a certain site of localization of the extra electron
nificantly large number of metals, and to accommodate aand thus the matrix elements of the double exchange in the
specific sites magnetic metal ions provide us with idealkrimeric systems turns out to be proportional to thjesgm-
model systems to study the interplay between electron tranols appearing in the four spin recoupling.
fer and exchange interactions in structures with different to-  For more complicated tetrameric systems, we face the
pologies and symmetries. The problem of the interaction berecoupling procedure for five spins. In this case the matrix
tween localized and delocalized electrons can be also founelements of the double exchange operator prove to be pro-
in chains compounds. Numerous examples of this kind arg@ortional to the 1P symbols. It is evident that for systems
found in the area of molecular conductors and charge transwith more than four centers the use of the spin coupling
fer salts which are usually formed by steakings of planarschemes linked to the extra electron localization results in
m-electron donor organic molecules in a MV stifteThe  the appearance of higher ordej symbols. Because of the
coupling between the magnetic moments through the deldack of knowledge of the properties of higher-oragrsym-
calized electrons can be approached by assuming that thmls, the theoretical studies of such type polynucledigo-
magnetic properties of the infinite MV chain are obtainedmeric) systems have not been undertaken till now. The com-
from the extrapolation of the results obtained on finite chaingutational procedure is also dramatically complicated when
of increasing lengtfi? Such a procedure requires the exactwe are dealing with the cases of more than one moving elec-
computation of finite chains having the maximum number oftron.
sites in order to approach to the infinite chain behavior. Here we propose a general approach to the problem of
The second reason faces to the challenge to overcomtae electronic interactions in the arbitrary nuclearity MV sys-
the limitations imposed by the existing conventional ap-tems possessing arbitrary number of localized spins and itin-
proaches to treat the problem of double exchange in theserant electrons paying particular attention to the double ex-
kinds of high-nuclearity MV systems. The main difficulties change concept. In the framework of the proposed
in this context may be realized taking as examples the case®mputational scheme two-electron transfer and all three-
of dimeric, trimeric, and tetrameric clusters with one electroncenter interactions are considered along with the double ex-
delocalized over the spin sites. change. For the reasons given below electron transfer
Thus, in dimers in order to obtain the energy pattern onehrough three-center interactions can be referred to as poten-
should evaluate the matrix element of double exchange, linktial exchange transfer, the associated parameter being of the
ing the states associated with the two sites of localization ofame order of magnitude as Heisenberg potential exchange.
the extra electrorfa and b). The states, belonging to the The new approach is based on the successivainlike) spin
total spin S, are denoted as:|s.Se(Si)sp,SM) and  coupling scheme and takes full advantages of the angular
|saspSe(Sh ) SM), wheres, ands, are the spins of two para- momentum technique. Utilization of the angular momentum
magnetic coresq,=Ss,=Sp), Se=1/2 is the spin of the mi- theory allows to derive the explicit analytical dependence of
grating electrons; ands; are the spins of iona andb with  the matrix elements of the double exchange, two-electron
the trapped extra electron. The two localized states of #@ransfer and exchange transfer, on all relevant spin quantum
dimer can be associated to two possible coupling schemes atimbers for an arbitrary MV systems. These analytical ex-
three spins,, s, ands, namely:s, + s =s: ,s: + =S  pressions containjesymbols and do not contain higher order
ands, + S = ,S. + S = S. Spinss} ands; playtheroleof  recoupling coefficients. In order to reduce the dimensions of
the intermediate spins in these spin coupling schemes. Thhe energy matrices obtained in this way the point symmetry
matrix element of the double exchange operator turns out targuments are taken into account.
be proportional to the Racahj Gymbol, appearing in the
recoupling p_rocedure leading _thus to the_: linear dependenclf THE MODEL OF THE MIXED-VALENCE SYSTEM
of the energies on the total spin of the differ
L We consider the most general case of MV system of the
E(S)=+t(S+ 2) type Pd"*1+(N—P)d". This system contain® d" ions
T 2sp+1" occupying the sites 1,2,N, and P extra electrons delocal-
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FIG. 1. Scheme of the one-electron transfer in the case of less than hal

filled d shells(dashed boxes show spin cores

ized over these sites. We start our study by considering ions

with less than half-filledd shells (n+1<5). The case of
more than half-filledd shell (n+1>5) will be studied sepa-
rately in Sec. VII. Eacljth site (=1,2,...N) hasn+1 or-
bitals in such a way than of these orbitals¢;, (v

=1,2,...n) are supposed to be singly occupied forming

high-spin(Hund’s) ions with spinss,=n/2 (spin cores The
remaining(highest in energy; orbital is singly occupied
when sitej contains a"** ion, or empty for ad" ion (Fig.

1). Thed"** jons are also high-spin ones so the spins of ion

will be eithers; =s, for d ion ors;=s,+ 3 for d"* ion. All
orbitals are supposed to be orthogofidlannier functions

Ill. THE WAVE FUNCTIONS OF THE LOCALIZED
SYSTEM

There areN!/[ PI(N—P)!] possibilities to distributeP

extra electrons amondy sites. Let us suppose that we are

dealing with the definite electronic distributi@h fixing thus
the sites occupied bg" andd" ! ions. Thevth spin—orbital
of the jth ion with the spin projectiowr;(v) will be denoted
as [O'J-(v)]E(,Djv(r—Rj)|0'j(v)), where R; is the position
vector of the sitej, and|o;(v)) is the spin function. The
wave function of th@l}1j ion belonging tos;m; state(spin of
ion and its projectionis built from Slater determinants in

Borras-Almenar et al.: Mixed valence magnetic clusters

where g; andEJ- are the combined symbols:
;={5{(2),5/(3),....05(nj— 1)},

and7;(2)=0;(1)+0{(2), 0y(3)=0;(2)+0y(3), etc., are
the intermediate spin projections in the successive spin addi-
tion.

Let us introduce théDm} representation with the basis
functions of the whole system related to the electronic dis-
tribution D and to the definite set of spin projections of ions
m={m;,m,,....my}. For a given distributiorD the basis
functions can be represented as antisymmetrized products of
Ehe singly ion wave functions of type). These wave func-
ions will be denoted as

©)

|(S1My)(SMy) ==+ (Si—1M;_1)(S;=Sp+ 3,M;)
(Sie1Mis1) (S 1Mk—1)(Sk=Sp,My)

(Sk+1Mk+1) "+ (SyMy))- 4

For this givenD the sitei is assumed to be occupied by
an extra electron, meanwhile the ske(k>i) is of thed"
type. This is explicitly shown in Eq4) and schematized in
Fig. 1. The remaining site§3+i,k) can be either ofi" or
d"** type depending on the distributi@. One can consider
also the{Dm} state in which the extra electron is transferred

Sfrom sitei to sitek. If i <k the corresponding wave function

will be
|(51my)(Smy) -+ (Sj—1M;_1)(S;=Sg,M;)
(Si+aMis 1)~ (Sc-1Mk—1) (Sk=So+ 3,My)
(Sk1Mk2) "+ (SNMN)) - ®)

Finally, we can pass to th€D(S)SM} representation
corresponding to the coupled spins of the whole system. In
this notationD is the electronic distributioflater on symbol
D will be omitted in the notations of the wave functionS
andM are total spin and its projectio, symbolizes the full
set of intermediate spins of thiE-spin system. There are
many possibilities to choose a spin coupling scheme. Further
on we will use the successivgchainlike”) spin-addition

n;—1 steps using the successive coupling of the electronigcheme which seems to be convenient for the problem under

spins to give total spirs; :

s =2 (ejajlsm)|[oy(1)][o}(2)]-[oy(n))]],
ajq
)

where |---| stands for the Slater determinants. The coeffi-

cients of the unitary transformatio(l) are the following
products of Clebsch—Gordan coefficients:

~ 15(2) (3127(3)
YR A ] J .
(ajaj|s;m;) C(l/Z)u-J-(l) (112)0/(2) 15,(2) (12)(3)

Sjm;
X C[(nj ~1)/2]5,(nj~1) (U2)o;(n))’

)

consideration:

Sl+SZ:‘§2’ ’§2+SSI’§3,...,’§\‘,1+SN:S. (6)

In the successive coupling scheme a short notation is
used_for the chain of intermediate spin valuBs=S,,,
S3=S;3.., €1C.,.S;»...n=S, giving rise to a certain total spin
S. The numbers 1,2,.N,are assigned to the constituent metal
sites arbitrarily and independently of the geometry of the
system but once adopted enumeration is assumed to be fixed
for all electronic distribution®. The last determines only
the positions ofi” andd"** ions defining thus the individual
(ionic)_spins s;_ (sp or Sp+3) and possible full sets
(9)={S,.S;,....Sy_1} of intermediate spins.

The wave functions in thgD(S)SM} representation
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corresponding to the electronic distribution with™* ion in  definite set of occupation numbers corresponding to the
the sitei andd" ion in the sitek (the remaining sites have given distributionD) can be expressed as follows:

151,52(52)85(S3) (S _2)81_1(Si- 1) (51=S0+ D) (S)S141(S 1) (S 2)Sk-1(Se 1) (S=50)
(gk)5k+1(§k+1) . '(’éNfl)SNS M>E|(SB BF#1,K)(Si=5p+ %,sk=so)(§)SM>

_ 2 CEZMZ C§3M3 L eSi-aMig SiM; Si+iMiv1 | ~Sk-1Mik-a SkMk_

all o LMaS2M2 = SyMasgmg Si—oMi—2Si—1Mi—1  Si—1Mj_q[so+(L2]m; ~ SMis; m; 4 Sk—2Mk—28k-1Mk-1  Sk—1Mk-150Mk
e “‘C’ZM v |(51My)(SoMp) -+~ (5j=Sp+ 3,M;) ** (Sk="Sp, M)+ (SNMy)).. )
SMicSicr 1Mt 1 N-1MN-1SNMN

HereM 25 1\73 ,... are the quantum numbers of intermediate spin projections. The wave function for the cluster with electron
transferred fromith to kth ion has the form

|(85.8%#1,K)(S/ =89, S=59+3(S)S'M")

!

e Yy o v e ol Y o
=3 c M2 CsaMa ___Csi—lMi—l CSiMi SivaMizs | ~Sk-aMig
- ~ s'm/sim’, " SIM’s!m! S’ M!S .m S’ M/ _som’ CS'M’s' m’ S M s .m
al m'M 1111522 2 M 333 i—2Mi-2%-1"-1 Si—1Vi-10" i Vi k—2"k—2%—1"k-1
5&!\7“: EI,H:LMILHL s'M’ ! ! ! ! !
XC~! Y P YN ’ .“Cg’ Q’ s'm’|(slml)(szm2)'“(si
S M alSo T (X2Im S Ms My N-1VN=1°N"N
— ! ! __ 1 ! ! !
=So,M/ )+ (Sc=Sp+2,My) - (SyMy)), ®)

where the quantum numbers of ionic, intermediate and tthLIer—tr represent the two-electron transfer and potentia] ex-

Spins related to the final state are primed. The last two forchange transfer Corresponding]y. These two terms will be

mulas are to be used for the evaluation of the matrix elemendonsidered in detail in Secs. VIII and IX.

corresponding to the—k electron transfer. In this section we focus on the double exchange Hamil-
tonian for the case of less than half-filledshells. One can
represent one-electron transfer operdﬂ{ﬂ? as a sum of two-

IV. DOUBLE EXCHANGE HAMILTONIAN center contributions:
The Hamiltonian of the system can be written as .
HP =2 HY (i—k), (1)
H=h+g, (9 i';ékk

where one-electron operatbrinvolves kinetic and potential
energies of all electrons arydis the interelectronic repulsion
term. HY (i—k)=T,_x+Fi_y. (12)

Let us pass to the second quantization representation and
write down the Hamiltonian acting in the space of the states
belonging to the ground manifoldtates of the typé4), (5)
belonging to all possible electronic distributiobsand quan- Ti_k=| (dhly) + zv <'r’fk‘PJv|g| $iejo)
tum numberss;m; of constituent ionk This Hamiltonian can .
be expressed as:

H=Ho+Ho+HM+HP +HE (10

X ex—tr*
The termH, includes all interatomic interactions and WhereCiy, (Ciy,) is the operator of creatiotannihilatior)
interatomic Coulomb repulsion. The operatd, is the iso- ~ Of the electron on the orbital of the sitei with spin projec-
tropic potential exchangéhe effect of this term as well as tion o, Nj,==,C;,,C;,, is the operator of the number of
the computational procedure are well knd¥if? and we the electrons ony orbital of ith site. The bielectronic inte-
will not focus our attention on this tegniThe operatoH(P'is ~ grals in Eq.(13) are defined as
responsible for the one-electron transfer, which usually is the

whereH{" (i—k) contains two terms:

The operatofT,_, is of the form

+]_;ik (tilal i N;, ; CiyoCiyor (13

leading term in the Hamiltonia(L0). When this transfer oc- (ejoldl zﬁigojv>=f f (1) ¢, (2)9(1,2 ¢i(1)
curs over paramagnetic spin cores we are dealing with the
double exchange interactidh.The last two term&H{? and X @;,(2)d7ydr, etc.
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TABLE I. The electronic processes described by the opeta§bti —k) in

the simple case of Bd (N—P)d*-system(only the processes witti=o"' =1 Fi«= 2 2 <'ﬁk‘Pju|g| @ ¢,|>2 Cﬁac: /ij(r’Ci Yo -
are showin j=ik v oo’ Ve

Contribution to the ( 1 6)
Scheme of the process parameter i Fermion operators

Processes involved in T,

Sum overj involves two terms withj=i and j=k. Two

A% v bielectronic processes associated with this operator are
+a7 ta {wi|b|vs) Chy1Ciyt shown in Table I. Conventionally they are depicted as the
- /\" two step processes. One step represents the transition be-
i:‘m z‘”‘ weolelve) | N .ct.c . actc tweeny and ¢ orbitals belonging to the same center, another
o o1 Tt it one is the interionic transfer involving core orbital and
1Y w orbital . The F;_ contribution seems to be smaller than
+a7 to o glvion) | N1 Cly1Cpr = CrCiyy that of T,_,. Latter on we will show that the operator
- W _ , T,_ktFi_k can be represented as one effective operator of
Froosssss nvalved in Fiosk the type(15) in which instead of3,, one should write some

A oy e effective transfer paramete, .

o™ Lo to

i G) k

\TOIVAS N. +CH +C. o =Cf 1C.
e R Y V. MATRIX ELEMENTS OF THE DOUBLE EXCHANGE

—3—%'" é—)% '"—fk—‘vk IN THE {Dm} REPRESENTATION (LESS THAN
HALF FILLED d SHELLS
4% v w :

o Lo ba | vl | Ny =Cicy:

J
4w G—‘Vk
RGN (ol elowy) |
i k

We start with the evaluation of the matrix element of the
operatorT;_ [Eq. (15)] in the {Dm} representation corre-

CI‘PTC;VTCkQTCin =

N g1Chy1Ciyt = ~CltCiy sponding to the un_coupled spins of ions. One can easily
A prove that the matrix element of the operaifor,, linking
(—T—W%‘—Wk CigtCayCig1Civt = two electronic distribution® andD’ is nonvanishing ifD
! —+ Cnnllovi) |- N, 1€t 1€, 0 =-€1y1Cy g andD’ differ in occupation numbers of two sites, sayand

k corresponding thus to one-electron transfer. Using the
properties of Slater's determinants and Clebsch—Gordan co-
efficients one can find the following expression for the ma-

o trix element ofi —k electron transfefwe suppose thatk):
The contribution to the transfdidouble-exchangepa-

rameter fromT;_ term is defined as ((sim})(symy)---(s/ =So,m' )+~ (S{=So
2 (sumy)
,Bik:<¢k|h|¢i>+jz (ejoldvie;,)

Tl (S1m) (Somy) - -+ (Si=So+ 2, my) -+~ (i

o2 (aldv). (14) =S0,M)*(Sumn)
(dJn+l centers N
=(— 1)250+2(si+1+si+2+‘--sk,l)ﬁik H 5st, 5mfm’
The first sum in Eq(14) involves all core’s orbitals of ff;}k f f
all centers including centetisandk while the second sum-
mation runs over ali"** centers with the exception of cen- « clso+ (V21m; ~[so+ (112]my (17)

tersi andk which change their oxidation degrees in course Somj (112w~ somy(12m

of transfer process. The terfw,|h|) arises from the mono-
electronic part of the Hamiltoniar9), all the remaining \hereg, is the double exchange parameter already defined

terms describe the influence of the localized electrons on thgeq. (14)]. Product ofs symbols in Eq(17) shows explicitly
i—k transfer overy orbitals. Using definition14) we can  that only one-electron jump from siteto sitek is possible,

71'=il
2

represent operator;_,, in the standard form: meanwhile all remaining electrons occupy their initial sites
conserving at the same time their sping--§---
— ! H . .
T =8 ct . 15 = S ~_--) in course of transfer keeping unchanged their
o Blk; kpo=ive A9 spin projections {--m;--- = ---m¢---). One can see that

only spin projections of two ions participating in the transfer
Different contributions to the overall transfer process areprocesses are changed. The moving electron keeps its spin
schematized in Table | for the simple case of two orbitals peprojections and as it is clear from Eq17), the conservation
center. law for the full spin projection of two ions involved in trans-
The operatofF;_, is written as fer is valid (m;+m,=m/+my).
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Let us calculate now the matrix element of the operatotwo processes visualized in the lineg &(K) and 7(=i) of
Fi_«- Two terms of this operatofj =i andj=k) generate Table |. Considering in Eq16) term with j =k we get

+ +
Z C:l)ﬂ'ck(ﬂg"ckvﬂ"cilﬂlf: 2 Cl_('—vtrci 1//(72 Ck¢g’CkUU’
oo’ g o'

and hence, we can apply the formula for the matrix element of the product of two operators. Thus we obtain

+
<(Simi)(sémé)'"(Si'zso,mi')'"(S|,<250+ 3Mp) -+ (symy) E, CI:rv(er,//g-/Cka'Ciz//(r (s1my)(spmy) -+ (Si=Sp
oo

+%-mi)"'(Sk:So:mk)"‘(SNmN)>

= X > <<s1m1>(sgmg)---(s{=50.m{>---<sa=sO+%,mo(s’Nm’N)
S7.Sy .S My .My, ...my

2 CilyoCiyo| (ko) O(STmY) (S5m5) -+ ()= So+ 3,m) -+~ (5§ =0, M)~ (Sym{, >
o

"

><<(kv)°(8’1'm’1’)(35m§ wo(s]=SoF 3,m{) -+ (s¢=S0,Mp) -~ (symy,

+
Z Criyor Choor
(o8

(S1My)(Somy)- -+ (S;=Sp+ 5,M;)- "(Sk:SOrmk)"'(SNmN)> . (18)

Equation(18) shows explicitly that the whole transfer process is represented as two step fiiadasd, line §. The quantum
numbers of the intermediate states are double primed. Syrbd? {ndicates that the summation in E@.8) involves only
those intermediate states in whickh core orbital ofkth ion is empty and orbitad is singly occupiedthe result of the first
jump). The second matrix element in the right side of EtB) describes the intraionic transfer,— i, (first step. The first
matrix element corresponds to interionle— ¢, transfer restoring th&th spin core(second step

For the second matrix element in E4.8) one can obtain the following result:

<(kv)°(S’1’m'1’)(S£mZ wo(s)=so+ 3,mf) -+ (s=S0,mi) -~ (symy;

N
(51m1)(52m2)"‘(5i:50+%,mi)"‘(Sk:So.mk)"'(SNmN)> :(_1)250_"!11 Ogys;Omimy - (19

+
; Cryor Croo’

One can see that the interionic transfer does not change the spins and spin projections of all constituent ions. Therefore,
only one intermediate stateith all s{ = s; andm{ = m;) contributes to the matrix element in E3.9).

Using Eq.(19) and taking into account the properties of Slater determinants and Clebsch—Gordan coefficients one can
represent the matrix element in E4.8) as follows:

(S1My)(SoMy) - -+ (S;=Sp+ 3,M;) - -

’
oo

+
< (Simi)(Sémé) o '(Si, =So lmi’)' B (SIL:SO_F %1mll<) Tt (Sl’\lml,\l) 2 Clzruock,//g—’ckvo"ci Yo

(Sk=Sg,My) " -+ (symy) = (— 1)230*”<(sim1)(s§mg)- +(S{=s0,m/) - (S=Sp+ 3,My) - (SymMy)

(kv)°(s1my)(Somy) - -+ (S =Sp+ 3,M;)- "(Sk:SOvmk)"'(SNmN)>

2 C:voci Yo

N

:(_1)1+250+2(si+1+si+2+~~~sk,l)H , 2 C[So+(1/2)]miC[so+(l/2)]m|2‘ (20)
f=1

ésfsf' 5mfmf7rzﬂ,2 som/ (12)m ~ som (L)
fik
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6898 Borras-Almenar et al.: Mixed valence magnetic clusters

Comparing Egs(20) and (17) we arrive at the following built the matrix of one-electron transfer. Diagonalizing this
relation of equivalence for the product of Fermion operatorsmatrix one can obtain the energies of tunnel states. However,
following this way it is hardly possible to handle with the
2 C;WC;W,CKW,Q yo= —E Cljwciw_ (21 large clusters containing many sites and many electrons. In
o’ 4 fact the number of basis states {iDm} representation
Analogously, considering in the operater ., the term  for ~ Pd""'+(N—P)d"  cluster is given as

with j =i we get 2P(so+1)P(25,+ )N PNI[ PI(N—P)!] L. Taking for ex-
ample the systend?—d?—d3—d® (N=4, P=2, sy=1) we
o + obtain the matrix 864864. One can see that even for this
2 C|U0' k¢ Ivo”Cll//O' E Ckng 1o (22) . . . . .
i comparatively simple system we have to diagonalize a big
matrix.

Combining Egs(21), (22), and(15) one can rewrite the
double exchange operatbit”(i —k) in the following form:

ngl)(iﬂk):tikg C;WCWU' (23 VI. MATRIX ELEMENT OF THE DOUBLE EXCHANGE
OPERATOR IN THE {D(S) SM} REPRESENTATION
where A significant reduction of the dimensions of the matrices
can be achieved taking as a basis set the statd3(i8) S M}
ti=Bik— ,Ek > (eioldl i, ) (24 representation. Taking the advantage of the angular momen-
j=ik v

tum theory we will show in this section that the matrix ele-
is the new effective double exchange parameter associatedent of the double exchange operator may be represented as
with physical processes resulting in the-k transfer. It a simple closed-form expression for the arbitrary nuclearity
should be noted that these processes involves two centek$V systems. The developed approach will be called angular
only. Three center processes leading-tek transfer will be  momentum approach. Using the wave functions in
considered later on. Since the operator partdg(i — k) {D(S)SM} representatiofEqgs.(7) and(8)], and Eq.(17) for
andT, ., are equivalent the matrix elementldf’(i—k) in  the matrix element ifDm} representation, one can repre-
the {Dm} representation can be calculated using @4) in sent the matrix element corresponding to thek transfer
which B, must be substituted bt . In this way one can (i<k) as follows:

((sp=35,B#1,K)(S/ =Sg, S=50+ (SIS M'[HI(i—k)[(s5, B#i,K)(S=S0+3, S=50)(S)SM)

Ry SaM . M.
= (—1)2S0F2Asiat St T, 2 E [30+(1/2)]m' [so* (1/2)]Jmy SzMch3M3 ...Cf'*ly"l
all MMM m/m, T==1/2 S [(U2)m “soM(L2)m =S1My = S,Mpsamy S oMj oS 1M 1

><CfiMi 5|+1M|+1 Ek—lefl kaMk_ Sk+iMk+1 ASM SyM;

Si_1Mi_qlso+ (12Im; ~SMisqmy Sk—2Mg—2Sk-1Mk—1  Sk—1Mk—150Mk  SkKMySk+1Mi+1 Sn-1Mn—1SNmN T S1MSM,
s c M3 Si_aM{_y My My Sk1Mis SiMy

SéMés3m3 SiLzMiLzSi—lmi—l Si,—lMi/—lsOmi, S M/ {SipaMisg S{<72M|,<725k—1mk—1 Sé M k 1[So+(1/2)]m

Iy T

Sk+1Mi+1 S'M’

'S'M/ VS MY symy (29

SMy Sk 1Myt 1 N—1MN— 1SN

Using the well known properties of Clebsch—Gordan coefficients one can carry out the summation&2i).EBpcause
of the importance of this procedure for the following calculations and for the related electron transfer problems we will
consider it in detail. First by using the unitarity property of Clebsch—Gordan coefficients we get

of

-~ =~ ~ v ~, = !
E D cSMz  oSMs | oSimiMicg S;M; SsM '_‘Csi—lMi—l
mymg = mi_ Ty, 'VE ~M, , $1M1S;Mp S, M ,85m, S _oMi_osi_1m_;  S1MiS;my S M, 5S3M3 S/_ M/ _s_qmi_y
=05,5,05,5," 705 _ |5/ O,/ - (26)

In order to perform further calculations we will employ the formula for the sums of the products of three Clebsch—Gordan
coefficient§®
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S CllpClinp e~ (~ 1 2 D2 D) g § 41CE,, @7
and the well-known symmetry property
Chanp =(—D)¥*P7eCzl. (28)
In Eq. (27) {3 ? }+ is a 6) symbol. Using Eqs(26) and(27) we find

E C[so+(1/2)]mi SiM; cf‘,M‘L
’
m.mifM . SoM (Um 7~ S, 1M;_4[sg+(1/2)]m; ~S; 1Mi—150mi’

= - So 1/2 so+(1/2) S,

e A IS 1 @9

After that one should perform several successive summations of the same type. The first summation of this series yields
E C§i+lMi+l E|/+1ﬁ|,+1 C:éi@i
MMM SiMiSi 1M1 q S/M

SMS|+1m|+1 : i’(1/2)77

C~|+1M|+1

=(- 1)(1/2+s|+1+8|+1+8\/(2 S/, +1)(25+1) [ S 172§ ] ~

2 D= (30)
Siv1 Sitr Siiq) SM 27
Using the result of this summation one can perform the second summation of this series
2 C§i+2":/|i+2 C§i’+2@i’+2 §i+1@i+1
My aM{ o mis o SivaMivaSivaMisz S/ My SieaMive S Mi; (127
i+
S+1 1/2 Si+1 |+2M|+2
= (1) s2t S S (28,1 1) (25, + 1) = (31)
2 . S Sit2 S+2 Sii2 |+2(1/2)7T

This series of summations involvé&s-i—1 similar stages. The last one is the following

- - -~ - -
E ka—l"l‘k—l Si—1My—1 Sk- sz 2
~ o~ S, oMy oS, .m S, M/ _s._.m s/ (2w
7 k-2Mi- 28k 1M1 S My oS- 1My S oMy,
My oML M1 k-2Mk-2

172 ’ékfz Y
1)1 +s,— 1+Sk 1+Sk 24/(2 +1)(2 +1 Sk 2 = c> If 1 l,< 1 ) 32
-1) V(281 +1)(25c 2 +1) S L s 5.|C% e (32
Taking into account the result of the last summation of the s¢Egs(32)] one can perform just one more summation
appearing in the initial Eq(25), namely

D ka""k~ [so+(1/2)my ~ Sk-1Mi-1
~ S, M somy  Som(1/2)
My my k—1"k—1%0Mk =0k

’ !
S, M_,(112)

= (— 1) S 2(50+ 1) (254 1)

SO 1/2 So+(1/2) '5’\'7'
= = o= “ : (33)
3271 S Se_1 [SO+(1/2)]mk - 1M|L .
The remaining summations can be easily made by means of the unitarity property of Clebsch—Gordan coefficients and Eq
(28). The result is the following:
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-~ o -~
2 2 2 CSkMk CSkMk C§kile+l
/ r ’ ’ ’
, L TR Ny i [so+(1/2]m; S, ;M Sp_My_[So+(1/2Im, S My s My, g
My My 1My 27 My kMk+1 N—-1 My M My MG k“k—=1"k-1 k—1" k—1! k
-~ - o~
XCSHZMHZ ...~SM Sk+1Mk+1 CSk+2Mk 1 . s'™M’
o~ —~ ~ ’
Sk 1Mkt 18K+ 2Mkc+ 2 SN-1MN- 15N T S My S Mg Sy M k+15k+2Mk+2 Sn-1My— 1SNy

= (— 1) S Sy 5 5 5%, 5,05 - (34)

k+1sk+1

Now we have everything we need for the calculation of the matrix elemeni-fek transfer in the{D(§)SM}-
representation. Substituting Eq26)—(34) into Eq. (25) we obtain the following final result for the matrix element of the
double exchange Hamiltonian:

((sh=55, B#i,K)(S =S, Sk=So+ H(S)SMHI(i—K)|(s5, B#i,K)(S=5p+3, S=50)(S)SM)

=(—1)%0t, Z;_\[(sp=S5, B#I,K)(S=Sp+3, =S5, S=5p, S=5p+3)(S)(S)S]. (39)

In Eq. (35) Z;_,[---] is the function of local spins; s, ands/ ,s, for the initial and final electronic distributions, and the
corresponding sets of intermediate spi® and(S') and total spinS. For the case under consideratidr<k) this function
has the form

ZiLi<k(sh=55, B#IK)(Si,8 5,50 (D (F)S]=(— 1)1 2S 80 +s] +sr (WD) =5 1-5-5 4

!

- - o B _ s 12 Si
><\/(25i+1)(23k+1)(23|JF1)(23k—1+1)5523555353'‘‘5§i,1si’715§ksl;5§k+lsk+1 08 _4S), 1[Si 5., ¢

s 12 s Mt { rfo1 112 §i+f1}
X4 ~ 1) St S S (28 + 125+ 1) :
[Sﬁ_l&&l]H() V(2S41-1+1)(28

In the notation o, _,,[ -] corresponding to— k transfer the remaining spisg = s; (8+i,k) conserving their values are
indicated also. Although they do not enter explicitly in the right side of(86),, these spins determine the sets of intermediate
spins @) and(S'), i.e., the arguments of the functiah_,[---].

One can prove that the resy85) is valid also providing >k but Z;_[---] in this case should be taken as follows:

(36)

~/
+f  Sitf i+ f

Ziﬂk[i >k,(S;;=S[B, B#i,k)(si 'Si, ,Sk,S(()(g)(g,)S]:(—1)1+2(Si+sk)+si,+sl/<+(1/2)(i_k)_gkfl_gk_gi/*l_gi

- - o ~ ~ ~ sy 12 s
><\/(25k+1)(25i+1)(25k+1)(23—1+1)5§23é5§35é‘“3§k,lséfl5§is{5§i+ls{+l‘ 9Sy_18,_ 1[Sk S, S
s 12 s )ikt S, 12 Seq
) ’ T (—1) St SterSe1y(28, ., +1) (zsk+f+1)[ S <L @)
. S S = Seet Skt Siet

Some remarks should be made concerning the use of Eq. (2) All intermediate spins remain unchanged in thek
(35). First of all, for the valuezso SO S;, andS; one must  transfer process with the exception®{S;, ;- - S, for the
use the following rule§1—sl,81 S1,S =S =0.Inad- casei<k andS,,S;,---S;_; for the casé>k. Using the
dition to these rules, one should take into account thatriangle rules for § symbols we obtain the following relation
§N=S, ’§,’\‘ = S'. Besides, in the particular cake=i+1 (or  between these mtermedlate spins in the initial and flnal states
k=i—1) the products in Eq(36) [or Eqg. (37)] should be prOV|d|ng|<k 3 s,i +1 |’+1 S|+1— 1 s,k L=

substituted by 1. _ _ L Similarly for the casé>k we can write'S, = Sk + 3
Equation (35) shows that the following conservation —~ -

rules occur for the —k transfer: S<+1 Sk+1— 27 ST ST 2 . , . :
(1) The total spin and its projection are conserved Figure 2 illustrates three domains of intermediate spins

(S'=S, M'=M). behavior in course of—k transfer for the case<k. There

J. Chem. Phys., Vol. 105, No. 16, 22 October 1996

Downloaded-29-Jan-2010-t0-147.156.182.23.-Redistribution-subject-to-AlP-license-or-copyright;~see-http://jcp.aip.org/jcp/copyright.jsp



Borras-Almenar et al.: Mixed valence magnetic clusters 6901
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FIG. 2. The domains of different behavior of the intermediate spins-fek
transfer (<Kk) in chainlike coupling scheme. (

P —. — e = =

|
are two domains of the intermediate spins conservation. The | o +| i o I
first one includes the set of sites with the numbers 1j2;1, sosee seeee | eeeee
in the initially adopted enumeration scheme. The second do- | %i2 —4—| /\| + o2 '
main involves the sitek,k+1,... N. The sites with the num- | | [ '
bersi,i+1,... k—1 forms active domain in which interme- ___iT{’ _L‘?f: S |
diate spins are changed in the transfer process. It should be ; K

noted that the final sitk is out of the active domain.

One can see that as distinguished from the case of .
{Dm}-representation ifD (S) S M} representation instead of vevne ' —& veene 4& 2 I
one large matrix one should diagonalize several matrices of %l Aﬂ_ _& K1
smaller dimensions corresponding to the differ8ntalues.

Finally, a useful property oZ[:--] functions should be
pointed out. This property is given by the following relation: (b) (mdf--~dl~-~)—>(~-~di7--~df(---)

FIG. 3. Scheme of the one-electron transfer in the case of more than half-
filled d shells (dotted box show inactive zone, dashed boxes show spin

Zkﬁi[(s,%:sﬁ, B#K,1)(S,Sk.Si ,Si’)(—é)(’é’)s] cores: (a) n=5, (b) N=7.

1/2

2s/ +1)(2s+1
( SI+ )( Skt ) Zi-;k[(S,B:Sﬁ, ﬁ#hk)

(2s5+1)(2s,+1)

Fig. 3(b). The lowest equivalent orbitalglenoted byy; in
Fig.3b)] are doubly occupied in bothPd® " and
(N—P)d*® " subsystems and do not participate in the trans-
fer processes. These orbitals form an inactive zone framed in
the dotted box in Fig. ®). The extra electron jumps from
This relation can be easily proved using the definitionsthe doubly occupied;, orbital (lying above the boxto the
(36) and (37). singly occupiedg,, orbital. In this case, the spin cores are
formed by the half-filled orbitals of thé® " ions and the
d® " residues of thed!® " ions as shown by the dashed

VIl. MATRIX ELEMENTS OF THE DOUBLE boxes in Fig. &). Denoting the spin cores &g one can see

EXCHANGE (MORE THAN HALF-FILLED d SHELLS) that for more than halffilled d-shells (n<4)
s(d”" ") =so=(n+1)/2,s(d™ ") =sp—3=n/2.

Let us proceed to elucidate how the developed theory We will use the double-exchange operator
should be modified in the case of the clusterH®(i—k)=t,=,Ci:,Ci1, adapted to the case of more than
Pd® "+ (N—P)d¥® " with more than half-filledd shells half-filled d shells. The transfer parametgg in this case
(n<4). This system contain¥ — P extra electrons oP extra  contains one-electron integréy,|h|¢;;) and two-electron
holes. Providingh=4 the extra electron is hopping over the integrals like in the case of less than half-fillddshells(see
loweste;; orbitals forming thus double occupiéd;,)? states ~ Sec. V).
of d® ions. Spin cores in the systemd®+ (N—P)d® are The calculations of the matrix elementidf”(i —k) are
formed byd® ions, i.e., by the ions without extra electrons asquite similar to those described in Sec. VI. With the use of
in the case of less than half-filledi shells. These spin cores the properties of Slater determinants and Clebsch—Gordan
and the scheme of transfer procedSd}) — (d>d?) are sche-  coefficients one can obtain the matrix element of the double
matized in Fig. 8a). Provided than<4, all ions(d® " and  exchange in théDm} representation. In the caseicf k the
d® ") possess double occupiedl orbitals as shown in result has the form

(s, 5,50 (S)(S)S]. (39)
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((symy)(s;my)- -~ (s{ =sp, M) (S =Sp— %:m{()"‘(S|,\1m|,\1)|H§rl)(i—>k)|(51m1)(52m2)‘“(S So— 2,M;) -~ (Sk

259+ 1
=g, M)+ (SyMy) ) = (= 1) 20+ 2t st sy =2

N
[so—(1/21m; [so—(1/2]my,
H §Sf5 5mfm E C oM/ (L2 Csomk(1/2)7-r : (39)

f#i,k
Using this expression and following the method described in the previous section one can calculate the matrix element
associated with the—k transfer in the{D(S)SM} representation. Omitting the details of the calculations we give the final
result only

((sp=55.B#1,k)(S/ =s9,5(= So— H(S)SMHP (i —k)|(s5,8+1,k)(5:=S0— £,5=50)(S)SM)

(—1)%%0 — o tiZioid (55=55.B#1.K) (51 =50~ 3,5/ =50,5=50,5c= S0~ 2)(S)(S)S]. (40)

One can see that this expression contains the fundjen] already defined, the local and intermediate spin values being
specific for the case under consideration.

Let us compare now the matrices of one-electron transfer for the MV systems of twoRyBe8+ (N—P)d " and
Pd"*1+(N—P)d" providing n=<4. One can see that the iod8 andd'® " posses equal spifsomplementary statgsThe
spins for ionsd"* andd® " are also equal. The matrix elementief k transfer for the syster®d® "+ (N—P)d'® " [core
spinsy,=(n+1)/2] is obtained from Eq(40) as follows:

, ] , n+l1 | n) ~ 1), ) n n+1\ ~
(sg=sg.BF1.K)| 5 :T'Skzi (S")SMH (i—K)|(sg,B#1,Kk) si=§,sk=T (S SM
n1 n+2 , ] n , n+l n+1  nj~ ~
=(—-1) ] tiZi_k| (Sg=Sg.B#1,K) s,zz,si :T’SKZT’SKZE (S)(S')S|. (41

Let us pass now to the systePd" "1+ (N— P)d" and consider the matrix element linking the states with the same sets of
site spins and intermediate spins as in E{) [all sites which were occupied W° "(d® ") ions in the previous case now
must be occupied bg"(d""1) ions]. One can see that this matrix element corresponds tk-thietransfer in the system with
less than half-filled shells and core spis,=n/2. Changing in Eq(35) indicesi andk by places and using the prope(86)
we get

n

<(s;3=sﬁ,ﬂ¢ k,i)(s&=§,si’=n;—1) (g’)SM‘Hm(kHi)

) n+1 n\ ~
(Sg.B# k,|)(sk=T,si=§)(S)SM>

N , . n+l1  n n _, n+l) ~ ~
= (=D ki) (Sp=8p.87 K1) | Sc=—57.8=5.5=5.51 =5 | (S)(S)S
N n , n+l n+1 ,
=(=D" 77 ik (sp=s4.,B+1,K)| s =5 ST ST T Sk— (S)(S)S|. (42)

Comparing Egs(41) and (42) one can see that the ma- symbols only and do not contain Clebsch—Gordan coeffi-
trices of one-electron transfer for the “complementary” sys-cients(appearing in the spin-coupling procedyraad high-
tems Pd® "+ (N—P)d® " and Pd"*1+(N—P)d" differ  order recoupling coefficients. Therefore these formulaes pro-
only in sign. Therefore the double exchange energy patterMide simple and very efficient tool for the theoretical StUdy of
of Pd® "+ (N— P)d'® " system can be viewed as the over- the electronic energy spectrum of complex MV systems.
turned energy patter®d"" '+ (N—P)d" system and vice
versa. The particular cases of this general theorem have bedfl- TWO-ELECTRON TRANSFER
mentioned several times for trimeffcand tetrameri clus- The one-electron transfer procesgesuble exchange
ters. so far discussefthe termHt,) in the Hamiltonian(10)] usu-

The final formulaes for the matrix elements of one-ally play the most important role in the formation of spin-
electron transfer in the case of less than half-filkedhells levels pattern of MV systems. The total Hamiltoni&t0)
[Eq. (35)] and more than half-filled shells[Eq. (41)] give  contains also the terrhl§r2> responsible for the two-electron
the general solution of the double exchange problem fofransfer processes. This term can be represented as
high-nuclearity MV clusters with the arbitrary number of the
moving electrons sharing among the network of spin cores. H{"'= > HP>—kj—0. (43

. . Ik,
These formulas are expressed in terms of the productg$ of 6 (I;ﬁk;&i]#j)
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TQ)B!-E Il. The electronic process associated with the operatorcase two-electron transfer splits the low lying levels mean-
H'(i—kj—1) (only the processes with=o"=T are shown while the one-electron transfer increases the Coulomb energy
of the pair giving thus only a second order contributf8n.

Scheme of the process Parameter Fermion operators
N N Similar situation takes place in complex polyoxovanadtes
v —w v len)  CiCiiCnCy, with delocalized electronic pairs. As a second example the

_3“” 'kr'“’“ ‘E“"J‘ "!“"1 high-nuclearity clusters containing triangular faces can be
pointed out, particularly, metal skeleton of iron—sulfur pro-
teins[Fg,S,*" (d°—d®—d®—d® system. Strong double ex-
change in these systems results in the accidentally degenerate
ground state comprising a set of different spin stétiessfer
Considering the case of less than half-filédhells we frustratiorf®). In this case the low-temperature magnetic be-
can find the contribution corresponding to the jump from thehavior may be determined by the two-electron transfer.
sitesij to the sitekl| as The expressions so far obtained for the matrix elements
HO (G ki of one-electron transfer make it possible to evaluate also the
v (i—kj—=h) matrix elements of two-electron transfer operatf . Let
us consider two-electron transfer-k,j—1 for the case of
= (el o) 2 CoCylyr Cir Ciyr (44 less than half-filled shells(the case of more than half-filled
oo’ d shells can be considered similgtlyrhe corresponding op-
As distinguished from the operatbk’'(i —k) the opera- eratorH{?(i—k,j—1) can be represented as the product of
tor H?(i—k,j—1) changes simultaneously the localization the one-electron transfer operators:
sites of two electrong§Table 1I).
The contribution ofH{’ is expected to be smaller than HP(i—k,j—1)
thg)t associated with the one-electron transfer Hamiltonian
Hi”’. Nevertheless many physical situations require to take  _ s + o~ + _
into consideration this smaller contribution. One example =Conhiloly lﬂﬂ; C"""C'W;‘ s Civer
represents the ereduced MV polyoxometalates with Keg-
gin and Wells—Dawson structures containing the electronic  Applying now the formula for the matrix element of the
pair delocalized over the network of the metal ions. In thisproduct of two operators we get

< (sp=55.B#1,K,],1)(s/ =s0,5¢=So+ 35,5 =S0,5 =Sp+ 1(S')SM

HP (i—k,j—1) (sﬁ.ﬂa&i,k,J,I><si=s0+%,sk:so,sj=so+%,s|=so><§>swl>

=Yl i/’i'l’j)Z <(S/’3:Sﬁ,,3¢i,k,jJ)(Si':So'S((:SoJF%,SfZSO,S(:SoﬂL H(S')sSm
(s")

‘201 ClyoCiue (SZg:sﬁ,ﬁii,k,j,l)(85’=so,8i£=50+%,S}’=SO+%,S{’=so)(8”)SM>
X <(s’,’3=sﬁ,,8qé i,K,j ,I)(s{’zso,sﬁzsoJr%,s}’zso+ %,s{’zso)(g”)SM

+
2 Cyyo Cigor
g

(Sg.B#1,K,j,1)(Si=S0+ 2,5=5,5j=So+ %75|:So)(§)SM> : (45)

One can see that the matrix element of two-electron transfer operator is expressed in terms of the one-electron transfer
matrix elements already calculatgske Sec. VI Eq(35)]. Substituting these matrix elements into E45) we obtain
((sp=35.B#1,K,].1)(S] =S0,5( =0+ .5/ = 50,5/ =S+ 5)(S)SMHP (i—k = 1)|(s5. B#1. K[, (s =50+ 1 5=50.5

=So+3,5=50) (S SM)=(thtlal i) 2. Z; i[(Sp=5p=55.8%1K,j.1)(S =5 =S¢5 =5;=So+3)(S] =So+3,5]

(s")

=50,/ =50,5 =So+ 2)(S")(S')SIZi _[ (Sp=55.BF1,K,j,1)(sj=5] =50+ 3,5=5] =50)(S{=So+ 7,5 = S0, 5= S0,k

=50+ 32)(S)(S")S], (46)
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where Z;_[---] and Z;_,[---] are given by Eqs(36) and TéBLE_ ll. The electronic processes associated with the operator
(37). Sum in Eq.(46) involves all sets of intermediate spins Hecu(i—~k) (only the processes with=o"=1 are shown
admitted by the given set of spins of the ions indicated ex; Contribution (o the ‘
plicitly in the notation ofZ; ,[---] and Z;_,[---] for the Schere of e process Dot i Termion operators
given intermediatédouble primegl state. Processes involved in B, _y, (Wi = j = k)

Let us discuss now briefly the case of more than half-
filled d shells. Two electron jump from double occupied 1 —1—@\—1—/‘:@_\—w
and ¢j; orb_ltals to singly occupied,; and ¢; orbitals, S0 e g g (v lwsws) €1 ChtCo iy
the associated two-electron transfer parameter will be | ; j K A A
(ek1911/dl¢i1¢j1). The matrix element of two-electron trans-
fer can be represented in terms of the products of constituelL]

t Processes involved in Hzx._m(cp A= j- k)
f

one-electron transfer matrix elements just as in the case (¢

less than half-filled! shells. Therefore, as distinguished from | » - Y. _m_“'k

the energy patterns formed by double excha(@ec. VII), _I'&/_J"‘”’ '1‘“’“

the energy patterns formed by two-electron jumps will

be the same for both ‘“complementary” states I A

Pd® "+ (N—P)d¥® " and Pd"* 1+ (N—P)d". 3 —T—W'/—M "o
i i k

(wioj| g|ojvi) CiotChy1Cig1Ciyt

IX. POTENTIAL EXCHANGE TRANSFER

Now we consider the last term in the Hamiltoniét0)

P . .
Hext- _For the reasons given below we will refe_r the corre of i —k transfer through the intermediate centers. These pro-
sponding physical interaction to as the potential exchange : S : .
. cesses are quite similar to those involved in the so-called
transfer. The potential exchange transfer operator can be ex- . 10 4649y . .
exchange transfer interaction? This interaction arises

pressed as in the second order of perturbation theory like kinetic ex-
change, and therefore, it can be referred to as kinetic ex-
Her—tr: Her-tr(i—’k)- (47 change transfer. The matrices of the kinetic exchange trans-
I#k fer have been recently calculated for the MV clusters of
We consider the case of less than half-fileghells, for ~ apitrary nuclearity’** On the contrary, operatdd8) acts
which each term in Eqi47) has the form within the ground manifold and thus appears as a first-order

effect like potential exchange. This accounts for the term
“potential exchange transfer” introduced here. The detailed

Hg’x_tr(i—>k)=.2 [HE’X_t P,i—j—Kk) discussion of the analogy between potential and kinetic ex-
171k change transfer interactions and the differences between their
+ HePX_tr((p,i —j—=k)], (48) magnetic manifestations is out of the scope of this paper, and
will be given elsewhere. It should be noted only that the
where potential exchange transfer parame(@able Ill) and the
magnetic (Heisenberg-type potential exchange parameter
st.t P,i—j—k) may be estimated as the same order parameters. Therefore as
far as the exchange interactions in MV systems are con-
=il A CJthﬂaC;(&a’CJ o' Ciyo s (49)  cerned the exchange transfer processes should be taken into

account at the same level of approximation.
Now we proceed to the calculation of the matrix ele-
HE o @,i—j—k) ments of the potential exchange transfer operét8y. Like
the double exchange operator, the operatf (i —k)
= E <l/fk<Pju|g| (Pjv,mz Cjtmcljw,cjw,ciw, (50) changes the site of localization of one electron meanwhile all
v oo’ remaining electrons keep their places.

One can see that exchange transfer operator is expressed YSing the results of the previous section one can
in terms of three-center contributions. Each of them can b@btain thg formula for the matrix element of the
apparently viewed as the the-k transfer process via the OPeratorHe, (#,i—j—Kk). In fact this operator can be ob-
third centerj. Electron transfer occurs throughy orbital ~ Viously regarded as a particular case gf the two-electron
[Eq.(49), Table IIl, line 1 or through thep;,, orbitals of spin ~ transfer operator so we can writéle,.(i,i—j—K)
cores[Eq. (50)] of intermediate centergn Table lll lines 2 = HP(j—k,i—j).
and 3 correspond to the intermediat® andd""? centers. Applying Eq. (46) and making the necessary modifica-
Therefore, the operat@d8) takes into account all pathways tions we get
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((sp=sg.B#i,k,j)(s/=50,8 =Sp+t 7,5¢= )(S’)SMIHexte(w,iﬂ%k)l(sg.Bvﬁi,k.j)
(Si=So+ 2,5 =So+ 2,5=S0)(S)SM)

_<’/’k’/’1|g| ’/’J l/’l)E Z|—>][ SZ;:SB ,,Bii,k,j)(S[(,:S{(:So‘f' %)(Si’,:SO+ %,si,:SO,Sj,:SO,Sj,:SO+ %)(Aé’,)(’é,)s]

SH
Z,j[(Sh=55,B8%1,K,j)(S] =5=So+ D) (Sk=S50+ 3,5=50.5 =S, =So+ H)(T)(S)S]. (51)

For the calculation of the matrix element of the oper&ﬂ@;_t,(go,iejﬂk) it is convenient to rearrange this operator in
the following way:

extr(‘P |_7]_)k) 2 <¢Ik¢jv|g|¢1vwl>2 C]UU’CI(/IO'E/ C;,/,Urcjvo"

Then one can express the matrix element under consideration in terms of the matrix elements describing two successive
one-electron transfer processes. Thus we get

((sg=s5,B#i,k,j)(s/ =s0,5=So+ 3,5 = )(S’)SM|HeXt e.i—j—Kk)|(sg,B#i,k,j.I)
(S5i=S0+%,5¢=50,5 =50+ D(S)SM)

2 ijr iyo

(jv)°(sp=54.8

—E (epiolal ey, i) 2 <(sg Sg.B#1,K,})(S/ =505, =50+ 3,5/ =5))(S')SM
("

ii,k:j)(sflzso"”%,sﬁ Sot %lsjl_sj )(E")SM <(jv)0(sl,[;:S‘81B;éilklj)(si,,:SO+ %:Sﬁ_so"' %!S;,_SJ f)
(S)sMm

2, C;(//U"CJUO', (Sﬁ,ﬁ7&i,k,j)(si:SO+ %1sk2301sj)(§)SM, (52)

where symbol jv)° shows thatp;, orbital is empty in the intermediat@louble primed state.
The calculation of the matrix elements of the one-electron transfers involved i(tbBdgs based on the angular momen-
tum approach developed in Sec. VI. Omitting the details we give the result

(jv)o(sgzsﬁvﬁiivkij)

<(S’B=sﬁ,ﬁii,k,j)(si’=so,SL:sc>+%,s =sj)( S’)SM‘Z CyoCiyo
(S _SO+ %!Si(’ SO+;,S”—S] 2)('§”)SM>

=(—1)6,i(5)Zi_[(Sg=5p=55.8#1,K,])(Sk=5=So T 2)
(S{=So+ %S =S0,5 =5~ 3.S] =sj)(§”)(§’)8], (53)
where ¢;(s;) is a factor defined as

=1, ifi<j

Bij(sj): (_1)2(SO+Sj) if |>J . (54)

We also have
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<(jv>°<s;;=sﬁ,ﬂ¢i,k,j><s;'=so+%,s'k'=so+%,s;’=sj—% <§">SM‘2 Cugr Civer

(sg,B#i1,K,1)(S=S0+ 1,5=50,5,)(S)SM)

= < (sg,B%1,K,j)(5;=S0+ 1,5=50,5))(S)SM

+
Z CjoorCrso’
ag

‘(iv)o(SZ::SB,/#i,k,j)(Si”=So+%,SL’=So+ %,Sj’=sj—%)(§”)SM>
:(_1)"9kj(Sj)Zk%j[(SZ;=SB,,B?Ei,k,j)(SfIZSiZSOJF%)(Sﬁ:SoJF%,Sk:So,S}’=Sj—%,Sj)(g”)(g)s]- (55
Substitution of Eqs(53) and (54) into Eq. (52) leads to the following expression:
<(S};=SB,B#.k,j)(Si'=So,S(<=So+%.Sj’=sj)(§’)SM|HP {@,i—=i—=K)[(sg,B8#i,k,j,!)

ex-t

(Si=So+ 3,5«=50,5;=So+ 2) (S)SM)

= 9ij(3j)9kj(3j)zv: (Dejoldleju i)

Zi_i[(Sg=sp=55,B#i.k})(Sk=5=So+ 3)
(s
(s/=S0+ 35 =50,8=5j— 3,5 :Sj)(rér')(nsi’)S]Zkﬁj[(SZ;ZSlg,,Bii,k,j)(SiHZSi:SO-I— )
(Sp=So+3,5=50,5/ =5j— 3,5)(S)(S)9]. (56)

Comparing this formula with Eq51) one can see that when the “intermediat@fi the transfer processei®n j is of the
typed?”, both formulas give the same dependence on the site spins and on the intermediate spins. Therefore, we can combine
Egs. (56) and (51), taking also into account Eq$48)—(50), to obtain the following final result for the potential exchange
transfer matrix element:

<(S;;:S‘By,87&i:k)(si,:SOasli:SO+%)(RS‘,)SM|H§x-tl(i4’k)|(sﬁ:Biiak)(sizso_i_ 1,5=50)(S)SM)
=j;k Hij(sj)gkj(sj)AﬁkZ Zi_jl(sg=sp=54.,B#1,Kj)(Sx=s¢=So+ 3)(s{=sp+ %,Si'=50,53'=5j_%,Sj'=5j)(3")
* (s

(S)S1Zkj[(Sp=5.B#1 k. ) (S =5=80+ 3 (sp=So+ 3,5,=S50.5/ =5~ 1,5)(S")(S)S]. (57)

HereAiFJ-’k represent the parameters associated with the potential exchange transfer. These parameters depend on the number c
the electrons in the centgras follows:

<l//kl//j|g|l//jlﬁi>+2 (Iejulalej i), for d,ml ions
A= U : (58)
; (@il 9l@juisi), for dff ions

Summation in Eq(57) involves the sites of both types and the number of electrons. That is why the problem of
dj‘” and d}‘, possessing spirq=50+% ands;=sy, corre-  reducing the matrices becomes of crucial importance for the
spondingly. higher nuclearity MV systems. For clusters exhibiting high

Equation(57) makes it possible to built the matrix of the symmetry the most efficient way to attack this problem is to
potential exchange transfer for the high-nuclearity MV sys-take advantage of the point symmetry arguments. Let us con-
tems containing arbitrary number of moving electrons in thesider briefly how the symmetry can be added to our general
case of less than half-filled shells. The case of more than approach.
half-filled d shells can be considered quite similarly. Since Hamiltoniar(10) is isotropic, there will be matrix

elements only between states exhibiting the same values for
X. SYMMETRY CONSIDERATION the total spinS and its projectionM, and belonging to the

The dimensions of the matrices to be diagonalized insame irreducible representatidh of the point symmetry

crease dramatically with the increase of the number of sitegroup of the cluster. In the angular momentum approach the
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|ID(S)SM) basis[each basis function is characterized by a  The symmetry adapted wave functions built in this way
definite electronic distributioD and a definite set§) of  are the linear combinations of the wave functiobgS) S M)
intermediate spinishas been used. Point symmetry opera-of the initial set:

tions produce interchanges of sitgsermutations of the or- f

bitals in the Slater determinaptsiixing thus thelD(S)SM) |STM y)= L > Ry

states with differenD and (S) belonging_however to the 9% 7

sameSM space. The symmetry operatiéh applied to an

arbitrary funct?on|D(_S)SM) generates a linear combination X GD/(E/)D(E)(@HD'(g')SM>- (63)

of wave functions with the sam8 and M values but with D'(3)

different distributionsD and sets §) This basis set corresponds to a certain fiyédsymbol

o R _ v’ is omitted in the labeling o8I" term.
RID(S)SM)= X Gp /(305 (R)D'(S)SM), The matrix elements of the Hamiltoni&h0) in the sym-
D'(s") metry adapted basis can be represented in terms of the matrix
59 elements of the typeD’(S')SM|H|D(S)SM) that have
whereG is the matrix ofR in the {D(S)SM} representation been already calculated in the previous sections.
R _ o The tetrameric cubane-type clusters providee to their
Gp' (3,05 (R)=(D'(S")SM|R|D(S)SM). (60)  high symmetryT4) a very good example illustrating the ad-
) ~ vantages of the symmetry adapted approach. Let us consider,
Therefore, the set of the wave functioi(S) SM) for each for instance, the tetramef—d®—d°—d° (total spinS=43,3,...

given S andM can be regarded as the basis of some represd) For eachS we have reducible representatibp(S) with

sentation of the cluster's symmetry group. This representage pasigD(S)SM). So forS=7/2 the basis set contains 88

tion is generally speaking reducible and we denote ¥as  stategthe dimension of this representatibn(S=7/2) is the
The wave functions|D(S)SM) can be expressed in piggest ong Following the method described above one can

terms of a linear combinations of Slater determinai@isc.  reducel’,(S=7/2) to the irreducible representations B
lII). Therefore, applying the symmetry operations to eack?roup as follows:

Slater determinant of these linear co[nbinations one can cal-
culate all matrix elementSp. (5 p(5)(R) and then find the T,

7
S= —) =3A,+5A,+ 7E+ 12T, + 10T,.

characters of the representatibp 2
A A Since only the matrix elements linking the states with
Y'[(R)= > Gp(3)0(5(R). (61)  the samd’ andy can be nonvanishing, we obtain instead of
D(S) the initial matrix 88<88, five matrices of smaller dimensions

(3%3, 5%X5, 7X7, 1212, and 1(x10).
For the distorted cluster dd,4y symmetry for the same
712 we get

Decomposind’, into the irreducible parts one can find
all SI' terms admitted by the symmetry of the system beforeS:
finding their energies(an alternative method of group-
theoretical classification has been recently proptsedsed
on the properties of the permutation group Ly

The next step is to construct theI'M y) basis belong-
ing to the total spinS and irreducible representatidn (y
enumerates the basis functionsI9f This can be reached by
means of the point group projection operator

2

Therefore, now we should diagonalize two matrices 10
X10, two matrices 1212, and one matrix 2211. One can
see that even in this case of comparatively low symmetry,
the group theoretical approach provides significant simplifi-
~ o fr oA a cations of the computational procedure. The advantages of
P(W)/:— > G(w),(R)*R, (62)  the use of symmetry adapted basis set increase with the in-

9% crease of nuclearity of the system and local spins.

wherefy is the dimension of the irreducible representafign  XI. CONCLUDING REMARKS

G%(R) is the matrix element of the matrix of the irreduc- The evaluation of the exchange interactions effects in
ible representatiol’ corresponding to the operatidd The localized and delocalized spin systems is quite different.
projection operator is to be applied to the arbitrary waveThus, in the former case it is well known that under some
function |D(S)SM). Fixing the second index’ we obtain  restrictions the full Hamiltonian may be replaced by an ef-
fr- functions|SI'M yy') forming the basis of the irreducible fective spin Hamiltonian involving the spin exchange inter-
representatio’. Since the second indexX can takefr- val-  actions. The required computational proced{rased on the
ues we can obtairf;- independent basis sets. Using any ofuse of irreducible tensorss well developed and allows one
these sets one can strongly reduce the dimensions of the express the matrix of the spin Hamiltonian in terms of spin
matrices to be diagonalized. This is because in the new basexchange parameters and relevant spin quantum numbers.
besides the diagonal matrix elements, only those offThis kind of semiempirical approach can not be applied to
diagonal matrix elements linking the states belonging to thehe MV systems containing delocalized electrons because the
repeating irreducible representations can be nonzero. magnetic moments on each site are not well defined. In these

7
S= —) =10A; + 12B; + 10B,+ 12A,+ 22E.

J. Chem. Phys., Vol. 105, No. 16, 22 October 1996

Downloaded-29-Jan-2010-t0-147.156.182.23.-Redistribution-subject-to-AlP-license-or-copyright;~see-http://jcp.aip.org/jcp/copyright.jsp



6908 Borras-Almenar et al.: Mixed valence magnetic clusters

systems besides the usual spin exchange coupling, there is ACKNOWLEDGMENTS

additional spin coupling due to electron delocalization  Financial supports by the European Union CHRX-CT92-
namely double exchange that can not be expressed in terng®80 and the Direccio General de Ciencia y Tecnolag!

of a spin Hamiltonian. Hence, the general form of the effec-DGICYT PB94-0998 are acknowledged. J.M.C. thanks the
tive Hamiltonian for these systems is unknown. As a conseGeneralitat Valenciana for a predoctoral grant. B.S.T. thanks
quence the resolution of the double exchange problem hage Universidad de Valencia for a visiting professor grant.
required until now a particular procedure for each kind ofA.v.P. thanks the Ministerio de Educacion y Cultura for a
MV system. postdoctoral fellowship. We also thank the CIUV for its

In this paper, we have presented a new efficient an¢omputer facilities.

general approach and a computational procedure for tth B, Good h, Prog. Solid State Ch&ld5 (1973
. . . . . B. Goodenough, Prog. Solid State ) .
evaluation of the electronic and magnetic properties of MV}, = Pope, Heteropoly and Isopoly OxometalatéSpringer, Beriin,

clusters of arbitrary nuclearity. This approach is based on the 1983: m. T. Pope and A. Mer, Angew. Chem. Int. Ed. Eng30, 34

angular momentum theory and chainlike spin Coupling3(1991).

scheme and avoids the stage to derive a generalized effectiveéolyoxometalates: From Platonic Solids to Anti-retrovial Activigylited
Hamiltoni Th tarti f th | Hamiltoni that by M. T. Pope and A. Miler (Kluwer, The Netherlands, 1994
amiltonian. us, starting from the real Hamiltonian that 4 " v, Baker,Advances in the Chemistry of Coordination Compounds

includes all the relevant electronic interactions, we have built (MacMillan, New York, 1963, p. 604.
directly the energy matrix. This has allowed us to express the’E. Coronado and C. J. Gomez-GarcComments Inorg. Chend7, 255

; ; i} (1995.
matrix elements of _doubl_e exchange in terms of one eIectrorgG. Blondin and J. J. Girerd, Chem. Re0, 1359(1989.
transfer parametek@volving all the relevant electronic pro- 7 “Ngodieman, Inorg. Chen®7, 3677(1988.

cessepand the full set of spin quantum numbers in the initial 2J. Jordanov, E. K. H. Roth, P. H. Fries, and L. Noodleman, Inorg. Chem.
and final localized states of the MV system. In the frame- 29 4288(1990.

~ L. Noodleman, Inorg. Chen80, 246 (1991); 30, 256 (1991).
work of the developed approach the two-electron tranSfe[OL. Banci, |. Bertini, F. Briganti, C. Luchinat, A. Scozzafava, and M. V.

processes and three-center interactiogechange transfer  ojiver, Inorg. Chem30, 4517(1992.
are considered as well. 11|, Noodelman and E. J. Baerends, J. Am. Chem. 306, 2316(1984.

The computational procedure is rather simple and con:.L- Cai and R. H. Holm, J. Am. Chem. Sot16, 7177 (1994
sists of the foIIowing steps: V. Papaefthymiou, J. J. Girerd, L. Moura, and E. mély, J. Am. Chem.

. . . Soc.109 4703(1987.

(1) We define the network of thdl active metal sites 14g | Bominaar, S. A. Borshch, and J. J. Girerd, J. Am. Chem. $08.
involved in the transfer processes, and the number of delo-5362(1994.
calized electron®: 15E. L. Bominaar, Z. Hu, E. Mock, J. J. Girerd, and S. A. Borshch, J. Am.

. . s Chem. Soc117, 6976(1995.
(2) We derive all the localized distributioris of P elec-  1sC zener, phys. Rews2, 403 (1951.

trons overN sites, defining at the same time the spin on each’p. w. Anderson and H. Hasegawa, Phys. RS0, 675 (1955.
site (So and sy+3 or Sp—3). The N active sites are enumer- *°P. G. de Gennes, Phys. Reil8 141 (1960.

19 ; . "
ated (=1.2. .. - this enumeration is independent of the J. J. Girerd, V. Papaefthymiou, K. K. Surerus, and E.ngly Pure Appl.
( ' N P Chem.61, 805(1989.

electronic distribution; _ 203 3. Girerd, J. Chem. Phy£9, 1766(1983.
(3) For each electronic distributiod possessing the set 2Mm. Drillon, G. Pourroy, and J. Darriet, Chem. Ph{8, 27 (1984.
of local spinss, s, ...,Sy (S;=Sp Of So*1 depending on the ??M. 1. Belinskii, V. Ya. Gamurar, and B. S. Tsukerblat, Phys. Status Solidi

C . : _ B 135 189, 555(1986.
distripution D), we build the full set of spin quantum num 23G. Pourroy, E. Coronado, M. Drillon, and R. Georges, Chem. PHy4;.

bers:S,,S;,...,.Sy-1 (intermediate spins in the successive 73 (19gq.
spin coupling schemeand Sy=S (total spin of the systejln  2*M. I. Belinskii, Mol. Phys.60, 793 (1987; Soviet Phys. Solid Stat27,
(4) Matrix element of the double exchange can be non-, 1761(1985.

zero if two electronic distribution® and D’ differ in the (535,)932_ (f;’g”aez'eam‘ E. Coronado, and G. Pourroy, J. Appl. Phgs,

occupation numbers of two sites orflyne-electron transfer  2s¢ 3 Gomez-Garay E. Coronado, R. Georges, and G. Pourroy, Physica B

To evaluate this matrix element one should use E2f.and 182, 18(1992.

(40) substituting in these equations full sets of spin quantum”g- :é:j:kglizla;hA'vagig%g}l “{"(SS?;-”&VSKM'SY% Gﬁg‘;g&gaand A.

numbers for_ the distributio® and D”. Each total spinS . ZSB: S. Tst?kert)’Iat, )IIVI I. Belinskii, V. E. ’Fainz.il‘beyrg., iéoviet Scientific

(S'=9) provides a block of the full double exchange matrix; Reviews, Chemistry Revieveslited by M. E. Vol'pin(Overseas Science,
(5 The matrices of the two-electron transfer and poten- New York, 1987, p. 337.

tial exchange transfer are also blocked according to the val-3: J- Borfa-Almenar, E. Coronado, and B. S. Tsukerblat, Chem. Phys.

. . . 177, 1 (1993.
ues of total Spirs. The matrix elements are given by Egs. 30M. I. Belinskii, B. S. Tsukerblat, S. A. Zaitsev, and I. S. Belinskaya, New

(46) and (57) correspondingly. The matrix elements of all . chema6, 791(1992; A. V. Palii, S. M. Ostrovsky, and B. S. Tsuker-
named interactions are expressed through the universal funcblat, ibid. 16, 943 (1992.

; imi P 813, J. Borra-Almenar, E. Coronado, R. Georges, and C. J. Gomez-&arc!
2321192(55] [Egs. (36) and (37)] containing products of 6 3. Magn. Magn. Materi04 955 (1902

: ) 32J. 3. Borfa-Almenar, J. M. Clemente, E. Coronado, R. Georges, and B. S.
In this paper, we have described the developed approachTsukerblat, J. Magn. Magn. Matet40-144, 197 (1995; J. J. Boria-
only. This approach is now being exploited to treat some Alme_nar, J. M. Clemente, E."Coronado, R. Georges, H. Kishine\_/s_ky, SHIR

complex MV magnetic systems as the high nuclearity MV ﬁ‘éﬁzze;ég% ('\1%9(;3"0"3"“' A. V. Palii, and B. S. Tsukerblatid.
polyoxometalate clustetsand the diphthalocyanine MV 33J. J. Borfa-Almenar, E. Coronado, R. Georges, and C. J. Gomez-@arci

chains® The results will be reported in future papers. Chem. Phys166, 139 (1992.

J. Chem. Phys., Vol. 105, No. 16, 22 October 1996

Downloaded-29-Jan-2010-t0-147.156.182.23.-Redistribution-subject-to-AlP-license-or-copyright;~see-http://jcp.aip.org/jcp/copyright.jsp



Borras-Almenar et al.: Mixed valence magnetic clusters 6909

343.J. Borra-Almenar, E. Coronado, R. Georges, and C. J. Gomez-Garci “20. Kahn,Molecular Magnetism(VCH, New York, 1993.

Chem. Phys177, 15(1993. 43D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskuantum
353.J. Borra-Almenar, J. M. Clemente, E. Coronado, R. Georges, and B. S. Theory of Angular MomentuttWorld Scientific, Singapore, 1988

Tsukerblat, Mol. Cryst. Liquid Crys274, 193(1995. 443, J. Borra-Almenar, J. M. Clemente, E. Coronado, and B. S. Tsukerblat,
36A. J. Marks and K. Prassides, J. Chem. P198.4805(1993. Chem. Phys195, 1, 17, 29(1995.

%7C. J. Gomez-Garay C. Gimenez-Saiz, S. Triki, E. Coronado, P. Le “°D. Gatteschi and B. S. Tsukerblat, Mol. Phy$, 121(1993; A. L. Barra,
Magueres, L. Ouahab, L. Ducasse, C. Sourisseau, and P. Delhaes, InorgD. Gatteschi, B. S. Tsukerblat, J. Doring, A."NMu, and L. C. Brunel,
Chem.34, 4139(1995. Inorg. Chem.31, 5132(1992.

383, M. Williams, J. R. Ferraro, R. J. Thorn, K. D. Carlson, U. Geiser, H. H. “6G. Blondin, J. J. Girerd, iMixed Valency Systems: Applications in Chem-
Wang, A. M. Kini, M. H. Ehangbo, irDrganic Superconductors, Synthe- istry, Physics and Biologyedited by K. Prasside&luwer, Dordrecht,

sis, Structure, Properties, and Thepmldited by R. N. GrimegPrentice 1991, p. 353.

Hall, Englewood Cliffs, NJ, 1992 47G. Blondin, S. Borshch, and J. J. Girerd, Comments Inorg. CH&nB15
393, L. Paillaud, M. Drillon, A. De Cian, J. Fischer, R. Weiss, and G. Vil-  (1992.

leneuve, Phys. Rev. Letb7, 244 (1991). 483. J. Borra-Almenar, E. Coronado, R. Georges, A. V. Palii, and B. S.

4B, S. Tsukerblat and M. |. Belinskilagnetochemistry and Radiospec-  Tsukerblat, Chem. Phys. Le®49, 7 (1996.
troscopy of Exchange Coupled Clustdtishinev, Pub. Stiintsa, 1983  “°J. J. Borra-Almenar, E. Coronado, R. Georges, A. V. Palii, and B. S.

(Russian. Tsukerblat(unpublished
4IA, Bencini and D. Gatteschilectron Paramagnetic Resonance of Ex- °V. P. Coropceanu, M. E. Guerrero, and V. la. Gamurari, Mol. PBgs.
change Coupled SystertSpringer, Berlin, 1990 185(1995.

J. Chem. Phys., Vol. 105, No. 16, 22 October 1996

Downloaded-29-Jan-2010-t0-147.156.182.23.-Redistribution-subject-to-AlP-license-or-copyright;~see-http://jcp.aip.org/jcp/copyright.jsp



