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Chapter 1

Introduccion

En esta memoria se tratan diversos problemas sobre holomorfia en infinitas dimensiones.
La memoria se divide en tres capitulos, en cada uno de los cuales se aborda un problema
distinto. En esta introduccion se pretende dar aquellas definiciones y notaciones que son
utilizados a lo largo de toda la memoria, asi como un resumen amplio de los resultados
obtenidos. De cada capitulo damos a continuacién una breve introduccién al problema
tratado.

1.1 Definiciones basicas y notacion

A lo largo de toda la memoria vamos a trabajar con espacios vectoriales localmente con-
vexos, que a veces seran espacios de Banach. En cada momento se establecera explicitamente
de qué clase de espacios se estd tratando y la notacién utilizada. Vamos a fijar aqui los
conceptos y la notacién que seran utilizados a lo largo de toda memoria. Las nociones que
se utilicen en cada capitulo seran establecidas cada una en su momento.

Si E'y F son dos espacios vectoriales, denotaremos por L,("E; F') al espacio de aplica-
ciones L : E™ — F n-lineales. Este es un concepto puramente algebraico. Cuando F y F
sean espacios localmente convexos, denotaremos por L("E; F') al espacio de aplicaciones n-
lineales y continuas. Cuando n = 1 escribiremos simplemente L(E; F'). Si F' = C escribimos
L("E) y si, ademds, n = 1, se denota E’. Una aplicacién L € L("E; F) se llama simétrica
si para cualesquiera x1,...,z, € E y cualquier permutacién o : {1,...,n} — {1,...,n}
se cumple que

L(xl, v ,(L’n) = L(xa(l), oo ,l‘o.(n)).
Al subespacio de L,("E; F') de aplicaciones simétricas se le denota por L5 ("E; F).

Una aplicacién P : E — F es un polinomio n-homogéneo si existe alguna L €
L,("E; F) tal que, para todo = € E,

P(z) = L(z,...,x). (1.1)
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El espacio de polinomios n-homogéneos entre E y F se denota por P,("F; F'). Las apli-
caciones constantes se consideran como polinomios 0-homogéneos. Se llama polinomio de
grado n entre E'y F' a toda aplicacién P de modo que existen Py, ..., P, con P € Pa(kE; F)

para cada k tales que
n
P=> P
k=1

Se denota por P,(E; F) al espacio de todos los polinomios entre E y F. Para un estudio
detallado de los espacios de polinomios, su relaciéon con las aplicaciones lineales y su rep-
resentaciéon como productos tensoriales puede consultarse [17], Capitulo 1.

Dado un polinomio P € P,("E;F), por la Férmula de Polarizacién, existe una uinica
P € L:("E; F) cumpliendo (1.1). De este modo se define un isomorfismo P,("FE; F) —
L:("E; F) (ver [17], Corolario 1.7).

Un polinomio n-homogéneo es continuo si y sélo si la aplicacion n-lineal asociada es con-
tinua. Del mismo modo, un polinomio es continuo si y sélo si los polinomios homogéneos que
lo definen lo son. En este caso P("E; F) y P(E; F) denotan respectivamente los espacios de
polinomios n-homogéneos continuos y polinomios continuos. Cuando F' = C denotaremos
simplemente P("E) y P(E).

En el caso en que E y F' sean espacios de Banach se define una norma en P(E; F') haciendo

|P|| = sup [|P(z)].

=<1

Con esta norma, tanto P("E; F') como P(E; F') son, a su vez, espacios de Banach.

Con todo esto, dado dos espacios de Banach E y F' y un abierto U C F, se dice
que f : U — F es holomorfa si para cada xy € U existe una bola B(xg;r) C U y una
sucesién de polinomios (Py)r € P(E; F') de modo que la serie Y > Pp(x — x) converge
uniformemente a f(x) para todo x € B(zg;r). El espacio de funciones holomorfas de U a
F se denota por H(U; F'). Puede darse otra definicién equivalente. Dados xg € U e yo € E,
se considera la funcién de una variable compleja A — f(z¢ + Ayo); entonces se dice que f
es G-holomorfa si para cada xg e yp, la tal funcién es holomorfa. Con esto, se prueba que
f es holomorfa si y sélo si es G-holomorfa y continua. Esto equivale a su vez a que f sea
continua y f|yna sea holomorfa para todo subespacio finito dimensional M de E. Para un
estudio més detallado de todas estas materias, véanse [17] y [58].

1.2 Operadores de composiciéon

El primer capitulo se dedica al estudio de los operadores de composicién. La idea original
es bastante sencilla y natural. Tomamos el disco unidad complejo, que denotamos D, y
una funcién holomorfa ¢ : D — ID. Con esto se define un operador f +— f o ¢ donde
f :ID — C es una funcién holomorfa. Este tipo de operadores puede definirse, obviamente,
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con origen y rango en el espacio de todas las funciones holomorfas definidas en D, un estudio
pormenorizado de esta situacién se encuentra en [69]. Otro tipo de espacios interesantes
de funciones holomorfas son los espacios ponderados. Si v : D — [0, 00] es una funcién
acotada, continua y positiva (se llama peso a una tal funcién), se define el siguiente espacio
de funciones holomorfas,

H D) ={f € HD) : || fllo = sup v(@)|f (@) < oo}

Estos espacios, llamados ponderados, han sido estudiados en, por ejemplo, [4], [27], [67].
Pues bien, puede definirse el operador de composicién entre dos de estos espacios y estu-
diar su propiedades dependiendo de la funcién que lo define o los pesos que definen los
espacios, como se hace en [5] 6 [73]. Nuestro objetivo en el capitulo es definir operadores
de composicion en espacios de funciones holomorfas en la bola unidad de un espacio de
Banach y generalizar algunos de los resultados de [5].

Consideramos X un espacio de Banach y B su bola unidad abierta. En primer lugar,
dado un peso v : B —]0, 0o[, definimos el espacio ponderado asociado de la forma natural

HF(B) ={f € Ho(B) : || fllo = sup ()] f(x)] < oo}

Por otro lado, de forma andloga al caso finito-dimensional, se define una condicién de
crecimiento asociada u(z) = ﬁ y a partir de ésta se define & : B —]0,+oo[ por
@(z) = supsep, |f(z)| y un nuevo peso asociado & = 1/@. Se prueban una serie de
propiedades de estas funciones. Por ejemplo, ||f]l, < 1 siy sélo si ||f]lz < 1, de dénde
se deduce que Hy°(B) = H°(B) isométricamente. También, x € B existe f € H;°(B) con
I fllv <1 tal que @(x) = |fz(x)| (ver Proposicién 2.2.4).

Ahora, dada ¢ : B — B y dos pesos v y w se define el operador de composicién
Cy : HX(B) — Hy(B) como Cy(f) = f o ¢. Nuestro objetivo a lo largo del capitulo es
encontrar condiciones sobre los pesos y sobre la funcién ¢ que hagan que el operador esté
bien definido, sea continuo o que sea compacto. Empezamos por el estudio de cuando esta
Cy bien definido. A este respecto obtenemos los siguientes resultados.

Proposiciéon 1.2.1
Si existe 0 < r < 1 tal que ¢(B) C rB, entonces Cy : H°(B) — H2(B) estd bien
definido para dos pesos v, w cualesquiera.

Proposiciéon 1.2.2

Sean v, w y ¢ tales que lim sup = (z) < 00
r—=1 ||g(z)|>r V(P(2))

Entonces Cy : Hy°(B) — HY(B) estd bien definido.
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Para el caso de cudndo el operador es continuo damos condiciones en un caso general
y, después, otra mas sencilla para un caso algo més restrictivo.

Proposicién 1.2.3

Sean v, w dos pesos y ¢ : B — B holomorfa. Entonces las siguientes afirmaciones son
equivalentes,

(1) Cy : HX(B) — HgP(B) es continuo.

o)
00 s e~ =
(4i7) iggm =M < oco.

En el caso en que v sea esencial (ver Definicién 2.2.1) tenemos que Cy : H°(B) — Hg ' (B)
es continuo si y sélo si

sup w(m) < 00

veB V(0(2))

Consideramos ahora la situacion en que H sea un espacio de Hilbert; en este caso se prueba.

Teorema 1.2.4
Sea B la bola unidad abierta de un espacio de Hilbert H y v : B —]0, +00[ un peso radial
y decreciente respecto a ||z||. Entonces las siguiente afirmaciones son equivalentes,
(1) Cy : HX(B) — Hy°(B) es continuo para toda ¢.
(#i) Para cada (xp)neny C B tal que ||z,]| =1 —27" se cumple:

inf 75(36"“)

> 0.
neN 17(.1‘71)

Con ayuda de una versién generalizada del Lema de Schwarz este tltimo teorema se prueba
también para el caso mas general (que incluye a los espacios de Hilbert) de los dominios
simétricos acotados, esto es, la bola unidad abierta de un JB*-triple (véase Definicién
2.4.6).

También buscamos condiciones que hagan que el operador de composicién sea compacto.
En esta linea, las pruebas se basan en el siguiente lema, cuya prueba sigue las mismas ideas
que la de [69], Seccién 2.4 y [5], Lemma 3.1.

Lema 1.2.5

Sea Cy : H°(B) — Hg(B) continuo Entonces las siguientes afirmaciones son equiva-
lentes,

(1) Cy es compacto.

(i3) Para cada sucesion acotada (f,), C H°(B) tal que f,, — 0 se cumple que ||Cy frllw —
0.
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Con este lema se prueban los siguientes resultados. En primer lugar tenemos una condicién
sobre la aplicacién ¢ que hace que el operador sea compacto independientemente de los
pesos.

Proposicién 1.2.6
Sea ¢ : B — B tal que ¢(B) es relativamente compacto y ¢(B) C B. Entonces, Cy :
H*(B) — HSP(B) es compacto para cualesquiera dos pesos v, w.

Imponiendo algunas condiciones sobre los pesos se tiene la siguiente caracterizacion

Teorema 1.2.7
Sean v, w dos pesos y ¢ : B — B con ¢(B) relativamente compacto. Entonces, Cy :
H*(B) — HSP(B) es compacto si y sélo si

wlr)

lim sup

r—17 | g(a)||>r V(B(T))
De hecho, en un sentido podemos obtener incluso un limite méds cémodo de manejar.

Teorema 1.2.8
Sean v, w dos pesos y ¢ : B — B con ¢(B) relativamente compacto tales que

lim w(z)

|z —1= D(é(z))

Entonces Cy : Hy°(B) — HgY(B) es compacto.

=0.

Asi, imponiendo unas condiciones ligeramente més restrictivas sobre los pesos podemos
conseguir una nueva caracterizacion.

Proposicion 1.2.9
Sean v, w dos pesos tales que lim,_,1- w(x) =0 y ¢ : B — B con ¢(B) relativamente
compacto. Entonces, Cy : H)°(B) — HgX(B) es compacto si y sélo si

lim (z)

|z —1- D(é(z))

g

=0.

La dltima parte del capitulo se dedica al caso en que el operador estd definido entre
espacios ponderados definidos no ya por un peso sino por una familia de ellos (véase [27]).
Asi, se tienen condiciones relacionando la continuidad del operador cuando se considera la
familia de pesos y cuando se considera solo algunos de ellos de forma individual. Consider-
amos familias numerables de pesos V' 'y W tales que v(z) > 0 y w(z) > 0 para todo = € B,
veVyweW.
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Proposiciéon 1.2.10

Sea ¢ : B — B holomorfa yV, W dos familias de pesos tales que para cada w € W existe
un v € V de manera que Cy : H*(B) — HgY(B) es continuo.

Entonces, Cy : HV (B) — HW (B) es continuo.

Proposiciéon 1.2.11

Sean V., W dos familias de pesos y ¢ : B — B tales que el operador de composicion
Cy : HV(B) — HW (B) es continuo.

Entonces, para cada w € W existen vy, ..., v, €V yv =sup;—y ., vi; tales que Cy :
H°(B) — H(B) es continuo.

A partir de esta proposicién se tiene de forma inmediata lo siguiente.

Corolario 1.2.12

Sean V', W dos familias de pesos, V creciente, y ¢ : B — B tales que el operator de
composicion Cy : HV (B) — HW (B) es continuo.

Entonces, para cada w € W existe v € V tal que Cy : Hy°(B) — HY(B) es continuo.

Se prueba entonces que, de hecho, V puede tomarse siempre creciente; es decir, que dada
cualquier V, podemos definir V; creciente tal que HV (B) = HVi(B). Autométicamente
tenemos una caracterizacion.

Proposiciéon 1.2.13

Sean V., W dos familias de pesos y ¢ : B — B tales que el operator de composicion.
Entonces, Cy : HV (B) — HW (B) es continuo si y solo si para cada w € W existe v € V.
tal que Cy : H°(B) — HY(B) es continuo.

1.3 Espectros en productos tensoriales de algebras Imc

Si A es un &dlgebra unitaria cualquiera, en la teoria espectral clasica se define el espectro
de a € A, denotado o(a), como aquellos A € C tales que a — Al 4 no es invertible. Esta
teoria clasica ha sido ampliamente estudiada y desarrollada. Durante la década de los
1930 Gelfand desarrollé un trabajo en el que relacionaba la teoria espectral en dlgebras
de Banach conmutativas con los homomorfismos de algebras continuos h : A — C, cuyo
espacio se denota por 9(A) (es un subespacio del dual de A). Para cada a € A defnié una
aplicacién a : M(A) — C por a(h) = h(a) y demostré que cada una de estas aplicaciones
es continua (con la topologia débil*). Ademads, la aplicacién ~ : A — C(M(A)) es un
homomorfismo de élgebras continuo (véase p.e. [70], Capitulos 12 y 13). Con esto se tiene
que

o(a) ={a(h): h e M(A)}.

Nuestro objetivo es, haciendo uso del espectro definido por Harte en los anos 1970 (véase
[33]) para familias de elementos de un algebra, definir un espectro vectorial para elementos
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de un producto tensorial. Tomamos si A es un algebra con unas ciertas propiedades y E un
espacio localmente convexo. Consideramos el producto tensorial con una cierta topologia
T, A®1 E. Para cada T € A®7E queremos definir un espectro o(T) C E que generalice
el clasico y el definido por Waelbroeck en la década de 1970 para elementos de A&, X (A
algebra de Banach y X espacio de Banach). Los primeros pasos en esta direccién fueron
dados en [18], [19], [20] y [73] para espacios y &lgebras de Banach.

En primer lugar, se dice que un algebra A es algebra topoldgica si tiene una topologia
7 de manera que las operaciones algebraicas son continuas. Un &lgebra topolégica A es
localmente multiplicativamente convexa (lmc) si es un espacio localmente convexo cuya
topologia estd definida por una familia de seminormas (p;);er tales que, para todo z,y € A
y todo i € I,
pi(zy) < pi(@)pi(y).

A las seminormas con esta propiedad se les llama multiplicativas. Por otro lado, en un
algebra A se define una operacién por a o b = a + b — ab; esto da una operacién asociativa
con identidad 0, asi, se dice que un elemento a € A es quasi-invertible si existe algin b € A
de modo que aob = 0 = boa. Entonces un algebra topoldgica A es Q-dlgebra si el conjunto
de elementos quasi-invertibles es abierto en A. Si A es unitaria, entonces es Q-algebra si y
sélo si el conjunto de elementos invertibles es abierto. Durante todo el capitulo se trabaja
con algebras lmc y Q-algebras.

Trabajamos también con productos tensoriales en los que consideramos una topologia
7T . Utilizamos topologias tensoriales uniformes (Definicién 3.2.9), concepto que generaliza el
de topologias compatibles definido por Grothendieck en [30]. Cuando tenemos dos dlgebras
Imc Ay B, el producto A ® B es a su vez algebra (se da una prueba). Estudiamos el caso
de cudndo A&7 B es a su vez dlgebra Imc. En esta linea obtenemos que tanto la topologia 7
como la ¢ son uniformes. Ademds A&, 3 es dlgebra Imc para cualesquiera Ay By A®.B lo
es cuando A sea dlgebra uniforme. Consideramos a su vez topologias localmente convexas
definidas a partir de las llamadas “normas de Lapresté” (véase [11], Seccién 12.5), deno-
tadas o, 5. Obtenemos que a5 es siempre uniforme y damos una clasificacién de cuando
A®a, B es dlgebra Imc.

Se empieza por definir una aplicacion de Gelfand vectorial. Si E es un espacio localmente
convexo completo y 7 es una topologia uniforme podemos hacer la identificacién C&7E =
E. Ahora tomamos un algebra Imc A (no necesariamente conmutativa) y para cada h €
M (A) podemos considerar la aplicacién h®@ Ir :— E. De este modo, para cada T € AXTE
se define su transformada de Gelfand como

~

T:MA) — E , T(h)=[he Ig)(T).

Aunque no podemos probar que sea siempre continua, si tenemos lo siguiente.
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Proposiciéon 1.3.1

Sean A una Q-dlgebra Ime, E un espacio localmente convexo completo y T una topologia
tensorial uniforme. Entonces, para cada T € A®X7TE, la aplicacion T : M(A) — E es
continua.

Asi pues, si A es Q-dlgebra lmc tenemos definida la aplicacion de Gelfand vectorial ~ :
A7 E — C(M(A); E) dada por T(h) = [h ® Ig|(T). Entonces se prueba que

Proposicion 1.3.2

Sean A una Q-dlgebra Imc, E un espacio localmente convexo completo y T una topologia
tensorial uniforme. Entonces, la aplicacién de Gelfand, ~ : AQ7E — C(MM(A); E) es una
aplicacion lineal y continua.

Si, ademds B es un dlgebra Imc completa y T una topologia uniforme que satisface que
A®7 B es dlgebra Imc, entonces la aplicacion de Gelfand ~: AQ7B — C(M(A), B) es un
homomorfismo de dlgebras continuo.

Con la transformada de Gelfand definida de esta manera, siguiendo el resultado del caso
escalar y la definicién dada en [18] y [73], para cada T € A®7E se define el espectro de
Waelbroeck como el siguiente conjunto,

ow(T) = {T(h) : h e M(A)} = {[h @ Ig](T) : h e M(A)} C E,

siendo A un algebra Imc conmutativa y unitaria y E un espacio locamente convexo com-
pleto. Es bien sabido que en el caso clésico el espectro es compacto y que lo mismo ocurre
en el caso de algebras y espacios de Banach; en este caso se tiene el resultado analogo.

Proposicién 1.3.3

Sea A una Q-dlgebra Ilmc unitaria y conmutativa, E espacio localmente convexo completo
y T una topologia tensorial uniforme. Entonces, para cada T € AQTE, el espectro oy (T)
es compacto.

Por otro lado, si A es algebra Imc completa puede ponerse como un limite proyectivo
reducido (ver Secciones 3.2.2 y 3.4.2) A = lim A; donde cada A; es dlgebra de Banach

con proyecciones m; : A — A;. Lo que intentamos entonces es relacionar el espectro de
Waelbroeck en A con los definidos en cada A;. En primer lugar, para cada T € AR7E,
denotamos T; = (m; ® Ig)(T) € A;®7E. Imponiendo sobre la topologia una condicién no
excesivamente restrictiva, que llamamos condicién de limite proyectivo (Definicién 3.4.3),
obtenemos

Proposicién 1.3.4

Sean A dlgebra Imc unitaria, conmutativa y completa, E espacio localmente convexo com-
pleto y T topologia tensorial uniforme que satisface la condicion del limite proyectivo. Dado
T € AR7E se cumple,
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(1) ow(Ts) € ow(T;) para cualesquiera j > i.

(id) ow (T) = [ Jow (T).

iel

Para el caso no conmutativo se definen espectros a izquierda, derivados de considerar
invertibilidad por la izquierda. El tratamiento por la derecha es obviamente absolutamente
analogo. Se comienza por considerar el espectro de Harte por la izquierda para familias
de elementos de un &lgebra (ver Definicién 3.5.1). A partir de éste se define el espectro de
Harte por la izquierda de T € A®7FE como el conjunto aif}f HT) de aquéllos 2" € E” tales
que

14¢{ Z a; ([[a®2'|(T) — 2"(2)14) : a; € A, 2} € E'}.

i€EF
F finito

Tenemos el espectro definido en el bidual de E. La primera pregunta natural es, pues, ver
en qué condiciones tenemos que estd en E. Por medio de la aplicaciéon Jg : E — E”
definida como Jg(z)(2') = 2/(x) podemos considerar a E como un subespacio de E”. Con
esto tenemos la siguiente respuesta positiva.

Proposicién 1.3.5

Sean A una Q-dlgebra Imc unitaria, E un espacio localmente convexo completo y T una
topologia tensorial uniforme. Tomamos T € A&7E. Entonces, para todo x" € aﬁft(T)
existe un x € E tal que Jg(x) = 2”. Consiguientemente podemos identificar:

(M) = e e B ug (Y aillla@)(T) —'(2)1) : ai € A,z € B'}).

i€F
Ffinito

En el caso en que A sea completa, se define una accién de A ® E’ sobre A&7 FE por medio
de
(b®a")(a®x) =2 (z)ba

y extendiendo por linealidad. De este modo podemos incluso hacer una nueva identificacion,
con un aspecto muy similar a la del espectro clasico,

oM ={z€B:ALe AQE tq. <Z,T—14®z>=14}.

Si A es conmutativa tenemos dos espectros definidos, el de Harte y el de Waelbroeck. Se
prueba que son el mismo conjunto.

Proposicién 1.3.6
Sea A una Q-dlgebra lmc unitaria y conmutativa, E un espacio localmente convexo completo
y T una topologia tensorial uniforme. Entonces, para cada T € AQTE,

Je(ow(T)) = ou(T).
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De modo analogo a lo que hicimos con el espectro de Waelbroeck, nos preguntamos por
la relacién entre el espectro de Harte y el de las proyecciones cuando A es un &dlgebra
Imc completa. Obtenemos el siguiente resultado, que aunque andlogo al del espectro de
Waelbroeck, utiliza técnicas totalmente diferentes.

Proposiciéon 1.3.7

Sean A una Q-dlgebra Imc unitaria y completa, E un espacio localmente convero completo
y T una topologia tensorial uniforme que satisfaga la condicion del limite proyectivo. FEn-
tonces, para cada T € ARTE,

(7) left(T ) C aleft(T ) pam cualesquiera j > i.

(i1) agﬂ Ualeft i)
i€l

En el caso en que tengamos dos algebras A y B, entonces A ® B es de nuevo algebra y
tenemos definido el espectro por la izquierda clasico. Nos preguntamos qué relacién hay
entre el espectro clasico y el de Harte vectorial y probamos lo siguiente.

Proposicion 1.3.8
Sean A un dlgebra Imc unitaria y conmutativa, B un dlgebra Ilmc unitaria y T una topologia
uniforme tal que AQ7B es Q-dlgebra lme. Tomemos T € AQ7B; entonces

o'l sM= U o5 (he1s(T).
heM(A)

En la teoria escalar hay una serie de resultados conectando la invertibilidad de un ele-
mento con la de su transformada de Gelfand. Utilizando diferentes técnicas y los resultados
obtenidos hasta ahora probamos los siguientes resultados analogos.

Teorema 1.3.9

Sea A un dlgebra de Fréchet unitaria y conmutativa, B un dlgebra de Fréchet unitaria y
T wuna topologia tensorial uniforme tal que ARQTB es un dlgebra Imc y que satisface la
condicion del limite proyectivo. Sea T € AQ7B; entonces las siguientes afirmaciones son
equivalentes.

(i) T es invertible por la izquierda en AX7B.

(i3) T(R) es invertible por la izquierda en B para todo h € M(A).

Con este teorema podemos probar que para ciertos espacios X, si B es una cierta algebra
no conmutativa denotamos por C(X, B) el espacio de aplicaciones continuas de X en B.
Aplicando el teorema tenemos que f € C(X, B) es invertible por la izquierda si y sélo si
f(z) es invertible por la izquierda en B para todo = € X.

Proposiciéon 1.3.10
Sea A una Q)-dlgebra de Fréchet unitaria y conmutativa, B un dlgebra de Fréchet unitaria
y T una topologia tensorial uniforme tal que AQ7B es un dlgebra Imc y que satisface la
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condicion del limite proyectivo. Sea T € AQ7B; entonces las siguientes afirmaciones son
equivalentes.

(i) T es invertible por la izquierda en AX7B.

(i3) T(R) es invertible por la izquierda en B para todo h € M(A).

(iii) T es invertible por la izquierda en C(OM(A), B).

Teorema 1.3.11

Sea A un dlgebra Imc unitaria y conmutativa, B un dlgebra lmc unitaria y T una topologia
tensorial uniforme tal que AQTB es una Q-dlgebra Imc. Tomamos T € A®7B; entonces
las siguientes afirmaciones son equivalentes.

(i) T es invertible por la izquierda en ASTB.

(i1) T(h) es invertible por la izquierda en B para todo h € M(A).

(i17) T es invertible por la izquierda en C(9M(A), B).

Con esto tenemos un resultado similar al anterior (ver Ejemplo 3.6.7). Si K es un compacto
con unas ciertas propiedades y BB una cierta algebra no conmutativa, sea H (K, B) el espacio
de gérmenes holomorfos en K con valores en B. Entonces, aplicando el teorema se tiene que
F € H(K,B) es invertible por la izquierda si y sélo si F'(k) es invertible por la izquierda
en B para todo k € K. Podemos conseguir aiin un poco maés, aplicando el tercer enunciado
del teorema se tiene que F es invertible por la izquierda en H(K, B) si y sélo si es invertible
por la izquierda en C(K, B).

Como corolario de los teoremas anteriores tenemos el siguiente, interesante en si mismo.

Teorema 1.3.12
Sea A = lim A; una Q-dlgebra completa; entonces,

a € A es invertible por la izquierda < a; es invertible por la izquierda en A; para todo i.

La ultima parte del capitulo se dedica al estudio de polinomios. Si P € P,(E; F'), puede
definirse otr polinomio Py € P, (A® F; A® F) de tal modo que, si P es n-homogéneo, se
cumpla que

Ppila®z) =a" @ P(x).

Este es un proceso algebraico que fue llevado a cabo en [19]. El problema es, cuando P es
continuo, extenderlo a un cierto P4 € P(A®7E; A97F). Se estudia el problema para las
topologias 7 y €. Con esto podemos relacionar los polinomios con los espectros que hemos
definido y obtenemos los siguientes teoremas espectrales.

Proposicién 1.3.13
Sea A una Q-dlgebra Imc, E, F espacios localmente convexos completos y T una toplogia
tensorial uniforme. Entonces, para cada P € P(E; F) tal que P4 € P(AQTE; ASTF) y
todo T € ARTE se tiene,

P(of"(T)) € o' (Pa(T)).
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Teorema 1.3.14
Sea A una Q-dlgebra Imc completa y E un espacio locamente convexo completo con la
propiedad de aproximacion acotada. Sea T una topologia tensorial uniforme definida por
una familia de seminormas {p ® q}. Si P € P(E; F) es tal que P4 € P("A®7E; AT F),
entonces

P(og"(T)) = o (Pa(T))

para todo T € ASTE.

El capitulo finaliza probando con ayuda de los teoremas relativos a polinomios que el
espectro de Harte es compacto.

Teorema 1.3.15
Sean A una Q-dlgebra lmc completa y unitaria, E un espacio localmente convexo completo
y T una topologia tensorial uniforme. Entonces, para todo T € AQTE, el espectro de Harte

vectorial aléft(T) es compacto en la topologia de E.

1.4 Cotipo 2 de espacios de polinomios en espacios de suce-
siones

Se dice que un espacio de Banach E tiene cotipo 2 si existe una cierta constante x > 0 de
manera que, para cualesquiera x1,...,x, € F,

(St} < x ([ 13wttt
k=1 0 k=

siendo ry, las funciones de Rademacher clasicas (Definicién 4.2.1). Con esto se define la con-
stante de cotipo 2 de E, denotada por Cy(F) como la mejor constante en esta desigualdad.
Se sabe que si E es infinito dimensional, entonces P (™ E) no tiene nunca cotipo 2 (véanse
[16] y [17] Proposicién 1.54).

Si X es un espacio de Banach de sucesiones (ver Seccién 4.3.1) esto incluye por ejemplo a
los espacios ¢, de Orlicz o de Lorentz, consideramos X,, como el espacio generado por los
vectores ey, ...,e,. Lo anteriormente observado implica que la sucesiéon (Co(P(™Xy)))n
debe tender a oo (ver Nota 4.5.2). El objetivo de este capitulo es estudiar de el compor-
tamiento asintético de esa sucesién, es decir, “;de qué manera se va a oo?”. De hecho, se
conjetura que para todo espacio de Banach de sucesiones simétrico se cumple que

Ca(P("Xn)) < (n'/2)™1Cy(X]},),

dénde (a,) =< (by,) significa que puede encontrarse una constante K > 0 de modo que
a, < Kb, y b, < Ka, para todo n € N. Aunque no se prueba la conjetura en el caso
mas general si se consigue para los casos en que X sea 2-convexo o bien 2-céncavo y tenga
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convexidad no trivial (ver Definiciones 4.3.1 y 4.3.2).

Se comienza situando el problema en un contexto algo mas general. El cotipo 2 puede
verse como un caso particular de una situacién mucho mds general. Si (2, A) es un ideal
de operadores de Banach, decimos que un espacio de Banach F cumple la 2A-propiedad si
idp € Ay se define la A-constante de E como A(idg).

Para probar la conjetura se hace uso de la representaciéon del espacio de polinomios m-
homogéneos como un producto tensorial simétrico; puesto que X,, es de dimension finita
podemos escribir P("X,,) = ®:2°X,, ([21]). El primer paso es mostrar que podemos tra-
bajar no sélo con el producto tensorial simétrico, sino con el producto tensorial completo.

Teorema 1.4.1

Sea (A, A) un ideal de operadores de Banach, X wun espacio de Banach de sucesiones
simétrico y m € N. Sea (ap)neny C R tal que apy < ayn (resp. an < amn); entonces las
siguiente afirmaciones son equivalentes.

(i) AP("X,)) < an (resp. an < A(P("X,))).
(it) A(®L°X]) < an (resp. a, < A(®:°X]))).
(1ii) A(RI'X]) < ap (resp. an < A(@TX])).

Aunque la prueba de la conjetura se hace explicitamente para el caso del cotipo 2, la
reduccion al producto completo se hace para cualquier 2(-propiedad. Con esto la conjetura
puede reformularse en los siguiente términos,

Co(®"Xp) = (”1/2)m71M(2) (Xn).

Esta estimacién es la que después efectivamente se prueba.

En primer lugar, antes de probar la conjetura en los casos particulares que se men-
cionaron anteriormente, se prueba una estimacién general, cierta para cualquier espacio de
Banach de sucesiones simétrico X.

Lema 1.4.2
Sea X cualquier espacio de Banach de sucesiones simétrico y m € N; entonces,
1/2ym—1
n
i < Co(®X,,) < (n'/2)m.
log(n+1)

A partir de aqui se tiene la siguiente estimacién para espacios de polinomios.

Teorema 1.4.3
Sea X cualquier espacio de Banach de sucesiones simétrico y m € N; entonces,

(n1/2)m—1

m n1/2 m
s <GP < ()
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Si ademas X tiene convexidad no trivial, se tiene que
(n1/2)m—1 < 02(73(an)) =< (n1/2)m‘

La cota superior de esta estimacién general es inmediata. Para la prueba de la cota inferior
se parte del siguiente resultado de Pisier (véase [64], Capitulo 10 y Definicién 4.6.3 para
los ay, y Definicién 4.2.5 para la norma [ de un operador),

Proposiciéon 1.4.4
Sea X un espacio de Banach yT : {3 — X un operador lineal; entonces para cualquier q,

sup k%, (T) < C,(X) I(T).
keN
Aplicando esto a nuestro caso particular y estimando convenientemente los elemento de la
desigualdad se llega a que, para cualquier espacio de Banach de sucesiones simétrico X y
cualquier m fijo,
(nm)l/Q HZd : eg - Xn”
ltid : 0y — Xy,)

En el desarrollo de la prueba de esta cota inferior se obtienen resultados interesantes en si
mismos.

=< C2(®?Xn)

Proposiciéon 1.4.5

Sean X,Y dos espacios de Banach de sucesiones simétricos; a, 3 dos normas en @ X,,, ™Y,
respectivamente tales que todo T' € S(R™K"™) y todo R € S(®™K") son isometrias cuando
en los espacios se dotan con o y [3; entonces,

| @5 5 — @F'Yall
| 5" €5 — QF Xn|

ma( X — B Y2) = ()2

El grupo S(®™K") se define en el Lema 4.6.1; baste decir que la norma ¢ cumple la
condicién de la proposicion. Con esto tenemos el siguiente resultado sobre los niimeros de
aproximacion (ay) y de Weyl (xy, Definicién 4.6.3) de la identidad.

Lema 1.4.6
Sea o una norma en @ X, como en el enunciado de la Proposicion 1.4.5. Entonces para
todo 1 < k< [%] =max{r e N:r < %} se tiene

lid : @505 — R X,|| > ax(id : @5y — @7 X,)

> xp(id : @50y — @5 Xy) > id : @50y — Q0 Xy

=
V2
Como ha quedado dicho, la versién de la conjetura que se prueba es la del producto
tensorial completo, y ni ain ésta se prueba en el caso mas general. El primer caso es el de
espacios 2-concavos.
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Proposicion 1.4.7
Sea X un espacio de Banach de sucesiones simétrico 2-concavo y m € N. Entonces

Co (@7 X,) = (nt/2)m~1,

La cota inferior se prueba a partir de la estimacién que ya obtuvimos para el caso general.
Para la cota superior se utilizan y estudian sucesiones débilmente sumantes y los llamados
operadores (Y, X)-sumantes (Definicién 4.7.4), que generalizan el concepto clasico de op-
eradores (p, ¢)-sumantes. Estos operadores (Y, X)-sumantes han sido utilizados en [52].
El segundo caso en el que se prueba la conjetura es aquél en el que X es 2-convexo y tiene
concavidad no trivial. Concretamente se tiene lo siguiente.

Proposicién 1.4.8
Sea X un espacio de Banach de sucesiones simétrico 2-convexo con concavidad no trivial
y m € N. Entonces
(nl/Z)m
n . *
>ic el x

Con estos resultados, utilizando el dual de Kothe de X (ver Definicién 4.3.7), tenemos
los resultados sobre espacios de polinomios que estabamos buscando.

C(@'X,) = (n'/2)" " M) (X,) =

Teorema 1.4.9
Sea X un espacio de Banach de sucesiones simétrico 2-convexo y m € N; entonces

Co(P(™X,)) = (n'/2)ym 1,

Teorema 1.4.10
Sea X un espacio de Banach de sucestones simétrico 2-concavo con convexidad no trivial
y m € N; entonces

Co(P("X,)) =12t lei|x

Aplicando estos dos teoremas, junto con un estudio particular de ¢1, cubrimos los todos
los espacios ¢, con 1 < p < co y nos permite dar la siguiente estimacion,

(n1/2)m

v/ log(n+1) 51 p=1

Co(P(MG) = n%3-1nl/p si 1<p<2
(n/2)m1 s 2<p<oo

También se obtienen resultados andlogos para espacios de Orlicz, de Lorentz y espacios £, .

Todos los resultados obtenidos son validos tanto para espacios de sucesiones reales o
complejos. Cuando el espacio de sucesiones es real es un reticulo de Banach; por lo que en
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este caso puede utilizarse la teoria de reticulos para obtener resultados nuevos. Se prueba
también que los resultado que se obtengan en esta linea pueden trasladarse al caso complejo.
Si X es un espacio de Banach de sucesiones complejo, definimos el espacio real

X(R)={ye X : y, € R paratodo n}

y lo dotamos de la topologia inducida por X. Con esta notacién tenemos el siguiente
resultado.

Proposicion 1.4.11
Sea X un espacio de Banach de sucesiones simétrico complejo. Entonces, para cada m

Co(P("X(R)n)) < Co(P("Xn)) < Co(P(" X (R)2n))-
En particular, si (ay,) < (a2,) y (bn) < (b2y), entonces
(an) < C2(P("X(R)n)) < (bn)

sty solo si
(an) < C2(P("Xy)) < (by).

El capitulo termina con una seccién en la que se da un resultado que, si bien no es sobre
polinomios, nuestro interés inicial, si utiliza en su demostracién las técnicas desarrollada
en las secciones precedentes. Se trata de una mejora de un resultado previo para espacios
¢, que se encuentra en [7].

Proposicién 1.4.12
Sea X bien 2-concavo o 2-convexo con concavidad no trivial e Y bien 2-concavo o 2-convexo
con concavidad no trivial; entonces

CQ(Xn Re Ym) = min(\/ﬁM(g) (Ym), \/EM(Q) (Xn))
Como corolario inmediato se tiene

Corolario 1.4.13
Sea X bien 2-concavo o 2-convexo con concavidad no trivial; entonces

C2(£(Xn§ Xn)) = \/ﬁ



Chapter 2

Composition operators

2.1 Introduction

The starting idea of composition operators is simple and a very natural question. Consider
D the open unit disc of C and a holomorphic map ¢ : D — D. If f : D — C is a holo-
morphic function, we can compose f o ¢ and try to analyze what happens when we let the
f vary; in other words we define an operator between spaces of holomorphic functions and
we want to study what properties does this operator have (continuity, compactness, ...).
This obviously depends on which are the spaces considered. First candidates are Hardy
spaces and a full study of the situation in this case can be found in [69].

There are two possible ways of approaching the generalization of these results. First one
is try to go to higher dimensions, that is consider B the open unit ball of a Banach space
and do the same kind of study. Some results in this trend, defining the operator between
the space of holomorphic mappings of bounded type, can be found in [2] and [26].

But another possible way is to stay with D but consider different types of spaces of holo-
morphic functions, namely weighted spaces of holomorphic functions, which were studied
in [4]. This step of defining the operator between weighted spaces was taken in [5], where
conditions for continuity, compactness or integral representation are given.

Analogous weighted spaces of holomorphic mappings in Banach spaces have been defined
and studied in [27]. Our aim in this chapter is to generalize some of the results in [5] when
we consider B instead of D and define the composition operator between two weighted
spaces of holomorphic functions between Banach spaces.

2.2 Weights. Weighted spaces

All through this chapter X will always denote a complex Banach space and B its open
unit ball. We follow the notation in [5] and in [73],
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Definition 2.2.1 A weight is any continuous bounded mapping v : B —]0, 4+-00].

We say that a weight v is essential if there exists C' > 0 such that v(z) < 0(z) < C v(x)
for all z € B.

A weight v is said to be radial if v(z1) = v(x2) whenever ||x1]| = ||z2]|.

A set A C B is said to be B-bounded if it is bounded and d(A, X \ B) > 0. The space of
those holomorphic functions f : B — C bounded on the B-bounded sets is denoted by
Hy(B).

A mapping f : B — [0, 00][ is said to vanish at infinity outside the B-bounded sets if for
every € > 0 there is B-bounded set A C B such that f(z) < € for every z € A.

Following the idea in [5], we define the spaces

HX(B) = {feH(B):|fll.= sup ()] f(x)] < oo} (2.1)
Hy(B) = {f € Hy(B):v|f] van. at oo out. the B-bdd sets} (2.2)

Remark 2.2.2
An equivalent definition of H;°(B) can be given. In fact, we have that v|f| vanishes at
infinity outside the B-bounded sets if and only if lim v(z)|f(x)| = 0. Indeed, take € > 0.

||| =1~
If v|f| vanishes at infinity outside the B-bounded sets, we can find A C B, B-bounded,
such that v(z)|f(x)| < e for all x € B\ A. There is 0 < 6 < 1 such that A C B(0, ). Then

v(z)|f(z)| < e for all x € B\ B(0,9). Hence | 1||im1— v(x)|f(x)] = 0.

Conversely, if | 1”1m v(x)|f(z)] = 0 given any ¢ > 0 there is 0 < 6 < 1 satisfying
z||—1—

v(x)|f(z)] < € for all z € B\ B(0,d). Obviously B(0,d) is B-bounded and v|f| van-
ishes outside the B-bounded sets.
With this, we can write

HS(B) = {f € Hy(B) : lim w(@)|f(x)| = O}.

] —1~
Both Hy°(B) and H;?(B) are Banach spaces. We denote their open unit balls by
By ={f € H(B) : ||fllo <1} , By, ={f € Hg(B): [lf]l, < 1}.

In [67] it is proved that in H°(B) the 7, (norm) topology is finer than the 7y (compact-
open) topology (Proposition 2.1.2) and that B, is mp-compact (Proposition 2.1.3). When
the weight has certain properties we have the following relationship between the unit balls
of the two spaces.

Proposition 2.2.3
Let v be such that lim wv(x) = 0. Then By, is To-dense in B,,.

[|lzl[—1~
Proof.
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Given any f € B, and n € N, consider B,, = B(0,1 — 1/n) and define f, : B — B by
fn(x) = f((1 = 1/n)x). Obviously f, € Hy(B). Also

[ fnllo = sup v(@)|fu(z)| = sup v(z)[f(x)] < [|f]l, < 1.

z€eB TEDLR
Hence f,, € B,. Moreover f, € H;°(B). Indeed, since f € Hy(B) and B, is a B-bounded
set, there is M > 0 such that sup,cp |[f(x)| < M. Therefore sup,cp |fn(z)] < M and

lim v(z)|fp(z)| <M lim ov(z)=0.

|l —1~ lz||—1-

By Remark 2.2.2 f,, € By, for all n € N.
We have (f,)n € By, and we want it to converge to f uniformly on the compact subsets
of B. Take K C B compact and € > 0. Since f is continuous, for each x € K, we can
find 4, > 0 with B(z,d,) € B and such that for all y satisfying that ||z — y|| < &,
we have ||f(z) — f(y)|| < €/2. Then {B(z,d,/2) : x € K} is an open cover of K and
there are x1,...,2, so that K C (J7_; B(x;,0s;/2). Consider ny € N such that nio <
min{dz, /2,...,0s,/2} and let = € K. There is some z; such that ||z — x| < d,,;/2. Hence

1 @) = )l < 5.

On the other hand, for n > ny,

1 1 1 O,
H(l—)x—m =—|z|| < = < .
n n n 2
Therefore, ||(1 —1/n)x — z;|| < 0;; and
1 €
1- =) )z — fz)| < =
r((=0) s <

Putting all this together we obtain

(1))

This is true for all z € K and n is independent of . Thus f, — f in 7.
q.e.d.

= || fu(z) = f(z)]| <e.

Now, given any weight v we can define an associated growth condition u : B —]0, +00|
by u(z) = ﬁ With this new function we can rewrite

By ={f € H*(B) : [f| < u}. (2.3)
From this we define 4 : B —]0, 00| by

u(r) = sup |f(x)]
feB,

and a new associated weight © = 1/4. All these functions are related in the following way.
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Proposition 2.2.4

Let u be any weight; then

()o0<u<u, 0<v<7D.

(ii) u (resp. ©) is radial, continuous, decreasing or increasing whenever u (resp. v) is so.
(@ii) [Iflle <1 & | flls < 1.

(iv) For each x € B there exists fy € B, such that u(x) = |fz(x)].

(v) If lim v(z) =0, then a(z) = supgep, [f(2)]-

[l =1~
Proof.
(i) By (2.3) t(x) = supsep, | f(2)| < u(z) for all z € B and 0 < @ < u. From the definition,
0<v<o.

(797) Suppose first that ||f|| < 1; then f € B,. Obviously for each z € B, |f(x)| <

supgep, |9(x)| = (z). Hence || flls < 1.
If | flls <1, given any x € B, using (i), we have |f(z)| < @(x) < u(z) and || f|| < 1.

(iv) The evaluation functional is mp-continuous and B, is 7p-compact. Thus, the supremum
in the definition of % is actually a maximum.

(v) Let x € B. By (iv) we can find f, € B, such that a(z) = |fz(z)]. Let us see that
[ € Hi¥(B). Since lim_,;- v(z) = 0, there is K > 0 such that v(y) < K for all y € B.
But f; € By, thus |f;(y)| < 1/K for all y € B and

. 1 B
- "W < | lim_v() =0.

This implies f € B,,.
q.e.d.

As an immediate consequence of (iii) we have
Corollary 2.2.5
Given any weight v, H)°(B) = HZ°(B) holds isometrically.

2.3 Composition Operators. Definition

From now on we will always consider two weights v, w and ¢ : B — B holomorphic. The
composition operator associated to ¢ is defined by

Cy: HX(B) — HJ(B) , Co(f)=foo.

Obviously Cy is linear. We want to find conditions on v, w or ¢ that guarantee that Cy is
well defined, continuous or compact. We begin by studying when is C well defined.
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Proposition 2.3.1

If there is some 0 < r < 1 such that ¢(B) C rB, then Cy : H*(B) — Hy°(B) is well
defined for any two weights v, w.

Proof.

Since ¢(B) C rB, ¢(B) is a B-bounded set. Then for each f € H;°(B) there is K > 0 such
that supycq(p) |f(y)| < K. Hence

sugw(:v)|f0¢($)| = supw(z)|f(¢(x))]

Te z€B
< supw(z) sup|f(é(z))| < C-K < .
TeB zeB

And Cy(f) € HP(B).
q.e.d.

We can weaken slightly the condition on ¢ at the expense of imposing some restriction on
the weights.

Proposition 2.3.2

: w(z)

Let v, w and ¢ be such that lim sup ———~
r—1" |g(z)|>r V(¢(2))

Then, Cy : H*(B) — H2(B) is well defined.

Proof.

To simplify notation we call L the limit in the statement. Since L is finite, there is 79 €]0, 1]

such that for any rg < r < 1,

< 0.

w(z)

ot D(())

1
L < -.
2

This implies that for all z € B such that ||¢(z)|| > 7o

w(r) ‘ 1
0(¢(x)) 2
Let x € B and f € H°(B). Suppose that ||¢(x)| > ro, then
w(z)
w(z)|f((x))] 5(¢(x))v(¢($))\f(¢(9ﬁ))|
w(@) - v(p(x x
s = |+ Il sl o)

N

1
< (5+180) sl <

Suppose now that ||¢(x)|| < 7. Since f is bounded in B(0,79) we have w(x)|f(¢(z))| <
C-K.
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Joining both cases we have sup,cpw(z)|f(¢(z))] < oo and Cy(f) € HY(B) for all f €
Hy*(B).
q.e.d.

2.4 Continuity

We give now some results about the continuity of Cy. We obtain first a condition for the
general case and after that an easier condition for a more restricted case.

Remark 2.4.1

Given any two weights v and w and ¢ : B — holomorphic, the composition operator
Cy : HX(B) — H(B) is (70, 7o)-continuous. Indeed, consider a net f, —— 0 and take
K C B compact and € > 0. Since ¢ is continuous, ¢(K) is compact and we can find ag
such that |fo(y)| < € for all y € ¢(K) and o > ap. Now, given any z € K and a > ag we
have |Cy fo(x)| = |fa(P(x))| < e. With this Cyfo — 0 in 7.

Proposition 2.4.2
Let v, w be two weights and ¢ : B — B holomorphic. Then the following are equivalent,
(1) Cg : H*(B) — HgP(B) is continuous.

L w)
(é) igg@(efg(x))) — M=
(i) S0 Sty ~ <
Proof.

The implication (zii) = (i4) is trivial, since w < .
Assume that (i) holds and let us show that Cy is continuous. It is enough to check that
Cy(By) € Hg?(B) is bounded. Let f € B,,. For any € B we have

w(x)|f(o(x))] = 0(p(x))|f(o(2)]| < M| fllz < M.

Hence

1Cs(Flw = IIf 0 Dllw = iggw(w)lf(cb(fﬂ))\ <M.

And Cy is continuous.
Suppose now that Cy is continuous. If (iii) does not hold there exists (2, )neny € B such
that w(xy) > n 0(¢(xy,)) for all n € N. For each n € N take f,, € B, so that

a(6(n))

‘fn(¢(xn))| = ﬂ(¢($n)) > 9

Since Cy is linear and continuous Cy(B,) is bounded in HX(B) = Hz°(B) (see Proposition
2.2.5). Thus, we can find C > 0 such that ||Cy(f)|ls < C for all f € B,. In particular we
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have, for allm € N and = € B,
| fr(d(z))]w(z) < C.

On the other hand, for each n € N

[ fn(@(@n))|w(2n) = |fn(P(2n))|0(d(2n)) =——5 >

This leads to a contradiction and completes the proof.
q.e.d.

From Definition 2.2.1 and the Proposition 2.4.2 we get immediately.

Corollary 2.4.3
Let v be essential. Then, the operator Cy : Hy°(B) — HiY(B) is continuous if and only
if

sup —2)

TeB U(¢($))

< Q.

We restrict now our attention to a slightly more particular case, this allows us to find
a condition that does not depend on ¢. Let B be the open unit ball of a Hilbert space H
with a scalar product (-|-). For each a € B we define the linear mapping I'(a) : B — B by

1

[(a)(z) = Tv(a)

a (zla) + v(a) v,

where v(a) = y/1 — ||a]|?. Using this mapping we define an automorphism of B, «, : B —
B, by

r—a
=T'(a)———.
Oéa($) (CL) 1— (a:\a)
These Mobius transforms for Hilbert spaces were defined by Renaud in [66], where a deeper
study can be found. Each one of them is holomorphic, and satisfies a,(0) = a, a;! = a_,
. ol lla] ~ r|
all +r al| —r
sup [laa (@) = 7——— »  inf flaa(@)]| = T———-
lel=r L+rfall 7 faf=r"" 1—rlall

Also in [66] there is the following analogue of the classical Schwarz’s Lemma,

Proposition 2.4.4
Let H, F be two Hilbert spaces and By, B their open unit balls.
Let f : By — Bp holomorphic such that f(0) = 0. Then for all x € By

If@)le < llzlla-
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With this we can prove the following result.

Theorem 2.4.5

Let B the open unit ball of a Hilbert space H and v : B —]0,+0o0[ a radial weight,
decreasing with respect to ||z||. Then the following are equivalent,

(1) Cy : HX(B) — Hy°(B) is bounded for all ¢.

(it) Each (xn)nen € B such that ||zy| = 1 — 27" satisfies:

. 77(1:71—&—1)
f . 2.4
o S (24)

Proof.
First of all note that if $(0) = 0, then Cy is automatically continuous. Indeed, since v is
decreasing, Proposition 2.4.4 implies

ICo (NI, = sup v(@)|f(¢(x))] < sup v(e(x))[f(d(x))]

<1 o<1
< sup v()|f(2)] = [I£],
llzll<1

and Cy is continuous.

For each a € B we have o, : B — B. Suppose that every C,, is continuous. Given
any ¢, let a = ¢(0) and define 1) = a, 0 ¢. Obviously (0) = 0 and Cy, is continuous. Then
we have ¢ = a_, 09 and Cy = Cy o C,_, is continuous. We would have, then, that every
Cy is continuous. Therefore it is enough to prove

Ca, : HX(B) — H,°(B) is continuous for all a € B < (2.4)

Let us begin by assuming that C,, is continuous for every a € B. By Proposition 2.4.2,
for each a € B we can find M, > 0 such that 9(z) < M,0(a,(x)) for all z € B. We also

know that sup|, =, [[aa(z)|| = I“iﬂﬁzll and it is attained at xp = ﬁa (see [66]). Since v is
radial so also is ¥ and
—r —r
o(z) =0 (a) < Mo <a <a>>
el NN ]
for every x € B with ||z| = r. Define a new function, {(r) = v(z) with ||z|| = 1 —r. Since ¢

is radial [ is independent from the choice of x and it is well defined. With this new function
we can rewrite the previous inequality in the following way
( lall ) H>

(1-7) = @(x)gMa@(aa<ma)>:Maz<1—

~ (1ol
L+ ol
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forall 0 < r < 1.

Let us see that [ is increasing. Take r1 > ry and x1,29 € B with ||z;|| = r; for i = 1,2.
Then ||z1]| < ||x2|| and, since v is decreasing, 0(z1) > 0(x2). Hence I(z1) < I(x3).

Let now s =1 — r, then

fall 47y _ llall +(1 =)
l<1_1+7“HaH) - l<1_1+(1—8)HaH>
_ (1t lall = lalls — flal| =1+
N l( 1+ (1—s)[la] )

(e =)

If s <1/2 then 1+ @ <1+ al|(1—=s) <1+ ]|al and, since [ is increasing

(R (- B s () e

Taking ||a|| = 2/5 we have

Ll 1-2/5 3/5 s

=3 =s = —-.
2/5
T+ lal/2 =" 1428 ~ "6/ 2

From this,

Z(S)SM“ZO_M)SMQZ(;)

for s small enough.
Consider now (z,,)neny € B with ||z,]] = 1 — 27", For n big enough we have o(z,) =

1(27™) < M, 1(27" 1) = Mu9(2p41). Choose ng € N such that for n > ng

v $n+1) 1
— > — >0
() M,
This implies

> 0.
neN @(;Un)

Let us suppose now that (2.4) is true, that is, all (x,,), C B with [|z,| = 1 — 27" satisfy
that ~
inf Zn+1)

0.
N o)

Define a function [ exactly in the same way as we did before. We can write (2.4) like

. —(n+1)
inf,en % > 0. There are K > 0 and ng € N so that for every n > ny,

12Dy > K (27,
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Let tg = 2=+ and take ¢t < to. Consider n € N such that 2==D > ¢ > 27" > ¢/2 >
2-(+1) Since [ is increasing,

1(t/2) > 1(2~ ")) > K 1(277) > K2 12~ D) > K2 1(¢).

Thus, there is M > 0 such that [(t) < M [(t/2) for all ¢t < to.
For each ¢ > 0 we have n € N with ¢ < 2™. If ¢ < tg,

1) < M I(t)2) < ... < M™I(t/2") < M™ I(t/c).

1
Take ¢ = + llal
1 — [la]

exists K, > 0 such that

- 1 |lall lafl + (1 — 1)
I(t) < Ko l(t/c) = Ko l <t1 T ||a||> < Kol (1 a 1+(1t)HaH)

and use the first inequality in (2.5) to get that for each a € B there

for t <tp <1/2.
Let now t > ty. Since v is strictly positive, so is © and [ is strictly positive too. Define a

It
function h : [tp, 1] — R by h(t) = |EL||)—‘1-(1—t) . This is continuous and attains its
(1 - )
maximum in [tg, 1]. Let C, > 0 such that
It
C, > (t)

a0
! (1 1+<1—t>ua||>

For all tp <t <1.
Joining both cases we can find a constant M, > 0 that gives, for all 0 <t < 1,

fall +(1—¢) >
() < M, 1 <1 - .
© 1+ (1= Ofa]
Hence, if 0 < r < 1 and ||z|| = r, then
. all+r
< M (1= [Jag(7)]]) < My 9(aa(z)).

Applying Proposition 2.4.2, C,, is continuous.
q.e.d.

This proof can be easily adapted to a more general setting than the unit ball of Hilbert
spaces, that is the bounded symmetric domains in any Banach space. Given D a domain
in a Banach space, a symmetry at a € D is a biholomorphic map s, : D — D such that

52 = id and s,(a) = a is an isolated fixed point; for example, if B is the open unit ball
of a Banach space X, there is symmetry at 0 given by so(z) = —z. A bounded symmetric

domain is a bounded domain with symmetry at every point.
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Definition 2.4.6 A .JB*-triple is a Banach space X with a triple product { , , } : X3 —
X that is linear and symmetric on the first and third variables (symmetric in the sense
that {x,y, 2z} = {z,y,x} for all z, z) and antilinear on the second variable satisfying,

(i) The mapping z[z, given by x0x(2) = {x, z, 2z} is Hermitian, o(x0z) > 0 and ||z0z|| =
e

(ii) For every a,b,z,y,z € X, the equality

{a,b,{z,y,2}} = {{a,b,2},y, 2} — {z,{b,a,y}, 2} + {z,y,{a, b, 2}}
holds.

For each x,y € X a linear mapping Oy is defined by z0y(z) = {z,y, z}. Also, for z € X
an antilinear mapping @, is defined by Q. (z) = {z, z, z}. With these two mappings, fixing
z and y, another very important one is defined as follows

B(z,y) =1id — 220y + Q2 0 Qy € L(X; X).

From this, taking = y, we have a new mapping B, = B(z,z)"/?; here the square root is
taken in the sense of functional calculus, that is B, o B, = B(z,z). It was proved in [42]

that
1

1= |z)*

For background on JB*-triples, see [17], [31], [32] and [53].

185l =

Example 2.4.7

There are the main examples of JB*-triples: C, Hilbert spaces and C*-algebras. On C,
the triple product is defined as {x,y, 2z} = xyz. With this, B(z,y)(z) = (1 — 27)?z; doing
r =y we get that By (2) = (1 —|z|?)z.

If H is a Hilbert space, the triple product can be defined in terms of the scalar product

2.9,2) = 5 (aly)= + (ely)a).

Then B(z,y)(z) = (1 — (z]y))(z — (z|y)=).
In the case of C*-algebras, the situation is the following; the triple product is defined by

1
{xvyv Z} = i(xy*z + zy*:c),

which gives that B(z,y)(z) = (I —zy*)z(I —y*z), where I denotes the unity of the algebra.
In this case,
Bo(z) = (I — 22*)"22(I — a*2)"/?,

here the square root should be understood in terms of the algebra product.
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It is a well know fact that the open unit ball of a Banach space is symmetric if and only
if the space is a JB*-triple. Also, a bounded domain D is symmetric if and only if it has
a transitive group of biholomorphic mappings {g.}scp and a symmetry at some point p.
In this case the bounded symmetric domain is biholomorphically equivalent to the unit
ball of a JB*-triple and all biholomorphic mappings on the unit ball can be explicitly
described. They are of the form Kg, where K is a surjective linear isometry and g, are
Mdébius mappings that satisfy g,(0) = a and g, ! = g_, (see [42]). These mappings can be
defined from the triple product as

9a(2) = a + (B(a,a)”"/? 0 B(z,a))(z — Qu(a)).

If sop denotes the symmetry at 0, the symmetry at any other point of the unit ball a is
given by g, 0 80 © g—q-

The two clue facts in the proof of Theorem 2.4.5 are first the Schwarz Lemma that we
use in the beginning and, later, the fact that the supremum of the mappings behaves in
a certain way. Therefore, this is what we need in order to prove the result for bounded
symmetric domains. In fact, the Schwarz Lemma can be proved for general Banach spaces.
This is a well known fact, but the proof is simple and short and we include it here.

Proposition 2.4.8
Let X, Y be two Banach spaces and Bx, By their open unit balls.
Let f : Bx — By holomorphic such that f(0) = 0; then, for all x € Bx,

IF @)y < [l x-

Proof.
Let z € Bx. Consider ' € Y’ with ||y/|| < 1 and define the function h : C — C by

h(N) =4 <f ()\ L )) Clearly h is holomorphic, A(0) = 0 and if |A| < 1 we have

b bl el

Then, applying the classical Schwarz Lemma, |h(A\)| < |A| for all |A\| < 1. But this is true
independently of the choice of y'; this implies that for all [A| < 1

)=

This means that Hf (Aﬁ) H < |A] for all |A| < 1. Taking A\ = ||z|| we get

[h(A)] =

sup
ly'lI<1

I @)y < [l x-

Since x € Bx was arbitrary, this is true for all x € Bx.
q.e.d.
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Thus, we have now the version of the Schwarz Lemma that we need. Let us study the
behaviour of the supremum over spheres of the mappings g,.

Lemma 2.4.9

Let B be a bounded symmetric domain (i.e., the open unit ball of a JB*-triple) and {gs}acn
the transitive group of biholomorphic mappings that define the symmetries. Then, for each
O<r<l1

lall +r
sup ||ga(2)|| =
|z||l=r ¢ 1 +T||a||

and this supremum is attained at some point.

Proof.
llall+[l=]l

First, for any bounded symmetric domain we show that ||gq(z)| < Tl oy 1t is well
known (see [53]) that
B 'oBlax)o B
1—|[ga(2)]? ¢ ’ ’
In particular,
o < 1B B - 1B
T e@E = B
1 1

< — (1 . 2_ -

< g O+ lall el =
And so

||g (m)HQ < 1-— (1 — Hauz)(l — HxHZ)
a =
(1 +llall - [l=[)?
_ 1+ 2faf -zl + llalll2]? = [1 = llal® — [l2]* + lal||=]?]
(1 +[lall |lz)?
lall* + 2]jal - fl=]l + [l
(1 + llall - fl=]1)?
giving
lall + [l
19a(2)|| < -
‘ L+ [lall - [l

Next thing to show is that the bound is attained, in the sense that there exists = € B,
|lz|| = r with ||ga(z)|| = IM‘MH. Let us consider X, the JB*-subtriple of X generated by

a, that is, the smallest JB*-triple contained in X with same triple structure that contains
a. Obviously, if we find z € X, attaining the bound, then our problem will be solved. A
deep result of Kaup (see [41]) shows that for any JB*-triple and a € X, X, is isometrically
(triple) isomorphic to Cy(2), where © C R satisfies that Q U {0} is compact. The M&bius
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maps on the unit ball of X,, once composed with this isomorphism, give the following ones

gc(2) = 1?%’2, where ¢ and z are in the open unit ball of Cy(Q2). If we take z = ﬁc then

z € Cp(R2) and ||z]| = r. We get

(rp) e rrpel

ge(z) = =
¢ L+lel o llell + 7 lef?

= (r + [lcll) supyeq HC”J_%(OJ) But since |c| <

lc|

Now, llge(2)ll = (+ el || parssrar

llell <1 and r <1, it turns out that i o Is an increasing function of |¢|, that is

cll+r |
S R
el + 7 lel? ] Nell+r flel® 1T+ [lc]
This gives
llell + =1
l9e =
‘ Lt lefl - =]

Since ||gu(v)|| = ||gv(u)|| we have what we wanted.
q.e.d.

Using Proposition 2.4.8 and Lemma 2.4.9 and repeating the proof of Theorem 2.4.5 we
have

Theorem 2.4.10

Let B the open unit ball of a JB*-triple X and v : B —]0, 400 a radial, decreasing with
respect to ||z|| weight. Then, the following are equivalent,

(1) Cy : HX(B) — Hy°(B) is bounded for all ¢.

(7i) Each (xy)neny C B such that ||xzy,|| =1 — 27" satisfies:

ing 20n) g
neN  0(xy,)

2.5 Compactness

We give now conditions to have that Cy is compact. Recall that an operator T' € L(E, F')
is compact if the image of the open unit ball of E is relatively compact.

The proof of the following lemma is very similar to that of Section 2.4 in [69] and Lemma
3.1in [5].

Lemma 2.5.1
Let Cy : H*(B) — HgY(B) continuous; then the following are equivalent,
(1) Cy is compact.
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(ii) Each bounded sequence (fy)n C H®(B) such that f,, —> 0 satisfies that ||Cy fn|lw —
0.

Proof.

Suppose Cy is compact. Then Cy(B,) is relatively compact in HgX(B). Take (fn)nen C
H*(B) bounded such that f,, — 01in 79. By Remark 2.4.1, Cy f,, %, 0. Since convergence
in || - || implies that of 79, each || - ||,~convergent subsequence of (Cy fp)nen Will converge
to 0.

If (| Cg fnllw)nen does not converge to 0, there exist a subsequence (fy, )xeny and ¢ > 0 such
that ||Cyfn,|lw > c for all k& € N. But (fy, )ken is bounded and Cy is compact, therefore
(Co fny )ken is relatively compact and has a convergent subsequence. This new subsequence
is also a subsequence of (Cy fn)nen and it must converge to 0. This gives a contradiction.
So, limy, .o [|Cy fullw = 0.

Assume (4i) holds. Let (fn)nen € B,. By [67], Proposition 2.1.3, B, is 7g-compact, in
particular it is 7p-bounded. Then, (f,,), is To-bounded. By Montel’s Theorem we can extract
a subsequence g = fy,, converging in 79 to g € H(B). For each € B and k € N we have
0(@)ln(@)] < lgillo < 1. Hence

1 2 limv(z)|gi(2)| = v(z)lim gk (2)] = v(2)lg(2)]-

This implies sup,cp v(z)|g(x)| < oo and g € H°(B).

Thus, (gx—g)ken is bounded in H3°(B) and (gx—g) — 0 in 79. By hypothesis limy_.o ||Cg(gr—
9)|lw = 0. This implies that Cy(B,) is relatively compact and Cy is compact.

q.e.d.

We will use this lemma several times.

Proposition 2.5.2

Let v, w be two weights and ¢ : B — B such that ¢(B) is relatively compact and ¢(B) C B.
Then Cy : H*(B) — H2(B) is compact.

Proof.

Since ¢(B) C B is compact,

1 1 1
Sup — = Sup = =
2eB V(H(T))  yeg(m) V(Y) yea(B) o(y)

w(x)

By definition w is bounded, this implies sup,cp ey < o By Proposition 2.4.2, Cy is
continuous.

Let (fn)nen C HS®(B) To-convergent to 0 and € > 0. Let us write C' = sup,cp w(z) < 00.
Since ¢(B) C B is compact, there exists ng € N such that for all n > ny,

13
sup_|fu(y)] < &

yEH(B)
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Then, if n > ng

1Cs frullw = Slelgww)lfnw(x))l <C" sup |fa(y)l <C" sup |fu(y)l <e.

y€g(B) y€P(B)
Hence ||Cy fr|lw — 0. Proposition 2.5.1 implies that Cy is compact.
q.e.d.

We have now a condition on ¢ that makes Cy compact independently from the weights.
We are going to weaken the condition on ¢ and get a characterization; to do this we will
again need to impose some condition on the weights. Before that we need the following
fairly elementary remark.

Remark 2.5.3
Given any sequence of real numbers (ap)nen C]1/2,1] with lim, a,, = 1 we can always

find another one (a(n))peny € N such that lim, a(n) = oo and ad™ > 1/2 for all n € N.

Indeed, since (ay), tends to 1, lim, loga, = 0 and lim,, _lg;;gaQn = +o0. It is enough then

llog2 . Any such sequence satisfies
0og G,

to consider any sequence (a(n)), such that a(n) > —

log a%(”) > —log 2 and aﬁ(”) > 1/2.
With this we prove the following characterization.

Theorem 2.5.4
Let v, w be two weights and ¢ : B — B with ¢(B) relatively compact.
Then, Cy : H*(B) — H2(B) is compact if and only if

: w(z)
lim sup = =0. (2.6)
=17 flp(a)|>r 0(0(2))
Proof.
Let Cy be compact and suppose that
lim  sup ~w(m) # 0.

r=1 g() > 0(0(2))
So, we can find (1), C]0,1[ with lim, r, = 1 and ¢ > 0 so that, for all n € N,

w(zx)

sup > c.

lé(@)[|>ra V((2))

From this we get a sequence (zp)nen € B with ||¢(xy,)|| > 7 and w(zy) > ¢ 9(¢p(zy))
for all n € N. Applying Proposition 2.2.4, for each n € N choose f, € B, satisfying

On the other hand, since ¢(B) is relatively compact we can suppose, going to a subsequence
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if necessary, that (¢(xy))nen converges to zg € B. Now, 1 > ||é(x,)| > rp and rp, — 1;
hence ||zo|| = 1.

Applying Hahn-Banach Theorem, take ' € X' with [|2/|] = 2/(z¢) = |lzo]| = 1. Since
lim,, |2/ (¢(x,))| = |2'(x9)] = 1, there exists ng € N such that |2/(¢(z,))| > 1/2 for all
n > ng. We are only interested in the behaviour of the limit of the sequence, therefore we
can assume that the whole sequence satisfies this condition. By Remark 2.5.3 we can find
(a(n))nen € N with lim,, a(n) = co satisfying

2z a(n) 1
(6l >

for all n € N. For each n € N define g, () = '(2)*™ f,(x) holomorphic. We have

sup o(@) [l | fa(@)]

< i‘ép”( z) [fu(z)| < 1.

sup v() [’ ()% | fu ()|

z€eB

IN

Hence (gn)nen € Hy°(B) and is bounded. Since B, is 7p-bounded ([67], Proposition 2.1.3),
given any K C B compact there exists a M > 0 such that sup,c |fn(z)| < M for all
n € N. On the other hand, since K is compact, there is 1 > C' > 0 with ||z|| < C for all
x € K; with this,

sup |gn ()| = sup [/ (2)|*™ | fu(z)] < M sup [l *) < M ™.
zeK zeK zeK

The last term tends to 0 as n — oo. Thus, (gn)neny € H°(B) is bounded and g, — 0
uniformly over the compact subsets of B. By Lemma 2.5.1, ||C4(gn)|/ww — 0. On the other
hand,

1Cs(gn)llw = supw(z) |gn(d(z))]
TEB

> w(@n) [gn(d(n))]

= w(zn) |2'($(xn)|"" \fn( ()]

= w(an) [2'(6 ( )M A ()
@)

= z,))[ ) c1

This contradicts the fact that it converges to 0. Therefore,

lim sup

r—1- |lp(a)||>r V(P(T))
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Assuming now that (2.6) holds let us show that Cy is compact. Since the limit is 0 we can
find 0 < 79 < 1 such that, denoting G = {x € B : ||¢(z)]| < 1o},
w) o w()

sup — = su

veb 0(0(@)  rewr 8(6(x))

We have ¢(G) C ¢(B) N B(0,rg). This implies that ¢(G) is compact. Therefore there are
M, N > 0 such that 0 < M < 9(¢(z)) < N for all z € G. Then
w(z) < 1 (z) <

sup — < —supw(x) < oo.

2eB U(9(x)) = M gep
By Proposition 2.4.2, Cy is continuous.
Let us see that Cy is compact. By (2.6), given € > 0 there is ro €0, 1[ such that, for all
rog <71 <1,

sup M <eE.

lé(@)|>r V(P(T))

This implies w(z) < € 0(¢(x)) for all ||¢(x)|| > ro. Suppose that Cy is not compact. By
Lemma 2.5.1 there exists (fy)nen € By To-converging to 0 such that (||Cfnllw)nen does
not converge to 0. Taking a subsequence if necessary, there is A > 0 such that ||Cy fr|lw > A
for all n € N. We can consider a sequence (zp)neny € B with w(xy,)|fn(xn)] > A for all
n € N.

If ||¢p(xn)|| — 1, there exists n; € N with ||¢(z,)]| > 1o for all n > ny. So, for n > ny,
w(zy) < € 0(p(xy)). Applying Proposition 2.2.4,

A < w(@) [fa(d(zn)] < e 0(d(zn)) | fuld(zn))]

< e lfuls <e

Hence A < ¢ for every € > 0. This leads to a contradiction.

Suppose now that (||¢(zy)||)nen does not converge to 1. Going to a subsequence if necessary
we can choose 1) €]0, 1] satisfying ||¢(x,,))|| < n for all n € N. Then (¢(zy)), € B(0,n) C B.
Since ¢(B) is relatively compact, (¢(zy))n C ¢(B) is a closed subset of a compact set. This
implies that (¢(xy))n is compact. Given any € > 0 and taking C’ = sup, g w(z) there is
no € N such that for all £ > no

9
sw_|filw)l < &

y€(P(xn))n

Hence, if k£ > no

In particular, sup,>,, |fn(¢(2n))| < &. So, if n > ny we have |fn(¢(zn))] < & and
A <w(zy) |faldp(zy))] < e. Thus A < e for all € > 0 This leads to a contradiction, coming
from supposing that Cy is not compact. Hence Cy is compact.

q.e.d.
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We can even prove a condition with an easier to handle limit.

Proposition 2.5.5
Let v, w be two weights and ¢ : B — B with ¢(B) relatively compact such that

lim w(x)
llz]—1- D(p(x))

Then Cy : H®(B) — HX(B) is compact.

Proof.

We begin by showing that Cy is continuous. Given € > 0 there is some 0 < ry < 1 such
that, for ro < ||z] < 1,

=0.

| <e
(o (x))
Then obviously,
sup w(z) <e.
lzl|>ro 0(P(2)) —
We study now the supremum of this expression on {x € B : ||z|| < r9}. We claim

that sup|,<, [[¢(z)[| # 1. Suppose that there exists (z)n, with [|z,[ < ro such that
lp(zn)|| — 1. Since ¢(B) is relatively compact we can extract a subsequence (¢(xn,))k
converging to yo with ||yo| = 1.

By the Hahn-Banach Theorem we can choose 2’ € X’ such that ||2/|] = 1 and 2/(yo) = 1.
Define a mapping ¢ = 2’ 0 ¢ : B — C. Clearly, ¢ is bounded and sup|, <, [¢¥(z)| = 1.
We denote by D the open unit disc of C. Let a = 9(0). Take g, : D — D the M&bius
transform such that g,(a) = 0. The mapping g, 0 : B — D clearly satisfies g, 01(0) = 0.
By the Schwarz’s Lemma (Proposition 2.4.8),

|9a © ()] < [l

for all x € B. This implies g, o ¥(B(0,79)) € D(0,70). Hence

¥(B(0,70)) C g, (D(0,70)).

The last set is compact in . Therefore there is 0 < s < 1 such that ¢(B(0, 7)) C D(0, s).
Then

sup |[¢(z)] <s < 1.

llzl[<ro

This leads to a contradiction and proves our claim. Hence there exists 0 < t < 1 such that

sup |¢(z)] <t < 1.

lzl<ro
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This means that ¢(B(0,rg)) C ¢(B(0,7r0)) € B(0,t) and
¢(B(0,70)) € B(0,t) N p(B).

Thus ¢(B(0,79)) is compact and there are M, N > 0 such that 0 < M < 9(¢(x)) < N for
all ||z|| < ro. Therefore

sup ~w(:r) < L sup w(zx) < oo.
Izl<ro P(@(2)) = M |z <ro
This gives
sup ~w(3:) < 0
zeB U(9(2))

and Cy is continuous.

Let us suppose that Cp is not compact. From Lemma 2.5.1 this means that there is a
To-null sequence of functions (f,)n C B, such that (||Cg(fn)|lw)n does not converge to 0 in
C. Going to a subsequence if necessary we can assume that there is A > 0 such that

sup w(2)| fn(¢(2))| = [[Co(fa)lw = A >0

zeB

for all n € N. Choose (z,,), C B with w(xy,)|fn(é(zy))| > A for all n and suppose that
|zn|| — 1. Given any € > 0 there is 0 < rg < 1 such that, for every ro < ||z|| < 1,

w(x)
o(o(x))

Take ny such that ||z,| > ro for all n > n;. Then
w(zn) < ev(p(wn))

<e.

for all n > ny. Hence

A S w(@n)|f(@(xn))] < e0(d(xn))fn(¢(rn))| < el fulls < e

Therefore, A < ¢ for all € > 0, but A\ > 0. We have, then, to assume that (||x,||), does
not converge to 1. Taking a subsequence if necessary we can choose 1 > 1 > 0 such that
|zn|| < n for every n. From what we have already seen, ¢(B(0,7)) is compact. This implies
that ¢((z,)n) is also compact. Let e > 0 and write C' = sup, g w(z). Since f, — 0 in 7,
there is ng such that, for k > no

£

s 1Ay)| < o

YE€S((zn)n)
This gives | fn(¢(xy))| < e/C’ for all n > ny. Hence
A < w(n)| fa(dlen)] < <.

Since € was arbitrary this again gives a contradiction and finally shows that Cy is compact.
q.e.d.
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Imposing some not very restrictive conditions on the weights we can get another charac-
terization.

Proposition 2.5.6

Let v, w be two weights so that lim,_,1- w(x) = 0 and ¢ : B — B with ¢(B) relatively
compact.

Then, Cy : H®(B) — H 2 (B) is compact if and only if

o w@
ol o)

Proof.
One implication has already been proved in Proposition 2.5.5. To prove the other one,
assume

w(z)

lim — 4~
lzl—1- v(é(z))
Then we have a sequence (2, )neny C B with lim,, ||, || = 1 and ¢ > 0 such that ﬂ@((z’;))) >c

for all n € N. By Proposition 2.2.4, for each n € N we get f,, € B, such that |f,(¢(x,))| =
u(p(an))-

Since ¢(B) is relatively compact we can assume, going to a subsequence if necessary, that
(¢(xn))nen converges to xg € B. If that [|zg|| # 1 then

£ 0.

0= lirrlnw(xn) >c li7£n17(¢(xn)) = ¢ 0(xg) > 0.

Thus ||z¢|| = 1. From now on, applying the Hahn-Banach Theorem to get 2’ € X', defining
gn like in Theorem 2.5.4 and proceeding exactly in the same way we get the contradiction
we are looking for.

q.e.d.

2.6 Spaces defined by families of weights

We consider now a countable family V' of continuous non-negative weights v : B — [0, +-00]
so that for each z € B there exists v € V such that v(x) > 0. In these conditions we define
the spaces

HV(B) = {f holom. : p,=supv(z)|f(z)] <ooforall veV}
zeB

HW(B) = {feHV(B):Yv eV, v|f| van. out. the B-bdd sets}.

Obviously the family of seminorms (p,),cy is separating; so we endow both spaces with
the locally convex topology 7 generated by (py)vev. For a more complete study of the
properties of these spaces see [27] or [67].
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Definition 2.6.1 ([27], Definition 1) A family of non-negative continuous weights V'
defined on B is said to satisfy the Condition I if for each B-bounded set A C B there exists
v € V such that inf{v(z) : x € A} > 0.

It is a well known fact that (see [27])

Proposition 2.6.2
Let V' satisfy Condition 1. Then HV (B) C Hy(B) and 1y is stronger than 7, (uniform
convergence over the B-bounded sets). Moreover, HV (B) and HVy(B) are Fréchet spaces.

With this notation, given ¢ : B — B holomorphic and two families of weights V and W,
we define a composition operator Cy : HV (B) — HW (B). We want to study when is it
continuous. Note that we are assuming that v(z) > 0 and w(z) > 0 for all x € X and all
v €V, w & W. This obviously implies that both V and W satisfy Condition I.

Proposition 2.6.3

Let ¢ : B — B holomorphic and two families of weights V. and W such that for each
w € W there exists v € V such that Cy : H°(B) — Hg (B) is continuous.

Then Cy : HV (B) — HW (B) is continuous.

Proof.

Let Q C HV(B) be bounded. Let w € W. Choose v such that Cy : H°(B) — Hg (B) is
continuous. We have K = supcq pu(f) < o0.

On the other hand Proposition 2.4.2 implies

w(x
M = sup =

reh o) =
Then, for any f € Q and x € B,
_ _v@ v(op(x x
W@l = i)

< Mps(f) =M py(f) <M K.

Since x € B is arbitrary, sup,cgw(z)|f(¢(z))| < M - K for all f € Q. Therefore, for all
weWw,
sup pw(Cof) < M - K < 0.

feq
Hence Cy(§2) € HW (B) is Tyw-bounded and Cy is continuous.
q.e.d.
Lemma 2.6.4
Let V = (vn)52; be a family of weights and i1, . .., iy, € N. Definev(z) = maxj=1,.. m v, (),

x € B, which is a weight. Consider Vi =V U {v}; then
HV(B) = HVi(B).



2.6 Spaces defined by families of weights 39

Proof.
We obviously have HV;(B) C ‘HV (B). For the converse inclusion, take f € HV(B) and let
M = maxj=1,_.m Pu;, (f). Given z € B there is jo € N such that v(z) = v;; (z). Then,

v(@)|f(2)] = v, ()| ()] < poy, (F) < M.

Since x was arbitrary

po(f) = Sggv(x)\f(x)\ <M < o0
and f € HV1(B).
q.e.d.

With this we can go now from the continuity with the families to continuity for individual
weights.

Proposition 2.6.5

Let V., W be two families of weights and ¢ : B — B such that the composition operator
Cy : HV(B) — HW (DB) is continuous.

Then for each w € W there exist vjy,...,v;, € V and v = sup,—y__,,vi; so that Cy :
H*(B) — HZ°(B) is continuous.

Proof.

Let w € W and fix Q = {g € H?(B) : pw(g) < 1/n}, neighbourhood of 0 in H3°(B).
Consider now Q = {g € HW(B) : pw(g) < 1/n}. Obviously Q C Q. Since Cy : HV (B) —
HW (B) is continuous, there are v;,,...,v;,, € V and ny,...,n, € N so that

A=, {f € HV(B) s puy () < 1/n)
satisfies C¢([~\) C Q. Define v = SUDPj—1__m Vi;- Let ng = maxj—1__ mmn;. Forallj=1,...,m
A={f eHV(B):po(f) <1/no} S {f € HV(B) : pu, (f) <1/n;}.
Therefore Cy(A) C Cy(A) € Q C Q. Since A C H(B) is a neighbourhood of 0, Cy :

Hi°(B) — HZ°(B) is continuous.

q.e.d.
From this we have immediately

Corollary 2.6.6

Let V., W be two families of weights, V increasing and ¢ : B — B such that Cy :
HV(B) — HW(B) is continuous.

Then for all w € W there exists v € V' such that Cy : H°(B) — H3Y(B) is continuous.
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If V = (vp)n is a family of weights, for each m € N we define v, (z) = maxj—1,.m vj(z)
and write Vi = (Up,)m. Following the same steps of the proof of Lemma 2.6.4 we can prove
that

HV(B) = HVi(B).

In other words, the family of weights can always be chosen to be increasing. Thus we have
the following.

Proposition 2.6.7

Let V., W be two families of weights and ¢ : B — B holomorphic.

Then, Cy : HV(B) — HW(B) is continuous if and only if for all w € W there exists
v €V such that Cy : H°(B) — HgY(B) is continuous.



Chapter 3

Spectra in tensor products of Imc
algebras

3.1 Introduction

Spectral theory was developed at the beginning of the 20th century and is now a classical
subject. During the 1930’s Gelfand developed his theory, in which he showed the relation-
ship between spectra and the multiplicative linear functionals or the maximal closed ideals
of the algebra (these two sets are essentially the same). A good study of all this classical
theory is given in [70].

The step of going from spectra of a single element the spectra to a family of elements was
given during the 1950’s by Waelbroeck and others for the commutative case. Left, right
and joint spectra for families of elements in a non-commutative algebra were defined by
R.E. Harte during the 1970’s (see [33]). Alternatively L. Waelbroeck focused his efforts on
defining a vector spectrum, instead of the classical scalar spectrum. He defined the spec-
trum for elements of A&,X, where A was a commutative unital Banach algebra and X
was a Banach space.

C.Taylor, jointly with S.Dineen and R.E.Harte (see [74] and [18], [19], [20]), recently de-
veloped a vector Gelfand theory for elements in A®7X , where A is any Banach algebra,
X any Banach space and + is a uniform tensor norm and generalized the Waelbroeck spec-
trum. Using the spectrum defined by Harte, they defined a left spectrum when A is not
commutative. In a series of three papers they presented their results.

Our aim in this chapter is to generalize some of their results for Imc algebras and Q-algebras
and locally convex spaces. We obtain results concerning left invertibility of continuous map-
pings and of holomorphic germs with values in a non-commutative algebra.
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3.2 Topological preliminaries

3.2.1 Topological algebras

Topological algebras have been long and widely studied. A detailed study can be found
in [23], [28], [36], [50], [54], [57]. We only present here the basic definitions and properties
that will be needed later. As its name suggests, a topological algebra is an object with two
structures that are in principle different. First of all it is an algebra, and has a topological
structure. These two structures are connected in the following way.

Definition 3.2.1 An algebra A is said to be a topological algebra if it has a topology 7
such that the algebra operations + : Ax A — A .:CxA— A, -: Ax A — Aare
continuous.

Clearly every topological algebra is a topological vector space.

Imc algebras

A topological algebra can, as a topological vector space, be locally convex. This could in
principle give us a new structure, but we need some extra topological conditions on the
inner multiplication, slightly more demanding than being just continuous.

Definition 3.2.2 A topological algebra A is locally multiplicatively convex (Imc) if it is
a locally convex space whose topology is defined by a a family of seminorms (p;);cs such
that for all z,y € Aand alli € I,

pi(zy) < pi(z)pi(y)-
Seminorms with this property are called multiplicative.

An equivalent definition can be given in terms of neighbourhoods of 0 in the following way.
First, given any two sets A, B C A the product is defined tobe A-B = {zy : v € A, y € B}.
With this we say that a topological algebra is locally multiplicatively convex if it is a locally
convex space with a basis of neighbourhoods of 0, U, satisfying that U-U C U for all U € U.

Every Banach algebra is clearly a lmc algebra. We say that a lmc algebra is Fréchet if
it is complete and the family of seminorms defining the topology is countable.

Q-algebras

An interesting class of topological algebras is the class of Q-algebras. Two different def-
initions of Q-algebras exist in the literature. They are simply two totally different and
independent concepts that unfortunately have the same name. The ones that we are going
to use were first used by Kaplansky during the 1940’s when studying the radical of a ring
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(see [38], [39]). This led him to define what he called Q-rings. This concept was immediately
used for algebras ([54]).

We begin by defining the ‘circle’ operation o in an algebra A. Given any two a,b € A, let
aob = a+ b— ab. This is an associative operation with identity 0. An element a € A is
said to be quasi-invertible if there exists b € A so that aocb=0=boa.

Definition 3.2.3 A topological algebra A is Q-algebra if the set of quasi-invertible ele-
ments is open in A.

For a complete survey on the definitions and properties of Imc and Q-algebras, we refer to
[23], [24], [28], [36],[57],[59], [68]. Clearly every Banach algebra is a Q-algebra.

For any locally convex space FE, the topological dual will be denoted by E’. On it we will
always, unless stated otherwise, use the weak* topology.

The set of non-zero continuous homomorphisms from A to C is denoted by 2(.A). This is
a subset of A’. Q-algebras have very interesting properties. We state some of them in the
following proposition.

Proposition 3.2.4

Let A be a Q-algebra; then

(1) If A is unital, M(A) is weak*-compact (see [78], Proposition 10).

(i) M(A) is equicontinuous (see [18], Theorem 6).

(7i1) Every proper mazimal ideal is closed ([36], Theorem 1.6; [59], Proposition 2.4).
(1v) BEvery complex homomorphism is continuous ([24]; [59], Corollary 2.5).

A subset M C L(E; F) is equicontinuous if for each neighbourhood of 0, V' C F', there is
some neighbourhood U of 0 in E, such that f(U) C V for every f € M. Equivalently, for
each continuous seminorm on F, say ¢, there exists p, continuous seminorm on FE, such
that ¢(f(z)) < p(x) for all f € M and x € E.

Remark 3.2.5

Let A be a Q-algebra and B a subalgebra of A that is a complemented subspace of A in
such a way that the projection 7 : A — B is an algebra homomorphism. Then B is also
a Q-algebra. Indeed, given any x,y € A,

m(zoy) =m(r) + n(y) — n(zy) = n(z) + w(y) — w(z)7(y) = 7(x) o w(y).

Also, 7(0) = 0, therefore the set of quasi-invertible elements in B is the projection of the
set in A. Since every projection is an open mapping, B is a Q-algebra.

Remark 3.2.6

The situation becomes nicer when A is unital; in this case it is easily shown that z € A
is quasi-invertible if and only if 1 — x is invertible. Thus, if A is unital, it is Q-algebra if
and only in the set of invertible elements, which will be always denoted by A;,., is open.
In fact this is the definition given in [57].
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Example 3.2.7

If E is a locally convex space and K C E compact, then H(K) is a Q-algebra. If, further-
more, E is metrizable, H(K) is a lmc-algebra; see [57], Prop. 28.1.

On the other hand, H(C) with the pointwise multiplication is an algebra but with the 7
topology of convergence over the compact sets it is not a Q-algebra. We know that a func-
tion f is invertible if and only if f(z) # 0 for every z € C. Then, if f € H(C) is invertible,
either it is constant or f(C) = C\ {0}. Take a non-zero null sequence (wy,)y. Suppose that
f is not constant and define g,, = f — w,. For each n € N there exists some z, € C such
that f(z,) = wy. Then, g,(2,) = f(2n) —wn = 0 and g, is non-invertible. Let us now show
that g, — f. Take K C C compact; given € > 0, let ng € N so that |w,| < ¢ for every
n > ng. For n > ng we have;

sup | f(z) — gn(2)| = sup [f(2) = f(2) + wn| = |wn| <e.

zeK zeK
Therefore g, — f.
If f = c is constant and invertible then ¢ # 0. Let h,(z) = ¢ — wyz. Then h,, is a non-zero
polynomial and hence has a zero and is non-invertible. Clearly h,, — ¢ as n — oo.

This shows that the set of invertible elements is not open and, since H(C) is unital, it is
not a Q-algebra.

The next example is well known in the literature ([24] or [49], Sections VI and VII).

Example 3.2.8

Let X be a completely regular Hausdorff topological space and consider the algebra of
continuous complex functions over X, C(X). We show that C(X) is a Q-algebra if and
only if X is compact. If X is compact, then C(X) is a Banach algebra and, therefore, a
Q-algebra.

Suppose now that it is not compact we are going to show in this case that 9M(C(X)) is
not equicontinuous. For each z € X, we consider the evaluation map 0 : C(X) — C
given by §,(f) = f(x). Each 0, € M(C(X)). By [15], Theorem 1, ¢ : X — M(C(X)) is a
homeomorphism. Thus, we can identify X = 9(C(X)).

The topology in C(X) is defined by the seminorms

pi(f) = sup [f(2)],
zeK

where K ranges over all the compact subsets of X. Then, M(C(X)) is equicontinuous if
and only if there exists some K C X compact such that |0,(f)| < px(f) for all z € X and
all f € C(X). In order to see that this is false, consider any compact K C X. Since X is
non-compact X \ K # . Consider zp € X \ K. Since X is completely regular, we can find
a continuous mapping f : X — [0, 1] satisfying f(xz) = 0 for all z € K and f(xo) = 1.
Then

|02 (f)| = [f (x0)| =1 >0 = Eg}glf(x)\ = px(f).



3.2 'Topological preliminaries 45
Thus, M(C(X)) is not equicontinuous and C(X) is not a Q-algebra.

3.2.2 Tensor products
Definitions and properties

The tensor product of two vector spaces is in principle a purely algebraic concept. Given
any two vector spaces F and F there exists a unique vector space G and a bilinear mapping
¢ : E x F — G with the following universal property; for each vector space H and each
bilinear mapping f : E' x F' — H there is a unique linear mapping f : G — H such that

f=1Foo.

ExF—QS»G
f f

The pair (G, ¢) is called the tensor product of E and F. Usually the mapping is not ex-
plicitly mentioned and the vector space is denoted by E ® F. The vectors in the tensor
product are called tensors. Let z @ y = ¢(z,y).

By uniqueness of the construction £ ® F is the set of formal finite sums > ;" | z; ® y;,
taking into account that tensors can be represented by different formal sums. With this
representation of the tensor product, given any two linear mappings f : E1 — FE»
and g : I} — F> we can define a new mapping f ® g : F1 ® F1 — Fo ® Fy by
(f@g) Ol zi®yi) => 1y f(z;) ®g(yi). This mapping is well defined and linear. More-
over, if M and N are two equicontinuous sets of linear mappings, we can consider the set
M@N={f®g:feM, ge N}. A deeper and more detailed study of tensor products
of vector spaces con be found in [11], [17], [30], [37], [45].

Since £ ® F' is a vector space, it may be endowed with some topologies that make it
a topological vector space and these topologies may be generated from those of £ and F'.
When 7 is a topology for E® F, we write E @7 F for (E® F,T) and EQ7F for the com-
pletion. The problem of how to generate these topologies was considered by Grothendieck
in [30]. In his work the definition of compatible tensor topology is given (Chapter 3, Section
3). Inspired by it we give the following definition.

Definition 3.2.9 We say that 7 is a uniform tensor topology for locally convex spaces if
for every pair E, F' of locally convex spaces:

1) E®7 F is a locally convex space.

2) The canonical bilinear mapping E x ' — FE ®7 F is separately continuous.

3) If f € L(Fy; E2) and g € L(F1; Fy), then f® g € L(Ey @7 F1; By @7 Fy).
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4) If M C L(Ey; E2) and N C L(Fy; F») are equicontinuous, then M ® N C L(E; &1
F1; By @71 F») is equicontinuous.

The last property is called the mapping property in [6] and in [11]. Clearly it implies con-
dition 3. We keep both conditions because they appeared in this way in Grothendieck’s
definition of compatible topology.

This definition generalizes that of uniform tensor norm for Banach spaces (see [11], Section
12.1), in the sense that a uniform tensor norm defines a uniform tensor topology when
restricted to normed spaces.

When A, B are two algebras, a product can be defined on A ® B by using the universal
properties of the tensor product,

(a1 & b1)(a2 & bz) = ai1as ® b1by

and extending it by linearity. A proof of the fact that A ® B is an algebra can be found
in [18] and [50]. We give here a different proof of this fact. In order to see that it is well
defined, fix first (a,b) € A x B and suppose that Y i, v, @ y; = Y7 T; ® g;. It is a well
known fact that A ® B = (Bil(A, B))* ([37], Section 1.6). We have, for all B € Bil(A, B)

> B(zi,yi) = Y _ B(i, ) (3.1)
i=1 j=1

Now, given any such B, we define B(,; € Bil(A,B) by B (7,y) = B(ax,by). Then,
using (3.1),

> Blaw(@iyi) = Biap) (&, 75)-
i=1 j=1

From this we obtain
n n

Z B(aaji, byi) = Z B(ai;j, bﬂ])
i=1 j=1

This means that (¢ ® b) (3, 2iQ@vy;) = (a @ b) <Z?:1 Z; ® gjj). Proceeding in the
same way we have (31, z; ®y;) (a ® b) = (Z?Zl Z;® g]j) (a ® b). Suppose now that
Z?:l T QY; = Z;-lzl Z; ® y;j and ZZLZI 2k Q@ wg = Z?il Z; ® wy; then:

n m n m
(Z:L’Z ®yi> (Z Zk®wk;> - Zi‘j ®ﬂj (Zgl ®7~DZ)
i=1 k=1 Jj=1 =1

< () (o) (o) (e
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Therefore the product is well defined on A ® B. The fact that it is an algebra is an easy
exercise. Note that if both A and B are unital, then A ® B is also unital and 14 ® 15 is
the identity element.

It is also interesting to ask under which conditions A ®7 B is a lmc algebra.

Remark 3.2.10
Take h : Ay — As and g : By — Bs two algebra homomorphisms. Then h ® g is linear.
We show that it is multiplicative. Let T = Y"1, a; ® b, S= 37" ¢; ® dj; we have

(h®g)(TS) = (h®yg) Zazcj@)bd
3,j=1
= ) hlaicj) ® g(bidy)
.Jﬂ
= Zhal (¢j) ® g(bi)g(d;)
5,j=1

= (Zhazéég ) th] ®g(d

= (h@g)(T) (h®g)(S).

Hence h ® g is an algebra homomorphism. If furthermore A1, By, As, Bs are lmc algebras
and A; ®7 By and As ®7 By are lmc algebras and both h and g are continuous, then

h®g: Al @7 Bi — Ay @7 By
is a continuous algebra homomorphism.

Remark 3.2.11
Let A be a lmc-algebra whose topology is generated by a system of seminorms {p : p €
P}. Each continuous seminorm is uniformly continuous and, therefore, admits a unique
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extension, p, to the completion A. The topology on A is generated by the system of
seminorms {p : p € P}. Let us show that we can extend the product defined in A to A so
that A is again a lmc algebra. What we need to show, then, is that p(ab) < p(a)p(b) for
any two a,b € A and any p.

Suppose first that « € A and b € A. Take a net (a,)s in A converging to a. Consider
any p € P and let ¢ > 0. Since (aq)q converges it is Cauchy and there exists ag so that
plag—ag) < ﬁ (w.l.o.g. we can assume that p(b) # 0) for all «, 5 > . Then, if o, 5 > ay

p(aab — agb) = p((aa — ap)b) < plaa — ag)p(b) <e.
Therefore, (aab)q is a Cauchy net and let

ab = lim ayb.
«

This is well defined. Indeed, if (c3)s is another net converging to a we have for any p,
plaab — cgb) = p((aa — cg)b) < plaq — cg)p(b) — 0. Thus, lim, anb = limg cgb. In this
way we define a product A x A — A satisfying that

plab) = limp(anb) < limp(aa)p(b) = p(a)p(b)

for all a € A and b€ A and any p € P.
Now, for b € A, take a net (ba)a converging to b and proceeding in the same way we define
a product A x 4 — A satisfying

p(ab) < pla)p(b)
for every a,b € A and p € P. Therefore, Ais a Imc-algebra.

This means that, in order to check that A®7B is a Imc-algebra, it is enough to consider

A® B.

Examples

In order to check that the concept of uniform tensor topology is not void and therefore it
makes sense to consider it, let us see some examples of such topologies.

Example 3.2.12
Let E, F be two locally convex spaces whose topologies are defined by families of seminorms
(Pa)a and (gg)g, then let

(Pa ®r q3)(T) = nf{> pal@i)as(yi) : T=) zi®yi, neN},
i=1 im1
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This defines a seminorm in E® F' and (pq ®r¢g)a,g is a system that defines a locally convex
topology called 7 (projective). If & and V are fundamental systems of convex, balanced
neighbourhoods of 0 for £ and F', respectively, then

{T(U®V) : Ueld,V eV}

is a fundamental system of convex, balanced neighbourhoods of 0 for F ®, F', where I'(A)
denotes the convex hull of A. It is well known that 7 satisfies the two first conditions of
Definition 3.2.9 to be a uniform norm (see [49]).

Take E1, Ey, F1, Fy locally convex spaces and M C L(E5; Es) and N C L(Fy; Fy) equicon-
tinuous. For By, Fs, Fy, I, consider fundamental systems of neighbourhoods, (U})4, (U 5) 35 (V“l) 1>
(Vnz)n respectively. Take I'(U 52 ® V,72). By equicontinuity, we can find U} and V/} such that
f(Uy) € Ué and g(Vl}) - Vn2 for every f € M and g € N. Take any f € M and g € N,

since both are linear we have

(f@9TU, @ V) =T(f®9)(Us®V,)) ST(f(Us) ®9(V,)) CTUFR V).

Thus, the 7 topology is uniform.
If A, B are two Imc algebras, the seminorms that generate the 7 topology are multiplicative
(see [49]) and, then, A ®, B is a lmc algebra for any two lmc algebras A, B.

Before giving the next example, let us introduce some notation. If E is a locally convex
space and p is a continuous seminorm in E, we denote by B), the set {z € E : p(z) < 1}.
For every = € FE we have p(z) = SUD,e po |2’ (2)|. With this notation, a lmc-algebra A is
said to be uniform if for every x € A

p(z) = sup |h(z)|.
he BgNIM(A)

Example 3.2.13
Given any two locally convex spaces E, F' whose topologies are generated by two families of

continuous seminorms (pa)o and (gg)g respectively, for each pair of continuous seminorms
define for each T € E® F

(p ®: q)(T) = sup (@' @y )(T)].
:c’EBIO}
y'EBg

This defines a seminorm and the family (po ®- ¢3)a s generates a locally convex topology
in £ ® F, called the ¢ (injective) topology. If & and V are respectively two fundamental
systems of neighbourhoods of 0 in £ and F' then

{(U°®@V°)°:UelU,V eV}
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is a fundamental system of neighbourhoods of 0 in F ®. F'. For a more detailed and deeper
study of this topology [45] Section 44 can be consulted. The proof of the fact that e
satisfies the first two conditions of a uniform tensor topology can be found in [45], Section
44.2. We show that it also satisfies the fourth condition. Take E1, F9, Fi, F5 locally convex
spaces with basis of convex, balanced neighbourhoods (Uiq)a, (U28)8, (Vig)u, (Van)n. Then,
(U ® V1},)%)a,u is a basis of neighbourhoods of 0 in Ey ®. F1 and ((Ugs ®@ V,)%) g, is a
similar basis for Fs ®. Fy. Consider M C L(Ey; Ey) and N C L(Fy; F3) equicontinuous.
We want to show that M @ N C L(E; ®. Fi; Es ®. F3) is also equicontinuous. Consider
(UQOB ® VZ‘;)O. Since M and N are equicontinuous, we can find Uy, such that f(Uia) C Usp
for all f € M and Vi, such that g(V1,,) C Vo). Take any f € M, g € Nand T € (Up,®V7),)°.
We have |(z} @ y1)(T)| <1 for all 2} € U}, and all y; € Vy3,. Consider x5 € Ugy C EY and
yy € Vg, C Fy. We have 25 0 f € E} and, if 21 € Uq, then f(z1) € Uzg and, from this,
|(z5 0 f)(z1)| = |25(f(z1))| < 1. Therefore, 25 o f € U7,. In the same way y5 0 g € Vy), and
hence (z5 0 f) ® (y3 0 g) € Uy, @ V{},. From this we have

(25 @ yo) ((f ® 9)(T)) = (250 f) @ (p09))(T) < 1

Therefore
(f@9)(T) € (Usz @ V).

And this implies that (f ® g)((Uf, ® V7},)°) € (Ugg ® V3,)° for any f € M and g € N.
Hence M ® N is equicontinuous and the € topology is uniform.

Now suppose that A is a uniform algebra. Then for any lmc-algebra B we show that
A ®. B is Imc algebra. Let p,q be continuous seminorms on A, B respectively and let
T=Y",2:Qy;, S= Z;":l zj @w; € A® B. Consider the sets B, and Bg; then

(p®:q)(TS) = sup [(2' @y )(TS)|
x/EBg
y'€Bg
n,m
= sup |(.’L‘, ® y’) Z TiZj Q Yiw; |
z'eBp ij=1
y'€Bg 7
n,m
= sup | Z x/(m’sz) Y (yzw])‘
TP =1
y'€Bg
n,m
= sup |z Z vz Y (yiw;) | |
o' €Bp ij=1
y'€Bg
n,m
= sup |h Z vizjy (yiw;) | |
heBgNM(A) i,j=1

! o
y'€Byg
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= s [ ey )

hEBNM (A)

y'€BY wi=1
n,m
= sup | ¢/ Z h(zi)h(z;)yiw; | |
hEBSNM (A) =1
v €Bg ’
n,m
= sup | q Z h(zi)h(z)yiw; | |
heBgﬂm(.A) Z,]ZI
n
< sup | ¢ h(zi)yi | |
heBgNIM(A) i—1
m
sup | ¢ Zh(zj)w] |
heBgNIM(A) j=1
n m
= sup D) k(@)Y sup D h(z) ¥ (w))]
heBENM (A) i—1 heBHNM(A) =1
v €BY v €BY
= sup [(@'@y)(T) sup |2’ @y)(S)|
zleBg z’EBg
y'€Bg y'€Bg

= (p®R:q)(T) (p®:q)(S).

Hence A ®. B is a Imc algebra if A is a uniform Imc algebra and B is any Imc algebra.

Example 3.2.14

In [30], section 3, Grothendieck defines the inductive topology to be the only Hausdorff
locally convex topology 7;,4 on F ® F' such that for any other locally convex space G, the
natural algebraic isomorphism Bil(F x F; G) — L(E ® F'; G) sends exactly the separately
continuous bilinear mappings into the 7;,4-continuous linear mappings. Moreover, the sep-
arately equicontinuous sets of bilinear mappings correspond to the 7;,4-equicontinuous
sets of linear mappings on E ® F. Hence, if M C L(Ey;E2) and N C L(Fy; Fy) are
equicontinuous, M x N is separately equicontinuous and its image by the isomorphism,
M®N C L(E,® Fi; Es® Fy) is Tjg-equicontinuous and 7;,4 is a uniform tensor topology.

Topologies defined from norms
A complete locally convex space E can be described as a projective limit of Banach spaces,
E = lim F;, in the following way. Suppose the topology in F is given by a directed set of

seminorms (p;)icsr such that p; < p; whenever ¢ < j. Consider the projection m; : £ —
E/kerp; and let ||m;(x)||; = pi(z). This is a norm on E/ker p;. We denote its completion
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by (E;, || ||l;) and m; : E — E; is a continuous linear mapping (not necessarily onto). We
then have mappings m;; : & — E; for ¢ < j such that m;; o m; = m;. Write 2; = mi(x).
The map £ — liin(Ei,m) given by x — (x;)ics is a homeomorphism that provides the
desired representation. Note that by construction 7;(F) is dense in E;. Projective systems
satisfying this condition are called reduced.
A uniform tensor norm « (see [11], 12.1) assigns to each pair of normed spaces X, Y a
norm on X ® Y such that:
le<a<m.
2) If T, € E(EZ,FZ), 1 =1,2, then T ® T € E(El Ra Fo; F1 @4 F2) and ||T1 ® T2|| <
|71 - || T2|| (it satisfies the metric mapping property).
In fact, it can be proved that the converse inequality is always true.
From a uniform tensor norm we can generate a tensor topology for complete locally convex
spaces in the following way. Take any two complete locally convex spaces with basis of
continuous seminorms (p;)icr and (g;);je respectively. Following the previous notation we
have projections m; : £ — E; and (; : ' — Fj. Now, if T € F® F, for each ¢ and j we
have (m; ® (;)(T) € E; ® Fj, but this is a tensor product of two normed spaces, on which
« can act. We define

Pi ®a ¢j(T) = [[(mi © G)(T) o

The system (p; ®a qj)icr, jes defines a locally convex topology on E ® F, that we call 7.
We have, for basic tensors,

(Pi ®a )z @y) = [(m@G)z@y)la = [mi(x) ®GY)la
= Mm@ - 1G@WI = pi(e) - 45()-

This obviously implies that the canonical embedding £ x F — E ®, F' is separately
continuous. All this construction can be found in [11], Section 35.2. There it is also proved
that 7, satisfies the mapping property, i.e., given any two equicontinuous sets M C L(E; G)
and N C L(F;L), then M @ N C L(F ®, F;G ®, L) is again equicontinuous. Since the
proof is not long, nor difficult, we reproduce it here. Take any seminorm in G®q L, p2®a go-
There exist p; and ¢, seminorms in E and F' respectively, such that po(f(x)) < pi(z) for
all f € M and = € E and that ¢2(9(y)) < q1(y) for all g € N and y € F. Now, given any
f € M we can define a mapping fp,p, : Ep, — Gpy bY fpipe (Tp, (2)) = 7p, (f(x)). This is
a mapping between normed spaces, whose norm can be calculated:

[ fprpe (T (@) llps = 1705 (f (2))llpo = p2(f (2)) < p1 = [[]p-

This implies that || fp,p, || < 1. In the same way, for every g € N we have gq,4, : Fy, — Lg,
with ||gg,4. ]| < 1. Then, for all f®g € M®N, since « satisfies the metric mapping property,

(P2 ®a @2)(f @ 9)(T)) = [[(Tpy ® Gpo)((f ® 9)(T)) |
= [[(forp2 @ 9g105) (Tpy @ Gy )(T)) [l
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< Nfpipe @ 9giaell (7 @ G )(T))la
[ forpe | 19g1q: 11 11 (7py ® G )(T)) [l
< (p1 ®a q1)(T).

Hence M ® N is equicontinuous and every uniform tensor norm « generates a uniform the
locally convex tensor topology 7.

The requirement that F and F' are complete is not a big restriction since if « is a finitely
generated norm, that is, the norm of an element T € X ® Y can be obtained as follows

ITlla =inf{a(T; Z,W): T € Z W}

and Z ranges over all the finite-dimensional subspaces of X and W over all the finite-
dimensional subspaces of Y, then the topology 7, also satisfies E&r, F = E&r F ([11],
Section 35.2).

Obviously both the 7 and the ¢ topologies can be obtained in this way. Nevertheless, since
they are the two most important topologies we preferred to study them independently.
Many examples of uniform tensor norms that generate uniform tensor topologies can be
found in [11], Sections 12.5 and 12.7. Take for example the d norm, defined by

Mllaw = ___inf (Sup le zi)| - sup H%II)-

T=Y01 7y \ ||a||<1 5 i=1,...,n

The tensor topology for locally convex spaces generated by d, coincides with the X\ topology
used in [34]. To see this we first note that

IMla. = _ _inf ( sup Zlév i) ||.%||>

T=Y01wi®y \ ||o|<1 5

for all T € X ® Y. The right hand side generates the A topology. Take a tensor T and a
representation T=7>3"",2;®y;. Transform this into the representation T = Y " | 2;||y;|| ®

From this,
IIy I

IMlla, < sup Zlfﬁ %HyzH)\ sup

lle’l<15=

- HH sip 3 (@] .

2 1<13=

This gives the equality that we were looking for. We have then, that the A topology intro-
duced by H.P. Lotz and used in [34] is a particular case of a tensor topology defined from
a uniform tensor norm and, hence, is uniform.

This provides us with a large family of uniform tensor topologies for locally convex spaces.
A very important class of uniform tensor norms is the Lapresté’s norms ([11], Section 12.5),
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of which the preceding d., is a particular case. Before defining them we need some other
concepts. Given any sequence (A,)neny € C and 1 < r < oo we have the classical £, norms,

o) 1/r
ET()‘n) = <Z ’)‘n|r>
n=1

for 1 <r < oo and loo(Ap) = Sup,en |An|. Also, for sequences in a normed space (zp)nen C
X, we can define the weak r-norm in the following two ways, recalling the duality between
£, and £, where % + % =1,

00 1/r N
wy () = sup (le’(xn)lr) = sup{|| Y Anzn| : N € N, 4 (An) < 1},

x’EBX/ n=1 n=1

for 1 < r < 00 and Woeo(Tn) = Suppey ||7nl|. With this, for 1 < r,s < co with £ +1 > 1,
take the unique ¢, 1 <t < oo such that % + % + é = 1 and we define for X and Y normed
spaces the Lapresté tensor norm,

s (T) = Inf{l (Ao wer (@ )w (yi) = T =Y N @ i}
i=1

If F is a locally convex space and p a continuous seminorm, let

1/r

o) N
wP(xy,) = sup (Z |x'(xn)|r> = sup{p < )\nxn> N eNl(\,) <1}
n=1 n=1

x'€BY

for 1 <r < oo and wh(xy,) = sup,enp(zn). So, if E and F are two locally convex spaces
whose topologies are defined by seminorms (p;)icr and (g;);cs respectively, then the tensor
topology defined by the a,  norm is generated by the seminorms

(p @y @)(T) = it { Ml ()l (i) - T =3 N @ i),
=1

All these topologies are uniform.

Lemma 3.2.15

Let A be a uniform Imc algebra.

Given (zn)neN, (2n)nen C A, consider (Tpnzm)nm. Then, for any continuous seminorm p,
and any r,

Wy (Tn2zm) < wi(Tn) Wy (zm).
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Moreover, if r = 0o, the result is also true for any A, not necessarily uniform.
Proof.
If 1 < r < oo we have, using the duality between ¢, and £,

1/r
wl(zpzm) = sup (Z\x TnZm) )

z'eBp

= sup Z Mm@ (Tn2m)

’ o
x EBp )
S nm Anm|7 <1

= sup x’ (Z )\nmxnzm> |
n,m

/e BO
z'€Byp )
Zn,m |>\7Lm‘r <1

= sup sup Z Anm P (2n)h(2m)
5 A |7 <1 REBZNIM(A)

1/r
= sup <Z |h *In m >

he B3NI(A)
1/r 1/r
< sup |h(xn) sup |h(zm)|
heBgNIM(A) (Z ) heBgNIM(A) Z
1/r 1/r
= s (Swear) s (S
x'€By n z'€By ™

= wh(zy,) wzro(zm)_

When r = 1, the proof is even simpler, since we do not need to use the duality. For the
case r = oo we have, for any lmc algebra A,

Wl (Tnzm) = supp(zpzm) < supp(z,)p(zm)

n,m n,m

= supp(xn) sup p(zm) = W (zn) W (2m).
n m
q.e.d.

Proposition 3.2.16

Let A, B be two Imc algebras. Then,

(1) If both A and B are uniform algebras, then A ®, , B is a Imc algebra for all r,s.
(2) If A is uniform, then A ®q, , B is a Imc algebra for any Imc algebra B and for all s.
Proof.
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Take p, g two continuous seminorms on A, BB respectively and T,S € A ® B. Consider two
representations T = > " | \iz; ®y; and S = Z;ﬂ:l tjz; @w;j. We then have a representation

for the product TS = Z?;Zl Aipjziz; @ yiw;. Clearly

1/t 1/t

n,m n 1/t m
o) = [ 52 | — (zW SUTA R
i=1 j=1

ij=1
From this,
(P Ba, )(TS) < Le(Nipg)wh (wizj)w) (yiw;)
< G(N) ()l (z)w?, (z)wd (i) w? (w;)
- (ﬁt(%)w}s’/(wi)w?/ (yz)) (ﬁt(uj)wi’/(zj)wﬁl(wj)) .

Taking the infimum over all possible representations we get

(P ®ay. O)(TS) < (P @a,.. )(T)(P Pa,.. 4)(S)-

This shows that A ®,, , B is a Imc algebra.

Note that if s = 1, then s’ = oo and, as we saw in Lemma 3.2.15, we do not need A
uniform.

q.e.d.

This implies that A ®) B (see [34]) is a Imc algebra when A is uniform (for any B), since
A = doo = 01,00 ([11], Section 12.7). We can also recover the result in [49] on the 7 topology,
since T = a,1.

3.3 A vector Gelfand mapping

The classical Gelfand theory has widely studied since its first appearance during the 1930’s.
It is a scalar theory; our goal is to give an analogous vector theory in the context of tensor
products. What is done in the classical theory is, given a commutative Banach algebra and
M(A) its space of linear multiplicative functionals, consider for each = € A the mapping
Z: M(A) — C, called the Gelfand transform of x, defined by Z(h) = h(x). This mapping
is continuous and from it the Gelfand mapping,”: A — C(M(A)), is defined by z — z.
This is a continuous algebra homomorphism with interesting properties For a more detailed
study, see [70], Chapters 12 and 13. In [18] and [74] the authors define a vector Gelfand
mapping on tensor products of Banach algebras and Banach spaces. Following the same
ideas we define a Gelfand mapping in our new context.
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3.3.1 Definition

Let A be a lmc-algebra and E a locally convex space. Given h € M(A) and the identity
mapping I : E — E we can consider h® Ig : A®7E — C®7E. It is a well known fact
that if F is complete C®7E = E; from now on, in order to simplify notation, we are going
to assume that F is complete and, keeping in mind this identification, write F instead of
C®rE.

Definition 3.3.1 Let A be a lmc algebra, E a complete locally convex space and 7 a
uniform tensor topology. For each T € A®7E we define its Gelfand transform,

A

T:MA) — E , T(h)=[he Ig)(T).

We first check if this mapping is continuous. Unfortunately this is not always true, although
we can prove it for Q-algebras. In M(A) we consider the weak* topology induced from

(A, o(A,A)).

Proposition 3.3.2

Let A be a lmc Q-algebra, E a complete locally convex space and T a uniform tensor
topology. Then, for each T € AQTE, the mapping T: M(A) — FE is continuous.

Proof.

Fix T € A®7E and h € M(A) and consider a net (hy)o C M(A) weakly*-converging to
h. Let ¢ be any continuous seminorm on F and let € > 0. Since A is a Q-algebra, 9t(A)
is equicontinuous and, therefore, so is M(A) ® {Ig}. Then we can find some seminorm p;
on A®7FE such that ¢([g ® Ig](Z)) < p1(Z) for all Z € ARTE and g € M(A). On the
other hand, h is continuous and there is some other seminorm on A&7 E, say ps, such that
q([h® IE)(Z)) < p2(Z) for all Z. Choose S =Y _." | a; ® x; such that

max{p1(T —=95),p2(T-9)} < Z

Since ho — h in the weak* topology, we have hq(a;) — h(a) for all a € A. Let K =
max;—1i,.n¢q(x;) and for each ¢ = 1,...,n we can find «; such that, for a > «, satisfies
|ha(a;) — h(a;)| < 555 Let ap = max(aa,...,a,). If @ > ap, we have

q([ha © Ig)(T) = [h © I6](T)) = q([(ha — h) @ Ig)(T =S +5)

< a(lha ® I)(T = 5)) +a([h & I&](T = ) +al[(ha — 1) & L5)(S))
< AT=9)+pm(T-9)+q (Z(hamz-) - h(amxi)
=1
< 4+ 2 Ihalas) — hiadla(a)
< < +nk £ - E.

2 2n K
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Thus, limg ¢([ha ® Ig)(T) — [h ® Ig](T)) = 0 and T € C(M(A); E).
q.e.d.

It is well known that H(C)®.E = H(C; E) and 9(H(C)) = C topologically (by means of
the evaluation functionals). Let F = Y"" , fi ® x; € H(C) ® E. Given any z € C we have

F(0.) = [0 ® Ig|(F) = ) _ fi(z)as = F(2).
=1

Continuity and density show that for all F € H(C)®.F and all z € C the equality F(8,) =
F(z) (as a function in H(C; E)) holds. Then obviously F is continuous. This provides us
with an example that shows that Q-algebra is not a necessary condition in Proposition
3.3.2.

With Proposition 3.3.2 we can define the vector Gelfand mapping.

Definition 3.3.3 Let A be a Imc Q-algebra, E a complete locally convex space and 7
a uniform tensor topology; we define the vector Gelfand mapping to be the mapping " :
ARTE — C(M(A); E) given by T(h) = [h® Ig](T).

3.3.2 The Gelfand mapping as an algebra homomorphism

If A is a unital lmc Q-algebra, 9M(A) is w*-compact. Given a locally convex space E
and a continuous seminorm ¢ we consider the seminorm in C(9M(A), E) given by ¢(F) =
suppean(a) 4(F'(h)) for F' € C(M(A), E). If the topology of E is defined by a family of
seminorms (gg)g, the family (Gg)s defines a locally convex topology in C(M(A), E). With
this notation we have the following result.

Proposition 3.3.4

Let A be a unital Ime Q-algebra, E any complete locally convex space, T a uniform topology
for the tensor product. Then, the Gelfand mapping ~ : ARTE — C(M(A),E) is a
continuous linear mapping.

If, furthermore, B is a complete Imc algebra and AR B is a Imc algebra, then the Gelfand
mapping " : ARQTB — C(M(A), B) is a continuous algebra homomorphism.

Proof.

The Gelfand mapping is easily seen to be linear. To see that it is continuous we have
to show that, for every § there is some p, a continuous seminorm on A7 E, such that
G(T) < p(T) for all T € A&7 E. Take, then, § any continuous seminorm on C(MM(A), E).
Since M(A) ® {Ig} is equicontinuous, there exists a continuous seminorm on A®7E, say
p, such that ¢([h ® Ig](T)) < p(T) for every T € A®7FE and h € M(A). Hence

sup ¢([h @ Ig](T)) < p(T)
heM(A)
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and the Gelfand mapping is continuous.
Suppose B is a complete lmc algebra. Let T := Zle a; ®c; and S := Z?zl b; ® d; belong
to A® B and h € M(A). Then

TS(h) = [h® Ig)(TS)
k,n
= [helgl | ) ab; @ cd;
ij=1

k.n
= Z h(aibj)cidj

ij=1

k.n
= Y h(ai)h(bj)eid;

ij=1

k n

= > hlai)e; Y h(bj)d,
i=1 j=1

= [h® Ig)(T) [k ® I5](S)

= T(h)S(h).

Hence TS = TS in A ® B. By a density argument, together with properties of 7, this
extends to all of A®7B and the Gelfand mapping is an algebra homomorphism.
q.e.d.

3.4 Commutative case

We are going to consider tensor products A&7 E, where A is a Imc algebra, which in many
cases will be a Q-algebra, 7 a uniform tensor topology and E a locally convex space. The
results obtained and the techniques differ depending on whether the algebra is commutative
or not; for this reason we study both cases separately.

3.4.1 The Waelbroeck spectrum
In a unital algebra A the spectrum of an element a € A is defined as follows
o(a) ={X € C:a— Al 4 not invertible.} C C. (3.2)

This is a classical concept that we call the scalar spectrum. In the same way, using left or
right invertibility, left and right spectra may be defined. Our goal now is to define analogous
concepts for elements in A&7 E that we call vector spectra.
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If A is a commutative, unital Banach algebra, then the scalar spectrum of each a € A can
be represented in the following way (see e.g. [70], Section 70, Theorem B),

o(a) = {a(h) : h € M(A)}.

We have just defined a vector valued Gelfand mapping, using it we can define a vector
spectrum when the algebra is commutative.

Definition 3.4.1 Let A be a commutative, unital Imc algebra, E a complete locally convex
space and 7 a uniform topology on A® E. Given T € A®7E, the Waelbroeck spectrum of
T is defined to be the following set:

ow(T) ={[h @ Ig](T) : he M(A)}.

L. Waelbroeck defined in [77] his spectrum during the 1970’s for elements of A&, X, where
A is a unital commutative Banach algebra and X is a Banach space. In this case each tensor
has a representation T = > 2, a; ® z; with a; € A, z; € X and > 7, |lai| - [Jai]| < oc.
Then he defined the spectrum,

ow(T) ={>_hla)zi: h € MA)} C X.
=1

Years later C. Taylor realized in his Ph.D. Dissertation ([74]) that the above sum is the
form [h® I](T) takes when T has such a representation. With this observation he defined
the Waelbroeck spectrum for T € A®7X , when A is a commutative unital Banach algebra,
X a Banach space and v a uniform tensor norm. This definition inspired the one we give
here for more general algebras and spaces.

We have already seen that when A is also a Q-algebra the Gelfand mapping has par-
ticularly good properties. This suggests that the Waelbroeck spectrum has also interesting
properties. For instance, Waelbroeck proved that his spectrum is compact ([77]), Taylor
proved the analogous result in [74], Section 2.2. When A is a Q-algebra, we also obtain
this result.

Proposition 3.4.2

Let A be a commutative, unital Imec Q-algebra, E a complete locally convex space and T a
uniform topology on A ® E. Then, for each T € ARTE, the spectrum ow (T) is compact
mn K.

Proof.

We have, using the Gelfand transform, oy (T) = {T(h) : h € M(A)}. Since A is a Q-
algebra, M(A) is w*-compact on A’. Furthermore, the mapping T : M(A) — E is con-
tinuous when we consider the w* topology on 9(A) and the locally convex topology in E.
Then, ow (T) is the continuous image of a compact set and, hence, compact.

q.e.d.
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3.4.2 Projective limits

Let A be a complete lmc algebra whose topology is given by a directed family of multi-
plicative seminorms (p;)icr so that p; < p; for all ¢ < j. In particular, A is a complete
locally convex space and we have already seen that then A can be realized as a projective
limit A = lgn A; where each A; is a Banach space. By the submultiplicativity of the semi-

norms, ker p; is a two-sided ideal of A and A/ ker p; is well defined as an algebra. Therefore,
(Ai, || Ils) is a Banach algebra and m; : A — A; is for each ¢ € I a continuous algebra
homomorphism (not necessarily surjective). A natural question now is to try to relate the
Waelbroeck spectrum of an element with those of its projections. This was studied in [8]
when A is a Banach algebra, F a Banach space and the m topology is used. Following the
same steps given there we are going to consider our more general case. We need to impose
a new condition on the tensor topology.

Definition 3.4.3 We say that a uniform tensor topology satisfies the projective limit con-
dition if for every pair of projective systems (Eq)q, (Fj)g with projective limits £ = lim E,

and F' = lim Fj, we have that E®rF =lim EQ®TF5.

This condition is obviously satisfied by any uniform tensor topology coming from a uniform
tensor norm.

Lemma 3.4.4
Let A = lim A; be a complete Ilmc algebra and f : A — C a continuous linear mapping.

Then there exist some i and f; : A; — C linear, continuous such that f = f;om; (i.e. f
factorizes through some of the Banach algebras).

If f is a homomorphism, then so also is f;.

Proof.

Since f is continuous, we can find some seminorm p; satisfying that |f(a)| < p;(a) for all
a € A. This means that ker p; C ker f and we can find some continuous f; : A/ ker p; — C,
linear, such that f; om; = f.

q.e.d.

Remark 3.4.5
For 4,4,k € I with k > j > ¢ we have, in completed tensor products with a uniform tensor
topology satisfying the projective limit condition,

(mij @ Ip) o (mjx ® Ig) = (mix @ Ip)
(mij @ Ip)o(mj@lp) = (m®lp)
In the first case,
mij ® Ip : AjQrE — AQTE, Tk ® Ip 1 Ak®TE — A;Q7E,

i @ Ip : Ak®7E — A;Q7E.
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Take T=3""_, ap ® xp € A, ® E. Then
(mij @ Ip) o (mj @ Ip) (T) = (mi; ® Ip) Zﬂ'ﬂk ap) @ xp

- Z mij (mik(ap)) ® Tp = Z mik(ap) ® p
p=1 p=1
= (mx®Ig)(T) e 4®E.

Since the mappings are continuous, we have the equality in the completed tensor products.
The second equality is proved in the same way.

Now, for T € A®7E we denote, following [8], T; = (m ® Ig)(T) € Ai&7rE. I T =
> p_q Qi ® g, then, clearly

n
T, =(m®Ip) (Zak@’ﬂ?k) :Zm(ak)(@zk.
k=1

It is also clear, from Remark 3.4.5, that (m;; ® Ig)(T;) =T, for i < j.

Lemma 3.4.6

Let A be a complete unital Imc algebra, E a complete locally convex space and T a uniform
tensor topology that satisfies the projective limit condition. If T € AQTE, j > i and
h € M(A;) then,

(i) homyj e M(A;j) and (homy) ® Ig(T;) =h® Ig(T;).

(ii) hom; € M(A) and (hom) @ Ip(T) =h® Ig(T;).

Proof.

We prove (i) and (i7) is proved in the same way. First of all, h o m;; € 9M(A;), since
h:A; — C, m; : A; — A; and both are algebra homomorphisms.

For the second part, take first T =3 ,_; ax ® x;. Then

(hoﬂ’ij)@)IE(Tj) = (hOﬂ'ij)@IE <Z7rj(ak)®xk)
k=1

= Y (homj)(m(ar) © zx

k=1

= h®[E (ZWZ ag ®1’k>
= (h® Ig)(T:).

Using a density argument we complete the proof.
q.e.d.
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With this we can finally prove the relationship between the spectrum of an element and
those of its projections.

Proposition 3.4.7
Let A be a complete, commutative, unital Imc algebra, E a complete locally convexr space
and T a uniform tensor topology satisfying the projective limit condition. Then for all
T e ARTE,
(1) ow (Ti) C ow(T;) whenever j > i.
(i) ow(T) = Jow(T0).
el
Proof.
Let h € M(A;). By Lemma 3.4.6,

[h @ I](T:) = [(homij) © Ig](T;) = [(h o m) @ Ig](T)
and hom;; € M(A;), hom € M(A) for all i < j. From this,
ow (Ti) Cow(T;) C ow(T).
So, we have the first statement and the first inclusion in (7).
Let h € M(A). By Lemma 3.4.4, we can find h; : A/ kerp; — C such that h; o m; = h;

then,
[h @ Ig)(T) = [(hi o mi) @ Ip](T) = [hi ® Ip](Ts).

Therefore o (T) C U ow (T;).
iel
q.e.d.

This result generalizes Proposition 2.3 in [§].

3.5 Non-commutative case

3.5.1 The algebraic Harte spectrum
Definition

We now have a vector spectrum when A is commutative. This was inspired by the relation-
ship between the scalar spectrum and the Gelfand transform. In the non-commutative case
we cannot use this property. To proceed we return to the definition of the scalar spectrum
recalled in (3.2). If the algebra is not commutative left and right invertible elements can
be considered. This leads us to consider left and right spectra. We always work from the
left. Everything done in this setting can be immediately translated to the right invertible
setting.

Given a € A and \ € C, we have A € ¢'°*(a) if and only if a — A1 4 is not left invertible.
With this idea R.E. Harte defined during the 1970’s a left spectrum for an arbitrary family
of elements of a Banach algebra.
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Definition 3.5.1 Given a family A = (a;);er C A, its left joint Harte spectrum, aﬁft(A) -
C!, is defined to be the following set,

A= (N\)ies € okl (A) & 14 ¢ { N bi(ai — Aila) ¢ b € A}
i€FCI
Ffinite

Note that the set of finite sums on the right hand side is nothing else but the left ideal
generated by (a;);er. Also, when the family consists of just one element, the joint spectrum
is the scalar left spectrum.

Remark 3.5.2
Since we are only considering finite sums, clearly (\;)icr € alﬁf “((as)ier) if and only if
(Aj)jes € Ulgft((aj)jej) for each finite set J C I.

Properties

In [18] properties of the Harte spectrum are proved for the case when A is a Banach
algebra. We give here some analogous properties in the case of lmc algebras that will
be very useful later. We begin with a technical lemma. Topological divisors of 0 for lmc
algebras were introduced by Michael in [54] and proved a result (Proposition 11.6) to which
our next result is very close. Nevertheless, the proof we give here is different from that and
is inspired by Theorem B of Section 66 in [70].

Lemma 3.5.3

Let A be a unital Imc Q-algebra and denote by Sy the set of non-invertible elements of A.
Then, for z € 9S4, there exist a continuous multiplicative seminorm p and a net (24)o C A
such that p(zo) = 1 for all a and lim, p(z42) = 0 = limy p(224).

Proof.

Since z € 0S5 4, there exist anet (r4)o C A of invertibles converging to z. On the other hand,
since A is a Q-algebra the set of invertible elements is open and therefore we can find some
e > 0 and p a continuous multiplicative seminorm so that {a € A : p(a—1) <e} C Ajpy.
Suppose that (p(r;1))a is bounded. Then, since (r4), converges to z,

p(rat(z —71a)) < p(raY)p(z — o) — 0.

But r;1(2 —ry) = 7512 — 14, and for some «, r; 'z is invertible. From this z = ro(r;2) is

invertible, contradicting the fact that z € 3S4 C Sa. Thus, (p(r;!))a is not bounded and
we can assume that lim, p(r;1) = oo.

Let zo = ro! Obviously p(z,) =1 for all a.. Also,

prat)’
o rot ladargt =14 1o+t —rary!
“ p(ra’t) p(rat) p(ra’)
1 — ~1 1
.A+ (Z Ta)roz .A _|_ (Z—T'a)Za.

pra)  p(ral)
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From this, p(2z4) < —:1

) + p(z — ro)p(2a) — 0. In the same way we prove that p(z42)

also tends to 0.
q.e.d.

If 7 C T are any two sets, a canonical projection 77 is defined from C% to C7 by
77((Mi)iez) = (Aj)jes. This mapping is used in the next two results.

Proposition 3.5.4
Let A a unital Imc Q-algebra, (a;)icr, (bj)jes € A. Then:

ol (@idier (bj)jes) € o (as)ien) x o ((0;)je)-

If furthermore the following commutativity conditions are satisfied for every i,k € I and
jed.
a;a = aga; , a;bj = bja;,
left left
then 7 (o (ai)ier, (0))jen)) = o (by)er).
Proof.

The first statement is obvious from Remark 3.5.2. Let us prove the second one by transfinite
induction over |I|. Suppose first that |I| = 1. In this case we can assume (a;);c; = a € A.

Take (j17)je0 € o5 ((b;)je) € C7.
Denote by N the closed left ideal generated in A by (b; — p1;1.4)es. Obviously, 14 &€ N.
Define now

M={yeA: NyC N}

Clearly 14 € M and it is easily seen that M is an algebra. Then it is a unital subalgebra
of A. Let n € N. We have Nn C NN C AN C N and N C M. By construction N is a
closed two-sided ideal in M. Consider the unital algebra M/N.

For any = € A and j € J we have, applying our commutativity conditions,

x(bj — pjla)a = x(bja — pjlaa) = x(abj — apjla) = za(b; — pla) € N.

Then, for a finite sum, (ZjeF zj(bj — ,ule)) a € N. This implies Na C N and a € M.
Take A € op/n(a+ N) C C. In the notation of Lemma 3.5.3, (a — Al4) + N € 9Sy/n-

Suppose (A, (115)jes) & alljft(a, (bj)jes) € CY/. Then we can find o’ € A and (0))jes C A,
all zero but a finite number of j, such that

Iy=d(a— Ny )+ Zb;-(bj — pila).
jeJ
If y € M, then

y—a(a— Ny = Zb;(bj —pil4)y € N.
JjeJ
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This means that y + N = (a — Al4)y + N. If z € N then ¢’z € N and, from the previous
equality,
y+w=ad(a—ANy)y+adz=d[(a— Ay + 2] (3.3)

The topology on M/N is generated by the seminorms given by p(y+ N) := inf.en p(y+2),
where p range over all the continuous seminorms on M. Since the z was arbitrary, (3.3)
implies

Py +N) < p(a)p((a — ALa)y + N) (3-4)

for all y € M and all continuous seminorms p.
On the other hand, since (a — A14) + N € 9S)/n, Lemma 3.5.3 implies that there exist a
net (Ya)a € M and a seminorm p such that p(y, + N) = 1 for all a and

p((a—AlQ)ya + N) — 0.

This obviously contradicts (3.4) and, from this, we have (A, (145)jer) € Ulf[ft(a, (bj)jer)-
Since (A, (145)je7) = (15)je, we have our result for the case |I| = 1. The general case is
proved using transfinite induction exactly in the same way as in Proposition 11 in [18].
q.e.d.

Definition 3.5.5 A family of elements in an algebra, (a;);er C A is called commutative if
aia; = a;a; for all i,j el

Corollary 3.5.6
Let A be a unital Imc Q-algebra and (a;)icr € A a commutative system. Then, for any
JCI,

w0 (@)ien) = o ((a5)je.).

3.5.2 The vector valued Harte spectrum

If the indexing set of the family is a locally convex space, I = E, we can interpret A =
(az)zep as a mapping A : E — A given by A(z) = a,. Analogously, A = (\;).cp defines
a mapping A : E — C by A(z) = A\;. Under certain conditions some properties of A as a
mapping are inherited by the elements of the spectrum.

Lemma 3.5.7

Let A be a Q-algebra; then, if A € L(E;A) and \ € aléft(A), then A € E .

If, furthermore, E = B is a Imc algebra and A is an algebra homomorphism, then so also
is .

Proof.

We have

A(fz) = ABx)la— Pla(A(z) — A(z)14)
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A(Bx) = MB)1a — (BA(2) — BA(2)14)
= A(Ba) = A(Ba)la— A(Bx) + BA(2)1a
= (BA(x) — A(Bx)) La.

Since \ € Uﬁft(A), the first expression is not invertible. Then (BA(z) — A(5 z)) 14 = 0 and
BA(x) = A z). In the same way we get that A(z1 + z2) = A(z1) + A(x2).

We now prove that A is continuous. Let x € E and suppose z, — x. We know that
ay, — a; and we want to show that A(zo) — A(z).

Suppose that (A(z4))a does not converge to A(x). Going to a subnet, if necessary, we can

assume that for all «,
IA(zo) — M) >0 > 0. (3.5)

Obviously each (A(zq) — A(x))1.4 is invertible. Taking into account (3.5) we can write
(aza — Mza)la) = (a2 — AM(2)14) = (ag, — az) + (A(@) — A(20a))1a

Gy, — Oy
= Mz)=AMxy)) | —2——+14]).
() = M) (55 + 1)
Since A is a Q-algebra, A;,, is open and there exists an open neighbourhood of 0, U, such
that 14 + U C A;p,. We have that

g, — ag

o) Mwa)

Qg — Qg ro — Az

For o large enough we have that o) ) © U. Hence, m + 14 is invertible and

so is (A(x) — A(zq)) (% + 1A)- This means that we can find b € A so that

14 = b [(/\(x)—)\(xa)) (MHAH

= b (az, — Mxa)la) — b (az ()1 4).

But A € aﬁf *(A), which gives a contradiction. Therefore A(zq) — A(z) and X is continu-

ous.
Suppose now that F is a Imc algebra and A is an algebra homomorphism. Then

(A(zy) — Azy)la) — A(z) (Aly) — A(y)1a)
— AMy)Lla(A(z) — A(z)1a)
= (AM@)A(y) — Azy)) 1a.
Since A € crllf}f t, the left hand side tells us that this element is not invertible. Therefore, it
must be zero and hence A(z)A(y) = A(zy).
q.e.d.
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Let us note that what is actually needed in this proposition is that A has a neighbourhood
of 14 consisting of left invertible elements. The result is therefore true for any algebra, not
necessarily Q-algebra, satisfying this condition. This situation was already considered by
Kaplansky, who talked about Q;-rings, in which the set of left invertible elements is open
(see [38]). He wondered whether both concepts were equivalent. So far we do not know of
any positive answer to this question, but neither of any counterexample.

Definition

Using Lemma 3.5.7, a Harte vector spectrum was defined in [18] for tensor products of
Banach algebras and spaces. In the same way we define an equivalent one in or setting.

Definition 3.5.8 Let A be a unital Imc Q-algebra, E a locally convex space and 7 a
uniform tensor topology on A ® E. Given T € A®7E, we define its left Harte spectrum
ot T (T) to be ol!* ([(1a © 2/)(T)) yreppr ), that is

2" e (M e 1ag{ ) a (Laezf)(T) — 2"(@)la) : ai€ A, z} € E'}
iEF
F finite

The Harte spectrum lying in F

The Harte spectrum has been defined as a subset of the bidual E” of E. Let us see now
how can it actually be realized in E. Every locally convex FE can be embedded into its
bidual by means of the mapping Jg : E — E” defined by Jg(z)(z') = 2/(z). In [18] the
same result is proved for Banach algebras and uniform norms.

Proposition 3.5.9

Let A be a unital Imc Q-algebra, E a complete locally convex space and T a uniform tensor
topology. Take T € AQ7E. Then:

For every 2" € aésft(T) there exist some x € E such that Jg(x) = 2. Consequently, we
can identify:

(M) ={e e B:1a g { Y allla®a](T) =2/ (2)14) : a; € A7} € B'}}.

Proof.
We note first that if S = "' | b;®x; € A®E, then the mapping ¢s : (E, o(E', E)) — A,
given by

v [La®a)(S) =) a/(x:) b
=1

is continuous. Let T € A&7 E. We now claim see that the mapping ¢t : 2’ — [[4 ® 2](T)
is continuous on the equicontinuous subsets of E’.
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Let M C E’ be equicontinuous Consider a net (Ty)o € AR E converging to T. Now, {14} ®
M is equicontinuous. Given any continuous seminorm p on A we can find a continuous
seminorm p on A®7E such that p([I4 ® 2'|(Z)) < p(Z) for all Z € AR7E and all 2’ € M.
In particular,

Sllelg/[p([IA ® x/](Ta - T)) < p(Ta - T)

for all . Hence

sup p(er, (2') — ¢r(a’)) — 0.

x'eM
This implies that o1, — @71 uniformly on M. Then ¢7 is a uniform limit of continuous
mappings and it is continuous on M with the o(E’, E) topology. This proves our claim.
Take now 2/ € E” such that 2/ € aﬁf Y(T). Let (/,)s be an equicontinuous net in E’
converging to ' € E'. If 2”(z],) does not converge to z”(z’) then, going to a subnet if
necessary, there exists § > 0 such that |2"(z],) — 2" (2")| > ¢ for all a.
Since A is a Q-algebra, the set of invertible elements, A;,,,, is open. Consider then U € U so
that 144U C Ajp,. Since the mapping 2’ — [I4®2'](T) is continuous on the equicontinuous
subsets of E’, we can consider g such that for all a > ag

—[I4 ® (z, — 2")(T) € §U.

If o > g we have

L4 ® (ah — 2))(T) = 2" — 2') La=—a"(a, — ) (1,4— 4@ (v - f“’””)) |

' (x!, — )

(L4 ® (g — 2)](T)

- - € 14+U isinvertible. This contradicts the fact that 2"/ € Ulf[f 3
x

But 14— @ —z
«

Therefore, 2" (z,) — a2’ (2).

Hence the linear functional 2" is o(E’, E)-continuous on the equicontinuous subsets of E’.
Applying the Grothendieck’s Completeness Theorem ([35], Chapter 4, section 11, Corollary
3), 2" is o(E', E)-continuous and there exist some x € E such that Jg(x) = 2.

q.e.d.

Using the identity 2/(z)14 = [[4 ® 2'](14 ® x) we can rewrite the Harte spectrum in a
more convenient way:

o (M ={reB: 1a¢{D> a ([a®z)(T-14®2):a;€ Az € E}}  (3.6)
Fiﬁen}i?te

Now, if A is complete we can describe the spectrum in an even more convenient way.

Given a € A, consider the multiplication mapping M, : A — A given by M,(b) = ab. For
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each 2’ € E' we define M, ® 2’ : A97F — A®7K = A. Note that for elements of A ® F
this mapping acts in the following way

n

(M, ® z') (Z bi ® m) = Z 2 (x;)ab;.
i=1

=1

Writing a ® 2’ in place of M, ® ' and extending M, ® 2’ by linearity and continuity we
obtain an action of A ® E’ on AQ7E. If b€ A and 2’ € E' we have

b <[IA ® 2] (Z a; @xi— 1 ® J:)) =b (Z a;x' (zi) — 1Ax/($)>
i=1

=1

= Z ba;x'(zi) — bl g2’ ()

=1

n
= Z<b®x’,ai®xi>—<b®x',1A®m>
i=1

= <b®x/,zn:ai®xi—1,4®x>
i=1
This shows that for every b€ A, 2’ € E/, x € F and T € A®7E, then
b([[a@2|(T-14®2)) =<b@2,T-14Qz >
We thus have the following description, similar to the classical one.

Proposition 3.5.10
Let A be a complete unital Ime Q-algebra, E a complete locally convex space and T a
uniform tensor topology. Then, for each T € A®TE we have

T = (e e B e AR E st. <Z,T—140z >=14}. (3.7)

The Harte spectrum and the Waelbroeck spectrum

When A is a commutative Imc Q-algebra we have defined, for each element in A®7E, two
different spectra. We are going to show now that in many cases they are essentially the
same set. If E is infrabarrelled the canonical embedding Jg : E — E” of E into its bidual
is an isomorphism onto its image and, if A is commutative, left and right inverses coincide
and we can write oy (T) instead of O'i;ft(T).

Proposition 3.5.11
Let A be a commutative, unital Imc Q-algebra, E a complete locally convex space and T a
uniform topology on A® E. Then, for every T € A®TE,

Je(ow(T)) =ou(T).
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If, moreover, E is infrabarrelled, then Jg|q,, (1) : ow(T) — on(T) is a homeomorphism.
Proof.

The first and final parts of the proof coincide with those in [18], Proposition 6. For the
sake of completeness we give a full proof. Take Y " ; a; ® ; € A® E. Given h € M(A)
and 2’ € E' we have

(IA®:U (Zaz@)xz)) = h<zn:aiw’(fvi)>

Hence ho[I4@2'|(T) = [h@2'|(T) = 2/ o [h® Ig](T) for each T € A® E. By the condition
(3) in Definition 3.2.9, ho [[4® 2], h@ ', ' o [h® Ip] € (ASTE).
Given any € > 0, we can find a V neighbourhood of T such that, for every S € V:

[holla®a'|(S)—ho[la@a'|(T)] < &/2,
I[h®2'|(S) — [h22'|(T)] < eg/2.
If T € A97FE and (Ta)a € A® E converges to T, there is some o such that for every
o > «g, then T, € V. Therefore
[ho[la®a'|(T) - [h®'|(T)]
< |ho[la®@a'[(T) = ho[I4®2'|(Ta)| +|[h @ 2'|(Ta) —[h ® 2)(T)| <e.
Thus, ho [[4 ® 2'] = [h ® 2'] in A®7E. Proceeding exactly in the same way, [h ® 2] =

' o[h® Ig] in ARTE.
Let 2" € oy(T) C E”, then

14 @D ai (Ia®a|(T) — 2"(&))1a) : a; € A, F finite, o} € E'} (3.8)
el

Since A is a Q-algebra all its maximal ideals are closed (Proposition 3.2.4). The set in
(3.8) forms a proper ideal in A and is thus contained in a closed maximal ideal and, hence,
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in the kernel of some h € M(A). If F = {2’} then h([l4 @ 2'|(T)) = 2’ (2). We have
shown already that h([J4 ® 2')(T)) = 2'([h ® Ig](T)). Hence Jg([h ® Ig](T)) = 2”. Thus
on(T) C Je(ow(T)) C Je(E).

Conversely, suppose that « € Jg(E)\ o (T). This means that there exist (a;); C A and
(«})?_, C E' such that

1A= (La®)(T) — j(x)La).
i=1

Since h(14) = 1, we have

([hRIE|(T) — =).

Hence, x # [h®Ig](T) for h € M(A). This implies that z & o (T) and, hence, Jg(ow (T)) C
ou(T).

If E is infrabarrelled, then Jg is continuous. Hence, when restricted to oy (T), we have
a bijective, continuous mapping between a compact and a Hausdorff spaces. Then it is a
homeomorphism.

q.e.d.

By this proposition the vector-valued Harte spectrum of an element of A®7E, A com-

mutative, is compact. We shall see later that it is compact for any 4 complete unital Imc
Q-algebra.

Projective limits

We have seen that if A is a complete unital Imc algebra, it can be realized as a projective
limit of Banach algebras. In the case when 4 is commutative we studied in Proposition 3.4.7
the relationship between the spectrum of an element of A&7 E and those of its projections.
We now consider the non-commutative case. We use the notation in Proposition 3.4.7. Note
that Lemma 3.4.4, Remark 3.4.5 and Lemma 3.4.6 hold for any algebra, not necessarily
commutative. We need first the following lemma.

Lemma 3.5.12
Let A be a complete, unital Imc algebra, E a complete locally convex space and T a uniform

tensor topology that satisﬁes the projective limit condition. Take T € AR7TE, j > i and
h € M(A;). Then, for all 2’ € E,

mii([La; @ '[(T;)) = [La, @ 2'[(Ts) = mi([La @ 2')(T))
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(IA®3: (Zak@@xk)) = (iakx’(azk)>

Proof.
We have

The proof is completed by a density argument. Proceeding in the same way we have the
other equality.
q.e.d.

Proposition 3.5.13
Let A be a complete unital Imc Q-algebra, E a complete locally convexr space and T a
uniform tensor topology that satisfies the projective limit condition and let T € AQTE.
Then,
(i) oI (Ty) € oI(Ty) for all j > i.
(i) o (T) = (o (To).
el
Proof.
Let 2" ¢ azft(T]-). There exists a finite sum such that

Ly, = > af, ([La, @ 23)(Ty) — a"(ap)1a,)
keF
F finite

where ai € A;j and ) € E’ for all k. Using projections and Lemma 3.5.12,

La, = mi(lay) =Y mijlad) (mig([La; @ 2 )(T5)) — " (2))mi5(1a;))
keF
- Zﬂzy ak ([, @ 2] (Ti) — 2" (2))14,)-
keF

Hence, 2 ¢ o/ (T;) and we proved (i).
For (ii), first take 2" & Jleft( T). Again we have a finite sum

la= Y a (La@ap)(T) — a"(})14)
keF
F finite



74 Spectra in tensor products of Imc algebras

where a, € A and ), € E’. Proceeding in the same way as before, i.e. taking m; and
applying Lemma 3.5.12 we have 2" ¢ aﬁf !(T;) for all i € I. This implies that

o' (Ts) € ol (T).
el

For the converse let z” € O'iy_(;f "(T). We denote by Z the left ideal generated in A by
{[Ia® 2'|(T) — 2"(2")1a}wer. We have 14 € T and, since A is a Q-algebra, 14 ¢ .
Consider 1 : A — C linear and continuous such that ¢(14) = 1 and ¥(Z) = 0. By Lemma
3.4.4, there exist some i € [ and ; : A; — C such that ¢ = 1; o m;. Then:

VYi(la,) = Yi(mi(1a)) = 9(1a) = 1.

Denote by Z; the left ideal generated by {[I4, ® 2'|(T;) — 2"(2')14,}wer in A;. Ifa e
then

mi(a) = (Zak ([La® 23 )(T) — fL‘"(ﬂJk)lA)>
k=1
= > mila) (m([La@aR](T) — o (a})mi(La))
k=1

= > milar) ([La, @ 23](Te) — o"(a})La,) € L.
k=1

Hence, m;(Z) C Z; and 7;(Z) C Z;. Let

3

a' =) ap ([La, ®p)(Te) — 2"(a})1a,) € L.
k=1

We know that 7;(A) is dense in A;. Therefore we have a% = lim, m;(ar,) where ag, € A.
Since this is a finite sum,

a = Zliglm(aka) (124, ® 23 J(Te) — 2" (23)14,)
k=1
= 11({302%(%1) (mi([La @ 23 ](T)) — 2" (2)mi(14))
k=1

= limm (Z o ([Ta @ 23 )(T) — x"(%)h\)) € mi(I).

k=1

This means that Z; C 7;(Z) hence Z; C m;(Z) and

Z, Cm(I) C L.
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Hence

Ii = mi(Z) = mi(T)
and ¥;(Z;) = ¥;(m;(Z)) = ¥(Z) = 0. On the other hand we already know that ;(14,) = 1.
This implies that 14, € Z; and 14, ¢ Z;. Thus, 2" € Gﬁf "(T;) and

o (1) € Yo (T).
iel

This completes the proof.
q.e.d.

In view of Proposition 3.5.11, this result generalizes Proposition 3.4.7 and thus [8], Propo-
sition 2.3.

The Harte spectrum and the classical one in A®7B

If A, B are lmc algebras and 7 is a uniform tensor topology such that A ®7 B is a Imc
algebra, then A®7B is again an algebra. Therefore, given any T € A&®7B we can consider
its classical algebraic left spectrum, afZgTB(T) C C, given by those A € C such that
T — Al g, p is not left invertible. There are, then, three a priori different spectra, two
of them vector and one scalar. We have already seen that the two vector spectra (the
Harte and the Waelbroeck ones) are under reasonably general conditions, essentially the
same. We now study, following [18], the relationship between the classical algebraic scalar
spectrum and the Waelbroeck spectrum. The proofs of Lemma 13 and Proposition 14 in
[18] are purely algebraic and valid in our new setting. For the sake of completeness we state
the results here without any proof.

Lemma 3.5.14
Let A be a unital, commutative Imc algebra, B a unital Imc algebra and T a uniform tensor
topology such that A @1 B is a Ilmc algebra. Take (a;)icr € A, (bj)jes C B; then

left

o 5@ @ 1p)ier, (14 @ bj)jes) = o allardier) x o5 ((by) jer)-

Proposition 3.5.15

Let A be a unital, commutative Imc algebra, B a unital Imc algebra. Let T be a uniform
tensor topology such that AQ7B is a Imc algebra. Take T € A®7B, u € C, h € M(A).
Then, the ideals generated by

{[(a —h(a)lag) ® 1Blaca, T — p(la®1p)}
and  {[(a — h(a)la) ® 15]aca, 14 @ ([ @ I](T) — pulp)}

coincide.
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Proposition 3.5.16
Let A be a unital, commutative Imc algebra, B a unital lmc algebra and T a uniform tensor
topology such that AQTB is a lmc algebra and AQ7B is a Q-algebra.
If T € A®7B then
left left
ol sM= U o’ (e 1))
heM(A)
Proof.
To begin with, [h ® I] is a non-zero algebra homomorphism and [h ® Ig](14 ® 1) = 1.
Since non-zero algebra homomorphisms send left invertible elements into left invertible

elements this implies

ol ([h @ Is)(T)) C oL (T

for all h € M(A).

left
Conversely, take u € o Ay B

commutative (see Definition 3.5.5). Applying Proposition 3.5.4,

(T). Since A is commutative, the system {[a ® 15]qeca, T} is

left left

le
GA®TB([a ® 13](16./47—[-) = UA®TB([Q ® 13]@6./4) X O-AétTB(T)'

The mapping A — A®7B given by a — a® 15 is an algebra homomorphism. If (Ay)ees €
left
A&TB
Lemma 3.5.7). In other words, we can find h € 9(A) such that (h(a))eea € afZgTB([a ®
1B]aca). Then

o ([a ® 1Blaea), the mapping A — C, a +— ), is an algebra homomorphism (see

((h(@))aca ) € 052 o(1a® 15laca, T).

By Lemma 3.5.15 and Proposition 3.5.14,

(h(@)acar i) € 05 (10 ® lglaca, 14 ® (0 ® Is](T)))

= 04((@)aca) x 05" ([h @ I5)(T)).

Therefore, p € UlBeft([h ® Ig](T)).
q.e.d.

A natural question now is whether we can omit the condition that A&7B is Q-algebra
and substitute it by conditions on A and B. This leads directly to the problem of whether
or not the tensor product of two Q-algebras is again a Q-algebra. This is a difficult open
problem. It is a well known fact (see [49], Corollary 4.1 or [50], Section XII-1, Lemma 1.3)
that if A and B are two complete commutative Imc Q-algebras, then so also is A&7 B. The
non-commutative case is much harder and only few concrete results are known. Let X be
a compact 2nd countable n-dimensional C*°-manifold and A a unital finite dimensional
Banach algebra (take e.g. A = M,,(C). Then C*°(X, A) = C®(X)®,A is a Q-algebra (see
[50], Section XI-2, (2.1) and (2.7)). Here we have that C°°(X) is a commutative Q-algebra,
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since X is compact and A is a non-commutative Banach algebra, therefore Q-algebra ([25]).
Note that C°°(X) can never be topologized to become a Banach algebra.

Another example where the tensor product of two Q-algebras, one of which is not commu-
tative, is a Q-algebra is in [51], Lemma 1.3.

3.6 Invertibility theorems

It is a well known fact from the classical Gelfand theory that is A is a commutative Banach
algebra, then a € A is invertible if and only if a is invertible in C(M(A)),i.e. if and only
if a(h) # 0 for every h € M(A). In [18], a non-commutative tensor Gelfand theory and
spectral theory is developed and the classical result is proved in a more general setting. We
now generalize this result to a wider class of algebras. Essentially we have three different
settings;

(1) A and B Fréchet algebras, in this case we can use a result by Arens ([1]).

(2) A a Fréchet Q-algebra, B any Fréchet algebra.

(3) A and B lmc Q-algebras.

Theorem 3.6.1

Let A be a commutative, unital, Fréchet algebra; B a unital, Fréchet algebra and T a
uniform tensor topology such that A&7 B is a lmc algebra and satisfies the projective limit
condition. Take T € AQ7B; then, the following are equivalent:

(i) T is left invertible in AQ7B.

(i5) T(h) is left invertible in B for every h € M(A).

Proof.

(1) = (i)

If h € M(A), then [h ® Ip] is a non-zero homomorphism and sends left invertibles to left
invertibles. Hence, if T is left invertible, then T(h) = [h ® Ip](T) is left invertible.

(if) = (1)

Since A and B are Fréchet algebras, there are two dense projective systems of Banach
algebras (Ay), and (By,)m so that A = lim A, and B = lim By, ([28], Theorem 3.3.7).
Then, A®7B is again a Fréchet algebra and AQ7B = lgn A, &7 B,

Consider for each n and m, the projections ®,, : A — A, and ¥,, : B — B,,.

We can represent T = (Tym)n.m, where each Ty = (P, ® U,,)(T) € A,®7By,. Fix n
and m and let us see now that 'i'nm(g) is left invertible in B,, for every g € M(A,,). Take
any g € M(A,) and define h = go @, € M(A). Then, by hypothesis, T(h) = [h @ I5)(T)
is left invertible in B. We now claim that

U ([h @ I5](T)) = [9 ® 1B, ](Tn,m)-
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Suppose T = 3" | a; ® b;. Then

Un(h@Is)(T)) = ¥y (Z h(ai)bi> = h(a:) W (b;)
i=1 =1

= Zg(‘bn(ai)) \I/m(bz) = [g ® IBmK((I)n ® \I/m)(T))

= [g X IBm](Tn,m)'

A density argument proves our claim.
Since T(h) is left invertible, there exists b € B such that b T(h) = 1. Hence, ¥,,,(b T(h)) =
1 Bm and

le = \Ijm(b) ’ \I/m(-i_(h» = \Ijm(b) : [g ® IBm](Tn,m) = \Ilm(b) : -T_n,m(g)'

So, 'i'nym(g) is left invertible in A,, for every m. Applying [18], Proposition 17, we have that
Tp.m is left invertible in A, &7 B, for every n and m. Now, by [1], Theorem 4.2, T is left
invertible in AQ7B.

q.e.d.

It is a well known fact that if f is a continuous mapping from some topological space
X taking values in a Banach algebra, it is invertible if and only if f(z) is invertible for
every x € X. Using the previous theorem we see that the same remains valid when we
restrict ourselves to left invertibility. This is not so obvious now, since while an inverse of
an element is unique, a left inverse is not necessarily.

Example 3.6.2

Let X be a completely regular space and C(X) the space of all complex-valued functions on
X with the compact open topology. We know that C(X) is a Fréchet-algebra if and only if
X is a hemicompact kgr-space (see [28], chapter 3). Let, then X be such a space. Therefore
we can identify 9(C(X)) with X ([28], 4.1.7) by means of the evaluation functionals
Consider now B a unital Fréchet algebra, not necessarily commutative. We have C(X, B) =
C(X)®B ([37], 16.6.3). Given Y. | f; ® b; € C(X) ®. B this defines a mapping from X
into B by (312, fi @ bi) (x) = 321, fi(@)bs.

Iff=3", fi®bcCX)@Band z € X then £(6,) = [, @ Ig](f) = S0, fi(x)b; =
(X", fi ®b;) (). By a density argument we have f(d,) = f(z) for every f € C(X, B) and
x € X. Thus, applying Theorem 3.6.1 we have f € C(X, B) is left invertible if and only if
f(x) is left invertible in B for all z € X.

Example 3.6.3
Using different techniques we obtain a similar result for different classes of spaces and al-
gebras. Take F a paracompact t.v.s. (each open covering has a countable subcover) and B
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a unital Q-algebra. Consider f € C(E;B).

If f is left-invertible in C(E;B), then obviously f(z) is left-invertible for all z € E. Con-
versely suppose a, is the left inverse of f(x) for each x € X, that is, a,f(z) = 15. Let U
be a basis of neighbourhoods of 0 in B and take U € U such that 13 + U C B;y,. Since
f is continuous, there exists N(z), a neighbourhood of x such that, if y € N(x), then
az(f(y) — f(z)) € U. Then, given y € N(x) we have

az f(y) = azf(2) + ax(f(y) = f(2)) = 15 + ax(f(y) = f(2)) € 15 + U C Biny.

Therefore a, f(y) is invertible for all y € N(z). The inverse function is continuous, and
hence we can find g, : N(x) — B continuous such that, for each y € N(x)

92()acf(y) = ga(y) (1 + aa(f(y) — f(2))) = 13

Since FE' is paracompact, the cover (N(z))zcx contains a countable subcover (N (xy,))nen.
Let (on)nen C C(E) denote a partition of unity subordinated to (N(zy))nen. This means
that supp(an) C N(zy) for some k, for all z € E > 07 | an(x) = 1 and for each z only a
finite number of o, (z) are non-zero. Consider &, : E — B defined by &,, = ay,15. Clearly
apn € C(E;B) for all n and > 7 | an(x) = 1p for every x € E and only a finite number of
&, (z) are non-zero. Let h = Y7 | GGz, az,. Then

h(.%‘)f(.%’) = Z dngmnafcnf(x) =1p Z dn(x> = 15.
n=1 n=1

And h is a left inverse of f in C(E;B).

If A is a Q-algebra, the Gelfand mapping is a non-zero algebra homomorphism by
Proposition 3.3.4 and it maps left invertible elements into left invertible elements and we
have the following proposition.

Proposition 3.6.4

Let A be a commutative, unital, Fréchet Q-algebra; B a unital, Fréchet algebra and T a
uniform tensor topology such that AQ7B is a Imc algebra and that satisfies the projective
limit condition. Take T € A7 B; then, the following are equivalent:

(i) T is left invertible in A7 B.

(i5) T(h) is left invertible in B for every h € M(A).

(ii5) T is left invertible in C(IM(A), B).

Remark 3.6.5

In many cases if AQ7B is a Q-algebra, then A is also a Q-algebra; for example when
M(B) # O and A is complete. Indeed, in this case we consider the mapping i : C — B
given by i(A) = A and any h € 9(B). This satisfies h(1p) = 1 and

A= A&7C A Ae7B A% A C = A



80 Spectra in tensor products of Imc algebras

Forae A, (I4®@h)o(Ia®i)(a® ) = (Ia® h)(a® Alp) = a ® A\. This means that
(Ia®h)o(Ia®i) =1, c- Hence, (14 ®1i)o (Ia® h) is an algebra homomorphism and
a projection that makes A a complemented subspace of A&7 B. By Remark 3.2.5, A is a
Q-algebra.

The main point in the proof of Theorem 3.6.1 is the use of [1], Theorem 4.2. This allows
us to go to the Banach case, apply the result in [18] and go back to the general case. The
problem is that Theorem in [1] is true only for countable projective limits and the proof
cannot be adapted to the general case. This forced us to restrict ourselves to the case
of Frechét algebras. Now, using Proposition 3.5.16, we can prove a similar result without
using [1]. This allows us to widen the class of algebras that we can consider, but we must
place conditions on the topologies. We assume that both 9t(A) and 9M(B) are not empty.

Theorem 3.6.6

Let A be a commutative, complete, unital, Imc algebra; B a complete, unital, Imc algebra
and T a uniform tensor topology such that AQ7B is a Imc algebra and such that AQ7TB
is a Q-algebra. Take T € A7 B; then, the following are equivalent:

(i) T is left invertible in AQ1B.

(i5) T(h) is left invertible in B for every h € M(A).

(ii3) T is left invertible in C(M(A), B).

Proof.

(i) < (if)

We have T left invertible in A&7 if and only if (Proposition 3.5.16),

left left /<
0¢ T dr B U og’ (T(h
heM(A

This is true if and only if 0 ¢ Uleft( T(h)) for all h € M(A). But this is satisfied if and only
if T(R) is left invertible in B for all h € M(A).

Suppose now that A is a Q-algebra.

The mapping T — T is a non-zero algebra homomorphism and, therefore, sends left in-
vertible elements to left invertible elements. The implication (¢i7) = (i7) is obvious.
q.e.d.

Example 3.6.7

We use Theorem 3.6.6 to characterize the left invertible holomorphic germs on a compact
set with values in a (non-commutative) Banach algebra. Let E be Fréchet-Schwartz space
whose topology is generated by an increasing sequence of seminorms (p,)nen such that
each En, a Banach space, has the approximation property. Take K C E compact, balanced
and polynomially convex and B a unital Banach algebra. Under these conditions we have
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the following representation (see [3])

(H(K,B), 1) = (H(K), 7,)@:B.
Moreover, since K is polynomially convex, M(H(K)) = K by means of the identification
h(f) = f(k) (see [57], Theorem 28.2). Both H(K') and H(K, B) are Q-algebras, since they

are inductive limits of Banach algebras ([57], Proposition 25.5).
Take T =Y, fi ® x; € H(K)®:B and hy, € M(H(K)), then

e @ I8)(T) = > hie(fi)as Y fi(k)as = T (k).
=1 =1

By a density argument we have [hy, ® Ig](T) = T(k) for all T € H(K)®.B and k € K. By
Theorem 3.6.6, F' € H(K, B) is left invertible if and only if F'(k) is left invertible in B for
all k € K.

But we have more. Given F € H(K, B), its Gelfand transform ' : K — B acts in the
following way, F(k) = [h, ® Ig](F) = F(k). Then, the Gelfand mapping ~: H(K,B) —
C(K,B) is nothing other than the inclusion mapping. By Theorem 3.6.6 (iii), F' is left
invertible in H (K, B) if and only if it is left invertible in C(K, B).

Consider now A = lim A;, a complete Q-algebra, and E = C. We know that A®7C =2 A.
Then, A ¢ 0'/'(a ® 1) if and only if there is a finite sum

la = > aj ([Ia@plla®1) — Ajla)

JjeF

= D a5 (o — Al = aj pila — Ay
jeF JEF

= bla — Alg)

and this is equivalent to A ¢ aleft( ) (the classical spectrum). Then, alljft(a@) 1) = afjft(a).
Writing 7;(a) = a; and applying Proposition 3.5.13 we obtain

left O_Ieft

By [49], Theorem 4.1 Section III-4 or [54], Theorem 5.2, a € A is invertible if and only if
each qa; is invertible in A;. The uniqueness of the inverse is essential and the proof cannot be
adapted to the left invertible setting. In [1], Theorem 4.2, Arens proves a general result for
Fréchet algebras that as a particular case has that a € A is left invertible if and only if each
a, is left invertible in A,,, we have used this result in the proof of Theorem 3.6.1. Arens’
proof uses a sort of ‘step method’ based on the fact that the projective limit is countable.
We present here a proof of the arbitrary (perhaps uncountable) using the spectral theory
we have just stated for Q-algebras.
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Theorem 3.6.8

Let A= liin A; be a complete QQ-algebra; then:

a € A is left invertible < a; is left invertible in A; for all i.

Proof.

a € A is left invertible if and only if 0 ¢ afift(a) = Uier aﬁft(ai), if and only if 0 ¢ afﬁlﬁ(ai)
for all 4. This is equivalent to each a; being left invertible in A; for all 4.

q.e.d.

3.7 Polynomial extensions

Let F and F' be two locally convex space, A a Imc algebra and 7 a uniform tensor topology.
If P € P("E; F), it secems natural to ask if we can define P4 € P("(ARTE); AQ7F) so
that

Pyjla®z) =a" @ P(x).

This would allow us to define for any P € P(E; F') a polynomial extension Py € P(AX7E; AQTF).
This problem was first considered by Dineen, Harte and Taylor in [19] in the context of
Banach spaces and algebras.

The problem has to be approached in two steps. First, define a polynomial P4 from A® E

into A® F satisfying the desired condition; second, extend, when possible, this polynomial

to the completion. The first step is purely algebraical and was completely solved in [19].

The second part obviously depends on the topologies considered and was treated also in

the mentioned paper for Banach spaces and algebras. We will study the situation in our

new setting.

3.7.1 Algebraic extension

The extension of polynomials is achieved by extending homogeneous polynomials and these
are extended by considering the associated multilinear mappings.

Let E and F be any two vector spaces over C and A any complex algebra. If L € L,("E; F),
then we can define a 2n-linear mapping L1 : A" x E™ — A ® F by letting

Li(ay,...,an,T1,...,%p) = a1---an @ L(x1,...,2p).
Universal properties of tensor product and associativity give a linear mapping
Ly: RQAQE) — A® F
n

satisfying
Lo((a1 @21) @ -+ (an @ xp)) = a1+ an @ L(z1,. .., Tp).
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If P € P,("E;F), we consider the associated symmetric n-linear mapping L = P €
L:("E; F) and define Ly as above. Let

k k k
Py (Zaz ®fci> =Ly <(Zai RI)® - ® (Zai ®33i)>

i=1 i=1 i=1
and extending by linearity to define an element of P,("A® E; A® F). The polynomial Py
defined in this way satisfies

Pila®z)=da" ® P(z)

for every a € A and = € E. Since Ly is unique (because of the definition of tensor product),
P, is unique.
If A has an identity 14, the polynomial P4 can be regarded as an extension of P in the
following sense. The space E is embedded in A® E by the mapping x — 1 4®x. We obtain
the following commutative diagram.

E L F

3.7.2 Continuous extensions to the completion

Once P € P,("E; F) has been extended to Py € P("A® E; A® F), we endow the tensor
products with some topology 7 and ask whether P4 is continuous and, therefore, can be
extended to the completion A&7 E.

It is well known that any polynomial between locally convex spaces is continuous if and
only if it is continuous at 0. In this case, since A @7 F is dense in A&7 E, the polynomial
P4 admits a unique continuous extension (which we also denote P4), to the completions,
ie. Py € P("A®TE; A®7F). Thus, the main point in defining an extension to the com-
pletion is that P4 be continuous at 0 (in A ®7 E). In particular this means that for all
T -neighbourhood of 0 in A® F, V, there exists U, a 7-neighbourhood of 0 in A® E, such
that

PA(U) C V.

If the topologies of A, E and F are generated by families of seminorms {p}, {¢1} and
{q2}, respectively, and the topology 7 is generated by seminorms {p ® ¢;} for A®7 F and
{p®q2} for A®7 F, then P4 can be continuously extended to A&7 E if and only if for po,
q2 there exist p1, g1 such that

(P2 ® q2)(Pa(T)) < ((p1 ® q1)(T))"
forallTe AQ® E.
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Examples

Clearly, whether or not P4 can be extended to A&7 E depends on the algebra A, the space
E, the topology 7 and the polynomial P € P,("E; F).

Example 3.7.1

For any A lmc algebra, and any two locally convex spaces E and F, all P € P("E; F)
can be extended to Py € P("A®,E; A2, F). Indeed, if T = Zle a; @x; € AR E and
p is a continuous seminorm on A and ¢o is a continuous seminorm on F' then since P is
continuous we can find g1, a continuous seminorm on £ such that

k
(p ®r q2)(Pa(d_ ai ® 1))

=1
l k k

= (p Or qQ)(PA(Z Uiy @ Tiys - ey Z aj, ® xzn))
i1=1 in=1
k

= (p®7qu)( Z ail...ain®]5(xi1,...,min))

i1eeeyin=1

k
Z plai, - ai)qe(P(ziy, ..., 2:,))

<
i1yein=1
k
< Y plan) . plas)a (@) - que,)
01 yeeeyin=1

k n
= (Zp(ai) QI(xi)> :

i1=1

This is true for any representation of T. Hence

(P ®x q2)(PaAT) < ((p @7 q1)(T))"

for all T. Thus, P4 is continuous at 0 and can be extended to P4 € P(" A&, E; AR, F).

Example 3.7.2

We consider the injective topology. In this case need the algebra to be a uniform Q-algebra.
Let A be a uniform lmc Q-algebra and take any two locally convex spaces F, F. Let p and
g2 be continuous seminorms on F and F' and let T = Zle a; @x; € AR E. We have

(P @r q2)(Pa(T)) = sup (¢ @) (PAT)|
¢€B§2
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k
= sup [(¢p@Y)( Z iy oo i, @ Plag, .. x))|

o
$€Bp

vers, i1y yin=1
k
= sup [6( Y i -eai, (P, 2,))]
GEBE G in=1
'LZ’EB(C;Q k) k]
k
= sup  [B( Y aiy ai, (Yo P)(ay, .., i,))]
heBZNM(A) . i =1
1/16382 1 yin

= sup | Z h(a;,) am)(wop)(xil"'"xin))‘

heBZNM (A)

wEBO 2] 4eeeyin=1
= sup Z h(ai,) ... h(ai,) p(xll7’xln))|
heBgnsm(A) 1
VeBg, e
k
= sup WJ(P(Z (@iy)Tiy s - - Z h(a;,)x;,))
heBZNM(A) =1 in=1
YEBY,
k
= sup  [P(PO_ hlai))]
heBINM(A) =
$EBS,
= sup  q2(Po [h® Ig](T)).
he B3Nom(A)

Since P is continuous, we can find a continuous seminorm ¢; on E such that ¢a(P(z)) <
(Gi(x))" for all z € E. On the other hand, since A is a Q-algebra, Mt(.A) is equicontinuous.
The e topology is uniform, then 9M(A) ® {Ig} is also equicontinuous. Therefore, given ¢,
we can find p; a continuous seminorm on A and ¢; a continuous seminorm on E such that,
for all h e M(A) and all TE AR E,

@ ([h® Ie)(T)) < (p1 ®: q1)(T).

Therefore
(P ®x q2)(Pa(T)) = sup  qa(Po[h®Ip](T))
he B3Nom(A)
< sup (@([h® IE)(T)))"
heM(A)
< ((p1 ®: qu)(T))™

Hence Py is continuous at 0 and can be extended continuously to P4 € P("A®.E; AR F).
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3.8 Spectral theorems

The question of the existence of spectral mapping theorems relating the tensor spectra
with the extensions of polynomials was studied for Banach spaces and Banach algebras
by Dineen, Harte and Taylor in [19]. We prove analogous results for the locally convex
space case. An important fact in the proofs in [19] is that the left Harte spectrum, though
defined to be contained in E” can be identified in a canonical way with a subset of E. By
Proposition 3.5.9 this is also true for Q-algebras, i.e. if A is a Q-algebra, E is any complete
locally convex space and 7 is a uniform tensor topology then, for all T € A®7FE, we can
identify

oi'(T) = {z€ B : 1ag (3o (La®al)(T) — zi(x)la) :neN})

= {z€F : 1ag{d a (Iaox)(T - la®x) :neN}H},
1=1

where a; € A and z} € E’. We use several times the fact that A ® E is an A-module via
the mapping (a,b® z) — (ab) ® x. Our next result is purely algebraic.

Lemma 3.8.1 ([18] Lemma 17)

Let A be a Ilmc Q-algebra, E, F complete locally convexr spaces and T a uniform tensor
topology. Then for any P € P("E;F) such that Py € P("AXTE; AQ7F) and all T €
A®7E, x € E,

1 § j times n —j — 1 times
PA(T,...,T,T—1A®$,1A®{B,...,1A®a}>

n

Py(T)—14® P(x)

<.
Il
=)

Proposition 3.8.2
Let A be a lme Q-algebra, E,F complete locally convex spaces and T a uniform tensor
topology. Then for any P € P(E; F) such that the extension P4 € P(ARTE; A®7F) and
all T € ARTE,

P(o"(T)) C o (Pa(T)).
Proof.

Let z € E such that P(z) & ok/ (P4(T)) and let us show that = ¢ o’</*(T). We can find
ai,...,am € Aand yy,...,y., € F' such that

m
14 = Z(IZIA(X):% J(Pa(T) =14 ® P(x))
=1
n—1 J r

i o —
= Y alla@y(Pa(T,.. ., T,T-1lu@z,1x02,...,14@ 1))
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Define the mapping ® : AQ7E — A by letting

n— n—j—1

m 1
ZZ(IZIA@% PA(S LSS Tz, la®@x,...,14®x)).
=1 7=0

This mapping is clearly continuous and ®(T) = 14. By continuity and density, given any
neighbourhood U of 1 4 such that U C A;,, (this exists since A is a Q-algebra) we can find
some S=>"'_, ¢, ®x, € A® E such that ®(S) € U.

Let now Z € A®7E be arbitrary; we have for each i = 1,...,m,

j —j-1
P =
LA ®y)(Pa(S,....5,Z,1a®®,..., 14 ® 7))
t ¢ n—j—1
— [IA®y§](PA(Z crl®x7«1,...,Zcrj®x,~j,Z,1A®x,...,1A®x))
ri=1 r;j=1
t n—j—1
= [La®y( Zcm...crjPA(lA®xr1,...,1A®xrj,Z,1A®x,...,lA®x))
T17i=1
t nfjfl
= Z IA®yZ Cry-- erPA(1A®l'r1, . 1A®xr],z Iag®z,. .., 14Qx)).
T1y-eT5=
Hence,
m n—1 j n_l_l
o(S) = Z a;[l4 ® y] PA(S LSS T-Iu@z,la®x,..., 14 Q1))
=1 j=0
n—

m 1
= 2 D a Z (T4 ® y;]
1=135=0 ri,..,rj=1
(C'I‘l- Cr.pA(l_A®$rl,... 1A®xTJ7T_1.A®m7(1A®$)n_]_1>)
m n—1

S

i=1 j=0r1,..,75=1
[I-A@y’:](pA(IA@xrl, . "1~A®x7'j?T_1A®x,(1A®$)n_j_1>)'

Let us define now for 1 <i<m,0<j<n—1land1<ry,...,r; <tz € E' by

(’Lv] T1se-T5 )

n—j—1
. A
'r,(i,j,rl,...,rj)(w) - yg(P(‘rT’U sy Ty, W T 7$))
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Therefore, if R =33 | ds ® xs, then

T4 ® 0, )R = 4@l Zd ® )
S0

= Z[[A ® (li/(i’jml’m?rj)](ds ® xS)
s=1

S0
e stx,(i7j77’17---77‘j)(xs)

n—j—1
——
= styz (Trys e vy Tpyy W, T, .00, D))
S0 n—j—1
. ——
= Z[IA®y§](dS®P(:nh,...,xrj,ws,x,...,:c))
s=1
80 n—j—1
. —
= [IA®yg](st®P(xrl,...,x7~j,ws,x,...,x))
s=1
n—j—1
. e
= [IA®y;](PA(1A®J:‘T1,...,1A®£L'Tj,R,ZL',...,ZL')).

By continuity and density this is true for all R € A®7E. Thus

m n—1

Z Z Z AiCry - Cry[Ia ® xl(z‘,j,rl,...,rj)](—r — 14 ® ).

=1 7=0r1,...,r;=1

Since ®(S) is invertible we have

m n—1

TR 3) DD SIE RIS IEE A SV}

=1 j=0r1,...,r;=1

This implies that & alef t(T) and completes the proof.
q.e.d.

Our purpose now is to obtain the reverse inclusion. This would give a two way spectral
theorem. Unfortunately we cannot prove it in the most general case.
We say that T € AR E is commutative if the set {[[4®2'] : 2’ € E'} C A is a commutative
system. A locally convex space E has the approzimation property (see [17], 2.7) if for every
K C E compact, every continuous seminorm ¢ and every € > 0 there is some v € L¢(E; E)
such that, for all z € K,

q(x —ux) <e.
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If the set of u’s is equicontinuous, E is said to have the bounded approximation property.
Let P € P("E;F) be such that P4 € P("A®7E; A%7F). Then since u is continuous,
Pouwisalsoin P("E; F) and (Pou)4 € P("ARTE; A®7F). We also have

k
e (Z%@xl) = Y aa @ (Poullm. )
115yt =1
k
= Z Ajp » Ay, ®P(’LL(ZL‘“),,U(.TM))
115000 =1

- (u@ Za,@azz).

By a density argument we obtain (Powu)4 = Py o [l4 ® ul.

Consider now a locally convex space E with the bounded approximation property. This
gives us an equicontinuous set U C L¢(E; E). Let A be a lmc Q-algebra and 7 a uniform
tensor topology defined by a set of seminorms {p®¢q : p € P, ¢ € Q}, where P and Q
are two systems of seminorms defining the topologies of A and FE respectively. Since U is
equicontinuous, {14} ®U is again equicontinuous and, given any two continuous seminorms
p and g, there are continuous seminorms p; and ¢; such that,

(p®@q)([La®@ul(T)) < (p1 @ q1)(T),

for every T € A®7E and all u € U.
Fix T € A®7FE and € > 0. Choose S = Zle a; ® x; such that

max{(p® ¢)(T - S),(p1 @ q)(T-9) <

Wl ™

The set {z1,...,2x} C E is compact, so we can find u satisfying

9

3%, play)

q(z; —ux;) <

foralli=1,...,k. Hence

Pog)(T-[Ha®u(T) < (peg(T-9)

Ea

k
+(p®Q)(Zai®xi 14 ® ul Zaz@)xl
i—1 i—1
+r @) (la@ul(T) - [IA ® u)(S))

— (peq(T-5)+ Zw i — i)
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+(p @ q)([{a ®@u)(T = S))
< (p®q)(T-5)

k
+ p(a;) @ q(wi —uzy) + (P @ @) (S—T)
=1

k

3 € €
< = —I—Zp(ai)ki +5 =c
3 i=1 323’:1 p(aj) 3

That is, for any T € AR7E, € > 0 and p ® ¢ there exists some u such that
()T - [La®u|(T)) <e.
We are now ready to prove the following result, analogous to Proposition 19 in [19].

Theorem 3.8.3
Let A be a complete Imc Q-algebra and E o complete locally convex space with the bounded
approximation property. Let T be a uniform tensor topology defined by a system of semi-
norms {p ® q}. Take T € ARTE commutative. If P € P(E;F) is such that Py €
P("ARTE; A®TF), then

P(o(T)) = ol (Pa(T)).

Proof.
From Proposition 3.8.2, it is enough to show that

71" (PA(T)) € P(of(T)).
Fix T € A®7E, assume that P € P("E; F) and let y € O'i;ft(PA(T)). Let ¢ € F’. We have
[La® y|(Pa(T)) = (y o P)a(T) € A®7C = A
Let Q =y’ o P. We want to show now that, for every 2’ € E’,
14 ®/)(T) - Qu(T) = Qu(T) - [Tu © 2')(T). (3.9)

Note that this is a product in 4. To prove the equality let € > 0 and choose any continuous
seminorm p on A. By the previous discussion, there is some u such that

p((Qou)a—Qa(T)) <

2p([la @ 2')(T))

If R=Qou =y oPou, then, since u is of finite rank, we have R € P;("E;C). Thus,
there are 2/,...,2) € E' so that R = S (2h)". Hence

k k k

RA(T) =) _[(a)"]a(T) = Y _[(#h)A™(T) = ) (La @ «i](T))".

=1 =1 =1



3.8 Spectral theorems 91

But, since T is commutative,
k

[Ia@a/|(T) - Ra(T) = [Ta@2|(T)D ([La®2i)(T))"
i=1
k n
= D La@2|(T) [La@](T)- - [La@z}](T)
=1
= Ru(T)- [La®2'|(T).
Therefore,
p([La@a'|(T) - Qa(T) — Qa(T) - [La @ 2'|(T))
< p(La@2'|(T) - Qa(T) — [La®2'|(T) - Ra(T))
+p(RA(T) - [La @ 2'[(T) — Qa(T) - [La ® 2'|(T)
= p(La@ 2 [(T)HQa(T) = Ra(T))) +p((Qa(T) — Ra(T))[La ® 2'|(T))
< 2-p(La@a'|(T)) - p((Qa(T) — Ra(T))) < e.

Since this is true for any continuous seminorm p and any € > 0 we have proved (3.9). From
now on the proof follows the same pattern as [19]. We continue for the sake of completeness.
The collection {[I4 ® 2'|(T), 14 @ y'|(PA(T))}arcrr yer is a commutative system and we
can apply Corollary 3.5.6 to find = € Uéf}f t(T) such that

(z,y) € o (T, P4(T)).

Let F' € P(E x F;F) defined by F(z,w) = w — P(z). Then F4 can be continuously
extended to AR7(E x F) = (A®7FE) x (A®7 F). Density and a continuity argument show
that for every T € A®7E and S € A&7 F, we have

Fa(T,S) =S — Pa(T)
Proposition 3.8.2 implies
(o) (T,8)) C o (F(T, ).
for all T and S. Since (z,y) € Uéf}ft(T, P4(T)), this implies
F(z,y) € o (Fa(T, Pa(T))).

But FA(T,Pa(T)) = Pa(T) — Pa(T) =0 and aleft({O}) = 0. Thus F(z,y) = 0 and, from
this,
y = P(x) € P(oy"(T)).
This shows the desired inclusion
o5 (Pa(T)) € P(of(T))

and completes the proof.
q.e.d.
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3.8.1 The vector Harte spectrum is compact

Using the last results we are now able to prove that the vector-valued Harte spectrum of
an element of A®7 E, where A is a complete unital Imc Q-algebra, is compact. This result
for Banach spaces is due to Dineen, Harte and Taylor (see [20]). If a € A, its spectral radius
is defined in the following way,

ra(a) =sup{|A|: A € o(a)}.

This is a classical concept and it is well known (see [76], Theorem 4.2) that a lmc algebra
A is a Q-algebra if and only if there is some seminorm pg such that, for all a € A, one has

ra(a) < po(a). (3.10)

In the same way, considering left spectra we can define a left spectral radius, rijf t(a). Clearly
(@) <ra(a).

Theorem 3.8.4

Let A be a complete, unital, Imc Q-algebra, E a complete locally convex space and T a
uniform tensor topology. Then, for all T € AQTE, the vector Harte left spectrum aﬁﬁ(T)
18 compact in the topology of E.

Proof.

Let us begin by showing that it is a closed set. Choose x € E such that x ¢ aﬁft(T). By
(3.7),wecanfind Z =37  b;®z’ € AQE' such that < Z, T—14®z >= 14. We can regard
Z as a continuous mapping A7 E — A. We can also consider the inclusion F — AQ7FE
given by w — 14 ® w and the composition of these two mappings is obviously continuous.
Since Aj;n, is open, we can find a neighbourhood V of 04 such that 14 +V C A;y,. From
the continuity of the composition of the two previous mappings, there is a neighbourhood
of O U such that, for all w € U,

b=10—<Z,14Qw>e 1+ V
and, consequently, b is invertible. Let

Zzb—lz:Zb—lbi@@x’ cARQE.

i=1
If w € U then
<ZT-140(@+w)>=b1<ZT-I4Qz—140w>

= b Y <ZT-14@2>-<ZT—-140w>)
= blIyu—<ZT-140w>)=b"tb=14
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This implies that z + w ¢ agft(T) and, since w was arbitrary, (z + U) N aleft(T) = 0.
Therefore, O'ZI_?f Y(T) is closed.

Let F: (A',0(A", A)) — E be defined by F(¢) = [pQIp](T). ET=3"",a;®x; € AQFE,
then

n

=> ¢(a)s
i=1

and F is continuous. Fix T € A®7E and an equicontinuous net (¢i)i € A’ converging to
¢ in the o(A’, A) topology. Choose any continuous seminorm ¢ in E and any £ > 0. Since
(¢i)i is equicontinuous, so also is (¢; — ¢); and, as 7 is uniform, {(¢; — ¢) ® Ig}; is also
equicontinuous. Then, given ¢, we can choose a seminorm p in A®7E such that, for all
R € A®7E and all i,

q([(¢: — &) @ IE](R)) < p(R).
By density we can find S € A® F such that p(T —S) < £/2. As previously observed, since
S € A® E, the mapping ¢ — [¢ ® Ig](S) is continuous. Hence there exists ig so that, for
every i > ig,

q([6i © I](S) — [¢ © IE](S)) <

| ™

This gives, for ¢ > g,

q(F(éi) = F(¢)) = q(l¢
q(

@ I)(T) — [0 ® Ig](T))

(6
[(¢i — &) @ IE](T)

< q([(¢i — 9) ® IE](S)) + a([(¢s — &) ® IE](T = S))
< %er(T—S) < g

and F' is continuous on the equicontinuous subsets of A’.

For any finite choice of scalars A1,..., A\, and 2},..., 2, € E' we have

n

Y MilLa@z)(T)) = [La® 325 Aiaf](T).

=1

This means that H = {[I4®2'](T)}»ep is a vector subspace of A. Take x¢ € Uleft( T) and
define oy, : H — K by ay ([Ia ® 2'](T)) = 2/(x0). Since 2’ is a polynomial Proposition

3.8.2 implies
! (o IH(T)) C ol (g (T)).

Since 2/4 = [I4 ® '], this implies
@' (w) € o' ([La @ 2')(T))
for all ' € E'. Applying (3.10), there is now a seminorm on 4, pg, such that

A ([La ® 2'[(T)) = |2"(z0)| < po([La @ 2'|(T)).
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By the Hahn-Banach Theorem, there is a linear extension &g, : A — K such that a,,(a) <
po(a) for all a € A. In particular &,, € A" and we have

o' (F(Gw)) = 2'([Gwe ® IE|(T)) = Guy([Ip @ 2'[(T))
= g ([[p @ 2'](T)) = 2 (z0).

Since this is true for all 2’ € E’, the Hahn-Banach Theorem implies 29 = F(d,).
Let us now consider the set By, = {a € A : po(a) < 1} and its polar set B, of those a € A’
such that |a(a)| < 1 for all a € By,. Clearly &z, € B,,, and zo € F(B,,). From this we
have

oi/"(T) € F(By,).
By the Alaoglu-Bourbaki Theorem (see e.g. [44], Section 20) B, is compact with the
a(A', A) topology and equicontinuous. Since F is continuous on the equicontinuous subsets
of A', F(B,,) is compact in E. Hence aéf}f !(T) is a closed set contained in the compact set
F(B,,) and alljft(T) is compact.
q.e.d.



Chapter 4

Cotype 2 estimates for spaces of
polynomials on sequence spaces

4.1 Introduction

The study of type and cotype of Banach spaces started in the early 1970’s, but its origins
go back to the 1930’s. W. Orlicz, while studying the unconditional convergence of a se-
ries of functions using Khinchin’s inequality established in [60] the first type-cotype style
inequality. In 1968 Kahane proved his generalization of Khinchin’s inequality and these
ideas were revisited and used for the study of the relations of strong p-summability and
unconditional summability. But in 1972 Kwapien proved in [46] that Hilbert spaces are the
only Banach spaces that simultaneously have type 2 and cotype 2, although he did not
explicitly use those names. Shortly after that achievement the concepts of type and cotype
were formulated and widely used in the study of limit theorems of probability, martingales
in superreflexive spaces or the connections between the geometry of Banach spaces and the
behaviour of random variables.

In 1995 Sedn Dineen showed (see [16] and [17] Proposition 1.54) that if £ is an infinite-
dimensional Banach space, then /«, is finitely representable in P(™E) for all m > 2. This
in particular means that P(™FE) does not have cotype 2. If X is a Banach sequence space
(for example £, with 1 < p < co) and we denote by X,, the subspace spanned by the first
e vectors, k = 1,...,n, this implies that the sequence (Ca(P(™X,))), must tend to oco.
Our goal in this chapter is to give asymptotical descriptions of this divergence.
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4.2 Banach spaces

4.2.1 Type and cotype

We begin by giving the definitions of type p and cotype ¢ for arbitrary Banach spaces.
These two concepts have been widely studied and there is a big literature on them. A
careful study can be found in [11], [14], [75]. We shall see later how these sit in a more
general frame. All through this chapter r; will always denote the classical k-th Rademacher
function defined as follows

Definition 4.2.1 The first Rademacher function, r; : [0,1] — R, is defined as r1(t) = 1
if t € [0,1/2] and 7 (t) = —1 if ¢ €]1/2,1]. From this, the k-th Rademacher function is
defined by 7(t) = ri(28(t — (j — 1)27%)) if t €](j — 1)27%,527%] for j = 1,...,2F and
r(0) = 1.

What we do for the k-th function is divide the interval [0, 1] in subintervals of length 2~ (+1)
and the function takes alternatively in each subinterval the values 1 and —1.

Definition 4.2.2 Let E be any Banach space; it is said to have type p if there exist a
finite constant x > 0 such that for any finite choice of vectors z1,...,z, € E,

1 n 1/2 n 1/17
( / \Zm@)xkn?dt) <x (an) ,
0 k=1 k=1

The best constant in this inequality is called the type p constant of E and is denoted by
T,(E).

Definition 4.2.3 Let E be any Banach space; it is said to have cotype ¢ if there exist a
finite constant x > 0 such that for any finite choice x1,...,x, € E,

n 1/q 1 n 1/2
(o) e ([ 15t
k=1 0 k=1

To cover the case ¢ = oo we have to consider in the right hand side, maxy—1__, ||zx||. Then
we define the cotype q constant of E, as the best constant satisfying the previous inequality
and denote it by Cy(E).

It is well known that every Banach space has type p for any 0 < p < 1 and cotype oo
and that no Banach space (apart from the trivial spaces) has type p for p > 2 or cotype
q with ¢ < 2 (see [14], Remarks 11.5 (c¢) and (d)). Therefore the only interesting cases are
type p for 1 < p <2 and cotype ¢ for 2 < ¢ < .

A Banach space has both type 2 and cotype 2 if and only if it is a Hilbert space. In this
case To(H) = Co(H) =1 (see [14], Corollary 11.8).
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It is also well known that a Banach space has the same type and cotype as its bidual
([14], Corollary 11.9). If E has type p, then its dual E’ has cotype p’ (% + ﬁ = 1) and
C,(E") < T,(E) ([14], Proposition 11.10).
On the other hand, £, has type p and cotype 2 for all 1 < p < 2 and type 2 and cotype p
when 2 < g < oo ([14], Remark 11.5, (g)).

4.2.2 p-summing operators

The classes of p-summing operators were introduced by Pietsch in [61], although some
particular cases had been studied before by Grothendieck. A good and detailed study can
be found in [14], Chapter 2 and in [11], Section 11. Here we only present some basic
definitions and facts. A natural generalization of p-summing operators are the (Y, X)-
summing operators, used in [52], that will be presented and very useful later on.

Definition 4.2.4 Let E and F be two Banach spaces and 1 < p < co. A linear operator
T : FE — F is p-summing if there is some constant x > 0 such that for any finite choice of
vectors x1,...,x, € |

n 1/p n 1/p
<Z ||Ta:k||‘%> <k sup (Z\ <o x> \p> .
k=1 k=1

ll2'l| g <1

The best constant in this inequality is denoted by m,(T"). The space of all p-summing
operators between E and F' is denoted by II,(E, F').

It is well known that for each T', we have ||T'|| < m,(T') for all p. Also, (II,(E, F'), ) is a
Banach space for all p and (I, 7,) is an injective Banach operator ideal (see [61], also [11]
Section 11, and [14] 2.4, 2.5).

Useful characterizations can be given in terms of associated operators. First of all, a se-
quence (x,), C FE is said to be strongly p-summable if the scalar sequence (||zy| g)n is in
£p. The space of such sequences is denoted by £;°"*(E) and a norm with which it becomes
a Banach space is defined by

o] 1/p
[ (@n)nlly™® = ( H«%H%) -
n=1

Now, a sequence (x,), C E is said to be weakly p-summable if for all 2’ € E’, we have that
(< @',zn >)n € £p. The space of all such sequences is denoted by £;°**(E); with the norm

o] 1/p
H(xn)nHX“k = Ssup ( | < &' @y > ’p>
1

2" g <1\ =

it is a Banach space (see [14], Chapter 2). Now, if T € L(E; F), a correspondence between
sequences, T, can be defined by doing T'((z,,)n) = (T )n- Then it is well known (see [61],



98 Cotype 2 estimates for spaces of polynomials on sequence spaces

also [14], Proposition 2.1) that T is p-summing if and only if 7" : e (B) — £yrs(B) is
well defined and, in this case, m,(T) = || £y (E) — £rems(E)|| (the operator norm).
We have another useful characterization in terms of tensor products. There is a natural
embedding £, ® E — £7"(E) given by ({n)n @  + ((§42)n. This induces a norm on
¢, ® E, denoted A, satisfying

n [e'e) 1/17
IS e anlls, = (zuxn@) |
k=1 n=1

Note that A, is just a norm, not a tensor norm (see [11], 12.1), since it does not satisfy the
metric mapping property. With this identification, T € L(E; F') is p-summing if and only if
1dRT : L@ B — £, F is continuous. In this case, my(T') = [|id®T : L,@.E — £,Q, E||
(see [11], Section 11).

We will see that these properties can be transferred to the setting of (Y, X)-summing op-
erators.

We end this section with two well known facts. Firstly, if E has cotype 2, then II; (E, F') =
IIo(E, F) holds isometrically for all Banach space F (see e.g. [14] Corollary 11.16). Sec-
ondly, if E' is a normed space with dim(E) = n, then (see e.g. [75] Proposition 9.11)

mo(idg) = \/ﬁ (4.1)

4.2.3 The [ norm of an operator

Definition 4.2.5 Let E be any Banach space and T € L({3; E'). Then for independent
Gaussian random variables g1, ..., g, on a probability space (2, %, u) the l-norm of T is

defined to be
1/2

(T) = | [ 130T do

This definition is independent from the choice of the orthonormal basis in ¢5 and of the
random variables (g;); (see e.g. [75], Section 12).

Relations between Gaussian and Rademacher averages

So far we have used averages involving both Rademacher functions and independent Gaus-
sian random variables. These ideas are closely related and their relation is studied in e.g.
[75] , Section 4.

Let E be any Banach space. Take rq, ..., r, the Rademacher functions and ¢y, . .., g, in-
dependent Gaussian random variables on a probability space (€2, 3, ). There is a universal
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constant ¢ > 0 such that for any finite choice z1,...,z, € E,

1/2 1/2

1
/O IS rtal3 dt]  <e /Q IS giild dn | (4.2)
J J

The converse situation is not so nice. Nevertheless, we get a fairly good result. If E is a
Banach space of cotype ¢, then there is a universal constant ¢ > 0 such that for every finite
choice x1,...,z, € E we have

1/2 1/2

1
LI sl e <evicym) | [ 1E ok a) . @)

If £ is an n-dimensional Banach space,

1/2 1/2

1
/Q IS g% dp | < evflog(n+ 1) /O 1S @3 e (4.4)
7 J

for all finite x1,...,z, € E. We will use these inequalities several times along this chapter.

It is also of interest to study the relations between Rademacher and Gaussian averages
of different order. The next inequality was proved by Kahane during the 1960’s and is now
classical; it can be found in, e.g., [14], Chapter 11, [48], Theorem 1.e.13 or [75], (4.7).

For 0 < p,q < oo there is a universal constant K, , > 0 such that for all Banach space F
and all finite choice z1,...,z, € E the following holds,

1/p 1/q

1 1
/0 IS @l dt | < Ky / IS s @asls de | (4.5)
J J

This, in particular, means that in the definition of type and cotype, any exponent can
be taken in the integrals instead of 2. This would give equivalent definitions, at the only
expense of rearranging the constants by some universal factor.

An analog inequality for Gaussian averages, due to Hoffmann-Jgrgensen, can be found in
e.g. [75], (4.8). Let 0 < ¢ < p < 0. There exists a constant f(p,q > 0 such that for every
Banach space E and every finite choice z1,...,x, € E,

1/p 1/q

/Q IS gl di | < Ry /Q IS gl de | (4.6)
J J

As before, this means that if we define the /,-norm of an operator as the corresponding
integral with Gaussian random variables and exponent p, then this norm is equivalent to
the [-norm that has been already defined.
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Chevét’s inequality

This is an inequality that relates the I-norm of a tensor product of operators with their
respective l-norms and operator norms. It was proved by Chevét in 1977 and can be found
in [75], (43.2). For any two operators T € L({5; E) and S € L({5; F),

T ®S: 0@yt — E®. F) < c(|TINS) + LTS, (4.7)

being ¢ > 0 a universal constant. In [10], Lemma 6, it is shown by induction of Chevét’s
inequality that for any 7' € L(¢5; E) and m > 2,

(@™T : @5y — QIE) < cpl(T)|T|™, (4.8)

being ¢, > 0 a constant depending only on m.

4.3 Banach sequence spaces

4.3.1 Definitions
Symmetric Banach sequence spaces

From now on, X will denote a real or complex Banach space of functions ¢ : J — K,
where K is either the real or the complex field and J is a countable or finite set, such that
(i) T [$:j)| < |6(j)| for all j € 7 and ¢ € X, then v € X and [[¢]| < 4]

(ii) for all finite Z C 7, the characteristic function x7 belongs to X.

In other words, X will be a real or complex Kothe function space over (J, %, ), where
 is the counting measure on J (see [48], Definition 1.b.17). We say that X is a Banach
sequence space whenever J = N and ¢; — X — /. with embeddings of norm 1. In
particular, all e, = (d,x)r € X and |le,|| = 1.

If X is a Banach sequence space, for each £ € X, the decreasing rearrangement of &,
denoted (& )nen, is defined by

& :=inf{ sup |&| : JC N, card(J) < n}.
1€N\J

A Banach sequence space is symmetric if for every £ € X, [[(&n)nllx = [|(§;)n||x. This
definition is due to Schatten. It is equivalent to the fact that the norm is invariant under
reordering or multiplication by absolute value 1 scalars (i.e., changing of the signs of the
elements of the sequence in the real case or multiplication by e? in the complex case); see
[71], Chapter 1. From this we have that, for every n € N,

n n
1Y~ ipienll = 1D mieill.
=1 i=1
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for all (¢;); with |e;| = 1, all scalars (u;); and all permutations 7 of {1,...,n} (the group of
which we denote by ,,). Consider the operator ¢ : £, — X given by ¢(X) = D 7" | Aipies;
then
n n n
ol = sup 1D Nipesl| = sup | el = 1) mieil.
Moo=t =1 leal=1 = i=1

This shows that if W C {1,...,n}, given any uq,...,u, € K, any 7w € 3, and any |g;| =1
for i € W, just by defining A; = &; when i € W and 0 otherwise, we have

n
1> cipienl < 1 miel.
=1

iew
Now, for each n € N we define the space X,, = span{ey,...,e,}.

Following standard notation we define the fundamental function of X by Ax(n) =

| > 5—1 exllx for n € N. Applying [47], 3.a.6, we have that || Y7, e;l|x, || >y €ill x, = n;
in other words,

Ax, (n)Ax: (n) = n. (4.9)

Convexity and concavity

These are two concepts that are crucial in the theory of Banach lattices. They are closely
related to those of type and cotype and have been widely studied; see e.g. [48], where all
the results that are mentioned here can be found. Although all this is defined for general
Banach lattices we only present it here for our Kéthe function space setting.

Definition 4.3.1 Let X be a Kothe function space modeled on a countable or finite set;
then X is r-conver (with 1 <r < o0) if there is a constant £ > 0 such that, for any finite
choice &,...,&, € X,

1/r

n 1/r n
| (Z |§k’T> Ix <k (Z H@H%)
k=1 k=1

For r = o0,
m <k m :
I max [gk llx < r max igk]lx

=1,...,

The r-convexity constant of X is defined to be the inifimum of all possible values of x and
is denoted by M) (X).

Definition 4.3.2 We say that a Koéthe function space modeled on a countable or finite
set is s-concave (with 1 < s < o0) if there is a constant x > 0 such that, for any finite
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choice &1,...,&, € X,

1/s

n 1/s n
(Z |!§k|§c> <k (Z lék\s> [ x-
k=1 k=1

For the case s = oo,

< .
Jmax &llx < s fl, max €k fx
The s-concavity constant of X, M, (X), is defined as the infimum over all possible values
of k.

When X is r-convex (s-concave) for some finite r (resp. s) we will say that it is non-trivially
convex (concave) or that it has non-trivial convezity (concavity).

Some basic facts concerning convexity and concavity that will be used later are that X
is r-convex if and only if X* is s-concave (with 1 +1 = 1) and M, (X™X) = M) (X); also
X is s-concave if and only if X* is r-convex and M®)(X*) = M, (X) ([48], Proposition
1.d.4).

Clearly, if X is r-convex, then it is ri-convex for all vy < r; and if it is s-concave, then it
is si-concave for all s;1 > s. Every space is 1-convex and oo-concave.

It is also well known that a s-concave Banach sequence space with s > 2 has cotype s (and
Cs(X) < My (X YA, where A7 comes from the Khinchin inequality). Also, an r-convex
Banach sequence space with 1 < r < 2 which is also non-trivially concave has type r ([48],
Proposition 1.f.3). Conversely, if X has type (cotype) p for some 1 < p < oo, then it is
r-convex (s-concave) for all 1 < r < p < s < co. Furthermore, X has cotype 2 if and only
if it is 2-concave. On the other hand, X has type 2 if and only if it is 2-convex and has
non-trivial concavity.

4.3.2 Examples

Before giving examples, let us introduce some notation. Given any two real sequences
(an)nen and (by)nen, we write

(an) < (bn)

whenever there exist a constant K > 0 such that, for all n € N,
anp < K b,

If (an) < (by) and (by) < (an) we write (an) < (bn).
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¢, spaces

The first immediate example of symmetric Banach sequence spaces are the £, spaces. It is
well known that if 1 < p < 2, ¢, has type p and cotype 2 and if 2 < p < oo, it has type
2 and cotype p. The space £ is 2-convex. When we consider the n-th dimensional spaces
we have that their cotype 2 constants behave in the following way (see [62]),

[N

1
_1 . B
Cy(lp)y < ¢ n 1p/2 if 2<¢g<oo
n

v/log(n+1) if p =00

Orlicz spaces

This is another natural example of symmetric Banach sequence spaces (see [47], Chapter
4, for definitions and properties). Orlicz spaces are a natural generalization of the ¢, spaces
and are defined as follows. We call Orlicz function to any continuous, non-decreasing,
convex function ¢ : [0,00[— [0, 00] such that ¢(0) = 0, ¢(t) # 0 for all ¢ # 0 and
lim; o ¢(t) = co. The associated Orlicz space is defined as

ng{gz(fn)neNgK : dp>0, Z@(K;J><OO}

n=1
With the norm

el =int(r >0+ () <1y

n=1

{, is a symmetric Banach sequence space. Note that taking ¢(t) = t?, we have £, = £,.
An Orlicz function satisfies the Ay condition if

2t
lim sup »(2t) < 00
t—0 90(75)
Equivalently, if there is a constant C' > 0 such that ¢(2t) < Cp(t) for all t > 0.
It is well known that A, (n) = W for all n € N.

It is known (see [40], Corollary 13 and Corollary 15) that ¢, is s-concave (2 < s < 00) if
and only if there is a constant K > 0 such that p(At) > KAp(t) for all 0 < A\t < 1. On
the other hand, ¢, is r-convex (1 < r < 2) if and only if ¢ satisfies the Ay condition and
p(At) < KX'op(t) for all 0 < A\t < 1 and some K > 0. The fact that ¢ satisfies the Ag
condition guarantees that ¢, has non-trivial concavity (see [40], Proposition 7).
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Lorentz spaces

Let 1 < p < oo and w = (wy)neny € Ry non-increasing such that wy = 1, lim, w,, = 0 and
> oo2 , wy = 00. We define the corresponding Lorentz space, denoted by d(w, p), to be the
space of all sequences (&,)neny € K such that

0o 1/p 0o
TELN \p=1 n=1

Obviously, this is a symmetric Banach sequence space. It is also clear that A, ) (n) =

(ki wi) /P
Concerning the case of when is it convex or concave, in [65] can be found that d(w,p) is
always p-convex, with M, (d(w, p)) = 1, and it is not r-convex for 7 > p. For the concavity,

1/p

we say that w is p-regular if wh = %Z?:l w?. Then ([65], Theorem 2), for p < s < oo,
d(w,p) is s-concave if and only if w is %—regular, with % =1_ % The space d(w, p) has

P
non-trivial concavity if and only if w is 1-regular.

lpq SPaces

These spaces are also sometimes called Lorentz spaces. As we will see, in some circumstances
the previous ones can be realized as a particular case of these. For the basics on definitions
and properties, see [63]. Given 1 < p < oo and 1 < g < oo, the space ¢, 4 is that of those
¢ = (&2)n C K such that

e 1 1\¢q 14
€10 = (Z (& n) ) < 0.

n=1

With this norm, £, , is a symmetric Banach sequence space. It clearly satisfies, Ay, ,(n) =
n'/?. Also, if we take w,, = n» " for each n, if p > ¢, then ¢, ; = d(w, ¢). Therefore, there
are still some cases that are not covered by the previous result.

Regarding the concavity and convexity of these spaces, it is known (see [9]) that ¢, is
r-convex if and only if r < p, » < ¢ and it is s-concave if and only if p < s, ¢ < s.

4.3.3 Spaces of X-summable sequences

Definition and first properties

Definition 4.3.3 Let X be a Kothe sequence space modeled on J, countable or finite,
and F any Banach space. Then, the space

X(E) ={(zj)jeg € E: ([|zjllp)jes € X}

with the norm ||| x(g) = [|[(||z;]|£)jesllx is a Banach space.
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Following [52], when J = N, we say that a sequence x = (z,)nen € E is strongly X -
summable when z € X (F).

Now for X such a Koéthe function space and F any Banach space we can embed X®F —
X(E) by means of (( ® z) — ((jz)jes. With this, X(F) induces a norm in X ® E (we
denote X ®x F) satisfying that for each Z C 7 finite

1D ex @ arllx = I@okezl xim = I(lkll£)rezx.
kel

Lemma 4.3.4

|- llx <.

Proof.

Consider the bilinear mapping X x £ — X(F) defined by (¢, z) — ((;x);; whose lin-
earization is obviously the inclusion X ® F — X (F) and let us see that it is continuous,

1(G)illx ) = UGl E)illx = [1(Ga)jllellellx = 1(¢a)jllx - llzlle-

Then X ®; E — X(F) is continuous and || - ||x < .
q.e.d.

Remark 4.3.5

Given E and F' any two Banach spaces, if Ey C FE is dense, then Ey® F' is dense in F ®, F
for any norm o < 7. Indeed, for the 7 case let z € E ® F and take any representation
z=3 1 2;®y;. For each i =1,...,n there is some sequence (z;(k))ren C Ey converging
to x;. Let ¢ > 0 and take kg € N such that ||zF — ;]| < for all £ > ko and all
i=1,...,n. Hence, for k > ko,

n n n
| Ziﬂz QY — Zl’f ® Yillr = | Z(ﬂ% - xf) ® Yillx
i=1 i=1 i=1

n n
< Y i = fll - Nl < sup flyall D llwi — 2f | < e
i=1 v i=1

_ e
nsup ||y;||

Therefore Ey ® F' is dense in E ®, F. For a < 7, given any z = E ® I, there exist some
sequence (2, )nen € Eg ® F such that z, — 2. Since a < 7, this implies that z, =z

If {ex}r form a basis of X, then J,,cy Xn is dense in X. Remark 4.3.5 implies that in
order to check that some mapping is continuous in X ®x F, it is enough to check it in
Unen Xn ® E or, what is the same, for tensors of the form Y peq €k @ T

Lemma 4.3.6
Let X be such that {ex}r form a basis of X; thene < | -] x-



106 Cotype 2 estimates for spaces of polynomials on sequence spaces
Proof.
Let us see that the identity mapping X @ x £ — X ®. E is continuous. We have

n

||Z€k®l“k|!s— sup  sup (¥ @) () er @ )|

=1 [l || g <1 [l xr <1 k=1

= sup Zekx xE))| = sup HZekm xr)|l x
”x/”E’<1 ||¢||x/<1 e/l g <1 3=

= sup |[(z (xk))kleX'
ll]| g <1

For cach ||2'||p < 1 we have |2/(zx)| < 2|l - |zkllz < lzk]le- Then ||(2/(zx)_, |x <
|([|& ]| 2)}—; || x - Hence

n

| Zek @uple= s |(z 2 (@) ioallx < [zl e)fonllx = 1> ex © aillx-
x/ B k=1

This proves our claim.
q.e.d.

If X, Y are Kothe function spaces modeled on J and K (each of them finite or countable)
respectively we can then consider the space,

Y(X) = {z = (zj)jes : (zjllx)jes € Y}

This can be regarded as a Koéthe function space over J x K in the following way. Let us
write z; = (2j(k))rex € X. We can identify = = (x;); with a mapping

p: IxK — K

And

V(X)={¢: T xK—=K:(¢(, k)€ XVjie T, ([(60,k)rllx); € Y}

With the norm ||¢|| = ||(|[(¢(J, k))kl/x);lly this becomes a Kothe function space space.
Indeed, if |¢(j, k)| < |o(j, k)| for all (j,k), being X is a Banach sequence space implies
(7, k)kllx < [(¢(4,k))k|lx for all j € J. Now Y is also a Kéthe function space, then
Il < ||¢]]. Let Z € J x K be finite. Clearly, xz € Y (X). Thus, we can look at Y (X) as
a Kothe function space modeled on J x K. When X =Y is a Banach sequence space this
process can be iterated in two different ways.
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Iteration of the process

Let X be a Kothe function space modeled on 7, finite or countable and let us define
[X]? to be the space of functions ¢ : J x J — K such that (¢(i,5)); € X for all i and
(I((i,3))5llx )i € X. With the norm [|¢]lxj2 = [[([1(¢(3, )51 x )illx, we have that [X]* is a
Kéthe function space modeled on J2. Note that [X]? = X (X) holds isometrically.
Suppose that [X]™~! has been defined and let us define [X]™ as those functions ¢ :
J™ — K such that (¢(i1,...,5m—1,im))i,eq € X for all (if,...,im—1) € J™ ! and
(1@ (ins - s im—1:5m) i 1) i1 1) € [X]™ 1. We endow it with the norm

llxpm = (DL, -+ -y im—1,5m) Jim 13 (i1 nnsivn ) | [x] 1
With this norm [X]™ is a Kothe function space modeled on J™ and [X]|™ = [X]™~1(X).
As we noted after Definition 4.3.3, we can embed ®™X < [X]™. The situation gets
particularly nice in the finite dimensional case, in which we have J = {1,...,n} and both
spaces can be even identified. Let us consider the following mapping

€, ® - ®e€,, = i im

where 6;,. 4, © ({1,...,n})™ — K is given by &, . (1, Jm) = L if (Ji,...,Jm) =
(41,...,%m) and O otherwise. This defines an isomorphism that allows us to make the
algebraic identification ®™X,, = [X,]™. This induces a norm from [X,]™ on ®™X,,. We
sometimes consider ®"X,, with this induced norm. Keeping in mind this identification we
will simply use the notation [X,,]™.

When m = 2 this norm is exactly the one that we had already defined. The space X,, has
a basis and so also have all [X,]™. By Lemma 4.3.6 we have [|[X,]? — X, ®: X,|| < 1.
Suppose that [|[X,]™ ! — @™ 1X,| < 1. Then

[(Xn]" = [Xn]mil(Xn) = [Xn]mil Q[x,m—1 Xn — [Xn]mil ®e Xp —
- (®?71Xn) ®e Xpn = ®;' Xn
and [|[X,]" — @' X,| < 1.

We can also define [X]y as those functions ¢ : J x J — K such that (¢(4,5)); € X
for all j and (||(¢(7,7))illx); € X. With the norm defined in the obvious way we have
[X]2 & X (X) isometrically. Let us suppose that [X],,—1 has been defined and define [X],,
to be the space of all ¢ : J™ — K such that ((i1, ..., im—1,%m)),,...im_)egm—1 € [X]m—1
for all 4, and ([|(P(i1 - - - Gm—15%m)) (ir,.iim—1) | [(X]m_1 )im € X - We define the norm

11lx1, = 1Dt - - - s im—15m)) (i1, i) (X1 i | -
In this case, [X];, = X ([X]m—1) holds isometrically. As before, we can identify ®@™X,, =
[Xn]malgebraically and, in this way, induce a topology on the tensor product. When we

consider ®X,, endowed with this topology we simply write [X,],,. We also have that
[ Xn)m — @7 Xn| < 1.
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4.3.4 The Kothe dual

The Kothe dual of a general Kothe function space is a well known object (see [48], [52]).
We give here a definition adapted to our particular framework.

Definition 4.3.7 Let X be a Kothe function space modeled on a countable or finite set
J. The Kéthe dual of X is the space

X*={¢ecKI & cty(T)forall ¢ € X}
We define the norm [[]| xx = supj¢| <1 1€€]le, ()

This is again a Kéthe function space modeled on 7. If X is a Banach sequence space, X *
is symmetric whenever X is so. The Kothe dual also satisfies that (X,,) = (X*),. Indeed,
given £ = (&1,...,&,) € (X,,)" we have

n

I€llx; = sup IZ&;C/@I:‘ sup [&Clle, = [1€llx )., -

I(Ck)pmy Ixn <1 3 I(Ce)gZy lIx <1

Example 4.3.8
It is well known in the literature that (€o)* = ¢1. The proof is very simple and we reproduce
it here. If (§,)n € ¢1 and ((n)n € foo We have

N N
D 1€nGal < Hl¢loo D 1€nl < NI¢loo - 1€ ]2
n=1 n=1

This holds for all N, hence ¢ € ¢1 and € € (£) ™.

On the other hand, let (&,), be such that > 2 |£,(n| < oo for all ¢ € . Taking the
sequence (, = 1 we have £ € ¢;. This shows that the Kothe dual can be strictly smaller
than the algebraic dual.

4.3.5 Some general facts

Let us now establish some basic facts on Banach sequence spaces that will be repeatedly
used over the whole chapter. We begin with some basic remark on the behaviour of the [
norm of the identity between ¢35 and X,,, being X a Banach sequence space.

Remark 4.3.9
We will frequently use the fact that if X has non-trivial concavity, then
l(id : 05 — X)) < Ax(n). (4.10)

Indeed, from (4.3), (4.5) and (4.6), we can take ry,...,r, the classical Rademacher func-
tions to get

n

n 1 n
tid: 0 = X, = [ 13 avenllx de< [ 13 m@ealls de= 13 el
k=1 0 k=1

k=1 =
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The next property, concerning the cotype 2 constant of vector valued Kothe function
spaces modeled on a countable or finite set, is well known in the literature. A proof of
it can be found, e.g., in [55], Lemma 1.12. For the sake of completeness we give here an
adapted proof.

Lemma 4.3.10
Let X be a 2-concave Kothe function space modeled on a countable or finite set J and E

a Banach space with cotype 2. Then, X(E) has cotype 2 and there is a universal constant
K such that

Ca(X(E)) < KMg)(X)Ca(E). (4.11)

Proof.
Take finitely many zi,...,x, € X(FE). Each one of them can be represented as z; =

(zi(4))jeg- Then,
n 1/2 1/2
(ZH%\@(E)> <Z! (s (Dle)5 1% )
i=1

1/2
< My <Zux2 HE> Ix
J
< KM)(X)C, (/ HZ“ )zi(7)ll dt) Ix

J
< KMy (X)Ca(E) /0 ||Zn<t>x@-||X(E) dt
=1

This completes the proof.
q.e.d.

Remark 4.3.11
By straightforward induction of (4.11) we get that for every m there is a constant K > 0
such that, for each 2-concave Kothe function space X,

Ca([X]™) < KMy (X)" (4.12)

and
Co([X]m) < KM(Q)(X)m. (4.13)
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4.4 2-properties

Let (A, A) be an operator ideal. For each normed vector space E we say that E has the
A-property if idy € ~A. Then we define the A-constant of E by A(F) = A(idg). Allowing
A(E) = oo we include the case when E does not have the 2 property. In this way we have
a normed space invariant, in the sense that if £ and F' are isometrically isomorphic then
A(E) = A(F).

Example 4.4.1
(1) We have a first example considering the type p operators. An operator T': E — F has
type p if there exists a finite constant ¢ > 0 such that for any finite choice z1,...,z, € F,

( / H mewdt) <e (Z kaup>
0 k=1 k=1

Then we define the type p constant of T', T),(T'), as the best constant in this inequality. We
denote by T, (E, F') the space of all type p operators between E and F. Then [%,, T,] is a
Banach operator ideal. A space E has the T,-property (has type p) if idg € T,(E, E); in
other words, if we can find a constant ¢ > 0 such that for any finite choice z1,...,z, € E,

1 n 1/2 n
( / u Zrku)mmﬁdt) <e (Z ||xk||p>
0 =1 k=1

This is the classical definition of ‘space with type p’ that we gave in Definition 4.2.2. The
constant we get via the operator ideal is obviously the usual type p constant of E. See also
[11], Section 7.7.

1/p

1/p

(2) Another example is the cotype ¢ operators and spaces (see [11], [14]); this will be
studied with more detail later.

(3) We can also recover the Gordon-Lewis property in this way.

(4) Let us consider now the operator ideal I'y, defined in the following way. An operator
T:E — Fisiny(E, F) if when we consider T : E — F < F” this factorizes through
some Hilbert space. Then, a space E has the I's-property if and only if it is homeomorphic
to a Hilbert space. The constant that we get in this case, y2(F), is the Banach-Mazur
distance from E to the Hilbert space of the same dimension (see [75], Section 13).

(~5) Let I' be the operator ideal of those T' : E — F' such that, when extended to
T:E — F — F”, they factorize through some Lo (u). Then, FE has the I'w-property if
and only if it is injective and o (FE) is the projection constant of E ([75] Section, 34).
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We see that many important invariants can be defined in this way. It makes sense, thus,
to try to treat them with a global point of view.

Let F' be a complemented subspace of E¥ with inclusion i and projection P. Then, a simple
application of the ideal property shows that if £ has the 2 property, then so also has F’ and
A(F) < |i]|A(E)||P||. If (A, A) is a maximal injective operator ideal, then the 2-property
is a superproperty. In this case we therefore have that ¢, does not have any non-trivial
A-property.

A particularly interesting space is the space of continuous homogeneous polynomials
of a Banach space. In [17], Proposition 1.54, (see also [16]) the author shows that if F
is an infinite-dimensional Banach space, then (., is finitely represented in P("™FE) for all
m > 2. This in particular implies that P("E) has no non-trivial 2 property when F is
infinite-dimensional and (2, A) is maximal and injective. When X is a symmetric Banach
sequence space, this affects A(P(™X,)) as n tends to oo. It is of interest, then, to study
the behaviour of this sequence.

We write @ E for the m-th full tensor product of a Banach space E, and ®'E whenever
we endow this space with the injective norm e. Similarly we denote by ®¢.°E the m-th
symmetric tensor product of E endowed with the symmetric injective norm e5. By the
symmetrization map

1
Sgb®mE—>®mE , Sg(m@@xm):ﬁ Z x0(1)®...®$a(m),

’ Uezm

where ¥, stands for the group of permutations of {1,...,m}, the space ®@..°F can be
considered as a complemented subspace of ®*E. Recall that the natural embedding has
norm < m™/m! and the projection P = S7 has norm 1 (see e.g. [21], 3.1).

It is well known that, when M is a finite dimensional Banach space, we can represent the
space of m-homogeneous polynomials on M as a symmetric tensor product of M’ (see [21],

5.3),
QUM =P(MM) , @"z' — [z — 2/ (z)"]. (4.14)

In our case we can go even a little bit further and work with the full tensor product. We
have the following result concerning the asymptotical behaviour of the spaces P("X,,).

Theorem 4.4.2

Let (A, A) be a Banach operator ideal, X a symmetric Banach sequence space and m € N.
Let (an)neny € R such that amp < ay, (resp. an < amy); then the following are equivalent:
(i) AP("X,)) < an (resp. an < A(P(™X,))).

(i1) A(®L°X]) < an (resp. an < A(®:.°X])).

(111) A(Q@TX]) < a, (resp. an, < A(@"X))).
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Before proving this Theorem we need some considerations.

Let X be a Banach sequence space. Consider n,m,k € N. For each ¢ = 1,...,m let us
define mappings I; : X5, — Xtk and P Xppar — Xy by

mn+k

LO Ne) =Y Nen—nrs » B Aje) =D Ai—1)45€5-
J=1 Jj=1 Jj=1 j=1

For each fixed i we clearly have idx, = P; o I;. Also,

ILO el = 1D eni—nasll = 1A &l
j=1 j=1 j=1

mn—+k n n mn—+k
1P Nepll = 1D Aaeng el = 12Nl <l D0 A el
j=1 j=1 j=1 j=1
Hence ||;|| = 1 and ||F;]] < 1. Using these mappings we can represent the full tensor

product as a complemented subspace of some symmetric tensor product.

Lemma 4.4.3
Let X be a Banach sequence space and m € N. Then, for all n € N and k € Ny, the space
QM X, is a complemented subspace of @z." Xmntk,

®75an é ®2’8 an+k7
P
with ||i|| <1 and | P]| < m™.
Proof.
Fix n, k and for each i consider the mappings I;, P; that we have just defined. Take the
canonical symmetrization mapping SS?mH and the embedding I}?mn% : R0 Xk —
Q" Xn+k- By [21], 1.10 we have

k

m m

I
®i1; X X m! ®,; P;
m X 31 m X mntk m,s mntk m NG m X
®g n i ®g mn+k ®557 mn+k ®5 mn+k ®g n

gives the identity mapping idgmx,,. This clearly proves our claim. Regarding the norms of
the inclusion and the projection we have,

[Pl = llm! (PL®...©Pn)oik  |<[m (Pe.. Pk,
< m! C(mmen—&-k) <m™"
and
il = [15%,,, 0 (@ ... @ L) < [IS% M- ((h © ... @ Ln) [ < 1.

q.e.d.
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Corollary 4.4.4
Let X be a Banach sequence space. For each n > m define the number [%] = max{k € N :
k< Y. Then, ®Q“X[ ] is a complemented subspace of ®@c.° X,

n
m

®?xgﬂ£3®zﬁxh,
P

with ||i]] <1 and ||P|| < m™.

Remark 4.4.5

Following the same steps of the proof of Lemma 4.4.3 the last two results can be obtained in
a more general setting. Precisely, when 3 is a s-tensor norm (a tensor norm for symmetric
tensor products) and « is a full tensor norm that is symmetric (i.e. a(;Eq,...Ey) =
a(+; Eg(1), - - - Eg(m)) for every choice E1,. .. Ey, of normed spaces and any permutation o)
such that its restriction to symmetric tensor products, «|s, and 3 are equivalent Given any
s-tensor norm, a full tensor norm satisfying this can always be generated (see [22]).

With this we are now ready to give the Proof of Theorem 4.4.2.

The equivalence (i) < (i) follows in both cases clearly from the representation P("X,,) =
R Xy,

In order to prove the equivalence (ii) < (ii7), let us begin by assuming that @, < a,. In
this case the implication (i7) = (i) follows from Lemma 4.4.3. Indeed, we have

ARI'X,) < m™ AR X)) = Gmn < an.

The implication (iii) = (i7) follows from ®¢.*X] "~ ®" X, with the norms obtained in
Lemma 4.4.3. Then
m,s y/ mm m y/
‘4((8><€s7 Xn) S WA((@E Xn) = Qp.

If ap, < @mp, then we have (ii) = (44i) using ®7.° X, ~ @7 X/ . For the converse implication,
apply Corollary 4.4.4.
q.e.d.

4.5 A particular case, cotype 2

4.5.1 Conjecture

A particular case of the general framework presented in the previous section is the cotype
2 constant.

Definition 4.5.1 A linear operator T : E — F has cotype 2 if there exist a finite constant
K > 0 such that for any finite choice of vectors z1,...,x, € E,

n 1/2 1 n 1
<Z !ka!P) <x ( / || Zm(t)ackwdt)
k=1 0 k=1

/2
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The smallest constant in this inequality is called the cotype 2 constant of T and denoted
Cy(T). We write €o(E, F) for the space of all cotype 2 operators between E and F.

It is well known that (€q,Cs) is a Banach operator ideal (see [11]). A space E has then
cotype 2 if idg € €5, namely if there exists a finite constant x > 0 such that for any finite
choice x1,...,z, € F,

n 1/2 1 n 1/2
(ZHmkH2> <k </ HZrk(t)kath> .
k=1 0 k=1

The cotype 2 constant of F, denoted Cy(E), is then the smallest possible constant in this
inequality.

Remark 4.5.2

Let E, be n-dimensional vector spaces such that F,, C E,1. Dineen’s result ([16], [17]
Proposition 1.54) implies that for every m > 2 the sequence (Ca(P(™Ey))), tends to oo as
n — o0. Indeed, let E be the completion of the vector space generated by |J,, En (in fact,
E =J,, En). What Dineen shows is in fact that ¢« is finitely representable in P;("™F) (the
finite type polynomials) for every infinite dimensional space F'. This in particular means
that P¢("™E) does not have cotype 2. We claim that

(Co(Pr("ER)))n — o0
This obviously implies our assumption. Suppose that

sup Co(Pr("E,)) = K < oo.
neN

Let Pi,...,P, € P¢("E). For each j = 1,...,k and n € N let Q;, = Pj|g, € Pr("Ey).
Clearly
1Qjnll = sup |[Pj(x)] < sup [Pj(z)[ = [[P4]-
llzfl <1 lel| <1

z€En z€E

Then, for all n,

1/2 - 1/2
K /0 IS i (0Qll3, di
j=1

1/2

IN

F
En

k
> 11Qjm
j=1

IN

1 k
K /0 IS s () P13, dt
j=1
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Now, given any P; and € > 0, there is . € E such that |Pj(z.)| > || Pj|| — /2. By density
and continuity we can find ng and x,, € E,, with

9 9
1P < 1Pi(ne)| + 5 = Qs (wno)] + 5

Hence -
(@i (Zno )| 2 |Pj(ze)| = 5 2 | Byl| — e

This implies ||Qjn,l| > || Pj]| —€ for all n > ng. Therefore ||Q; | — [|P;]]. We finally obtain

1/2 1/2

k 1 k
SIBlE, | <k ([ 1 n0r
J=1 0 =1

This leads to a contradiction and shows that Cy(Py("™E,)) must tend to co.

If X is a symmetric Banach space and we consider the X, defined before, Remark 4.5.2
shows that Co(Pf(™ X)) tend to co. Our interest is to estimate the asymptotical behaviour
of these cotype 2 constants. We conjecture that for any Banach symmetric sequence space
X and any m > 2,

Co(P(™X,)) = (n'/2)™1Cy(X"). (4.15)

Although we cannot prove this conjecture in the most general case we give positive answers
for some important cases.

Knowing the relationship between convexity, cotype and the dual spaces, we can rewrite
the conjecture in the following terms

Co(P(" X)) = (/2" MO (X,,). (4.16)

Let us check that the sequence a,, = (n'/?)™~1Cy(X!) in our conjecture satisfies that, for
any fixed m, (amn) =< (ay). This is obvious in view of the following result.

Lemma 4.5.3

Let (U, A) a Banach operator ideal, X a symmetric Banach sequence space; then, for any
m,n € N, A(Xm) < mA(X,,).

Proof.

Using the injections and projections that we defined right before Lemma 4.4.3 we have,

an - an

T
i
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We can write idx,,, = > v, Litdx, P; and then,

A(idx,,,) < Y A(Lidx,P;) < | Ll|A(idx, )| Pl
L =1

IN

Z Alidy,) = mA(idyx, ).

q.e.d.

We know that Ca(Y;) < M(y)(Y;) for any symmetric Banach sequence space Y. By The-
orem 4.4.2 our conjecture (4.15) is true for every symmetric Banach sequence space if and
only if

Ca(@Xn) = (/2" Mg (X, (4.17)

holds for every symmetric Banach sequence space X. We prove (4.17) for some classes
of spaces and then apply Theorem 4.4.2 to obtain (4.15) for their Kothe dual spaces.
Therefore, from now on we will work with full tensor products and translate our results to
spaces of m-homogeneous polynomials.

4.5.2 A first case, /;

We have a first immediate positive answer to our conjecture (4.15) when X = ¢;. Then
XX = is 2-concave and X/, = £ . In this case Co (™) =< n'/2/\/log(n + 1) ([75], Section
4) and @M = (7", Also,

Viog(n + 1) < /log(n™ + 1) < \/log(n 4+ 1)™ = v/m/log(n + 1).

Hence
mpn _ nmy _ (nm)l/Q _ (nl/Z)m
G = )= T D Vgt 1 D)
1/2
- (pl/2ym-1 n — (pl/2ym-1 oy
= s — )
Thus
Co(P(")) = Gl i = (2@ (ep) (4.18)
? ! log(n+1) v ‘

4.6 General upper and lower bounds

In 05 ® 3 we define a Hilbert norm in the following natural way. if (e;);"; is the canonical
basis of £, then (e;®e;)7’;_; is a basis of {5 @{3. Each element in £7 ®{} has a representation
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T =3, ;i € ®e; (note that this is nothing else but a matrix). We define the norm ||z[| =

(Z” |aij) )1/2. With this, ¢ @9 ¢4 is a Hilbert space (thus isometric to Eg ). Moreover, if
z=3,xi ¢ andy =3 y;e; €Ly, wehave

lz @yl = szyy e ®ej = Z!wy-lz)”2
= le! 1/22111; )2 = ]| - [lyll.

Iterating this we can define ®35'¢5. This is a Hilbert space of dimension n" and therefore
equal to ¢35

4.6.1 Groups of symmetries

Let X be a symmetric Banach sequence space. Fix n € N. For each choice of signs ¢ =
(€1,...,6n) € {—1,+1}" and any permutation 7 € ¥,, we define the mappings

M, : K" — K"
()i = M((wr)}—y) = (enmr)i—y

T:: K" — K"
(xr)ie1 = Te((@r)iz1) = (Ta))iz

Each one of these mappings is obviously an isometry on X,,. Let S(K") and S(®™K") be
respectively the groups generated by the sets

{M; : ee{-1,+1}"}U{T: : m€X,}
{® - T, : T € S(Xy,), j=1,...,m}

Lemma 4.6.1

Let X be a symmetric Banach sequence space and o a norm on ®™X, such that for all
T e S(@"K"), T: X, — ®@pX, is an isometry; then

(1) AT e S(@MK") satisfy that T : @50y — Q55 is an isometry.

(i) Letu: @MX,, — ®MX, be a linear mapping. If ul = Tu for all T € S(@™K"),
then there exist a constant A € K such that u = NidgmXx,, .

(#i1) For allu € L(QTX,; @0 X,,) and every Ty, Ty € S(®™MK"™), the equality | TiuTs| =
|lu|| holds.

Proof.

(i) Clearly each T' € S(K") is an isometry in 3. Thus (T'(e;))7_; is an orthonormal basis
of £3. Then (Ti(ej,) @ -+ @ Tin(€j,,))j1,....jim=1,....n is an orthonormal basis of ®3'/5. Hence

n

(T @ @T) (Y g € @ @62
J1seesJm=1
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n

= I D> e M@ @T)(ej, @ @¢j,) 2

j17'-'7jm:1
n
= | Y ajg.Tile) @ @ Tnles,,)ll2
Jiseesjm=1
n
- H Z ajlr"vjm €j1 ® ®€]m”2
j17'~~7jm:1

(79) We use an argument that was first used by Gordon and Lewis in [29]. We proceed by
induction on m. It is known that X, satisfies this condition. Suppose that this is also true
for @™~ X,,. We can write a set of generators of S(®™K") in the following more convenient
way

{(T®T, : TeS@" K", T,, € S(K")}.

Take a linear mapping u : @ X,, — ®™X,, such that Tu = uT for all T € S(®™K"). Fix
e X, and £ € X, Let
v ®m—1Xn _ (®m—1Xn)** _ ®m_1Xn
no— v(n)

be given by < v(n),n* >=< uw({ ®n),§* @ n* >. This satisfies that Tv = oT for all
T € S(®™ 'K"). Indeed, for all n € @ ' X,, and n* € (@)m_anyk we have

Tneé),n @& >
T®idx,)(n®&),n" @& >
= <(Twidx,)u(n®&),7" @& >

= <u(n®), (T @idx;)(n" ®&*) >
= <u(n®§), T @& >

= <o, T >=<Ton,n* > .

<vTn,n* > =

< u(
< u(

Then for every £, & there is a unique scalar A(&,£*) such that

<wn,nt >=AEE) <n,n" >
for all n € @1 X,, and all n* € (@m—an)*, Define now another mapping by

w:X, — X=X,
& — wé Xy — K
& = <wg & >= A€

Let np € @™ 1X,, and nf € @™ 1X} be such that < ng,n; >= 1. Hence (£, &%) =<
vno, NG >=< u(no®E), ngRE* >. Proceeding in the same way as before we have w1}, = T),w
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for all T,,, € S(K™). Therefore, we can find ¢ such that t < £,&* >=< w§, & >= A(&, &)
for all £ € X, and all £&* € X. Hence, for every n, &, n*, £,

<u(n®@&),n ¥ >=1 <L ><nn >=t <& R >

This implies u =t idgmx,, .
(7i7) This fact follows easily from the fact that both T} and T5 are isometries for the norm
«. Indeed,

[TwToll = sup [[TiuTa(E)lla = sup [u(T2(E))la
lella<1 Jgllo<t
= sup[u(Ta(8)lla = [ull-
I72(§)lla<1

q.e.d.

With this we can prove the following interesting result. It has been proved in the case
m = 2 in [7]. We were not able to extend the proof by induction, and we have had to
develop this alternative proof.

Proposition 4.6.2

Let X,Y be symmetric Banach sequence spaces; «, two norms in Q™X, and Q"Y,
respectively so that all T € S(®™K"™) and all R € S(®™K") are isometries when the spaces
are endowed with o and 3. Then,

| @5 £y — RF Y
| @5 £y — @I Xyl

T (@ X, — ®@FYy,) = (n™)!/?

Proof.

Note that all X,,, Y}, and ¢4 are nothing else but K" with some norms. Therefore X,, =
Y,, = (3 algebraically. Hence @™X,, = @™Y,, = @3 = K"" as vector spaces. Consider a
linear isomorphism ¥ : K" — K"" such that, when the Hilbert norms are considered,
U s — E’gm is an isometry. With this mapping we can define two norms in K*" by
|z]la = a(¥~1(2)) and ||z||g = B(¥~1(x)) for each z € K. In this way, considering the
norms,

U rX, — K ) . TR — & )
¥ is again an isometry. We factorize
®$Xn B ®ZLYn
\I/l w1
K" la) — (K™, [l )

Define now the group

SKY) = {OTe ! T e S(@MK"™)}.



120 Cotype 2 estimates for spaces of polynomials on sequence spaces

If T € B(K™), since it is a composition of isometries, it is an isometry in €5

Choose u : K" — K" linear such that uT = Tu for all T € (K""). Then u®T¥ ! =
TV~ 1y for all T € S(®™K"). Multiplying by ¥~! from the left and by ¥ from the right
we have U™ lyUT = TU 1y for all T € S(®™K"). From Lemma 4.6.1 there is a A € K
such that U=luW = Nidgmy,,. Hence u = Nidgnm .

Let T}, Ty € S(K™™). Since they are isometries for || ||o we have [|[T1uT||o = ||uo for all
u € LK™ || |la). The same is true for the || ||5 norm.

Applying [55], Lemma 2.5 and using that ¥ is an isometry we obtain

RS X = ©FYa) = ma((K" | a) = (K", [15)
" — ", |5
Vi
™= @™ )l
| &g 05 — o Yal
[65 05 — o5 Xall

_ (nm)l/Q

q.e.d.

s-numbers

Definition 4.6.3 Let E, F' be Banach spaces and T' € L(E, F'). For each k € N we define
the k-th approximation number of T by

ap(T) =inf{||T — S| : S € L(E,F), rank S < k},
and the k-th Weyl number of T by
2k (T) = sup{ar(TA) : A€ L(b, E), [|A] =1}

These numbers have been widely studied; see e.g. [43], [62], [63]. It is well known that these
numbers form decreasing sequences. Clearly from the definition, ||T'|| = a1(T") = 21(T) for
all operator T and ay(T) > x(T) for all k and all T. If both E and F' are Hilbert spaces,
then ax(T) = x(T) for all k and all T.

Take now the identity mapping id : ®5'¢5 — ®1'X, where « is like in Proposition 4.6.2.
Obviously ag(id : @505 — @' X,,) = zi(id : @545 — @' X,,) = 0 for all £ > n™ + 1. Then
we only have n™ non-zero of each of the numbers. But of those only the ‘second half’ is
significant, in the sense that the first [%] are essentially like [|id : @505 — @' X,|| and
give us no information More precisely, following the ideas in the proof of Lemma 2.5 in
[55], we get

Lemma 4.6.4
Let a be a norm in @™ X, like in the statement of Proposition 4.6.2. Then for all1 < k <
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[%] we have
lid : @505 — T X,|| > ax(id : @5y — R X,)

> xp(id : @50y — @5 Xy) > id : @5y — QN Xy

=
V2
Proof.

The first two inequalities are clear. Let us show the last one. It is well known that
n'/2a,,(T) < my(T) for every 2-summing operator T (see [43], 2.a.3 or [63], 2.7.3). With
this fact and Proposition 4.6.2 we have, for all 1 < k < n™,

1 = zpm(idgpey) = 21(®5'0 — @5 Xn) Tpm_g11(®505 — ®g' Xn)
< (R — @I X,) (™ — k + 1) (@505 — @7 X,)
2 |ep - epa)

_ myn m
— $k(®2 62 — ®a Xn) (nm —k + 1)1/2 H ®12n 63 N ®ZLX7LH

Hence
n

1/2
M) | ®@5" €y — @' Xl

(@ — @I, > (

for all 1 < k < n™. Doing k = [%] we get
m 1/2
- [\
- >

With this we are ready to give a lower bound for Ca(®X,,).

Sl

This shows our claim.
q.e.d.

4.6.2 A general lower estimate

The following result, due to Milman and Pisier ([56], also [64], Chapter 10 ), is well known.

Proposition 4.6.5
Let E be any Banach space of cotype q and T : {5 — E a linear operator. Then,

sup k%, (T) < C,(E) I(T).
keN

Let g =2, E =®"X,, and T = id : 305 — @' X,,. From Proposition 4.6.5 we get

EY? ap(id : @3 — @' X,) < Co(@MX,) 1(id : @545 — @T'X,)
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for all k € N. If 1 < k < [27], Lemma 4.6.4 implies
k 1/2
kY2 agid - @503 — @7 X,) > <2> id : @705 — @7 X, .

Let k = [%] and we get

Hence

(8> lid : @505 — Q' X, || < Co(R@T'X,y,) U(id : @545 — Q' X,,). (4.19)
Consider the index set, M(m,n) = {(i1,...,im) : i1,...,im € {1,...,n}}. Let (Q, 1) be a
probability space and (gi)ic p(m,n) @ family of independent gaussian random variables. In
[10] the authors define, for any finite set of vectors x1,...,z, € Xy,

1m; (2)}1) / I Y giwn @ @i, opxadis
ieEM(m,n)

For each fixed m € N there exists a constant d > 0 such that (see [10], Lemma 6)

n

Iim; (xg)p—y) < d U(1;(xk)r—y) sup (Z ’x/(xk)‘2)(m—1)/2.

lI<1 =4
Therefore
(id : @505 — @ X,) = / I Y. gien® - @ei,|Emx,dn)/?
ieEM(m,n)
< / || Z gl eZl : ® eim ”@?Xndu
iEM(m,n)

= U(m;(€i)iz1)

< U(1;(e;)izy) sup Z]:U e;)|?)m—1/2,
|1’||<1i1

Consider the mapping id : /5 — X,,. Then

(L (en)7y) / IS gren ® o ® eq llomxadi

iEeM(1,n)
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— / IS giesll e, dp
Q 0
< /Q IS geeall%, din) 2

=1

= 1(id : 0} — Xp).

On the other hand we have

n

sup (Y [2'(e))'? = sup || a'(ei)ll2

le'I<1 5= llI<1 =

n
= sup sup \ZANJ/(@@‘)’
e <13 [N2<1 35

n
= sup  sup |o (Z )\iei> |
i=1

2 IxPL1 |2 )I<1

= sup > Nid(e)|x,

PORRVIEES By
n
= sup ||id <Z )\iez) lx,,
> 2<1 i—1
= |lid: 05 — X,

Hence, for each m € N
I(id : @Y — QX)) < |lid = £ — X, ||™ 1 (id : 15 — X,,).
From this and (4.19)

ma 1/2
n N m o pm m m
<8> llid : @505 — @' Xp|| < Co(®7'Xy) - (4.20)

Jlid 05 — X ||™(id 05 — X,).
Let us now estimate ||id : @505 — @' X,||. We need the following.

Remark 4.6.6
Let X4, X9,Y1,Ys be Banach spaces and «, 3 be two norms on X; ® Y7 and X9 ® Yo
respectively. Suppose that |21 ® y1||a = [|z1]| - [|y1]| for all z; € Xy and all y; € Y7 and
lze ® y2llg = ||z2|| - ||y2]| for all zo € X5 and all yo € Y5. Then for any two T' € L(X, X2),
S e LN,Ys),

1T - IS < IT® S : X1 ®a Y1 — X2 ®p Yz
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Indeed, let € > 0. Choose z € X; and y € Y7 with ||z||, ||y|| < 1 such that ||T|| < (1+¢)||Tx||
and ||S|| < (14 ¢)[|Sy||. Then
ITI-NISI < (L+e)? Tl - Syl = (1 +¢)|| Tz © Syl
= (1+e’[(TeS)(zeyls <L+’ |T@ S| |z ®ylla
= 1+ TS| - llzll -yl < 1 +e)? T S|
Since this is true for all € > 0, we have what we want.

By Remark 4.6.6, |id : €% — X,||?> < |lid : £§ @9 0% — X, ®- X,||. Now, with an easy
induction,

lid : 5 — Xp||™ < |jid : @50y — Q' X, ||.
In the proof of Lemma 6 in [10] a proof of the converse inequality can be found. Therefore,

lid : by — X ||™ = [lid : ®5"05 — @ Xa.

With this fact and (4.20) we finally get that for any symmetric Banach sequence space X

and any fixed m,

1/2 lid : 05 — Xa|
l(id - 05 — Xy,)

(n™) < Co(@" Xn). (4.21)

4.6.3 A general estimate

The lower bound that we have obtained in (4.21) is true for any symmetric Banach sequence
space. With it we can give another estimate, valid for any symmetric Banach sequence
space.
Lemma 4.6.7
Let X be any symmetric Banach sequence space and m € N. Then,
1/2ym—1
n
T (e X < ()™
log(n + 1)

Proof.
We get the lower estimate from (4.21). From Definition 4.2.5, applying (4.4) and (4.6), we
get

(e —X,) = /Q IS grexllZedi) 2
k=1

1
< Vioglr D[ 1Y reltjenlede)'?

k=1

V1og(n + 1) ZekHX'
k=1

A
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On the other hand
n n
1 " erllx, <165 — Xall- 11 erllg < 165 — Xalvn.
k=1 k=1

Hence .
nll =2 ————————.

vn
From all these estimates and (4.21) we obtain
(n1/2>m71

——— < Cy(®'X,,).
log(n + 1) (@' %)
If E, is any n-dimensional Banach space, we can factorize the identity to get

E id

En

vy —— 13

id
Therefore

Ca(En) < d(En, £5)Ca(l3) < cv/n

where ¢ > 0 is a universal constant. Now, since ®"X,, has dimension n™ we have the upper
estimate
Co(®I"X,,) < (nm)l/z.

q.e.d.

Remark 4.6.8
If X has non-trivial concavity we know from (4.10) that I(id : £§ — X,,) < Ax(n). Then

(n'/2)m1 < Co(RTX,) < (/)™

This condition is not very restrictive. In fact it is equivalent to the fact that the (7 are
not uniformly embedded into X. In other words, we get this last estimate except when we
are ‘very close’ to £, (we already know this for /).

A straightforward application of Lemma 4.6.7 and Remark 4.6.8 jointly with Theorem 4.4.2
gives
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Theorem 4.6.9

Let X be any symmetric Banach sequence space and m € N; then
1/2ym—1

oy p(mx)) < (2™

log(n + 1)

If moreover X has non-trivial convexity, we have that
(nl/Q)m—l < CQ(P(an)) =< (nl/Q)m‘

This result shows directly that the cotype 2 constants of the spaces P("™X,,) tend to infinity.

4.7 The tensor conjecture for 2-concave spaces

Our aim in this section is to prove our conjecture for tensor products (4.17) when X is
a 2-concave symmetric Banach sequence. In this case the sequence M5y (X}) is bounded
and, thus, it behaves asymptotically like the constant sequence 1. Then what we want to
prove is the following

Proposition 4.7.1
Let X be a symmetric 2-concave Banach sequence space and m € N; then

Ca(@7" Xn) = (n!/2)" 1,

This will allow us later to prove the conjecture for polynomials for 2-convex spaces.

4.7.1 Weakly summable sequences

Let X be any Ko6the function space modeled on a finite or countable set 7 and E any
Banach space. Following [52] we define

Definition 4.7.2 We say that z = (2)jes C E is weakly X -summable if (z'(x))nes € X
for all 2’ € X'.

We write X“(F) for the space of weakly X-summable sequences in E. Let us define now a
quasi norm for X“(FE). First, we observe the following.

Remark 4.7.3
Let E and F be Banach spaces. Suppose that there is a topological vector space G and a
continuous inclusion ¢ : F'— G. If T': E — F is such that io T : £ — (G is continuous,

then T has closed graph and therefore it is continuous. Indeed, consider x, £, & and

T, - y. Since 7 is continuous, we have i(T'zy,) iR i(y). Once again, 707 is continuous,
which implies i(T'z,,) = i(y). But i is injective and this implies Tz = y.



4.7 The tensor conjecture for 2-concave spaces 127

The natural candidate to be our quasi norm is sup|, <1 [[(#'(z)))jersllx- Let (z))jes €
X“(FE) and define the operator T': E' — X given by T'(z') = (2'(z;))je7.

Consider now K, the space of all real or complex functions ¢ defined on J. With the
coordinatewise convergence, K7 is a topological vector space. Then we have

g L X 4 kI

= (2()));
Since the norm convergence in X implies the convergence coordinatewise, the inclusion
X <5 K is continuous. Let ,, — 2’ in E’. In particular, for all j € J, ,, (x;) — ()

g
as m tends to co. Therefore (], (x;))jes LS (@'(z5))jes and ioT is continuous. By Remark
4.7.3, T has closed graph and is continuous. Thus we can define, for each (z;);e7 € X“(E),

wx,p((zj)jer) = sup |[(z'(z)))jesllx < oo.
lz"|| gr <1

This fact is also proved in [52].

4.7.2 (Y, X)-summing operators
Definition

The following definition was introduced in [52] and is a generalization of the classical
concept of (p, ¢)-summing operators.

Definition 4.7.4 Let X,Y be any two Kothe function spaces modeled on some finite or
countable set J and E, F' Banach spaces. An operator T' € L(E; F) is (Y, X)-summing if
there exists a constant x > 0 such that for any finite Z C J and (z;);ez C E, we have

11Tl Fiezlly <& sup  [[(2(zi))iez | x;
2"l <1

the smallest constant in this inequality is denoted by 7y x(7') and called the (Y, X)-
summing constant of T.

We write Iy x (E, F') for the space of (Y, X)-summing operators between E and F. It is
easily seen that Ily x (E, F') with 7y, x is a normed space.

Remark 4.7.5
In [52] X and Y are always Banach sequence spaces. Then (Y, X )-summing operators are
defined as those T' € L(E; F') such that

T: X“(E) — Y(F)
(@p)nen = T((@n)nen) = (TTn)nen
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is bounded. The (Y, X )-summing constant of T is defined as the operator norm || 7| X (B)—Y (F)-
This definition implies ours, in the sense that every (Y, X)-summing operator in the sense
of [52] is (Y, X)-summing in our sense and my, x(T) < ||T. This is easily checked just by
taking a finite sequence in X“(FE) and applying that T is continuous.

Both definitions are in fact equivalent in a wide range of cases. Namely when Y satisfies the
Fatou property, that is if &, 1 £ (coordinatewise) a.e. with (§,)neny C Y, &, > 0 a.e. and
sup,, [|énlly < oo, then £ € Y and [|£|| = limy, ||, ]|y (see [48], Sect. 1.c). Indeed, let Y have
the Fatou property. If 7" is (Y, X)-summing (in our sense), given any (zp)nen € X“(E), we
can consider for each m € N, (||Tz,||r);"_; € Y. This generates a sequence in Y converg-
ing coordinatewise to (||Tzy||F)nen satisfying the conditions of the Fatou property. Hence
(ITZp||F)nen € Y and T is well defined. Moreover,

1T 2nll F)nenlly i (| (| Tz | ) ps [l

= sup [|(|Tznl[F)pzilly
m

< wsup sup (@' (zn))ni llx
m ! <1

= & sup sup|[(a’(an))niallx
la’ll <t m

< ko sup ||(2(zn))nenl x-
la’]| g <1

Thus, T is continuous and ||T| < myx (T).
Some of the following results are slight modifications of some others in [52].

Remark 4.7.6

Let Y be a Banach sequence space with the Fatou property. Suppose that there exists a
non-zero operator T' : E — F that is (Y, X)-summing. Take any « € F with [|z||g = 1
and Tz # 0 and some sequence ((,)nen € X. Then for any n € N we have,

1T (Gl PRzl < myix (D) sup [la"(Gea)izyllx

[|2/]| g <1

< 7wyx(T) sup [|(¢u?' ())nenllx
H$l||E/§1

= 7y,x(T) ||[(Cn)nenllx sup 2 ()

o] <1
= 1y x(T) [[(Ga)nenllx-

Since Y has the Fatou property we have

I([GT (@) F)nenlly < 7y x (T) [[(Gn)nenllx
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Hence
Ty, x (1)

ikdivg
In other words, if there is some non-trivial (Y, X )-summing operator we automatically have
that X — Y.

1(Cn)nenlly < [1(Cn)nenllx-

Characterization

As we have recalled in Section 4.2.2, p-summing operators are characterized in terms of
tensor products and norms of operators (see [11] Section 11). We give now an analogous
characterization for (Y, X)-summing operators.

Proposition 4.7.7
Let X — Y be two Kothe function spaces modeled on some countable set J. Let E, F be
Banach spaces. Then, for all T € L(E; F),

Tellyx(E,F)<i®T: X ® FE—Y Qy F is continuous.

In this case ny x(T) = [|i®T: X . E — Y ®y F|.

Proof.

Assume first that ¢ ® T is continuous. Let Z be a finite subset of J. Choose vectors
(zk)rez € E and consider ), yer ® v € X ® E. Then,

16T ex@ally < i@ Tl |3 er @zl
kel kel
On the left hand side we have

16T er@zi)lly =1 er @ Taglly = [|(Tar)rerlly-
keZ keZ

On the right hand side, ||> ;o7 ®@zklle: = supjy,, <1 [[(2'(zk))kezllx (see the proof of
Lemma 4.3.6). Hence

[(Tzr)rezlly < i@ T sup (2" (k) rezllx-
[l || <1

Therefore T' € Iy x (E, F) and 1y, x(T) < |li® T : X ®. E — Y ®y F|.
To prove the converse implication we have

1@ T)Oex ® ai)lly = [(Tap)rezlly

kel
< myx(T) sup |2 (@r)kezlx = mvx (T ex @ gl
|| pr <1 keZ

Hence i ® T is continuous and [[i ® T : X @. E — Y ®y F|| < ny,x(T).
q.e.d.
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Operator ideal

Proposition 4.7.8

Let X,Y be two Kdéthe function spaces modeled on a countable space J such that || X —
Y| = 1. Then [Ily x, 7y x| is an operator ideal.

Proof.

To see this we are going to use the following criterion ([11], Section 9.4): [IIy x, my,x] is an
operator ideal if and only if

(Z) idg € H)/’X and 7Ty7)((’idK) =1.

(ZZ) If STRis defined and T € Hyyx, then STR € Hyyx and Wxx(STR) < ||S||Wxx(T)||R"
(iti) f T, € Iy x for all n € N and Y o2 | 7y, x(1,,) < oo, then T'= "> | T,, € Ily, x and
Ty x (1) < 3202 myix (Th).

First we have X ®. K 2 X and Y ®y K 2 Y. Then t ® idg = i : X — Y is clearly
continuous. Hence idg € Iy x and we have 7y x (idk) = ||i ® idg|| = | X — Y| = 1.

Let now R € L(Ey; E), T € Iy x(E,F) and S € L(F; Fy). Consider STR : Ey — Fp.
Then

i®(STR): X @ By % x 0. L v oy F' " v ey Ry

Both idx ® R and i ® T are clearly continuous. Let Z C 7 be finite and take (y;);ez C Y.
Then

1Y ei®Syilly = 1015yl )iezlly
1€

< IS ICllgsliezlly = 1811 ei @ yilly-

i€T
Then idy ® S is continuous and |[idy ® S|| < ||.S]|. Thus ¢ ® (ST'R) is continuous and
rvx(STR) = i@ (STR)|
< lidx ®R| - |X ©. E 2L Y @y F|| - ||idy ® S|
< |ISI- myx (T) - [[R])-

Before checking the last condition, let us observe that if T € Ily x(E, F'), then ||T|| <
7y, x (T'). Indeed, just take x € E and we have from the definition,

|1 Tz||lp < myx(T) sup |2'(2)] =7y, x(T) |lz]e-
fla']| <1
Let (Th)nen C Iy, x(E, F) such that Y > 7y, x(T,) < oo. For each m € N we have

S Tl < S wyix(Tn) < Yooy my.x(Ty). Then the series > 2, T), is absolutely
convergent. Consider T' = Y 2 | T;, € L(E; F). Let us see that T € HyJ((E, F). Given
e > 0, choose ng € N such that for n,m > ng, > -, 7y, x (k) < €. Then,

m m
i@ Th: X@E—Yay F|<) [[i®T] <e
k=n k=n
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Thus, the sequence (i ® Y} Tg),, o is Cauchy in L(X ®. E;Y ®y F) and converges to
i®T e L(X ®: E;Y ®y F). Hence T € Iy x (E, F). Clearly my,x(T) < >0°, wy,x (Tn).
q.e.d.

Further properties

Definition 4.7.9 Given X,Y two Kothe function spaces modeled on a countable or finite
set J, the space of multipliers from X to Y, M(X,Y), is the space of all (;);es € K7
such that the operator X — Y given by (¢;); — ((;&;); is well defined and continuous.
We define a norm in M(X,Y) by [[£|[am(x,y) = SUD||¢||x <1 IICE ]y -

Note that X* = M (X, ¢1). The following proposition and its proof are an adapted version
of Lemma 1.6 in [52].

Proposition 4.7.10
Let X,Y be two Kdthe function spaces modeled on a countable or finite set J. Then, for
all Banach spaces E, F,

Uy, () (B, F) € Hpx vy, xx (B, F)
cmd WM(X7Y)7X>< S 7Ty7@1(:7).
Proof.
Let T € HY',KI(])(E,F) and Z C J finite. Take (x;);er € E. Then

11Tzl Fiezlly < 7y ) (T) sup  [|(2(2:))iezlley(7)-

llz’]| g <1
Hence
11 Tzil|F)iezllmxyy = sup (Gl T F)iezlly
ISl x <1
< wye o) (T) sup  sup (2 (Gxi))iezlle,
ISl x <1 |2/ || gr <1
= 7yu)(T) sup  sup [[(Ga'(zi))iezlle
I/ || g <1[I¢l| x <1
= 7yo@)(T) sup [[(2"(2))iezl xx-
[lz']| zr <1
q.e.d.

With this we can give the following useful result.

Corollary 4.7.11
Let' Y be a Kéthe function space modeled on J, finite or countable, such that Y = Y >**.
Then for all Banach spaces E, F,

Uy, (7)) (B, F) — My y (B, F).
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Proof.
The proof is immediate from the last proposition, since

Wy ()0 = Dy < o)),y = e 7)y)y = yy.

q.e.d.

4.7.3 Proof of the conjecture

It has been known for long that in some cases m,(iden) =< /n (see [62], Section 22.4); in
other words, ||id,, ® idgn by ®c Ly — Ly ®n, gl < v/n. It makes sense, then, to expect that
something similar happens in our new setting. We get a partly satisfactory answer, shown
in the following result of independent interest.

Lemma 4.7.12
Let'Y be as in Lemma 4.7.11. Then for every Banach sequence space X and n € N

Tyy(idy,) = lid Y ®: X, — Y ®y Xp|| < KgM()(X,) n'/?,

where Kg > 1 is Grothendieck’s constant.

Proof.

Let T' € L(C(K); Xy,) and finitely many z1, ..., 2, € C(K). By the Grothendieck-Krivine
inequality (see [48], Theorem 1.f.14, the proof is for real lattices, but it can be adapted to
the complex case),

m 1/2 m
(Z ITSCk|2> < Kql|T| - (Z \ﬂ?k\z)
k=1

X k=1 C(K)

1/2

Hence,

m 1/2 m 1/2
(ZIITﬂ%IB() < M) (Xn) | (ZITWQ) [BS
k=1

k=1

1/2

< KeMy(Xn) (1T -l (Z\%\Z) e
1/2

= KaeMg)(Xy) [T sup <Z|$ ;) ) :

[la']|<1

Thus mo(T) < KaMg)(X,)|T'||. By [75], Proposition 10.17, and the well known fact that
ma(idx, ) = v/n (see e.g. [14] Theorem 4.17 or [75] Proposition 9.11) we obtain

mi(idx,) < KeMg)(Xn)m(idx,) = KeMg)(Xn)v/n.
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Applying Lemma 4.7.11, we finally get

Y ® Xpn =Y @y Xal| = 7yy(idx,) < 7 (idx,,)
mi(idx, ) < KMy (Xn)vn.

q.e.d.

Proposition 4.7.13
Let X be a Banach sequence space and m € N. Then for all n

lid : @7 X, — [X]™| < KB~ Mg (X)) (n'/2)m 1,

Proof.

We prove it by induction. The case m = 2 follows from Lemma 4.7.12 (put ¥ = X,,).
Suppose that the result holds for m — 1. Consider the following commutative diagram with
the natural mappings

T Xn = (O Xpn) Qe Xn = [Xn]™ = [Xa] N (Xn)

[Xn] m—1 (J&g X /

n

Then

| @2 Xn — [Xa]™| < ||(®?_1Xn) Qe Xp — [Xn]m_l ®e Xn -
112X @ X — [Xn]™ ! @px,pm1 Xall-

From Lemma 4.7.12 we have ||[X,]" ' ®.X,, — [X,,]" 1@ x, jm-1 X0 || < KaM2)(X,) nl/2,
Since (@7 71X,,) ®c Xy — [Xn]™ ! @ Xu|l < || @77 X, — [X,]™ 7], by the Induction
Hypothesis we obtain

|8 Xp — [Xa] ™| < K&~ Mgy (X)™ " (02"
q.e.d.

Note that when X is 2-concave, M o) (X,) < M(9)(X) for all n.

We are now ready to give the desired positive answer to our conjecture (4.17).

Proposition 4.7.1
Let X be a symmetric 2-concave Banach sequence space and m € N. Then

Co (@7 X,,) = (nt/?)m=1,

Proof.
To get the upper estimate we factorize
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QX id & X,

[Xn]™
From Lemma 4.7.13 and the fact that ||[X,]" — @7 X,|| < 1 we have
Co(®"X,) < (n'/?)" 1 Cy(IXa]™).
By (4.12), Co([Xn]™) < M(9)(X)™ < M(9)(X)™. Hence
Co(@"X,) < (n'/2)

Since X is non-trivially concave the lower bound follows from Remark 4.6.8.
q.e.d.

It is well know that ¢, is 2-concave if and only if 1 < p < 2 ([14], 11.5). Then from the
previous Theorem we get the following result.

Corollary 4.7.14
Let 1 < p < 2. Then for every m € N

Ca (R < (n/2)ym1,

4.8 The tensor conjecture for 2-convex spaces

We are now interested in proving our conjecture for tensor products (4.17) for another class
of symmetric Banach sequence spaces, those that are 2-convex and non-trivially concave.
In this section X will always be such a space. This implies that X has type 2 (see [48],
Proposition 1.£.3). Our aim is to prove the following.

Proposition 4.8.1
Let X be a 2-convex symmetric Banach sequence space with finite concavity and fix m € N.

Then,
(nl/Q)m

Ax(n)

We begin by giving some estimates for the 2-concavity constant of the X,.

Co (R X,,) = (n'/2)" M5 (X,) =

Remark 4.8.2
Let X be a 2-convex symmetric Banach sequence space; then we have 1 < |lid : (5 —
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Xpll < M®(X). Indeed, since ||eg|len = 1 = |lex||x,, for all k = 1,...,n the first inequality
is trivial. For the second inequality we have

n n 1/2 n
1) Grerllx, = | <Z |€k6kl2) lx < M@ (X) (Z ||€k€k\|§(>
k=1 k=1 k=1

n

1/2 n
M®)(X) <Z |£k2> =M (X)) érenlley-
k=1

k=1

1/2

Proposition 4.8.3
Let X be a 2-convex symmetric Banach sequence space with finite concavity; then,

nl/2
M (X;,) <
(2)( n) Ax (1)
Proof.
For the upper bound we factorize as usual,
X, — Xn
3 3

Since £y is a Hilbert space, M) (¢3) = 1. Let (1,...,(x € Xp. By Remark 4.8.2

& 1/2 & 1/2
(Z HC@'H%(") 1€ — Xall (Z ||C¢||?g>
i=1 i=1

<
N 1/2
< MPX) | (Z|C¢|2> lleg
=1
N 1/2
< MP(X) [IX, — 3] | <Z’Ci|2> 1 x,,-
=1

Hence
M5 (Xn) < MP ()| X, — 5] = MP (X)||163 — X7
Since X is 2-convex, X * is 2-concave (see [48] Proposition 1.d.4) and X, = (X*),. By [72],
Proposition 2.2, |3 — E,| =< Ag,(n)/n'/? whenever E is a 2-concave Banach sequence
space. From this and (4.9) we get
Axy, (n)
/2

M) (Xa) < MP (X)) — X <

n n1/2

Ax, (n)nl/2  Ax, (n)’
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For the lower estimate take k = [%] in Proposition 4.6.5. Then

nil/2
[5} an)(6y — Xn) < M) (X) 1(6z — Xa)-

Since X has finite concavity we can apply (4.10) to get

n11/2
[5] a[a] (&3 = Xn) < My)(Xn) Ax(n). (4.22)

Clearly [%]1/2 < ( )1/2. Then (4.22) and Lemma 4.6.4 give

n
4
143 — Xall 1/2 n!/2

Ax(n) T ax(n)

M(Q) (Xn) -

This completes the proof.
q.e.d.

Note that the second estimate in Proposition 4.8.1 follows immediately from Proposition
4.8.3. The next lemma corresponds to Lemma 4.7.12.

Lemma 4.8.4
Let X, Y be any two Banach sequence spaces; then for every n € N,

lid : X, @Y — Xo(Y)]| < Ax(n).

Proof.
We factorize in the following way,

X ®eY

@Y =02(Y)
Then || X, ®: Y — X, (V)| < |l ®: Y — X, (Y)]|. We estimate the right-hand-side term
of this inequality.

n
1Y er @ Gllx,wy = NGV Rzillx, < (162 — Xl Sl}iPHCkHY
k=1

n
= 1105 — Xall - 11D ek @ Gellon ()
k=1
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Hence
n n
165, @ Y = Xn(V)II < 105 — Xall = sup 1D Arerllx, < 11D exllx-
RVIES R— k=1
This proves our claim.

q.e.d.

Proposition 4.8.5
Let X be any Banach sequence space. Then for all n,m € N,

lid : ®F Xpn — [Xulm| < Ax(n)" 7.

Proof.
We prove it by induction. The case m = 2 is clear from Lemma 4.8.4. Assume the result

true for m—1, that is || @71 X,, — [Xp]m_1| € Ax(n)™ 2. For the m-th case we factorize
T X = Xn ®c (@1 Xy) > [Xn]m = Xn([Xn]m-1)

ol [Xn]mil /

By the metric mapping property and the Induction Hypothesis we have
1Xn ®e (O Xp) = Xy @e [Xnlm—[| < @77 X = [Xn]moa]| SAx ()72,
On the other hand, by Lemma 4.8.4, || X, ®: [X]|m-1 — Xn([X]m-1)| < Ax(n). Hence
I X — [Xalmll < 11 X0 @ (R Xn) = Xy ©c [Xn)m-1ll -

[ Xn ®e [X]m—1 = Xn([X]m-1)]|
Ax(n)m_l.

IN

q.e.d.

We give another positive answer to our conjecture.

Proposition 4.8.1
Let X be a 2-convex symmetric Banach sequence space with finite concavity and m € N.
Then,

C (®mX ) - (n1/2)m—1M (X ) - (n1/2)m
Proof.
In view of Proposition 4.8.3, it is enough to show
(nl/Q)m
Cr(®TX,) < .

For the upper bound we factorize
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QX id & X,

[Xn]m

We know ||[Xy]m — @7 X,|| < 1. With this fact, together with (4.13), Proposition 4.8.5
and Proposition 4.8.3 we obtain

Co(®"Xn) < [|®F Xn — [Xn]mll Co([Xnlm)
(Ax (n)™ M g)(Xn)™
(nl/Z)m

Ax(n)

A

For the lower estimate we already have in (4.21)

m 165 — Xl

(n1/2) l(g?g — Xn)

Since X has non-trivial concavity, [(¢5 — X,,) < Ax(n) (by Remark 4.3.9). On the other
hand, [[{3 — X[ > 1. Hence

(n1/2>m (nl/Z)m

mX, .
Co ("X, =~ = X, - o (1)

This completes the proof.
q.e.d.

It is well known that if 2 < p < oo, then ¢, is 2-convex and p-concave. It is also well

known that in this case Ca(f))) = n?" (see [75], Section 4). We immediately have the
following important corollary.

Corollary 4.8.6
Let 2 < p < oo. Then for every m € N

(n1/2)m

Co(®",) < 7

With this result we complete the study of the situation for ¢, for all p.
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4.9 Results for spaces of polynomials

4.9.1 General results

Our main interest are the spaces of polynomials and they are the main goal of this chapter.
We proved in the introduction to this chapter (Theorem 4.4.2) the equivalence of the study
of cotype constants of P("™Xj,,) and those of ®.*X,,. We have obtained some results for full
tensor products. Let us see now how are those results translated to the polynomial case.
Let us recall that the estimate for Co(P(™X,,)) involves that of Co(®% X ). Therefore, we
have to apply the results we have obtained to the Koéthe dual space.

If X is 2-convex, its Kéthe dual X * is 2-concave. Applying Proposition 4.7.1 we get

Theorem 4.9.1
Let X be a symmetric 2-convex Banach sequence space and m € N. Then

Co(P("X,)) < (n*/?H)m=L,

Note that this result covers the case of ¢, when 2 < p < oo whereas the following one
covers the case when 1 < p < 2.

Theorem 4.9.2
Let X be a 2-concave symmetric Banach sequence space with finite convexity and m € N.
then

Co(P(™X,)) < n% 'Ax(n).
Proof.
Since X is 2-concave and has finite convexity, X* is 2-convex and has finite concavity.
From Proposition 4.8.1 and (4.9),

Caemxty = 77 _ 02 (m)

— _ n1/2 m—2 n).

This proves our claim.
q.e.d.

4.9.2 Particular cases
¢, spaces
For the case of ¢; we apply (4.18) and we obtain

Proposition 4.9.3
For each m € N,

(nl/Z)m

\/1og(n+1)

Co(P(M6p)) =4 nB-1pt/r i 1<p<?2
(nt/2ym=1 if  2<p<oo
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Orlicz spaces

In Section 4.3.2 we already mentioned some results from [40] concerning the concavity
and convexity of Orlicz spaces. Then we have the corresponding estimate of the cotype 2
constants of spaces of polynomials. We write £ for X,.

Proposition 4.9.4
Let ¢ be a non-degenerated Orlicz function, £, its associated Orlicz sequence space and m
fized. Then
(i) If ¢ satisfies the Ag condition and is such that o(Mt) < KN\2p(t) for all 0 < A\t < 1
and some K > 0, then

Cao(P(™e1)) =< (n'/2)m.

(i) If o is such that p(\t) > K\2¢(t) for all 0 < X\t < 1 and some K > 0, then

m
nz !

CPO) = Sy

Lorentz spaces

As we know (see Section 4.3.2), d(w,p) is 2-convex for all 2 < p < co. If 1 < p < 2 and

nwy < Y w! with ¢ = ﬁ, d(w,p) is 2-concave (and clearly p-convex). Note that if

d(w, p) is 2-concave, then w is 1-regular. Denoting X,, by d"(w,p), we get the following.

Proposition 4.9.5
Let X = d(w,p) be a Lorentz space and m € N fized. Then
(1) If 2 < p < o0, then

Co(P("d"(w,p))) < (n'/?)™ 1.

(i6) If 1 < p < 2 and nwyi =< Y7, wi with ¢ = 52,

" 1
Co(P("d"(w,p))) =< ”%71(2 w;) VP = n%’ln%wﬁ.
i=1
lpq spaces

Once again, applying well known results we have that,

Proposition 4.9.6
Letl <p<oo,1<qg<ooand firmeN; then

m_q 1

mm o ) nTne i 2>p, 2>¢
Ca(P( gp,q))ﬁ{(nm)m—l if 2<p,2<gq.
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4.10 The complex and the real case

All the results we have obtained so far are valid both for real and complex Banach Ko6the
spaces modeled on countable or finite sets. We have been able to prove our conjecture
for some spaces, but not in general. For further developments the real theory of Banach
lattices may be helpful. This would only give results for real Banach sequence spaces. But
we are also interested in the complex case. For this reason the following results linking the
real and the complex situation are of interest.

There exists a theory of complex Banach lattices, developed by Schaeffer, where complex
lattices are derived from the real ones. Unfortunately this theory is not useful for our
purposes, since for instance the complex lattice defined from the real /5 is not the complex
5.

4.10.1 Complexifications

Let (E,|| ||) be any real Banach space. A complezification of E is a complex Banach space
E +iFE = E x E together with a norm || ||c satisfying that for all z,y € F

max{|[z[|, [y[l} < [lz +iyllc = [lz —iyllc < [l=]| + [y

and
|+ i0llc = [l|.
Given any polynomial P € P(™E) let P denote the symmetric linear mapping associated

to P (see [17] Section 1.1). Define the complexification of P, a new polynomial PC ¢
P(™(E +1iE)), by
m
P(C(J? + zy) = Z (TIZ) im—kp(xk:’ym—k).
k=0
The polynomial P® extends P. The polarization formula gives || PC|| < (2m)™/m! || P||.

Conversely, if F' is a complex Banach space we denote the underlying real Banach
space by Fg. In this situation P(™Fg) denotes the real Banach space of continuous real
m-homogeneous polynomials from Fr into R. Let Q € P("™(F +iF)). For each z € F +iF
we can write

Q(z) = R(z) +i5(z),
where R, S : F' 4+ ¢FF — R are real m-homogeneous polynomials. Hence, for every A € C
we have

R(A2) +iS(\z) = Q(A\z) = X"Q(z) = X" R(2) +iN"S(2).

Doing \™ = ¢ we obtain A\ = e3m and S(z) = —E%R(z). Therefore there is a unique
R € P(™(F + iF)g) such that

Q(z + iy) = R(x + iy) — iR(e3m (z + iy)). (4.23)
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This trivially satisfies ||R|| < ||@Q||. Both norms are in fact equal. Assume that there exists
2o such that |Q(z0)| = ||@Q|| (in case there is not such zy, we can consider a sequence (z,)n
with (|Q(zn)|)n converging to ||@]]). Choosing an appropriate A with |A\| = 1 we can find
Zo with [|@Q|] = Q(20) = R(Zp). Then ||R|| > R(Zp) = ||Q||- This gives the equality.

From this P("(F +iF)) — P(™(F + iF)r) isometrically. This mapping is not onto.

Let X be a complex Banach sequence space. Define
XR)={ye X : y, €R forall n}
and endow it with the induced norm from X. Then X (R) is a real Banach sequence space
and is symmetric, or 2-convex, or 2-concave whenever X is so.

4.10.2 Relation between the cotype constants

What we intend to do now is try to connect the cotype constants of P("X,,) with those
of P(™X(R),). Before giving the concrete result we have the following lemma, interesting
by itself.

Lemma 4.10.1
Let E and F' be real or complex Banach spaces such that the Banach-Mazur distance between
them, d(E, F) < oco. Then, for each m =1,2,...,

Co(P(MF)) < d(E,F)"Cy(P(™E)).

Proof.
Let T : E — F be a topological isomorphism. Define T* : P("F) — P(™E) by Q
Qo T. We claim || 7| < ||T||™. Indeed

Q (m)\ < I Q.

Hence [|T|| = supjjg|<1 |Q o T[] < [[T']|™. On the other hand, clearly
(T eT)(Q) = (T"Q)oT ' =QoToT ! =Q;
Therefore (T~1)* = (T*)"L. If Q1,...,Qx € P(™F) let P; = T*Q;. Then

Qo T = P QT (z))| = [IT™ sup

z||< [[=]I<1

L 1/2 L 1/2
> Qs = (DT py?
Jj=1 j=1
1/2

IN

[[CaN RS

k
=1

J
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N 1/2
= @y (Zpﬂ
7=1
Lk 1/2
<l yicaree) | er<t>Pﬂdt)
(R
. L 1/2
_ —1\* m >k rs 2
— [T C (P ) /0 A ; Pl dt)
1/2
< [T CaP(EY) / 1) Hzm th)
1/2
< @) T Ca(P( (/ ||Zr] th) .

Hence
Co(P("F)) < (T H*|| - IT*|Co(P(™F)) < [|TH|™ - | T Ca(P("F)).

Since T was arbitrary we have what we wanted.
q.e.d.

We can now relate the real and the complex cases.

Proposition 4.10.2
Let X be a complex symmetric Banach sequence space. Then for each m,

Co(P("X(R)n)) < Co(P("Xn)) < Co(P(" X (R)2n))-
In particular, if (a,) < (az2,) and (by) < (bay), then
(an) < Co(P("X(R)n)) < (bn)

if and only if
(an) < C2(P("MX,)) < (by).

Proof.
For each choice Py, ..., Py of polynomials in P("™X(R),,) we have

1/2 1/2
M M
Pl < | YIef)?
j=1 j=1
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1/2
1 M
< Cy(P("Xn)) /Oer(t)PJC%t)
=1
c 1/2

1 M
— Cy(P("X,)) /O S rwp | (2
j=1

1/2

mm 1 M
@)™ 6P X)) /0 IS n PP
j=1

m!

IA

This gives the first inequality. For the second inequality we first check

Co(P("Xn)) < Co(P("(Xn)r)):

Indeed, for Q1,...,Qn € P(™X,) let Ry,..., Ry € P(™(X,)r) be as in (4.23). Hence

1/2

M M
> 11Q50° = [ IR
j=1 j=1

1/2

1/2

IN

1 M
CoP (X)) | [ I3
j=1
Y 1/2
=GP (X)) | [ 1 0
j=1
Define now a mapping i : (X, ) — X (R)2, by doing i(x1,...,z,) = (Rex, Imzy,
The symmetry of X gives ||i]| - [i"!|| < 4. Applying Lemma 4.10.1 we obtain
Ca(P("Xn)) < Co(P("(Xn)r)) < 4™ Co(P(" X (R)2y)).

This completes the proof.
q.e.d.

..., Rexy, Imzx,).
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4.11 More results for full tensor products

We give here a last result that, although it is not in the main trend of this chapter, is based
on some of the techniques that we have been using all through the chapter. Note first of
all that simply by joining Lemma 4.7.12 and Lemma 4.8.4 we have that if X and Y are
two Banach sequence spaces, then for all n, m

lid : X ®c Vi — Xn(Yi)|| < min(Ax(n), KeMa)(Ym) m'/?). (4.24)

Proposition 4.11.1
Let X be either 2-concave or 2-convex with non-trivial concavity and let Y be either 2-
concave or 2-convexr with non-trivial concavity. Then

CQ(Xn Qe Ym) = min(\/ﬁM(Q) (Ym)v mM(Q) (Xn)),

where this means that we can find upper and lower bounds with constants depending neither
on n nor on m.

This is a proper improvement of a result on cotype 2 estimates for injective tensor products
of £}}’s given in [7], Proposition in Section 5.

Proof.

Let us assume first that both spaces are 2-concave. We factorize,

X, @ Yy — 14

Xn Re Ym

X0 (Yin)
From this factorization and (4.24),
Ca (X, @ Vi) < KMy (Vi) m'/Co( X (Vo))

Using (4.11) we have a universal constant K > 0 such that Ca(X,,(Yin)) < KM (9)(Xn)M2y(Yin).
Since Y is 2-concave, M2)(Y;,) < M()(Y) < oo for all m. Hence

Ca (X, ®: Vi) < m'2M 9y (X,).

By the symmetry of e, Ca(X,, ®: Vi) < n1/21\/[(2) (Y;). This gives the upper estimate. To
get the lower bound we have, from Proposition 4.6.5,

V||l @ 05" — Xy @c Y|l < Co( X @2 Yin)I(l @2 05" — Xy, @z Yin).
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We know that ||[f5 @2 05" — Xy, @ Y| = |[€5 — Xu|l - [|[€5" — Yin||. By Chevét’s inequality
(4.7),

005 @2 0 = X @ V) < c(U85 = X165 = Yan

165 = Xalll(65 = Yon) ).

Hence

(4.25)

(s — X, (L — Y,

Vam |0y — Xyl nm |65 — Y, ||

Since X has non-trivial concavity (4.10) implies [(¢5 — X,,) < Ax(n) < /n|l5 — X,|.
The same holds for Y. Therefore

1

1-<CQ(X ®e Y, min(\/ﬁ \/ﬁ)

) < ) =< CQ(X R®e Y, )
vm ' n )

This shows our claim.

Assume now that both X and Y are 2-convex and have non-trivial concavity. For the

upper estimate we factorize as we did before. From Proposition 4.8.3 we have M(z)(Xn) =
vn/Ax(n). Using this, jointly with (4.11) and (4.24) we get

Co( Xy ®:Yin) < Ax(n)Co(Xn(Yim)) < Ax(n)M2)(Xp)M(2)(Yin)
< VnMg)(Yn).

By the symmetry of &, Cao(X,, ®: Yin) < /mM2)(X,,). For the lower bound we start, as
before, from Proposition 4.6.5 and apply Chevét’s inequality to arrive to (4.25). Since X
is 2-convex and has non-trivial concavity, by (4.10) and Proposition 4.8.3, [({5 — X,,) =<
Ax(n) < /n/M)(Xy) (the same is true for V). Now, [|£§ — X[ > 1. Hence

Vi m >
Vi) (X,) T /mmM ) (Vi)
1

1 < Co(X,®.Y, )(

=< Cg(Xn Re Ym)

min(\/mM(g) (Xn), \/EM(Q) (Yim))

This proves the second case.
For the last case, let us assume that Y is 2-concave and X is 2-convex with finite concavity.
For the upper bound we factorize in the same way as we did before and use (4.24) to get

CQ(Xn Re Yo, )<KGM ( )\/7M ( )M(g)(Ym)

Since Y is 2-concave,

C(X ®€ )<fM2)( )
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On the other hand we have
Co(Xn ®c Yin) < Ax(n)M2)(Xpn) Mgy (Yin)-
Since X is 2-convex with finite concavity, Proposition 4.8.3 implies
Co (X, ®: Yim) < vVnMa)(Yin).

We have the upper estimate. For the lower one, starting from Proposition 4.6.5 and applying
(4.7) we get to (4.25). Since X is 2-convex with finite concavity by (4.10) and Proposition
4.8.3, 1(5 — Xp) < Ax(n) < /n/M9)(X,) holds. Also that [|£5 — X,|| > 1. Hence

1ty — Xp) . Vn B 1
Vim0 — Xl v/nm Mgy(Xn)  /m Mg (X))

On the other hand, since Y is 2-concave [({5' — Y,,) < Ay(m) < /m|[¢5" — Y, | and
M2)(Yin) < M()(Y) < oo for all m. Hence

105" — Y) . M 2)(Yin) . 1
vm |5 = Y|l M) (Ye) Mgy (Yim)

This gives the lower estimate and completes the proof.
q.e.d

As a straightforward consequence we have the following characterization.

Corollary 4.11.2
Let X, Y be any two Banach sequence space; then X,Y are both 2-concave if and only if

Cy(X,, ®: Yyn) < min(v/n, v/m).

Proof.
The ‘only if” follows from Proposition 4.11.1. The ‘if” implication follows from the fact that
fixing m = 1 we have X,, ®. Y, = X,, ® K= X, and

Cy(X,) < min(v/n,1) = 1.

In other words, the Cy(X,,) are bounded and X is not isometric to ¢o. Therefore X has
cotype 2. Hence X is 2-concave. The same proof is valid for Y.
q.e.d.
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It is well known that, if either F or F are finite dimensional, L(E; F) = E’ ®. F holds
isometrically. We obtain the following corollary.

Corollary 4.11.3
Let X be either 2-concave with non-trivial convexity or 2-convex with non-trivial concavity.
Then

C(L(Xn; Xp)) < Vn.
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