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Rafa, Álex, Vero, Domi, Karton, Enric, Agus, Lorena, Ana, Salva, Pablo, Andreu, Julia,
Elies, and many more.

Finally, it is great to have this family who always support me in this mad way. I am
specially grateful for all the love, loyalty and friendship from my lovely Ana. Thanks for
remaining always at my side.

Less important things must be mentioned in this page too. I’m grateful to the Spanish
ministry of Education for this PhD FPU fellowship. It has paid my life expenses (vices
included) and research (tourism) travel grants these last years. It sounds weird, but I am
very grateful to the excellent Spanish railway system which has allowed me to travel every
day from Valencia to Castellón. That’s been the key for having a 350 references work.

Well, I wouldn’t define this as ”funny” but I hope you to enjoy it.





ix

Abbreviations

1D One dimensional
2D Two dimensional
ASE Amplified Spontaneous Emission
AWG Arbitrary Waveform Generation
CPA Chirped Pulse Amplification
CSDF Cross-Spectral Density Function
CW Continuous Wave
DC Direct Current
DCF Dispersion-Compensating Fiber
DFB Distributed Feedback
DST Direct Space-to-Time
D-WDM Dense-Wavelength-Division Multiplexing
EAM Electroabsorption Modulator
EDFA Erbium-Doped Fiber Amplifier
EOM Electro-Optic Modulator
EOPM Electro-Optic Phase Modulator
ES Energy Spectrum
ESA Electrical Spectrum Analyzer
FCC Federal Communication Commission
FWHM Full-Width at Half Maximum
GDD Group-Delay Dispersion
GSMP Gaussian Schell-Model Pulse
GVD Group-Velocity Dispersion
LCA Lightwave component analyzer
LCFG Linearly Chirped Fiber Grating
LED Light-Emitting Diode
MCF Mutual Coherence Function
MZI Mach-Zehnder Interferometer
MZM Mach-Zehnder Modulator
OCT Optical Coherence Tomography
O/E Optoelectronic
OSA Optical Spectrum Analyzer
OTDM Optical Time-Division Multiplexing
PD Photodiode
RF Radio Frequency
rms Root-mean square
RTFT Real-Time Fourier Transformer



x

S-LED Superluminiscent Light-Emitting Diode
SIS Spectral Imaging System
SMF Single-Mode Fiber
SOA Semiconductor Optical Amplifier
SPDC Spontaneous Parametric Down Conversion
SSB Single-Side Band
SLM Spatial Light Modulator
SVEA Slowly Varying Envelope Approximation
TESE Transport-of-Energy-Spectrum Equation
TIE Transport-of-Intensity Equation
TIS Temporal Imaging System
Ti:Sa Titanium:Saphire
TOD Third-Order Dispersion
UWB Ultra Wideband
WDM Wavelength-Division Multiplexing
XGM Cross-gain modulation
XPM Cross-Phase Modulation



Contents

1 Introduction 1

2 Scalar coherence theory 5
2.1 Random processes. Stationarity and ergodicity . . . . . . . . . . . . . . . . 5
2.2 Correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Analytic signal representation . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Mutual coherence function . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Cross-spectral density function . . . . . . . . . . . . . . . . . . . . 7

2.3 Wiener–Khintchine theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Cross-correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Gaussian random processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Some physical models and practical implementations 11
3.1 Non-negative definiteness property . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Coherent-mode representation . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Independent-elementary-pulse representation model . . . . . . . . . . . . . 13

3.3.1 Frequency domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.2 Time domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.3 Partially coherent basis . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Effects of partial coherence on frequency combs 20
4.1 Fully coherent description . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Partially coherent pulse trains . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Linear distortion in dispersive media. Temporal optics 28
5.1 Pulse distortion in a linear homogeneous medium . . . . . . . . . . . . . . 28
5.2 First-order approximation. Space–Time analogy . . . . . . . . . . . . . . . 29
5.3 Temporal ABCD matrix approach . . . . . . . . . . . . . . . . . . . . . . . 30

5.3.1 Temporal lens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.2 Temporal Gaussian modulator . . . . . . . . . . . . . . . . . . . . . 32
5.3.3 GDD circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xi



xii

5.3.4 Spectral Gaussian filter . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3.5 General properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4 Dual ABCD matrix approach . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.5 Some coherent ultra-high-speed optical systems . . . . . . . . . . . . . . . 34

5.5.1 Real-time Fourier transformer (RTFT) . . . . . . . . . . . . . . . . 34

5.5.2 Time-to-frequency converters . . . . . . . . . . . . . . . . . . . . . 36

5.5.3 TIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.5.4 Spectral imaging system (SIS) . . . . . . . . . . . . . . . . . . . . . 37

5.5.5 Repetition rate multipliers based on temporal Talbot phenomena . 40

5.5.6 Electro-optic pulse generation based on temporal array illuminators 42

5.6 Space–Time analogy for partially coherent wavefields . . . . . . . . . . . . 46

5.7 Partially coherent ABCD matrix approach . . . . . . . . . . . . . . . . . . 47

5.8 Effect of source linewidth in some ultra-high-speed optical systems . . . . . 47

5.8.1 GSMP distortion in temporal Gaussian systems . . . . . . . . . . . 48

5.8.2 RTFT operating with a spectrally incoherent source . . . . . . . . . 49

5.8.3 Side-lobe suppression in electro-optic pulse generation . . . . . . . . 50

6 Incoherent frequency-to-time mapping and its application to incoherent
pulse shaping 52

6.1 First-order distortion of quasi-homogeneous pulses . . . . . . . . . . . . . . 52

6.2 Incoherent frequency-to-time mapping . . . . . . . . . . . . . . . . . . . . 54

6.3 Incoherent pulse shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.4 Analysis of intensity fluctuations . . . . . . . . . . . . . . . . . . . . . . . 57

7 Non-interferometric measurement of partially coherent light pulses 58

7.1 Temporal double-slit Young experiment . . . . . . . . . . . . . . . . . . . . 59

7.1.1 Time domain formulation . . . . . . . . . . . . . . . . . . . . . . . 59

7.1.2 Spectral domain formulation . . . . . . . . . . . . . . . . . . . . . . 59

7.2 Advanced interferometric characterization . . . . . . . . . . . . . . . . . . 60

7.3 Non-interferometric measurements . . . . . . . . . . . . . . . . . . . . . . . 61

7.3.1 Time domain approach . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.3.2 Spectral domain approach . . . . . . . . . . . . . . . . . . . . . . . 64

8 Applications in microwave photonics 67

8.1 Photonically assisted filtering of RF signals . . . . . . . . . . . . . . . . . . 67

8.1.1 Mathematical treatment . . . . . . . . . . . . . . . . . . . . . . . . 68

8.1.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.2 Generation of RF and mm-wave signals . . . . . . . . . . . . . . . . . . . . 71

8.2.1 Beating of coherent spectral lines . . . . . . . . . . . . . . . . . . . 71

8.2.2 Upshifting based on temporal imaging of virtual Talbot planes . . . 72

8.2.3 Fully reconfigurable generation with pulse shapers . . . . . . . . . . 74

8.2.4 Incoherent pulse shaping approach . . . . . . . . . . . . . . . . . . 75

8.3 UWB-over-fiber technology . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.3.1 Low-cost alternatives with current-modulated semiconductor lasers 81



xiii

8.3.2 Broadcasting capabilities with incoherent frequency-to-time map-
ping approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9 Mimicking temporal entanglement phenomena with partially coherent
light pulses 91
9.1 Fourfold Space–Time analogy . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.2 Biphoton distortion in linear dispersive media . . . . . . . . . . . . . . . . 93
9.3 Fourth-order interference with partially coherent pulses . . . . . . . . . . . 93

9.3.1 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . 94
9.3.2 Classical temporal ghost diffraction phenomenon . . . . . . . . . . . 95

9.4 Nonlocal dispersion cancelation with classical pulses . . . . . . . . . . . . . 96
9.4.1 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . 96
9.4.2 Application to remote spectral transfer . . . . . . . . . . . . . . . . 99

10 Conclusions 101

Summary (in Spanish) 103

References 113





Chapter I

Introduction

In the last decades, the generation of pulsed beams with pulse durations in the order
of pico and femtosecond has constituted an important research topic for the Physics and
Engineering communities. The characteristics of this kind of optical radiation, broadband
spectrum, enormous temporal resolution, high peak-power with low energy average, po-
tentially high repetition-rate, and high spatial coherence make it an indispensable tool in
order to develop many applications in different fields of science and technology [1].

The development of the passive mode-locking technique in Titanium:Sapphire (Ti:Sa)
lasers has produced ultrashort pulses with a duration corresponding to a few oscillations
of the electric field in the near infrared, at repetition rates on the order of tenths of
MHz to few GHz [2]. Alternatively, mode-locking in semiconductor lasers has allowed the
achievement of pulse trains with repetition rates higher than 160 GHz, which constitutes
a major goal for optical communications technology [3].

Ultrafast pulses have the inherent capability of resolving process in time with high
resolution. At the end of the 80’s, this suscitated the development of a new branch of
studies in chemistry, named femtochemistry [4], where some molecular processes could be
analyzed and controlled with femtosecond resolution in determined pump–probe configu-
rations. It must be mentioned that Prof. A. H. Zewail was awarded with the Nobel prize
in Chemistry in 1999 for these studies.

The enormous bandwidth, together with the high spatial coherence and peak power
made ultrafast pulses to open new possibilities in optical coherence tomography (OCT),
where superluminescent light emitting diodes (S-LEDs) were been commonly used. OCT
is a high resolution, non-contact imaging technique for cross-sectional imaging of inhomo-
geneous samples, with applications ranging from imaging of biological tissues to material
research [5]. In this technique, the axial resolution is inversely proportional to the spectral
bandwidth of the optical source, and Ti:Sa laser pulses provide axial resolutions ∼ 1μm.

The development of the chirped pulse amplification (CPA) technology lead to the
achievement of extremely high power optical radiation [6]. This laser technology has al-
lowed for the observation of new nonlinear phenomena [7], and the development of tabletop
laser-driven accelerators [8]. The CPA technique, combined with the broadband few-cycle
Ti:Sa technology, are the main ingredients to obtain new coherent radiation at shorter
harmonic wavelengths with pulse durations in the sub-femtosecond regime. Attoscience
is expected to open new insights in atomic-scale physics [9], and the measurement and
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2 1. Introduction

control of attosecond pulses is a current great challenge for the physical community [10].
Such an ultrashort pulses are created from the interaction of matter with few-cycle light
pulses. The generation of higher harmonics is strongly dependent on the absolute phase
of the optical field. Therefore, it is very important to control the phase difference between
two neighbor pumping pulses, that appears due to the difference between the group and
phase velocities in the laser cavity. It is important to note that the control in the time
domain of this phase slip in a pulse train leads inherently to have a frequency comb with
equally spaced frequencies shifted by a known quantity from the zero offset [11]. Thus,
the control of this phase difference naturally leads to the control and stabilization of a
broad set of mutually coherent single frequencies, i.e., a femtosecond frequency comb.
Frequency combs have lead to impressive advances in lightwave and optical metrology
applications [12, 13]. It should be mentioned that Profs. T. W. Hänsch and J. L. Hall
were awarded with half of the Physics Nobel prize in 2005 for the development of this
new technology.

In a different context, the so-called Space–Time analogy refers to the fact that the
mathematical equations that govern the spreading of short light pulses in linear first-order
dispersive media and the paraxial diffraction of monochromatic light beams are essentially
the same [14]. The key of this connection is that it allows to adapt and interpret different
phenomena in the temporal domain from the well-known results of diffractive optics [15].
This analogy has become particularly relevant for the optical communications community,
in view of the current need of new photonic processing schemes [16].

Nevertheless, in most of the aforementioned phenomena and applications of ultrafast
and temporal optics, it is widely assumed that the pulses are temporally fully coherent [17].
However, most of the real physical phenomena are subject to stochastic fluctuations and
the pulses belonging to a train usually vary from one to another. In the last years there
have been some research efforts centered on the development of a formal theory capable
to describe these phenomena basing on coherence concepts [18].

The aim of this Thesis is to provide new insights in the description of partially coher-
ent ultrashort light pulses from both a fundamental and applied perspective. We restrict
ourselves to the scalar and plane-wave approximation, and in particular, we focus our at-
tention on the spreading of partially coherent light pulses in first-order dispersive media.
Chapter II is devoted to summarize the basic generalities of the scalar coherence theory
used throughout this Thesis. Chapter III focuses on the mathematical description and ex-
perimental realization of partially coherent pulses obeying some specific models. Chapter
IV provides a theory describing mathematically the deterioration of the frequency comb
structure due to noise. In Chapter V we make use of the Space–Time analogy to pro-
pose new coherent pulse processing schemes. Then, we extend the analogy further to the
partially coherent regime, which allows us to describe the pernicious effects of the finite
source linewidth in lightwave communication systems in terms of coherence concepts. In
Chapter VI we propose the use of broadband incoherent light as fundamental source in an
original pulse shaping scheme. Chapter VII aims to give particular guidelines in order to
measure properly partially coherent light pulses. In Chapter VIII we provide both theo-
retical and experimental verification of new coherent and incoherent techniques aimed to
generate and process radio-frequency (RF) signals in the optical domain. In Chapter IX
we point out a formal similitude between partially coherent light pulses and temporally
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entangled photons. Finally, in Chapter X we summarize briefly the main achievements
exposed in this Thesis.

Part of the results appearing in this Thesis have already been presented in the following
original articles:

1. J. Lancis, V. Torres-Company, E. Silvestre, and P. Andrés, ”Space-time analogy for
partially coherent plane-wave-type pulses,” Optics Letters 30, 2973–2975 (2005).

2. V. Torres-Company, J. Lancis, and P. Andrés, ”Unified approach to describe optical
pulse generation by propagation of periodically phase-modulated CW laser light,”
Optics Express 14, 3171–3180 (2006).

3. V. Torres-Company, G. Mı́nguez-Vega, J. Lancis, E. Silvestre, and P. Andrés, ”Source
linewidth effects in temporal imaging of Gaussian Schell-model pulses,” Optics Com-
munications 267, 40–43 (2006).

4. V. Torres-Company, M. Fernández-Alonso, J. Lancis, J. C. Barreiro, and P. Andrés,
”Millimeter-wave and microwave signal generation by low-bandwidth electro-optic
phase modulation,” Optics Express 14, 9617–9626 (2006).

5. V. Torres-Company, J. Lancis, and P. Andrés, ”Arbitrary waveform generator based
on all-incoherent pulse shaping,” IEEE Photonics Technology Letters 18, 2626–2628
(2006).

6. V. Torres-Company, J. Lancis, and P. Andrés, ”Incoherent frequency-to-time map-
ping: application to incoherent pulse shaping,” Journal of the Optical Society of
America A 24, 888–894 (2007).

7. V. Torres-Company, J. Lancis, P. Andrés, and M. A. Muriel, ”Real-time optical
spectrum analyzers operating with spectrally incoherent broadband continuous-wave
light source,” Optics Communications 273, 320–323 (2007).

8. A. T. Friberg, H. Lajunen, and V. Torres-Company, ”Spectral elementary-coherence-
function representation for partially coherent light pulses”, Optics Express 15, 5160–
5165 (2007).

9. J. Lancis, V. Torres-Company, P. Andrés, and J. Ojeda-Castañeda, ”Side-lobe sup-
pression in electro-optic pulse generation,” Electronics Letters 43, 414–415 (2007).

10. V. Torres-Company, H. Lajunen, and A. T. Friberg, ”Effects of partial coherence
on frequency combs,” Journal of the European Optical Society–Rapid Publications
2, 07007 (2007).

11. V. Torres-Company, H. Lajunen, and A. T. Friberg, ”Coherence theory of noise in
ultrashort-pulse trains”, Journal of the Optical Society of America B 24, 1441–1450
(2007).

12. V. Torres-Company, G. Mı́nguez-Vega, J. Lancis, and A. T. Friberg, ”Controllable
generation of partially coherent light pulses with direct space-to-time pulse shaper”,
Optics Letters 32, 1608–1610 (2007).
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13. V. Torres-Company, J. Lancis, and P. Andrés, ”Spectral imaging system for scaling
the power spectrum of optical waveforms,” Optics Letters 32, 2849–2851 (2007).

14. V. Torres-Company, J. Lancis, and P. Andrés, ”Flat-top ultra-wideband photonic
filters based on mutual coherence function synthesis,” Optics Communications 281,
1438–1444 (2008).

15. V. Torres-Company, K. Prince, and I. T. Monroy, ”Fiber transmission and genera-
tion of ultrawideband pulses by direct current modulation of semiconductor lasers
and chirp-to-intensity conversion,” Optics Letters 33, 222–224 (2008).

16. V. Torres-Company, H. Lajunen, J. Lancis, and A. T. Friberg, ”Ghost interference
with classical partially coherent light pulses,” Physical Review A 77, 043811 (2008).

17. V. Torres-Company, I. T. Monroy, J. Lancis, and P. Andrés, ”All-fiber incoherent
frequency-to-time mapping method for microwave signal generation with baseband
transmission and multicasting support,” Optics Communications 281, 3965 (2008).

18. V. Torres-Company, J. Lancis, L. R. Chen, and P. Andrés, ”Reconfigurable RF-
waveform generator based on incoherent-filter design,” Journal of Lightwave Tech-
nology (in press, 2008).

19. V. Torres-Company, K. Prince, and I. T. Monroy, ”Ultra-wideband pulse generation
based on overshooting effect in gain-switched semiconductor laser,” IEEE Photonics
Technology Letters (in press, 2008).

20. V. Torres-Company, H. Lajunen, and A. T. Friberg, ”Nonlocal dispersion cancel-
lation with classical light and its application to remote spectral transfer,” Physical
Review Letters (submitted, 2008).

In addition, the following work based on the results presented in this Thesis is under
preparation:

1. V. Torres-Company, J. Lancis, H. Lajunen, and P. Andrés, ”Non-interferometric
characterization of partially coherent pulses”.

Throughout this Thesis these works can be identified with the reference numbers [19–38].



Chapter II

Scalar coherence theory

In order to describe the light properties accurately, the stochastic behavior of the radiation
must be taken into account. In a laser, for example, fluctuations are caused either by the
spontaneous emission process in the amplifier medium; thermal or mechanical variations
in the cavity; or by instabilities in the pumping mechanism. Optical coherence theory
takes into account all these stochastic phenomena on the basis of classical statistical theory
of random signals through the so-called correlation functions. The modern formulation of
optical coherence theory was developed in the 1950’s with the Wolf’s pioneer works [39].
Since then, the research has been mainly focused on the case of statistically stationary
light fields, for which the averaged light intensity remains constant in time. This model
is suitable to describe the coherence properties of thermal light, like that emitted by
light emitting diodes (LEDs) or amplified spontaneous emission (ASE) sources. However,
it fails to deal with the coherence properties of pulsed radiation. For this aim, optical
coherence theory has been recently extended to the nonstationary case [18,26,29,40–47].

The aim of this Chapter is to introduce briefly some basic results of scalar optical
coherence theory that will be used throughout this Thesis. Some excellent textbooks
are [15,48], from which we will follow the nomenclature.

2.1 Random processes. Stationarity and ergodicity

We call U(t) a random process of t if U does not depend on t in a deterministic man-
ner. The quantity that contains the highest degree of information of the random pro-
cess is the n-fold joint probability density pn(U1, U2, ...Un; t1, t2, ..., tn). The quantity
pn(U1, U2, ...Un; t1, t2, ..., tn)dU1dU2...dUn gives the probability that at time t1 the ran-
dom variable has a value between U1 and U1 + dU1, that at time t2 has a value between
U2 and U2 + dU2, and so on [48]. Obviously, the information is complete for n→ ∞.

Once pn is known, the nth-order statistical moments can be calculated. For example,
the first-order moment is

〈U(t)〉 =

∫
Up1(U ; t)dU, (2.1)

for which p1 is only required.

Alternatively, we may consider the set of all possible realizations of the random process
{Ur}. We can then form the average or expectation of U at time t by averaging over the

5



6 2. Scalar coherence theory

ensemble of all these realizations

〈U(t)〉 = lim
N→∞

1

N

N∑
r=1

Ur. (2.2)

This equation is equivalent to Eq. (2.1) and defines the action of the operator 〈〉, usually
known as ensemble average.

Following the same reasoning as before, we can define the second-order moment or
temporal autocorrelation function

Γ(t1, t2) ≡ 〈U∗(t1)U(t2)〉 =

∫
U∗

1U2 p2(U1, U2; t1, t2)dU1dU2, (2.3)

where the asterisk denotes complex conjugate. Note that in this case the second-order
probability density is required.

According to [15], when the probability density function is independent on the time
origin, i.e., pn(U1, U2, ...Un; t1, t2, ..., tn) = pn(U1, U2, ...Un; t1 − T, t2 − T, ..., tn − T ) ∀T ,
the random process is referred as stationary in strict sense. If the above equality is
only satisfied for n = 2, the process is said to be stationary in a wide sense. In this case,
Eq. (2.3) reduces to a function depending only on the time difference coordinate τ = t2−t1.
Note that as long as we restrict ourselves to second-order coherence functions, there is no
need to clarify whether we mean a stationary process in a wide or strict sense.

For a nonstationary process the temporal autocorrelation function is not a function
that depends on the time difference anymore, but on the specific time instants t1 and t2.
For example, the continuous-wave (CW) laser emission fits well to a stationary process
when the spontaneous emission effects are taken into account. As an example of a nonsta-
tionary process, we mention the pulsed operation of a continuously operating mode-locked
laser when there are nondeterministic variations from pulse to pulse.

Finally, a stochastic process is said to be ergodic when a single sample already contains
all the statistical information of the ensemble. Therefore, the ensemble average operator
can be replaced by a temporal average. According to this definition, stationarity does not
necessarily imply ergodicity and vice versa.

2.2 Correlation functions

2.2.1 Analytic signal representation

Most of the physical variables in optics are described by real functions. However, it may
be of practical interest to define a complex function associated with the real scalar optical
field, 	(r, t). Assuming that 	(r, t) is square-integrable, the complex function associated
with this field can be obtained as1

U(r, t) =
1

2π

∫∫
	(r, t′)θ(ω) exp[iω(t′ − t)]dt′dω. (2.4)

Here θ(ω) = 1 for ω > 0 and null for the rest. The function U(r, t) is known as the
complex analytic signal associated with 	(r, t). Then, the real signal can be recovered
just by 	(r, t) = 2
[U(r, t)].

1In this Thesis, unless it is specified explicitly, the integration limits range from −∞ to ∞.
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Throughout this Thesis, we will be interested in quasi-monochromatic fields. This
means that the positive-frequency content of 	(r, t) is confined to a spectral range, Δω,
much smaller than the carrier frequency of light, ω0. Such fields may be described as
	(t) = ψ(t) cos[ω0t + ϕ(t)], where the explicit dependence with r has been omitted for
simplicity. Although, in general, there is a broad set of pairs of [ψ(t), ϕ(t)] leading to the
same 	(t), only the analytic signal representation defines a complex envelope unambigu-
ously as

U(t) =
1

2
ψ(t) exp{−i[ω0t+ ϕ(t)]}. (2.5)

2.2.2 Mutual coherence function

In the space–time domain, the coherence properties of fluctuating light fields can be
described through the so-called mutual coherence function (MCF)

Γ(r1, r2; t1, t2) = 〈U∗(r1, t1)U(r2, t2)〉. (2.6)

Here, U(r, t) represents the analytic signal of the random field realizations. Thus, the
MCF determines the cross-correlations of the field at positions r1 and r2 at time instants
t1 and t2. By setting r1 = r2 = r and t1 = t2 = t, from the above equation we get the
function

I(r, t) = Γ(r, r; t, t) = 〈|U(r, t)|2〉, (2.7)

which corresponds to the intensity at r and time instant t averaged over the field realiza-
tions.

It is also useful to define the normalized version of the MCF,

γ(r1, r2; t1, t2) =
Γ(r1, r2; t1, t2)√
I(r1, t1)I(r2, t2)

, (2.8)

known as complex degree of coherence. By invoking the Schwartz inequality, it can be
shown that 0 ≤ |γ(r1, r2; t1, t2)| ≤ 1. When the lower limit is satisfied, the field realizations
at spatiotemporal points (r1, t1) and (r2, t2) are uncorrelated, and the field is said to be
fully incoherent. The upper limit indicates that the field is fully coherent and therefore
complete correlation between such particular spatiotemporal points appears. Realistic
optical fields lie in between those extreme cases and are called partially coherent.

Following [43], it is possible to define the coherence time at position r, tc(r), of an
optical field as

tc(r)
2 =

∫∫
(t2 − t1)

2|γ(r, r, t1, t2)|2dt1dt2∫∫ |γ(r, r, t1, t2)|2dt1dt2 . (2.9)

This definition is valid for both cases, stationary and nonstationary. We must highlight
that there are many other possible definitions for the measurement of the coherence
time [48].

2.2.3 Cross-spectral density function

Alternatively, the coherence properties of the optical fields can be described in the space–
frequency domain. For this aim, we take the Fourier transform of the analytic signal of
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the fluctuating field,

Ũ(r, ω) =
1

2π

∫
U(r, t) exp(iωt)dt. (2.10)

Then we define the following function

W (r1, r2;ω1, ω2) = 〈Ũ∗(r1, ω1)Ũ(r2, ω2)〉, (2.11)

which is known as the cross-spectral density function (CSDF). It represents the field
correlations at positions r1 and r2 at angular frequencies ω1 and ω2. We can particularize
this equation to r1 = r2 = r and ω1 = ω2 = ω, which leads to the spectral density function
or energy spectrum (ES)

S(r, ω) = 〈|Ũ(r, ω)|2〉 (2.12)

Physically, this function represents a measure of the energy per unit of frequency [43].
We can now introduce the normalized version of the cross-spectral density function,

i.e., the complex degree of spectral coherence

μ(r1, r2;ω1, ω2) =
W (r1, r2;ω1, ω2)√
S(r1, ω1)S(r2, ω2)

. (2.13)

As in the case of the complex degree of coherence, it satisfies the inequalities 0 ≤
|μ(r1, r2;ω1, ω2)| ≤ 1. The upper and lower limits are reached by a spectrally fully corre-
lated or uncorrelated field, respectively. Intermediate cases deal with spectrally partially
coherent fields. We must note that there could be a field with some degree of temporal
coherence but full spectral uncorrelation. Therefore it is important to specify the domain
in which the coherence properties are defined.

From Eq. (2.13), it is possible to define a spectral correlation width at position r,
δω(r), in complete analogy with Eq. (2.9),

δω(r)2 =

∫∫
(ω2 − ω1)

2|μ(r, r, ω1, ω2)|2dω1dω2∫∫ |μ(r, r, ω1, ω2)|2dω1dω2

. (2.14)

This magnitude determines the maximum spectral portion of the energy spectrum, S(r, ω),
in which two different frequencies, ω1 and ω2, remain relatively correlated.

2.3 Wiener–Khintchine theorem

The mutual coherence and cross-spectral density functions form a Fourier transform pair,

Γ(r1, r2; t1, t2) =

∫∫
W (r1, r2;ω1, ω2) exp[i(ω1t1 − ω2t2)]dω1dω2 (2.15)

and

W (r1, r2;ω1, ω2) =
1

4π2

∫∫
Γ(r1, r2; t1, t2) exp[−i(ω1t1 − ω2t2)]dt1dt2. (2.16)

This means that the space–frequency and space–time domains are connected. These
equations can be considered as the generalization of the Wiener–Khintchine theorem to
nonstationary fields.
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In the limit of a stationary field, the MCF verifies

Γ(r1, r2; t1, t2) = Γs(r1, r2; τ = t2 − t1), (2.17)

and, accordingly,
W (r1, r2;ω1, ω2) = Ws(r1, r2;ω1)δ(ω2 − ω1), (2.18)

where δ() denotes the Dirac’s delta function. This result establishes that, in a stationary
process, two frequencies become fully uncorrelated. In this case, from Eqs. (2.15) and
(2.16) we get

Γs(r, τ) =

∫
Ss(r, ω) exp(−iωτ)dω (2.19)

and

Ss(r, ω) =
1

2π

∫
Γs(r, τ) exp(iωτ)dτ, (2.20)

where Ss(r, ω) = Ws(r, r, ω) and Γs(r, τ) = Γ(r, r; τ). This result represents the Wiener–
Khintchine theorem as it is known in its most common version.

2.4 Cross-correlation functions

There are some physical phenomena that involve the interaction of N different random
processes. In order to describe this situation, it can be useful to define a N ×N random
matrix known as cross-correlation matrix, with elements

Γij(τ) = 〈U∗
i (t)Uj(t+ τ)〉, (2.21)

where i, j = 1, ..., N . For simplicity, we have omitted the r dependence and assumed
explicitly that the N different random processes Uj(t) are jointly stationary. Whenever
Γij(τ) is different from zero there will be some kind of correlation between the i and j
random processes.

The cross-spectral density matrix, Wij(ω), of the jointly stationary random process
gives

〈Ũ∗
i (ω)Ũj(ω + ω′)〉 = Wij(ω)δ(ω − ω′). (2.22)

For the case i = j, the cross-spectral density reduces to the spectral density function of
the j random process, i.e., Wjj(ω) = Sj(ω).

The elements of these different matrices form a Fourier transform pair,

Γij(τ) =

∫
Wij(ω) exp(−iωτ)dω (2.23)

and

Wij(ω) =
1

2π

∫
Γij(τ) exp(iωτ)dτ. (2.24)

This result is known as the Wiener-Khintchine theorem generalized to cross-correlation
functions.

For the case N = 2, it is easy to note that the cross-correlation matrix elements satisfy
the following properties

Γ21(τ) = Γ∗
12(−τ) (2.25)
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and
W12(ω) = W ∗

21(ω). (2.26)

With the help of this last equation, it can be shown the following inequality

|W12(ω)| ≤
√
S1(ω)S2(ω). (2.27)

2.5 Gaussian random processes

Up to now, we have carried out the analysis of some second-order coherence properties of
light fields. In general, higher-order random process require the knowledge of higher-order
probability density functions. An exception is the Gaussian random process. In such a
case, in virtue of the Gaussian moment theorem, all the hierarchy of correlation functions
can be constructed from the second-order correlation function.

Therefore, for a real Gaussian random process with a zero mean, 	(t), the nth-order
correlation function results

〈	(t1) 	 (t2)...	 (tn)〉 =

{ ∑
π〈	(t1) 	 (t2)〉〈	(t3) 	 (t4)〉...〈	(tn−1) 	 (tn)〉 n even

0 n odd
(2.28)

where π indicates the sum over all the possible (n− 1)!! pairs.
In particular, it will be important for us the two-time intensity correlation formula for

the complex Gaussian random process U(t) with zero mean,

〈|U(t1)|2|U(t2)|2〉 = I(t1)I(t2) + |Γ(t1, t2)|2, (2.29)

where I(t) denotes the averaged intensity as defined by Eq. (2.7), and Γ(t1, t2) is the MCF
given by Eq. (2.6).



Chapter III

Some physical models and practical implementations

Although optical radiation is always partially coherent, in many experimental arrange-
ments the assumption of full coherence can be adequate. However, there are many cases in
which it is necessary, and even convenient, to deal with a stochastic description. Through-
out this Thesis we will provide examples in which decoherence can be pernicious and situ-
ations where incoherent sources are preferable. It is required to have adequate mathemat-
ical tools to describe optical coherence properties as well as physical devices to generate
them in a controlled way.

In the spatial domain, the so-called Schell model, proposed first it in the context of an-
tenna radiation patterning [49], has been widely adopted. This model assumes an explicit
dependence in the difference (spatial) coordinate for the complex degree of spectral coher-
ence. The scalar diffraction properties of these primary sources with the simplification of
the Gaussian intensity distribution have been widely studied and experimentally verified
in the literature [50–54]. This model has been later adapted into the temporal domain
to study the temporal coherence properties of ultrashort pulses [40, 41, 55], receiving the
name of Gaussian Schell-model pulse (GSMP).

Experimentally, there are well-known techniques to produce partially coherent quasi-
monochromatic radiation in a controlled way [56–59]. An elegant solution is to generate
first a spatially incoherent beam by introducing a rotating phase diffuser in front of a
monochromatic laser spot [60], and then place different spatial masks in front of the
beam. A broad range of spatially partially coherent structures can be synthesized in this
way [51,61].

In the temporal domain, tailoring the intensity profile and chirp of coherent pulses is
now well-established with reconfigurable devices [62]. In the last few years, these user-
defined waveforms have offered unique capabilities in the control of molecular dynamics
and chemical reactions [63–66]. However, only fully coherent fields are used. In contrast,
several studies demonstrate the influence of pulse coherence in multiphoton ionization [67];
in the product yield of some chemical reactions in a pump–dump scenario [65, 68]; or in
the supercontinuum generation [69–72]. In order to control such kind of processes, new
schemes for synthesizing the MCF of the pulse, rather than the complex field, become
imperative.

In this Chapter we propose some physical models to describe partially coherent pulses
and discuss their possible implementation with current technology. For the sake of sim-

11
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plicity, we will restrict ourselves to the temporal coherence aspects and neglect the spatial
structure of the beam. This assumption will be briefly justified in Chapter V.

3.1 Non-negative definiteness property

In Chapter II we saw that the MCF and the CSDF are the physically relevant functions
for describing partially coherent pulses. Following the Wiener–Khintchine theorem, these
quantities are connected to each other and carry the same amount of information. Their
structure must be mathematically consistent with the definitions provided by Eqs. (2.6)
and (2.11). Consequently, any MCF or CSDF properly defined must satisfy inequalities∫∫

Γ(t1, t2)f
∗(t1)f(t2)dt1dt2 ≥ 0 (3.1)

and ∫∫
W (ω1, ω2)g

∗(ω1)g(ω2)dω1dω2 ≥ 0, (3.2)

where f(t) and g(ω) are any well-behaved functions. This result is known as the non-
negative definiteness property of the correlation functions [48].

In general, it is very difficult to verify that a correlation function satisfies Eqs. (3.1)
and (3.2) because they must be true for any f(t) and g(ω) functions. However, there
exists a sufficient condition. A correlation function A is nonnegative definite if it can be
written as a superposition integral of the form

A(α1, α2) =

∫
T (x)H∗(α1, x)H(α2, x)dx, (3.3)

where α denotes t or ω, T (x) is a nonnegative function, and H an arbitrary well-behaved
kernel [73].

3.2 Coherent-mode representation

Based on the nonnegative definiteness property and the hermiticity properties Γ(t1, t2) =
Γ∗(t2, t1) and W (ω1, ω2) = W ∗(ω2, ω1), every genuine MCF or CSDF can be alternatively
expressed as a convergent series by virtue of the Mercer’s theorem [42,48]

A(α1, α2) =
∑

n

anφ
∗
n(α1)φn(α2), (3.4)

where an and φ(α) are the eigenvalues and eigenfunctions of the integral equation∫
A(α1, α2)φn(α1)dα1 = anφn(α2). (3.5)

It can then be shown [42] that the eigenvalues are real and nonnegative, and the eigen-
functions φn(α) satisfy the orthogonality relation∫

φ∗
n(α)φm(α)dα = δmn, (3.6)
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where δmn denotes the Kronecker’s delta. We should note that the structure of the
modes φ∗

n(α1)φn(α2) in Eq. (3.4) can be interpreted as the correlation function of a fully
coherent field. Therefore, Eq. (3.4) indicates that any MCF (or CSDF) can be constructed
as an incoherent superposition of temporally (or spectrally) fully coherent fields. This
coherent mode representation was adapted first to Optics considering quasimonochromatic
stationary light fields [74]. Experimentally, Gase demonstrated the superposition of the
transversal modes from a high-power solid-state laser resonator as a way to achieve a
Gaussian Schell-model beam. In the temporal domain, this coherent mode representation
has been recently extended to non-stationary pulsed plane-wave [42] and beams [45].

3.3 Independent-elementary-pulse representation model

3.3.1 Frequency domain

Mathematical framework

Let us assume a CSDF with a structure as

W (ω1, ω2) =

∫
Ss(ω

′)M̃∗(ω1 − ω′)M̃(ω2 − ω′)dω′, (3.7)

where Ss(ω) is a real nonnegative function and M̃(ω) is a well-behaved function. We note
that this is a particular case of the structure given by Eq. (3.3). Then, the consistency
with the nonnegative definiteness condition is guaranteed. Such a CSDF is constructed by
spectrally shifting a basic coherent source with CSDF Wb(ω1, ω2) = M̃∗(ω1)M̃(ω2), and
weighting it with a function given by Ss(ω). The energy spectrum can be easily calculated
by ω1 = ω2 = ω

S(ω) = Ss(ω) ⊗ |M̃(ω)|2, (3.8)

which is just the convolution between the weighting function Ss(ω) and the energy spec-
trum of the spectrally coherent basis, |M̃(ω)|2.

The special structure given by Eq. (3.7) leads to the following MCF

Γ(t1, t2) = Γs(t2 − t1)m
∗(t1)m(t2), (3.9)

where m(t) and Γs(τ = t2 − t1) are the inverse Fourier transform of M̃(ω) and Ss(ω),
respectively. From this equation we can note that the complex degree of coherence is

γ(t1, t2) =
Γs(t2 − t1)

Γs(0)
exp{i[ϕm(t2) − ϕm(t1)]}, (3.10)

where ϕm(t) is the phase of m(t). By substituting Eq. (3.10) into Eq. (2.9), we conclude
that the m(t) function does not affect the coherence time of the pulse.

Possible experimental arrangement

Although Eqs. (3.7) and (3.9) are fully equivalent, it is perhaps more useful to think in
terms of (3.9) to get a clear picture of its possible implementation.

Such a structure can be easily achieved by temporally modulating a stationary light
source, Γs(t2 − t1), with a temporal modulator providing a deterministic complex pulse
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m(t) [55]. Stationary light sources can be obtained, e.g., from an SLED, or by the ASE
noise from the gain spectrum of some fiber amplifiers. According to Eq. (2.19), the ES
of the source gives Γs(t2 − t1) through inverse Fourier transformation. Coherence times
as short as hundreds of femtoseconds can be achieved with Erbium-doped fiber amplifiers
(EDFAs) [75]. On the other hand, temporal modulators providing pulse shapes m(t) are
widely employed in telecommunications. As an example, LiNbO3 electro-optic intensity
or phase modulators can work at speeds > 100 Gb/s, and electroabsorption modulators
(EAMs) can achieve even ∼ 1 ps temporal pulse durations [3].

For instance, the model described by Eq. (3.9) accounts for the effects of the source
linewidth in wavelength-division-multiplexing (WDM) communication systems [76]. In
such a case, the linewidth limits the transmission speed of the channel [77]. Some re-
search works [78] have followed the stochastic analysis of the pioneer woks of Miyagi [79]
and Marcuse [80], but recent papers have recognized that the light emerging from the
modulator can be written in terms of MCFs [55,75,81,82], so that coherence theory con-
cepts provide a much richer interpretation [19]. In the case that the spectral line shape
and the temporal modulation are Gaussian distributed, the emerging partially coherent
pulse acquires a Gaussian Schell-model structure [55].

Finally, we remark that any MCF structure built as Eq. (3.9) has two degree of
freedom. One is the coherence time, given by the shape of energy spectrum of the light
source, and the other is the temporal intensity duration, given by the modulator. Then,
within this precise model, the global degree of coherence, measured as the ratio between
the coherence time and the temporal intensity width, can be arbitrarily set by selecting
the appropriate photonic devices.

3.3.2 Time domain

Mathematical framework

Recently, Vahimaa and Turunen have reported the dual representation of the above model
[46]. Let us assume a MCF constructed as

Γ(t1, t2) =

∫
f(t′)e∗(t1 − t′)e(t2 − t′)dt′, (3.11)

with f(t) an arbitrary real and positive well-behaved function. This equation has the
same mathematical structure as Eq. (3.3), ensuring is nonnegative definite. Following the
same reasoning as before, Eq. (3.11) is performed by time shifting a fully coherent pulse
with complex envelope e(t) and weighting it with a function f(t).

The CSDF can be calculated to give

W (ω1, ω2) = F̃ (ω2 − ω1)Ẽ
∗(ω1)Ẽ(ω2), (3.12)

where F̃ (ω) and Ẽ(ω) denote the Fourier transform of the weighting function and the
complex envelope, respectively. Note that this equation corresponds to the dual represen-
tation of Eq. (3.9). The complex degree of spectral coherence can be calculated as

μ(ω1, ω2) =
F̃ (ω2 − ω1)

F̃ (0)
exp{i[ϕe(ω2) − ϕe(ω1)]}, (3.13)
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with ϕe(ω) being the phase of Ẽ(ω). Again, the mathematical structure is formally
identical to that of Eq. (3.10). We note that the spectral correlation width is fixed by the
weight function f(t) only.

Analogally to Eq. (3.8), the average intensity is just given by

I(t) = f(t) ⊗ |e(t)|2, (3.14)

i.e., the convolution between the intensity of the input coherent pulse and the weighting
function.

Unlike in the temporal modulation of stationary light sources, here the global degree of
coherence cannot be set arbitrarily. This is because it is not possible to set independently
the complex degree of coherence and the averaged intensity distribution.

Possible experimental arrangement

A simple way to achieve the physical structure provided by Eq. (3.11) is by introducing
a slight modification in the direct space-to-time (DST) pulse shaper. The DST pulse
shaper may operate at mid infrared [83] or telecom wavelengths [84], and has been mainly
employed for RF applications [85]. We note that such a device has the inherent capa-
bility to transfer the spatial coherence properties of a beam to the temporal domain. In
consequence, by controlling the spatial coherence of the input pulsed field, a user-defined
partially coherent output light pulse can be synthesized [30].

The operation of the DST pulse shaper has been described in detail in [86]. Briefly, a
spatially patterned mask is disposed at the surface of a kinoform diffraction grating. The
different spectral components are diffracted and focused on the Fourier plane of a lens
with focal length f (see Fig. 3.1). At the output, at a distance f from the lens, a thin slit
filters the dispersed spectrum. As a result, in the ideal case, a spatially uniform pulse is
obtained whose analytic signal, aside from an irrelevant constant factor, is given by

Uout(t) = ein(t) ⊗ h[(β/γ)t]. (3.15)

Here ein(t) is the complex input field and the function h(x) incorporates the spatial mask,
M(x), and the input field profile. The term γ/β = λ0/(cd cos θi) is a scaling factor, with λ0

being the carrier wavelength, c the speed of light in vacuum, θi the angle of incidence of the
input beam onto the diffraction grating of period d, and β = cos θi/ cos θd, where θd is the
diffraction angle. For an input Gaussian beam h(x) = M(x) exp(−x2/4w2) exp(ikx2/2R),
with k = 2π/λ0, w the root-mean-square (rms) intensity width, and R the radius of
curvature. In what follows we write h(x) = M(x)b(x) for convenience.

Let us now assume that the input beam is fully coherent temporally, but spatially
partially coherent. In this case the spatial structure is not deterministic anymore and
h(x) must be replaced by a randomly varying function, say h′(x). Then, the MCF of the
output pulse, Γout(t1, t2) = 〈U∗

out(t1)Uout(t2)〉, is given by

Γout(t1, t2) =

∫∫
e∗in(t1 − t′)ein(t2 − t′′) 〈h′∗[(β/γ)t′]h′[(β/γ)t′′]〉 dt′dt′′. (3.16)

Equation (3.16) implies that the effects of partial coherence in the space domain are
readily transferred to the temporal domain.
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Figure 3.1: Scheme of the modified DST pulse shaper. In this case θi = 0.

We emphasize that Eq. (3.16) corresponds to a general case of the transfer of the
coherence properties from the spatial to the temporal domain. When the scaling factor
γ/β is large enough so that the incoming light field can be considered as a Dirac delta
function, the MCF of the output light pulse simply takes on the form Γout(t1, t2) ≈
〈h′∗[(β/γ)t1] h′[(β/γ)t2]〉. In this case the output MCF is a direct mapping of the pulse’s
coherence properties from the spatial to the temporal domain.

Commercially available femtosecond laser oscillators are light sources with high spatial
and temporal coherence. While it is relatively easy to modify the spatial coherence of
laser beams in a controlled way [48,51], let us next particularize Eq. (3.16) to the case of a
spatially totally incoherent pulsed field. As illustrated in Fig. 3.1, this can be achieved if
a spatially and temporally fully coherent pulsed input beam is passed through a rotating
phase diffuser placed in front of the spatial mask of the DST pulse shaper. Due to the
diffuser we obtain

〈h′∗(x1)h
′(x2)〉 = |h(x1)|2 δ(x2 − x1). (3.17)

The effect of the phase diffuser is just to de-correlate the fields at any two spatial points
in the beam. By substituting Eq. (3.17) into Eq. (3.16) we find

Γout(t1, t2) = (β/γ)

∫
e∗in(t1 − t′)ein(t2 − t′)

∣∣h[(β/γ)t′]∣∣2 dt′. (3.18)

Equation (3.18) shows that a partially coherent pulse is obtained as an incoherent super-
position of time-shifted replicas of a fully coherent pulse, ein(t), weighted by the (real and
positive) function |h[(β/γ)t]|2. The structure of Eq. (3.18) corresponds precisely to the
mathematical model given by Eq. (3.11). Here, the role of the real nonnegative function
f(t) is played by the spatially shaped intensity profile, and the elementary coherent pulse
is given by the laser pulse shape.

The averaged output intensity is, of course, Iout(t) = |ein(t)|2 ⊗ |h[(β/γ)t]|2, i.e., the
convolution of the input intensity with the system’s impulse response, |h[(β/γ)t]|2. The
complex degree of coherence then is found as γout(t1, t2) = Γout(t1, t2)[Iout(t1)Iout(t2)]

−1/2.
This indicates that it is impossible to control simultaneously and independently both the
averaged intensity and the temporal coherence of the emerging pulse.
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Physically, every laser shot corresponds to a single realization. Each pulse ”freezes”
a different spatial structure given by the rotating phase diffuser and the mask, which is
transferred to the time domain by the space-to-time conversion. The incoherent superpo-
sition is due to the rotating phase diffuser, whereas the coherent elementary pulse is the
input pulse itself. If we consider a spatially and temporally Gaussian pulsed input and set
M(x) = 1, the output rms temporal intensity width, σout, is given by σout = (σ2

0 + σ2)1/2,
where σ0 is the rms temporal width of the input pulse and σ = (γ/β)w. From Eq. (3.18),
the coherence time of the pulse can be calculated as tc,out = 2σ0(1 + σ2

0/σ
2)1/2. Note

that σout accounts for the maximum temporal window of the output signal. If a binary
mask function is inserted, due to the serial-to-parallel conversion of the DST pulse shaper,
THz repetition rate bursts of coherence-controlled femtosecond pulses can be achieved.
As a numerical example, let us consider a 50 fs rms input intensity duration centered on
850 nm and w = 1 mm, with a DST pulse shaper configured with a realistic value of
γ/β = 30 ps/mm, we obtain an output GSMP with 30 ps rms intensity width and 100 fs
coherence time.

As expected from Eq. (3.12), the CSDF gives

Wout(ω1, ω2) = (β/γ) Ẽ∗
in(ω1)Ẽin(ω2)H̃I(ω2 − ω1), (3.19)

where Ẽin(ω) and H̃I(ω) are the Fourier transforms of ein(t) and |h[(β/γ)t]|2, respectively.
Hence the energy spectrum of the output pulse corresponds to that of the input field,
Sout(ω) = |Ẽin(ω)|2. We can then synthesize in a continuous way the coherence time
of the source without affecting the energy spectrum. This is an important requisite in
multi-photon ionization processes [67].

Let us comment about the inherent limitations of the system. We consider Gaussian
distributions for the incoming pulsed beam, the mask function, and the aperture slit
function, a(x/x0), of rms width x0. This analytic case is proved to be useful for the
determination of the efficiency and aperture effects in the DST system [86]. The aperture
makes the output beam spatially non-uniform. However, when the on-axis far field is of
interest [86], the output MCF is

Γout(t1, t2) ∝
∫
e∗in(t1 − t′)ein(t2 − t′)

∣∣A[(kx0/γf)t′] h[(β/γ)t′]
∣∣2 dt′. (3.20)

The slit modifies the system’s impulse response, which now is multiplied by a scaled
version of the modulus squared of the slit function’s Fourier transform, A(u). Accordingly,
the global degree of coherence is

r = 2σ0

(β
γ

)[ 1

w2
+

1

w2
m

+
(xok

fβ

)2]1/2

, (3.21)

where wm is the rms width of the pattern mask. In Fig. 3.2 we show the resulting inverse
of the global degree of coherence for a Gaussian input pulse of 50 fs (green dashed line)
and 200 fs (red dashed line) rms intensity width. The mask function is set to 1 and
typical values of γ = 30 ps/mm, β = 1, w = 1 mm, f = 100 mm, and λ0 = 850 nm are
assumed. For decreasing slit sizes the pulse becomes globally increasingly incoherent, a
feature more notable for shorter pulses. For slit sizes narrower than 10μm, its effect can
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be neglected and the global degree of coherence is determined by the mask function m(x)
only.

It is important to note that the same figure of merit for the energy efficiency than in
the coherent case can be employed in the partially coherent regime [86],

η =

∫∫ |H( 2πx
βλ0f

− γω
β

)Ẽin(ω)a( x
x0

)|2dxdω∫∫ |H( 2πx
βλ0f

− γω
β

)Ẽin(ω)|2dxdω , (3.22)

where H(u) denotes the Fourier transform of h(x). Figure 3.2 also plots the resulting
system efficiency for the two different values of the input pulse width. It reveals that the
efficiency increases linearly with the slit width, and the system operates more efficiently
for longer pulses.

Figure 3.2: Inverse of the output global degree of coherence (dashed curves) for
two different Gaussian input pulses of 50 fs (green line) and 200 fs (red line) vs. the
slit size x0. Energy efficiency (solid curves) in terms of the slit size for the same
input pulses.

With this simple modification in the DST pulse shaper, it is still possible the devel-
opment of genetic algorithms that control the product yield in chemical reactions, which
is an important feature in femtochemistry [66]. This is achieved by measuring the yield
and providing a control signal that feedbacks the spatial light modulator. Even more, in
order to achieve a more compact device, the phase diffusor pattern could be implemented
directly with the spatial light modulator [87]. In this case, the speed of the spatial light
modulator should be refreshed at the repetition rate of the laser. Currently, this can be
done at 100 kHz rates [88], which suits fine for femtosecond Ti:Sa-laser pulses that are
amplified after the output of the oscillator.

Finally, it should be pointed out that some studies about using spatial speckle patterns
for pulse shaping exist [89, 90], but nothing related to the coherence theory and the
independent-elementary-pulse representation model. It is important to remark that within
this model, fully arbitrary MCFs cannot be achieved [46]. In our experimental proposal in
particular, this originates from the restriction of the shaping process given by Eq. (3.15),
which is just a spectral filtering operation. Arbitrary chirping cannot be achieved since
the input spectral bandwidth imposes the ultimate physical limit. However, many other
situations are included in this model [46].
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3.3.3 Partially coherent basis

We have seen that it is possible to construct partially coherent light pulses by continuous
superposition of a temporally (or spectrally) shifted and weighted fully coherent light
pulse. However, it is also possible to achieve a properly defined partially coherent light
pulse by continuous superposition of a temporally (or spectrally) shifted and weighted
basic partially coherent light pulse [26].

With this aim, let us assume an elementary spectral coherence function asWpc(ω1, ω2) =
〈Ũ∗

pc(ω1)Ũpc(ω2)〉, where Ũpc(ω) is a field realization of a non-stationary ensemble that is
described by the CSDF Wpc(ω1, ω2). Then, instead of the model presented in Eq. (3.7),
we can construct a more general CSDF as

W (ω1, ω2) =

∫
Ss(ω)Wpc(ω1 − ω, ω2 − ω)dω. (3.23)

This model does not fit the structure of Eq. (3.3). However, assuming the weight function
Ss(ω) to be real and nonnegative, it is possible to show that this CSDF also satisfies
inequality (3.2) [26]. Equation (3.8) remains valid in this case, i.e., the energy spectrum
is a convolution between the weight function and the energy spectrum of the basic pulse,
Wpc(ω,ω).

The MCF function is calculated to be

Γ(t1, t2) = Γs(t2 − t1)Γpc(t1, t2), (3.24)

where Γpc(t1, t2) is the MCF corresponding to the CSDF of the partially coherent basic
ensemble Wpc(ω1, ω2). Equation (3.24) can be interpreted as a generalization of Eq. (3.9)
to the case in which the modulation m(t) is not deterministic anymore, but partially
coherent. Therefore, this apparently more complicated situation appears in a natural way
when the timing jitter or any other random pulse shape variations in the modulator are
taken into account. It is clear from Eq. (3.24), that the averaged intensity is uniquely set
by the averaged intensity of the modulator.

Finally, the complex degree of coherence is

γ(t1, t2) =
Γs(t2 − t1)

Γs(0)
γm(t1, t2) (3.25)

where γm(t1, t2) denotes the complex degree of coherence of the modulator. This implies
that the modulator may change the temporal coherence of the output pulse. However,
since 0 ≤ γm ≤ 1, it can just reduce the coherence time of the radiation.



Chapter IV

Effects of partial coherence on frequency combs

Optical frequency combs have provided impressive advances in ultra-high resolution metrol-
ogy [12,13], optical atomic clocks [11,91], extreme nonlinear optics [7,92], lightwave com-
munications [93–95] and molecular sensing [96,97]. The central concept to these advances
is that a pulse train corresponds to a comb regularly spaced in frequency by a quantity
equal to the repetition rate.

The idea that a frequency comb could be used for exciting narrow resonances was
first realized by Hänsch more than 30 years ago [98]. By then, the optical bandwidth
available from ultrashort-pulse lasers was about hundreds of GHz and there was still the
need to lock the frequency comb to a stable optical reference. Alternative procedures to
achieve frequency combs by electro-optic periodic modulation of a CW stable laser were
considered [99–101]. In such a case, the repetition rate can be easily locked to a microwave
reference signal and the comb may be tuned independently by selecting properly the CW
laser frequency. However, even for the case of the lowest Vπ voltage modulators, the
available optical bandwidth is around a few THz [93]. With the development of the
Ti:Sa laser technology in the 90’s [2], ultra-short laser pulses corresponding to less than
two cycles of the carrier frequency were achieved [102, 103]. In this case, the relative
phase between the peak of the pulse envelope and the underlying electric-field carrier is
not constant from pulse to pulse because of the difference between the group and phase
velocity inside the laser cavity. Although before 2000 there were techniques to measure
this phase slip in the temporal domain [104], active feedback was not employed to control
it, and therefore rapid dephasing took place because of pulse energy fluctuations and other
stochastic phenomena.

Later, the key development of microstructured fibers with zero-dispersion wavelength
close to 800 nm permitted the generation of a broad spectrum outside the cavity spanning
more than an octave1 [105] . With such a broad spectrum, it was finally possible to
generate a frequency comb locked to a microwave reference signal without the need of
any additional reference CW laser [106, 107]. Currently, octave-spanning spectra can be
generated directly from the cavity by exciting nonlinear phenomena in the oscillator [108]
or by four-wave mixing interactions with microresonators pumped with a high-power CW

1We refer by octave spanning spectrum when there is, at least, a factor of 2 between the minimum
and maximum available optical frequencies. The minimum and maximum frequencies are usually taken
as those at the -20 dB level.
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laser [109].
To be able to use this property for high-precision measurements, one has to make sure

that this simple intuitive picture is correct with a high degree of accuracy. It is important
then to address the question of how does this frequency comb model deteriorates when
pulse-to-pulse fluctuations in energy, chirping, timing and phase jitter appear, i.e., the
pulse train is partially coherent.

4.1 Fully coherent description

In order to understand the mode structure of a femtosecond frequency comb, let us con-
sider the situation depicted in Fig. 4.1. Due to the difference between the group and phase
velocities inside the laser cavity, the carrier shifts with respect to the envelope a constant
phase, Δϕ, every round trip. In consequence, the pulse train at the output of the oscillator
is periodic in the envelope, ψ(t), but not in the complex electric field, U(t). Physically,
the comb structure is achieved thanks to the constructive interference among successive
pulses. Including the phase slip, the interference takes place at angular frequencies, ω,
satisfying ωTr −Δϕ = 2πn, where Tr denotes the period of the pulse envelope and n is a
very large integer number. Thus, the angular frequencies of the comb are

ω = ωrn+ ωCEO. (4.1)

This equation indicates that the resonant frequencies are a multiple of the train repetition
rate, ωr = 2π/Tr, but shifted a quantity dependent on the phase slip, ωCEO = Δϕ/Tr.
Usually, both frequencies ωr and ωCEO lie in the microwave range.

U(ω)

U(t)

t

ω
CEO

Figure 4.1: Fully coherent pulse train and its corresponding frequency comb struc-
ture. The entire comb is offset from multiple integers of the train repetition rate.

By the SI definition of the second, a frequency is called absolute when it is referred to
the ground-state hyperfine splitting of the Cs atom [11]. Since this magnitude lies in the
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microwave range (9.193 GHz), it is not complicated to obtain absolute references in this
region. However, before the first optical frequency comb was demonstrated, to achieve
optical absolute references was a difficult task. To this end, complex chains of oscillators
bridging the vast gap between the microwave and optical regions were developed [110].
This was only possible in very specific laboratories. However, Eq. (4.1) links easily both
domains. Optical absolute references can be readily achieved starting from microwave
absolute references to which the values of ωr and ωCEO can be locked. Therefore, once ωr

and ωCEO are determined with absolute precision, the optical comb acts as a frequency
ruler where every frequency is labeled and can be used for absolute frequency measure-
ments. Any external optical frequency (determined with a precision better than the half
of the repetition rate) can then be measured with absolute precision by measuring the
beating with the frequency comb [12].

While ωr is accessible with a photodiode, the frequency offset ωCEO requires more clever
approaches. The easiest one is to broaden the optical spectrum until it spans an octave.
The low-frequency content is then doubled with a second-harmonic crystal, for example,
and beaten with the upper frequency part. The lowest frequency of the beating terms
gives ωCEO. This self-referencing approach was first realized in [106], and the technique
has been later coined as f-2f [1]. Once these frequencies are measured, an error signal can
be generated to feedback the laser cavity parameters, providing the stabilization of the
frequency comb. Very often the locking of ωr and ωCEO leads to a practically fully coherent
pulse train. However, to have a stable pulse-to-pulse phase relation and no timing jitter
does not necessarily implies complete temporal coherence. Therefore, a full coherence
analysis of the pulse train deviation from the ideal case provides a deeper understanding
of the dynamic behavior of frequency combs and, as last term, a different way to achieve
more control parameters to feedback the cavity.

4.2 Partially coherent pulse trains

Many different stochastic phenomena that alter the ideal behavior in pulsed systems
exist. When thinking of mode-locked lasers, these may be caused, e.g., by gain and length
fluctuations, spontaneous emission contributions in the amplifier cavity, or by fluctuations
in the microwave signal modulating the losses when the laser is actively mode-locked
[111,112]. These random noise sources contribute to degrade the correlations among the
different frequency components of the pulse, which manifests as random fluctuations from
pulse to pulse in shape, chirping, temporal duration, repetition rate, and energy [28, 29].
It is important to establish an analytic model to account for these random phenomena in
order to measure the magnitude of the fluctuations and provide some feedback into the
cavity to reduce them, whenever it is possible.

The first theories to address the stochastic behavior in ultra-short pulse trains followed
the pioneer work of von derLinde [113]. This model centers on the intensity and pulse-
period (timing jitter) fluctuations. A key aspect is that the information of these noise
sources can be obtained from the RF spectrum of the pulse train2, easily accessible with
electrical spectrum analyzers (ESAs). This model has been proved to be very useful when

2The RF spectrum is defined as the modulus square of the temporal Fourier transform of the pulse
intensity.
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Table 4.1

Scheme of the different noise theories and their descriptions

Noise contributions
Reference Theory Timing Energy Phase Shape Cross correlations

[113] Statistical � � NO NO NO
[117,118] Statistical � � NO NO �

[111] Soliton � � NO NO �
[123] Soliton � � � NO NO
[122] Soliton � � � NO �
[29] Coherence � � � � �

applied to a broad variety of mode-locked systems [114–116], especially actively mode-
locked. Later, the model had to be complemented in view of the progress in passively
mode-locked lasers [111,117]. In these systems, the statistical correlations between jitter
and field amplitude fluctuations are more notable and, further, the timing jitter may also
be non-stationary [111,117,118]. The model of Haus and Mecozzi [111] was developed in
the framework of the soliton perturbation theory [119], and special attention was paid to
the possible noise sources that appear in passively mode-locked lasers. The correspondence
with different experimental results is excellent [111,112,117,120]. The main drawback of
this theory is that since it is microscopic, it needs to be reformulated specifically for every
laser system.

Nevertheless, these theories deal with timing jitter and/or amplitude fluctuations only,
and the effects of pulse waveform and chirping fluctuations are not taken into account or
only briefly discussed. The first approach accounting analytically for the phase fluctua-
tions in mode-locked pulse trains is found in [121]. Similar to [119], the model is micro-
scopic and based on perturbation of the master mode-locking equation. This model has
been recently extended to include timing jitter and possible noise cross-correlations [122].
They find that the ideal frequency comb distorts and spectral broadening of the different
lines in the frequency comb appears.

Here we present a theory based on optical coherence concepts [29]. Specifically, we
include all the possible random fluctuations in a simple manner. We also take into account
the possible statistical dependence between the noise and timing jitter, corresponding to
the most general case. It represents an extension to the previous models focused on the
noise of mode-locked laser systems because we consider also chirp and shape fluctuations.
Since it is developed entirely in statistical terms, it is not restricted to a specific technique
of mode-locking. The synergy between the experiments and the theory gives rise to the
specific statistical model that characterizes the pulse train. Table 4.1 summarizes the
characteristics of the different theories dealing with noise-pulse-train descriptions.

Let us denote the analytic signal of a random pulse train consisting of 2L + 1 pulses
as

U(t) = exp(−iω0t)N(t)
L∑

n=−L

ψ[t− nTr − J(t)Tr] exp [i(nω0Tr − nΔϕ)] , (4.2)
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where ω0 is the carrier frequency, ψ(t) is the complex envelope. The situation is not ideal
due to the contribution of the global multiplicative noise N(t), which, assuming to be
a statistically stationary random process with zero a mean, describes the possible pulse-
to-pulse fluctuations in a global manner. The key aspect for choosing this multiplicative
noise function is that, since it is complex, it can simultaneously describe all the stochastic
variations, except the timing jitter [28]. The coherence time of this function will determine
the coherence time of the pulse train, i.e., how many consecutive pulses can be considered
similar. In this way, although the fluctuations between the neighboring pulses may be
small, when averaged among all the different possible realizations (ideally infinite), they
give rise to a zero-mean field. We also point out that although the assumed stationary
statistics does not correspond to the most general possible type of noise in pulse trains,
it is a widely used assumption [113, 117, 118] which provides a physically valid model for
many practical situations, such as free-running mode-locked lasers operating in steady-
state [121,122] or pulse trains obtained by external modulation of a continuous wave laser
source [93]. Here J(t) is a dimensionless real random function with zero mean, assumed
to be slowly varying compared to the width of a single pulse, so that it does not cause
noticeable distortions onto the pulse shapes. The envelope of the nth pulse may then be
expanded in a Taylor series

ψ[t− nTr − TrJ(t)] ≈ ψ(t− nTr) − TrJ(t)ψ̇(t− nTr), (4.3)

where the dot denotes temporal derivative. With this approximation, Eq. (4.2) takes on
a more compact form

U(t) = N(t) exp(−iω0t)
[
M(t) − TrJ(t)Ṁ(t)

]
, (4.4)

with

M(t) =
L∑

n=−L

ψ(t− nTr) exp [i(nω0Tr − nΔϕ)] . (4.5)

The MCF of a partially coherent pulse train can be calculated, according to Eqs. (2.6)
and (4.4)

Γ(t1, t2) = Γa(t1, t2) + Γb(t1, t2) + Γc(t1, t2), (4.6)

where the MCF is given by the sum of the following terms

Γa(t1, t2) = ΓN(τ)M∗(t1)M(t2) exp(−iω0τ), (4.7)

Γb(t1, t2) = T 2
r ΓN(τ)ΓJ(τ)Ṁ∗(t1)Ṁ(t2) exp(−iω0τ), (4.8)

and

Γc(t1, t2) = T 2
r Ṁ

∗(t1)Ṁ(t2)
[
ΓNJ(τ)Γ∗

NJ(−τ) + |ΓNJ(0)|2] exp(−iω0τ). (4.9)

Here, we denote as ΓN(τ) = 〈N∗(t1)N(t2)〉 the MCF of the global multiplicative noise, and
τ = t2−t1. We have assumed the jitter to be statistically stationary, with the correspond-
ing MCF given by ΓJ(τ) = 〈J(t1)J(t2)〉. Additionally, we consider that the global noise
N(t) and jitter J(t) can be correlated, which occurs whenever these random processes are
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created by the same source. This results particularly relevant for passively mode-locked
lasers [111]. To achieve Eq. (4.6) we have further assumed that N(t) and J(t) are jointly
Gaussian random processes. Basing on the central limit theorem, this assumption is phys-
ically plausible whenever there are many statistically independent sources contributing to
these kind of noises [48]. Based on Eq. (2.28), we get

〈N∗(t1)N(t2)J(t2)〉 = 0, (4.10)

〈N∗(t1)N(t2)J(t1)〉 = 0, (4.11)

and

〈N∗(t1)N(t2)J(t1)J(t2)〉 = 〈N∗(t1)N(t2)〉〈J(t1)J(t2)〉 + 〈N∗(t1)J(t2)〉〈J(t1)N(t2)〉
+ 〈N∗(t1)J(t1)〉〈J(t2)N(t2)〉
= ΓN(τ)ΓJ(τ) + ΓNJ(τ)Γ∗

NJ(−τ) + |ΓNJ(0)|2, (4.12)

which leads to Eqs. (4.6)–(4.9). Mathematically, Eq. (4.6) contains the contribution of
three different terms. The first one corresponds to the MCF of a pulse train affected
of global multiplicative noise only. The second term mainly contains the timing jitter
contribution, whereas the last term deals with the cross-correlation between timing jitter
and the multiplicative noise.

From Eq. (4.6) it is possible to calculate the averaged intensity as

I(t) = Ia(t) + Ib(t) + Ic(t), (4.13)

where
Ia(t) = Γa(t, t) = ΓN(0) |M(t)|2 , (4.14)

Ib(t) = Γb(t, t) = T 2
r ΓN(0)ΓJ(0)|Ṁ(t)|2, (4.15)

and
Ic(t) = Γc(t, t) = 2T 2

r |ΓNJ(0)Ṁ(t)|2. (4.16)

It is important to note that the global noise N(t) does not affect the averaged intensity,
which perfectly fits with the frequency-domain independent-elementary-pulse representa-
tion model developed in the previous chapter. According to Eqs. (4.15) and (4.16), the
timing jitter contributes to enhance the averaged intensity. Physically, this is due to the
contribution of arbitrarily delayed (or advanced) pulses on the averaged measurement.

In order to illustrate these effects on the MCF, we plot in Fig. 4.2 (a) the absolute value
of the MCF given by Eq. (4.6) and (b) the absolute value of the corresponding complex
degree of coherence (Eq. 2.8) for a train of Gaussian pulses with 10 ps rms intensity width,
15 GHz repetition rate (Tr = 60 ps), and ω0Tr − Δϕ = 0. The noise coherence function
is chosen to be of a monotonically decreasing Gaussian form, ΓN(τ) = exp(−τ 2/2t2cn),
with a coherence time tcn = 100 ps. Compared with the period of the pulse train, this
value establishes that the pulses are rapidly varying from one to another. The parameters
for the jitter are ΓJ(τ) = α exp(−τ 2/2t2cj), with a jitter coherence time of tcj = 20 ps
and the coefficient α, determining the strength of the jitter, chosen as α = 0.01, which
represents a 10% deviation from the temporal period. The noise–jitter correlation function
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ΓNJ(τ) = β exp(−τ 2/2t2cnj) has a coherence time of tcnj = 80 ps and the parameter
describing the strength of the noise–jitter correlation is chosen to have a relatively high
value, β = 0.05. Due to the global multiplicative noise, it can be seen from the figures
that as the difference between the considered time instants t1 and t2 increases, the pulses
become temporally uncorrelated, and the complex degree of coherence depends on the
exact time instants considered. Finally, due to the dependence between the noise and
the jitter, some local correlations over the whole temporal range, which can be seen from
Eq. (4.9), appear.
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Figure 4.2: (a) Modulus of the MCF function of a partially coherent pulse train; (b)
corresponding modulus of the complex degree of coherence. See text for particular
settings.

From the MCF of the partially coherent pulse train, we can calculate the ES

S(ω) = Sa(Ω) + Sb(Ω) + Sc(Ω), (4.17)

where
Sa(Ω) = WN(Ω) ⊗ |M̃(Ω)|2, (4.18)

Sb(Ω) = (TrΩ)2 |M̃(Ω)|2 ⊗WJ(Ω) ⊗WN(Ω), (4.19)

and

Sc(Ω) = (TrΩ)2 |M̃(Ω)|2 ⊗ {
δ(Ω) |ΓNJ(0)|2 +WNJ(Ω) ⊗W ∗

NJ(Ω)
}
. (4.20)

Here, Ω = ω−ω0, and M̃(Ω), WN(Ω), WJ(Ω), and WNJ(Ω) denote the Fourier transform
of M(t), ΓN(τ), ΓJ(τ), and ΓNJ(τ), respectively.

In the limit L → ∞, we achieve M̃(Ω) =
∑

n δ(Ω − nωr − ωCEO). Thus, we have a
comb structure but significantly modified. There appear spectral lines equally spaced by
an amount corresponding to the frequency repetition rate of the pulse train and offset



4.2 Partially coherent pulse trains 27

by the same quantity as in the coherent case. However, according to Eq. (4.18), the
global noise N(t) contributes to broaden every spectral line, and this line shape effectively
corresponds to the ES of the stationary noise, WN(Ω). This line broadening has also been
predicted on the framework of perturbation theories [123] and experimentally verified by
several laboratories for fiber [124] and diode lasers [125]. According to Eq. (2.9), the
coherence time of the pulse train can be obtained as the inverse of the line spectral width.
Timing jitter distorts the comb for higher Ω components. However, for higher frequencies,
there is a competition with the available energy limited by the pulse envelope. This
result is mathematically similar to the distortions achieved in the RF spectrum predicted
by von derLinde [113]. Additionally we find that the timing jitter does not affect the
distortion of the central line. This result has been also predicted in the framework of
the soliton perturbation theory [122]. Further, according to Eq. (4.20), we predict the
appearance of spikes due to the possible cross correlation between the jitter and global
noise. These spikes are proportionally higher for stronger cross correlations. We also
note the mathematical similarity with the model developed in [117], who predicted the
appearance of spikes in the RF spectrum of passively mode-locked lasers due to the
correlation between the timing jitter and the amplitude noise.
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Figure 4.3: Energy spectrum (linear scale) of a pulse train affected of noise and
timing jitter. See text for setting details.

We numerically illustrate the above features in Fig. 4.3, where we plot the ES of a
train of 3 ps rms Gaussian pulses at 25 GHz repetition rate affected by a stationary timing
jitter and noise. The ES of WN , WJ and WJN are assumed Gaussian. The coherence times
of the noise and the jitter are 100 and 20 ps, respectively, and the coherence time of the
correlations between the jitter and noise is 80 ps. The main frequency corresponds to
1.55μm and we have also selected ω0Tr − Δϕ = 0.

Finally, we have studied the CSDF corresponding to the MCF given by Eq. (4.6) and
found the result that two frequencies are fully uncorrelated unless they differ a integral
multiple of the repetition rate.



Chapter V

Linear distortion in dispersive media. Temporal optics

This Chapter introduces the fundamental equations describing the linear distortion of an
ultrashort light pulse in a dispersive homogeneous medium. Such a basic physical problem
is the cornerstone of ultrafast optical signal processing.

In this direction, the space–time analogy [126] establishes a fundamental link between
the paraxial diffraction of monochromatic one-dimensional (1D) beams and the linear
distortion of plane-wave pulses in first-order dispersive media. This approach has led to
the achievement of several optoelectronic configurations particularly relevant in the optical
communications field [16]. The field of optical pulse processing based on the space–time
analogy is referred as temporal optics [127].

5.1 Pulse distortion in a linear homogeneous medium

Let us assume a scalar optical field, described by its analytic signal U(r, t′), propagating
linearly in a waveguide with translational symmetry through the propagation direction
z and filled with an homogeneous lossless dispersive medium. The propagation constant
is β(ω′) = n(ω′)ω′/c, where c is the speed of light in vacuum and n(ω′) the frequency-
dependent refractive index. We can then write [17]

U(r, t′) = A(x, y)ψ(z, t′) exp[−i(ω0t
′ − β0z)]. (5.1)

Here, ψ(z, t′) is the pulse envelope, which modulates the monochromatic carrier wave of
angular frequency ω0; the constant β0 = β(ω0); and A(x, y) is the transversal spatial
distribution of the mode, evaluated at ω0. Once A(x, y) is calculated, we only require to
know ψ(z, t′) in order to determine U(r, t′) at every z position. The evolution of ψ(z, t′)
is described by a wave equation.

Since the functional form of β(ω′) is usually unknown, it is very useful to perform a
Taylor expansion [17]

β(ω′) = β0 + β1(ω
′ − ω0) +

β2

2!
(ω′ − ω0)

2 +
β3

3!
(ω′ − ω0)

3 + ..., (5.2)

where βn = dnβ(ω′)/dω′n|ω′=ω0 are the nth-order dispersion coefficients of the waveguide,
with n = 0, 1, 2.... From now on, we will express the temporal variations of the pulse in
a reference framework moving at the group velocity of the wave packet, t = t′ − β1z.

28
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The wave equation describing the envelope distortion is of second order in z. In
order to reduce this equation to first order, the slowly varying envelope approximation
(SVEA) is usually invoked in the multi-cycle regime [17,126]. This approximation requires
first, that function ψ(z, t) does not change significantly through a distance compared
with the carrier wavelength, and second, the pulse duration to be much larger than the
carrier oscillation period. Mathematically, it is translated into |∂ψ(z, t)/∂z| << β0|ψ(z, t)|
and |∂ψ(z, t)/∂t| << ω0|ψ(z, t)|. Both inequalities are guaranteed whenever the optical
frequency bandwidth is much less than the central frequency, Δω << ω0 [128].

Within the SVEA we have

i
∂ψ(z, t)

∂z
= Hψ(z, t), (5.3)

where the hamiltonian operator is H = −∑∞
n=2

inβn

n!
∂n

∂tn
. Alternatively, Eq. (5.3) can be

rewritten in the frequency domain just by Fourier transformation,1

i
∂ψ̃(z, ω)

∂z
= H̃ψ̃(z, ω), (5.4)

where ψ̃(z, ω) is the Fourier transform of ψ(z, t), and H̃ = −∑∞
n=2

βn

n!
ωn. This equation

can be easily integrated

ψ̃(z, ω) = exp

[
i

∞∑
n=2

βnz

n!
ωn

]
ψ̃(0, ω). (5.5)

Therefore, the dispersive medium acts as a phase-only spectral filter. Sometimes it is
useful to write the dispersive terms in the more compact form Φn = βnz. In the case
n = 2, β2 is called the group-velocity-dispersion (GVD) coefficient, and Φ2 the group-
delay-dispersion (GDD) parameter.

In the few-cycle regime, SVEA results a rough approximation. In this case, an alterna-
tive method to achieve a first-order equation in z is the slowly evolving wave approxima-
tion [128]. However, the pulse durations used in this Thesis are suited in the multi-cycle
regime, and the SVEA constitutes a fairly good approximation.

5.2 First-order approximation. Space–Time analogy

We are particularly interested in the case in which only the first term from Eq. (5.3)
contributes,

i
∂ψ(z, t)

∂z
=
β2

2

∂2ψ(z, t)

∂t2
. (5.6)

Since it implies a second-order expansion in Eq. (5.2), the medium is said to be parabolic.
The first-order approximation is physically plausible whenever Δω << 3|β2/β3|. As an
example, for standard single-mode fiber (SMF) and a waveform centered in the telecom-
munication wavelength (λ0 = 1.55μm), the fiber coefficients are β2 = −21.68 ps2/km

1In the following, the angular frequencies ω are referred at the baseband. They are related to the
optical ones, ω′, just by a shift equal to the carrier frequency, ω′ = ω + ω0.
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Table 5.1

Transfer rules connecting space and time domains

Space domain Time domain
position x t proper time

spatial frequency 2πu ω angular frequency
wavenumber−1 1/k0 −β2 GVD coefficient

paraxial propagation exp (−i2π2zu2/k0) exp(iΦ2ω
2/2) 1st-order dispersion

spatial lens exp
(
−ik0x2

2f

)
exp(iKt2/2) time lens

and β3 = 0.127 ps3/km. The pulses should then have an optical bandwidth shorter than
80 THz. If we assume a coherent Gaussian pulse and require the above inequality to be
satisfied for a 50 times shorter bandwidth, Eq. (5.6) would be valid for pulses longer than
275 fs full-width-at-half-maximum (FWHM) intensity duration.

Equation (5.6) is a Schrödinger-like equation for a free particle, present in many phys-
ical problems. In particular, this equation is mathematically identical to that describing
the one-dimensional scalar diffraction of a paraxial monochromatic beam propagating in
the z direction [129]

i
∂Ue(z, x)

∂z
= − 1

2k0

∂2Ue(z, x)

∂x2
, (5.7)

where Ue(z, x) denotes the transversal profile of the 1D beam, and k0 the wavenumber.
The mathematical similarity between Eqs. (5.6) and (5.7) has been known in the

literature as space–time analogy. The key is that it allows the transfer of knowledge from
one domain to the other. Since paraxial diffractive optics is a relatively well-established
matter [129], this transfer has been usually performed from the spatial to the temporal
domain [16]. Table 5.1 summarizes the transfer rules connecting both domains.

It seems that this finding was independently discovered by Akhmanov et al. [130], and
Treacy [131] at the end of the 60’s. While in the 80’s there appeared some theoretical
contributions based on this analogy [82, 132], it was not until the relevant works of Kol-
ner on temporal lenses and temporal imaging systems (TISs) [14, 133] that this analogy
reemerged with all its splendor.

5.3 Temporal ABCD matrix approach

The action of any linear system on the input complex envelope, ψin(t), can always be
written as

ψout(t) =

∫
ψin(t

′)K(t, t′)dt′, (5.8)

where the system is described mathematically by the kernel K(t, t′), and ψout(t) denotes
the output complex envelope.

In the framework of the space–time analogy, the ABCD matrix method [134] has
been verified as a powerful tool to describe those linear systems composed by cascading
different quadratic elements [135, 136]. Here, the global system is characterized by a
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2 × 2 matrix resulting from multiplying the matrix of every individual element in the
appropriate order. This formalism was first adapted to the temporal domain in [135] and
has been used to study actively mode-locked laser systems [136]. The kernel of an ABCD
system is [137–139]

K(t, t′) =

⎧⎨⎩
√

i
2πB

exp
[−i

2B
(At′2 +Dt2 − 2tt′)

]
if B �= 0√

1
A

exp
[
−iCt2

2A

]
δ(t′ − t/A) if B = 0

(5.9)

where A, B, C, and D denote the matrix coefficients. Due to the quadratic dependence
of the exponential term, these linear systems are also known as Gaussian.

Let us now describe the matrix of some of the basic elements commonly employed in
temporal optics.

5.3.1 Temporal lens

This element introduces a quadratic phase modulation on the input complex envelope,
ψout(t) = exp[iKt2/2]ψin(t). The effect of this quadratic modulation, or chirp, is fully
analog to the action of a lens on a spatial beam. The real constant K determines the
strength of the chirping. The corresponding matrix of this optical element is(

A B
C D

)
=

(
1 0

−K 1

)
(5.10)

In practical terms, this operation can be implemented with electro-optic phase mod-
ulators (EOPMs) [133]; self- or cross-phase modulation (XPM) in a nonlinear fiber [140];
or with a DST pulse shaper [141]. For convenience, we are going to detail the EOPM and
XPM implementations.

An EOPM is usually built with a nonlinear crystal having a high electrooptic co-
efficient, such as LiNbO3 [126]. By applying an electrical signal on the crystal, the
optical field propagating through acquires a phase proportional to the applied volt-
age. If the electrical field is just composed by a single-tone RF waveform, we have
ψout(t) = exp[iΔθ cos(2πfrt)]ψin(t), where Δθ is a real constant, called the modula-
tion index, and fr the frequency of the electrical waveform. Note that Δθ groups dif-
ferent factors depending on the crystal parameters and the maximum voltage ampli-
tude. We have assumed the optical pulse to be synchronized with the maximum of the
RF signal. If the temporal pulse width is shorter than the period, we can approxi-
mate ψout(t) ≈ exp[iΔθ] exp[−i2Δθπ2f 2

r t
2]ψin(t). Then, by direct inspection we obtain

K = −4Δθπ2f 2
r .

Alternatively, a temporal lens can be achieved with a nonlinear fiber, in virtue of the
XPM effect [17]. In this case, a pump signal with normalized intensity Ip(t) is launched
collinearly with the signal ψin(t). For an adequate implementation, pump and signal
should be synchronized and have nonoverlapping spectra or crossed polarization states.
Then, by neglecting the dispersion in the non-linear interaction, the output complex
envelope corresponding to the signal becomes ψout(t) = exp[i2γLPpumpIp(t)]ψin(t), where
γ is the nonlinear coefficient per unit of length corresponding to the pump wavelength,
Ppump the peak power of the pump signal, and L the fiber length. If we further consider
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Gaussian intensity distribution for the pump pulse and a width larger than the signal

duration, we can approximate ψout(t) ≈ exp[iγLPpumpt2

4σ2
p

]ψin(t), where σp is the pump’s rms

intensity width. This leads to K = γLPpump/(2σ
2
p). For a better performance of the XPM

effect, parabolic pump pulses could be employed [142] instead.
Finally it should be reminded that in the spatial case, a spherical wavefront is obtained

by diffracting the light emerging from a punctual monochromatic source [129]. This
phenomenon has been analyzed in the temporal domain too [143, 144], and provided an
alternative way to achieve temporal quadratic phase modulations just by launching ultra-
short pulses through a dispersive medium [145].

5.3.2 Temporal Gaussian modulator

This devices filters an input signal in the temporal domain, so that the output pulse
envelope is given by ψout(t) = exp[−Γ2t2/2]ψin(t), where Γ−1 is a real constant related to
the gate duration. The matrix associated with this element is(

A B
C D

)
=

(
1 0

−iΓ2 1

)
(5.11)

This action can be readily achieved with an amplitude modulator with transform-limited
Gaussian pulse modulation, like a dual-drive Mach-Zehnder modulator (MZM) [136].

5.3.3 GDD circuit

These elements are designed to achieve a quadratic phase modulation in the spectral
domain, i.e., ψ̃out(ω) = exp[iΦ2ω

2/2]ψ̃in(ω). Here, Φ2 is the GDD coefficient. The matrix
is (

A B
C D

)
=

(
1 Φ2

0 1

)
(5.12)

The most popular element is an SMF, whenever the third-order-dispersion (TOD) co-
efficient can be neglected. GDD circuits can also be implemented with a dispersion
compensating fiber (DCF) [77]; pairs of prisms [146]; diffraction gratings [131]; a spatial
light modulator in a Fourier transform geometry with a specific phase-only profile [147];
specially designed linearly chirped fiber gratings (LCFGs) [148]; or photonic crystal fibers
(PCFs) [149,150]. A GDD circuit is fully equivalent to the action of the paraxial diffrac-
tion in free space [131,135].

5.3.4 Spectral Gaussian filter

Such a device filters spectrally the complex field envelope as ψ̃out(ω) = exp[−ω2Δ2/2]ψ̃in(ω).
In this case the corresponding matrix is(

A B
C D

)
=

(
1 iΔ2

0 1

)
(5.13)

Here, the real coefficient Δ−1 is a measure of the spectral width of the bandpass. These
filters may be implemented with all-fiber devices, such as conveniently apodized Bragg
gratings [136].

In the spatial domain, the action of this matrix is equivalent to place a Gaussian
spatial filter at the focal plane of a 4f processing system.
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5.3.5 General properties

An interesting property of Gaussian systems is that they can be described in terms of
three equivalent elements: a temporal lens, a scaling system and a GDD circuit. This
property is due to the fact that the elementary matrices of the constituting devices are
unitary, so that any ABCD matrix can be factorized, for example, as [138](

A B
C D

)
=

(
1 0

C/A 1

)(
A 0
0 1/A

)(
1 B/A
0 1

)
(5.14)

where the relation AD − BC = 1 has been used [134]. This unitary relation is only true
for lossless ABCD systems. In that case, the elements described at Sects. 5.3.2 and 5.3.4
could not be used.

However, there are many other interesting characteristics that can be extracted by
simple inspection of the elements of the global matrix [134]. For example, any system
satisfying B = 0 conjugates the input and output planes, so that the output intensity
profile constitutes a scaled replica of the input one, where the scale factor is given by
the matrix coefficient A. When an ABCD matrix verifies A = 0, the system behaves as
a frequency-to-time converter, i.e., the output intensity profile is a scaled version of the
input ES, with the scale factor given by the coefficient B. When C = 0, the system is
afocal.

5.4 Dual ABCD matrix approach

In temporal optics, there are some situations in which the Fourier transform of the en-
velope, ψ̃(ω), may be the physical magnitude of interest, rather than ψ(t). Of course,
they are connected to each other by a Fourier transform relation and both carry the same
quantity of information.

Since any linear system in time is linear in frequency too, it is useful to provide a similar
analysis of Eqs. (5.8) and (5.9) in the dual space. In the spectral domain, a temporal
lens is the dual element of the GDD circuit, and the temporal Gaussian filter is the dual
element of the spectral Gaussian filter [151]. By dual we mean that these devices behave
mathematically identical, but their action is performed in the Fourier domain [152].

Because of linearity, we can always write

ψ̃out(ω) =

∫
ψ̃in(ω

′)K̃(ω, ω′)dω′, (5.15)

where

K̃(ω, ω′) =

∫∫
K(t′, t′′) exp[i(ωt′ − ω′t′′)]dt′dt′′. (5.16)

In the case of a Gaussian system, by complete similarity with Eq. (5.8), we write

K̃(ω, ω′) =

⎧⎨⎩
√

i
2πBω

exp
[

−i
2Bω

(Aωω
′2 +Dωω

2 − 2ωω′)
]

if Bω �= 0√
1

Aω
exp

[
−iCωω2

2Aω

]
δ(ω′ − ω/Aω) if Bω = 0

(5.17)
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Here, {ABCD}ω are the elements of the dual ABCD matrix system. These coefficients
are not independent of the temporal ones. Their relationship is found by substituting
Eq. (5.9) into Eq. (5.16) and comparing the result with Eq. (5.17), we get(

Aω Bω

Cω Dω

)
=

(
A B
C D

)−1

=

(
D −C
−B A

)
(5.18)

This implies that the spectral ABCD matrix is just the inverse of the temporal one.
Mathematically, this dual analysis does not provide additional information. However,

it is useful to recognize that any afocal system (C = 0) behaves as a spectral imaging
system (Bω = 0), that is to say, the output ES is a scaled version of the input one.
The scale factor will be given by the coefficient Aω. Additionally, any system satisfying
Aω = 0 corresponds to a time-to-frequency converter [153], i.e., the output ES is a scaled
replica of the input temporal intensity profile. The scale factor is given by Bω. Finally,
we can easily set the requirement to have both, a temporal and spectral imaging system
as B = C = 0. We then recover the well-known result that any scaling system produces
an image in the complex field.

5.5 Some coherent ultra-high-speed optical systems

The space–time analogy has been recognized as a powerful tool for designing analog
ultrafast pulse processors [16]. In this section we shall describe a few of the interesting
ones for the purposes of this Thesis.

5.5.1 Real-time Fourier transformer (RTFT)

RTFTs are optical devices capable to modify the light intensity profile of an ultrashort
light pulse so that the achieved shape becomes a scaled version of the input coherent ES.
Two main approaches are proposed for this aim.

Temporal lens + GDD circuit

This system was originally proposed by Jannson [154], and corresponds to the temporal
counterpart of the classic Fourier transformer constituted by a spatial lens and diffraction
until the focal length [129], as shown in Fig. 5.1.

x

L

Focal plane
Lens

x

f

(a)

Temporal lens

Output intensity
GDD circuit

Time

Input intensity

Time

(b)

Figure 5.1: (a) spatial and (b) temporal Fourier transformer.

Using the ABCD temporal matrix approach, one calculates the matrix corresponding
to the device shown in Fig. 5.1 and, by imposing A = 0, obtains that the chirp rate and the
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GDD coefficient must satisfy Φ2K = 1. This device can be used for measuring ES profiles
in the time-domain, where the scale is fixed by the GDD parameter. The advantage
of using this apparently more complicated configuration instead of an optical spectrum
analyzer (OSA) is the acquisition speed. Common OSAs have a limited speed because of
the mechanical sweeping elements. However, RTFTs capture the ES information in the
time domain, which can be done at rates beyond MHz with current sampling oscilloscopes.

Alternatively, this device can be used to compress ultrashort pulses. In this case,
the temporal width can be tuned by a proper selection of the temporal chirp and the
GDD parameter. Nevertheless, the most important characteristic of this device is that
the output intensity pulse is a scaled version of the ES independently of the input spectral
phase. This feature has provided the key to compensate for the spectral phase distortions
in ultra-high speed optical time-division multiplexing (OTDM) linear systems [142,155].

Temporal far-field. GDD circuit

In order to achieve an RTFT, the temporal lens is not really required. In the spatial
domain, it is well-known that the diffraction pattern achieved at a certain distance away
from an input object, usually called the far-field distance, coalesces with the (modulus
of the) Fourier transform of the object. In the temporal domain, this effect was first
discovered in [156], but the connection with the the far-field condition, or Fraunhofer
regime, was realized later [148, 157, 158]. In the temporal domain, this condition reads
as [157]

Φ2 >> σ2/(4π), (5.19)

where σ is a measure of the input pulse width. When this condition is satisfied, the
output intensity shape becomes a scaled replica of the input ES too. As in the previous
case, the scaling factor is also given by the GDD coefficient. In general, the exact amount

Input intensity

Time

GDD circuit

Output intensities

Figure 5.2: Sketch of temporal far field with a GDD circuit.

of dispersion to reach the far-field depends on the specific input pulse waveform, and
Eq. (5.19) is then just a simple estimation. As sketched in Fig. 5.2, once the temporal
far-field condition is practically satisfied, by adding larger dispersion amounts, the output
intensity profile does not change its shape, only its scale. This means that this specific
RTFT has the advantage of resolution tunability just by adding larger GDD amounts.
The upper limit is just limited by absorption in the fiber and by the noise-floor level of the
photodiode [159]. This has lead to the development of real-time spectroscopy [159–162]
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and ultrahigh-speed optical OCT [163], where eventually highly varying spectra can be
recorded in real time. Additionally, RTFTs can be used for time-domain spectral filtering
in simplified 4f temporal processors [164–166].

5.5.2 Time-to-frequency converters

A time-to-frequency converter is a device operating over an incoming ultrashort pulse in
such a way that the shape of the output ES is a scaled version of the input temporal inten-
sity [153]. in this way such a device constitutes a viable alternative to measure temporal
intensity waveforms with a simple OSA. It corresponds to the dual optoelectronic config-
uration presented at the previous section. Similarly, there are two different approaches to
achieve this operation.

GDD circuit + Time lens

A time-to-frequency has a corresponding matrix whose spectral element Aω = 0. The
simplest device to achieve this operation is presented in Fig. 5.3(a). Therefore, it is easy
to show that the time lens and GDD parameter must satisfy the same condition as for a
RTFT. However, note that the elements are disposed in reverse order. This configuration
was first proposed in [153], where the time lens was implemented with an EOPM. Later,
this configuration was implemented for pulses with a central wavelength centered on
800 nm, for which the time lens was implemented with sum-frequency generation [167].

GDD circuit

Output ES

Input Intensity

Frequency�
�

K

Temporal lens

Time

Input ES

Frequency

Output ES

K

Temporal lens

(b)

Figure 5.3: Sketch of the two different temporal devices to achieve a time-to-
frequency converter (a) full configuration (b) spectral Fraunhofer-based device.
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Spectral far-field. Time lens

By recalling that a time lens corresponds to the dual device of GDD circuit, it is straight-
forward to note that a Fraunhofer regime also exists in the spectral domain [151]. This
provides a route to achieve a simplified version of the previous time-to-frequency convert-
ers by removing the input GDD parameter, as shown in Fig. 5.3(b), as long as the input
pulse satisfies

K >> Δω2/(4π), (5.20)

where Δω is a measure of the input spectral width of the pulse.
As a remark, in the same way as an RTFT implemented with a time lens + GDD

circuit is independent of the spectral phase of the input light pulse, the time-to-frequency
converter corresponding to Fig. 5.3(a) performs the operation independently of the input
temporal phase of the pulse. Therefore, unlike the device showed in Fig. 5.3(b), the
first family of time-to-frequency converters results ideal for operating with input phase
fluctuating light pulses [168].

5.5.3 TIS

TISs are photonic devices that provide a scaled replica of the intensity distribution of an
input short optical pulse [133]. When designed for magnifying, the output pulse duration
becomes large enough to overcome the limited temporal resolution of current fast photode-
tectors, acting as a temporal microscope for femtosecond waveforms [169]. Alternatively,
TISs can also be applied for pulse compression while maintaining the initial intensity
profile [170]. Due to the possibility to engineer the magnification factor to be negative,
TISs have also been proposed for the creation of anti-correlated biphotons [171] or for
compensating for the TOD effect in WDM systems [172]. The basic TIS configuration is
sketched in Fig. 5.4, where two first-order dispersive elements are employed. The spatial
counterpart is also sketched for comparison. The temporal imaging condition establishes
a link among the chirp of the temporal lens and the GDD parameters. By calculating the
ABCD matrix corresponding to the Gaussian system of Fig. 5.4(b) and imposing B = 0,
we obtain

1

Φ21

+
1

Φ22

= K. (5.21)

The magnifying factor, m, is given by the matrix coefficient A, which under the above
constraints results m = −Φ22/Φ21.

It should be noted that a simplified version of the system shown in Fig. 5.4(b) has
also been demonstrated [173,174], where the use of the first GDD is avoided.

5.5.4 Spectral imaging system (SIS)

We have stated in Sect. 5.4 that every temporal afocal ABCD Gaussian system behaves
as an imaging system in the spectral domain, i.e., the output ES is a scaled version of the
input one. The simplest temporal afocal system (Bω = C = 0) is illustrated in Fig. 5.5,
where the system parameters are related through the equation

1

K1

+
1

K2

= Φ2. (5.22)
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Figure 5.4: Sketch of a basic (a) spatial and (b) temporal imaging system.

It is easy to note that such a configuration constitutes the dual system of the TIS of
Fig. 5.4(b). In this case, the output spectral envelope is given by [31]

ψout(ω) =
1√
mω

exp

[
i
1

2
aω2

]
ψin

(
ω

mω

)
, (5.23)

where a = Φ2/mω and the coefficient

mω = 1 − Φ2K2 (5.24)

is the spectral scaling factor. If the system is designed for |mω| > 1, the output ES is
expanded (spectral microscope), whereas for |mω| < 1, we have spectral compression.
Another interesting feature is the fact that mω can be designed to be negative, which can
be relevant for spectroscopy applications when input asymmetrical spectra are considered.
It is important to note that Eq. (5.23) applies for both, single optical pulses and trains
of finite duration, provided the time lenses operate over the complete sequence. Con-
sequently, the proposed system does not allow the rescaling of a whole frequency comb
(infinite input sequence), since it would require unreachable time lenses. However, since
the proposed system is capable of rescaling the ES of every single pulse in a train, it
will permit to enhance the number of lines of frequency combs (while keeping the spac-
ing). This could provide significant advances in dense-WDM (D-WDM) systems [94] or
high-resolution waveform processing [93], where it is necessary to have a large number of
spectral lines.
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Figure 5.5: Sketch of a basic spectral imaging system.

It is important to note that these features are not achievable with a TIS because in
this case, the scale tuning only operates for the intensity distribution, not for the complex
field. We point out that 4f temporal processors [175, 176] can also be applied for scaling
the ES of short optical pulses. These devices provide simultaneous scaling in both, time
and spectral domains. However they require four dispersive elements. In contrast, our
spectral imaging system, although does not lead to a scaling in the temporal domain,
only uses one dispersive element, which results much better in terms of losses. Finally,
the quadratic spectral phase factor in Eq. (5.23) does not allow a direct scaling of the
input spectral complex envelope. However, if this was a requisite in a photonic processor,
it could be removed with an additional reverse-signed GDD circuit.

Temporal aberrations analysis

As in TISs, SISs are affected by some practical constraints too [177]. Three main limiting
factors are highlighted. Let us denote by Ta the temporal aperture in which the device
operating as time lens introduces a truly quadratic phase factor. If we think of an EOPM
driven with an RF sinusoidal signal, Ta ≈ 1/Ωr, where Ωr is the angular frequency of the
RF tone. So, concerning the first time lens, the first necessary condition is

σ << Ta1, (5.25)

where σ is a measure of the input pulse width, and Ta1 is the temporal window of the
first time lens. The second constraint concerns the linear dispersive element. We have
assumed the quadratic approximation. This assumption restricts the spectral bandwidth
of the modified signal to √

1/σ2 +K2
1 << 3

∣∣∣∣β2

β3

∣∣∣∣ . (5.26)

Finally, the last constraint is related to the pulse stretching through the fiber. As for
the first constraint, the pulse duration at the input of the second lens must be shorter
than its temporal aperture, Ta2. In mathematical terms, after evaluating the width of the
propagated signal

σ
√

(1 − Φ2K1)2 + (Φ2/σ2)2 << Ta2. (5.27)
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Numerical examples

Let us consider an input optical waveform consisting of two Gaussian pulses with 5 ps
rms temporal intensity width separated by 0.2 ns. Figure 5.6(a) plots the input ES.
The oscillatory term at 5 GHz coming from pulse interference falls in the limit of the
spectral resolution of commercial OSAs based on double-pass monochromator operating
at 1.55μm.

ψ
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Figure 5.6: (a) Input ES (b) Output ES. A 4× magnification is achieved.

With a SIS, a 4× magnification can be achieved. To this end, we choose a first
temporal lens implemented with an EOPM driven with a 2.5 GHz sinusoidal signal and
Δθ = −2 rad, giving rise to K1 = 493.5 ns-2. Note that, for this example, σ is nearly Ta1

which allows us to test, for the double-Gaussian pulse, the sensibility of the technique
to the first constraint. As a dispersive element we take a DCF with β2 = 21.6 ps2/km
and consider β3 = 0.1 ps3/km. Note that the second constraint is fully satisfied, since
the ES at the output of the first time lens is around 40 GHz, far from the upper limit
imposed by the quadratic approximation of the fiber. To achieve a 4× magnification, we
need a second chirp −4K1, and according to Eq. (5.22), a fiber with z = 70.4 km. It
leads to a pulse broadening of ∼ 1 ns before incoming to the second lens. This would
make difficult to satisfy the third constraint with an EOPM operating with a relatively
low modulation index at 2.5 GHz. Consequently, we then choose a second time lens
implemented by means of the XPM effect in a nonlinear fiber pumped with a Gaussian
pulse. We choose σp = 1.8 ns and γLPpump = 3198. Figure 5.6(b) shows the theoretical
output ES from Eq. (5.22) (dashed red line) and the achieved one having into account TOD
and nonparabolic chirping in the time lenses (blue solid line). Our numerical simulation
shows that there are no appreciable differences from the predicted spectrum. Thus, a 4×
magnification can be achieved with realistic devices.

5.5.5 Repetition rate multipliers based on temporal Talbot phenomena

Integer temporal Talbot phenomenon

As sketched in Fig. 5.7(a), the integer temporal Talbot effect or temporal self-imaging
phenomenon consists on the regeneration of an input periodic pulse sequence propagating
through a GDD circuit. The output pulse train is an exact replica of the input one at
those GDD amounts that are a multiple integer of

Φ2T =
1

πf 2
r

. (5.28)
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Here, fr denotes the repetition rate of the pulse train. This constitutes the temporal
counterpart of the well-known phenomenon in the spatial domain, sketched for illustration
purposes in Fig. 5.7(b). This effect was discovered by Talbot in 1836 [178], when he
realized that the diffracted field of a grating replicated itself after certain propagation
distances.
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Figure 5.7: Illustration of the integer Talbot phenomenon in (a) temporal and (b)
spatial domain.

Basing on the Space–Time analogy, this phenomenon was proposed in the time domain
by Jannson [132], and independently verified later [179], but without pointing out any
connection to self-imaging.

The temporal Talbot effect has been proposed in telecommunication systems as a
simple mechanism to reduce the timing jitter of periodic pulse trains [180], as well as a
clock recovery device [181]. These configurations have also been adapted to the temporal
domain from their corresponding spatial counterpart phenomena [182,183]. More recently,
temporal Talbot effect has been used to obtain factorial numbers in high-speed photonic
computing [184].

Fractional temporal Talbot phenomenon

With the ever increasing bandwidth demand in optical communications, there is a strong
need on high-repetition-rate optical signals. The fractional temporal Talbot effect consti-
tutes a simple way to achieve different clock signals from a relatively low-frequency input
pulse train [185].
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In the spatial domain, replicas in intensity of the input spatial distribution can be
achieved at fractional distances of the fundamental one with a reduced period. In the
temporal domain, this phenomenon allows us to achieve multiplication of the repetition
rate of an input optical pulse train just by dispersion in a GDD circuit. The required
GDD amount is

Φ2 =
P

Q
Φ2T (5.29)

where P and Q are coprime integer numbers. The output repetition rate is multiplied
Q/2 times. This is schematically sketched in Fig. 5.8.

GDDcircuit

Output train at 2fr

Time

Input train at fr

Time

Figure 5.8: Schematic illustration of the fractional temporal Talbot effect for Φ2 =
Φ2T/4.

This effect was experimentally observed first in [186,187], where an SMF was employed
as GDD circuit. However, the interpretation with the fractional Talbot effect was provided
later [185, 188], and the use of an LCFG as GDD circuit was suggested and numerically
verified. Such an experiment was later reported in [189]. Fractional Talbot effect has been
verified using a spatial light modulator in a Fourier transform geometry as a GDD circuit
too [147], which can provide higher bandwidths than SMFs or LCFGs. Nevertheless, it
has been recently shown that Talbot effect can also take place in higher-order dispersion
elements [190].

The achievement of ultra-high repetition rate pulse sequences is an important requisite
in OTDM systems. What makes the fractional Talbot effect so interesting is its simplicity.
However, it is important to note that, after multiplication, not every pulse has the same
phase, which makes difficult to use it as an effective mechanism for OTDM applications.
To overcome this problem, Atkins and Fischer demonstrated a clever method that involves
the cross-gain modulation (XGM) effect in a semiconductor optical amplifier (SOA) [191].

5.5.6 Electro-optic pulse generation based on temporal array illuminators

The electro-optic pulse generation method is a technique that allows the achievement of
high-repetition-rate pulse trains while preserving throughput [20, 192–194]. As sketched
in Fig. 5.9, this system consists on a CW narrow-band laser modulated in phase by a
periodic microwave signal. Pulsed light is achieved by temporal spreading in a GDD
circuit, which converts the input phase modulation into intensity modulation.
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Electro-optic phase modulation is commonly related to sinusoidal profiles only. This
is because commercially available single-tone RF modulators can produce signal band-
widths >80 GHz, whereas arbitrary RF-waveform generators have a limited maximum
bandwidth around ∼ 5 GHz [195]. Pulse generation by sinusoidal phase modulation is
usually understood by means of the so-called bunching parameter [192]. This approach
establishes the required GDD amount to focus the parabolic region of the sinusoidal
profile. The bunching parameter is defined as the product between the chirping under
the parabolic approximation, Kbunching = −4Δθπ2f 2

r , and the GDD coefficient. Then,
it is usually accepted that the pulsed light is optimally compressed if Φ2 = 1/Kbunching.
However, as first realized in [194], this heuristic explanation has several limitations. For
example, the maximum compression ratio is underestimated by the bunching-parameter
value, and it cannot explain the rich panoply of achievable pulse profiles at the output of
a GDD circuit, like the flat-top-pulse profile reported in [194,196].

EOPM

Output intensity
GDD circuit

Time

CW laser

Time

RF Signal

Figure 5.9: Scheme of the electro-optic pulse generation method.

On the other hand, the space–time analogy provides a nice analytic tool to tackle
the problem of ultrashort light pulse generation based on propagation of periodically
phase-modulated light [20]. The key relies on noticing the equivalence with the spatial
diffraction of 1D phase structures. There, the so-called Fresnel array illuminators use pure-
phase diffraction gratings for producing a two-dimensional (2D) array of bright spots with
equal amounts of light by free-space propagation at a finite distance. In this direction a
lot of research work has been devoted to understand the properties of light diffracted by
periodic phase structures and above all to optimize their design in order to achieve a set
of high-contrast two-level light intensity dots by diffraction [197–205].

Mathematical treatment

According to the scheme of Fig. 5.9, the complex envelope at the input of the GDD circuit
can be written as

ψin(t) = exp[iV (t)], (5.30)

where V (t) is the periodic electrical signal driving the EOPM, with period Tr = 1/fr.
Consequently, the modulating envelope can be expanded as a Fourier series,

ψin(t) =
∞∑

n=−∞
cn exp

(
−i2πn t

Tr

)
, (5.31)
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where

cn =
1

Tr

∫ Tr/2

−Tr/2

exp[iV (t)] exp(i2πnt)dt. (5.32)

We now propagate the signal in a GDD circuit. By substituting the matrix elements of
Eq. (5.12) into Eq. (5.8), the output envelope results

ψout(t) =
∞∑

n=−∞
cn exp

(
i
2π2Φ2n

2

T 2
r

)
exp

(
−i2πn t

Tr

)
. (5.33)

Therefore the light intensity is

Iout(t) = |ψout(t)|2 =
∞∑

m=−∞
Cm(Φ2) exp

(
−i2πm t

Tr

)
, (5.34)

with

Cm(Φ2) = exp

(
i2πm2 Φ2

Φ2T

) ∞∑
n=−∞

c∗ncn+m exp

(
i4πmn

Φ2

Φ2T

)
. (5.35)

In particular we are interested in the fractional Talbot distances [see Eq. (5.29)]. In
this case, it can be verified that [185]

ψout(t) =

Q−1∑
L=0

G(L,Q, P )ψin

(
t− L

Q
Tr

)
. (5.36)

In this case, the GDD circuit delays and weights the input periodic signal. Alternatively,
any photonic processor that filters an input periodic signal in the same way as done in
Eq. (5.36) will achieve the same result [206]. The weight coefficients are

G(L,Q, P ) =
1

Q

Q−1∑
q=0

exp

[
−i2π q

Q
(L− qP )

]
. (5.37)

Note that we have not assumed the input light to be phase-only modulated in the
above analysis, so the results remain valid for any input periodic field, disregarding if it
is intensity and/or phase modulated.

Let us particularize the above analysis to the case in which the input light is phase-
only modulated. Then, we can adapt well-known results from the existing bibliography
in the spatial domain. Following [198, 201], we can set in Eq. (5.36) the condition P = 1
and Q = 4. The sum can be performed analytically to yield

Iout(t) = 1 − sin [V (t− Tr/2) − V (t)] . (5.38)

This result has provided the key to explain the a priori counterintuitive finding re-
ported in [194], where Komukai et al. achieved a flat-top-pulse profile from a sinusoidally
phase-modulated CW laser [20] at a GDD amount different from the bunching condition.
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With a careful insight in their experimental settings, we note they selected a GDD pa-
rameter at the one-quarter Talbot condition. By substituting V (t) = Δθ sin(2πfrt) in
Eq. (5.38) we achieve

Iout(t) = 1 + sin [2Δθ sin(2πfrt)] . (5.39)

This output pulse profile is schematically represented in Fig. 5.10 for Δθ = π/4 rad
and fr = 40 GHz. This waveform fits perfectly with the experimental results reported
in [194,196].
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Figure 5.10: Flat-top pulse generation with the electro-optic phase modulation
method (see text for numerical settings).

Finally, an analytic formula for the case P = 1, Q = 3 exists too [202],

Iout(t) =1 + 2/3 cos [V (t− Tr/3) − V (t− 2Tr/3)]−
− 2/3 sin [V (t) − V (t− Tr/3) + π/6] +

− 2/3 sin [V (t) − V (t− 2Tr/3) + π/6] . (5.40)

Numerical examples

In principle, it is not possible to synthesize any arbitrary output complex field from an
arbitrary V (t) and considering dispersion in a GDD circuit [203]. Nevertheless, Eqs.
(5.38) and (5.40) provide a relatively easy way to determine V (t) in order to achieve some
interesting waveforms. Figure 5.11 plots a two-level V (t) function, from which we can get
an ultra-flat-top-pulse profile by dispersion in a GDD satisfying Φ2 = Φ2T/4. Such a V (t)
function can be provided by a bit pattern generator. With current electrical generators,
the sequence can be produced at > 40 Gb/s.

As illustrated in Fig. 5.12, the spacing of the ultra-flat-top-pulse profile can be tuned
by changing slightly the V (t) profile and setting Φ2 = Φ2T/3.

The last example concerns the generation of a sinusoidal waveform from a triangular
profile at Φ2 = Φ2T/4. In this case, a triangular periodic waveform like the one presented
in Fig. 5.13 will give rise to a continuous periodic sinusoidal waveform with a frequency
Δθ(πTr)

−1, where Δθ = nπ/2, with n odd. Therefore, higher frequencies can be achieved
just by increasing Δθ.
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Figure 5.11: Ultraflat-top pulse generation. (a) Required RF signal and (b) Output
intensity at Φ2 = Φ2T/4.
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Figure 5.12: Ultraflat-top pulse generation with different duty cycle. (a) Required
RF signal and (b) Output intensity at Φ2 = Φ2T/3.

5.6 Space–Time analogy for partially coherent wavefields

Up to now, we have assumed that the wavefields for which the space–time analogy ap-
plies are fully coherent. In this section we extend the analogy to the partially coher-
ent case [19]. With this aim, let us consider a plane-wave pulse with analytic signal
representation, U(z, t) = ψ(z, t) exp[−i(ω0t − β0z)], propagating in the z direction of
an homogeneous lossless dispersive medium. Now, ψ(z, t) is a nondeterministic com-
plex envelope from a nonstationary ensemble. The associated MCF is Γ(z1, z2; t1, t2) =
〈ψ∗(z1, t1)ψ(z2, t2)〉 exp{−i[ω0τ−β0(z2−z1)]} = Γe(z1, z2; t1, t2) exp{−i[ω0τ−β0(z2−z1)]}.
Since each of the envelope realizations satisfies Eq. (5.3) in general and (5.6) in particular,
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Figure 5.13: Required RF signal to achieve a sinusoidal profile at Φ2 = Φ2T/4.
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it is easy to show that Γe satisfies the following equations [19]

[∂2
tj
− 2i(−1)j 1

β2

∂zj
]Γe(z1, z2; t1, t2) = 0, (5.41)

where ∂a denotes derivative with respect to the variable a, and j = (1, 2).
These equations are fully equivalent to those describing free-space propagation of

the envelope of a quasimonochromatic spatially partially coherent beam under paraxial
approximation [39]

[∂2
xj

+ 2ik(−1)j ∂zj
]Ws,e(r1, r2;ω

′) = 0, (5.42)

where r = (x, z), Ws,e(r1, r2;ω
′) is the spatial-envelope part of the CSDF defined in

Eq. (2.18), and k = ω′/c is the wave number. Equations (5.41) and (5.42) are mathe-
matically equivalent, and the transfer rule is the same as in the coherent case (see Table
4.1).

Thanks to the extension of this analogy to the partially coherent case, we are now
ready to develop new ultrashort processing schemes operating with noncoherent sources.

5.7 Partially coherent ABCD matrix approach

Let us assume a partially coherent wavefield with an MCF envelope Γe(t1, t2) propagating
in the same linear system described by the kernel K(t, t′) from Sect. 5.3. The relation
(5.8) can be then generalized as2

Γe,out(t1, t2) =

∫∫
Γe,in(t

′, t′′)K∗(t1, t′)K(t2, t
′′)dt′dt′′. (5.43)

Alternatively, we can formulate the problem in the spectral domain. In this case, the
CSDF evolution is3

Wb,out(ω1, ω2) =

∫∫
Wb,in(ω

′, ω′′)K̃∗(ω1, ω
′)K̃(ω2, ω

′′)dω′dω′′, (5.44)

where K̃(ω, ω′) is given by Eq. (5.16). Equations (5.43) and (5.44) describe the most
general case of the MCF and CSDF evolution in a linear system, respectively. For the
particular case in which the system is Gaussian, K(t, t′) and K̃(ω, ω′) are still provided
by Eqs. (5.9) and (5.17), respectively.

5.8 Effect of source linewidth in some ultra-high-speed optical
systems

There are some ultrafast processors that operate with a pulsed source obtained by tempo-
ral modulation of a CW laser. Although the laser is usually assumed to be narrow-band,
there are some situations in which the spectral line width is of particular concern. Equa-
tion (5.43) provides the adequate framework to deal with this problem. In this case,

2The subindex e denotes ”envelope” part of the MCF. Γ(t1, t2) = Γe(t1, t2) exp(−iω0τ).
3The subindex b indicates that we deal with the baseband version of the CSDF, i.e., Wb(ω1, ω2) =

W (ω′
1 − ω0, ω

′
2 − ω0).
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we just have to substitute Γe,in(t1, t2) with the model from Eq. (3.9). As explained in
Sect. 3.3.1, Γs(τ) is the MCF of the light source, assumed to be stationary, which is
connected to the ES of the source, Ss(ω), containing the finite line shape. The role of
the deterministic function m(t) is played by the external modulator, which is coding the
information in the time domain.

5.8.1 GSMP distortion in temporal Gaussian systems

In general, it is difficult to get an analytic expression from the integration of Eq. (5.43).
However, the case of a GSMP evolving in a temporal Gaussian system described by its
ABCD matrix has a compact result [21,207].

In order to account for the finite spectral linewidth of the laser, we approximate the
ES and the temporal intensity profile to Gaussian distributions. Then, the input MCF is
given by Γin(t1, t2) = Γe,in(t1, t2) exp(−iω0τ), where

Γe,in(t1, t2) = I0 exp

(
−t

2
1 + t22
4σ2

0

)
exp

(
− τ 2

2t2c

)
. (5.45)

Here, I0 is an irrelevant constant, σ0 is the rms intensity width, and tc determines the
coherence time of the partially coherent pulse. σ0 is given by the rms width of the
modulation gate, whereas tc is fixed by the inverse of the spectral bandwidth of the
stationary light source. When this equation is inserted into Eq. (5.43) gives rise to [207]

Γe,out(t1, t2) =
I0
Δ

exp

(
−t

2
1 + t22

8σ2
0Δ

2

)
exp

(
− τ 2

2δ2
0Δ

2

)
exp

[
iK(t22 − t21)

]
. (5.46)

This result implies that the GSMP keeps its structure under an ABCD-type transfor-
mation. The rms intensity width and the coherence time have changed, and there has
appeared a quadratic phase factor given by the matrix elements,

K =
AC + BD

σ2
0δ2

0

A2 + B2

σ2
0δ2

0

. (5.47)

The parameter Δ is

Δ2 = A2 +
B2

σ2
0δ

2
0

, (5.48)

and δ0 = 2σ0(1+1/q2
0)

−1/2, with q0 = tc
2σ0

being the global degree of coherence. The latter
is an invariant quantity under ABCD temporal matrix transformations [21]. All these
findings perfectly agree with the well-known results from the spatial domain [54].

In the case of a GDD circuit composed by an SMF, we have [81]

Δ(z)2 = 1 +

(
zβ2

σ0δ0

)2

. (5.49)

Then, it is easy to note that for a fixed σ0 at a certain z, a decreasing in tc (increasing of
the spectral linewidth), leads to an output pulse broadening. From Eq. (5.49), any GSMP
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Figure 5.14: Maximum achievable bit rate for three different source linewidths.

having the same product σ0δ0 will lead to the same relative increasing, which constitutes
the Collet-Wolf equivalent theorem [208] read in the temporal domain [81].

From the above equation, the input pulse width σ0,opt =
√
L|β2|/2 minimizes the

output pulse for a given fiber length L. Once the output pulse is optimized, we can
estimate the maximum data transfer at the fiber link establishing the criterium that
the output pulse width should be less than the quarter part of the period, i.e., Bmax =
(4σ0,opt)

−1 [77]. This determines the so-called bit-rate–distance product as

BmaxL =

√
L

4(|β2| + Lβ2
2/t

2
c)
. (5.50)

This is a well-known result in the field of optical communications [77], that we have
recovered from the optical coherence theory concept of GSMP [19]. Figure 5.14 plots the
achievable bit rate depending on the fiber link for different spectral linewidths.

5.8.2 RTFT operating with a spectrally incoherent source

Let us consider an RTFT built with a GDD only. The pulses are assumed to be launched
by a modulator external to an optical source with a finite source linewidth. A sampling
scope measures the average intensity after dispersion in a GDD circuit. By substituting
Eq. (3.9) into Eq. (5.43) and equaling t1 = t2 = t, it can be shown that the output
averaged is given by

Iout(t) = Ss,b(t/Φ2) ⊗ Icoh(t), (5.51)

where irrelevant constant factors have been dropped for clarity. Here, Ss,b(ω) is the ES of
the source centered at the baseband and Icoh(t) is the intensity that would be achieved if
the spectral source was a perfect Dirac’s delta, i.e.,

Icoh(t) =

∣∣∣∣∫ exp(iΦ2ω
2/2)M̃(ω) exp(−iωt)dω

∣∣∣∣2 , (5.52)

where M̃(ω) is the Fourier transform of the modulation m(t). This general result is known
as the extension of the Collett–Wolf equivalent theorem to the Fresnel region, and was
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achieved first in the spatial domain in [209], and formulated recently in the temporal
domain in [210]. By invoking the Fraunhofer condition (5.19) we achieve [25]

Iout(t) = Ss,b(t/Φ2) ⊗ |M̃(t/Φ2)|2. (5.53)

As expected, the coherent limit is only recovered when the ES becomes a Dirac delta.
Thus, in order to achieve the ES of the modulator from averaged intensity measurements,
one should measure with a certain degree of accuracy the ES of the light source and per-
form an adequate deconvolution algorithm. However, with current laser diodes operating
near 1550 nm, this effect can be disregarded, since the source linewidth can be less than
100 MHz.

5.8.3 Side-lobe suppression in electro-optic pulse generation

We already saw in Sect. 5.5.6 that the electro-optic pulse generation is a very efficient
method to achieve ultrashort-pulse trains with controllable repetition rate. However,
one problem with this method is the low extinction ratio. On one hand, blue-chirping
and red-chirping regions repeat in every modulation period. As a result, approximately
half of the energy in the input field does not contribute to the bunching and generates
an undesirable direct-current (DC) floor level. On the other hand, nonlinear-chirped
frequency components of sinusoidally phase-modulated light contribute to generate side
lobes, so that a considerable part of the energy lies outside the main pulse [192].
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Figure 5.15: Normalized output intensity profile in electro-optic pulse generation
using a CW (dashed curve) or a broadband spectrally incoherent source (solid curve).

In order to achieve highly extinctive pulse patterns, different photonic architectures
have been reported. We mention the use of amplitude modulation followed by a bandwidth
tunable Mach-Zehnder interferometer (MZI) [211]; dispersion-imbalanced nonlinear loop
mirror [212]; high-resolution line-by-line pulse shaping [213]; cascaded uniform fibre Bragg
gratings [214]; or directly modulated semiconductor laser [215]. However, in virtue of
Eq. (5.51), smoothing of the high frequency components can be readily achieved just by
using a broadband spectrally incoherent source [27]. To show this, we take the Fourier
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transform in Eq. (5.51),
Ĩout(f) = Ĩcoh(f)Γs,e(−2πΦ2f), (5.54)

where Ĩcoh(f) is the Fourier transform of Icoh(t) and Γs,e(τ) is the inverse Fourier transform
of Ss,b(ω). We note that the spectral filter function is just a scaled version of the MCF of
the stationary light source.
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Figure 5.16: Spectral analysis of low-pass operation associated with Collett-Wolf
equivalence theorem in Fresnel region for electro-optic pulse generation. See text for
details.

Let us consider a practical example. Initially we consider a strictly monochromatic car-
rier wave at 1.55 μm. For the EOPM, we choose fr = 20 GHz and Δθ = 2 rad. For these
settings, according to [194], the maximum compression is achieved at Φ2 = 213.9 ps2/km.
Such a dispersion can be implemented by means of an LCFG a few centimeters long.
Fig. 5.16 shows Icoh(t) normalized. We note the presence of main pulses in the picosecond
range, approximately 40 ps width, together with undesired side lobes. The modulus of
the spectrum of the intensity, |Ĩcoh(f)|, is shown in Fig. 5.164. This plot shows the pres-
ence of high-frequency components associated to secondary lobes. Following the previous
reasoning, a low-pass filtering operation can be implemented by employing a broadband
carrier wave. Here, we consider spectral filtering by means of a Gaussian ES with 12 GHz
rms width. This feasible value can be obtained by means of spectral slicing an LED or
an ASE source. Also in Fig. 5.15, we show in solid curve the averaged intensity output,
Iout(t), which is free from side lobes. We note a slight increment of the DC-floor level com-
ponent at the output. However, zero-order frequency filtering can be easily implemented
by cascading an amplitude modulator to reduce the DC-floor signal [211].

4The measurement of decibels are referred to a logarithmic scale calculated as 10 log(I/I0), where
log indicates common (base 10) logarithm operation and I is the magnitude to plot in intensity. When
the reference I0 is the maximum of I, the magnitude to plot is adimensional and the measurement is
expressed in dB. In contrast, when the reference I0 corresponds to 1mW, the magnitude is expressed in
dBm.



Chapter VI

Incoherent frequency-to-time mapping and
its application to incoherent pulse shaping

In the previous Chapters, we were mainly concerned about the degradation of photonic
systems in view of the source spectral linewidth. Here, we take advantage of using a low-
coherence source and propose a new photonic configuration to achieve arbitrary averaged
intensity shaping [24]. The fundamental physical principle behind this setup is the tem-
poral counterpart of the vanCittert–Zernike theorem [75,216] applied to quasi-stationary
sources [48]. While most of the previous works to achieve user-defined intensity waveforms
rely on the use of broadband coherent sources [62], our technique utilizes a spectrally inco-
herent light source. An experimental verification of the technique is provided in Chapter
VIII, where intensity waveforms useful for RF applications are achieved.

6.1 First-order distortion of quasi-homogeneous pulses

We now proceed to propagate an arbitrary MCF into a GDD circuit. By inserting the
matrix coefficients given by Eq. (5.12) into Eq. (5.43) we get

Γe,out(t1, t2) = I0 exp

(
i
t21 − t22
2Φ2

) ∫∫
dtdt′ Γe,in(t, t

′)×

× exp

(
i
t2 − t′2

2Φ2

)
exp

(
−itt1 − t′t2

2Φ2

)
, (6.1)

where I0 is an irrelevant constant. We are interested in the far-zone regime. This limit
is reached when the quadratic phase factor in the integrand of Eq. (6.1) is removed.
This analysis has been performed by Gori in the spatial domain [217]. Basing on the
generalized space–time analogy [19], the condition to achieve the far-zone in the temporal
domain reads as [24]

|Φ2| >> σ

4π
min[2σ, tc], (6.2)

where σ is a measure of the temporal intensity width of the input pulse, and min[a, b]
means the smaller of the real numbers a and b. Equation (6.2) should be compared with
the coherent result in Eq. (5.19). It can be inferred that in many cases, it is possible to
achieve the far zone using a dispersive element with a lower GDD amount than in the
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coherent case. Thus, when the above limit is reached, Eq. (6.1) becomes

Γe,out(t1, t2) = I0 exp

(
i
t21 − t22
2Φ2

)
Wb,in (t1/Φ2, t2/Φ2) . (6.3)

Here, Wb,in(ω1, ω2) is the CSDF of the input partially coherent pulse centered at baseband.
Thus, apart from a quadratic phase factor, the MCF at the output is a scaled version
of the CSDF at the input. This result represents a generalization of the coherent case,
where, aside from a quadratic temporal phase factor, the output temporal envelope is a
scale version of the input spectral envelope [148].
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Figure 6.1: Representation of (a) the modulus of the complex degree of coherence
and (b) averaged intensity for a quasi-homogeneous pulse.

Let us now assume an input quasi-homogeneous light pulse [218]. Such pulses con-
stitute the temporal counterpart of the well-known quasi-homogeneous light sources [48].
They are characterized by a temporal intensity width much larger than the coherence
time of the source, σ >> tc, and a complex degree of coherence depending on the time
difference τ (see Fig. 6.1). In this case, the input MCF can be written as [216]

Γe,in(t1, t2) = Iin [(t1 + t2)/2] γe,in(τ), (6.4)

where Iin(t) and γe,in(τ) denote the averaged intensity and the envelope of the complex
degree of coherence of the input partially coherent light pulse. According to Eq. (6.4),
this particular MCF structure leads to

Wb,in(ω1, ω2) = Ĩin(ω2 − ω1)γ̃e,in [(ω1 + ω2)/2] , (6.5)

where Ĩin(ω) and γ̃e,in(ω) denote the Fourier transform of Iin(t) and γe,in(τ), respectively.
By substituting Eq. (6.5) into Eq. (6.3) we achieve

Γe,out(t1, t2) = I0 exp

(
i
t21 − t22
2Φ2

)
Ĩin(τ/Φ2)γ̃e,in

(
t1 + t2
2Φ2

)
. (6.6)

From this last equation, the averaged output intensity results

Iout(t) = I0Ĩin(0)γ̃e,in(t/Φ2). (6.7)
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Further, taking into account the scale property of the Fourier transform, it is apparent
that γ̃e,in is a slowly varying function compared with Ĩin. Therefore, the modulus of the
complex degree of coherence can be approximated to

|γout(τ)| ≈ |Ĩin(τ/Φ2)|. (6.8)

Equations (6.7) and (6.8) constitute the temporal version of the vanCittert-Zernike the-
orem [75] applied to quasi-stationary light pulses [216]. It relates the output complex
degree of coherence with the Fourier transform of the input light intensity. The math-
ematical transformations expressed by these equations are schematically represented in
Fig. 6.2.

γin (τ’)  

Iin (t’)  Iout (t)  

γout (τ)  1D FT

Far Zone

Figure 6.2: Schematic representation of the mathematical transformations involved
in the temporal vanCittert–Zernike theorem. FT means Fourier transformation.

6.2 Incoherent frequency-to-time mapping

Going one step further, we focus our attention on a particular way to produce quasi-
homogeneous light pulses. Following [75], these can be achieved with the model from
Sect. 3.3.1, i.e., having a spectrally incoherent source, like ASE, externally modulated with
a deterministic modulator. Note that, according to Eq. (3.9), a temporally modulated
stationary light source does not behave, in general, as a quasi-homogeneous light pulse
unless σ >> tc. Only in this case we can write

Γe,in(t1, t2) = |m[(t1 + t2)/2]|2Γs,e(τ), (6.9)

where Γs,e(τ) is the envelope part of the MCF of the stationary light source. Therefore,
having into account Eq. (6.7) and that Γs,e, is related with the baseband ES, Ss,b(ω), via
the Wiener–Khintchine theorem [Eq. (2.19)], the averaged output intensity becomes [75]

Iout(t) = I ′0Ss,b(t/Φ2), (6.10)

where I ′0 is an irrelevant constant. Equation (6.10) states that, after temporal modulation
of a spectrally incoherent CW stationary source and subsequent first-order distortion, the
output intensity profile is, independently of the temporal waveform provided by the mod-
ulator, a replica with a certain scale of the ES of the optical source. This relevant result
constitutes the generalization to the partially coherent case of the well-known coherent
frequency-to-time mapping technique presented in Sec. 5.5.1. It is worth mentioning that
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the scale factor that finally determines the temporal width of the output pulse in intensity
is conditioned by Eq. (6.2), which for a quasi-stationary light pulse reads as

|Φ2| >> σtc
4π

. (6.11)
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Figure 6.3: Generalized frequency-to-time mapping. (a) input ES (in linear scale);
(b) averaged intensity at the input of the GDD; (c) averaged output intensity. The
zero level for the intensities corresponds to the lowest marker in the y-scale.

Figure 6.3 represents an experimental verification of this frequency-to-time mapping
operation. As spectrally incoherent source we employed the ASE from the gain spectrum
of an EDFA. The ES is measured with an OSA and sketched in Fig. 6.3(a). Typical
coherence time of EDFAs are around ∼ 100 fs. The deterministic gate was a 10 Gb/s
LiNbO3 electro-optic modulator (EOM) biased at quadrature driven with a short RF
Gaussian impulse. The averaged optical intensity pulse profile is measured with a 20 GHz
sampling scope, and is sketched in Fig. 6.3(b). The pulse width was measured around
88 ps FWHM. In this way, the quasi-homogeneous requirement is by far reached. Finally,
light is launched in an SMF of 1.44 km length. Note this GDD amount is much larger
than the minimum required by condition (6.11) assuming β2 = −21.6 ps2/km. The output
intensity shape is measured again with the same sampling scope and the result is shown
in Fig. 6.3(c). The frequency-to-time mapping predicted by Eq. (6.10) is clearly achieved,
in view of the waveforms from Figs. 6.3(a) and (c). The corresponding scale factor is
calculated to be 0.024 ns/nm.
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It should be pointed out that this generalized mapping has been achieved indepen-
dently in [219]. The authors proposed to use it as an all-fiber sensor in view of the
capabilities to perform quasi-real-time spectral measurements. In the following Section,
we propose the use of this physical phenomenon as a way to achieve user-defined intensity
profiles.

6.3 Incoherent pulse shaping

In principle, any ES shape can be synthesized just by performing a proper spectral filtering
in the spectrally incoherent CW light source before entering the light into the temporal
modulator. The spectral filtering operation could be experimentally achieved by using
programmable pulse shapers [62, 220] or, in order to obtain all-fiber setups, by spectral
slicing with fiber Bragg gratings [221]. It is very important to recognize that, after the
spectral filtering stage, the resulting spectral bandwidth must remain large enough in
order to satisfy the quasi-homogeneous pulse requirement. Finally, after propagation in
the GDD circuit, a user-defined averaged output intensity profile is achieved. The whole
setup is schematically represented in Fig. 6.4.

OSA

ScopeGDD circuit

Φ2

Figure 6.4: Schematic diagram of the incoherent pulse shaping technique. The
spectral source is taken as the gain spectrum of an EDFA; the external modulator is
assumed to be an EOM. The GDD circuit performs the incoherent frequency-to-time
mapping.

It should be emphasized that, due to the incoherent nature of the optical source,
only the averaged output intensity is properly shaped. This implies that some intensity
fluctuations between the different practical realizations of the output shaped waveform
are predicted. Although this fact is expected to seriously restrict the practical capabilities
of our proposal, a coherence analysis of light fluctuations carried out in the next section
shows that they can be maintained low enough in practical applications, as will be shown
in the experimental verification of the technique provided in Chapter VIII.
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6.4 Analysis of intensity fluctuations

Let us define the intensity fluctuations as

ΔI(t) = I(t) − I(t), (6.12)

where I(t) is the random instantaneous intensity function associated to a particular re-
alization of the field, I(t) = 〈I(t)〉, and the angle brackets denote ensemble average. A
measurement of the correlation between the intensity fluctuations at two time instants is
obtained through the relative ratio,

r(t1, t2) =
〈ΔI(t1)ΔI(t2)〉
I(t1)I(t2)

. (6.13)

Note that this quantity reduces to the usual relative-intensity-noise figure of merit for
the stationary case [77]. An analytical expression for the above quotient can be obtained
when the field obeys a Gaussian statistical distribution. Having into account Eq. (2.29)
and the definition of the complex degree of coherence from Eq. (2.8), we achieve [24]

r(t1, t2) = |γ(t1, t2)|2. (6.14)

This equation connects the correlation of the intensity fluctuations with the modulus
square of the complex degree of coherence. Note that the highest intensity fluctuations
correspond to the smallest value for the modulus of the complex degree of coherence.

For the case of the quasi-homogeneous pulse, and in accordance with Eq. (6.8), the
coherence time at the output of the GDD circuit, tc,out, is related to the width of the
scaled Fourier transform of the input intensity modulation, tc,out = Φ2/σ. An estimate
for the improvement of the signal-to-noise ratio is roughly given by the quotient between
this coherence time and the input one into the device, tc,in. Note that tc,in is related to
the inverse of the bandwidth of the spectrally filtered source, Δω. In this way we obtain,

tc,out

tc,in
≈ Φ2Δω

σ
. (6.15)

This ratio is larger for quasi-homogeneous light pulses and GDD circuits with larger
amounts of dispersion. Thus, a proper choice either of the width of the input intensity or
the dispersion parameter should guarantee the required value for the signal-to-noise ratio
for a particular application.



Chapter VII

Non-interferometric measurement
of partially coherent light pulses

With the current diagnostic tools, it is possible the full characterization of the temporal
[222–226] or spatiotemporal [227,228] structure of coherent pulsed beams. Many of these
devices need a long sequence of replicas of the pulse to be measured. This sequence is
usually provided by the pulse train itself, assuming that every waveform constitutes an
exact replica of its neighbors. However, this widespread procedure is not suitable when
there are stochastic variations from pulse to pulse, i.e., the pulses are spectrally partially
coherent.

To overcome this problem, advanced diagnostic techniques operating in a single-shot-
like configuration have been developed [222,229–232]. However, for high-repetition rates,
monitoring these waveforms constitutes a great challenge [229]. Furthermore, even if
the whole sequence was measured, tedious additional computation would be required for
extracting the statistics of the ensemble. In order to gain access into the second-order
information of the partial coherence characteristics, the MCF – or CSDF – should be the
meaningful quantities to be measured instead, because they are already defined from the
ensemble average [223].

Previous attempts on extracting some statistical information of fluctuating pulse trains
aimed to measure the averaged intensity autocorrelation [233]; the RF-spectrum distortion
[113]; the frequency dependence of the spatial-fringe visibility [234,235]; or the linewidth in
frequency combs [121,125]. However, although these techniques provide some information
about the coherence time of the pulse, no one gives direct access into the MCF or CSDF
structure.

In the spatial domain, techniques for characterizing the spatial coherence properties of
quasi-monochromatic light beams are now well established. They could be mainly classi-
fied into two different groups: interferometric [236–239] and non-interferometric [240–244]
procedures. In the temporal domain, only interferometric approaches have been proposed
for measuring either the MCF or the CSDF of the pulse [47, 245]. In this Chapter we
review these advanced techniques and introduce new concepts for non-interferometric
characterization of spectrally partially coherent radiation. We just consider the temporal
variation of the pulse, which physically implies to particularize the measurement into a
single spatial point or to have the light confined in a medium with translational symme-
try. Furthermore, we also assume that we can measure: i/ the averaged ES, which results
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straightforward with current OSAs, and ii/ the averaged intensity profile, which can be
directly done with current sampling scopes for pulse durations around ∼ 1 ps, or 100 fs
if a magnifying TIS is utilized previous to the acquisition unit [169]. For non-telecom
wavelengths, this last operation can be performed with spectro-temporal devices, like the
one reported in [167].

7.1 Temporal double-slit Young experiment

The two-slit Young experiment constitutes the cornerstone in the measurement of spatial
coherence [48]. In this Section we review this classic experiment in the temporal do-
main [246] in order to clarify further the concepts for the measurement of non-stationary
partially coherent pulses. The particular experimental arrangement for this measurement
was first proposed by Iaconis and Walmsley [245].

7.1.1 Time domain formulation

Let us assume a scheme like the one presented in Fig. 7.1. A partially coherent pulse, with
a fluctuating electric field described by its analytic signal U(t) is split and directed into
the arms of a Mach-Zehnder interferometer. Each pulse traveling in the arm is optically
sampled by a deterministic gate at controllable time instants ta and tb. This operation
could be performed with a temporal modulator like the one introduced at Sect. 5.3.2,
with Γ−1 → 0. After the sampling, light is recombined, and the averaged ES is measured
at the output with an OSA. Then, we achieve

S(ω) = I(ta) + I(tb) + 2
√
I(ta)I(tb)|γ(ta, tb)| cos[ω(ta − tb) + ϕ(ta, tb)], (7.1)

where γ(t1, t2) denotes the complex degree of coherence of the input pulse, φ(ta, tb) =
arg[γ(ta, tb)], and I(t) = 〈|U(t)|2〉 is the averaged input intensity. The frequency varying
signal plays the role of the fringe pattern in the classical Young experiment, whereas the
measurement performed with the OSA results identical to the far-field diffraction pattern.
Analogously, the visibility can be defined as V = (Smax − Smin)/(Smax + Smin),

V =

√
I(ta)I(tb)(

I(ta)+I(tb)
2

) . (7.2)

From Eq. (7.1), the real part of the complex degree of coherence [Eq. (2.8)] can be
measured if one measures previously the averaged intensity of the source to be character-
ized. The sampling must be performed in a tunable way, so that the ”temporal pinholes”
can be swept by the user. We have also assumed that the optical sampling behaves as
an ideal Dirac’s delta function. Considering the finite shape, m(t), and assuming to be
much shorter than U(t), Eq. (7.1) appears multiplied by the ES of the gate and results
in a sinusoidal spectrally confined signal. All this together leads to a nonstraightforward
method for the characterization of partially coherent pulses.

7.1.2 Spectral domain formulation

For the sake of completeness, let us formulate the spectral arrangement of the above
experiment, as it is sketched in Fig. 7.2. The same partially coherent light pulse is split in
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Pulsed source OSA
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δ(t-ta)

δ(t-tb)
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Figure 7.1: Scheme of the temporal two-slit Young experiment.

the same interferometer, but now in each arm we place different spectral filters with very
narrow widths (this would be Δ−1 → 0 in the device described at Sect. 5.3.4), selecting
the spectral components ωa and ωb, respectively. We recombine the pulses and measure
the result with a sampling scope, which leads to the averaged intensity I(t). The result
becomes

I(t) = S(ωa) + S(ωb) + 2
√
S(ωa)S(ωb)|μ(ωa, ωb)| cos[(ωa − ωb)t+ ϕe(ωa, ωb)], (7.3)

where S(ω) is the ES of the input partially coherent pulse, μ(ω1, ω2) is the complex
degree of spectral coherence [see Eq. (2.13)], and ϕe(ωa, ωb) = arg[μ(ωa, ωb)]. Following
the same reasoning as before, by changing ωa and ωb we can measure the complex degree
of spectral coherence [with previous knowledge of S(ω)]. In practical terms, this method
is more suitable than its temporal version because spectrally narrow filters are much
simpler devices than external gates providing ultrashort light pulses. The resolution of
the sampling scope will impose a limit on the maximum spectral separation |ωa − ωb|,
which could be on the order of several tenths of GHz. The narrower the spectral filters
are, the less energy we get into the photodiode. So, the floor-noise level of the intensity
converter places the last limit into the spectral resolution of ωa and ωb. As in the previous
case, the effect of the spectral shape of the filter, assumed to be much narrower than the
Fourier transform of U(t), translates into a finite sinusoidal signal, with a pulse profile
given by the temporal intensity distribution of the inverse Fourier transform of the spectral
complex filter shape.

7.2 Advanced interferometric characterization

The temporal version of the two-slit Young experiment is just a particular interferometric
arrangement. There are more advanced implementations that could provide a faster and
simpler way to achieve the second-order characterization of partially coherent light pulses.
Note that in the previous configurations, a single (averaged) measurement leads to the
characterization of a unique point of the MCF or CSDF 2D structure.

Spectral-phase-interferometry techniques give access into the CSDF [47, 245]. To
achieve this, in the first arm of the previous interferometer it is placed a nondisper-
sive delay line (linear spectral phase), and in the second one an element introducing a
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Figure 7.2: Scheme of the spectral version of the two-slit Young experiment.

temporal linear phase (time prism or spectral shear) that shifts the frequency of the pulse.
At the output the averaged signal interference is recorded either in the spectral or time
domain with an OSA or sampling scope, respectively. By controlling the shear, the former
procedure provides a measurement of the CSDF, whereas the other one of the MCF [245].

The delay line can be easily achieved with an adjustable displacement built with
mirrors, or by an in-line dispersion compensated waveguide, for example. The spectral
shear can be provided with an EOPM during the zero crossing of the driving signal, which
results an easy approach for telecom pulses [229]. For sub-picosecond pulses, the shear
can be achieved via upconversion in a nonlinear crystal [225].

However, unlike in the coherent case, for partially coherent pulses the shear needs to
be tuned over a broad range in order to measure the CSDF at different lines, which limits
the applicability of the technique [47]. Finally, it should be mentioned that from the
frequency-resolved optical gating method [222], it is not possible to get an obvious link
between the measured averaged trace and the MCF (or CSDF) of the partially coherent
pulse to be characterized, even assuming that it obeys Gaussian statistics [47].

7.3 Non-interferometric measurements

In the spatial domain, there are well-established procedures for retrieving the phase infor-
mation of an input object from intensity measurements taken at two different diffraction
planes [240–244, 247, 248]. These procedures are generally valid for both, coherent [248]
and spatially partially coherent beams [240]. They are based on the transport-of-intensity
equation (TIE) [247, 249]. This method is particularly useful because it avoids the use
of any interferometer, and has been successfully applied to phase-contrast imaging with
optical [250], as well as with x-ray sources [251, 252]. However, it presents some difficul-
ties when the input light is not uniform and becomes useless when zeros appear in the
intensity distribution [253]. The coherent version of the TIE has been recently adapted
to the temporal domain by Dorrer, and has become a nice tool for measuring nonlinear
fiber coefficients [254]. In the following, we show how the TIE can be also applied for the
measurement of the MCF of partially coherent light pulses, assuming them to obey some
specific model.

Before starting, it will be useful to rewrite Eqs. (2.15) and (2.16) by making the
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following changes of variable

t̄ =
t1 + t2

2
and τ = t2 − t1, (7.4)

or

ω̄ =
ω1 + ω2

2
and ΔΩ = ω2 − ω1. (7.5)

Thus,

Γ(t̄, τ) =

∫∫
W (ω̄,ΔΩ) exp[−i(ω̄τ + ΔΩt̄)]dω̄dΔΩ, (7.6)

and

W (ω̄,ΔΩ) =
1

4π2

∫∫
Γ(t̄, τ) exp[+i(ω̄τ + ΔΩt̄)]dt̄dτ, (7.7)

where Γ(t̄, τ) = Γ(t̄− τ/2, t̄+ τ/2) and W (ω̄,ΔΩ) = W (ω̄ − ΔΩ/2, ω̄ + ΔΩ/2).

7.3.1 Time domain approach

With this nomenclature, the averaged intensity at the output of a GDD circuit is written
as

I(t) = Γe,out(t, 0) =

∫∫
W b,in(ω̄,ΔΩ) exp[−iΔΩ(t− ω̄Φ2)]dω̄dΔΩ. (7.8)

Let us calculate the derivative of this function with respect to the GDD parameter,

∂I(t)

∂Φ2

= i

∫∫
W b,in(ω̄,ΔΩ)ΔΩω̄ exp[−iΔΩ(t− ω̄Φ2)]dω̄dΔΩ. (7.9)

This equation measures the variation of the optical intensity at different GDD amounts.
If we consider only those dispersive elements satisfying

Φ2 <<
2π

Δωδω
, (7.10)

where Δω is an estimation of the spectral content of the input partially coherent pulse,
and δω is the spectral correlation width [Eq. (2.14)], then the exponential term in the
integral can be disregarded. This can be achieved by having a GDD circuit with a small
dispersion amount. So,

∂I(t)

∂Φ2

≈ − ∂

∂t

∫
ω̄W ig,in(ω̄, t)dω̄, (7.11)

where

W ig,in(ω̄, t) =

∫
W b,in(ω̄,ΔΩ) exp(−iΔΩt)dΔΩ (7.12)

is the Wigner distribution function [255] of the input partially coherent light pulse1.

1The Wigner distribution function of a signal (coherent or not), U(t), is defined as Wig(ω, t) =∫ 〈U∗(t − τ/2)U(t + τ/2)〉 exp(iωτ)dτ . Further, it is verified that Wig(ω, t) =
∫ 〈Ũ∗(ω − ΔΩ/2)Ũ(ω +

ΔΩ/2)〉 exp(−iΔΩt)dΔΩ, where Ũ(ω) is the Fourier transform of U(t).
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Equation (7.11) can be understood as the generalization to the partially coherent case
of the TIE [240]. It relates the change of the intensity pulse profile through propagation in
a GDD circuit with the first-order momentum of the Wigner distribution function [255].

However, we are interested in the characterization of the particular case of partially co-
herent light pulses whose MCF is described by the model presented at Sect. 3.3.1. In order
to characterize fully such a concrete MCF we need to measure at least two functions: the
deterministic functionm(t) and the weight function Ss,b(ω). Note that since we are dealing
with the envelope part of the MCF, the weight function is defined at the baseband. The
measurement of |m(t)| is straightforward because we have assumed that averaged inten-
sity measurements can be done. We should remind that I(t) = Γs,e(0)|m(t)|2. However,
we still need the characterization of the phase of m(t).

With this aim we now substitute Eq. (3.7) into (7.12), and having into account the
change of variables from Eqs. (7.5) we get

W ig,in(ω̄, t) =

∫∫
Ss,b(ω̄

′)M̃∗(ω̄ − ΔΩ′/2 − ω̄′)M̃(ω̄ + ΔΩ′/2 − ω̄′)× (7.13)

× exp(−iΔΩ′t)dω̄′dΔΩ′.

If we now further take into account that
∫
ωSs,b(ω)dω = 0 because the weight func-

tion is defined at the baseband;
∫
Ss,b(ω)dω = Γs,e(0); and the relation

∫∫
ωM̃∗(ω −

ΔΩ′/2)M̃(ω + ΔΩ′/2) exp(−iΔΩ′t)dΔΩ′dω = ∂
∂t

[I(t)∂ϕm

∂t
] [255], we achieve

∂I(t)

∂Φ2

= −Γs,e(0)
∂

∂t

[
I(t)

∂ϕm(t)

∂t

]
. (7.14)

Here, we have taken into account that m(t) can be written as m(t) = I1/2(t) exp[−iϕm(t)].
Equation (7.14) has exactly the same structure as its spatial counterpart [247]. This
important result establishes that the equation governing the intensity variations for a
partially coherent pulse provided by Eq. (3.9) is exactly the same as in the coherent case
[254] (for which only m(t) appears), as long as the intensities are properly averaged over
the ensemble. From Eq. (7.14), the phase, or more exactly the chirp, can be calculated by
inverting the equation if the intensity is measured for two different GDD values. Assuming
I1(t) is the averaged intensity profile measured at Φ2 = 0, and I2(t) the profile measured
at Φ2, the chirp can be recovered by calculating the derivative in the approximate way

∂ϕm(t)

∂t
≈ −1

Φ2I(t)

∫ t

−∞
[I2(t

′) − I1(t
′)]dt′. (7.15)

Here, we have assumed that Γs,e(0) = 1, which physically requires that the intensity
measurements are properly normalized. Since, according to Eq. (7.10), the GDD amount
is small, the averaged intensity distributions I1(t) and I2(t) are very similar, and then I(t)
in the denominator can be taken as I1(t) or I2(t), indistinctly. However, the variation is
noticeable enough to extract the input chirp distribution. Finally, as can be clearly seen
from Eq. (7.15), this procedure does not work for input intensity profiles having zeros. The
temporal version of the TIE has proved to be a very powerful tool for measuring phase-only
and phase-mostly coherent temporal intensity signals [254]. However, measurements for
the partially coherent case in the temporal domain are not reported yet in the literature.



64 7. Non-interferometric measurement

S(ω)

GDD circuit Scope

Scope

Φ2

I2(t)

I1(t)

OSA

Partially
coherent
pulse source

Γe(t1,t2)=
m*(t1)m(t2)Γs,e(t2-t1)

Figure 7.3: Non-interferometric characterization of partially coherent light pulses
obeying the independent-elementary-pulse-representation model in the spectral do-
main.

With the information of the intensity and phase of the deterministic function m(t), we
just have to know the weight profile, Ss,b(ω), in order to extract the full structure of the
MCF. Let us assume that we measure the ES of the partially coherent light pulse with
an OSA. With the knowledge of the chirp and the intensity of m(t), we can calculate its
Fourier transform M̃(ω) (apart from an irrelevant phase constant). Thus, according to
Eq. (3.8), Ss,b(ω) can be calculated by deconvolving the measured ES with the previously
calculated ES of the deterministic function, |M̃(ω)|2. Once Ss,b(ω) is calculated, Γs,e(τ)
is given by inverse Fourier transformation, and the complete MCF structure is achieved.
Figure 7.3 summarizes the three different measurements necessary to retrieve the MCF.

This procedure was recently proposed in the spatial domain in [242]. Here, we have
developed the temporal counterpart and clarified the different steps in order to charac-
terize fully an MCF as the one provided at Sect. 3.3.1. We must emphasize that the
possible experimental arrangement suggested in Sect. 3.3.1 is just a particular procedure
for achieving such an MCF. In any case we mean that the model given by Eq. (3.9) is
uniquely obtained by modulating a stationary source with a deterministic gate. In fact,
the structure from Eq. (3.9) is in general achieved whenever we have a source of multi-
plicative noise obeying stationary statistics affecting a deterministic pulsed source. That
is the case, for instance, in free-running passively mode-locked lasers [122].

7.3.2 Spectral domain approach

Let us now assume that we want to characterize a partially coherent light pulse for which
we know it to obey the specific model presented at Sect. 3.3.2. Thus, in order to char-
acterize fully the CSDF, we just have to know the shape of the weight function f(t),
and the coherent basis, Ẽ(ω), in amplitude and phase. Since, again, we decompose
Ẽ(ω) = |Ẽ(ω)| exp[iϕe(ω)], and assume that measurements of the averaged ES can be
readily provided, |Ẽ(ω)| can be measured straightforwardly. In order to extract ϕe(ω),
we proceed to analyze the distortion of the ES of a partially coherent pulse propagating
through a time lens,

Sb,out(ω) =
1

4π2

∫∫
Γe,in(t̄, τ) exp[iτ(ω + t̄K)]dτdt̄, (7.16)
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Figure 7.4: Non-interferometric characterization of partially coherent light pulses
obeying the independent-elementary-pulse-representation model in the time domain.

where Γe,in(t̄, τ) corresponds to Eq. (3.11), and K is related with the chirp of the time lens
(see Sect. 5.3.1). Note that this is exactly the dual situation described in the previous
subsection.

The partial derivative of Eq. (7.17) with respect to K leads

∂Sb,out(ω)

∂K
=

i

4π2

∫
t̄dt̄

∂

∂ω

[∫
Γe,in(t̄, τ) exp(iτω)dτ

]
, (7.17)

where we have assumed that the time lens satisfies

K <<
2π

σtc
, (7.18)

with σ being the temporal width of the input partially coherent pulse and tc its coherence
time. That inequality allows for removing the exponential term exp(iτKt̄) in Eq. (7.17),
which is achieved with a time lens with relatively low chirping rate. Furthermore, by ar-
bitrarily selecting the weight function with its first order moment null,

∫
tf(t)dt = 0, and

with the help of the relation
∫∫

te∗(t− τ/2)e∗(t+ τ/2) exp(iωτ)dτdt = 4π2|Ẽ(ω)|2 ∂ϕe(ω)
∂ω

,
we achieve

∂Sb,out(ω)

∂K
= F̃ (0)

∂

∂ω

[
|Ẽ(ω)|2∂ϕe(ω)

∂ω

]
, (7.19)

where we are denoting F̃ (0) =
∫
f(t)dt. Equation (7.19) is the dual version of the

TIE. It can be considered as the transport-of-energy-spectrum equation (TESE), but
generalized to the partially coherent case. In the temporal domain, this equation has
been already reported for fully coherent pulses only [256]. This case has been proved to
be particularly useful for measuring the spectral phase of coherent ultrashort light pulses
having a relatively wide and flat spectrum profile and without zeros.

In the partially coherent regime, assuming that the pulse to be measured obeys the
time-domain independent-elementary-pulse representation model, we can easily calculate
the spectral phase, or more exactly the delay profile, of the elementary pulse by integrating
the TESE. To do this, we have to measure first the ES of the partially coherent light pulse
at both the input, S1(ω), and output, S2(ω), of a time lens with a chirping rate satisfying
Eq. (7.18). Therefore, from Eq. (7.19) we get

∂ϕe(ω)

∂ω
≈ 1

|Ẽ(ω)|2K
∫ ω

−∞
[S2(ω

′) − S1(ω
′)]dω′, (7.20)
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where we have considered F̃ (0) = 1, which implies that the ES measurements are properly
normalized.

Once Ẽ(ω) is calculated, the weight function f(t) can be calculated from Eq. (3.14).
To this aim, we have to measure first the averaged intensity of the partially coherent
coherent pulse to be characterized, which is mathematically given by Eq. (3.14). Following
the same reasoning as before, the function f(t) can be calculated by deconvolving the
measured averaged intensity with the function |e(t)|2, that has to be calculated from the
knowledge of Ẽ(ω). Figure 7.4 schematically summarizes this procedure for measuring
such a particular MCF.



Chapter VIII

Applications in microwave photonics

Photonic processing of microwave and RF signals is a research topic that has been ex-
plored for more than 30 years [257–259]. Indeed, microwave photonics offers many well-
known advantages like reconfigurability, high bandwidth, immunity to electromagnetic
interference, high-speed processing, and potential integrability with fiber optics technol-
ogy [195]. These features are very difficult to achieve with electronic approaches, if not
impossible. Typical microwave-photonic applications cover analog-to-digital conversion,
beam-forming, filtering, and arbitrary waveform generation (AWG) [260].

In this Chapter we focus our attention on the generation and filtering of RF signals
using both, coherent and incoherent techniques.

8.1 Photonically assisted filtering of RF signals

Concerning the processing of microwave signals in the optical domain, from the aforemen-
tioned advantages probably the most important ones are the flexible and reconfigurable
filter design, low frequency-dependent losses, and larger bandwidth [195,260].

In a photonic microwave filter, the input RF signal modulates an optical source, the
modulated optical waveform is then processed in a photonic circuit, and finally the signal
is recovered back in the electrical domain by optoelectronic (O/E) conversion [195, 260].
Usually, the use of spectrally incoherent sources is preferred because the filtering operation
is more robust against environmental fluctuations [261]. It is then required that the coher-
ence time of the optical source be shorter than the tap delay, ensuring that intensities are
summed and weighted before O/E conversion. However, since intensity is always positive,
the RF-filter design cannot be completely arbitrary. From a digital-filter perspective, this
is because the tap weight is positive. This drawback may be solved, e.g., by employing
alternative modulation formats combined with differential photodetection [262–267], or
nonlinear effects in either SOAs [268] or SMFs [269, 270]. Additionally, in discrete-time
processing, the resulting RF filter response is periodic [271].

Recently, it has been recognized that the use of pulse-shaping technologies provide the
convenient framework for high-bandwidth, user-defined filter implementation [32, 272–
275]. The spectral shapers based on spatial light modulators (SLMs) feature simulta-
neously reconfigurability and tunability by controlling the voltage applied on the liquid
crystal. This translates into an effective way of producing a huge number of taps with

67
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controllable weight. With such a high spectral resolution, the energy distribution can be
considered as non-discrete, leading to a practically infinite free-spectral range [32, 276].
The use of spectral encoders based on SLMs [220] for RF filtering has been verified using
incoherent [36,272,273] and coherent optical sources [274,275].

8.1.1 Mathematical treatment

Among the existing RF-filtering architectures, we will focus our attention on the one
presented at Fig. 8.1. The modulator acts as an electrical-to-optical converter. The
optical source is considered to be spectrally incoherent (the gain spectrum of an EDFA in
the figure), and its ES is continuously tailored by means of a SLM located in the Fourier
plane of a zero-dispersion pulse shaper [62, 220]. The RF signal to be filtered comes into
an external modulator, which for simplicity we will restrict to be either an EOM, EOPM,
or single-sideband (SSB). After modulation, the light is launched into a GDD circuit
and later is converted back to the electrical domain with a square-law photodetector.
In the most general case, it is not possible to establish a simple relation between the
input and output RF signals. However, if the input RF is described as a superposition
of sinusoidal signals, we can then analyze the effect of a single RF tone and study under
which conditions the system behaves linearly.

GDD circuit

Φ2

Input RF signal

Output RF signal

Reflective SLM
Grating

Lens

Mirror

External 
modulator

    O/E
conversion

Spectral encoder

Figure 8.1: Schematic diagram of a RF photonic processor operating with an
EDFA as the spectrally incoherent source. The spectral shaping is performed with
a Fourier transform pulse shaping device in a reflective geometry.

We note that at the output of the photodiode (PD), the measured current will be

IPD(t) = ηIout(t) ⊗R(t), (8.1)

where η is an irrelevant constant depending on the efficiency of the photodetector, R(t)
is the finite temporal response of the PD, and Iout(t) is given by Eq. (5.51), with Ss,b(ω)



8.1 Photonically assisted filtering of RF signals 69

being now the filtered ES of the incoherent optical source. Additionally, in our case

m(t) = 1 +m1 exp(i2πft) +m2 exp(−i2πft), (8.2)

where the real coefficients m1 and m2 take into account the different modulation formats,
and f is the RF. For an EOM (or double-sideband modulator), m1 = m2 = Δθ; for SSB
m1 = Δθ and m2 = 0; and for an EOPM m1 = J1(Δθ) and m2 = −J1(Δθ), where Δθ
is the modulation index and Jq() is the qth-order Bessel function of the first kind. The
averaged output intensity gives rise to a DC term and two oscillatory signals at frequencies
2f and f . From a practical point of view, the term at 2f can be neglected if Δθ is small
enough, which can be achieved by placing an RF attenuator at the input of the external
modulator. Under this assumption, and neglecting the DC term (which can be achieved
by placing a filter), we can define a proper normalized transfer function between the input
and output single-tone RF signal, i.e., H(f) = ĨPD(f)/Ĩin(f), where ĨPD(f) and Ĩin(f) are
the Fourier transform of IPD(t) and Iin(t), respectively. Here, we consider f the frequency
of the signal measured in Hertz, and Iin(t) represents the electrical intensity input to the
filter. Then [277,278]

H(f) = H1(f)H2(f)H3(f), (8.3)

where

H1(f) =
Γs,e(−2πfΦ2)

Γs,e(0)
, (8.4)

H2(f) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
cos(2Φ2π

2f 2) for EOM

exp(i2Φ2π
2f 2) for SSB

sin(2Φ2π
2f 2) for EOPM

(8.5)

and H3(f) is the PD transfer function, i.e., the normalized Fourier transform of R(t).
This result indicates that the effective transfer function of the microwave filter can be

expressed as the combination of the responses associated with the filtered ES, H1(f); the
linear propagation in the GDD circuit, H2(f); and the PD response, H3(f). We note that
H1(f) corresponds to a mapping of the MCF of the filtered optical source [32]. This opens
the door for sculpting microwave filters by synthesizing, through an inverse problem, the
ES of the source through frequency encoding. This result constitutes a generalization of
those found in the context of incoherent tapped filters concerning the influence of the finite
bandwidth of the spectrum slices [279,280]. Finally, it should be mentioned that a deeper
analysis of the effects of TOD on the filter characteristics can be found in [266,278,280].

8.1.2 Experimental results

The main problem of the device in Fig. 8.1 for implementing band-pass filtering operations
is the fact that the function H(f) contains a nondisregarding spectral content around
f = 0, which is known in the literature as a baseband resonance. From Eq. (8.3), we
recognize that the use of an EOPM alleviates this problem because of the notch at the
DC frequency associated with H2(f) [264]. However, by properly synthesizing the MCF
of the optical source, one could synthesize the RF filter even using an EOM or an SSB
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modulator. This can only be done through the tailoring of the ES. Since this is a positive
and real magnitude, arbitrary H1(f) functions, and therefore H(f), cannot be achieved.
However, a broad range of practical examples can be obtained with an adequate Fourier
algorithm design [281].
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Figure 8.2: Measured filter transfer function corresponding to the terms of the PD
and the EOM for an SMF of 4.6 km length.

As an example, we aimed to design an RF filter with a resonant flat bandpass at the
region corresponding to 4-7 GHz, which could be interesting for ultra-wideband (UWB)
applications [274]. Thus, we built the experimental setup corresponding to Fig. 8.1, where
the external modulator was provided by the same 10 Gb/s LiNbO3 EOM as in Sect. 6.2.
Therefore, we have to prevent from the carrier suppression effect, i.e., the first zero in the
cosine term in Eq. (8.5). We selected an SMF as GDD circuit with a length of 4.6 km,
giving rise to an almost flat H2(f) function for the RF interval corresponding to 0-10
GHz. This would ensure us that the resulting H(f) is mainly given by the H1(f) term.
To test this, we first employed a narrowband CW laser and measured the corresponding
filter transfer function. The measurement of the RF filter is done with a lightwave com-
ponent analyzer (LCA)1. The measured filter transfer function is sketched in Fig. 8.2. As
expected, we can see the flatness over the region of interest. Thus, by exchanging the laser
with a spectrally incoherent source and keeping the same fiber length, we can stay that the
new H(f) will be essentially provided by a scaled version of the MCF of the synthesized
optical source. Thus, we then replaced the laser with an ES provided by the gain spec-
trum of an EDFA, and the spectral tailoring was performed with a commercially available
zero-dispersion pulse shaper. This device has been designed for controlling the channels
in D-WDM communication systems, and possesses 48 channels with 100 GHz resolution
spanning the whole C band and < 6 dB insertion losses (Peleton, QTM) [282]. The am-
plitude of each channel could be blocked fully, or reduced in increments of 0.1 dB up to a

1An LCA is an optoelectronic device that links the RF input port of the EOM with the RF signal
received at the output of the PD. It launches a sweepable single tone signal at frequency f with controlled
amplitude at the input. It also measures the relative ratio, in amplitude and phase, between the input
signal at f and the magnitude of the same frequency measured at the output of the PD. In other words,
it gives H(f) over a predefined sweeping range.
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maximum of 20 dB. Due to the source incoherence, the output waveform is independent
of the reminiscent spectral phase of the individual channels [283]. The synthesized ES
was measured with an OSA and is sketched in Fig. 8.3(a). Finally, the achieved RF filter
is illustrated in Fig. 8.3(b). The group delay, i.e., the derivative of the spectral phase of
H(f) is also sketched for completeness in Fig. 8.3(c). Apart from the inherent baseband
resonance, we achieved the desired flat-top RF filter that spans over the frequency range
from 3.2 GHz to 8.8 GHz, compatible with UWB technology [274].
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Figure 8.3: Measured filter transfer function corresponding to the terms of the PD
and the EOM for an SMF of 4.6 km length.

8.2 Generation of RF and mm-wave signals

Generation, control, and distribution of microwave and millimeter-wave arbitrary signals
is an important research topic due to potential applications in UWB communication
systems, radar, RF communications, sensor networks, and electronic test measurements
[195]. Electronic devices used to generate high-frequency complex waveforms are seriously
limited by the bottleneck of digital-to-analog technology. In practice, current electronic
AWGs are restricted to create RF signals with a bandwidth below ∼ 5 GHz [195]. In
contrast, photonically-assisted AWGs far exceed this range. In general terms, the upper
limit in terms of the analog RF spectral content that can be achieved using photonic
approaches is just set by the O/E conversion bandwidth. Commercially available PDs
currently place this limit beyond the mm-wave region [260].

In this section we review some coherent and incoherent photonic approaches for pro-
ducing high frequency electrical signals with reconfigurability capabilities.

8.2.1 Beating of coherent spectral lines

The earliest photonic approach to generate high-frequency microwave signals was achieved
just by making different CW lasers to beat together and measure the temporal intensity
signal with a high-bandwidth PD [284]. However, the need of phase-locked loops to control
the stability of the generated signal and the impossibility to synthesize the achieved RF
waveform motivated the search for alternative solutions. Wiberg et al. proposed a simple
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approach involving the use of a single CW laser modulated with an EOM, pumping a
nonlinear device in order to generate four-wave-mixing interactions. Therefore, mm-wave
signals were achieved by spectral selection and beating of the generated high-frequency
components [285]. Currently, with the development of stable in-fiber frequency comb
generators [193, 286, 287], the beating can be achieved from different coherent lines in a
comb at higher frequencies [95,288].

8.2.2 Upshifting based on temporal imaging of virtual Talbot planes

Despite the simplicity of the previous approaches, the tunability and reconfigurability of
the produced RF waveforms is still very restricted. However, with the TISs explained
at Sect. 5.5.3, a scaled replica in intensity of an input coherent waveform can be easily
achieved. If we focus our attention on the case of an input optical source amplitude
modulated with an arbitrary RF signal, we realize that achieving a compressed replica
with a TIS is synonymous to achieve an upshifted RF signal after O/E conversion with
an ideal PD [289].

Time lens GDD
circuit

Equivalent 
GDD circuit

K

time
Φ2eq

Φ2

time

time

Figure 8.4: A transform-limited pulse is split in two arms. The upper arm first
chirps the pulse and propagates it through a GDD circuit. The lower arm, composed
by only a GDD circuit, is fully equivalent to the first arm in the sense that it may
provide the same output intensity distribution as the first one, with different scale,
if the GDD parameter is selected according to Eq. (8.6).

A more advanced configuration of the above proposal was later verified by Azaña et
al. [145,290]. To understand their procedure we should first clarify the following situation.
Let us consider a coherent chirped optical pulse (a signal followed by a time lens with
chirping K) propagating through a GDD circuit with Φ2. In virtue of the property
given by Eq. (5.14), the temporal transformation suffered by the chirped pulse can be
rewritten in terms of the unchirped version traveling through an equivalent GDD circuit
with parameter [144]

Φ2eq =
Φ2

1 −KΦ2

, (8.6)

a scale factor given by
meq = 1 −KΦ2, (8.7)

and new chirping coefficient provided by

Keq = K/meq. (8.8)
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Therefore, according to Eq. (8.6), the temporal intensity profile achieved at Φ2 by the
chirped version is just a temporal image, with scale meq, of the one that would be achieved
by the unchirped version at Φ2eq. This situation is schematically explained in Fig. 8.4.
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Figure 8.5: Schematic setup for mm-wave generation with a low-bandwidth RF
signal driving an EOPM.

In the work reported in [145], the key to achieve the upshifting was to consider the
coefficient Φ2eq corresponding to the integer Talbot planes of an input periodic amplitude-
modulated arbitrary signal. Note that the time lens must have a large temporal aperture
in order to contain several periods of the initial sequence [290]. This situation was achieved
by predistortion of an ultrashort pulse trough an SMF. Based on this general result, a
∼ 350 GHz sinusoidal waveform with finite duration was achieved just starting from one
of 40 GHz [145] modulating an EOM.

A similar setup can be achieved with an EOPM, instead of an EOM, providing several
advantageous features like high throughput and reconfigurability [22]. The reconfigura-
tion is achieved by changing electrically an input low bandwidth RF periodic signal, and
low losses are guaranteed by the phase modulation. In that case, the RF signal drives the
EOPM, and we should consider the GDD amounts Φ2eq corresponding to the fractional
Talbot planes given by Eq. (5.29). Strictly speaking, we could not speak about ”upshift-
ing” because we are creating a different RF signal to the input one. Our setup is depicted
in Fig. 8.5. The first ultrashort pulse is spread into an SMF. The acquired quadratic phase
modulation is used as temporal lens with linear-chirping coefficient K. The subsequent
GDD circuit is designed according to Eq. (8.6) to achieve a compressed replica that would
be obtained at Φ2eq if instead of the laser pulse a CW source was used. The analysis of
the different intensity signals achieved at fractional Talbot planes by distortion of CW
periodically phase-modulated signals has been developed in Sect. 5.5.6.

We have tested the validity of the technique through numerical simulations. The laser
is assumed to provide 1 ps rms width centered on 1.55μm, leading to β2 = −21.6 ps2/km
when an SMF is considered. The first example concerns the generation of a high-
bandwidth flat-top–like pulse profile, for which a sinusoidal RF driving signal into the
EOPM is assumed. We want to perform the image of the virtual intensity distribution
that would be achieved at Φ2,eq = Φ2T/4, which, as explained at Sect. 5.5.6, is flat-top



74 8. Applications in microwave photonics

time (ps)

φ
2
=1989ps2

ΔΤ~0.5ns

φ
2
=994ps2

ΔΤ~0.2ns
(a) (b)

0

R
F 

si
gn

al
 o

ut
 (a

.u
.)

R
F 

si
gn

al
 o

ut
 (a

.u
.)

-200 -100 100 200 -100 -50

time (ps)
0 50 100

Figure 8.6: In solid line, results of numerical simulation and the case when aperture
effects are neglected is plotted in each figure in dashed line. (a) Flat-top pulse RF-
signal profile from a sinusoidal signal driving the EOPM at 2 GHz; (b) RF signal
with sinusoidal variation obtained from an EOPM driven with a triangular profile
at 2 GHz repetition rate.

for a modulation index of Δθ = π/4 rad. For this aim, from Eqs. (8.6) and (8.7), we
infer a fiber length of 102 km and an output GDD parameter of Φ2 = 1989 ps2 for a
fr = 2 GHz incoming RF signal. The resulting waveform after O/E conversion is depicted
in Fig. 8.6(a), where a burst of nearly 20 GHz repetition rate is clearly achieved over a
temporal aperture of 0.5 ns. In the second example we demand an output RF profile that
corresponds to a single tone at 40 GHz repetition rate. As shown in Fig. 8.6 (b), this can
be achieved by designing the GDD parameter to perform a temporal image of the virtual
Talbot plane corresponding to Φ2,eq = Φ2T/4 and a triangular pulse profile like the one
presented at Fig. 5.13 with Δθ = π/2 at a repetition rate of fr = 2 GHz. We just need
an SMF of 48 km and Φ2 = 994 ps2. The corresponding time aperture would be around
0.2 ns.

Finally, it must be mentioned that the first experimental verification of this technique
has been recently achieved [291]. There, the flat-top pulse waveform from Fig. 8.6(a) has
been reported at 18.2 GHz with a time aperture of 25 ps just starting from a sinusoidal
RF tone at 3.7 GHz.

8.2.3 Fully reconfigurable generation with pulse shapers

Fully reconfigurable and nearly arbitrary RF signals can be achieved with pulse shapers
and broadband coherent pulses as the optical source. With the DST pulse shaper [83],
sequences of mm-wave signals are readily achieved just by designing adequate spatial
masks [85, 292]. The drawback of this system, as for those proposed in the previous
section, is that the generated RF signal lies only over a finite temporal aperture. However,
there are many cases in which it would be of practical interest to generate continuously
operating RF signals. Within the Talbot-based approaches and the DST pulse shaper,
this is not possible because the generated RF signals are not wide enough to occupy a
pulse period from the initial pulse train.

To overcome this problem while keeping the reconfiguration capabilities in mind, Chou
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Figure 8.7: Fourier transform pulse shaper in a reflective geometry for achieving
RF waveforms [293].

et al. proposed the simple yet elegant solution of using a Fourier transform pulse shaper for
shaping the ES of a coherent ultrashort pulse [293]. This scheme is illustrated in Fig. 8.7.
The zero dispersion pulse shaper tailors the spectrum of the incoming broadband coherent
light in a user-defined fashion. Later, the pulse is launched in a GDD circuit, usually an
SMF for simplicity. If the GDD parameter satisfies Eq. (5.19), with σ being the duration
of the synthesized waveform at the input of the fiber, the temporal intensity profile at
the output of the SMF is just a scaled version of the synthesized ES (see Sect. 5.5.1).
Therefore, larger amounts of dispersion do not change the shape, only the scale of the
output pulse. Then the inherent limitation of the temporal aperture is overcome just
by adding a larger fiber, and continuously operating RF signals can be achieved by O/E
conversion. With this system, complex waveforms [281] and closed loops for compensating
for higher-order distortion can be performed to generate error signals that feedback the
SLM [294].

8.2.4 Incoherent pulse shaping approach

However, despite all the benefits offered by the above mentioned coherent techniques, the
high cost of pulsed sources prevent from jumping out from the research laboratories. A
viable alternative could be the use of the incoherent pulse shaping technique explained
at Sect. 6.3. Our numerical simulations show that using the gain spectrum of an EDFA
and an EOM satisfying the quasi-homogeneous pulse conditions stayed at Chapter V, an
RF-waveform generator can be achieved [23]. Even more, for some practical settings, the
TOD effects can be disregarded [23].

To test experimentally this approach we have built the system corresponding to
Fig. 6.4. The complete setup is depicted in Fig. 8.8. It is very similar to the device
developed at Sect. 8.1 and, in fact, it is possible to show that the specific scheme for
incoherent pulse shaping from Fig. 8.8 can be understood in terms of an RF filter with
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Figure 8.8: Experimental setup for achieving reconfigurable RF-waveform gener-
ator based on incoherent pulse shaping scheme of Fig. 6.4. Pol. is a polarizer.

positive coefficients [36]. As before, the spectral encoder is performed with the same
zero-dispersion Fourier-transform pulse shaper commercially available from Peleton cor-
poration [282]. The main difference with respect to the previous approach is that we now
drive the EOM with a short electrical 60 ps FWHM gaussian impulse. The repetition rate
of this gate is controlled with an RF-single tone generator with a frequency range from
10 MHz to 20 GHz, which is also used for triggering the acquisition module. The optical
averaged intensity at the input of the fiber was first measured with a 20 GHz sampling
scope and is the corresponding to Fig. 6.3(b). The slight discrepancy with the nominal
value of 60 ps is attributed to the slow response of the EOM at frequencies higher than
10 GHz. We must note that the maximum available optical spectral width of 4.8 THz
(the 48 channels on) leads to a coherence time of 33 fs, so that the quasi-homogeneous
condition specified in Fig. 6.1 is satisfied. Even for the case in which one channel is passed
and the rest are blocked, the resulting coherence time (1.6 ps) also satisfies the condition.
We selected as the GDD circuit a tandem of SMFs with different lengths (4.6 or 7.5 km).
With these values, the far-field condition stayed by Eq. (6.11) is satisfied. The control of
the ES tailoring is achieved through the software installed in a laptop connected to the
D-WDM channel controller. A screen image of the program is displayed in Fig. 8.9, which
gives an idea of the simplicity to reconfigure the ES shape.

The first example concerns the generation of a sawtooth pulse. Such a waveform has
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Figure 8.9: Screen image of the software utilized for tailoring the ES.

been generated previously using a Fourier-transform pulse shaper [295] or a fiber grating
passive device [296]; in both of these cases, a broadband coherent pulsed source was re-
quired. Our synthesized ES was measured with an OSA after the temporal modulation,
and is shown in Fig. 8.10(a). We appreciate that, according to Eq. (3.8), the ES corre-
sponding to the modulator behaves as a Dirac’s delta distribution, which is synonymous
of having a quasi-homogeneous pulse at the input of the fiber. After temporal modulation
and stretching in 7.6 km of SMF, the measured temporal waveform is shown in Fig. 8.10(b)
and (c) in sample mode with 100 ms persistence and with four times averaging, respec-
tively. The incoherent frequency-to-time mapping predicted by (6.10) is clearly visible.
The RF spectrum obtained when using a 4.6 km length of SMF and 100 MHz repetition
rate is shown in Fig. 8.10(d). The second example corresponds to the generation of a
short pulse burst. The synthesized ES is shown in Fig. 8.10(e); the temporal waveform
after stretching in 7.6 km of SMF is shown in Fig. 8.10(f) in sample mode and (g) with
four times averaging. Figure 8.10(h) shows the measured RF spectrum when 4.6 km of
SMF is used as well as a repetition rate of 300 MHz. The final example concerns the
generation of a doublet-like pulse. Figure 8.10(i) shows the ES, and Figs. 8.10(j) and (k)
show the temporal waveform in sample mode and with four times averaging, respectively,
when using 4.6 km of SMF. The corresponding RF spectrum is shown in Fig. 8.10(l) for
a repetition rate of 800 MHz.

One of the key advantages of the proposed technique is the possibility to control the
repetition rate of the generated waveform in an easy way. This is achieved by changing
the clock frequency that drives the electrical impulse generator. Thus, we can obtain
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Figure 8.10: Three different RF signals. Each example corresponds to each column.
First row [(a), (e) and (i)] corresponds to the ES. Second [(b), (f) and (j)] and third
rows [(c), (g) and (k)] correspond to time intensity in linear arbitrary scale in sample
and four times averaged, respectively. Last row [(d), (h) and (l)] correspond to the
RF spectra. The specific settings are explained in the text.
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Figure 8.11: Continuous RF signal generation of: (a) sawtooth waveform (four
times average); (b) linearly chirped sinusoidal profile (four times average); (c)
parabolic pulse train (sixteen times average.

continuous RF waveforms. In particular, we illustrate the generation of a CW sawtooth
waveform, a chirped sinusoid, and a train of parabolic pulses, in Figs. 8.11(a), (b), and
(c), respectively.

As for the coherent counterpart [293], we note that once the incoherent frequency-to-
time mapping is achieved, the output waveform can be scaled by increasing the amount
of GDD. This leads to a decreasing of the achieved RF bandwidth. In our experiments,
the upper limit is approximately 10 GHz. This limit is not a fundamental constraint
and is set by both the EOM and the pulse duration provided by the electrical impulse
generator. By using shorter electrical signals, a high bandwidth EAM, and the same
D-WDM channel selector, our technique can be scaled up to operate in the millimeter-
wave range. In particular, Fig. 8.12 gives a rough estimation of the achievable electrical
bandwidth in terms of the input electrical pulse width. By using an external modulator
providing < 20 ps temporal widths, it is possible to achieve operation in the mm-wave
region.

8.3 UWB-over-fiber technology

In the last few years, there has been a growing interest in the generation of UWB mi-
crowave signals. The UWB RF spectrum was regulated between the 3.1 and 10.6 GHz
band with a power spectral density of -41.3dBm/MHz, according to the Federal Com-
munication Commission (FCC) of the United States. Later Asian and also European
regulations have stayed similar masks [297]. Any signal to be considered as UWB must
have an RF spectral bandwidth greater than 500 MHz or a fractional bandwidth greater
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Figure 8.12: Maximum achievable RF electrical bandwidth as a function of the
inpout light pulse duration. Solid curve is for a single channel on and dashed curve
for all channels on.

than 20% 2. Due to the high-data-rate capabilities, low power consumption and immunity
to multi-path fading, these signals have an unprecedented opportunity to impact radio
communication systems in personal area networks, and promise as well substantial appli-
cations in radar, safety, and biomedicine [298, 299]. However, such a low spectral power
restricts the range of applicability of this wireless technology to several hundreds of me-
ters. In contrast, although a large number of electronic devices for providing UWB pulses
exist [297], optical approaches offer a viable alternative with several advantageous fea-
tures. Indeed, all-optical schemes for UWB-signal generation constitute an ideal scenario
for seamless integration and distribution of wireless communications signals over optical
fiber links [300]. This is a key feature for increasing the operating range of UWB networks
by several orders of magnitude compared to their counterpart electrical approaches.

Usually, monocycle and doublet waveforms are the preferred profiles for achieving
UWB compliant signals [297]. These are sketched in Fig. 8.13. It is relatively easy to
achieve such kind of waveforms if we realize that they correspond to the first and second-
order derivative of a Gaussian pulse shape, respectively.

Previous attempts to generate UWB impulses have used the Fourier-transform ge-
ometry from Fig. 8.7 for shaping the ES of an ultrashort light pulse [281, 293, 294]. As
before, the UWB signal is achieved by stretching the pulse in a fiber and subsequent
photodetection. The key now is that this setup offers the possibility to achieve com-
plex waveforms that fit more efficiently to the regulation masks than the monocycle or
doublet [281]. Later, all-fiber variations of this setup have been verified, achieving the
generation of monocycle, doublet [301] as well as different but more efficient shapes [302].
Zeng et al. also obtained UWB pulses by synthesizing a bandpass coherent microwave
filter by combining an EOPM with fiber dispersion [303], acting globally as an electronic
differentiator at low frequencies, but implemented in the optical domain.

The chirp-to-intensity conversion effect in spectrally linear filters has also been ex-
ploited by using XPM in either SOAs [304] or SMFs [305], or a simple EOPM pumped
with a Gaussian pulse [306]. The use of nonlinear effects in SOAs to generate mono-
cycle impulses [307, 308] has been reported too. The former approach [307] uses XGM,

2The fractional bandwidth is defined as 100f0/(fmax−fmin), where f0 is the central RF, and fmax/fmin

correspond to the maximum/minimum RF values at −10 dB.
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Figure 8.13: Different RF waveforms. Left column corresponds to the time domain
and in right column we plot their corresponding RF spectra. (a) and (b) correspond
to a Gaussian waveform of 60 ps FWHM; whereas (c) and (d) to a monocycle profile;
and finally, (e) and (f) display a doublet waveform. The monocycle and doublet are
achieved by first and second- order differentiation of the initial Gaussian pulse.

in which the time delay between two reversely-polarized pulses from the output of the
SOA was adjusted with a pair of fiber Bragg gratings until the desired output waveform
was obtained. The latter one [308] creates monocycle impulses basing on the intensity
overshooting effect of optical dark pulses amplified by an SOA with unsaturated optical
gain. A recent review of some of the optical approaches for generating UWB impulses is
provided in [300].

The latest advances in photonically assisted UWB pulse generation include the search
of alternative low-cost solutions [33,37], as well as different modulation capabilities [309,
310] like code-division multiple access or frequency-division multiplexing [293].

8.3.1 Low-cost alternatives with current-modulated semiconductor lasers

In this section we report a coherent technique to generate UWB-compliant pulses. It
involves the use of a distributed feedback (DFB) coherent laser whose driving current is
modulated by the electrical data signal to be transmitted [33,37]. With respect to previous
approaches, our configuration offers an efficient solution in terms of power consumption
and constitutes a low-cost viable alternative, since there are no optical nonlinear process
involved requiring extra light sources or additional active optical devices. Our approach
requires a single optical light source and avoids the use of external electro-optic modula-
tion. It is worth mentioning that a previous reported work [311] used a current modulated
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Fabry-Perot laser for the generation of UWB signals. However, unlike in our approach,
the frequency chirp was not used for achieving UWB signal generation. Instead, mono-
cycle pulses were obtained by O/E conversion and subsequent differentiation performed
in the electrical domain.

With our setup, monocycle or doublet pulse shapes can be achieved. Although the
experimental arrangement is the same in both cases, the physical mechanism behind is dif-
ferent. The general setup consists on a DFB semiconductor laser, a 12.5 Gb/s bit pattern
generator, and a spectral passband optical filter. The DFB laser is nominally specified for
operation at 10 Gb/s, but the driving data signal was selected at the maximum bit rate.
The output pulse from the laser is spectrally filtered by the passband filter, which had a
Gaussian profile and a FWHM of 0.3 nm. The way of selecting the UWB-pulse shape is
by playing with the bias voltage applied to the laser, the amplitude of the data driving
signal and the tunable filter. There are two sets of parameters that lead to UWB compli-
ant monocycle and doublet shapes. We now proceed to formulate an heuristic explanation
for each of the different physical phenomenon behind this achievement.

Monocycle generation

In this case, the laser is forward biased far from the threshold, and a relatively low value
of modulating amplitude is selected. The laser dynamics is found in the linear region of
the Power–Intensity curve [77]. The key is to remind that, as a result of the changes in
the carrier population, the refractive index also changes, leading to a phase-modulation
changing with time [77]. Therefore, in the small-signal case the laser pulse becomes highly
chirped, with an instantaneous frequency resembling the shape of a monocycle. Then,
as heuristically explained in Fig. 8.14, the process of chirp-to-intensity conversion can be
achieved by using a spectrally linear optical filter. This behavior is obtained approximately
by placing our Gaussian bandpass filter at the linear slope region.

ω

|H(ω)|

ω
inst (t)

t

Iout(t)

t

Figure 8.14: Heuristic illustration of the chirp-to-intensity conversion process. An
instantaneous frequency with the profile of a monocycle comes to a filter with an
linear amplitude transmission. Then, the output intensity profile follows the shape
of the input chirp.

Of course, this is just an heuristic explanation and instantaneous frequencies do not
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always exist in the ES of a coherent signal [312]. Even more, the case displayed at Fig. 8.14
is only valid for phase-only modulated signals. However, let us formulate mathematically
our problem. The complex field of the frequency-chirped pulse is filtered by a linear
optical filter H(ω) = A(ω + ωs), where A is a real constant that determines the slope of
the filter and ωs denotes the vertical offset from the zero-crossing point. The temporal
envelope at the output of the filter is given by

ψout(t) = iA [ψ′
in(t) − iωsψin(t)] , (8.9)

where the prime denotes temporal derivation and ψin(t) is the input temporal envelope.
We have taken into account that FT−1[−iωψ̃in(ω)] = ψ′

in(t), where ψ̃in(ω) = FT [ψin(t)],
with FT and FT−1 denoting Fourier and inverse Fourier transformation, respectively.
We can always rewrite the input envelope as ψin(t) = I

1/2
in (t) exp[−iϕin(t)], where ϕin(t)

and Iin(t) denote the phase and normalized intensity modulation, respectively. We now
assume that the frequency modulation dominates respect to the intensity modulation,
but its contribution value is less than the corresponding frequency offset of the filter, i.e.,
|I ′in(t)| << |ϕ′

in(t)| << ωs. With this assumption, and after some algebra, the optical
intensity at the output of the filter can be approximated to

Iout(t) ≈ 2A2ωsIin(t) [ϕ′
in(t) + ωs/2] . (8.10)

The above equation establishes that the light intensity at the output of the optical filter
is given essentially by the frequency chirp of the input optical pulse if the intensity profile
is relatively smooth. The derivation of Eq. (8.10) accounts for the heuristic explanation
provided in [304–306].

Filter     O/E
conversion

ESA

Sampling
scope

Figure 8.15: Scheme for generation and transmission of UWB monocycle pulse
based on chirp-to-intensity conversion with a semiconductor laser.

To test this approach we have built the setup corresponding to Fig. 8.15. The laser was
biased to 67 mA, a value far from the threshold of 30 mA, and the bit pattern generator
produced a sequence of one ”1” followed by seven ”0” with a peak-to-peak voltage of
0.566 V. The measured intensity and chirp are displayed at Fig. 8.16(a) in solid and dashed
line, respectively. For the measurement of the chirp we employed the TIE procedure [254],
for which an SMF of 0.415 km was used. We can appreciate the monocycle-like profile of
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Figure 8.16: (a)Input laser intensity pulse in amplitude (solid line) and chirp
(dotted line) and (b) normalized ES of laser pulse (solid line) and amplitude filter
(dotted line).
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Figure 8.17: UWB monocycle pulse in (a) time domain and (b) frequency domain.

the chirp. The ES corresponding to the laser and the filter, when located at the optimal
point to achieve the monocycle shape, are displayed together in Fig. 8.16(b). The average
optical power level before and after the filter was measured to be 5.6 dBm and −9.1 dBm,
respectively.

In order to test the validity of the signal for UWB communications we performed
an additional transmission experiment. The optical signal is amplified by an EDFA and
propagated through 20 km of non-zero dispersion shifted fiber (NZDSF) with 4.5 dB loss
and 5 ps/nm/km dispersion. This dispersion leads to a GDD parameter very low to distort
in a significant way the achieved UWB pulse. The intensity waveform at the output is
detected by a 10 GHz bandwidth PD which intrinsically assists in smoothing undesired
high-frequency RF components that do not fall into the UWB range. The resultant
electrical signal is measured in the RF domain by an ESA with a resolution of 1 MHz,
and in the time domain by a sampling oscilloscope. The EDFA is adjusted so that the
receiver gets an average optical input power of −0.5 dBm. Figure 8.17 shows the measured
resultant UWB signal consisting of a monocycle-like pulse in time and frequency domain.
For the frequency domain picture, we selected a repetition rate of 390.6 MHz (a ”1”
followed by 32 ”0”) so that the achieved spectral shape is properly sampled. As it can be
appreciated, the RF spectrum spreads over the UWB region. Due to the monocycle-like
waveform, a non-disregarding low-frequency content still remains, which can be minimized
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by reducing the power into the photodiode with some extra attenuator.

Doublet generation

Using the same components we can also achieve a doublet UWB pulse. The physical
principle behind is showed in Fig. 8.18(a). We drive the DFB laser with the electrical
inverted data from the pattern generator, and forward bias it with a current close to
the threshold (at 35 mA in the experiments). In the large-signal modulation regime, the
laser power overshoots at the rising edge due to relaxation oscillations and then reaches
the steady state [77]. We can then filter this radiation with an optical filter in order to
reshape the waveform to achieve the desired doublet UWB profile.

    O/E
conversion

FIlter

Data

Data

DCF DCF    O/E
conversion

Sampling
scope

ESA

Figure 8.18: (a) Heuristic explanation of the physical principle to achieve the UWB
doublet (b) Experimental setup.

Figure 8.19(a) shows the electrical data pulse (green dash-dotted line) applied to the
laser, and the output optical intensity (red solid line). The overshooting effect at the
trailing edge of the pulse is apparent. The power oscillates at the relaxation oscillation
frequency before achieving a steady state following the shape of the driving electrical
signal. We measured the RF spectrum of this waveform with the 10 GHz bandwidth
PD and verified that it was not UWB compliant. However, we were able to produce
the required pulse characteristics by passing this laser pulse through the same Gaussian
spectral filter as before, but at different operation point. In Fig. 8.19(b) we show the
output laser spectrum (blue solid line) and the filter profile placed in the optimal position
to achieve the doublet shape. As we can see, the high-frequency optical components are
smoothed. It should be mentioned that previously-reported approaches for optical filtering
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of gain-switched lasers tried to avoid this overshooting effect and aimed to generate bell-
shaped ultrashort waveforms [313,314]. Our goal here is instead to optimize the intensity
profile so that this waveform can be exploited for UWB RF signal generation. After the
optical filtering, we converted the optical signal into the electrical domain with a 10 GHz
bandwidth PD, and succeeded in generating a doublet-like UWB impulse, as shown by the
green line in Fig. 8.20(a). The RF spectrum of this pulse fits the UWB mask regulations.
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Figure 8.19: (a) Intensity laser profile (red line) and electrical data signal (green
dashed line). The temporal scale has a different origin for the electrical and optical
signals. (b) normalized ES of laser pulse (solid line) and amplitude filter (dotted
line).

In order to verify the usefulness of this method we performed an additional experiment
for propagating the signal through an optical fiber link. For this evaluation, the signal
needed to be amplified after optical filtering and the O/E converter was placed at the
receiver. As indicated in Fig. 8.18(b), the fiber link is comprised of two stages. We first
propagated the signal through two SMF coils of 44 km length each. Then the optical signal
was further amplified and propagated through 30 km of NZDSF as well as 13 km of DCF,
matched to compensate for the dispersion introduced by the SMF in the first stage. This
constitutes a total optical link length of 118 km, which represents the largest distance ever
reported for UWB signal distribution, to the best of our knowledge. The output optical
pulse is detected with the 10 GHz bandwidth photodiode and measured simultaneously
in the time domain with a sampling oscilloscope, and in frequency domain with an ESA
with a 1 MHz measurement resolution. The achieved signal is displayed in Figs. 8.20(b)
and (c). It possesses a central frequency of 7 GHz and has a 10 dB bandwidth of 10.2 GHz,
hence a fractional bandwidth of 146 %. The pulse duration was measured to be 236 ps.
Comparison of Figs. 8.20(a) and (b) indicates that there is no significant distortion of
the UWB pulse during propagation. From Fig. 8.20(c) we conclude that the waveform
satisfies the UWB RF regulations. The spikes are due to the fact that we introduced a
data sequence of one ”1” followed by sixteen ”0”, so that the RF spectrum of a single
UWB pulse is conveniently sampled at 0.78 GHz for illustration purposes. We achieved
higher data transmission rates with this optical pulse shape, up to a soft limit related
to the output UWB pulse duration. We have successfully transmitted similar pulses at
3.12 GHz over this fiber link.
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Figure 8.20: Generated UWB signal in: (a) time domain before transmission; (b)
after propagation through the 118 km fiber link; (c) spectral domain.

8.3.2 Broadcasting capabilities with incoherent frequency-to-time mapping
approach

While most of the previous efforts in the generation of UWB signals have been directed
towards the optimization of the whole spectral range spanning the 3.1–10.6 GHz interval,
UWB regulations also allow for the existence of different channels, as long as the power
requirements are met.

In this Section, we propose an UWB signal generation scheme based on the incoherent
pulse shaping approach presented in Chapter V, achieving also broadcasting to multiple
users as illustrated in Fig. 8.21(a). Each end terminal receives the data both at the
baseband and at microwave pass-band frequency within the UWB region. In our proposed
method, the carrier can be easily tuned by selecting the value of the fiber length. In fact,
this fiber is also the fiber link for signal transport between the central office and the
remote antenna unit. We present the results corresponding to a proof-of-principle for a
single-channel transmission achieving 312.5 MHz bit rate over both 22.8 and 44 km SMF
length.

Let us clarify this particular setup. The ES of a spectrally incoherent source (again
the ASE gain spectrum from an EDFA in the experiment) is spectrally filtered with an
MZI and further smoothed with a Gaussian spectral filter, leading to a tailored ES

Ss,b(ω) = A(ω)[1 + cos(ωT )], (8.11)

where A(ω) includes both the ES of the EDFA and the spectral response of the filter.
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Figure 8.21: (a) UWB signal generation with broadcasting and baseband support
over a passive optical network. (b) Experimental setup for the proof-of-principle
using a single channel and an incoherent source.

Here, T denotes the time delay in the MZI. According to Eq. (6.10), after deterministic
temporal modulation and propagation in a GDD circuit (an SMF in our case), the output
temporal averaged intensity profile will resemble the shape provided by Eq. (8.11). If
we assume that the spectral width of A(ω), Δω, is much bigger than the inverse of T
(quasi-homogeneous requirement), the resulting positive RF spectrum becomes [35]

RF (f) = exp[−f 2/(2σ2
f )] + 1/4 exp[−(f − f0)

2/(2σ2
f )]. (8.12)

It is composed of two bands with identical spectral widths given by σf = (4πΦ2Δω)−1.
The second band is centered at

f0 = T/(2π|Φ2|). (8.13)

Thus, our setup has the inherent capability to tune the band-pass frequency with the
GDD coefficient and/or the temporal delay of the MZI. Larger dispersion results in a lower
microwave carrier frequency. This is the key to achieve broadcasting in a passive optical
network scheme as the one presented in Fig. 8.21(a). Every end terminal can obtain the
data at both the baseband and the corresponding frequency band. It is interesting to note
that the same theoretical results can be achieved with a fully coherent pulsed source [315].
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Figure 8.22: Numerical illustration of: (a) ES of a Gaussian source filtered with a
MZI and (b) its corresponding MCF. See text for numerical details.

However, our setup operates based on a different physical principle, which allows us to
use a fully incoherent source. Due to the restriction established by Eq. (6.11), there is a
maximum achievable frequency given by f0max = 2T/(σtc). As a numerical example, in
Fig. 8.22(a) we plot the ES at the optical baseband corresponding to a Gaussian shape
with a 3 nm FWHM centered on 1532 nm and filtered with a MZI that introduces a delay
of T = 25 ps. In Fig. 8.22(b) we plot the modulus of the corresponding MCF.
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Figure 8.23: At point E in Fig. 8.21(b) we measured: (a) the synthesized ES from
the MZI obtaining an average power of 4 dBm; and (b) the averaged optical intensity
emerging from the modulator.

In our proof-of-principle experiment, we consider UWB signal generation and trans-
mission between the central station and a single user. The base station is composed of
an EDFA without input light, an MZI with a delay of T = 25 ps, an optical filter with
3 nm FWHM, and a 40 GHz bandwidth external modulator, in particular, a dual drive
MZM, carrying data at 20 GHz in a bit sequence of 1 each 64 (312.5 MHz). At point C
in Fig. 8.21(b) the measured average optical power was −2.7 dBm. Figures 8.23(a) and
(b) show, respectively, the ES and temporal pulse profile at point E in Fig. 8.21(b). The
correspondence between the measured spectrum and the numerically calculated one in
Fig. 8.22(a) is excellent. This allows us to assume that the MCF of the effective source
has a shape as the one in Fig. 8.22(b). According to Fig. 8.23(b), the pulse duration
is around σ = 200 ps. The minimum propagation distance in the SMF to achieve the
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desired mapping (18.3 km for β2 = −21.6 ps2/km) leads, according to Eq. (6.11), to a
maximum achievable frequency of f0 = 10 GHz. Thus, our scheme results ideal for data
up-conversion within the UWB range.

We used two different fiber lengths, 22.8 and 34 km. The achieved waveforms at point F
in Fig. 8.21(b) were further optically amplified and photodetected. The measured average
power before the last EDFA was −11 dBm for each fiber. The second optical filter was used
to avoid extra noise coming from the EDFA and was broader than the first one located
between points B and C. Figure 8.24 shows the output electrical waveforms and their
RF spectra measured with the 40 GHz PD and a 3 MHz resolution ESA, respectively.
We recognize that the incoherent mapping is successfully achieved and the position of
the transmission data in the spectrum of the resulting microwave signal appears at the
expected value given by Eq. (8.13) in each case.
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Figure 8.24: Electrical signal waveform for the 22.8 km fiber length experiment in:
(a) the time domain; and (b) the RF domain. The results for the fiber length of
34 km are plotted in (c) and (d), respectively. The RF peak components come from
the data pattern at 312.5 MHz.

We would like to point out that a strong DC component can be recognized at every
plot in Fig. 8.24. This fact is a direct consequence of the low extinction ratio shown by
the pulse provided by the MZM [see Fig. 8.23(b)]. So, the spectral correlations of the
synthesized ES could not be achieved. This led to a degraded signal-to-noise ratio for the
UWB up-converted signal, since the EDFA at point F increased the non-mapped noise
too. We attribute this low extinction ratio to the lack of a polarizer before modulating
the incoherent ES.



Chapter IX

Mimicking temporal entanglement phenomena
with partially coherent light pulses

Entanglement between particles is one of the most striking features of quantum mechan-
ics. It has led to the resolution of the Einstein-Podolsky-Rosen paradox [316] and to
demonstrations of the nonlocal character of quantum correlations. In optics, spontaneous
parametric down-conversion (SPDC) has been usually the method of choice for producing
entangled photon pairs (or biphotons) [317, 318]. More recently, two-photon light has
been produced from semiconductor quantum wells too [319]. These photon pairs may
be entangled in polarization, momentum, space, frequency, and time. Biphotons are the
basic source for experiments in quantum cryptography [320], quantum imaging [321,322],
quantum teleportation [323], quantum lithography [324], quantum optical coherence to-
mography [325,326], remote spectral transfer [327], and clock synchronization [328,329].

In this Chapter we show that the two-photon temporal coincidence detection amplitude
obeys a pair of equations identical to those of classical partially coherent plane-wave pulses
propagating in linearly dispersive media. These equations are also the same as the paraxial
Wolf equations, for both the two-photon spatial probability amplitude and the cross-
spectral density function. Therefore, a four-fold analogy between space and time, as well
as between quantum entanglement and partial coherence, arises. In accordance to this,
we predict non-local interference structures in a fourth-order interferometric configuration
with classical partially coherent pulses under the assumption of Gaussian statistics. Based
on this relevant finding we provide theoretical evidence that many different experimental
arrangements that hitherto are thought to need temporally entangled photon pairs can
operate with classical partially coherent light pulses.

9.1 Fourfold Space–Time analogy

For light in any arbitrary quantum state, the probability of observing a photon at the
space–time position (r1, t1) and another at (r2, t2) is proportional to the intensity corre-
lation function [48,330]1

G(2)(r1, t1; r2, t2) = 〈Ψ|Ê−(r1, t1)Ê
−(r2, t2)Ê

+(r1, t1)Ê
+(r2, t2)|Ψ〉. (9.1)

1For convenience, optical fields are considered to be 1D, thus r = (x, z), with z the propagation
distance.
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92 9. Mimicking temporal entanglement phenomena

Here, Ê−(r, t) and Ê+(r, t) denote the negative- and positive-frequency components of
the optical-field operator at (r, t), and |Ψ〉 represents the state vector [48].

For the particular case of light in the two-photon state, the right hand side of Eq. (9.1)

factors as [331] 〈Ψ|Ê−(r1, t1)Ê
−(r2, t2)|0〉〈0|Ê+(r1, t1)Ê

+(r2, t2)|Ψ〉, with |0〉 being the
vacuum state. Therefore,

G(2)(r1, t1; r2, t2) = |G(r1, t1; r2, t2)|2, (9.2)

where
G(r1, t1; r2, t2) = 〈0|Ê+(r1, t1)Ê

+(r2, t2)|Ψ〉 (9.3)

can be considered as the two-photon probability amplitude [317]. The two-photon proba-
bility amplitude may also be expressed in the space–frequency domain, by Fourier trans-
forming G(r1, t1; r2, t2) with respect to t1 and t2. This leads to a function φ(r1, ω1; r2, ω2).
On factoring out the rapid phases as φ(r1, ω1; r2, ω2) = φe(r1, ω1; r2, ω2) exp[i(k1z1+k2z2)],
it can be shown that the function φe in the paraxial regime obeys the propagation equa-
tions

[∂2
xj

+ 2ikj ∂zj
]φe(r1, ω1; r2, ω2) = 0, (9.4)

where j = (1, 2). Apart from a sign, these equations are identical with Eqs. (5.42). This
spatial quantum–classical analogy was first analyzed in [331,332].

Separability of the two-photon amplitude probability function means absence of entan-
glement, and thus minimum visibility in the fourth-order interference fringes. In contrast,
separability in the mutual coherence function implies full spatial coherence, which cor-
responds to maximum visibility in the interference fringes in the Young’s experiment.
In this sense, the above mathematical similarity leads to a physical duality between the
quantum and classical domains [332]. Although this similarity even holds for non-paraxial
waves, we prefer to restrict ourselves to the paraxial case so as to directly connect the
space duality with the following temporal analogy.

Quite recently, Tsang and Psaltis demonstrated that the equations that govern the
evolution of the temporally entangled two-photon states in lossless, homogeneous, first-
order dispersive media are mathematically identical to Eqs. (9.4) [171]. More specifi-

cally, if ψ̂+(z, t) is the slowly-varying plane-wave envelope operator, the envelope of the

two-photon probability amplitude is Ge(z1, t1; z2, t2) = 〈0|ψ̂+(z1, t1)ψ̂
+(z2, t2)|Ψ〉, and it

satisfies the equations, for j = (1, 2),

[∂2
tj
− 2i

1

β2

∂zj
]Ge(z1, t1; z2, t2) = 0, (9.5)

where, as usual, the times tj are measured in a coordinate frame that moves at the speed
of the wave packet. The connection between Eqs. (9.5) and (9.4) can be considered as
the quantum-optical version of the space–time analogy (see Sect. 5.2) that links paraxial
diffraction of 1D beams with first-order temporal dispersion of short light pulses. Since,
as stayed at Sect. 5.6, this analogy also exists in the classical context among spatially
partially coherent beams and partially coherent plane-wave pulses [19], we point out an
up-to-now overlooked analogy between quantum-mechanical two-photon-state coincidence
detection and classical fluctuating optical pulses [34]. Following the same reasoning as
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before, a temporally fully incoherent classical pulse corresponds to a maximum temporally
entangled two-photon state. Thus, one can expect, in the same way as some quantum
phenomena concerning spatial entanglement can be mimicked by spatially incoherent
light, that some time-domain phenomena involving dispersion of temporal entanglement
can be emulated by classical partially coherent light pulses, and vice versa.

9.2 Biphoton distortion in linear dispersive media

Let us consider now the situation depicted in Fig. 9.1(a). A source providing temporally
entangled photon pairs launches each photon in the pair through a different temporal
optical system. The propagation of the two-photon probability amplitude Ge,in(t1, t2) is
mathematically described by the Green integral equation [333]

Ge,out(z1, t1; z2, t2) =

∫∫
Ge,in(t

′, t′′)K1(t1, t
′)K2(t2, t

′′) dt′dt′′, (9.6)

where the kernel Kα(t, t′) describes mathematically the system through which the α pho-
ton is traveling, α = (1, 2). As in the coherent case (see Sect. 5.3), each temporal system
can be composed by cascading spectral and amplitude filters, GDD circuits and or tem-
poral lenses, for example. According to Eq. (9.2), the probability of observing one photon
at time t1 and the other at t2 is given by the modulus square of Eq. (9.6).
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Figure 9.1: (a) Quantum biphoton distortion in a general dispersive setup; (b) clas-
sical counterpart Hanbury Brown–Twiss interference with partially coherent light
pulses.

9.3 Fourth-order interference with partially coherent pulses

In a series of experiments in 1995, light in two-photon quantum state produced by SPDC
was used to achieve what was referred as the ghost diffraction [334] and imaging [322]
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phenomena. In this technique, each photon from the pair travels through a different opti-
cal setup and is individually photodetected with a spatial array. By placing an object in
only one of the paths, it was shown that a diffraction pattern of the object appeared by
measuring coincidence counts with the scanning detector arrays. The seemingly counter-
intuitive finding is that the diffraction pattern was created by photons that never passed
through the object. At that time, the authors suggested that ”it is possible to imagine
some type of classical source that could partially emulate this behavior” [322]. Later on,
a comprehensive work on the formal similarities between spatial entanglement and clas-
sical spatial partial coherence was developed [332]. But the key experiment came when
Bennink et al. performed the coincidence imaging experiment with spatially incoherent
classical light [335]. In this case, apart from a background level, similar effects as in the
quantum case were found. More advanced experiments involving phase-only masks have
been also carried out with quantum [336] as well as classical light [337]. The mathemati-
cal foundation of these two different physical phenomena leading to practically identical
results was finally clarified in [338–341]. The analogy relies on the fundamental formal
similitude of Eqs. (9.4) and (5.42) [331]. Recent review papers about ghost imaging and
diffraction can be found in [321,342].

In the temporal domain, analogous ghost diffraction phenomena have recently been
reported [343, 344]. These experiments consist of spectral coincidence measurements of
two-photon pairs in an interferometric arrangement. By spectrally (or temporally) filter-
ing a beam in one arm, various interference structures were obtained. The earlier work
of Valencia et al. [344] presents temporal interferometric coincidence measurements with
two-photon light. Each photon generated in the pair is focused into a different SMF placed
in each arm of the interferometer. More advanced configurations may use a high flux of
two-photon light and SLMs [345]. In this Section we show that similar experiments can
be carried out by using classical partially coherent pulses instead of temporally entangled
two-photon quantum light.

9.3.1 Mathematical formulation

Let us consider a device as the one depicted in Fig. 9.1(b). A light source produces
partially coherent light pulses described by Γe, that are later split in two arms. Each arm
is composed by the same system as in Fig. 9.1(a). At the end of each arm, we assume
that a fast photodiode detects the radiation instantaneously. Then, the signal is further
carried to a coincidence circuit that produces the average 〈I1(t1)I2(t2)〉, where Iα(t) is the
instantaneous intensity arriving at detector from arm α,

Iα(t) =
∣∣∣ ∫

ψin(t
′)Kα(t, t′) dt′

∣∣∣2. (9.7)

Here ψin(t) is the slowly-varying envelope of a random realization of the input light [171].
The average 〈I1(t1)I2(t2)〉 can be implemented with a time-to-amplitude converter fol-
lowed by a multichannel analyzer. In [344], this operation is performed with a temporal
resolution on the order of hundreds of picoseconds. It is important to note that we are
dealing with the two-time intensity correlation function, not with an integrated version.
Taking into account Eq. (9.7), and exchanging the order of integration and ensemble
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averaging, we obtain

〈I1(t1)I2(t2)〉 =

∫
dt′1dt

′
2dt

′′
1dt

′′
2 〈ψ∗

in(t
′
1)ψ

∗
in(t

′′
1)ψin(t

′
2)ψin(t

′′
2)〉 (9.8)

×K∗
1(t1, t

′
1)K

∗
2(t2, t

′′
1)K1(t1, t

′
2)K2(t2, t

′′
2).

This fourth-order correlation can further be simplified by assuming the random input light
to obey Gaussian statistics [48]. Therefore, using Eq. (2.28), 〈ψ∗

in(t
′
1)ψ

∗
in(t

′′
1)ψin(t

′
2)ψin(t

′′
2)〉 =

Γe(t
′
1, t

′
2)Γe(t

′′
1, t

′′
2) + Γe(t

′
1, t

′′
2)Γe(t

′′
1, t

′
2), where Γe(t1, t2) = 〈ψ∗

in(t1)ψin(t2)〉. Then, we find
that

〈I1(t1)I2(t2)〉 = 〈I1(t1)〉〈I2(t2)〉 +
∣∣ΔG(t1, t2)

∣∣2, (9.9)

where

ΔG(t1, t2) =

∫
Γe(t

′
1, t

′
2)K

∗
1(t1, t

′
1)K2(t2, t

′
2) dt′1dt

′
2. (9.10)

Clearly, |ΔG|2 is responsible for the interference effect. The connection between Eqs. (9.10)
and (9.6) is clear. |ΔG|2 plays the role of two-photon coincidence probability given by
Eq. (9.2). Apart from a conjugate, these two equations are formally identical and there-
fore, classical partially coherent light pulses might achieve the same results than temporal
entanglement phenomena provided that the Gaussian statistics assumption holds. The
discrepancy in the kernel is present in the differential equations (9.5) and (5.41), and is
fundamentally due to the definition of the MCF and the two-photon temporal amplitude
probability [compare Eq.(2.6) with (9.3)].

Our result in Eq. (9.9) is due to the Hanbury Brown–Twiss interferometer [48] in
Fig. 9.1(b), operating with non-stationary light pulses. In a practical configuration, the
background terms 〈Iα(t)〉 can be independently measured, e.g., with a sufficiently fast
oscilloscope, and then subtracted from Eq. (9.9) [346]. We would like to emphasize that
ΔG does not satisfy Eqs. (5.41), only Γe does. However, the Gaussian statistics allow one
to rewrite the fourth-order correlation in terms of second-order correlations. Only in this
case do the analogies in fourth-order interferometry between the quantum and classical
domains emerge [338].

We can define a visibility parameter as [342]

V = max

[
ΔG(t1, t2)

〈I1(t1)I2(t2)〉
]
. (9.11)

Therefore, using Schwartz inequality, we can see that if the background term is included,
the maximum achievable visibility is 50%. This is in clear distinction with the quantum
case, where, in the small photon-number regime, the visibility approaches the theoretical
limit of 100% [338].

9.3.2 Classical temporal ghost diffraction phenomenon

Let us now apply the scheme in Fig. 9.1(b) to the particular case of Fig. 9.2. In arm 1,
we place a temporal modulator providing a deterministic gate m(t). Before and after it
we have two GDD circuits (SMFs for simplicity) with Φ21b and Φ21a the corresponding
GDD parameters. In arm 2, we place another SMF characterized by Φ22. The source
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Figure 9.2: Classical version of the temporal ghost diffraction phenomenon.

is temporally incoherent and can be implemented by ASE. In practice, the condition of
temporal incoherence is satisfied when the coherence time of the ASE source is short
enough compared with the PD resolution and the pulse width of the temporal window of
|m(t)|2. We then have Γe(t1, t2) ∝ δ(t2 − t1). Then, by substituting the corresponding
kernel into Eq. (9.10) and further selecting the fibers to match Φ22 = Φ21b + Φ21a, we find
that

|ΔG(t2 − t1)|2 ∝
∣∣∣∣M̃ (

t2 − t1
Φ21a

)∣∣∣∣2 , (9.12)

where M̃(ω) is the Fourier transform of m(t). In close analogy with the spatial case
[322, 335, 340], this situation thus leads to the temporal Fraunhofer pattern of the gate
function, where here the temporal gate function corresponds to the object.

9.4 Nonlocal dispersion cancelation with classical pulses

Nonlocal dispersion cancelation is a quantum phenomenon that relies on the use of a
quantum light source providing temporally entangled photon pairs, usually obtained from
SPDC [347]. Each photon from the pair propagates through a dispersive medium with
suitable dispersion properties. Then, the dispersion experienced by one photon can can-
cel out the dispersion of the other one, so that their intensity coincidence probability
remains unaffected. This effect was experimentally demonstrated by Steinberg et al. in
a configuration based on a Hong-Ou-Mandel interferometer [348] in which only one dis-
persive medium is needed, and the even-order dispersion terms are naturally canceled
out [349, 350]. Nonlocal dispersion cancelation has triggered important applications in
quantum information science, like quantum optical coherence tomography [326], distant
clock synchronization [327] and remote transfer of spectral amplitude functions [329].

9.4.1 Mathematical formulation

In this Section we show that dispersion cancelation is not a genuine quantum phenomenon
and it can take place with classical stationary light obeying Gaussian statistics.

We start with the quantum case corresponding to Fig. 9.3(a) with a different SMF
placed at each arm. This corresponds to the initial configuration of the nonlocal dispersion
cancelation scheme reported by Franson [347]. If the detectors were ideal, the coincidence
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Figure 9.3: (a) Quantum and (b) classical scheme for nonlocal dispersion cancela-
tion.

circuit would give a quantity proportional to the second-order correlation function (9.3)
[48, 344]. The output G(2) function can be calculated by introducing the corresponding
kernel expressions from Sect. 5.3.3 into Eq. (9.6), leading to

G(2)(t1, t2) ∝
∣∣∣∣∫∫

φe(ω1, ω2) (9.13)

×
N∏

n=2

exp{i[ωn
1 Φn1 + ωn

2 (−1)nΦn2]/n!} exp[−i(ω1t1 + ω2t2)]dω1dω2

∣∣∣∣∣
2

.

Here, φe(ω1, ω2) is the two-dimensional Fourier transform with respect to t1 and t2 of the
two-photon probability amplitude at the input state, Ge,in(t1, t2), and Φna the nth-order
dispersion parameter of the SMF at arm a. For the case of an SPDC process operating with
CW pumping, signal and idler photons are initially entangled with negative-frequency
correlation, i.e.,

φe(ω1, ω2) = F (ω1)δ(ω1 + ω2), (9.14)

where the function F (ω) represents the spectral amplitude of the SPDC process centered
at the baseband, which is determined by the wave-vector phase matching in the nonlinear
crystal [317]. Thus, Eq. (9.13) leads to

G(2)(t2 − t1) ∝
∣∣∣∣∫ dωF (ω) exp[−iω(t2 − t1)] (9.15)

×
N∏

n=2

exp{iωn[Φn1 + (−1)nΦn2]/n!}
∣∣∣∣∣
2

,
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Therefore, unless one has two dispersive media adjusted to satisfy Φn1 = (−1)n+1Φn2 ∀n,
the effect of dispersion is to broaden the second-order correlation function [344, 347]. In
the case of first-order dispersion (N = 2) and when the fibers are not matched, Eq. (9.15)
becomes a Fresnel integral [344]. Interestingly, one can achieve a far-field condition when-
ever Φ21+Φ22 >> πσ2

c , where σc is the coherence time of the SPDC process, roughly given
by the inverse of the bandwidth of the function F (ω). Then, a frequency-to-time mapping
takes place, and the output G(2) resembles the shape of F (ω) [317, 344]. This result can
be understood as the biphoton temporal version of the vanCittert–Zernike theorem [332].

Let us now consider a modified Hanbury Brown–Twiss interferometer [48] as the one
shown in Fig. 9.3(b) with the same two SMFs as before. However, now the light source is
assumed to be temporally partially coherent and obeying Gaussian statistics. Again, at
the output of each arm the light intensity is photodetected and carried to a coincidence
circuit. As usual, we assume that the averaged intensity can be independently measured
at each arm and then subtracted from the intensity correlation. This leads to

ΔG(t1, t2) =

∣∣∣∣∫∫
dω1dω2Wb,in(ω1, ω2) (9.16)

N∏
n=2

exp{−i[ωn
1 Φn1 − ωn

2 (−1)nΦn2]/n!} exp[i(ω1t1 − ω2t2)]

∣∣∣∣∣
2

.

Here, Wb,in is the CSDF centered at baseband corresponding to the input partially coher-
ent light pulse. For the stationary case given by Eq. (2.18), we get

ΔG(t2 − t1) =

∣∣∣∣∣
∫
Ss,b(ω) exp[−iω(t2 − t1)]

N∏
n=2

exp[iωn(Φn2 − Φn1)/n!] dω

∣∣∣∣∣
2

. (9.17)

Here, Ss,b(ω) represents the ES of the light source centered at the baseband. We note
that it is possible to achieve all-order dispersion cancelation with classical light too by
selecting the different fibers to satisfy Φn2 = Φn1 ∀n.

By comparing Eq. (9.17) with Eq. (9.15) we note that Ss,b(ω) plays the role of the
spectrum of the SPDC process, F (ω) [317]. In each case, the spectral width of the cor-
responding function determines the coherence time of the random field or two-photon
light. The first-order coherence properties of each beam (quantum or classical) traveling
individually in each arm are not affected by the dispersion [283, 344]. The coherence
time is roughly given by the spectral structure of F (ω) (in the quantum case) [317] or
Ss,b(ω) (classical) [48] and the dispersive effects are only notable in fourth-order inter-
ference [344]. For this reason, already in the Appendix of the original work of nonlocal
cancelation, Franson pointed out that with stationary light, the intensity coincidence de-
tection could be affected by dispersion, but any nonlocal cancelation achieved by matching
the dispersive coefficients should not be considered as such because the correlation time
of each beam is unaffected with propagation [347]. However, that is indeed the case in
the quantum regime too: the first-order correlation function of the idler (signal) from the
SPDC process results unaffected by the dispersion, and only G(2) does broaden [317,344].
Nevertheless, there is a sign difference in the dispersion compensation laws for the classical
and the quantum case. As briefly commented in the previous section, the origin of this
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discrepancy is two-fold. First, due to the definition of the first-order coherence functions,
there is a difference in the Green propagators in Eqs. (9.13) and (9.16). Second, the
signal and idler photons in the case of the SPDC process are initially negative-frequency
anti-correlated, whereas the stationary case corresponds to fully de-correlated frequencies.
This has lead to the nonlocal dispersion cancelation with a classical source, though with
different dispersion requirements [38].

9.4.2 Application to remote spectral transfer

As a first application, we next propose a configuration for a remote spectrometer as the one
reported in [327], but here operating with a classical stationary source. In practical terms,
such light source could be provided by an ASE source. While spectral measurements
based on intensity correlations have been known for decades [351], the special feature
of the remote set-up is that the needed information can be transferred long distances
undistorted, relying on the nonlocal cancelation of dispersion.

ω

ω

Figure 9.4: Remote spectral transfer scheme.

With this aim, let us assume a configuration as the one presented in Fig. 9.4. A static
base station is provided of an ASE source, a monochromator, and a dispersive medium 1.
This base station is connected with an optical fiber (SMF2) to a remote station which has a
spectral device with a spectral amplitude transfer function to be measured. The benefit of
this technique is that it does not require any OSA in the remote station and the resolution
of the spectrometric measurement is only limited by the scanning monochromator.

The remote measurement is performed by sweeping the monochromator in the base
station and recording the light intensity with two photodetectors at each station, that
also memorize the event history. When the sweeping is finished, the information from
both stations is shared (through a classical or quantum information channel) in order
to perform a posteriori the joint detection coincidence rate in a post-processing circuit.
Mathematically, this translates into the calculation of [327]

Rc =
1

TRT

∫ T/2

−T/2

dt1

∫ TR/2

−TR/2

ΔG(t1, t1 + τ)dτ. (9.18)
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Here TR is the temporal response of the photodiode and T is the average time. Both times
are usually much longer than the coherence time of the source that can be on the order
of hundreds of femtoseconds, which allows us to extend the integral limits from −∞ to
+∞.

The intensity interference term corresponding to the example in Fig. 9.4 is

ΔG(t1, t2) =

∣∣∣∣∫ dω Ss,b(ω)H∗
1 (ω)H2(ω) (9.19)

×
N∏

n=2

exp[iωn(Φn2 − Φn1)/n!] exp[−iω(t2 − t1)]

∣∣∣∣∣
2

.

Here H1(ω) and H2(ω) represent the spectral transfer function at the baseband of the
monochromator and the device under test (DUT), respectively. We also observe the
need of the dispersive medium 1 to match the dispersion introduced by SMF2 in order
to minimize the distortions in ΔG. Further, we assume that the monochromator has a
sufficiently sharp bandpass function around the tunable frequency ωm, so that H1(ω) ≈
δ(ω− ωm). We then get Rc ≈ |H2(ωm)Ss,b(ωm)|2. If the spectrum of the ASE noise is flat
enough in the spectral band of H2(ω), the coincidence rate will provide the spectral shape
function of the filter by sweeping the frequency of the monochromator. We would achieve
then the same result as in [327] but without any quantum source [38]. However, unlike in
the quantum case, in our scheme the measurable spectral range is limited to the spectral
bandwidth of the source. But our setup has the advantage that it allows for all-order
dispersion cancellation by selecting identical pair of fibers. And further, since broadband
ASE sources operating in the 1.55μm telecom window are well-established, our method
would avoid the intermodal distortion present in the original configuration [327], which
uses visible light, allowing for larger interconnection distances.



Chapter X

Conclusions

The Space–Time analogy establishes a formal link between the diffraction of 1D paraxial
monochromatic coherent beams and the temporal dispersion of coherent plane-wave pulses
in first-order dispersive media. Far from being just a simple curiosity, this connection
has triggered important applications in ultrashort-pulse processing by transferring results
from diffractive optics that have been known for decades.

In this Thesis, we have proposed the temporal counterpart of an afocal system. In
the temporal domain, this system has the capability of scaling the energy spectrum of
ultrashort optical waveforms, and results completely feasible with current technology.
Additionally, the analogy has also been used to propose the temporal counterpart of the
Fresnel array illuminators. In this way, we have been able to reformulate the problem of
temporal distortion of continuous-wave periodically phase-modulated light in terms of the
Fresnel images of a phase grating. Our results perfectly match those previously achieved
by different groups and opens the door to obtain highly repetitive ultrashort pulses with
a high degree of flatness, with potential applications in optical-time-division multiplexing
as well as in millimeter-wave photonics.

We have pointed out that it is necessary to take into account the stochastic nature of
the light in order to have a more accurate description of ultrashort optical pulses affected
by noise. In this Thesis, the description has been adapted from the previous results
on optical coherence theory, in the framework of nonstationary statistics. In particular,
we have developed a simple theory that simultaneously include the effects of amplitude,
phase, and timing noise in ultrashort pulse trains. This theory has been shown to result
particularly relevant to have a complete description of noisy frequency combs.

Additionally, we have reported the route to achieve, in a user-defined way, partially
coherent pulses that obey the so-called independent-elementary-pulse representation. This
model describes partially coherent pulses as an incoherent continuous superposition of a
fully coherent ensemble of pulses. Further, we have extended the model to consider the
elementary basis as partially coherent. This sophistication of the theory appears natural
when one considers nondeterministic pulses modulating stationary sources.

The Space–Time analogy has also been shown to appear between partially coherent
wavefields, with the same transfer rules than in the coherent case. Within this framework,
we have studied the problem of having non-monochromatic incoherent sources in different
systems widely used in temporal optics. In particular, real-time Fourier transformers have
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been shown to degrade when operating under broadband spectrally incoherent sources.
However, there are many optical systems that offer a better performance with incoherent
sources. We have shown numerically that the electro-optic pulse generation technique
can be ripple-free when a broadband source is used. Additionally, we have proposed and
demonstrated experimentally a new technique for pulse shaping which is based on the
quasistationary vanCittert–Zernike theorem in the time domain. In this technique, one
filters spectrally an incoherent source and achieves a frequency-to-time mapping just by
temporal modulation and dispersion in a group-delay-dispersion circuit. The technique
has been shown particularly promising for radio-frequency arbitrary waveform generation
because its performance can be understood as an incoherent microwave photonic filter.

There is a current trend to achieve low-cost alternatives to ultra-wideband pulse gen-
eration and fiber transmission. In this Thesis, we have experimentally reported several
solutions based on current modulation of semiconductor lasers, as well as on the afore-
mentioned technique of incoherent pulse shaping.

Finally, we have further extended the Space–Time analogy into the quantum–classical
domain, thus establishing a fourfold connection. In particular, we have shown that the
spreading in first-order dispersive media of temporally entangled two-photon light is iden-
tical (apart from a sign in the fundamental equations) to the spreading of partially co-
herent light pulses. Based on this new analogy, we have claimed that some previously
reported effects that were achieved with temporally entangled two-photon light are not
genuinely quantum and can be mimicked with partially coherent classical pulses. We have
focused on the cases of ghost interference and nonlocal dispersion cancelation.

Further studies and experiments might be developed in the future. The experimental
implementation of the proposed technique for achieving partially coherent pulses in a user-
defined fashion seems particularly promising for some current femtochemistry applications
where stochastic pulses are on demand.

The implementation of the incoherent pulse shaping technique using shorter pulse
gates and/or different photonic architectures opens the door to truly arbitrary radio-
frequency generation in the millimeter-wave domain. This could trigger several low-cost
devices easily feasible in every fiber-optics laboratory.

Finally, the recently developed spatiotemporal quantum-classical analogy is expected
to have some impact in quantum information science. Whether partially coherent pulses
can always be used to emulate the effects of temporal entanglement is an open question
that needs to be answered.



Summary (in Spanish)

Durante las últimas décadas, la generación de haces ópticos pulsados con una duración
temporal del orden del pico y femtosegundo ha constituido uno de los temas de inves-
tigación más candentes en el ámbito de la F́ısica y la Ingenieŕıa. Las caracteŕısticas de
este tipo de radiación, alta resolución temporal, elevada coherencia espacial, gran an-
cho de banda y potencialmente alta intensidad, la hacen sumamente útil para desarrollar
numerosas aplicaciones en distintos campos de la ciencia y la tecnoloǵıa [1].

Los láseres que poseen un amplio conjunto de modos longitudinales constituyen los
mejores candidatos para la obtención de este tipo de radiación [112]. Para conseguir el
régimen pulsado es necesario que todas estas componentes frecuenciales se superpongan
con una fase determinada, para lo cual se han venido desarrollando diferentes técnicas,
comúnmente denominadas bajo el apelativo de anclaje de modos (”mode locking” en
inglés). De manera general es posible afirmar que existen dos mecanismos para el anclaje
de modos, el activo y el pasivo. El primero ha permitido desarrollar dispositivos todo-fibra,
y por tanto muy compactos, de enorme interés en el ámbito de las telecomunicaciones [3].
T́ıpicamente la longitud de onda central se sitúa en la ventana de 1.55μm y la duración
temporal de los pulsos suele ser de 100 fs. El mecanismo de anclaje se consigue insertando
en la cavidad un modulador electroóptico, de amplitud o de frecuencia, con lo que el tren
de pulsos puede alcanzar una tasa de repetición de unas pocas decenas de GHz. Por
otro lado, el anclaje de modos pasivo, obtenido mediante el efecto no lineal de focalizacin
tipo Kerr en los cristales de Ti:Sa, ha permitido el desarrollo de sistemas comerciales
capaces de ofrecer los pulsos más cortos (< 10 fs) para longitudes de onda centradas en
el infrarrojo [2]. Usualmente, la frecuencia de repetición, igual al rango espectral libre de
la cavidad láser, es de algunas decenas de MHz.

Cabe destacar que los láseres de modos anclados sufren ciertas carencias, como la
elevada sensibilidad a las condiciones ambientales reales o su enorme coste econmico, lo
cual dificulta, a d́ıa de hoy, su incorporación al mercado en algunas de sus potenciales
aplicaciones. Existen sistemas alternativos para la produccián de radiacián ultracorta.
En el sector de las telecomunicaciones, por ejemplo, dicha generación se puede llevar a
cabo utilizando moduladores de electroabsorción o mediante la técnica electroóptica [3].
En ambos métodos la tasa de repetición del tren es de decenas de GHz, pero la duración
de los pulsos suele ser de unos pocos picosegundos.
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Una de las potencialidades más interesantes de los sistemas ultrarrápidos es la de
resolver procesos en el tiempo. El principio de operación es análogo al utilizado para
captar imágenes del movimiento de ciertos procesos macroscópicos con flashes electrónicos
[1]. Aśı nace la femtoqúımica, que ha permitido el análisis y control en el régimen del
femtosegundo de ciertas reacciones qúımicas fotoinducidas [4]. Mediante una configuracin
bombeo-prueba se han podido determinar procesos qúımicos intermedios en reacciones
qumicas de interés biológico e industrial. Cabe mencionar que estas investigaciones le
valieron el premio Nobel de Qúımica al profesor A. H. Zewail en 1999.

El enorme ancho de banda que presentan los pulsos ultracortos, junto con la alta poten-
cia y elevada coherencia espacial, abre nuevas posibilidades en el campo de la tomograf́ıa
de coherencia óptica y la metroloǵıa de superficies, donde usualmente se vienen empleando
LEDs superluminiscentes como fuentes ópticas de baja coherencia temporal. Al sustituir
este tipo de diodos por un láser de femtosegundo se consigue incrementar sustancialmente
la resolución axial, es decir, en profundidad, de estos sistemas interferométricos [1].

Los pulsos de femtosegundo pueden alcanzar una potencia de pico muy alta, lo que
permite la generación de procesos multifotón. Esto ha abierto nuevas posibilidades en el
campo de la microscoṕıa no lineal, ya que la región de fluorescencia se concentra ahora en
un volumen focal mucho menor que el alcanzado mediante métodos convencionales, lo que
en definitiva incrementa la capacidad de seccionado óptico. Esto, combinado con el hecho
de que la potencia promedio es lo suficientemente baja como para no dañar determinadas
muestras biológicas, ofrece interesantes aplicaciones en el campo de la biomedicina [1].

La generación de pulsos cuya duración temporal ocupa sólo unos pocos ciclos de os-
cilación de la frecuencia óptica principal, combinado con la tecnoloǵıa CPA, ha permitido
la obtención de haces de radiación de extremada potencia de pico, abriendo nuevas ĺıneas
de investigación en el ámbito de la interacción radiación-materia, como la f́ısica no lineal
extrema o la fusión nuclear inducida por láser [7]. Uno de los fenómenos no lineales ex-
tremos que está suscitando un mayor interés en la comunidad cient́ıfica es la generación
de radiación de longitudes de onda harmónicas inferiores mediante pulsos láser de fem-
tosegundo. En este caso se pueden conseguir pulsos con duración subfemtosegundo. La
creación, manipulación y caracterización de estos pulsos constituye un reto para la co-
munidad cient́ıfica y sin duda será uno de los campos más prometedores de la F́ısica en
los próximos aos [10]. Al igual que la femtoqúımica permitió el estudio de la dinámica
de las moléculas, la denominada attof́ısica, debido a la escala temporal del pulso em-
pleado, permitirá el estudio dinámico del movimiento de los electrones en el átomo. Es
muy importante destacar que para la generación de secuencias de pulsos de attosegundo
es necesario obtener previamente un tren de pulsos ópticos de unos pocos femtosegun-
dos con elevada estabilidad [13]. Esto quiere decir que la variación aleatoria tanto de
la envolvente, como de la fase relativa entre la envolvente y la portadora entre pulso y
pulso, debe ser controlada. En otras palabras, la coherencia del tren de pulsos debe ser
total. En el dominio frecuencial esta afirmacin equivale a tener un peine de frecuencias
de extremadamente alta definición. Para conseguirlo, se han adaptado y perfeccionado
técnicas empleadas en espectroscoṕıa láser de alta resolución para la estabilización del
espectro de modos longitudinales del láser [11]. De esta manera, el láser de modos ancla-
dos estabilizado constituye una potente herramienta de precisión con una resolución sin
precedentes, lo que ha revolucionado el sector de la metroloǵıa de frecuencias ópticas [12],
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con aplicaciones que van desde la determinación de compuestos moleculares [97] hasta la
śıntesis de señales necesarias en telecomunicaciones [93]. Finalmente, es necesario destacar
que los profesores T. W. Hänsch y J. L. Hall fueron galardonados en 2005 con la mitad
del premio Nobel de F́ısica por el desarrollo de esta tecnoloǵıa.

Respecto a las aplicaciones comerciales de los sistemas ultrarrápidos, cabe mencionar
que la corta duración de los pulsos permite su utilización para el control de calidad de
sistemas electrónicos de alta velocidad, ya que los dispositivos usualmente empleados para
este fin son más lentos que los sistemas electrónicos más avanzados [195]. De hecho, la
enerǵıa que posee un solo pulso se concentra en una duración temporal mucho menor
que el tiempo de difusión térmica de muchos materiales, lo que permite por ejemplo, la
fabricación de gúıas de onda y la realización de cortes y perforado de alta precisión con
mı́nima afectación térmica sobre diferentes tipos de sustrato [1]. Cabe destacar que una de
las aplicaciones de la excitación multifotón mediante pulsos ultracortos es la fabricación
de objetos tridimensionales de dimensiones reducidas mediante la polimerización a dos
fotones que tiene lugar en determinados tipos de resina. El potencial de esta técnica para
aplicaciones biomédicas reside en el hecho de que las piezas fabricadas poseen el mismo
tamaño que un glóbulo rojo, lo que sugiere la creación y empleo de microsensores o mi-
cromáquinas para determinados tratamientos cĺınicos [1]. Otras aplicaciones potenciales
de los láseres de femtosegundo en biomedicina pasan por la obtención de radiograf́ıas sin
radiación ionizante, nuevas técnicas de ciruǵıa no térmica de la córnea, incisiones en el
esmalte dental o el desarrollo de nuevos marcadores de células cancerosas [1].

Finalmente, en el sector de las comunicaciones por fibra óptica, un láser de 100 fs
posee un ancho de banda espectral comparable al ancho total de su ventana de pérdidas
mı́nimas. De esta manera, para sistemas avanzados que operan mediante multiplexado
denso por división de longitud de onda, donde cada canal de información se implementa
mediante un láser de semiconductor, es posible sustituir todos los canales por un solo
láser pulsado, aprovechando en definitiva el ancho de banda global de la fibra óptica [94].
Para sistemas que operan mediante multiplexado óptico por división temporal, se ha
demostrado experimentalmente la transmisión de datos a una tasa de 1.28 Tb/s [3]. Por
otro lado, en el ámbito del procesado fotónico de señales de microondas, las técnicas de
conformado de alta resolución de pulsos ultracortos por medio de conversores espacio-
tiempo han permitido la generación de señales de perfil arbitrario de decenas de GHz, que
actualmente resultan imposibles de realizar mediante métodos electrónicos convencionales
[85]. En este mismo sector, mediante el empleo de láseres de fibra pulsados, también se
ha conseguido aumentar la frecuencia de señales de microondas cosenoidales [145].

Por otro lado, en óptica temporal es un hecho bien conocido que la ecuación que
describe la distorsión de la envolvente de un pulso en el seno de un medio dispersivo
cuadrático es formalmente idéntica a la que gobierna la difracción paraxial de un haz
coherente unidimensional monocromático [14]. Esta conexión se conoce como analoǵıa
Espacio-Tiempo y constituye una herramienta muy potente, pues permite la transfer-
encia de resultados y la profundización en la comprensión f́ısica de ciertos fenómenos
que necesariamente tienen lugar en ambos dominios. Por nombrar sólo unos ejemplos,
la implementación de sistemas de formación de imágenes temporales ha permitido cam-
biar la escala temporal de la intensidad de pulsos ópticos, sin distorsinar la forma, hasta
hacerla accesible a la resolución temporal de los aparatos de medida electrónicos con-
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vencionales [169]; el efecto Talbot temporal entero ha sido propuesto, por ejemplo, para
mitigar el denominado ”timing jitter” [180]; el efecto Talbot fraccional ha servido para la
multiplicación totalmente óptica de la tasa de repetición en intensidad de trenes de pul-
sos [158]; y la adaptación del formalismo matricial ABCD ha permitido reformular de una
manera más simple el mecanismo de anclaje de modos activo en una cavidad láser [136].
La analoǵıa Espacio–Tiempo también ha sido aplicada para definir el régimen de Fraun-
hofer temporal en medios dispersivos [157] y su aplicación para el diseño de analizadores
espectrales en tiempo real, identificar el homólogo temporal de la acción de la iluminación
esférica [143]; seguido de un largo etcétera.

Circuito GDD

Lente temporal

Espectro salida

Espectro entrada

Frecuencia

K1

�
�

K2

Lente temporal

Frecuencia

Figura 1. Esquema de un sistema formador de imágenes espectral. El espectro
del pulso de salida constituye una reéplica escalada del de entrada si se establece
la siguiente relación K−1

1 + K−1
2 = Φ2, donde Ki es la tasa de chirp de la lente i

y Φ2 es la cantidad de dispersión introducida por el circuito de retardo de grupo
(circuito GDD).

Dentro de la mencionada analoǵıa, en el Caṕıtulo V de esta Tesis hemos demostrado
que cualquier sistema afocal se comporta como un sistema formador de imágenes en el
dominio espectral. Esto implica que podemos diseñar sistemas fotónicos capaces de es-
calar el espectro de potencia de un pulso de entrada, tal y como se ilustra en la Fig. 1. La
implementación práctica de este tipo de dispositivos se realiza mediante dos lentes tempo-
rales separadas de un medio dispersivo lineal. Las simulaciones presentadas demuestran
que, mediante un tándem formado por una lente temporal implementada mediante un
modulador electroóptico de fase, una fibra monomodo y una fibra no lineal bombeada
con un pulso Gaussiano, es posible obtener el deseado sistema. En concreto, se puede
diseñar el sistema para superar la resolución actual de los analizadores ópticos espectrales
comerciales.

Asimismo, también hemos adaptado al dominio temporal los famosos ”iluminadores
Talbot” [201]. Mientras que el fenómeno Talbot fraccional ha sido utilizado para alcanzar
altas frecuencias de repetición a partir de un tren de pulsos con bajo factor de llenado;
los iluminadores de Talbot tratan de obtener una secuencia de pulsos, de alta tasa de
repetición y perfil arbitrario, a partir del diseño de un perfil de fase adecuado y su dis-
torsión en el seno de un medio linealmente dispersivo que satisface la condición de Talbot
fraccional. Para la implementación práctica de este tipo de dispositivos, únicamente es
necesario un láser de onda continua; un modulador electroóptico de fase; una señal de
radiofrecuencia que conduce el modulador; y una fibra óptica monomodo como medio
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dispersivo, tal y como muestra la Fig. 2. Por un lado, nuestro análisis ha proporcionado
soporte teórico a los experimentos publicados recientemente en la literatura donde se
consegúıan secuencias de pulsos de perfil plano [194]. Por otro lado, la adaptación de
iluminadores Talbot al dominio temporal ha permitido la predicción teórica de nuevos
perfiles de enorme utilidad para el demultiplexado de señales de alta tasa de repetición.
Finalmente, al utilizar una fuente óptica pulsada en lugar de un láser de onda continua,
es posible conseguir señales comprimidas en el tiempo que, al ser detectadas por un fo-
todiodo ideal, generan corrientes eléctricas con un contenido espectral en el rango de las
ondas milimétricas. Dichas señales pueden ser útiles en el campo de la transmisión de
señales inalámbricas por redes de fibra óptica [195].

Láser onda continua

Señal RF

Tiempo

Modulador EOF

Circuito GDD

Tiempo

Intensidad salida

Figura 2. Esquema para la generación de iluminadores Talbot en el dominio
temporal. Un láser de onda continua es modulado por un modulador electro-óptico
de fase (EOF), que a su vez es ocnducido por una señal periódica y arbitraria de
radio frecuencia (RF). El perfil de esta señal eléctrica se transfiere a la fase óptica
del láser. Al dispersar la onda por un medio dispersivo cuadrático es posible
obtener determinados patrones de intensidad mediante el correcto diseño de la
señal de RF.

No obstante, en la mayoŕıa de los fenómenos y aplicaciones anteriores se asume que
los pulsos son totalmente coherentes. Sin embargo, la mayoŕıa de los fenómenos f́ısicos
reales están sujetos a fluctuaciones aleatorias y, en un caso práctico real, la envolvente
de los pulsos que conforman el tren vaŕıa, en cierta medida, aleatoriamente de pulso a
pulso [48]. Esto se debe a que la superposición de las distintas componentes frecuenciales
no se realiza con una fase determinada. En el ámbito de la óptica temporal, este hecho
cobra especial relevancia dada la influencia de los fenómenos de emisión espontánea en
dispositivos tales como los láseres de semiconductor, las fuentes de emisión espontánea
amplificada o los diodos emisores de luz, entre muchos otros [77]. La contribución de estos
efectos, de origen puramente aleatorio, se refleja en un ensanchamiento de la ĺınea óptica
espectral, lo que no puede ser ignorado en muchas aplicaciones.

En este contexto, el método desarrollado por Marcuse [76] ha sido ampliamente uti-
lizado para estudiar la propagación de pulsos Gaussianos parcialmente coherentes emitidos
por moduladores externos a la fuente óptica real o para diseñar filtros transversales para
aplicaciones en sistemas de radiofrecuencia sobre fibra [78]. Por otro lado, la teoŕıa de
la coherencia óptica fue desarrollada en el marco de la difracción de haces parcialmente
coherentes espacialmente, pero constituyendo en śı misma un tratamiento más riguroso y
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potente para describir los efectos estad́ısticos en sistemas ópticos [48]. Esta teoŕıa tiene
en cuenta los fenómenos estocásticos a través de las funciones de correlación, que tienen
su fundamento matemático en el marco de la teoŕıa clásica de señales aleatorias. Sin
embargo, su empleo en el dominio de la óptica temporal ha sido más bien escaso. Saleh
empleó este formalismo para tratar el mismo problema que Marcuse, pero restringiéndose
a primer orden en la distorsión [81]. Ya destacó que algunos de los resultados obtenidos
se encontraban estrechamente ligados con sus problemas homólogos espaciales, pero sin
establecer un v́ınculo formal entre los mismos.

Recientemente ha habido un renovado interés en el estudio teórico de este tipo de
radiación desde la perspectiva de la teoŕıa de la coherencia óptica. Espećıficamente, se
ha introducido la definición rigurosa de un pulso Gaussiano parcialmente coherente y
sus caracteŕısticas [41], su implementacin experimental [55] y su propagación en sistemas
matriciales ABCD temporales [207], aśı como la reformulación del teorema de vanCittert-
Zernike en el dominio temporal y su aplicación para medir los parámetros de dispersión
cromática de medios dispersivos arbitrarios [75]. Cabe destacar que para la medida ex-
perimental de pulsos parcialmente coherentes, en principio no se requieren nuevos dispos-
itivos, pero śı un conjunto amplio de muestras con el fin de poder llevar a cabo cálculos
estad́ısticos [245].

El objetivo principal de esta Tesis ha sido el de estudiar, desde una perspectiva tanto
práctica como aplicada, los efectos aleatorios en pulsos ópticos, y en especial en pulsos
ultracortos dado su enorme interés actual. Para ello hemos empleado el formalismo de
la coherencia óptica. Nos hemos restringido al caso escalar, lo que equivale a asumir un
estado de polarización determinista e invariable. El Caṕıtulo II recoge brevemente los
resultados más importantes de esta teoŕıa que han sido necesarios para entender los prin-
cipales resultados expuestos a lo largo de la Tesis. En él se destacan brevemente, por un
lado el caso de estad́ıstica estacionaria, que fue adaptada a la óptica a mitades del siglo
XX con los trabajos pioneros de Wolf [48] y que, aunque resulta particularmente adecuada
para describir luz de tipo térmica, tal como la de un diodo emisor de luz o una fuente
de radiación del tipo emisión espontánea, resulta imprecisa a la hora de describir pulsos
ultracortos que poseen una variación promedio de la intensidad que no es constante en el
transcurso del tiempo. Aśı pues el Caṕıtulo II también recoge por otro lado, a modo de
resumen, la extensión del formalismo de funciones de correlación al caso en el que la inten-
sidad promedio es una función dependiente del tiempo, esto es, el caso no estacionario. En
particular, se estudia el teorema de Wiener–Khintchine generalizado, que conecta las fun-
ciones de correlación en el dominio espacio–tiempo y espacio–frecuencia en su expresión
más general. Por último, se realiza un análisis de funciones de correlación de orden su-
perior asumiendo estad́ıstica Gaussiana. En este caso, toda la jerarqúıa de funciones de
correlación es susceptible de ser expresada en términos de funciones de correlación de
segundo orden.

El Caṕıtulo III estudia algunos modelos particulares de funciones de correlación. Por
un lado, estos modelos constituyen herramientas matemáticas adecuadas a la hora de
describir las propiedades de coherencia de pulsos ultracortos, y por otro, dan una idea
f́ısica clara y concisa a la hora de generar en el laboratorio este determinado tipo de ra-
diación. En particular, se estudia la representación de pulsos coherentes independientes.
Básicamente, este modelo asume que se puede generar determinados tipos de funciones de
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Figura 3. Esquema para la śıntesis de pulsos parcialmente coherentes mediante
el modelo de superposición incoherente de pulsos elementales coherentes. Un haz
pulsado espacial y temporalmente coherente incide sobre un conformador de pul-
sos tipo espacio a tiempo. La clave está en insertar un difusor rotante junto a la
máscara de śıntesis. De esta manera, el pulso óptico de salida resulta espectral-
mente parcialmente coherente y posee una función de correlación correspondiente
al modelo de superposición continuo e incoherente.

correlación mediante superposición incoherente de pulsos totalmente coherentes [46]. El
modelo puede ser expresado tanto en el dominio temporal como en el espectral. Ambos son
completamente compatibles con las definiciones rigurosas de no negatividad [73]. Exper-
imentalmente, el primer modelo puede ser construido mediante modulación determinista
de una fuente spectralmente incoherente con un determinado ancho de banda [55]. El se-
gundo modelo se puede implementar mediante un esquema como el de la Fig. 3. Un haz
pulsado totalmente coherente pasa por un difusor rotante. El difusor induce coherencia
espacial en el haz, que a su vez pasa por un conformador de pulsos de traslación directa
espacio-tiempo. En esta Tesis hemos demostrado que en este caso, las propiedades de
coherencia temporal pueden ser controladas a través del control de las propiedades de
coherencia espacial y que la función de coherencia mutua se corresponde con el modelo
de superposición de pulsos elementales coherentes en el dominio espectral. Cabe destacar
que la utilización de pulsos parcialmente coherentes con coherencia controlada puede dar
lugar a un nuevo grado de libertad en el control de la producción de productos en ciertas
reacciones qúımicas [68].

Finalmente, en el Caṕıtulo III también extendemos el modelo de superposición al
dominio parcialmente coherente. En este caso la base elemental ya no es un conjunto de
pulsos totalmente coherentes sino parcialmente coherentes. Esta sofisticación de la teoŕıa
es perfectamente válida a la hora de considerar modulaciones no deterministas de fuentes
estacionarias.

El Caṕıtulo IV estudia los efectos de coherencia temporal en trenes de pulsos ultra-
cortos. A diferencia de los anteriores caṕıtulos, consideramos la coherencia de trenes de
pulsos y no pulsos individuales. Este hecho permite desarrollar un modelo basado en
conceptos de coherencia que incluye los efectos de ”timing jitter” de una manera simple
y anaĺıtica. Asimismo, nuestro modelo permite predecir las distorsiones aparentes en las
correlaciones espectrales de un peine de frecuencias [122]. En particular encontramos que
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los efectos de coherencia parcial (modelizada como ruido estacionario multiplicativo) con-
tribuyen en ensanchar cada una de las ĺıneas espectrales del peine. Cuando se considera el
espectro de enerǵıa en su conjunto, las ĺıneas se ubican en la misma posición que en el caso
coherente. El timing jitter contribuye a ensanchar las ĺıneas más alejadas de la frecuencia
central de manera cuadrática. Finalmente, dos frecuencias aparecen descorrelacionadas
entre śı de no ser que su diferencia sea un múltiplo entero de la frecuencia de repetición
del tren.

El Caṕıtulo V constituye el núcleo del trabajo. En él estudiamos la propagación en
medios linealmente dispersivos de pulsos de tipo onda plana parcialmente coherentes. Me-
diante la formulación de la teoŕıa de la coherencia óptica, hemos reconocido que la analoǵıa
Espacio–Tiempo también se establece entre campos ondulatorios parcialmente coherentes.
Este resultado clave permite extender los resultados conocidos durante décadas referentes
a haces parcialmente coherentes espacialmente a pulsos temporalmente parcialmente co-
herentes. En particular, hemos recuperado las leyes de evolución de un pulso parcial-
mente coherente Gaussiano [207] a partir de los resultados en el dominio espacial [54], y
reconocido que los efectos del ancho de ĺınea de la fuente óptica en sistemas linealmente
dispersivos pueden tratarse matemáticamente en términos de una simple convolución en-
tre el espectro de enerǵıa de la fuente con la intensidad resultante de la propagación de a
señal coherente. Esta potente herramienta constituye el homólogo temporal del teorema
de equivalencia de Collet–Wolf en la región de Fresnel [209] y ha servido para analizar la
influencia del ancho de ĺınea en sistemas transformadores de Fourier en tiempo real. Por
último, el teorema de Collet–Wolf en la región de Fresnel nos permite reconocer que el
espectro de enerǵıa de la fuente actúa como un filtro pasa-baja para la intensidad [210].
Aśı pues, por el hecho de utilizar una fuente espectralmente incoherente con un determi-
nado ancho de banda, se puede eliminar los efectos perniciosos que induce la modulación
de alta frecuencia en los sistemas generadores de pulsos por el método electroóptico [192].

OSA

OsciloscopioCircuito GDD

Φ2

Síntesis
Espectral

Figura 4. Diagrama para la generación arbitraria de perfiles de intensidad prome-
dio. La fuente espectral incoherente se toma de un amplificador de fibra dopada
con Erbio (EDFA) y se perfila adecuadamente; la modulación externa determin-
ista se realiza con un modulador electroóptico (EOM). Finalmente, el circuito de
dispersión realiza la conversión frecuencia tiempo.

El Caṕıtulo VI recoge una técnica original para la generación de perfiles temporales
de intensidad arbitrarios, basada en el teorema de van Cittert–Zernike para pulsos cuasi-
homogéneos en el dominio temporal [75]. La técnica está ilustrada en la Fig. 4. Una



Resumen 111

fuente óptica espectralmente incoherente se filtra con un perfil definido por el usuario.
Después la fuente se modula externamente con un modulador determinista, pero de tal
manera que el espectro óptico de enerǵıa no cambie significativamente. Al propagar la
señal por un medio dispersivo de primer orden (como una fibra óptica) con una cantidad
mı́nima de dispersión (fijada por la condición de campo lejano parcialmente coherente),
la intensidad promedio del pulso a la salida constituye una réplica escalada del perfil
sintetizado de la fuente.

En el Caṕıtulo VII proponemos dos técnicas para la medida de pulsos parcialmente
coherentes mediante métodos no interferenciales. El primero asume que el pulso parcial-
mente coherente se puede decribir como un pulso coherente afectado de ruido multiplica-
tivo y estacionario en el tiempo. Para caracterizar este tipo de radiación, se requieren
únicamente tres medidas. Dos medidas del perfil de intensidad promedio, una antes y
otra después de propagación en un medio dispersivo de primer orden. Finalmente, una
medida del espectro de enerǵıa da lugar a una caracterización completa de la función de
coherencia mutua del pulso. Por otro lado, el segundo modelo, dual del primero, asume
que el pulso parcialmente coherente puede ser descrito como un pulso coherente afectado
de ruido multiplicativo en el dominio espectral. También se requieren tres medidas: el
espectro de enerǵıa del pulso a la entrada y la salida de una lente temporal y el perfil de
intensidad promedio del pulso. Con este procedimiento, la función de correlación cruzada
espectral queda caracterizada completamente.

El Caṕıtulo VIII recoge diversas técnicas fotónicas de aplicación en el ámbito del
procesado y generación de señales de radiofrecuencia. Hemos demostrado teórica y ex-
perimentalmente que un la función de transferencia en un filtro transversal incoherente
de microondas se compone de la mulltiplicación de tres términos. El primero corre-
sponde al efecto del tipo de conversor eléctrico-óptico, el segundo a la respuesta frecuen-
cial del conversor óptico-eléctrico y el tercero y más importante, una versión escalada de
la función de coherencia mutual de la fuente espectralmente incoherente de banda ancha
utilizada. Hemos demostrado que, en determinadas circunstancias se puede conseguir que
este término domine sobre los demás, lo que implica que el filtro se puede reconfigurar al
filtrar adecuadamente el espectro de la fuente óptica y a través de él, la función de co-
herencia mutua de la fuente. En el ámbito de la generación de señales de radio-frecuencia,
el sistema de la Fig. 4 ha resultado adecuado para la generación de señales arbitrarias en
el rango 0–10 GHz. Dentro del rango de banda ultra amplia (3.1–10.6 GHz) [300], hemos
demostrado que se pueden emplear láseres semiconductor como alternativa de bajo coste,
aprovechando las operaciones inherentes de conversión frecuencia–intensidad y ”sobredi-
paro” [77].

Finalmente, en el Caṕıtulo IX, hemos extendido la analoǵıa Espacio–Tiempo al caso
cuántico. Hemos demostrado que las ecuaciones que las ecuaciones que describen la dis-
torsión temporal de un sistema de fotones entralazados en medios dispersivos de primer
orden [171] son formalmente idénticas, a parte de un signo, a las que describen la distorsión
de pulsos clásicos parcialmente coherentes. Este hecho sugiere que algunos sistemas inter-
ferenciales de cuarto orden donde se utilizan fuentes cuánticas pueden operar con fuentes
clásicas, pero parcialmente coherentes, tal y como se muestra en la Fig. 5. En particular,
hemos formulado el fenómeno de la difracción fantasma [342] en el dominio temporal y
demostrado que puede ser conseguido mediante pulsos parcialmente coherentes. Final-
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Figura 5. (a) Sistema cuántico que describe la distorsión temporal de dos
fotones entrelazados en un medio dispersivo general; (b) Sistema clásico que
opera con pulsos parcialmente coherentes. En ambos se miden coincidencias
en intensidad. En el caso cuántico estas coincidencias son proporcionales al
módulo cuadrado de la amplitud de probabilidad mientras que en el caso
clásico el resultado es proporcional a la función de correlación de cuarto
orden.

mente, hemos desmostrado teóricamente que el fenómeno de cancelación no local de la
dispersión [347] puede ser emulado con fuentes clásicas estacionarias, lo que ha permitido
proponer un sistema para la transferencia remota de funciones espectrales [329] que opera
sin luz cuántica.



References

[1] M. E. Fermann, A. Galvanauskas, and G. Sucha, eds., Ultrafast Lasers. Technology
and Applications (Marcel Dekker, New York, 2003).

[2] G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers
in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,”
Science 286, 1507–1512 (1999).

[3] H.-G. Weber and M. Nakazawa, eds., Ultrahigh–Speed Optical Transmission Tech-
nology (Springer Verlag, New York, 2007).

[4] A. H. Zewail, “Femtochemistry: Atomic-scale dynamics of the chemical bond,” J.
Phys. Chem. A 104, 5660–5694 (2000).

[5] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence
tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).

[6] M. D. Perry and G. Mourou, “Terawatt to Petawatt Subpicosecond Lasers,” Science
264, 917–924 (1994).

[7] T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear
optics,” Rev. Mod. Phys. 72, 545–591 (2000).

[8] G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,”
Rev. Mod. Phys. 78, 309–371 (2006).

[9] P. H. Bucksbaum, “The future of attosecond spectroscopy,” Science 317, 766–769
(2007).

[10] E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak,
A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, “Attosecond control
and measurement: lightwave electronics,” Science 317, 769–775 (2007).

[11] S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev.
Mod. Phys. 75, 325–342 (2003).

113



114 REFERENCES
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[102] U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P.
Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two cycle pulses from a
Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999).

[103] D. H. Sutter, G. Stenmeyer, L. Gallmann, N. Matuschek, F. Moreier-Genoud,
U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Semiconductor saturable-
absorber mirror-assited Kerr-lens mode-locked Ti:sapphire laser producing pulses
in the two-cycle regime,” Opt. Lett. 24, 631–633 (1999).

[104] L. Xu, C. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. Hänsch, “Route
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