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In this thesis a beam based technique is developped to
measure the Hamiltonian terms of an accelerator by pre-
cise Fast Fourier Transform of turn-by-turn beam position
data. To this aim analytical derivations, simulations and
experiments in two different accelerators are performed.
The first analytical derivation consists on describing the
effect of the beam particle distribution on the Fourier spec-
trum of the turn-by-turn motion. This study leads to the
appearance of decoherence factors that reduce the ampli-
tude of the non-linear spectral lines. The second analyt-
ical derivation describes how the resonance driving terms
vary around the accelerator. It is demonstrated that these
terms remain constant along sections free of non-linearities
and abruptly change at the location of the non-linear el-
ements. This property permits to localise the non-linear
sources by measuring the resonance driving terms around
the ring using the beam position monitors. In order to
demonstrate the applicability of this technique in a real ac-
celerator experiments were performed at the SPS of CERN
and at the RHIC of BNL. The SPS is a very linear accelera-
tor equipped with eight powerful sextupoles that were used
to introduce a controlled amount of non-linearity. Measure-
ments and predictions from the model are in good agree-
ment. In the SPS a method to measure and compensate
the linear coupling was also developed. The RHIC, as the
future LHC, is a superconducting machine with a large con-
tent of non-linearity. Sextupolar resonances were measured
in this accelerator using the presented technique obtaining
a satisfactory agreement with the model. Lastly an im-
provement of the technique is studied analytically consist-
ing on using an AC dipole instead of applying a single kick.
This has the main advantage of not being destructive.



The future Large Hadron Collider (LHC) will provide
proton-proton collisions with a center of mass energy of 14
TeV. The circumference of this machine will be 27 km and
the magnetic field in the dipoles will be 8.4 T. The LHC
magnet system consists of 1232 superconducting dipoles
and 386 superconducting quadrupoles together with 20 dif-
ferent types of magnets for experimental insertions and
correction systems. In a conventional magnet the field is
mainly defined by the shape of the iron poles which can be
realized with an accuracy of the order of 0.01 mm. In a
superconducting magnet the field is mainly defined by the
spatial distribution of the superconducting cables of the
coils, which can be positioned with an accuracy of 0.1 mm.
This difference makes the superconducting magnets intrin-
sically less precise than the normal conducting magnets.
Furthermore in the superconducting magnets there are per-
sistent currents in the filaments, which are the memory of
the former variations of the field. The real field in a super-
conducting magnet is represented by a multipolar expan-
sion whose coefficients correspond to the different multipo-
lar field errors. Each one of these multipoles contributes to
the dynamics of the confined particles in a precise way rep-
resented by a set of Hamiltonian terms. Nevertheless only
the linear part of the Hamiltonian, defined by the dipoles
and the quadrupoles, has an exact solution of the motion
(equivalent to that of a harmonic oscillator). The higher
multipoles, e.g. the sextupole and the octupole, define the
non-linear motion of the particle. Solutions to the non-
linear motion can only be approximated around a fix point
using perturbative approaches. Furthermore, for large os-
cillation amplitudes, the particle motion becomes chaotic
and unstable. The region of the phase space where the
motion remains stable over a sufficiently large number of



turns is called the dynamic aperture of the machine. The
LHC has a tight dynamic aperture budget, for this rea-
son it will be equipped with different non-linear corrector
magnets that will be used to enlarge the dynamic aperture
by compensating the effect of the multipolar errors of the
magnets.

In this thesis a beam based technique is developped to
measure the Hamiltonian resonance driving terms of an ac-
celerator by precise Fast Fourier Transform (FFT) of turn-
by-turn beam position data. To this aim analytical deriva-
tions, simulations and experiments in two different acceler-
ators are performed. The first analytical derivation consists
on describing the effect of the beam particle distribution
on the Fourier spectrum of the turn-by-turn motion. This
study leads to analytical expressions that describe the par-
ticular shape of the different Fourier lines. The main con-
clusion is the observation of the appearance of decoherence
factors that reduce the amplitude of the non-linear spectral
lines. The spectral line (m,0), i.e. the spectral line with a
frequency m times the fundamental horizontal frequency, is
reduced by a factor of |m|. As well the width of the spectral
line is almost linear with the order of the line.

The second analytical derivation describes how the res-
onance driving terms vary around the accelerator. It is
demonstrated that these terms remain constant along sec-
tions free of non-linearities and abruptly change at the lo-
cation of the non-linear elements. This property permits to
localise the non-linear sources by measuring the resonance
driving terms around the ring using the beam position mon-
itors.

All the analytical predictions have been confirmed by

numerical simulations of an SPS model. To reproduce the
decoherence a large amount of particles fulfilling Gaussian



disributions were tracked through the lattice. The turn-by-
turn centroid position was computed by taking the average
of the particle positions at every turn. The Fourier spec-
trums of these signals were confronted with the analytical
formulas obtaining a satisfactory agreement.

In order to demonstrate the applicability of this tech-
nique in a real accelerator experiments were performed at
the SPS of CERN and at the RHIC of BNL. The SPS is
a very linear accelerator equipped with eight powerful sex-
tupoles that were used to introduce a controlled amount of
non-linearity. The main conclusion from the SPS experi-
ments is that coupling and sextupolar terms were measured
around the ring and the results are in good agreement with
the predictions from the model. Other important conclu-
sions follow. It was possible to identify locations with or
without non-linearities. Correct sextupole polarities were
inferred from measurements. A method to measure and
compensate the linear coupling was also developed.

The RHIC is a superconducting machine with a large
content of non-linearity. This accelerator serves as an ideal
test bed in order to apply this technique to the LHC. Sex-
tupolar resonances were measured in this accelerator using
the presented technique obtaining a satisfactory agreement
with the model.

Lastly an improvement of the technique is studied an-
alytically that consists on using an AC dipole instead of
applying a single kick. This has the main advantage of
not being destructive. Furthermore no decoherence factors
have to be taken into account and the data samples can be
as long as desired. However the resonance driving terms
in presence of the AC dipole differ from the natural reso-
nance terms. This difference should not be large for low
orders and the local information of either kind of terms is



equivalent. New resonances appear as a result of having
introduced a new frequency in the dynamics.
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Chapter 1

Introduction

The future Large Hadron Collider (LHC) will provide proton—proton collisions
with a center of mass energy of 14 TeV. The circumference of this machine will be
27 km and the magnetic field in the dipoles will be 8.4 T. The LHC magnet system
consists of 1232 superconducting dipoles and 386 superconducting quadrupoles
together with 20 different types of magnets for experimental insertions and correc-
tion systems. In a conventional magnet the field is mainly defined by the shape of
the iron poles which can be realized with an accuracy of the order of 0.01 mm. In
a superconducting magnet the field is mainly defined by the spatial distribution of
the superconducting cables of the coils, which can be positioned with an accuracy
of 0.1 mm. This difference makes the superconducting magnets intrinsically less
precise than the normal conducting magnets. Furthermore in the superconducting
magnets there are persistent currents in the filaments, which are the memory of the
former variations of the field. The real field in a superconducting magnet is defined
by the following multipolar expansion [1],

) > . z+iy\"!

By +1B; = B, Z[bn(s) + 'Lan(s)] ( R ) )
n=1 T

where B, is the amplitude of the nominal field of the magnet at a radius R,., b,, and
ay, are the normal and the skew relative coefficients of the 2n—pole (expressing the
field errors) and R, is the radius of the measurement coil. R,. is known as reference
radius. For a multipole of order n the field is increasing with the power (n — 1)
of the radius. To represent a dipole B, is set to the value of the vertical magnetic
field and b is set to 1. The lowest order multipole error of the dipole is given by
a1, which is a constant horizontal field. The following errors in increasing order
are by and a9, normal and skew quadrupolar fields, b3 and a3, normal and skew
sextupolar fields, etc. Each one of these multipoles contributes to the dynamics of
the confined particles in a precise way represented by a set of Hamiltonian terms.
Nevertheless only the linear part of the Hamiltonian, defined by the dipoles (n = 1)
and the quadrupoles (n = 2), has an exact solution of the motion (equivalent to that
of a harmonic oscillator). The higher multipoles, e.g. the sextupole (n = 3) and

1



2 CHAPTER 1. INTRODUCTION

the octupole (n = 4), define the non-linear motion of the particle. Solutions to
the non-linear motion can only be approximated around a fix point using perturba-
tive approaches. Furthermore, for large oscillation amplitudes, the particle motion
becomes chaotic and unstable. The region of the phase space where the motion
remains stable over a sufficiently large number of turns is called the dynamic aper-
ture of the machine. The LHC has a tight dynamic aperture budget, for this reason
it will be equipped with different non—linear corrector magnets that will be used to
enlarge the dynamic aperture by compensating the effect of the multipolar errors
of the magnets. Measurements of the multipole coefficients of the magnets will be
done prior to their installation in the tunnel. Nevertheless all magnets may not be
measured and their properties may change during the installation process. There-
fore beam based techniques to measure these field imperfections will be of great
help in the commissioning and running of the machine.

The aim of this thesis is to develop a beam based method to measure the Hamil-
tonian terms of an accelerator by precise Fast Fourier Transform (FFT) of turn—by-
turn beam position data. The first attempt to perform such measurements was made
in [2]. In this work, in the framework of the first order perturbation theory, it has
been studied how the spectra from tracking and experimental turn-by-turn data
can be related to non-linear Hamiltonian terms. An important prerequisite to make
possible this analysis was a more precise technique than the standard FFT [3] to
compute the spectrum of the motion. Similar attempts were performed in the field
of celestial mechanics by Laskar [4]. This approach is known as the frequency
map analysis. Recently new techniques were developed [5], allowing an even
more precise determination of the fundamental frequencies. The frequency map
analysis can also be used to find spectral lines in descending order of magnitude.
The relation between the Hamiltonian terms and the spectral lines of single par-
ticle motion is derived in [6]. Presently other methods are being studied for the
measurement of the non—linear content of a machine. Some interesting references
are: [71, [8], [9], [10], [11], [12] and [13]. They will be briefly discussed in the last
section of this thesis.

In this thesis two theoretical aspects of the measurement of the resonance driv-
ing terms are developed. The first one is to derive an analytical relation between the
Hamiltonian terms and the spectral lines of the beam centroid motion. The starting
point of this work is the relation given in [6] between the Hamiltonian terms and
the spectral lines of single particle motion. The results from these analytical stud-
ies will be compared to computer simulations using the model of the Super Proton
Synchrotron (SPS) at CERN. The second aspect is the study of the variation of the
Hamiltonian terms around the ring. In a real machine this information could be
obtained by using the beam position monitors (BPMs). The intrinsic variation of
these terms could be of great use for localizing important sources of errors.

Experiments have been done in the CERN SPS to measure coupling and sex-
tupolar resonance driving terms. The measurement of the coupling resonance terms
provides an efficient way of correcting the coupling. The extraction sextupoles
were used to introduce a controllable amount of non-linearity. By computing the



Fourier spectrum of the turn-by—turn BPM data sextupolar resonance terms were
measured around the ring. These measurements are compared to the predictions
of the model for the different settings used. Similar measurements have been per-
formed in the Relativistic Heavy lon Collider (RHIC) of BNL which is a supercon-
ducting machine. This shows that this technique can be applied to more complex
machines.

A major improvement of this method to measure the resonance driving terms
has been analytically studied. Instead of applying a transverse kick, a forced os-
cillation is induced to the beam by an AC dipole with a frequency close to the
fundamental frequency. This has the advantage of being a non destructive mea-
surement and not being affected by decoherence processes.
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Chapter 2

Maps in accelerators

The dynamics of a system such as a circular accelerator could be described us-
ing Hamiltonian flows or according to the discrete formalism of transfer maps. A
transfer map is a set of functions that give a final set of phase space coordinates as
a function of the initial set of phase space coordinates. This formalism is the non-
linear generalization of transfer matrices used to describe the linear motion in an
accelerator. In that case the linear transfer maps are represented by matrices. The
use of transfer maps to describe the particle transverse dynamics in accelerators
is justified by the discrete nature of magnetic elements. Furthermore maps have
the advantage of being easily implementable on computers. Neglecting any non-
linear element an accelerator could be represented by a product of matrices, each
of them corresponding to a magnet or a drift (free field region). The non-linear
map formalism provides the equivalent tool to the matrices in the linear systems.
Therefore a realistic representation of the accelerator is given by a concatenation
of non-linear maps and matrices. Nevertheless the motion of a particle in an accel-
erator could be obtained only approximately by using perturbative methods. The
perturbative methods used in the non-linear map theory are more powerful than
those used in the classical perturbative Hamiltonian theory.

2.1 Linear maps

The motion of a particle in an accelerator is usually described relative to the ref-
erence orbit defined by the dipoles for a particle with momentum pg. The moving
coordinate system is shown in fig. 2.1, where s, = and y are the longitudinal, hori-
zontal and vertical coordinates respectively and p is the radius of curvature. High
energy particles travel at a constant speed close to the speed of light. The path
length s is given by s = wt. The transverse phase space in accelerators is defined
as (z,z',y,5'), where the prime denotes the derivative over the path length. In the
following the maps of the most important linear elements are given:

e Drift.
The simplest element of an accelerator is a field free region or drift. The

5



CHAPTER 2. MAPSIN ACCELERATORS

0
y Reference trajectory

Figure 2.1: Coordinate system used for accelerators.

linear map that describes a drift of length L in the phase space is given by

(ZZ'>S+L:((1)€)<ZZ/>S’ 2.1)

where z stands for z or y.

Dipole.

A sector dipole, see figure 2.2, is a section of length L with a constant verti-
cal magnetic field and the edges perpendicular to the central trajectory. \Ver-
tically the motion is equivalent to a drift of length L but horizontally the map
is given by

< x ) B ( cos(L/p) psin(L/p) ) ( x ) 22)
) (1/p)sin(L/p)  cos(L/p) a )
where p is the radius of curvature of the reference orbit.

Quadrupole.
A quadrupole, see figure 2.3, produces a linear magnetic field which vanishes
at the reference orbit. The gradient of the quadrupole % is defined as

9 9By

k =
po Ox '

where ¢ is the charge of the particle. A focusing quadrupole (k¥ > 0) of
length L is described as

( . >S+L - ( —\;%Ss?mp (1/\(:/58);11”/, ) ( 7 ) . (3
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with v = L+/k. Similarly, a defocusing quadrupole (k < 0) of length L is
described as

( z > B ( coshy  (1/Vk)sinh1 ) ( z ) (2.4)
7). ‘L ~ \ Vksinhy cosh 1) 2 ). '
with ¢ = L/[k].

For simplicity these expressions are given for a particle with the design momentum
po. The advantage of this formalism is that particles can be propagated trough sec-
tions of several magnets by multiplying 2 x 2 matrices. The one turn matrix M(s)
for a circular accelerator is the transfer matrix that propagates the particle through
all the elements back to the starting location s. It is constructed by multiplying all
the elements in the form

M(s1) = My My --- Mo My, (2.5)

where M; are the matrices of the corresponding linear elements. The one turn
matrices at different locations are connected via similarity transformations, for ex-
ample

M(s9) = MyM(s1) M. (2.6)

To guarantee the stability of the motion over a large number of turns M (s) has to
be connected to a pure rotation matrix via a similarity transformation. The angle
of rotation in the phase space is called tune and is represented by @ . Its fractional
part can be computed from M (s) using the following expression,

2cos(27Q,) = Tr[M(s)] (2.7)
where T'r[M (s)] represents the trace of the corresponding 2 x 2 one—turn matrix.

The parametrization of the turn—-by—turn coordinates at a given location of the ring
so IS given by [14]

z(N) = +/exBz(s0) cos(2mQzN + ¢z) (2.8)
y(N) = €yBy(s0) cos(2TQyN + ¢y) (2.9)

where N is the number of turns, €, and ¢, are given by the initial conditions of the
particle and 3, are the betatronic functions. Comparing to the harmonic oscillator,
€, represents the energy of the oscillation. e, is called the transverse emittance and
e, is the area enclosed by the trajectory of the particle in the phase space (z,z').
¢, is the initial phase. The betatronic function ,(s) represents the amplitude
modulation due to the changing focusing strength. For more details see [15].
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Sl S S
/s 78 Nyyy

Figure 2.2: Dipole magnet.

Figure 2.4: Sextupole magnet.
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2.2 Non-linear maps

The lowest order non-linear element is the sextupole. The sextupole, see figure 2.4,
produces a magnetic field that increases quadratically in the transverse coordinates,

B, = Bs2xy,
By Bs(z* —y?) (2.10)

For large accelerators it is a good approximation to assume that Bj is a Dirac delta
function along the longitudinal coordinate at the location of the sextupoles. This
is called thin lens approximation and has the advantage that the final coordinates
will be functions only of the initial positions = and y. The transfer map of a thin
sextupole placed at s is given by

T T 0

! ! LB 2,2

o = T s BTV (2.11)
y y p 0

yl s+e yl s —2xy

where LBj3 is the integrated strength of the sextupole.
In general the magnetic field of a multipole of order n is given by

By(@,y) +iBy(z,y) = [Ba(s) + idn(s)](z +iy)" ! (2.12)

The terms By, (s) and A, (s) in eq. (2.12) are called normal and skew coefficients
and they are given by the expressions

1 o™ 'B,

B,(s) = = 1) 9zn 00 (2.13)
1 o0 1B,

An(s) CES R (2.14)

Notice that B,, and A,, are absolute values, contrary to b,, and a,, that were intro-
duced relatively to the main field and the radius of the expansion. A skew multipole
of order n is a normal multipole of order » rotated by 90° /n in the transverse plane.
Higher multipoles are, for example, the octupole (n =4, third order in z and y) and
the decapole (n =5, fourth order in x and y). In presence of these non-linear ele-
ments the maps are no longer matrices and an alternative approach has to be used.
In this work Taylor maps (see section 3) are used to represent these non-linear
multipole elements. The total Hamiltonian can be expressed as the sum Hy + H;
where Hy is the linear part already described with matrices and H; contains the
contributions of all the non-linear lenses. The magnetic field of one element can
be derived from a vector potential with only the longitudinal component. Therefore
H; is proportional to this component of the magnetic vector potential, A4(z, vy, s),
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which is obtained by taking the real part of the primitive of the magnetic field
expansion. The perturbation Hamiltonian is given by

o = —%Re 3 %[Bn(s) +idn(s)](x + iy)" (2.15)
n=3

The perturbative approach followed in this work consists of the following steps:

e Construction of the one-turn—-map associated to the Hamiltonian (section 3.2)
using Taylor approach. Basically the one-turn—-map is the set of functions
that relate the initial position of the particle in the phase space to the final
position after one turn.

e Construction of the Normal Form of the one-turn-map (section 3.3). A
change of coordinates is done in a way that the new one—turn-map is much
simpler than the initial one.

e The particle trajectories in the Normal Form basis are transformed into the
initial phase space by inverting the previous change of coordinates (sec-
tion 3.4).

All these steps will be presented up to first order in the perturbation parameters.



Chapter 3

Taylor maps

A Taylor map expresses a final set of coordinates as polynomial functions of an
initial set of coordinates. The most general way to represent this kind of map is
using the exponential Lie operator. The exponential Lie operator is written as e*/*.
It operates on differentiable functions and is defined by

¢lg=g+1f.g+ 5L Lgll + @)

where [f, g] is the Poisson bracket of any functions f and g of the phase space
coordinates defined by

of dg  Of g
=222 22T 3.2
5.9 = 595 ~ o507 (3:2)

When e'f* operates on a coordinate function, the result

vy =cla=a+ (0] + S[F 1]l . (33)

can be interpreted as the value of the coordinate at a time ¢ = 1, expressed as a
function of the coordinates at time ¢ = 0, for a dynamical system with a Hamil-
tonian H = —f. Therefore the exponential Lie operator of a thin lens can be
constructed by multiplying its Hamiltonian, as given in eq. (2.15), by the length of
the magnet (that is the time like variable) and putting it with a minus sign in the
exponent. As an illustration the exponential Lie operator corresponding to a sex-
tupolar thin lens is constructed. The Hamiltonian of a normal sextupole is given by
eq. (2.15),

— (2% — 3z?) . (3.4)
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Therefore the Lie operator is given by

T = eL%(wgfawoy%)wo =Zo,
pop = MBIy gy BBz

yy = Lo @=smod)y g (3.5)
Dyf = eL%(wg_Szoyg)pyo = pyo — aL.5s 2z090 ,

notice that only the momentum coordinates are changed by the map. This is known
as “multipole kick” and its Hamiltonian is named “kick Hamiltonian”. To con-
struct the one—turn map of an accelerator including multipole kicks represented by
exponential Lie operators some of its properties are needed. These properties are
described in the following section.

3.1 Properties of the exponential Lie operator

e Action on polynomial functions. Using eqg. (3.3) it can be shown that
eligh = T, (3.6)
and thus for any polynomial function g(z) it follows

g(zg) = glel'z) = elig(x) (3.7)

e Composition of exponential Lie operators. Suppose we have two oper-
ators, e/1(#1): mapping the phase space z; into the phase space z, and the
second operator e*/2(#2): mapping z into z3. The composition of the maps
is expressed as

23 = ef2(z2)igfi(ar):y — gifalze)y, g(z) . (3.8)

Using the property of eq. (3.7) this composition of maps is expressed in the
following way

23 = 9(22) — g(elfl(zl)izl) — eifl(zl)ig(zl) — e!f1(21)1€!f2(21)1z1 . (3.9

This equation illuminates the somewhat un—intuitive result that a succession
of Lie operators can be expressed in the initial coordinates by reverting the
order of the operators. This property is needed in the construction of maps
as a succession of elements. From this property the following relation is
derived

e:g:e:f:e—:g: — e:e:g:f: (310)

which is the analogue of the similarity transformation in linear matrix alge-
bra.
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e The Campbell-Baker—-Hausdorf theorem. The concatenation of two expo-
nential Lie operators can be expressed by another exponential Lie operator,

e = ¢if: (3.11)
with the generator f given by the infinite series

[ =fo+ fr+[fo, fi] +-.. (3.12)

Higher order terms are complicated and not discussed here. The proof of
this theorem is given in [16]. In practice, this formula is of interest in those
cases where f1 and f are small and the series converges rapidly.

3.2 The one turn map

The one turn map of a circular accelerator is the set of functions that relate the
initial coordinates of the particle to the final coordinates after one turn. The one
turn map is given by the composition of successive element maps in the form

M = MN+1e:hN:MNe:hN—1: et Moeth My , (3.13)

where the M,, are the maps corresponding to the linear elements and the h, =
hn(zn,yn) are the kick Hamiltonians of the non—linear thin lenses at the longitu-
dinal coordinate s = s,,. Using the properties of the exponential Lie operator M
can be written as a function of the initial coordinates by reverting the order:

M = MieM Myeh> ... e:hN*“MNe:hN:MNH (3.14)

taking M,, = My M>...M,,, inserting identities of the form M, ! M,, and using the
similarity relation this equation transforms into:

M — e:Mlhl:e:Mth: .. e:MN_th_l:e:MNhN:MN+1 (315)

The linear one turn map is M 1. Since My is a linear, symplectic and stable
operator there exists a linear change of coordinates that transforms this operator
into a pure rotation. This is expressed by the similarity transformation

Myy = ARA™L, (3.16)

where A represents the transformation and R the rotation. By inserting identities
of the form AA~! in eq. (3.15) The one turn map can be expressed as

M = A—le:AMlhl:e:AMQh,g: . e:AMN,th,l:e:AMNhN:RA (317)

In the following we will work in the new frame where the linear one turn map is a
pure rotation. The total one turn map in the new frame will be represented by the
same symbol M. Using eq. (3.7) M is written in the form

M = ghighs .. ghvipg (3.18)
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where h,, are the functions hn(zy, yr) Written in terms of the eigencoordinates of
the linear motion at the longitudinal location s = s,. Assuming that there is no
coupling present z,, and y,, are given by

Tn = A/ 2Bndy cos(dz + bzn) (3.19)
Yn = v/ 2/8ynjy COS(¢y + ¢yn) (3-20)

where B,,, ¢, are the beta function and the phase advance at the location s = s,,.
J, and ¢, are the action—angle variables defined by the initial conditions. Com-
paring to egs. (2.8) and (2.9) J, corresponds to the transverse emittance divided by
two.

Using the Campbell-Baker—Hausdorf theorem (see section 3.1), eq. (3.18) sim-
plifies to

M=e"R (3.21)

Assuming that the A, are small, h can be approximated by

N N
h=> ho+ > [hmha]+-- (3.22)
n=1 n,m<n

In the following only first order in A, are kept, i.e. the second summation of the
right hand side of eq. (3.22) will be neglected. Using egs. (2.15), (3.19) and (3.20),
h can be expanded as:

b= Z hjklm(QJw)#(QJy)“LTme*i[(j*k)(fzﬁm+¢x0)+(l*m)(¢y+¢yo)1 (3.23)
jklm

where h ., are the Hamiltonian coefficients containing the contributions from all
the multipoles of order n. = j+k+H-m, being normal multipoles (B,,) if (I+m) isan
even number, or skew multipoles (4,,) if ({4+m) is an odd number. For example the
Hamiltonian terms coming from normal sextupoles are: hsooo, h1200 and ho1g. IN
particular hsooo is given by the following summation over the existing sextupoles

q 3 i3
h3000 = ~24p Zi:Lz’BSz' 2610 (3.24)

3.3 Normal Form

For a non-linear map such as eq. (3.21), the idea of Normal Form is to look for
a change of coordinates that shapes the map into a simpler form. Generally, the
simplest form is an amplitude dependent rotation, i.e. a rotation in the phase space
whose angle depends on the oscillation amplitude of the particle. The change of co-
ordinates is represented by a similarity transformation of the one turn map, written
as

ef:F:e:h:R e:F: (325)
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Figure 3.1: Normalized phase space portraits in the initial coordinates (left) and in
the Normal Form coordinates (right). The unit of the axis is 0.5y/mm.

where F' is the generating function for the transformation. Figure 3.1 shows a
simulated tracking example of this kind of transformation. In the left part the
phase space trajectory of a particle in presence of strong sextupolar fields is shown.
For this case the generating function F' was numerically computed and the data
were transformed by applying e, The trajectory after the transformation (in
the Normal Form coordinates) is shown in the right part of the figure 3.1. The
one turn map in the Normal Form coordinates is an amplitude dependent rotation
represented by e:/(1): R, where H (I) is a function that depends only on the action
variables and not on the phases and R is the rotation matrix. Equating this to
eq. (3.25) gives

ef:F:e:h:Re:Fi — eiH(I):R (326)
Multiplying the I.h.s. of the equation by R~ R and using eq. (3.10) it becomes
e—:F:e:h,:e:RF:R — e:H(I):R (327)

Using the Campbell-Baker—Hausdorf up to first order in F', h and H (I), eq. (3.27)
is expressed as

(1-R)F+H=h (3.28)
and the formal solution of this equation is ( [17], [18] or [19]):
1 —
F = (l_R)(h—h) (3.29)
H = h (3.30)

where h represents the average of & over the phase coordinates ¢, and ¢,. When
the denominator (1 — R) of eq. (3.29) takes values close to zero F' diverges and
Normal Form cannot be applied. In these cases the motion is not regular.
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Introducing the expansion of A from eq. (3.23) in eq. (3.29) the generating
function is expressed in the form

F= Z Fikim(212) ik (21,) B (k) ($a+tbmg ) +(1—m)(y +1by, )] (3.31)
jklm

The generating function terms f;;,, are related to the hjx;,, by the following rela-
tion,

B hjkim
f]klm - 1 . e*i27r[(j_k)Qm+(l—m)Qy} (332)

where (), and @), are the horizontal and vertical tunes. f;x;,, diverges when
(1 = F)Qz + (I —m)Qy = p2 ,

being p any integer. This situation is known as a resonance and is avoided during
normal operation of accelerators. The label of the resonance is (n1, ne), being
n1 = (j — k) and ny = (I — m). Every generating function term or, equivalently,
Hamiltonian term is associated to certain resonance. For this reason these terms
are generally known as resonance driving terms.

3.4 The non-linear motion and its spectrum

The relation between the action angle variables (J5, ¢4, Jy, ¢,) and the Courant—
Snyder variables (&, pg, §, py) is given by the formula (z stands for z or y):

zZ = 2J, COS(¢Z + ¢20) (333)
P, = —+/2J,sin(¢, + ¢,0) (3.34)

where ¢, is the initial phase. It is convenient to use the resonance basis (h;}, h;,
h.f, h, ) defined by the relations:

hE =2+ ip, = \/2J,eTHP:F020) (3.35)

The transformation to the new set of Normal Form canonical coordinates (¢, ¢,
C;r, Cy—) is given by the operator e, where F is taken from eq. (3.29), and is
expressed as

(F = \/2LeTWtve0) — omFipE (3.36)

where I, is the invariant of the motion in the new frame. By construction the
one-turn map in Normal Form coordinates is an amplitude dependent rotation.
Therefore the motion in these coordinates as function of the turn number N are
given by

GE(N) = /2I,eTimv:Ntzo) (3.37)
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where v, are the tunes including the amplitude dependent detuning. Using the
two previous equations the turn—by—turn motion in the normalized coordinates is
obtained. The evolution after IV turns of the linearly normalized horizontal variable
is expressed in the form

hy(N) = /2L Cm=Ntvs) _
. . j+k—1 I+m
20> jfim(2Le) "2 (20) 7 x
jklm
ei[(l—j—l—k)(?m/mN-Hme )+ (m=1)(2mvy N+py,)] (338)

where the factors f;,,, are the generating function terms. Note that by evaluating
this equation at N = 0 the relation between (J,¢) and (I,7) is obtained. Eq. (3.38)
describes the motion of the particle in presence of non-linearities. Each Hamil-
tonian coefficient %y, introduces a spectral line proportional to its amplitude.
The FFT of the turn by turn signal 7 (V') can be used to measure these Hamilto-
nian coefficients approximately (see [6]). To construct the signal i () defined
in eqg. (3.35) both the position and the momentum are needed. In a real machine
the position are available from the beam position monitors (BPM). It is however
possible to reconstruct the momentum using two nearby BPMs. If the phase ad-
vance between the BPMs is exactly 7 /2 the first BPM gives the position z and the
second BPM the momentum p, as can be seen from eq. (3.34). Otherwise the data
from the second BPM is linearly transformed using the data from the first BPM to
achieve the 7 /2 of phase advance. In figure 3.4 an example corresponding to the
SPS in presence of strong sextupoles of the amplitude of the Fourier spectrum of
the horizontal signal h, (IV) is presented. The spectral line with frequency —2Q,,
(-2, 0), is proportional to the term hsggo, the line with frequency 2Q., (-2, 0), is
proportional to the term A9 and the line with zero frequency, (0,0), is propor-
tional to the term ho1qg.
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Figure 3.2: Amplitude of Fourier spectrum of the horizontal signal 4, (V) for the
SPS in presence of strong sextupolar fields. The label (m,n) attached to the spectral
lines means that the frequency of that line is mQ; + nQy.



Chapter 4

Spectral response to particle
distributions

4.1 Analytical study

In section 3.4 the relation between the spectral lines of the single particle motion
and the resonance driving terms was established by means of A2 (N). In a real
machine the BPMs are used to record the turn-by—turn transverse position of the
centroid of the beam. Therefore the equivalent relation to that given by A, (N) has
to be found between the spectral lines of the motion of the centroid and the reso-
nance driving terms. To derive such relation it will be assumed that the coordinates
of the centroid are given by averaging over a Gaussian distribution of particles
that do not interact between them. The most important processes that affect the
centroid motion are the decoherence processes, i.e. when all the particles do not
oscillate with the same frequency or tune. The two main sources of tune spread in
an accelerator are amplitude detuning and chromaticity.

The amplitude detuning is caused by the presence of non-linear magnetic
fields. The horizontal and vertical tunes are functions of the betatronic ampli-
tudes of the particles. Thus particles with different oscillation amplitudes have
also different tunes. This causes the decoherence of the beam. The oscillations of
the centroid are completely damped after certain number of turns. Simulation data
showing this effect for an SPS model with strong sextupoles is plotted in figure 4.1.

The tunes of the particle also depend on its momentum deviation. The param-
eter used to quantify this dependence is the chromaticity @', defined as

,_ 0Q,
Qz - 8(5 ’

(4.1)

where z stands for z or y and § = (p — po)/po is the relative momentum deviation.
This dependence of the tune on the energy of the particle is explained by the fact
that the more energetic particles are less focused by the quadrupoles and vice versa.
In addition the energy of off-momentum particles performs harmonic oscillations

19
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around the reference energy due to the effect of the radio frequency cavities. The
frequency of these oscillations is the synchrotron tune @ . Therefore the transverse
tunes are modulated with the synchrotron tune with a modulation amplitude given
by the chromaticity. The phase of this modulation is equally distributed between 0
and 27 among the particles of a centered beam. Simulation data showing the effect
of chromaticity in the centroid motion is plotted in figure 4.6.

In this chapter the spectrum of the motion of the centroid of the beam is stud-
ied assuming Gaussian particle distributions and including amplitude detuning and
chromaticity. This study will allow to relate the lines of the Fourier spectrum of the
centroid turn-by-turn data to the non-linearities of the machine. This is the gener-
alization of eq. (3.38), for single particle, to particle distributions. The quantitative
dependence of the tune on the different phase space variables that will be used in
the subsequent analysis is given in the next section.

4.1.1 Tune dependence and bunch densities

Sextupoles and octupoles introduce a linear dependence of the tunes v, and v,
with respect to the horizontal and vertical invariants I, and I, [20], introduced in
eg. (3.36). Note that this effect is of first order in the strength of the octupoles
and of second order in the strength of the sextupoles. Higher multipoles introduce
higher powers of the invariants but it is assumed here that these contributions are
negligible. This could be expressed as follows:

vy = Qz + V;.Z.ZLE + V;yQIy

vy = Qy + V;ll/:vQIl‘ + VZI/yQIy 4.2)
where the v/ are constant factors defined as
Vi = G oy = G
v = % ! = % 4.3)

= v =
Y8 ey YU Oy

with €, = 21, and ug'ﬁy = VZI/CL"

Off-momentum particles will experience an additional tune oscillation given
by the expressions [21]:

Ay, = W%i(j\/' cos(mQsN + 1)) sin(nQsN)

Ay, = WQij cos(mQsN + 1) sin(nQsN) (4.4)

where @, is the longitudinal or synchrotron tune, 5 is the initial phase, ¢ is the
momentum deviation, @Q’, and Q’y are the horizontal and vertical chromaticities and
N is the turn number.
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Assuming Gaussian distributions in the three planes with the centroids of the
initial transverse distributions off-centered with the amplitudes A, and A, in units
of the sigma of the corresponding distribution, and a centered Gaussian distribution
in the longitudinal plane, the densities are given by:

1 1 T2 _ o4

(Ip,pg) = o€ L(2L,+ A, —2A,/21, cos s (4.5)
1 T oq

y(Iya¢y) _ %67;(21—”4—/1972‘4” 21, cos1y) (4.6)
5 _52 2 2

p5(57¢8) = 27‘_0_%6 /( 0'3) (47)

where /21, and /21, are expressed in units of the sigma of the corresponding
distribution and o is the sigma of the longitudinal distribution. Each sigma corre-
sponds to the square root of the emittance in the respective plane.

4.1.2 The centroid motion and its spectrum

The centroid position and momentum are computed by averaging over the bunch
distribution. The turn-by—turn motion of each particle h, () is given by eq. (3.38)
as a function of his transverse amplitudes and initial phases. The contributions of
the amplitude detuning and the chromaticity to the tunes are introduced in that
expression. At every turn N the centroid normalized horizontal coordinate is given
by the following expression,

/dl / ar, / dé/ dwm/%dwy/ s oo, a) %

( ¢y ps(‘s ws) (4.8)

This integral involves the six variables of the phase space, the densities were intro-
duced in the previous section and h; (IV) is given by eq. (3.38) including amplitude
detuning and chromaticity. In the appendix A.1 it is described how to solve four of
these integrals. It does not seem possible to integrate over I, and I,,. ks (N) can
be re—expressed in terms of the remaining integrals as

hg (N) = Li1go(N) — 2i > ifikimIGak-1)(-je)armym-n(N)  (4.9)
jkim

where L, are defined by
o0 o0 1 —2 —2
anlk(N) — / dIl-/ dIy(QIJ:)TL/2(2Iy)l/2ef5(2Lp+Ax+2Iy+Ay) %
0 0
m(Z;U \/E)Ik (Zy 2Iy)ei27r(muw +kvy)N—272,, sin?(7Qs N) (4.10)

where I,, represents the modified Bessel function of order n, v, = (Mm@, +
kQ;)as/Qs contains the effect of chromaticity and v, and v, do contain only the
effect of amplitude detuning.
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It has been already mentioned that to measure the resonance terms we have
to perform a Fourier analysis of the data. For this reason the Fourier transforma-
tion of the centroid turn-by—turn motion, given by eq. (4.9), has to be computed.
The Fourier transformation of hz (V) is represented by H, (w). Since the Fourier
transformation is a linear operator each term of the r.h.s. of eq. (4.9) gives a con-
tribution to H, (w), this is expressed by

Hm_ (w) = /dN ha (N) —elN = Hac_tune Z x]klm (411)
Jjkim

The steps to solve this integral are described in the appendix A.2. Notice that by
solving this integral a Dirac Delta function appears and this permits to integrate
over I,. Nevertheless it is not possible to solve analytically the integral over I,.
The different terms of the r.h.s. of eq. (4.11) are re—expressed as

_ _ A2
Hz,tune(w) = m,tune(w) e~ 1o I0 (7%0) + (412)
0
—~2 _ —
Z € ,YIOIQ(V%O)[Aw,tune(w + QZWQS) + Aw,tune(w - QQWQS)]

q=1

_ _ a2
Hx,jklm(w) = ‘A;c,jklm(w)e ’y(lijJrk)(mil)10(7(217j+k)(m7l))+

“Ya-jrrym-nT, (72
€ a(Y(1—j k) (m-1)) X
q=1

where the functions A, ;,,.(w) and A, ., (w) are defined in egs. (A.21) and
(A.22) and still contain an integral over the coordinate I,,. The functions A, ;,,,. (w)
and A;jklm( w) are single peak distributions with their maximums close to the fre-
quencies v, and (1—j+k&)vg+(m—I)v, respectively. Their amplltudes contain the
generating function terms and the reduction factor [(1—j+k)vy, + (m—1)vy,|.

These factors are due to the decoherence and increase the difficulty to measure the
resonance terms since they reduce the signal of interest. The functions H_,,,,,.(w)
and H . (w) are equal to A, .(w) and A7, (w) when the chromaticity
is zero. From their expressions one can read that the effect of chromaticity is to
add an infinite number of sidebands at +¢27 Qs from every line. The shape of the
sidebands is the same as the one of the main peak and their amplitudes decrease as
g increases.

These expressions represent the furthest analytical solution for the general case.
The remaining integral over I, should be done numerically. Nevertheless simpler
expressions are found when considering only one transverse dimension or when
looking at special spectral lines.
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One transverse dimension

When only one of the transverse planes is relevant analytical expressions of the
functions A .. (w) and A_ ;.. (w) can be achieved. Considering only the hori-
zontal plane, the integrals over I, from egs. (A.21) and (A.22) are dropped and I,

is set to zero, resulting in

1 —2 _
Aspune0) = 21, (w)e 3T A) T (A, /20, (w)) (4.14)
_ __ 2ijfjkoo (+k—1)/2
i B
e 3R ITAIL o (Apy/205(w)) (4.15)
Up(w) = o (w/2m — (1—j+K)vs0) (4.16)

(1=j+k)vg,

To obtain the total H (w), with the chromaticity sidebands, the A~ (w) of egs. (4.12)
and (4.13) is replaced by these given above. To compare the former .A; jkoo 1O the
single particle case the Fourier spectrum of the motion of a single particle, see
eq. (3.38), is given with a similar notation,

h’;,tune(w) = Zac(SDirac(w/27T_Vz) (4.17)
B iroo(®) = —=2ij Finoo(Aa) T 20 pigge (w/2m— (1= +k)vz)

where 0 pirqc 1S the Dirac delta function and the oscillation amplitude of the single
particle is /21, = A,. Itis observed that each spectral line of egs. (4.17) becomes
a distribution divided by the factor |(1—j+k)v, | due to having taken into account
the particle distribution and the amplitude detuning. The spectrum is usually nor-
malized to the tune line (1,0) to easily compare to experiments. The normalized
amplitude of the line (m,0) from particle distributions is reduced by a factor of |m|
compared to the single particle case. These factors are called decoherence factors
and are described below.

Decoherence factors

Both in the two-dimensional and the one—dimensional calculations reduction fac-
tors of the spectral lines appear due to the amplitude detuning. These factors de-
pend only on the frequency of the spectral line and the amplitude detuning coeffi-
cients. The decoherence factor corresponding to the horizontal spectral line (m,n)
is defined as
VI
|m + ny,ﬂ\ (4.18)
rxr

and represents the reduction factor of the normalized spectral line of a decohered
signal when compared to the single particle case. In particular, for the one di-
mensional case the decoherence factor corresponding to the spectral line (m,0) is
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The line with zero frequency

The generating term £z, Will be attached to a zero frequency line in the horizontal
plane when 1—j+k = 0 and m—I = 0. Calculating the terms H (=1 )mm which
fulfill the former conditions, is much easier since they are not af’fjecte(f neither by
amplitude detuning nor by chromaticity. Notice that they are not a distribution
since they are only defined at w = 0. Starting from eq. (A.4) and doing the integrals
over the transverse phases one obtains

Hy jti—tymm = —2z'jfj(j1)mm/0 de/(; dI,(21;)VY (21,)™ x

e~ d LA AL AA) [0 A AT In(Ay/21,) . (4.19)

This integral can be exactly computed for all 5 > 0 and m > 0 leading to hy-
pergeometric functions. For m = 0 these hypergeometric functions are simply
polynomials of order 2(j —1) in A,. We show the cases ; = 2, m = 0 and
j =3, m = 0 which are related to sextupolar and decapolar fields respectively:

B . —2

H, 9100 = —4if2100(2 +4;) (4.20)
- . —2  —4

Hy 3000 = —6if3000(8 +8A4; + A,;)

Note that the other spectral lines vanish for A, = 0, see (4.15), and that the single
particle spectrum of eq. (3.38) is completely flat for a zero oscillation amplitude.
Contrary to these cases the (0,0) line exists even for A, = 0 when considering
particle distributions. To compare to the single particle case the contributions from
the sextupoles and the decapoles to the (0,0) line of the single particle spectrum are
given by

_ . —2
hyoigo = —4ifa1004; (4.21)
_ . —4
hysa00 = —6if32004,
where the oscillation amplitude of the single particle is /2T, = A,. Note that for

large values of A, egs. (4.20) and (4.21) tend to give the same results, contrary to
other spectral lines where the decoherence factors appear for any A,.

4.1.3 Peak widths

The width of the different lines is an important parameter since its inverse is pro-
portional to the decoherence time of the line. For the following calculation it is
assumed that the sidebands introduced by the chromaticity do not mix with the
principal line. The width is estimated by evaluating the standard quadratic devia-
tion of the corresponding distribution A, (w):

[ dww? A - (w) J dw wA .. (w) 2
021 =< W > —<w>2= DT 2 (4.22)
IH / dw‘Az,jklm(w) / dw‘Aw,jklm(w)
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In the general case these integrals have to be done numerically but considering only
one transverse dimension it is possible to compute them analytically. In table 4.1
the widths of the most important low order lines are shown. A quasi-linear increase
of the width with the order of the line is observed.

Jtk-1]1-j+k k00
Tune Line 1 1 UL, \/2 + A
Sextupolar Lines 2 +2 4l \/ 3+ A
Octupolar Lines 3 +3 61, \/4 +4

Table 4.1: Width of the most important low order lines in the horizontal spectrum
considering only a horizontal distribution.

4.1.4 Surviving lines

We have seen that the decoherence affects in a different way each line. The main
reason is that they have different amplitude detunings, i.e. the spectral line (m,n)
which has the tune v = muv,, + nv,, has an amplitude detuning expressed by:

Av = (M, + nwy, )21 + (muy, + nwy, )21, .

If the terms in brackets cancel out, this line will have no detuning and, as happens
to the line (0,0), it will not decohere. This may give a chance to measure certain
high order lines which in presence of filamentation are strongly decreased by the
decoherence factor.

4.2 Simulations

This section is devoted to comparing some of the analytical expressions derived in
section 4.1 to computer simulations. In the previous section the Fourier spectrum
of the centroid of a Gaussian beam was described analytically taking into account
the amplitude detuning and the chromaticity. In the general case of considering the
two transverse dimensions it was not possible to solve analytically all the integrals
involved in the calculations. In the simpler case of only one transverse dimen-
sion analytical expressions were obtained from the Fourier spectrum. Nevertheless
when there is chromaticity and there is no amplitude detuning analytical expres-
sions could also be inferred in the two dimensional case. In order to verify the
different predictions two simulations have been performed. The first one contains
amplitude detuning but not chromaticity and the second one contains only chro-
maticity. To do both simulations a common model of an operating accelerator has
been used: the Super Proton Synchrotron (SPS) at CERN. A detailed description
of the SPS is given in chapter 6.
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In the following sections the two computer simulations are described. The re-
sults from the analysis of the data has been compared to the analytical expressions
obtained in the previous section.

4.2.1 Amplitude detuning
Description of the simulation

To obtain the horizontal evolution of the centroid a large number of particles having
an off-center Gaussian distribution in the horizontal phase space have been tracked.
The turn-by—turn position of the centroid is given by the average position of the
particles. The program used for the single particle tracking was SixTrack [23].
This program simulates the trajectory of a particle all around the accelerator. Each
element is described using a symplectic map, i.e. it preserves the area in the phase
space. The program used to compute the Fourier transform of the data was SUS-
SIX [24] which contains the recent developments [5] that allow a precise determina-
tion of the spectral lines. Particle distributions are considered neither in the vertical
nor in the longitudinal plane. Amplitude detuning was created by introducing the
extraction sextupoles in the linear lattice. The first four extraction sextupoles were
powered to +30 A and the following four extraction sextupoles were powered to
-30 A as shown in figure 6.2. All the simulated particles have the energy of the
reference particle (6 = 0), therefore chromaticity is not an issue (for the formulas
Q' = 0). The horizontal sigma of the beam distribution is 0.18 mm /+/B;, where
Bz = 103 m. The initial offset of the Gaussian distribution is represented by the
quantity A, introduced in the previous chapter. In the experiments a single dipole
kick is applied to displace the beam from the center. The simulation was done for
various kicks ranging from 2 to 13 mm at 8 = 103 m. As an illustration the simu-
lation data for the case with a kick of 7.3 mm at the same /3 is shown in figure 4.1.
This picture shows the typical pattern of the damped oscillation of the centroid due
to beam decoherence due to amplitude detuning.

In a second illustration the Fourier spectrum of the centroid turn—-by—turn data
is shown in figure 4.2. The labels (m,n) attached to the different peaks mean that
the frequency of that line is mv, + nv,,. The tune line is the (1,0) line and its
amplitude is used to normalize the spectrum. The main spectral lines arising from
the sextupoles are (-2, 0), (2, 0) and (0, 0) which are proportional to the generating
terms f3o00, f1200 and fo100 respectively. The spectral lines (-3,0) and (-1,0) come
from octupoles and second order terms of the sextupoles. The line (-4,0) comes
from second order terms of the octupoles and third order terms of the sextupoles.
The aim of this work is to describe the spectrum up to first order on the non-
linearities, therefore we focus on the tune line and the main sextupolar lines. From
the figure a couple of conclusions can be drawn: the effect of considering the
particle distribution causes the spectral lines to become wide distributions instead
of Dirac Delta functions like in the single particle case and the line (0,0) has zero
width as stated in section 4.1.2. The detailed comparison of the amplitude and
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Figure 4.1: Horizontal position of the centroid of the beam versus turn number for
the SPS with extraction sextupoles on.
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Figure 4.2: FFT spectrum of the horizontal centroid motion of the beam for the
SPS with extraction sextupoles on.
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shape of the spectral lines to the analytical predictions is done in the next section.

Comparison between model and simulation

In section 4.1.2 the expressions that describe the Fourier spectrum for one trans-
verse dimension are given. The analytical expression describing the line (1,0), the
tune line, is given by

ne(W) = ﬁ o, (w)e sCLI A [ (A, /2T, (w)) (4.23)
2Uw) = —(w/2m— Qu) (4.24)

T

The parameters needed for the evaluation of this expression are taken from the sin-
gle particle tracking. These parameters are the horizontal tune for zero oscillation
amplitude (Q.) and the amplitude detuning (vZ,), i.e. the derivative of the hori-
zontal tune with respect to the square of the oscillation amplitude. Both parameters
were obtained by evaluating the tune of the single particle at different oscillation
amplitudes and performing a fit. In figure 4.3 the tune line obtained from the
Fourier transform of the simulation with the particle distribution is compared to
the analytical model. The agreement between the two curves is good enough to
suggest that tune measurements might be improved by fitting the predicted curve
to the Fourier spectrum of measured data.

The distribution of the line (-2, 0) is given by the term H 3000(w) which is
obtained from eq. (4.15), giving

_ 64 f
7‘%,3000(“’) = - ‘21/3,00|0 21 (w) x
e~ 3 QL)AL (A, \ /2T, (w)) (4.25)
1
2I,(w) = o (w/2m 4+ 2Qy) (4.26)

The parameters needed for the evaluation of these expressions are the horizontal
tune (@), the amplitude detuning (v.,) and the generating term f3ogo. The first
two were already obtained above. The generating term was calculated by using the
analytical expressions of section 3.3 (given the model) as well as from the FFT of
single particle tracking (section 3.4), obtaining the same result. In figure 4.4 the
line (-2, 0) obtained from the Fourier transform of the centroid simulation data is
compared to the analytical prediction. The frequency of the peak of the curve and
its width are well predicted although there is a small discrepancy in the right tail.
It remains unclear whether this discrepancy comes from the simulation or from the
decoherence model.

The line (0,0) was studied separately in section 4.1.2. Contrary to the previous
spectral lines this one has zero width. Therefore the quantity to be compared be-
tween simulation and model is the amplitude of the line (0,0) for different kicks.
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Figure 4.3: Distribution of the tune peak for model and simulation versus frequency
(in tune units) for the SPS with extraction sextupoles on.

The amplitude of this spectral line as function of the kick is given by H_ 5., from
eq. 4.21. The amplitude of this line only depends on the generating term 2100,
which has been calculated in the same way as the previous term f3ggo. In figure 4.5
the amplitude of line (0,0) computed from the simulation is compared to the pre-
diction of eq. (4.21). The agreement is excellent. It is important to notice that this
line exists even when the kick is zero. This feature is not predicted from the single
particle theory, eq. (3.38), it appears only when the beam distribution is considered.

The analytical expressions derived in section 4.1.2 have been compared to a
computer simulation. The overall agreement is very satisfactory validating the
expressions obtained for the one dimensional case. It remains unclear whether the
discrepancies seen in the tails of the distributions are due to the simulation or to
the model. No simulation was done for the more general case of two transverse
dimensions since it requires a huge amount of CPU time. In the following section
the simulation containing chromaticity is discussed.

-0.378
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Figure 4.4: Distribution of the line (-2,0) for model and simulation against fre-
guency for the SPS with extraction sextupoles on.
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4.2.2 Chromaticity
Description of the simulation

To perform simulations of the centroid in presence of chromaticity the program
HEADTAIL [25] has been used. This program has been originally written to study
the interaction of a bunch with an electron cloud over many turns. The bunch is
represented by 10° macro—particles which are initialized with a Gaussian distribu-
tion in each of the 6 dimensions of the phase space. Each macro—particle executes
betatron and synchrotron motion. The betatron motion is simulated by using the
linear one—turn map of the accelerator. This feature speeds up the tracking pro-
cess but discards the introduction of non-linear elements around the ring. The
effect of chromaticity is also included by applying a momentum dependent rota-
tion to each macro—particle. In order to ensure the longitudinal-transverse cou-
pling which allows us to see synchrotron sidebands in the spectrum of the centroid
motion, it is sufficient to set the chromaticity to a nonzero value. The macro—
particles are tracked over 2048 turns, the position of the centroid of the vertical
motion is recorded and Fourier analyzed. The parameters used for the tracking are:
Q) = 10.64, Q) = 0, Qs = 0.00686 and o, = 1.62 x 10~>. Since only the verti-
cal motion is considered the subindex vy is dropped in the following. In figure 4.6
the turn—-by—turn motion of the centroid obtained in this simulation is plotted. It
shows how the beam decoheres and recuperates the coherence periodically due to
the chromaticity and the energy oscillations.

Comparison between the decoherence model and simulation

Since no non-linear elements were introduced in the simulation all the generating
terms f;xim are zero and therefore the only spectral line existing is the tune line.
The effect of chromaticity on the tune line is to introduce sidebands with frequen-
cies v + qQs Yq € N as shown in eq. (A.23), which is re-written as

Hppne(w) o Ape(w) Io(v3o) + (4.27)
> 1L () [Amune (W + 427Qs) + Ape (w — 27Q5)]
g=1

The sidebands have the same shape as the fundamental line, given by the function
A,ne(w). There are only two parameters in eq.( 4.27), the synchrotron tune, v,
and y10 = Q'0s/Qs. Both parameters are directly obtained from the input of
the numerical simulation. s determines the spacing between the sidebands and
10 determines the number of relevant sidebands appearing via the factor I,(v%,) in
front of the sideband of order ¢. In this simulation there was no amplitude detuning,
therefore A;,,,..(w) is a Dirac delta function. Then the shape of the fundamental
line and the sidebands will be a narrow peak determined by the FFT resolution. The
amplitude of the sidebands from model and from simulation are being compared.
To this aim the analytical envelope function is being computed and plotted with
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Figure 4.6: Vertical position of the centroid versus turn number for the SPS without
any non-linear element.

the FFT of the simulation data. The envelope function E(w) that connects all the
peaks of eq. (4.27) is expressed as

BE(w) = I%(’on) (4.28)
note that the variable w is in the order of the modified Bessel function. In fig-
ure 4.7 the amplitude of the FFT of the simulation data is plotted together with
this envelope function. The simulation and the analytical formula are in excellent
agreement.
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Chapter 5

Localization of Multipoles

The longitudinal variation around the ring of the Hamiltonian and the generating
function terms are studied in this chapter. It is shown how measuring the amplitude
of the different resonance driving terms along the ring allows the identification of
the longitudinal positions of multipolar kicks. Therefore it is possible to identify
field errors and their location. This method is of great interest for commissioning
an operating an accelerator.

5.1 Longitudinal variation of resonance terms

The dependence of the one turn map on the longitudinal coordinate is studied by
constructing two maps starting at two different locations (s and ss), separated by
a linear section M and a non-linear multipole kick e1:. The corresponding one
turn maps are expressed as

MO = My et Myehv-1i..gh2 Myt v, | (5.1)
M(Z) _ e:hl:MlMN_Fle:hN:MNe:hAL1: ... e:hQ:MQ . (52)

A schematic view of these two maps is shown in figure 5.1. Both maps can be
expressed in their respective normalized phase space as follows

MO = hip (5.3)

MO = g (5.4)
where the respective linear one turn maps in the normalized space are the same
since they are connected by a similarity transformation which preserves the rotation
angle. A1) and h(?) are obtained from egs. (3.17) and (3.22), giving

BY = A Mihy + A\ My Mahy +--- + ALMi My --- Myhy
h(2) = AsMshy + AoMoMshs + --- + Ao My - - - MN+1M1h1 (55)

35
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Figure 5.1: Schematic view of the ring for maps at two different longitudinal start-
ing locations. The arrows represent the linear maps and the diamonds the non-
linear multipolar kicks.

where A; and As are transformations that bring the local coordinates into the nor-
malized coordinates. Applying A2M1A1‘1 to h; the following relation holds be-
tween £V and A(2):

B2 = AgMATYRY — Aghy + AyMy - My i Mihy (5.6)

Using R = Ay M, - --MN+1M1A2_1 and grouping terms with h; the following
relation is obtained,

PP = ApM7 AT RN + (R — 1) Aghy (5.7)

which expresses the relation between the two Hamiltonians. The generating func-
tion for both locations using eq. (3.29) is expressed as

1
m _ 1 ;0
F —h (5.8)
1
@ _ _1 ;0
F —h (5.9)

By introducing ~(?) from eq. (5.7) into eq. (5.9) and using the fact that R commutes
with Ao M; ' A7, since they are both rotations in the normalized phase space, the
relation between F(2) and F(1) is expressed as

F@ = AyM7YATIF®Y) — Aghy (5.10)

This equation shows how the generating function changes along the ring. If there
are no non-linear kicks between the two initial longitudinal positions the term
Ashy of eq. (5.10) will vanish and F() and F® will be smoothly related by the
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change of phase given by AQMl‘lAl‘l. Otherwise when there is a non-linear kick
in between, represented by hq, an abrupt change in the phase and the amplitude of
the corresponding generating term can be expected.

As an example a generating function term is computed around the longitu-
dinal position of a ring. The aim of the example is to illustrate the predictions of
eg. (5.10). Thering is modeled to be a standard FODO lattice with three sextupoles
at the locations s; = 0.33, s3 = 0.49 and s3 = 0.70 (in arbitrary units). Sextupoles
create, among others, the generating function term f3g00 defined in eq. (3.32). The
amplitude of this term has been obtained from a tracking simulation by performing
the FFT of the turn-by—turn data as explained in section 3.4. In figure 5.2 this
amplitude is plotted versus the longitudinal position where the turn-by—turn data
is acquired. The steps in the amplitude of f3p90 Occur at the locations of the sex-
tupoles. In the regions between sextupoles the amplitude of the term f3p09 remains
constant. Since the machine is circular the amplitudes of f3ggo at the beginning
and at the end of the lattice have to be the same.

09 3

0.8 r 4

0.7 1

[f3000! [arbitrary units]

06 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Longitudinal Position [arbitrary units]

Figure 5.2: Amplitude of the generating term f3g00 versus the longitudinal coordi-
nate. The location of the three sextupoles is indicated on the top.

An analytical illustration is given by computing the Hamiltonian term hsggg
at the three different regions (h{34), {2} and h{32)). As given by eq. (5.5) each
S1

sextupole contributes to hgoo)o with a certain quantity defined in the following ex-
pression,

hgf)l())() = h’13000 + h23000 + h33000 .
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h$2)is computed from A4 using eq. (5.7) in the following way

(s2)
h3000 - 3000

= 613A¢m (h13000 e_ist + h23000 + h’33000) ’ (511)

13000 hg%b)o + (67123Qm ~1) 1300,

where A¢,. is the horizontal phase advance between s; and s. hgf]%)o is computed

from hgso“{))o in a similar way. The amplitudes of the Hamiltonian terms are summa-

rized in the following expression,

‘hg%}))() = |h'13000 + h23000 + h33000‘ ’
|h£(’>80i))0 = |P13000 e P9 4 P23000 + P33000 » (5.12)
‘hgf)?f))o = |hlsoooeiz?’QaD + h2300067Z3Qw + h33ooo‘ :

Overall phases inside the bars have been omitted. The amplitude of the correspond-
ing generating term £.21)"is obtained by simply dividing |h$s;| by |1 — e~#3@=.
By applying this technique to a real machine one can determine the longitudinal
position of the strong multipole kicks as long as BPMs are available at either side.
In the following section a single particle simulation is done using a realistic model
of the SPS.

5.2 Simulation of the longitudinal variation of f3

The aim of this section is to show the usefulness of this technique when applied to
operating accelerators. In particular it is investigated how errors in the powering
polarities of non—linear elements can be found. A single particle simulation is done
using a realistic model of the SPS with the extraction sextupoles. Apart from the
extraction sextupoles the SPS has 108 chromaticity sextupoles used to correct the
chromaticity in normal operation. Two settings of the extraction sextupoles are
being considered:

e The nominal case, where the extraction sextupoles are powered:
(+30, +30, +30, +30, —30, —30, —30, —30) A.

e The opposite case, where the extraction sextupoles are powered:
(—30, —30, —30, —30, +30, +30, +30, +30) A.

The code SixTrack is used to track a single particle through the lattice. Turn—by-
turn data is obtained at many longitudinal locations of the ring and the amplitude
of the spectral line (-2, 0), proportional to fsg9, IS Obtained from the FFT of the
data. The results from the first case are shown in figure 5.3. The location of the
extraction sextupoles is indicated with vertical lines. The largest abrupt changes
of the curve are located where the extraction sextupoles sit as it is expected since
these are the strongest sextupoles. Small jumps occur all around the ring due to
the chromaticity sextupoles. The variation of the spectral line (-2, 0) for the case
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Figure 5.3: Simulated amplitude of the line (-2, 0) versus the longitudinal co-
ordinate for the nominal SPS model with extraction sextupoles with polarities:
(++ ++ — — ——30) A. The vertical lines indicate the location of the extraction
sextupoles.

with opposite polarities is shown in figure 5.4. The jumps of the curve occur at
the same locations than before but clearly the curves of the two cases are different.
This difference is enough to determine the polarities of the extraction sextupoles at
the SPS by measuring the generating term f3og0.
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Figure 5.4: Simulated amplitude of the line (-2, 0) versus the longitudinal coor-
dinate considering opposite polarities for the nominal SPS model with extraction
sextupoles with polarities: (— — — —+ 4+ ++ 30) A. The vertical lines indicate the
location of the extraction sextupoles.



Chapter 6

Description of the SPS

6.1 The SPSin CERN

The SPS is part of the complex of accelerators at CERN. The largest accelerator
at CERN will be the LHC. The LHC beam will be supplied by a chain of proton
accelerators, shown in figure 6.1. The SPS receives the proton beam from the
CERN Proton Synchrotron (PS) at an energy of 26 GeV and will accelerate the
beam up to 450 GeV to inject it into the LHC.

The SPS is a proton synchrotron with an average radius of 1100 m. Its lattice
consists of 108 FODO cells. A FODO cell consists of a focusing quadrupole and a
defocusing quadrupole separated by dipoles. The phase advance per cell is almost
w/2. Therefore the nominal tunes are around 27, e.g. 26.62 in the horizontal plane
and 26.58 in the vertical. A more detailed description of the SPS could be found
in [26].

6.2 SPS instrumentation

The SPS is equipped with a large collection of instruments used to control the
beam and measure its parameters. In the following sections a brief description of
the instruments used in the experiments is given. The location of some of these
instruments is shown in the schematic SPS layout of figure 6.2 [27].

6.2.1 BPM and MOPQOS system

BPMs are used to measure the transverse excursion of the centroid of the beam.
The majority of the BPMs of the SPS are of electrostatic type. These monitors
basically consist of two conductor plates at both sides of the beam pipe. An illus-
tration of an SPS pick-up is shown in figure 6.3. When the beam goes through
the BPM its position is inferred from the potential difference between the plates.
The SPS is equipped with about 110 BPMs in either transverse plane and they are
uniformly distributed around the ring. The phase advance between consecutive

41
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Figure 6.1: Accelerator complex in CERN.
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Figure 6.2: Simplified SPS layout. The eight extraction sextupoles and the kicker
magnet are shown at their locations in the SPS. The signs in brackets denote the
usual polarity of the sextupole during the experiments. BA stands for access hall.

Figure 6.3: An SPS pick-up installed in the beam pipe.
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pick—ups is almost /2 and the typical beta functions at the pick-ups are shown in
table 6.1. The signal coming out of the BPMs is electronically processed and col-
lected by the Multi Orbit Position System (MOPOS) system. Detailed descriptions
of this system can be found in [28] and [29]. 1000 turn data from all the available
pick—-ups is acquired by using the code MTmeasure [30]. The code MTmeasure
can save the multi-turn BPM data in different formats and can perform some or-
bit analysis. In order to obtain a reliable BPM signal during the experiments the
timing parameter and the gain of the electronics had to be carefully adjusted [31].

6.2.2 Q-Kkickers

Kickers are magnets that produce a constant transverse magnetic field when the
beam is going through. They are normally used to excite horizontal or vertical
betatron motion by producing the appropriate magnetic field during a single turn.
The SPS is equipped with a horizontal and a vertical Q—kickers. They are called
Q—kickers since in normal operation they are used to measure the transverse tunes.
The relevant magnetic parameters of these kickers are shown in table 6.2 [32] and
the lattice functions are shown in table 6.1. In our experiments these kickers are
used to excite the transverse motion for energies of 80 GeV or below.

6.2.3 Extraction kicker

This horizontal kicker is more powerful than the Q—kickers. In normal operation it
is used for the fast beam extraction. In our experiments at 120 GeV this kicker was
used to excite the horizontal betatron motion. At its maximum voltage of 15 KV
its Kick strength is 0.129 Tm. The lattice functions at the location of this kicker are
shown in table 6.1. Recently this kicker has been removed from the SPS to reduce
the total impedance [33] of the machine.

6.2.4 Extraction sextupoles

In normal operation these sextupoles are used for the slow or resonant extraction
of the beam. The SPS is equipped with eight extraction sextupoles. A technical
description of these elements can be found in [34]. In our experiments they were
used to create a controllable amount of non-linearity. The lattice functions at the
location of these elements are shown in table 6.1.

6.2.5 Skew quadrupoles

A skew quadrupole is a normal quadrupole rotated by 45 degrees. The SPS is
equipped with six skew quadrupoles powered in series. In normal operation they
are used to compensate the coupling errors of the machine. The lattice functions at
the location of these elements are shown in table 6.1.
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| BPMs

type Bz[m] By[m]

BPMH 103.4 204

BPMV 20.4 103.4

\ Kickers \
name _ Balm]_$al2n] Pylm] 47
MKQH 64.5 1.96 37.0 2.02

MKQV 33.8 2.00 70.0 2.05

MKE 87.4 2489 25.0 24.83

\ Extraction sextupoles \
nome  Balm] 627 Byl dy2T]
LSE.1060 97.761 0.737 21.775 0.729

LSE.1240 97.718 2.955  21.827 2.942

LSE.2060 97.748 5.173  21.797 5.158

LSE.2240 97.754 7.390 21.812 7.371

LSE.4060 97.663 14.047 21.782 14.018
LSEN.424 97.764 16.265 21.864 16.233
LSE.5060 97.676 18.484 21.760 18.449
LSE.5240 97.780 20.703 21.866 20.664
\ Skew quadrupoles \
name Balm]  ¢z2m] By[m]  ¢y[2n]
LQSA.129 21.902 3552 97.271 3.575

LQSA.229 2189 7.98 97.197 8.005

LQSA.329 2190 1242 97.110 12.435
LQSA.429 2191 16.86 97.099 16.866
LQSA529 2192 2130 97.172 21.297
LQSA.629 2191 2573 97.260 25.726

Table 6.1: Relevant lattice functions of the different SPS elements.

Magnet MKQH MKQV
Deflection direction horizontal  vertical
Magnetic flux density (25 KV) [T] 0.074 0.0246
Kick strength (25 KV) [Tm] 0.0357 0.0250
Maximum voltage [KV] 25 25
Magnet filling time [us] 0.38 0.112

Table 6.2: Relevant parameters of the SPS Q-kickers.
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Chapter 7

SPS experiments

A series of experiments to measure resonance driving terms in the SPS has been
performed during the years 2000, 2001 and 2002 . Prior to this study pioneering
experiments were carried out [35, 36]. Since the SPS is a very linear machine the
extraction sextupoles were used to create a controllable amount of non-linearities.
Furthermore the skew quadrupoles were also used to create and to correct coupling.
In the following sections these experiments are discussed in chronological order.

7.1 Experiments at 26 and 120 GeV in 2000

Energy [GeV] 26 120
Intensity [number of protons] 2 x 100 2 x 10'2
Number of bunches 1 84

Nominal Tunes [Q, Q] 26.62, 26.58 26.62, 26.58
Chromaticities [Q?, Q;J] 0.3,0.3 0.52,0.16

Table 7.1: Measured beam conditions for the experiments during 2000.

7.1.1 Measurement of linear coupling at 26 GeV

The experiments at 26 GeV were mostly focused on the measurement of linear
coupling. The beam conditions are shown in table 7.1. There are two resonances
contributing to the linear coupling: (1,-1) and (1,1). Resonance (m,n) means that
mQz+nQy = p, being m, n and p integer numbers. The tunes of our experiments
are much closer to the resonance (1,-1) than to the (1,1). For this reason the target
of our experiments is the resonance (1,-1). The first order resonance term driving
this resonance is h1go1 as can be seen from eq. (3.32). The contribution of this term
to the linearly normalized horizontal variable is given by eq.(3.38)

h, (N) = QIxei(wamN—i—wa) — 2if1001 2Iy€i(2m/yN+wy0) . (71)
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By virtue of this equation the term f19p1 can be inferred by measuring the spectral
line with frequency v, in the horizontal signal. The procedure adopted in the ex-
periment is now described. For a given skew quadrupole strength and a constant
ratio of horizontal to vertical kick strength the amplitude of the spectral line (0,1)
has been recorded from the Q-kicker monitor display. The BPM data could not
be used due to a poor adjustment of the electronics. For each value of the skew
quadrupole strength we have averaged over a number of injections shots (40-50).
The results of the measurement on the 18* June 2000 are depicted in figure 7.1. It
is not clear why such an averaging procedure is needed but in this way we could de-
termine the optimal skew quadrupole setting to a good precision. In fact, we could
demonstrate that with this technique we had achieved a closest tune approach of
(2 £ 1)10~* which is a factor of five better than previously. Another problem is
the fact that the slopes of the lines in figure 7.1 differ by a factor of two (see later
section 7.2.2 for an explanation).

7.1.2 Measurement of resonant terms and amplitude detuning at
120 GeV

The experiments at 120 GeV were focused on the measurement of resonance terms
and amplitude detuning. The beam conditions are shown in table 7.1. At this
energy the extraction kicker was used to excite the betatron motion. The previously
discussed method to compensate the coupling was used, obtaining a closest tune
approach of 2 x 1073, The extraction sextupoles were powered to 140 A with
polarities (+ + + + + — — — —). Various sets of BPM data, from all the available
BPMs, for different oscillation amplitudes were recorded for off-line analysis. For
this analysis the complex signal constructed from two adjacent pick—ups is Fourier
analyzed by using the SUSSIX [24] code. The first result from this analysis is
the variation of the tunes with the horizontal oscillation amplitude. In figure 7.2
the horizontal and vertical detunings are plotted versus the square of the betatronic
amplitude (e, = A2/B;). In this figure the experimental results are compared
to two models, one containing the known sextupolar sources and the other one
containing an optimized octupolar component. The octupolar component was set
to match the measured amplitude detuning since the origin and location of this
component is unknown. For the horizontal tune both models give similar results
and they are in good agreement with the measurements. For the vertical tune only
the optimized model shows a good agreement.

From the Fourier analysis the amplitude of the spectral lines due to the sextupo-
lar resonances are also computed. The resonances (3,0) and (1,0) are driven by the
terms hggoo and hiogo respectively. They produce the spectral lines (-2, 0) and
(2, 0) in the horizontal motion. The amplitude of these spectral lines normalized
to the amplitude of the tune line are linear in the oscillation amplitude as derived
from eq. (3.38). This normalization is needed to get rid of the uncertainties of the
calibration of the pick-ups. In figures 7.3 and 7.4 the normalized amplitude of
the spectral lines (-2, 0) and (2, 0) averaged over all pick-ups are plotted versus
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Figure 7.2: Horizontal and vertical detuning as a function of e, = A2/f,.

e}/ 2 from model and experiment. The experimental values are multiplied by the
decoherence factor of 2 to compare to the single particle model. The error bars
represent the computed rms from the longitudinal variation. The agreement in the
average value and in the rms is excellent. As derived in chapter 5 the resonance
driving terms vary around the ring. In figure 7.5 the normalized amplitude of the
spectral line (-2, 0) computed for all the BPMs for a middle kick amplitude is plot-
ted versus the longitudinal location. In the figure the prediction from the nominal
model is also shown and the location of the extraction sextupoles is represented
by the vertical lines. The agreement between model and experiment on the aver-
age is good and the abrupt changes occur at the same places but the shape of the
curves are clearly different. This discrepancy could be explained if the extraction
sextupoles had opposite polarities than those of the chromaticity sextupoles. In
figure 7.6 the same plot is presented but using the opposite polarities for all the
extraction sextupoles. Since the agreement had largely improved hardware checks
were done confirming that the polarities of these sextupoles were reversed. This
was the first success of this technique in finding lattice errors.

7.1.3 Measurement of spectral distributions

In chapter 4 analytical expressions were given describing the shape of the different
spectral lines in presence of decoherence processes. In principle, by fitting these
expressions to the measurements beam parameters like the beam size could be
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Figure 7.5: Longitudinal variation of the spectral line (-2,0) from experiment and
from the nominal model.
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Figure 7.6: Longitudinal variation of the spectral line (-2,0) from experiment and
model with opposite sextupole polarities.
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obtained. Although amplitude detuning has the negative effect of introducing the
decoherence factors there would be a positive side if these beam parameters could
be measured. For this reason measurements of the spectral distributions have been
performed.

The analytical expression describing the shape of the tune line in presence of
amplitude detuning is given by eq.(4.14)

'A;,tune(w) = L \% 2I$(w)6_%(QIZ(w)+Zi) Il(Zw \% 2];5(’11])) ’ (72)

|V2a]

2U(w) = —(w/2m—Qu). (7.3

T

A fit of this analytical expression is done to the measured tune line from the ex-
perimental data. The free parameters in the fit are the tune at zero amplitude @,
the amplitude detuning coefficient v, and the kick in beam sigmas A,. The ex-
perimental and the fitted curve are shown in figure 7.7. The numerical results of
the fit compared to the measurements of other available methods are presented in
table 7.2. Unfortunately, due to time limitations, the beam size could not be mea-
sured with other method during the experiment. This explains the two missing
entries of the table. The agreement between the results from the fit and those from
other methods is satisfactory. It is also important to note that the errors of the fitted
quantities are relatively low indicating the suitability of the model.

TUNE PEAK, SPS
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Exp. Data  +

350 r + % J
300 r " 4

250 1

(w/2m)

200 ¥ 1

tune

150 a

xT

H
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Figure 7.7: Spectral tune line obtained from experimental data together with a fit
of the predicted curve.
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Magnitude Fit res. Other Meth.
Qz —0.38593 £5-10°  —0.3859
o o] (-3.6+0.1)-10* —3.71.107*F
Aglo] 2.66 + 0.08

oo[mm//Ba]  0.266 = 0.008*

Table 7.2: Results from the fit compared to other measurements.
t o taken from this fit.
* Kicker Calibration used.

7.2 Experiment at 26 GeV in 2001

The beam conditions during the experiments in 2001 are listed in table 7.3. The
experiments are divided in three parts: machine set-up, measurement of the cou-
pling resonance and measurement of sextupolar resonances. During the machine
set-up the RF parameters were optimized, the tunes were set to the nominal tunes,
the closed orbit and the chromaticities were corrected and the amplitude detuning
was compensated using the Landau octupoles. This part was carefully carried out
since we learned from the previous year that a proper set-up of the machine is
fundamental for the success of this experiment.

Once the machine set—up is finished the linear coupling is measured and cor-
rected. During this part of the experiment horizontal and vertical single kicks were
applied to the bunch few seconds after the injection. The amplitude of the kicks is
constant during the coupling measurement. For various skew quadrupole strengths
the amplitudes of the coupling spectral lines, i.e. the vertical tune line in the hor-
izontal plane and the horizontal tune line in the vertical plane, are evaluated via
Fourier analysis. The optimal skew quadrupole setting was determined to mini-
mize the linear coupling of the machine. Results from this part are discussed in
section 7.2.2. Prior to this discussion the BPM pre—analysis needed to detect noisy
pick—ups is presented in section 7.2.1.

Energy [GeV] 26

Intensity [number of protons] 2 x 1019
Number of bunches 1

Nominal Tunes [Q, Q] 26.62, 26.58
Chromaticities [Q},, Q;] 13,04

Table 7.3: Measured beam conditions for the experiments in 2001.

The last part of the experiment was devoted to the measurement of sextupo-
lar resonance driving terms for different sextupole configurations and tunes. The
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extraction sextupoles were used to create a controllable amount of non-linearity.
The procedure for each different configuration was to apply a single kick in the
horizontal plane and record the BPM data for off-line analysis. This is done for
various kick amplitudes ranging from 1 mm to the maximum Kick determined by
the loss of the beam. The analysis of these data is discussed in section 7.2.3.

7.2.1 BPM Pre-analysis

In order to find and to reject faulty or noisy pick—up signals a BPM pre—analysis
was carried out. The Fourier spectrum of the turn—-by-turn signal of an ideal pick—
up should have well localized peaks but noisy or faulty pick—ups will have a ran-
domly populated Fourier spectrum. In particular the rms of the amplitude of the
background of the Fourier spectrum is larger for the more noisy BPMs. This feature
is used to identify the noisy pick—ups. The rms of the background of the Fourier
spectrum is estimated by computing the rms of the amplitudes of the spectral lines
within a spectral window. This window is chosen in such a way that an ideal pick—
up would not contain any peak in that window. It is also important to avoid that the
spectral window contains the zero frequency. For our experiments, with the frac-
tional tunes being 0.62 and 0.58, the window was chosen to be delimited between
0.02 and 0.16. The observable used for indicating the noise level of the pick-up
is the rms of the amplitudes of the lines contained in the chosen spectral window.
This technique is illustrated in figure 7.8. This rms based observable is computed
for all the signals from all the pick—ups and by examination a threshold value is
chosen to decide what is a bad pick-up. In figure 7.9 the number of signals having
a certain rms observable is plotted versus this rms for a sample of 51000 signals.
From this figure it was decided to reject all the BPMs with an rms larger than 8 um.
As aresult a third of all the BPM signals, 17000, mainly coming from the pick—ups
of the last two sextants of the SPS were rejected. The reader will notice this lack
of information in the figures of next sections.

7.2.2 Measurement of linear coupling

The technique of coupling correction consists of measuring the amplitudes of the
coupling lines, normalized to the amplitude of the fundamental line, as a function
of the strength of the skew quadrupoles. In figure 7.10 the coupling lines from
the horizontal and vertical signals are plotted versus the skew quadrupole strength.
The systematic error corresponds to the rms value of the measured magnitude from
all the available pick-ups. The random error corresponds to the rms value of the
measured magnitude from the different injections. The total error is calculated by
adding quadratically the systematic plus the random errors. The optimum setting
of the skew quadrupoles is then inferred by finding the minimum coupling line
amplitude. Note that the two minima of the coupling lines of figure 7.10 correspond
to the same skew quadrupole strength. Similar to the results of the previous year
the slopes at either side of the minimum are different. A revision of the theory
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Figure 7.10: Coupling lines versus the strength of skew quadrupoles. On the left,
the amplitude of the vertical tune line normalized to the horizontal tune line from
the horizontal signal. On the right, the amplitude of the horizontal tune line nor-
malized to the vertical tune line from the vertical signal.

will be given next how to explain this puzzle and how to define a more appropriate
observable. The turn—by-turn horizontal and vertical coordinates in first order in
the coupling resonance term f1go1 are given by

B(N) —ipy(N) = /2L CmeNte0)
—2i 1001 v/ 2L G N H¥0) |
J(N) —ipy(N) = /2L, CmuNHw0) (7.4)

—2i 1001V 21 TVeNHa0)

where f{y,; 1S the complex conjugate of fipo1. The measurable amplitudes of
the fundamental horizontal and vertical tunes are represented by line(1,0) z and
line(0,1)y respectively. The measurable amplitude of the spectral line with the
vertical tune in the horizontal plane is represented by line(0,1)  and corresponds,
in the previous equations, to the quantity |2 f1001 \/E\. Accordingly, the measur-
able amplitude of the spectral line with the horizontal tune in the vertical plane
is represented by line(1,0)y and corresponds to |2 f1001v/2I;|. From these equa-
tions it can be seen that the normalized amplitude of the vertical tune line from the
horizontal plane is 24/1, /1| fi001| and the normalized amplitude of the horizontal
tune line from the vertical plane is 2/1 /1| fioo1|. Therefore the best way to mea-
sure | f1001| independently of the actions is multiplying the former two observables.
Thus,

line(0, 1)y line(1,0)v
) _ . 7.
| fio10] \/]ine(l, 0)g line(0, 1)y (7.5)
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In fig. 7.11 this new observable is plotted versus the strength of the skew quadrupoles
together with the prediction from the model and a fit to the formula m|z — z¢|. The

fitted parameters are indicated in the figure as well. The model contains only the

skew quadrupoles but we can compare it to the measurements since the optimum

setting is very close to 0 A. The agreement between measurement and prediction

is excellent and the slopes are the same on both sides of the minimum.
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Figure 7.11: Coupling resonance term versus skew quadrupole strength. Results
from experiment and tracking simulation.

This means that the difference found in the previous year between the slopes
was entirely due to the variation of the oscillation amplitudes with the strength of
the skew quadrupoles. This variation is due to the fact that by varying the coupling
the eigen—planes at the Kickers rotate. Consequently the oscillation amplitudes
vary with the coupling even though the kick strengths are constant. It is important
to note that for the particular case of fig. 7.11 the minimum coupling corresponds
to a skew quadrupole strength of 0.019 A but this value varies from experiment to
experiment.

7.2.3 Measurement of sextupolar resonance terms

To measure sextupolar resonance driving terms the beam is kicked to different
amplitudes and the turn-by-turn complex signal is Fourier analyzed to obtain the
amplitudes of the different spectral lines. For every pick-up the normalized am-
plitudes of the sextupolar spectral lines are plotted versus kick strength and a line
is fitted constrained to go through the origin. As an illustration a plot from this
procedure is shown in figure 7.12 for a particular pick—-up and for the spectral line
(-2, 0). Three measurements for every kick strength were done to assess random
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Figure 7.12: Normalized amplitude of the spectral line (-2,0) versus horizontal
kick amplitude for one pick-up.

errors. The slope of the fitted line is related to the corresponding resonance term in
the following way (3.38),

_ L rm2p) ~1/2
[ fso00| - = 6( 0.094 ) [T,
1/m _
| fi2o0] = 5(%) [pm~1/?]. (7.6)

where the m is the measured slope and its subscript denotes the spectral line from
which this slope originates. The factor 0.094 comes from the calibration of the
horizontal kicker. These relations hold as far as the beam does not experience
any decoherence. When the centroid oscillations are completely damped due to
decoherence caused by amplitude detuning, the spectral lines (£2, 0) are reduced
by a decoherence factor of two. The sextupolar resonance terms are measured
for different machine set-ups. The first set-up was the baseline machine with
the nominal tunes @, = 26.62 and ), = 26.58. The amplitude detuning was
compensated with the Landau octupoles to avoid additional decoherence of the
signal. In figure 7.13 the measured amplitude of the sextupolar resonance terms
f3000 s plotted versus the longitudinal position together with the prediction from
the simulation. The error bars correspond to the errors given by the linear fit.
On average, experiment and model agree and the location of the jumps (which
correspond to sextupole locations) are the same in both curves. Nevertheless in
some regions the curves differ in amplitude.

In another set—-up of the machine the first four extraction sextupoles were pow-
ered to +30 A and the following four extraction sextupoles were powered to —30
A ie (++4+ ++ — — ——30 A). The horizontal tune was moved to 26.69. The
beam oscillations were damped due to decoherence, therefore the decoherence fac-
tor is applied to compare experiment and model. In figure 7.14 (top) the measured
amplitude of the sextupolar resonance term f3oq0 is plotted versus the longitudinal
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Figure 7.13. Amplitude of the term f3g99 Vversus longitudinal position along the
SPS ring from experiment and tracking simulation for the baseline machine. The
beam data are not decohered.

position together with a tracking model. The disagreements in this plot requires an
improvement of our model. If the closed orbit does not go through the center of
a sextupole there is multipole feed—down and the particle observes a quadrupolar
field proportional to the offset. This quadrupolar filed originates a beta—beating,
i.e. changes the nominal optic functions of the machine. Finally this beta—beating
changes the strength of the resonances. For this reason the displacements of the
sextupoles with respect to the closed orbit were measured at the pick-ups and
added to the model. A first test of this improvement of the model can be done by
comparing the phase advance between adjacent pick—-ups from model and experi-
ment. This phase advance gives also an estimate of the beta—beating as presented
in [37]. The phase advance between two pick—ups is measured by computing the
difference in the phase of the tune lines of the respective Fourier spectra. The
displacement of the closed orbit at the extraction sextupoles is provided by the
readings of BPMs. In figure 7.15 the phase advance is compared for model and ex-
periment for the baseline and for the model with extraction sextupoles displaced.
The agreement is satisfactory enough to validate the improvement of the model.
This new model is used to compute the resonance term. The agreement between
the experiment and the new model improved considerably as shown in figure 7.14
(bottom). A similar agreement is observed for other sextupolar resonances. For
example the amplitude of the term f150¢ is shown in fig. 7.16.

Measurements were also done for a different setting of the extraction sex-
tupoles. The horizontal tune is moved to 26.662 to be close to the third order
resonance. The extraction sextupoles are powered to (+ + 4+ + + + ++)3 A. In
fig. 7.17 the measured amplitude of the sextupolar resonance term f3gqo is plotted
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Figure 7.14: Amplitude of the term f3p00 Versus longitudinal position with extrac-
tion sextupoles on. Top: Experiment and nominal model with decoherence factor.
Bottom: Experiment and model with displaced sextupoles and decoherence factor.
The vertical lines show the position of the extraction sextupoles.



62

Phase advance between pick-ups

Phase advance between pick-ups

CHAPTER 7. SPS EXPERIMENTS

Baseline
110 T T T T T E T
Xp —e—
105 | Model o
100 r .
95 r .
iiit EE [}
90 . ;i ) EE s
. i [ ]
85 | glee te i
80 r .
75 .
70 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000
Long. Pos [m]
Extraction Sext ++++----30A (Displaced)
110 T T T T T E T
Xp —e—
105 Model o
100 + .
95 -f e o DD&DDD‘TE |
90 | 0 %Dﬁﬂ DDE?]DDDDD oooo |
'D’ g O DE§J gpbood o DDDD_
% ‘ED ) D%&E; n] %E@Dj °
80 r T=d ilu o ,
75 r .
70 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000

Long. Pos [m]

Figure 7.15: Comparison between the phase advance in adjacent pick-ups from
model and experiment for two SPS settings: The baseline machine (top) and with
the extraction sextupoles connected and displaced (bottom). The vertical lines
show the position of the extraction sextupoles.
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Figure 7.16: Amplitude of the term f150¢ versus longitudinal position from experi-

ment and tracking with displaced sextupoles and decoherence factors. The vertical
lines show the position of the extraction sextupoles.
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Figure 7.17: Amplitude of the term f3000 versus longitudinal position from experi-
ment and the tracking model with the extraction sextupoles (+++ +++++)3 A.
The decoherence of two is applied to the experimental data. The horizontal tune is
26.662. The blue line is used to connect the experimental points. The vertical lines
show the position of the extraction sextupoles.



64 CHAPTER 7. SPS EXPERIMENTS

versus the longitudinal position together with the tracking model containing the
closed orbit at the extraction sextupoles. Since the beam data were decohered a
factor of two had to be applied to the experimental values. As predicted by the
theory, the closer the tune is to the third order resonance the smaller the relative
variation of | f3000/| is around the ring.

7.3 Experiments at 26 and 80 GeV in 2002

Energy [GeV] 26 80

Intensity [number of protons] [0.5,6] x 1019 3.5 x 1010
Number of bunches 1 1

Nominal Tunes [Q, Qy] 26.18, 26.22 26.18, 26.22
Chromaticities [Q7,, @] 13,13 1.0,1.0

Table 7.4: Measured beam conditions for the experiments in 2002.

During the previous year the measurement of sextupolar resonance driving
terms could not be done in some regions of the SPS due to the failure of the BPM
system. As well, local discrepancies between model and experiment could not
be explained. These discrepancies may arise from linear lattice errors, incorrect
strengths of lattice sextupoles, remanent fields in the dipoles or collective effects.
In 2002 the goals were to have measurements from all the BPMs of the ring by
optimizing the system [31] and to try to determine what are the most likely sources
of disagreement. The effect of remanent fields should decrease with the increase
of the energy of the beam. Then by performing the measurements at different en-
ergies, 26 and 80 GeV, we expected to see the effect of these remanent fields. Col-
lective effects vary with the intensity of the beam, therefore measurements were
performed at different intensities to exclude those contributions to the measure-
ment that are not related to nonlinearities. Furthermore important aspects of the
technique needed to be studied in detail in order to ameliorate it, e.g. the pos-
sibility of measuring higher order resonance driving terms and the phases of the
sextupolar resonance terms.

The beam conditions during the experiments in 2002 are listed in table 7.4.
The procedure of the experiments carried out this year is almost identical to that of
2001, already described in section 7.2. In particular the BPM pre—analysis reveals
this time very few bad BPMs, compared to the previous year when almost all the
BPMs of two sextants of the machine had to be discarded. In the following the
results from the different studies are discussed and compared to predictions from
the model.
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7.3.1 Measurement of linear coupling at 26 GeV

In 2001 the technique for the measurement and compensation of the linear coupling
was optimised, see section 7.2.2. In figure 7.18 (top) the average amplitude of the
coupling resonance term is plotted versus the strength of the skew quadrupoles.
The smaller error bars, compared to those from the previous year, are due to the
improvement of the BPM system. The optimum setting is obtained by performing
the fit shown in the figure. In the same figure (bottom) the amplitude of the cou-
pling term is plotted versus the longitudinal position for two settings of the skew
quadrupoles. It is interesting to note that for the optimum setting this term varies
smoothly around the ring, therefore the coupling sources should be distributed
around the ring. The first spike (from left to right) appearing on this figure has
been identified as a bad pick-up. The second spike involves 4 pick-ups and it
was investigated weather this could be due to a rotated element found on that re-
gion. This spike disappeared in measurements done later which makes it difficult
to conclude about the significance of these peaks.

7.3.2 Measurement of sextupolar resonance terms at 26 GeV

The amplitude of the sextupolar term f3g00 for the baseline machine is computed
as explained in section 7.2.3. The result compared to the model is shown in fig-
ure 7.19. The level of agreement is similar to that obtained in previous measure-
ments but with smaller variations which is a consequences of chosing a different
working point.

The quality of the data also allows a measurement of the phase of the spectral
line (-2, 0). An insight into the properties of the phases of the spectral lines fol-
lows. From eqg. (3.38) the amplitude and phase of the spectral line (1—j+k, m—1)
are given by the following complex quantity,

2] fiim(202) TF (20,) T 0T H0n Do) (7.7)

The term £,z is proportional to the sum over all non-linear elements of the same
type, i.e.

where all the factors as beta functions and strenghts are contained in k;. Using
these expressions the change in the phase of the spectral line (1—j+ &, m —1[) over
a region free of non-l