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Resumen y Conclusiones en Espafiol

Este trabajo resume, de forma parcial, la investigacion realizada durante mi
periodo predoctoral. Esta investigacion pertenece, de forma general, a la teoria
de dlgebras de Banach conmutativas y algebras uniformes y, en particular, se de-
sarrolla principalmente en el &mbito de las algebras de funciones analiticas aco-
tadas en dominios de espacios de Banach finito e infinito dimensionales.

La teoria de algebras de Banach conmutativas fue ampliamente desarrollada
por I. M. Gelfand en los afios 40. Las dlgebras uniformes son una rama de esta
teoria y estan profundamente relacionadas con la teoria de funciones analiticas.
La teoria de algebras uniformes fue inicialmente desarrollada por G. E. Shilov a
principios de los afios 50. Algunas algebras concretas de funciones analiticas nos
proporcionan modelos para el estudio de algebras uniformes y, reciprocamente,
el estudio de las dlgebras uniformes nos conduce a analizar propiedades de fun-
ciones analiticas. Pueden encontrarse referencias sobre dlgebras uniformes en
[Gam84], [Rud73], [Dal00] y [GKO01], sobre la teoria general de funciones analiti-
cas en [Din99] y [Muj86] y sobre dlgebras de funciones analiticas en [AG89],
[AGS8], [Glo79] y [CG86].

Las lineas centrales de este trabajo son las siguientes:

e Sucesiones de Interpolacién para Algebras Uniformes
e Operadores de Composicion
e Propiedades Topolégicas de Algebras de Funciones Analiticas

La investigacion realizada sobre sucesiones de interpolacion para algebras
uniformes se puede dividir en dos partes: una genérica en la que se proporcio-
nan algunos resultados de caracter general sobre sucesiones de interpolacién para
algebras uniformes, y una parte mads especifica, en que se tratan sucesiones de in-
terpolacién para algunas algebras de funciones analiticas acotadas. Estos puntos
se tratan en los Capitulos 2 y 3. El estudio de operadores de composicién, prin-
cipalmente sobre H*(BEg), centra el contenido del Capitulo 4. En este capitulo
estudiaremos una descripcién del espectro de estos operadores y los llamados
operadores de composicion de Radon-Nikodym. Con respecto a la tercera linea
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e Resumen en Espaiiol

que hemos citado, estudiaremos los llamados operadores de tipo Hankel en el
capitulo 5. Estos nos permitiran tratar el concepto de algebra tight y las dlgebras
de Bourgain de un subespacio de C(K), que estan estrechamente relacionadas con
la propiedad de Dunford-Pettis.

A continuacién presentamos un resumen de cada capitulo del trabajo:
1. PRELIMINARES

En este primer capitulo a modo de preliminares, introducimos gran parte de
la notacién (estdndar y no estdndar) que seguiremos durante todo el trabajo y
presentamos varios resultados de diversa indole que también serdn necesarios
para desarrollarlo.

Para ello, comenzamos con algunos resultados de topologia y geometria de
espacios de Banach y continuamos introduciendo la teoria de algebras de Banach
y uniformes.

A continuacién, aportamos algunos resultados sobre analisis complejo: In-
troducimos el dlgebra del disco A(D), que es el conjunto de funciones analiticas
definidas en D que se extienden continuamente a D dotado con la norma del
supremo y H”, el dlgebra de funciones analiticas acotadas definidas en D, que se
dota con la misma norma. También recordamos las llamadas dlgebras del polidisco
y dlgebras de la bola para después dar paso a la introduccién de la teoria de fun-
ciones analiticas en dominios de espacios de Banach en términos de series polino-
miales (ver [Din99] y [Muj86]). En este punto, definimos las llamadas topologias
polinomiales y definimos las dlgebras de funciones analiticas que serdn tratadas
durante el resto del trabajo. La primera de ellas es H(Bg), una extensiéon de H*
cuando el dominio de las funciones es la bola unidad abierta Br de un espacio
de Banach complejo E. También trataremos con dos extensiones del dlgebra del
disco A(D): Por una parte A.(Bg), la extension del dlgebra del disco segtin hemos
definido antes tomando como dominio la bola Br y A,(Bg), el espacio de fun-
ciones analiticas definidas en B que son uniformemente continuas. Es facil ver
que estas extensiones coinciden en caso de que E sea finito dimensional pero, sin
embargo, A,(BEg) estd estrictamente contenida en A.(Bg) si E es infinito dimen-
sional [ACG91]. Para un estudio mds amplio de estas dlgebras, consultar los tex-
tos citados en la introduccién de este resumen relativos a algebras de funciones
analiticas.

En el marco de estudio de éstas algebras, tratamos con la extensién de Davie-
Gamelin, que surge del trabajo de A. M. Davie y T. W. Gamelin [DG89], en que
prueban que las funciones analiticas acotadas definidas en Bg pueden extenderse
a funciones analiticas acotadas en Bg+ mediante la extension de Aron-Berner para

2



Resumen en Espafiol 0

polinomios. Este resultado permitira extender varios resultados en el tercer capi-
tulo de este trabajo gracias a la inclusiéon de Bg+ en el espectro M, en caso de que
A sea una de las dlgebras de funciones analiticas que hemos definido.

También recordamos la conocida representaciéon de H*(Bg) dada por J. Mujica
en [Muj91a] como espacio dual de

G”(Bg) ={u € H”(Bg)" : ulp es 1.—continuo },

donde B denota la bola unidad de H*(Bg) y damos algunos resultados relaciona-
dos. Esto serd de gran utilidad en el cuarto capitulo, cuando tratemos con los
operadores de Radon-Nikodym.

Por otra parte, recordamos la distancia pseudohiperbélica para z,w € D, que esta
definida por

—w

pz,w) =

1—zw

Esta distancia se extiende a dlgebras uniformes mediante la férmula

pa(x,y) =sup{p(f(x),f()) - f €A [IfIl <1}

La distancia pseudohiperbélica es clave en el estudio de sucesiones de inter-
polacién para algunas dlgebras uniformes como veremos en el capitulo 3.

Finalmente, introducimos los llamados operadores de composicién entre es-
pacios de funciones y damos algunos resultados relacionados. Los operadores
de composicién son esenciales en el cuarto capitulo y los resultados citados nos
servirdn para encontrar un nuevo enfoque a un resultado de A. M. Davie en el
capitulo 2.

2. INTERPOLACION EN ALGEBRAS UNIFORMES

El segundo capitulo estd dedicado al estudio de sucesiones de interpolacién
para algebras uniformes. Dada un algebra uniforme A, decimos que una suce-
sion (x,) C My es de interpolacion (o interpolante) para A si, dada cualquier sucesiéon
(o) € Lo, existe f € A tal que f(xn) = oy, para todo n € N, donde fdenota la trans-
formada de Gelfand de f € A. Consideremos la aplicaciéon R : A — /., definida
por R(f) = (F(xn)). Se tiene que una sucesion (x,) C My es de interpolacién para
A siy s6lo si existe una aplicacién T : foo — A tal que RoT = id_. Se dice que
una sucesion es de interpolacion lineal si T es un operador lineal. Decimos que la
sucesion es de co—interpolacion (lineal) si las definiciones anteriores se satisfacen
para co en lugar de /..

3



° Resumen en Espaiiol

Con el objetivo de controlar las funciones interpolantes, se introduce el con-
cepto de constante de interpolacién. Dada « = («;) € /., consideramos el con-

junto My = inf{ |1 £l : f(xj) =0, jeN,fe A}. La constante de interpolacion para

la sucesién interpolante (x,) estd definida de la siguiente manera:
M =sup{My : @ € lo, ||| < 1}.

Analogamente, se obtiene la constante de interpolacion para el caso de sucesiones
de cp—interpolacién sustituyendo /.. por c.

Dada (x,) C My, decimos que una sucesion (f;) C A es una sucesion de fun-
ciones de Beurling para (x,) si, para cualesquiera k, j € N, se tiene que fi(x;) = & ;
y existe una constante M > 0 tal que Y7, | f;(x)| < M para todo x € My.

El punto de partida de nuestro estudio sobre interpolacion es un resultado de
P. Beurling (consultar [Gar81] y [Car62]) que prueba que, dada cualquier sucesion
de interpolacién (z,) C D para H”, existe una sucesion de funciones de Beurling
para (z,). En este caso, la sucesion (z,) también serd de interpolacion lineal para
H*.

N. Th. Varopoulos (consultar [Var71] y [Gar81]) present6 algunos resultados
sobre sucesiones de interpolacién finitas para algebras uniformes y P. Galindo,
T. W. Gamelin y M. Lindstréom (consultar [GGL04]) mejoraron estos resultados
extendiéndolos a sucesiones de interpolacion finitas o infinitas cualesquiera para
algebras uniformes.

En nuestro estudio sobre interpolacion, tratamos en primer lugar la relacion
entre sucesiones de interpolacion y de interpolacién lineal. A. M. Davie demostré
que las sucesiones de cp—interpolacién para A(D) son de cp—interpolacién lineal
[Dav?72]. En la Proposicién 2.2.2, probamos lo siguiente:

Sea A un dlgebra uniforme y (x,) C My. Consideremos las siguientes afirmaciones:

a) (x,) es una sucesion de interpolacién para A.
b) Existe una sucesion de funciones de Beurling (f,) C A para (x).
c) (xn) es una sucesion de co—interpolacion lineal para A.

Entonces, se tiene que (b) y (c) son equivalentes y (a) implica ambas, (b) y (c).

Ademéds, demostraremos que las sucesiones de cp—interpolacién lineal para A
son de interpolacion lineal para A** en la Proposicién 2.2.3.

Continuamos con el estudio de 4lgebras uniformes duales A = X*. Nuestro
objetivo es probar que, en este contexto, las sucesiones de cp—interpolacién son
sucesiones de interpolacion lineal. Para ello, comenzamos demostrando que, si
A = X", las sucesiones de cp—interpolacién lineal son de interpolacion lineal en la

4



Resumen en Espafiol e

Proposiciéon 2.3.1. En segundo lugar, veremos que las sucesiones de cp—interpola-
cion son siempre de cp—interpolacién lineal cuando seguimos en el contexto de
algebras duales, obteniendo el resultado mencionado (ver Teorema 2.3.3):

Sea A = X* un dlgebra uniforme dual y consideremos una sucesion (x,) C My NX.
Las siguientes afirmaciones son equivalentes:

i) Todo subconjunto finito de (x,) es interpolante para A y existe una constante de
interpolacion independiente del niimero de términos de la sucesion interpolados.
ii) (x,) es una sucesion co—interpolante para A.
iii) (x,) es una sucesion interpolante A.

La dltima parte de esta seccion demuestra que, bajo ciertas hipétesis, el alge-
bra resulta ser dual y el predual X puede escogerse para que satisfaga (x,) C X:

Sea A una subdlgebra cerrada de {(Y) tal que los puntos del conjunto Y estin sepa-
rados por A. Supongamos que el limite de cualquier red de funciones de A que converge
puntualmente en Y también pertenece a A. Si (x,) es una sucesion co—interpolante para
A, entonces (x,) es interpolante para A.

A. M. Davie proporciona [Dav72] un ejemplo de sucesiéon de cp—interpolaciéon
para A,(B.,) que no es de cp—interpolacion lineal. Nosotros presentamos un en-
foque distinto a este resultado por medio de algunos resultados conocidos de la
teoria de operadores de composicion.

3. INTERPOLACION EN H*(Bg). SEPARABILIDAD EN A« (Bg) Y Ay(BE)

Una vez estudiados algunos resultados generales sobre interpolacién para al-
gebras uniformes en general, continuamos con el estudio de sucesiones de in-
terpolacion para las algebras de funciones analiticas H*(Bg) y A«(BE) en el ter-
cer capitulo. Damos algunas condiciones suficientes para que una sucesién
(x,) C Bg» sea interpolante para H*(Bg) y completamos el estudio realizado por
J. Globevnik sobre la existencia de sucesiones de interpolacién para A.(Bg). En
consecuencia, probamos que A.(BE) es separable s6lo en caso de que E sea finito
dimensional.

El estudio de sucesiones de interpolacién para H* parte de los resultados de
L. Carleson [Car58], W. K. Hayman [Hay58] y D. J. Newman [New59]. En par-
ticular, de los trabajos de Hayman y Newman, se obtiene el siguiente resultado:
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Sea (z,) C D y supongamos que la sucesion (|z,|) crece exponencialmente a 1, es decir,
existe 0 < ¢ < 1 tal que la siguiente condicion se satisface,

1— ‘Zn—H’
1 — [z

Entonces, (z,) es interpolante para H* (BE).

El principal resultado de interpolacién para H” fue probado por L. Carleson
en [Car58], quien dio una condicién necesaria y suficiente sobre la sucesién (z,)
para ser interpolante para H* en términos de la distancia pseudohiperbélica p en
D. Esta condicion expresa que existe una constante 6 > 0 tal que

[1p(zz) > 6 para todo j € N.
oy

Nos referiremos a esta condicién como la condicién de Carleson. Como la nocién
de distancia pseudohiperbdlica puede ser extendida al dmbito de las algebras
uniformes, se puede generalizar la condicién de Carleson a éstas. En este caso,
dada una sucesion (x,) C My, diremos que (x,) satisface la condicion de Carleson
generalizada.

En este contexto, B. Berndtsson demostr6 [Ber85] que la condicién de Car-
leson generalizada es suficiente para que una sucesion (x,) C By sea interpolante
para H*(By) cuando tratamos con espacios de Hilbert finito dimensionales H.
B. Berndtsson, S-Y. A. Chang y K-C. Lin [BCL87] extendieron el resultado al es-
pacio finito dimensional (C", || - ||) y probaron en este caso que la condicién de
Carleson generalizada no es una condicién necesaria para que la sucesién (x,)
sea interpolante. P. Galindo, T. W. Gamelin y M. Lindstrém remarcaron [GGLO8]
que los resultados dados por B. Berndtsson pueden extenderse a cualquier espa-
cio de Hilbert infinito dimensional. Este caso serd tratado en el Teorema 3.2.10,
donde daremos una construccion explicita de las funciones de interpolacién bajo
el supuesto de que se cumpla la condicién de Carleson generalizada. Para esto,
adaptaremos algunos de los resultados dados por B. Berndtsson y estudiaremos
los automorfismos de By para un espacio de Hilbert H. La férmula explicita de
la distancia pseudohiperbolica para espacios de Hilbert dada por

> _ (=[P A= yI%)
[1—-<x,y>[?

1— p (xvy )
facilitard en gran medida este estudio. Denotando por M, el automorfismo de By
estudiado que transforma 0 en g, en primer lugar simplificamos la expresion de

<M_y(x),M_,(z) > en términos de productos escalares de los elementos x,y,z € By

6
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en el Lema 3.2.4. Este resultado nos permitird, junto con algunos lemas técnicos,
enunciar el siguiente resultado de carédcter general en espacios de Hilbert (ver
Teorema 3.2.10):

Sea H un espacio de Hilbert complejo y (x,) una sucesion en By. Supongamos que
existe 8 > 0 tal que (x,) satisface la condicion de Carleson generalizada para 8. Entonces,
existe una sucesion de funciones de Beurling (Fy) para (x,). En particular, la sucesion
(xn) es interpolante para H*(By) y la constante de interpolacion estd acotada por

2048 1.,

Por otra parte, cuando tratamos con espacios de Banach en general, no se
conocen férmulas explicitas para la distancia pseudohiperbdlica en la mayor parte
de los casos. Esto nos conducird, cuando tratemos con espacios de Banach, a
plantear condiciones mds restrictivas para asegurar que una sucesion sea de in-
terpolacion para H*(Bg). Asi, probamos que la condicién de crecimiento expo-
nencial a 1 dada en el resultado de Hayman-Newman aplicada a la sucesién de
normas (||x,||) es suficiente para asegurar que la sucesién (x,) C Bg+ es inter-
polante para H”(Bg) si E es cualquier espacio de Banach finito o infinito dimen-
sional (ver Corolario 3.2.16). Esto es consecuencia de un resultado mas fuerte (ver
Teorema 3.2.14):

Sea (x,) una sucesion en Bg« y supongamos que la sucesion (||x,||) satisface la condi-
cion de Carleson. Entonces, para todo 0 < s < 1, existe una sucesion de funciones de
Beurling (Fj) C H*(Bg) para (x,). En particular, la sucesién (x,) es interpolante para
H>(Bg) y la constante de interpolacién puede escogerse de forma que esté acotada por

4 2
¢ 5 (1+210g

En particular, es obvio que la constante de interpolacién para (x,) estard acotada

por
4¢? 1

Este resultado nos permite concluir varios corolarios. Por una parte, como ya
hemos mencionado, obtenemos que la condiciéon de Hayman-Newman para la
sucesion de normas (||x,||) permite concluir que (x,) C Bg» es interpolante para
H*(Bg). A su vez, una consecuencia clara de este resultado, es un teorema debido
a R. M. Aron, B. Cole y T. Gamelin [ACG91]: Sea (x,) C Bg+ una sucesion tal que
lim, . ||x,|| = 1. Entonces, existe una subsucesién interpolante para H*(Bg).

7



a Resumen en Espaiiol

Una pregunta que surge de modo natural a partir de nuestro estudio sobre
interpolaciéon en H*(Bg) es si la condicién de Carleson generalizada para una
sucesion (x,) C Bg+ es siempre suficiente para afirmar que (x,) es interpolante
para H”(Bg) o, en general, qué ocurre en el caso de una sucesién (x,) C My que
cumple la condicién de Carleson para un élgebra determinada A. En el dltimo
pardgrafo de esta seccién, reducimos esta discusion al caso de E = ¢, probando
el siguiente resultado (ver Teorema 3.2.18) basado en el trabajo de Berndtsson,
Chang y Li (ver [BCL87]):

Supongamos que cualquier sucesion (x,) C By, satisfaciendo la condicion de Car-
leson generalizada es interpolante para H* (B.,) con una constante de interpolacion que
depende solamente de 6. Entonces, dada cualquier dlgebra dual A = X*, todas las suce-
siones (x,) C X satisfaciendo la condicién de Carleson generalizada son sucesiones de
interpolacion lineal para A cuya constante de interpolacion depende sélo de 6.

Si se satisface la hipétesis de este resultado, entonces tendremos, en particular,
que para todo espacio de Banach E, la condicién de Carleson generalizada es
suficiente para que una sucesion sea interpolante para H*(Bg) ya que éstas son
algebras duales.

En dltimo lugar, en esta seccion estudiamos algunas condiciones necesarias
para que una sucesion sea interpolante para H*(Bg). En particular, probamos que
si los polinomios sobre E son débil continuos sobre conjuntos acotados, entonces
las sucesiones de interpolacién (x,) para H*(Bg) cumplen que ||x,|| converge a 1.

En la segunda seccion del capitulo tratamos la separabilidad de las algebras
Aw(BE) Y Au(Bg). La existencia de sucesiones de interpolacién para un dlgebra im-
plica que ésta no es separable. Cuando tratamos con A = A..(Bg), la existencia de
sucesiones de interpolacion para A fue probada por J. Globevnik [Glo78] para una
amplia clase de espacios de Banach infinito dimensionales. De hecho, Globevnik
probo este resultado para los espacios de Banach cumpliendo que exista una suce-
sion (x,) C Sg de puntos fuertemente expuestos sin puntos de acumulacién. Esta
hipétesis la cumplen, entre otros, los espacios de Banach reflexivos. Nosotros ex-
tendemos este resultado, probando la existencia de sucesiones de interpolacion
para A.(Bg) para cualquier espacio de Banach infinito dimensional E, caracteri-
zando por tanto la separabilidad de A.(Bg) en términos de que E tenga dimen-
sion finita:

Sea E un espacio de Banach complejo. Las siguientes afirmaciones son equivalentes:

i) Aw(BEg) no es separable.
ii) E es infinito dimensional.
iii) Existen sucesiones de interpolacion para A« (BE).
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Por ultimo, estudiamos la separabilidad del algebra A,(Bg). En caso de que
E tenga dimension finita, se tiene que A«(Bg) = A,(Bg) y, por tanto, A,(Bg) es
separable. Sin embargo, el caso infinito dimensional presenta algunas diferencias
con A (Bg). En este caso, hay ejemplos de espacios de Banach E para los cuales
Ay, (BE) es separable y otros tantos para los que no lo es. Una forma de probar que
Au(Bg) no es separable es, como ya hemos mencionado, demostrar la existencia
de sucesiones de interpolacién para el dlgebra, como ocurre para el caso E = /),
para 1 < p <oo. Entre los casos en que A,(Bg) es separable, encontramos E = ¢y 0
el espacio de Tsirelson 7.

Es bien conocido que un dlgebra A es separable si y solo si su espectro My
es metrizable para la topologia de Gelfand, es decir, para la restricciéon de la
w(A*,A)—topologia. Nosotros afinamos este resultado, probando que un dlgebra
es separable si y s6lo si su espectro My es T(A*, P(E))-metrizable. Esta condicién
nos conduce al estudio de la metrizabilidad para la topologia polinomial de sub-
conjuntos acotados de My, en particular de aquellos de Bg. En este contexto, en
primer lugar presentamos un ejemplo de un espacio de Banach complejo y un
subconjunto acotado L C Bg que es metrizable para la topologia polinomial pero
(P(?E),||-||L) no es separable, obteniendo por tanto que A,(Bg) no es separable ya
que el espacio de polinomios P(E) es denso en A,(Bg). Sin embargo, obtenemos
el siguiente resultado:

Sea E un espacio de Banach real o complejo y L un subconjunto separable abso-
lutamente convexo, acotado y cerrado de E que es ©(E,P(E))-metrizable. Entonces,
(E*,||-||) es separable.

Por dltimo, damos un ejemplo de un espacio de Banach cuya bola es metri-
zable para la topologia polinomial que prueba que la separabilidad de L en el
resultado anterior es necesaria para que sea valido.

4. OPERADORES DE COMPOSICION SOBRE H*(Bg)

En el cuarto capitulo estudiamos los llamados operadores de composicién de
H*(Br) en H*(Bg). Estos son aplicaciones Cy : H*(Br) — H”(Bg) definidas por
Cy(f) = fo¢,donde ¢ es una funcién analitica de B¢ en Br denominada simbolo.
Dividimos este estudio en dos partes. En la primera, damos una descripcién del
espectro de algunos operadores de composiciéon de H*(Bg) en si mismo, extendi-
endo asi un teorema de L. Zheng para el caso H” y, en segundo lugar, estudiamos
la clase de operadores de Radon-Nikodym de H*(Br) en H*(Bg) por medio de
los conjuntos de Asplund, intimamente relacionados con estos operadores.

9
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Previamente, presentamos un lema (ver Lema 4.1.1) de cardcter general sobre
operadores de composicién en el que aplicamos algunos resultados de interpola-
cién. Este lema se aplicara al estudio de los operadores de Radon-Nikodym en la
Proposicion 4.3.21:

Sea ¢ : Be — Br wuna aplicacién analitica y supongamos que no existe ningiin
0 < r < 1tal que ¢(Bg) C rBr. Entonces, existen operadores lineales T : H*(Bg) — (%
y S:0° — H>(Br) tales que

TOC¢ OSZIdgw.

Como ya hemos mencionado, L. Zheng [Zhe(2] describi6 el espectro de al-
gunos operadores de composiciéon de H” en si mismo (ver Teorema 4.2.2):

Sea ¢ : D — D una aplicacion analitica no constante que no es un automorfismo y
supongamos que existe a € D tal que ¢ (a) = a. Entonces, o bien el espectro 6(Cy) es D si
Cy no tiene potencia compacta 0 6(Cy) = {¢'(a)* : k € N} U{0,1} si Cy tiene potencia
compacta.

Estos resultados fueron extendidos por P. Galindo, T. W. Gamelin y M. Lind-
strom a H”(Bg) en [GGLO8] para el caso en que Cy tenga potencia compacta,
donde E denota cualquier espacio de Banach complejo. En este trabajo, los au-
tores también tratan el caso en que Cy no tenga potencia compacta, extendiendo
también en este caso el resultado de L. Zheng a H*(By) cuando H es un espacio
de Hilbert.

Parece ser que H. Kamowitz fue el primero en utilizar sucesiones de interpo-
lacién para analizar el espectro de algunos operadores de composiciéon. Actual-
mente, la existencia de tales sucesiones de interpolacién se deriva de la siguiente
estimacion:

1-10(2)]

Dado 0 < r < 1, existe € > 0 tal que T >1+¢€ silzl>r
donde ¢ es una aplicacién analitica de D en si mismo cumpliendo ¢(0) =0y
|¢'(0)| < 1. Esta estimacion (consultar Lemma 7.33 en [CM95]) se obtiene normal-
mente usando un lema de Julia (consultar Lemma 2.41 en [CM95]) y derivadas
angulares.

En su estudio [GGLO8] del espectro de operadores de composicién Cy sobre
H*(Bp) para un espacio de Hilbert H, Galindo, Gamelin y Lindstrom obtuvieron
una estimacién analoga a la que hemos citado y a la que denominaron estimacion
de tipo Julia. Por tanto, nosotros seguiremos denominando asi a esta desigualdad

10
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cuando tratemos con un espacio de Banach cualquiera E y sustituyamos el valor
absoluto por la norma de E.

Una estimacién de tipo Julia nos permite, bajo algunos supuestos mds, con-
cluir el siguiente resultado (ver Teorema 4.2.12) en el que utilizamos el resultado
de interpolaci6n 3.2.16. Este resultado es una extensién a espacios de Banach del
resultado probado en [GGL08] para el caso de un espacio de Hilbert H:

Sea ¢ : B — Bg una aplicacion analitica tal que ¢(0) =0, ||¢’(0)|| < 1 y suponga-
mos que ¢ (Bg) es relativamente compacto en Bg. Supongamos que Cy no tiene potencia
compacta y que ¢ cumple la siguiente estimacion de tipo Julia: Para todo 0 < 8 < 1, existe
€ >0 tal que

tﬂ—q‘)‘ix“)” >1+¢€, paratodox e ¢(Bg) tal que ||x|| > 6.

Entonces, el espectro de Cy coincide con el disco unidad cerrado D.

Diremos que un subconjunto W C Bg se aproxima a Sg de forma compacta si
cualquier sucesion (x,) C W tal que ||x,|| — 1, tiene una subsucesién convergente.

La descripcion del espectro de operadores de composicion Cy que no tienen
potencia compacta para el caso del espacio C" dotado con la norma supremo
no se habia producido ya que no se conocia una estimacién de tipo Julia para
este espacio. En el presente capitulo, probamos que existe tal estimaciéon para
cualquier espacio de tipo E = Cy(X):

Sea E = Cy(X) y consideremos una aplicacion analitica ¢ : By — Bg tal que ¢(0) =0
y ||¢’(0)]| < 1. Supongamos que W se aproxima a Sg de forma compacta. Entonces, se
tiene la siguiente estimacion de tipo Julia: para cualquier & > 0, existe € > 0 tal que

1= lle]l

T >1+¢€ paratodoxeW tal que |x|]| > 8.
— ||X

Para describir el espectro de los operadores de composiciéon Cy para el caso
E = Cy(X), basta tomar W = ¢(Bg) y aplicar el resultado que acabamos de men-
cionar al Teorema 4.2.12 citado antes. En particular, obtendremos la descripcién
de 6(Cy) en el caso C".

En la segunda parte de este capitulo, estudiamos la clase de operadores de
Radon-Nikodym de H”(Bg) en H*(Br). En primer lugar, recordamos algunos
resultados sobre la propiedad de Radon-Nikodym e introducimos el concepto

11
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de operador de Radon-Nikodym. Un operador T : E — F se dice que es un
operador de Radon-Nikodym si T (Bg) es un conjunto de Radon-Nikodym. Estos
operadores estan estrechamente relacionados con la propiedad de Asplund, asi
que continuamos con el estudio de esta propiedad para conjuntos acotados de
espacios de Banach. Debido al enfoque de la propiedad de Asplund a los opera-
dores de Radon-Nikodym, introducimos tal propiedad segtn la definicién dada
por S. Fitzpatrick [Fit80]. El autor demostré que esta definicion es equivalente a la
dada anteriormente relacionada con la diferenciabilidad de la norma de E. Dado
D C E, se dice que D es un conjunto de Asplund si el espacio (E*, || - ||4) es separable
para cualquier conjunto numerable A C D. Un espacio de Banach E se dice que
es un espacio de Asplund si B tiene la propiedad de Asplund. Un operador se
dice que es un operador de Asplund si transforma la bola unidad en un conjunto de
Asplund. La relacién entre los conjuntos de Asplund y los operadores de Radon-
Nikodym surge en el siguiente resultado (ver [Bgi83]): Un operador lineal T es de
Asplund si y sélo si T* es de Radon-Nikodym. Este resultado nos lleva al siguiente
corolario:

Un operador de composicion Cy : H*(Br) — H”(Bg) es de Radon-Nikodym si y
sélo si el operador C? : G*(Bg) — G*(Br) dado por la restriccion de C, al predual
G*(Bg) es de Asplund. A su vez, el operador C? es de Asplund si y sélo si el conjunto
{84(x) : x € Bp } es de Asplund en G™.

Es bien conocido que la propiedad de Asplund se conserva por transforma-
ciones lineales. El anterior corolario nos muestra el interés en extender este re-
sultado a transformaciones analiticas entre espacios de Banach. En particular,
probamos el siguiente resultado en la Proposicién 4.3.13:

Sean E y F espacios de Banach y D C E un conjunto de Asplund.

a) Supongamos que P(*E) = P¢(KE) para algiin k € N. Si P: E — F es un polinomio
k-homogéneo, entonces P(D) es un conjunto de Asplund.

b) Supongamos que P(*E) = P¢(*E)) para cualquier k € N. Si f:U C E — F es una
funcion analitica de tipo acotado y D es U- acotado, entonces f(D) es un conjunto
de Asplund.

El principal resultado sobre operadores de composicion de Radon-Nikodym
es el siguiente (ver Teorema 4.3.21):

El operador de composicion Cy : H*(Br) — H”(Bg) es de Radon-Nikodym si y
solo si existe 0 < r < 1 tal que §(Bg) C rBr y (P(F),|| - ||a) es separable para cualquier
conjunto numerable A C ¢ (BE).

12
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Ademads, presentamos algunas condiciones suficientes para que Cy sea un
operador de composicién de Radon-Nikodym:
Sea ¢ : Be — B una aplicacion analitica.

a) Supongamos que P(*F) = Py(*F) para cualquier k € N. Si ¢(Bg) es un conjunto
de Asplund y existe 0 < r < 1 tal que ¢(Bg) C rBr, entonces el operador de com-
posicién Cy : H*(Br) — H*(Bg) es de Radon-Nikodym.

b) Supongamos que A,(Br) es separable. Si ¢(Bg) es un cojunto de Asplund y
existe 0 < r <1 tal que ¢(Bg) C rBr, entonces el operador de composicion
Cy : H*(Br) — H*(Bg) es de Radon-Nikodym.

5. OPERADORES DE TIPO HANKEL

En este capitulo, estudiamos algunas propiedades relacionadas con los lla-
mados operadores de tipo Hankel sobre dlgebras uniformes. Estos operadores
son extensiones de los cldsicos operadores de Hankel definidos en el espacio de
Hardy H?. Referencias sobre los operadores de Hankel en H? pueden encontrarse
en [Pow82], [Zhu90] y [Pel98]. Dada un algebra uniforme A de C(K) y g € C(K),
el operador de tipo Hankel S, : A — C(K) /A esta definido por S,(f) = gf +A.

El estudio de los operadores de Hankel permite, por una parte, estudiar la
propiedad de Dunford-Pettis mediante las llamadas 4lgebras de Bourgain y, por
otra, introducir el concepto de algebra tight que caracteriza a las subalgebras uni-
formes A de C(K) tales que A** 4+ C(K) sigue siendo una subalgebra cerrada de
C(K)*.

La propiedad de Dunford-Pettis surge del resultado dado por N. Dunford y
B.J. Pettis en [DP40] que fue posteriormente mejorado por R. Phillips en [Phi40]:

Sea F un espacio de Banach y u una medida. Supongamos que el operador lineal
T :L'(u) — F es débil continuo. Entonces, T es completamente continuo.

A. Grothendieck [Gro53] probd, algunos afios mas tarde, que el resultado
dado por N. Dunford y B. J. Pettis sigue siendo valido para el caso de espacios de
tipo C(K) y se refiere a esta propiedad como propiedad de Dunford-Pettis: Dado
un espacio de Banach F y un operador débil compacto 7 : C(K) — F, se tiene
que T es completamente continuo.

Diremos que un espacio de Banach E tiene la propiedad de Dunford-Pettis si
dado cualquier espacio de Banach F y un operador débil compacto 7 : E — F,
se tiene que T es completamente continuo. Es bien conocido [Die80] que E tiene
la propiedad de Dunford-Pettis si y sélo si lim, x;;(x,) = 0 para cualesquiera suce-

siones x, — 0 en E y X, Y 0 en E*. Por tanto, es claro que E tiene la propiedad de
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Dunford-Pettis si E* también la tiene. El reciproco es falso en general, como probé
C. Stegall en [Ste72]. La propiedad de Dunford-Pettis es hereditaria para subes-
pacios complementados pero no para subespacios cerrados en general [PS65].
También es bien conocido que no existen espacios de Banach reflexivos de di-
mension infinita con la propiedad. Mas resultados sobre la propiedad pueden
encontrarse en [Die80].

En el contexto de las dlgebras de funciones analiticas, encontramos diversos
resultados relacionados con la propiedad de Dunford-Pettis: J. Chaumat probd
que el algebra del disco A(D) tiene la propiedad [Cha74] y ]. Bourgain lo probé
para H” [Bou84b] y también para las algebras de la bola A(B,,) y las algebras del
polidisco A(D") [Bou84al].

Como deciamos, los operadores de tipo Hankel estdn estrechamente relaciona-
dos con la propiedad de Dunford-Pettis a través de las llamadas &dlgebras de
Bourgain introducidas por J. A. Cima y R. M. Timoney en [CT87]. Una funcién
g € C(K) pertenece al dlgebra de Bourgain A, de A (resp. Ap) si el operador de tipo
Hankel S, es completamente continuo (resp. S,* es completamente continuo).
El trabajo de J. Bourgain [Bou84a] fue reformulado en [CT87], asi que, en este
contexto, una condicién suficiente para que una subdlgebra A de C(K) tenga la
propiedad de Dunford-Pettis es que A, = C(K). Si Ag = C(K), entonces el espacio
dual A* tiene la propiedad de Dunford-Pettis y, por tanto, también la tiene A.

Desde este punto de vista, los resultados dados por J. Bourgain también pue-
den ser enfocados utilizando tal reformulacién y obtenemos que las dlgebras de
Bourgain de A(B,) son iguales a C(B,) y, por tanto, A(B,) y su dual tienen la
propiedad de Dunford-Pettis. En relacién a esto, en el mismo trabajo, una prueba
por induccién le permitié a J. Bourgain concluir que A(D") y su dual tienen ambos
la propiedad de Dunford-Pettis. Sin embargo, la linea de esta prueba no nos per-
mite concluir si las dlgebras de Bourgain de A(D") coinciden con todo el espacio
C(D"). En contra de lo que ocurre en el caso del dlgebra de la bola A(B,), en la
seccién 5.2 probamos el siguiente resultado:

Sea A el dlgebra A(D") considerada como subespacio de C(D") para n > 2. Entonces,

Ap=A, =A.

La dltima seccién de este capitulo trata el concepto de dlgebra tight. Este
concepto fue introducido por B. J. Cole y T. W. Gamelin en [CG82]. Un élgebra
uniforme A de C(K) se dice que es un dlgebra tight sobre K si los operadores de
tipo Hankel S, son débilmente compactos para todo g € C(K). Como ya hemos
mencionado, la propiedad de ser tight caracteriza a las subélgebras uniformes
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A de C(K) tales que A** 4+ C(K) es una subdlgebra cerrada de C(K)**. Ademas,
esta propiedad es, como se menciona en [CG82], una aproximacion a la version
abstracta de la resolubilidad de un determinado problema .

En [CG82], los autores probaron que A(D") no es tight sobre su espectro para
n > 2. En este trabajo presentamos un nuevo enfoque de este resultado, extendién-
dolo a élgebras A,(Bg) para espacios de Banach E = C x F dotados con la norma
del supremo:

Sea E un espacio de Banach y F = C x E dotado con la norma del supremo ||(z,x)||r =
sup{|z|, ||x||z}. Entonces A =A,(BF) no es tight en su espectro.

En esta linea, también estudiamos la propiedad de ser tight en el caso de H*.
Un lema de tipo técnico (ver Proposicion 5.3.5) y algunos resultados que recopi-
lamos en el Lema 5.3.6 nos conducen al siguiente resultado:

Sea E un espacio de Banach complejo. Entonces, H(Bg) no es tight sobre su espectro.
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Introduction

This thesis partially summarizes the research done during my predoctoral
period. This research belongs in a general way to the Theory of uniform alge-
bras. In particular, our work is mainly developed in the area of spaces of analytic
functions on domains of finite and infinite dimensional Banach spaces. The lines
treated in this thesis are the following;:

e Interpolating Sequences for Uniform Algebras
e Composition Operators
e Topological Properties in Algebras of Analytic Functions

The research done on interpolating sequences for uniform algebras can be
split into two parts: a general one, where some general results about interpolat-
ing sequences for uniform algebras have been proved and, a more specific one for
some particular algebras of bounded analytic functions. This topic is discussed in
Chapters 2 and 3. The study of composition operators, mainly those on H*(Bg),
is the central content of Chapter 4. With regard to the third item stated above, the
so-called Hankel-type operators have been studied in Chapter 5. These operators
are useful in order to study several topological properties of the algebras.

Therefore, in the first chapter we give some notation and background on sev-
eral areas which will be necessary in the sequel. It begins with several results
on topology and geometry of Banach spaces and continue with background on
Banach and uniform algebras since these are the basis of our research. Further
results on Banach and uniform algebras can be found in [Gam84].

Next, we give some background on A(D), the algebra of complex analytic
functions defined on D which extend continuously to D and H*, the algebra of
complex bounded analytic functions defined on D. In addition, we introduce
the polydisk and ball algebras. Then, we introduce the theory of analytic func-
tions on domains of Banach spaces in terms of polynomial series (see [Din99] and
[Mu;j86]). At this point, we introduce algebras of analytic functions which will be
treated during the rest of the thesis. The first one is H*(Bg), an extension of H*
when the domain is the open unit ball Br of a complex Banach space E. We will
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also deal with two extensions of the disk algebra A(D): A~ (Bg), the extension of
the disk algebra on Bg such as we defined it above and A, (Bg), the space of ana-
lytic functions on B which are uniformly continuous. For further results related
to these algebras, see also [AG89], [AG88], [Glo79] and [CG86].

We continue with the study of the pseudohyperbolic distance p on D and the
spectrum M, of a uniform algebra.

Finally, we introduce the so-called composition operators between spaces of
functions and give some related results.

The second chapter is devoted to the study of interpolating sequences on uni-
form algebras A. A sequence (x,) in the spectrum My is interpolating for A if for
any sequence (o) € /., there exists a function f € A such that F(xa) = o, for all
n € N. Given an interpolating sequence (x,) for A, let T : .. — A be a function
which maps any (@) € ¢ into its interpolating function f € A. If T is a linear op-
erator, then the sequence (x,) is said to be linear interpolating. The sequence (x,) is
said to be co—(linear) interpolating if the definition is satisfied by c( instead of (...

Given a sequence (x,) C My, we say that a sequence (fy) C A is a sequence of

~

Beurling functions for (x,) if for any k, j € N, we have that fi(x;) = &; and there

exists a constant M > 0 such that .7, |f](x)| <M for any x € My.

The starting point for our research on interpolation is a result of P. Beurl-
ing (see [Gar81] and [Car62]), which states that for any interpolating sequence
(zn) C D for H*, there exists a sequence of Beurling functions for (z,). Then, it is
clear that the sequence (z,) is linear interpolating for H*(Bg).

N. Th. Varopoulos (see [Var71] and [Gar81]) gave some results on finite in-
terpolating sequences for uniform algebras and P. Galindo, T. W. Gamelin and
M. Lindstrom (see [GGL04]) improved these results by extending them to any
finite or infinite interpolating sequence for uniform algebras.

After this background, we first deal with the connection between interpo-
lating sequences and linear interpolating sequences. A. M. Davie proved that
co—interpolating sequences for A(D) are co—linear interpolating. In Proposition
2.2.2 we prove that (x,) is co—linear interpolating for A if and only if there exists
a sequence of Beurling functions (f,,) C A for (x,). Moreover, we will show that
co—linear interpolating sequences for A are linear interpolating for A** in Propo-
sition 2.2.3.

Next, we deal with dual uniform algebras A = X*. In this context, we prove
first that cp—linear interpolating sequences are linear interpolating in Proposi-
tion 2.3.1. Then, we show that cp—interpolating sequences are, indeed, co—linear
interpolating, obtaining that co—interpolating sequences (x,) C M4 N X become
linear interpolating. The last part of this section shows that, for A C {.(Y), under
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the assumption that limits of any bounded net of functions in A that converges
pointwise on Y also belongs to A, then the algebra becomes a dual algebra and
the predual X can be chosen to satisfy (x,) C X.

An example of a cp—interpolating sequence for A, (B,) which is not ¢o—linear
interpolating was given by A. M. Davie in [Dav72]. We provide a different ap-
proach to his result via composition operators.

Once we have studied some general results on interpolation for general uni-
form algebras, we continue with the study of interpolating sequences for the par-
ticular algebras of analytic functions H*(Bg) and A« (Bg) in the third chapter. We
find some sufficient conditions for a sequence (x,) C Bg= to be interpolating for
H*(Bg) and complete the study done by J. Globevnik about the existence of in-
terpolating sequences for A.(Bg). It turns out that A..(Bg) is separable only if E
is finite dimensional.

The study of interpolating sequences for H* arises from the results of L. Car-
leson [Car58], W. K. Hayman [Hay58] and D. ]J. Newman [Newb59]. In particular,
from [Hay58] and [New59], the next result follows,

Let (z,) C D and suppose that (|z,|) increases exponentially to 1, that is, there exists
0 < ¢ < 1 such that the following condition holds,

1— |Zn+l|
1_|Zn|

Then, (zy) is interpolating for H*(BE).

The main result on interpolation for H* was given by L. Carleson [Car58], who
gave a necessary and sufficient condition on the sequence (z,) to be interpolating
for H*. This condition involves the pseudohyperbolic distance p in the unit disk
and states that there is a constant > 0 such that

Hp(zk,zj)25 for any j € N.
k#j

We will refer to this condition as the Carleson condition. One can try to generalize it
to uniform algebras since the notion of pseudohyperbolic distance can be carried
over to a uniform algebra. Then, given (x,) C M4, we will say that the sequence
(x,,) satisfies the generalized Carleson condition.

B. Berndtsson proved [Ber85] that this condition is sufficient for a sequence
(x,) C By to be interpolating for H*(By) when we deal with finite dimensional
Hilbert spaces H. Then, B. Berndtsson, S-Y. A. Chang and K-C. Lin [BCL87] ex-
tended the result to the finite dimensional space (C", || - ||) and proved that the
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condition is not necessary in this case. P. Galindo, T. W. Gamelin and M. Lind-
strom [GGLO8] noticed that the results given by B. Berndtsson could be extended
to any infinite Hilbert space.

When we deal with functions defined on the unit ball of a Hilbert space, we
provide explicitly the interpolating functions under the assumption of the gen-
eralized Carleson condition in Theorem 3.2.10. For this, we adapt some results
given by B. Berndtsson and study the automorphisms on By for a Hilbert space
H. The explicit formula of the pseudohyperbolic distance for Hilbert spaces given
by
(1= [lx2) (1 = [l [1%)

11— <x,y>|?

1_p(x7y)2 =

makes this study easier.

On the other hand, when we deal with general Banach spaces, there are no
explicit formulas for the pseudohyperbolic distance in general. We prove that
the Hayman-Newman condition for the sequence of norms is also sufficient for a
sequence (x,) C Bg+ to be interpolating for H*(Bg) if E is any finite or infinite di-
mensional Banach space (see Corollary 3.2.16). This is a consequence of a stronger
result (see Theorem 3.2.14):

The Carleson condition for the sequence (||x,||) C D is sufficient for (x,) to be inter-
polating for H*(Bg).

Actually, the result holds for sequences in Bg« thanks to the Davie-Gamelin
extension.

In our dealing with the generalized Carleson condition, we reduce the discus-
sion for uniform dual algebras to the case of H*(B,,) in a similar way to what
Berndtsson, Chang and Lin did in [BCL87] (see Theorem 3.2.18):

Suppose that any sequence (x,) C B, satisfying the generalized Carleson condition
is interpolating for H(B.,) with interpolation constant depending only on 8. Then,
for any dual uniform algebra A = X*, all sequences (x,) C X satisfying the generalized
Carleson condition are linear interpolating sequences for A with constant of interpolation
depending only on 9.

If the assumption of this result is satisfied, then it is clear that the general-
ized Carleson condition is sufficient for a sequence to be interpolating for H*(Bg)
regardless the Banach space E.

When we deal with the algebra A = A..(BEg), the existence of interpolating se-
quences for A was proved by J. Globevnik [Glo78] for a wide class of infinite-
dimensional Banach spaces. Indeed, he proved this result if there exists a se-
quence (x,) C Sg of strongly exposed points with no cluster points. We show
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the existence of interpolating sequences for A.(Bg), for any infinite-dimensional
Banach space E, characterizing the separability of A.(Bg) in terms of the finite
dimension of E.

In connection with the existence of interpolating sequences, we study the sep-
arability of A, (Bg). This algebra is always separable when E is finite dimensional
and there are plenty of infinite dimensional spaces such that A,(Bg) is non sep-
arable. One way used to prove this is to show the existence of interpolating se-
quences for the algebra. Nevertheless, there are also cases such that A,(Bg) is
separable, as E = cg or the Tsirelson space T*. In our approach to the separability
of A,(Bg), we show that the algebra is separable if and only if the spectrum My is
7(A*,P(E))-metrizable.

This condition leads us to study the metrizability of bounded subsets of M,, in
particular those of Bg. We provide an example of a complex Banach space E and
a bounded subset L C Bg which is metrizable for the polynomial topology but
(P(?E),|| - ||) is not separable. However, we prove that, under the assumption
that L is a closed bounded absolutely convex separable set in E which is metri-
zable for the polynomial topology, then at least (E*,|| - ||.) is separable. We also
give an example that the separability of L cannot be removed in this result if the
conclusion is to hold.

In chapter 4 we deal with composition operators on H*(Bg). These are trans-
formations Cy defined according to Cy(f) = f o ¢, where ¢ is an analytic self map
of Br. We give a description of the spectra of some of these operators and study
the class of Radon-Nikodym composition operators on H(Bg).

L. Zheng [Zhe02] described the spectrum of some composition operators on
H* (see Theorem 4.2.2). Indeed, suppose that ¢ : D — D is a non constant, an-
alytic self-map, not an automorphism and there exists a € D such that ¢(a) = a.
Then, she proved that either the spectrum 6(Cy) is D if Cy is non power compact
or 6(Cy) = {¢'(a)* : k € N} U{0,1} if Cy is power compact. Her results where ex-
tended to H”(Bg), E any complex Banach space, for the power compact case in
[GGLO8]. In this work, the authors also deal with the non power compact case:
they extend the result given by L. Zheng to H*(Bg) for the non power compact
case when E is a Hilbert space.

It was H. Kamowitz (see [Kam73] and [Kam75]) who seems to be the first
who used interpolating sequences to analyze the spectrum of some composition
operators. The existence of such suitable interpolating sequences is nowadays
usually derived from the following estimate:
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where ¢ is an analytic self map of D satisfying ¢(0) = 0 and |¢'(0)| < 1. This
estimate (see Lemma 7.33 in [CM95]) is typically obtained by using Julia’s lemma
(see Lemma 2.41 in [CM95]) and angular derivatives.

In their study [GGLO8] of the spectrum of composition operators Cy on H*(Bp)
for a Hilbert space H, P. Galindo, T. W. Gamelin and M. Lindstrom obtained a
similar estimate to the above one which they called Julia-type estimate. Thus we
will continue to call Julia-type estimate to the above inequality with the absolute
value replaced by the norm. Inspired by [GGL08] and using our interpolation
result 3.2.16, we prove the following result for general Banach spaces,

Let ¢ : Be — Bg be an analytic map such that ¢(0) =0, ||¢'(0)|| < 1 and suppose
that ¢ (Bg) is relatively compact in Bg. If ¢ satisfies a Julia-type estimate and Cy is non
power compact, then the spectrum of Cy coincides with the closed unit disk D.

The description of the spectrum of non power compact composition operators
Cy for the n—fold product space C" was not yet done because a Julia-type estimate
was not yet available. In the present chapter we prove that it holds whenever
E = Cp(X). As a consequence, we complete the description of 6(Cy) in the case of
cm.

Next, we study the class of Radon-Nikodym composition operators from
H*(Bg) to H*(BF). These operators are closely related to the Asplund property,
so we study this property for bounded sets of Banach spaces. A subset D C E is
said to be an Asplund set if the space (E*,|| - ||4) is separable for any countable set
A C D. The Asplund property is preserved by linear operators and we are inter-
ested in extending this result to analytic mappings between Banach spaces. In
particular, we prove in Proposition 4.3.13 that, under the assumption that Py(*E)
is dense in P(*E), then k-homogeneous polynomials P: E — F preserve Asplund
sets and obtain similar results for some analytic mappings.

A linear operator T : E — F is a Radon-Nikodym operator if T(Bg) is a
Radon-Nikodym set. It is known (see [Bgi83]) that the linear operator T is As-
plund if and only if 7* is Radon-Nikodym. Thus there is a connection between
the previous study of Asplund sets and Radon-Nikodym composition operators.
Our main result is,

The composition operator Cy : H*(Bp) — H>(Bg) is Radon-Nikodym if and only
if there exists 0 < r < 1 such that ¢ (Bg) C rBr and (P(F),|| - ||a) is separable for any
countable set A C ¢(Bg).

In addition, we show some sufficient conditions for Cy to be Radon-Nikodym.
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Chapter 5 deals with properties related to Hankel-type operators. These oper-
ators are extensions of the classical Hankel operators on the Hardy space H?.
Let A be a uniform algebra on K. Given g € C(K), the Hankel-type operator
Sg:A — C(K)/Ais defined by S,(f) = gf +A.

The concept of tight algebra was introduced by B. Cole and T. Gamelin in
[CG82]. An algebra A C C(K) is said to be a tight algebra on K if the operator S,
is weakly compact for all g € C(K). Tightness characterizes uniform subalgebras
A of C(K) such that A** +C(K) is a closed subalgebra of C(K)**. In addition, this
property is, roughly speaking, the abstract analogue of the solvability of a certain
abstract d-problem with a small gain in smoothness.

In [CG82], the authors proved that A(D") is not tight on its spectrum forn > 2.
We present a new approach to this result extending it to algebras A,(Bg) for Ba-
nach spaces E = C x F endowed with the supremum norm.

In addition, we show that H*(Bg) is never tight on its spectrum regardless the
Banach space E. For this, we first prove the result for H* using some properties
of H* as a closed subalgebra of L* and then we prove the general case H*(Bg) by
means of Proposition 5.3.5.

Hankel-type operators are also closely related to the Dunford-Pettis property
through the so-called Bourgain algebras introduced by J. A. Cima and R. M. Ti-
money in [CT87]. A function g € C(K) belongs to the Bourgain algebra A, of A
(resp. Ap) if the Hankel-type operator S, is completely continuous (resp. S;* is
completely continuous). Bourgain’s work [Bou84a] was reformulated in [CT87]
by proving that a sufficient condition for a subalgebra A of C(K) to enjoy the
Dunford-Pettis property is that A, = C(K). If Ap = C(K), then the dual space A*
enjoys the Dunford-Pettis property and, hence, so does A itself.

What J. Bourgain did can be restated, using such reformulation, by saying
that the Bourgain algebras of A(B,) are C(B,) and, therefore, A(B,) and its dual
enjoy the Dunford-Pettis property. A proof by induction allowed J. Bourgain to
conclude that A(D") and its dual have the Dunford-Pettis property. However, the
line of this proof does not allow us to conclude whether the Bourgain algebras of
the polydisk algebras are the whole C(D"). Contrary to the results obtained for
A(By), we prove that the Bourgain algebras of A(D") as a subspace of C(D") are
themselves.
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Chapter

The aim of this chapter is to collect concepts and notation which will be used
along this work. We will also include some classical theorems related to Banach
spaces and theory of analytic functions.

1.1 Topology and Banach spaces

Let E be a Banach space. The Banach spaces considered during this work will
be complex Banach spaces unless it is otherwise stated. Its open unit ball will be
denoted by

Bp={x€E:|x| <1}.
Its unit sphere and its closed unit ball will be denoted by

Se={x€E:|x|=1} and Br={x€E:|x]| <1}

respectively.

Given E and F Banach spaces, a linear operator from E into F means a linear
and continuous map from E into F. We denote by L(E, F) the Banach space of all
the operators from E into F endowed with the norm

IT|] = sup{||T (x)[| : x € BE };

when Y = C, we write E* = L(E,C) to denote the topological dual of E. We will
use sometimes the notation of dual pair < x,x* > to denote x*(x) for x € E and
x € E”.

The linear mapping i : E — E**, defined by i(x)(x*) = x*(x), is an isometry
and, therefore, E becomes a closed subspace of E** via i. The Banach space E is

said to be reflexive if i is also surjective, hence an isometric isomorphism. We will
use both, E and i(E), to denote the corresponding subspace of E**.
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The weak topology on E, denoted by w(E, E*) (or simply w), is the coarsest topol-
ogy for which all the elements of E* are continuous. The weak* topology on E*, that
we denote by w(E*,E) (or simply w*), is the coarsest topology for which all the
elements of i(E) are continuous. Recall that a linear mapping 7 : E — F is con-
tinuous if and only if 7 : (E,w) — (F,w) is continuous.

Given a topological space (X, 7), the closure of a subset A C X is denoted by
A®. For a Banach space E and A C E, A will denote the norm closure unless it is
otherwise stated.

Mazur’s Theorem can be stated as follows.

Theorem 1.1.1 (Mazur). For any convex set A of a Banach space E, the norm closure A
equals its w(E,E*)—closure A",

The absolutely convex hull of a subset A C E is defined by
[(A) = {Ztnxn txn €AY ] < 1}.
n—1 n=1

The polar of a set A C E is given by
A°={L€E":|L(x)| <1foranyxe€A}.
The polar of a set B C E* is given by
B°={x€E:|L(x)|<1foranyL € B}.

Recall that the Bipolar Theorem states that, for A C E, we have that

A =T(A). (1.1)

Given a closed subspace Y of the Banach space X, the quotient space X /Y is
endowed with the norm ||[x]|| = inf{||x —y| : y € Y} for [x] € X/Y and then X /Y
becomes a Banach space. The orthogonal Y is the closed subspace of X* defined

by
Yt ={x"eX*:x"(y)=0foranyyc Y}

It is well-known that Y is isomorphic to X /Y.

A linear operator T : E — F is compact if T (B) is relatively compact. We say
that T € L(E) is power compact if there exists n € N such that the linear operator
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T" =To .". oT is compact. The linear operator T is said to be weakly compact if
T (Bg) is relatively weakly compact. In case that T transforms weakly null se-
quences into norm null sequences, it is said that T is completely continuous. If T (E)
is finite-dimensional, T is said to be a finite rank operator. The identity operator on
E will be denoted by IdE.

It is clear that any operator T : E — E which is limit of finite rank operators
is compact. Conversely, a Banach space E has the approximation property (AP) if
for any € > 0 and any compact subset K of E, there exists a finite rank operator
T : E — E such that || T (x) — x| < € for any x € K.

The following result is well-known:

Theorem 1.1.2. Let E be a Banach space. The dual space E* has the approximation
property if and only if for every Banach space F, every compact linear mapping T from
E into F and every € > 0 there exists a finite rank operator Ty € L(E,F) such that
1T -T| < e

Recall that the adjoint of a linear operator T : E — F is the linear operator
T* : F* — E* defined by

<x, T*(y") >=<T(x),y" > foranyx € E, y* € F*.

It is well-known that 7™ is continous if and only if 7' is continuous. In addition,
|T*|| = ||T||. We also have that T* : E* — F* is continuous if and only if 7" :
(E*,w*) — (F*,w") is continuous.

Recall Bartle-Graves Selection Theorem [BG52], which is stated as follows.

Theorem 1.1.3 (Bartle-Graves). If E and F are Banach spaces and T : E — F is a
surjective linear operator, then there exists a continuous function g : F — E such that
T o g is the identity map on F.

The well-known Fredholm Alternative states the following,

Theorem 1.1.4 (Fredholm Alternative). Let E be a Banach space, T : E — E a com-
pact operator and A # 0. Then either T — Ald is both one-to-one and surjective, or it is
neither one-to-one nor surjective.

Compact sets will be assumed to be Hausdorff unless it is otherwise stated
and will be denoted by K. The Banach space C(K) is the space of complex valued
continuous functions defined on K endowed with the norm of uniform conver-

gence || f]| = supyeg [/ (x)]-
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For locally compact Hausdorff spaces X, we let Co(X) denote the space of com-
plex valued continuous functions on X which vanish at infinity, endowed with
the supremum norm.

We will denote the space of complex-valued bounded functions on a set Y by
lw(Y). This space is also endowed with the supremum norm and (¢e(Y),|| - ||-)
becomes a Banach space.

1.2 Geometry of Banach spaces

In this section, we recall some concepts and theorems about geometry of Ba-
nach spaces.

Given a Banach space E, an element x € Sg is said to be an exposed point if
there exists a continuous linear functional L € E* such that L(x) = ||x|| = 1 and x
is the only point in the unit ball that is mapped to 1. There is a refinement of the
concept of exposedness: we call x € Sg strongly exposed if there exists a functional
L € E* with the properties L(x) = ||L|| = 1 and for any sequence (x,) in X such that
lim, L(x,) = 1, then lim, x,, = x in X. Clearly, a strongly exposed point is exposed.

The weak and weak-star topologies on an infinite dimensional Banach space
are never metrizable. It is possible, however, to show that under certain condi-
tions these topologies are metrizable when restricted to bounded sets.

Theorem 1.2.1. Let E be a Banach space. Then
a) E is separable if and only if (Bg+,w(E*,E)) is metrizable.
b) If E* is separable, then (Bg,w(E,E*)) is metrizable.
Now, we recall the James’ reflexivity Theorem, which characterizes the reflexiv-

ity of real and complex Banach spaces E in terms of the attainment of the norm
of its functionals.

Theorem 1.2.2 (James). Let E be a Banach space. Then E is reflexive if and only if any
L € E* attains its norm on Bg.

A Banach space E is said to have the Dunford-Pettis property (DPP) if for se-
quences (x,) C E and (x}) C E*, such that x, = 0 and x} > 0, we have x(x,) — 0.
We will study this property in paragraph 5.1.2.

A Banach space E is said to have the Schur property if weakly convergent se-

quences in E are norm convergent. The typical example of a Schur space is the
classical sequence space /.
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1.3 Banach and uniform algebras

The theory of commutative Banach algebras was widely developed by I. M.
Gelfand in the 40’s. Uniform algebras form a branch of the theory of commutative
Banach algebras and they are deeply related to theory of analytic functions. This
theory was firstly developed by G. E. Shilov in the early 1950’s. Concrete alge-
bras of analytic functions will provide models for the study of uniform algebras
and, conversely, the study of uniform algebras will lead us to some properties
of analytic functions. In this section we will introduce the concepts of Banach
and uniform algebra and will give some background related to them. Further
references may be found in [Gam84], [Rud73], [Dal00] and [GKO01].

1.3.1 Banach algebras

Recall that a Banach algebra (A, ||.||) is a complex Banach space A which is also
an associative algebra, such that the multiplication and the norm are related by
the inequality

I7-gll < IIf1l-llgll for any f,g € A.

We will assume, unless it is otherwise stated, that all the Banach algebras we will
consider are commutative and have an identity denoted by 1 that satisfies || 1| = 1.

An element f € A is invertible if there exists an element f~! € A such that
f.f~!' = 1. We denote by res(f) the set of A such that A1 — f is invertible. The
spectrum of f € A is the set o(f) = {A € C: A1 — fis not invertible} and the spec-
tral radius of f is defined by p(f) =sup{|A|: A € o(f)}. It is well-known that for
any f € A, the spectrum o(f) is non-void and it is a compact set of C. Moreover,

if A € o(f), then [A] <||f].

It is also well-known that the maximal ideals of a Banach algebra A are closed.
The set of maximal ideals of A is called the maximal ideal space or spectrum of A,
and it is denoted by My. If J is a maximal ideal of A, then A/J is isometrically
isomorphic to the field C.

Consider the set
Hom(A) ={¢ :A — C: ¢ is a non-zero homomorphism of algebras }

and define Ay = ker¢. The mapping 7 : Hom(A) — My defined by 7 (¢) = Ay
is a bijective correspondence, so we will identify each maximal ideal in M, with
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the complex-valued homomorphism that it determines. To define a topology for
My, recall that ||¢|| =1 = ¢(1) for any ¢ € Hom(A). Therefore, M, is a subset of
the unit sphere S4+ and can be endowed with the w(A*,A)-topology that inherits
from A*. This topology will be called the Gelfand topology of M4 and M4 becomes
a compact Hausdorff space when endowed with it.

The Gelfand transform of f € A is the complex-valued function f on M, defined
by
]?I M, A — C
¢ — o)

The function f is the restriction to M4 of the complex-valued operator Or on A”
defined by &/(¢) = ¢(f), so &y is w(A*,A)-continuous and hence feC(My). We
will also use the term Gelfand transform to refer to the mapping f — f from A
into A = {£:xe A}. This is a homomorphism of algebras which is continuous
since ||%]|o < ||x|| and A can be considered as a subalgebra of C(My). The Gelfand
topology turns out to be the coarsest topology which makes continuous all the
functions in A.

A Banach space E is said to be a dual space if there exists a Banach space X such
that X* = E. A dual algebra A is a dual space which is a Banach algebra.

1.3.2 Uniform algebras

Now we introduce some concepts of uniform algebras and discuss the Gelfand
transform in this case.

Recall that a set of functions B defined on a set § is said to separate points of S
if for any x # y in S we have that there exists f € B such that f(x) # f(y).

Definition 1.3.1. A Banach algebra A is said to be a uniform algebra if ||x*| = ||x||?
forany x € A.

The classical examples of uniform algebras are the closed subalgebras A of
C(K) which separates points of K and contain the constant function 1. Then, K is
homeomorphic to a subset of M,. Conversely, the following result holds,

Proposition 1.3.2. A Banach algebra A is uniform if and only if its Gelfand transform
is an isometry, that is, |X||. = ||x|| for any x € A.

We also have the following corollary,
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Corollary 1.3.3. A Banach algebra A is uniform if and only if A is isometrically iso-
morphic to a closed Banach subalgebra of a C(K) space which separates points of K and
contains the constant function 1.

Recall that a subset E of My is a boundary for A if for any function feAwe
have that

If[I = sup |@(f)I-
9cE

It is known that the intersection of all closed boundaries for A is a boundary for
A. This intersection is called the Shilov boundary of A and it is denoted by dj.

The following result is also well-known (see [Bas77] or [CCG89] for a proof).

Theorem 1.3.4. Let A be an infinite-dimensional uniform algebra. Then A contains a
copy of co.

Recall that the bidual A*™ of a uniform algebra A is also a uniform algebra
endowed with the Arens product (see [Are51b]). The evaluation functionals at
points of M, extend uniquely to be weak-star continuous multiplicative function-
als on A**, so we can regard M, as a subset of My«. Further results can be found
in [Gam73] and [DH79].

Finally, we recall the concept of peak point. Let K be a metrizable compact
space and A a uniform algebra on K. A point x € K is a peak point for A if there
exists a function f € A such that f(x) = 1 while |f(x)| < 1fory e X, y # x. A point
x € K is said to be a strong peak point for A if there is a function f € A such that
f(x) =1 while for any r > 0 there exists € > 0 such that |f(y)| < 1—¢€ for d(x,y) >r.

1.4 Complex Analysis

1.4.1 Algebras of analytic functions on D

Recall that, for an open set U of the complex plane C, the set H(U) denotes the
set of analytic complex-valued functions defined on U.

We will denote by D the open unit disk of the complex plane. Its closure will
be denoted by D and the unit circle will be denoted by dD. Recall that H* is the
space of all bounded analytic functions on D and the disk algebra is defined by

AD)={f:D—C: f € HD) and continuous on D} .
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It is clear that these sets of functions become Banach algebras endowed with
the supremum norm on the unit disk. Further references about these algebras can
be found in [Hof62].

Recall the Rudin-Carleson Theorem [Gam84],

Theorem 1.4.1 (Rudin-Carleson). Let K be a closed set of Lebesgue measure zero on the
unit circle dD, and let f € C(K). Then, there exists a function g € A(D) whose restriction
to K is f, that is, g|x = f and ||g|lp = || f||x-

Now we recall some basic results about Blaschke products.

Definition 1.4.2. Let () be a sequence of non-zero complex numbers in D such that the
product T1,,_, |ot|P" is convergent. A Blaschke product is a function B : D — C defined

by

TERED ) (et

et L] 1=z
where p,p1, p2, ... are non-negative integers.

Blaschke products satisfy B € H* and |B(z)| < 1 for any z € D. Moreover, z =0
is a zero of order p and, for z # 0, we have

B(z) =0if and only if z = a,.

It is also well-known that the formal product which defines the Blaschke prod-
uct converges for z € dD if and only if z is a non cluster point of the sequence ().

It is clear that A(D) C H*. To show that the converse is false, it is sufficient
to consider any Blaschke product. For instance, let B be the Blaschke product
defined by the sequence () = (1 —1/n%)%_,. The function B belongs to H* but it
is easy to show that it cannot be extended continuously to z = 1.

Recall that the Hardy space H? is defined by

H? — {feH(D): sup (/02”|f(ref9)|2de> <oo}.

O<r<l1

This set becomes a Banach space endowed with the norm given by

1 2 i0y2 :
= su — re ao | .
17 le 0<r51(2ﬂ:/0 )l )

32



thesection Complex Analysis @

The Cauchy projection € : L> — H? is given by

_ f(8)
C(f)(z) = /an (1——z§_)d€ for any z € D. (1.2)

Further results about H? and the Cauchy projection can be found in [Wo0j91].

1.4.2 The polydisk and ball algebras

The study of analytic functions on the unit disk can be carried over to an
analogous situation in several variables, namely to polydisks or finite-dimensional
balls. These are the unit ball of the Banach space (C", || - ||) and the Hilbert space
(C", || - |2) respectively. It turns out that there are some analogies with classical
complex analysis but also many differences.

We will denote the n-finite dimensional polydisk by D" and the n-dimensional
ball by B,. Therefore, this will allow us to define two extensions of the classical
disk algebra.

Let z = (z1,...,2,) denote the variables of z € C" and @ = (4, ..., q,) a multi-
index in Z" = Z, x .. xZ. The expression z* denotes the monomial z{" ...z% of
degree |a|:=}_;|;|. Let B the n-finite dimensional polydisk or ball. A function
f:B — Cissaid to be analytic if it is the sum of the multiple power series

flz)= Z aqz® for any z € B,

acZlt
where the series converges uniformly on compact sets of B.
The n-dimensional polydisk algebra A(D") is defined by
A(D") = {f:D" — C: fis analytic and extends continuously to D" } .

Given f € A(D"), the function | f| attains its maximum on D" since f is continuous
on the compact set D". We endow this algebra with the norm given by

|fllew := sup [f(2)],

zeD?

and then (A(D"),|.]l)) becomes a uniform algebra with spectrum D". It is clear,
by the Maximum Modulus Theorem, that || f|| = supy,_; | /().

The n-dimensional ball algebra is defined by
A(B,) ={f:B, — C: fis analytic and extends continuously to B, } .

As above, (A(B,),]|.||) also becomes a uniform algebra.
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1.5 Polynomials on Banach spaces

This section is devoted to polynomials on Banach spaces; multilinear map-
pings, tensor products, restrictions to finite dimensional spaces and differential
calculus may all be used to define polynomials over infinite dimensional spaces.
We adopt an approach to them using multilinear mappings. Polynomials are
used to eventually define analytic functions by means of series expansions analo-
gously to the one dimensional case. We will also recall the polynomial topologies
7(E,P("E)) and t(E,P(E)), which will be used in Chapter 3. References about
polynomials on Banach spaces can be found in [Din99], [Muj86] y [Gam94].

1.5.1 Polynomials on Banach spaces

Let E and F be complex Banach spaces and n € N. An n—homogeneous (con-
tinuous) polynomial P : E — F is the restriction of a (continuous) n—linear map

L:E x " x E — F to its diagonal, that is,
P(x) =L(x,". x) foranyx € E.

The space of n-homogeneous continuous polynomials from E into F is denoted
by P("E,F), which becomes a Banach space endowed with the norm

1P|} == sup{[|PCe)]| - [lxf} < 1}

By Py(E,F) we denote the set of F-valued constant functions defined on E. If
F = C, we will denote the space of complex valued n—homogeneous continuous
polynomials on E by P("E) and the set of complex constant functions on E by
Py(E).

It is well-known that a polynomial P is continuous if and only if P is locally
bounded at some point of E (see [Din99]). From now on, all polynomials will be
supposed to be continuous.

A polynomial P € P("E,F) is said to be a finite type polynomial if there exist
finite sequences (¢;)"_; C E* and (y;)"_; C F such that

p
P(x) = Z ¢i(x)y; foranyxekE.
j=1

We denote the set of finite type n—homogeneous polynomials by P;("E,F). If
F = C, the finite type polynomials are simply linear combinations of n—th pow-
ers of functionals on E. We denote this set by P¢("E). This set contains the prod-
ucts ¢ -...- ¢y, forg; € E*and j=1,...,n.
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The closure of P¢("E,F) in P("E, F) is called the set of approximable polynomials
and will be denoted by P4 ("E, F) and P4 ("E) respectively.

The sets of n-homogeneous polynomials which are w(E, E*)—continuous on
bounded sets are denoted by P, ("E,F) and P,("E) respectively. The following
results are well-known [Din99],

Proposition 1.5.1. Let E be a complex Banach space. Then,
a) We have that Py("E,F) = P,("E,F) if and only if E* has the approximation prop-
erty.
b) If E has the Dunford-Pettis property, then any polynomial P € P(E) is weakly
sequentially continuous.
c) The space ¢, is not contained in E if and only if all the weakly sequentially contin-
uous polynomials are weakly continuous on bounded sets.

1.5.2 The polynomial topologies

Now we define the polynomial topology T(E,P("E)) for a Banach space E. This is
the coarsest topology on E which makes continuous all the polynomials in P("E).
The t(E,P(E))-topology is the coarsest topology on E which makes continuous
all the polynomials in P(E).

A basis of 7(E, P(E))-neighbourhoods of 0 is given by the open sets
{x€eE:|P(x)|<1, PEF},

where F is a finite set of polynomials in P(E).

1.6 Algebras of analytic functions on Banach spaces

We give here some background related to infinite dimensional holomorphy,
which is the study of analytic functions on complex Banach spaces.

1.6.1 Analytic functions on Banach spaces

Analytic functions on Banach spaces can be introduced by means of Gateaux
and Fréchet derivatives or polynomial expansions. We have decided to intro-
duce them using polynomial expansions. Further results on infinite dimensional
holomorphy can be found in [Din99] and [Muj86].
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Definition 1.6.1. Let E and F be complex Banach spaces and U an open set of E. A
mapping f : U — F is said to be analytic on U if for any a € U there exists a sequence
(Py)n>0 of n—homogeneous polynomials and a neighbourhood V of a such that

o)

f(x) =) Pi(x—a)foranyxeV

n=0
where the series converges uniformly on'V.

We denote by H(U,F) the set of analytic F-valued functions on U. The func-
tion f is said to be entire if U = E. If F = C, the set of analytic functions on
U is denoted by H(U). The polynomials of P(E,F) are entire functions, that is,
P(E,F) C H(E,F).

The 7.-topology for H(U, F) is the topology given by the convergence of func-
tions in H(U,F) on compact sets. We recall now Montel’s theorem for analytic
functions on Banach spaces,

Theorem 1.6.2. Let U be an open set of the complex Banach space E. A subset % of
H(U) is t.—relatively compact if, and only if, A is t.—bounded.

1.6.2 Algebras of analytic functions on Banach spaces

There are many algebras of analytic functions defined on open subsets of Ba-
nach spaces. We will be mainly interested in extensions of H* and the disk al-
gebra A(D). These extensions have been studied in [ACG91], [AG89], [AGS8S],
[Glo79] and [CG86] among other references.

Definition 1.6.3. Let E be a complex Banach space and F a complex Banach algebra. We
define the following set,

H”(Bg,F) ={f:Bg — F : f analytic and bounded }

Whenever E is a finite dimensional Banach space, analytic functions on Bg
which are continuously extendible to Sg are also uniformly continuous since Bg
is compact. Nevertheless, if E is infinite dimensional, then Bg is non compact
and the continuity on Bg is not sufficient to guarantee the uniform continuity.
Therefore, the disk algebra A(D) can be generalized in two ways. We assume that
F is a uniform algebra. The first generalization is given by the algebra A.(Bg,F),
defined by

Aw(Bg,F)={f € H*(Bg,F) : f extends continuously to Bg}.
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The other way to extend the disk algebra is A,(Bg, F), defined by
Au(Bg,F) ={f:Bg — F : f analytic and uniformly continuous }.

We have that H*(Bg,F), Ax(Bg,F) and A,(Bg,F) are uniform algebras en-
dowed with the supremum norm

1fllee = sup [[f(x)]|-

XEBE
In particular, if F = C, we denote these algebras by H*(Bg), Aw(Bg) and A, (BE)
respectively.
It is easy to prove that if f € A,(Bg), then f is bounded and it extends to a
uniformly continuous function f: Bg — C. In consequence, A,(Bg) C Aw(BE).

On the other hand, we have that A..(Brg) C H*(Bg) as in the one-dimensional
case. Therefore, we obtain

AM(BE) C AOQ(BE) g_ Hoo(BE).

If E is finite dimensional, the algebras A,(Bg) and Aw(Bg) are the same. If E is
infinite dimensional, we have that A,(Bg) C A(Bg) by Theorem 12.2 in [ACG91],
so the three of them are different.

The following result will be used in the next chapters.

Theorem 1.6.4. Let E be a Banach space. Then the set of polynomials P(E) is a dense
set in A,(BE).

By Proposition 1.5.1, one concludes that if £ has the Dunford-Pettis property
and /; is not contained in E, then P¢(E) is dense in A, (Bg) if and only if E* has the
approximation property.

1.6.3 The Davie-Gamelin extension

The Davie-Gamelin extension allows us to extend analytic functions on Bg to
Bg+ when we deal with functions in H*(Bg) and A,(Bg). R. Arens [Are51a] ex-
tended bilinear maps A : X x ¥ — Z to bilinear maps A : X** x Y** — Z** preserv-
ing its norm using Goldstine’s Theorem. This technique can be used to extend
2-homogeneous polynomials P € P(2E) to P € P(*E**). R. M. Aron and P. Berner
generalized this result [AB78] proving that for any P € P("E), there exists an ex-
tension P € P("E**) such that ||P|| = ||P||. A. M. Davie and T. W. Gamelin sharp-

ened this result [DG89] proving the following theorem,
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Theorem 1.6.5. Let E be a complex Banach space and f € H*(Bg). There exists an
extension f € H*(Bg+) such that || f||p; = || f||Bgs.. Furthermore, the operator f — fis
linear, continuous and multiplicative, that is, fg = fg for all f,g € H*(Bg).

We have that the Davie-Gamelin extension of a function in A,(BEg) belongs to
Ay, (Bg+), extending the results given in Theorem 1.6.5,

Corollary 1.6.6. Let f be a function in A,(Bg). Then the Davie-Gamelin extension f
belongs to A, (Bg+).

Proof. Consider the operator 7 : H*(Bg) — H>(Bg++) such that T(f) is the
Davie-Gamelin extension of f. Then we have that

T(Au(Bg)) =T(P(E)) CT(P(E)) € P(E*) = Au(Bg+)

and we obtain the result. O

1.6.4 Spectrum of algebras of analytic functions

We present in this section some results about the spectrum of the algebras
H*”(BE), Aw(Bg) and A,(Bg). Let A be one of these algebras and x** € Bg::. The
homomorphism of algebras 6, : A — C given by

O+ (f) = f(x™)
is clearly well-defined and continuous. In addition, we also have that the map-
ping & : Bg+ — My is injective since, for x** # y** in E**, there exists x* € E* such
that < x*,x** >#< x*,y** > and then, §«(x*) # &, (x*). Therefore, identifying
elements x** of B« with the corresponding homomorphism §,+, we obtain the
following result,

Proposition 1.6.7. Let E be a complex Banach space and A one of the algebras H (BE),
Aw(BE) or Ay(Bg). Then,
B+ C My.

In addition, if A = A,(Bg), then Bg+ C My.

We present now a proposition which characterizes the algebra A,(Bg) in terms
of its spectrum for Banach spaces E which enjoy the approximation property. This
is based on the following lemma, which proves the existence of homomorphisms
¢ € My which are not given by evaluations 0.+ for any x** € Bg«. The necessary
and sufficient condition for E is the existence of a continuous polynomial which
is not w(E, E*)-continuous. It is an adaptation of Proposition 1.5. in [AGGM96].
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Lemma 1.6.8. Let E be a complex Banach space. Suppose that there exists an n—homoge-
neous polynomial P € P("E) which is not w(E,E*)-continuous in bounded sets. Then
there exists a homomorphism of algebras ¢ : A, (Bg) — C which does not belong to Bg«-.

From Lemma 1.6.8, we obtain the following proposition [GL01]

Proposition 1.6.9. Suppose that E* has the approximation property and let My be the
spectrum of the algebra A = A,(Bg). Then,

My = B+

if and only if the set of finite type polynomials Pr(E) is dense in A,(BE).

1.6.5 H>(U) as a dual space

Let U be an open set in a Banach space E. We will denote by H*(U) the algebra
of bounded complex-valued analytic functions on U. In this paragraph we recall
that H*(U) is a dual space and give some results related.

Consider H*(U) endowed with the 7.— topology, that is, the topology of uni-
form convergence on compact sets of U. It is well-known that the closed unit
ball of H*(U), which we will denote by By, is 7.— relatively compact by Montel’s
Theorem 1.6.2. Define the set

G*(U) = {u € H*(U)" : ulp, is T.— continuous }
J. Mujica proved in [Muj91a] the following result,

Proposition 1.6.10. The set G*(U) is a closed subspace of H*(U)* and the linear oper-
ator T : H*(U) — G=(U)* given by T(f)(u) = u(f), is an isometric isomorphism.

In consequence, we have that G*(U)* = H*(U), so H*(U) is a dual algebra. In
particular, H*(Bg) is a dual algebra for any Banach space E.

Denote by B the unit ball of G*(Bg). In [Muj91a], the following result is also
noticed:

EGZF{&CIXEBE}. (1.3)

1.7 The pseudohyperbolic metric

Let E be a complex Banach space and & a domain of E, that is, an open and
connected subset of E. We say that f: ¥ — & is an automorphism of 7 if f
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is bijective, analytic and f~! is analytic. It is well-known [GR84] that the last
condition is redundant if E is finite dimensional. When we deal with infinite-
dimensional Banach spaces, this is an open question.

Definition 1.7.1. Let p : D x D — R be the map defined by

i—w

p(z,w) =

1—zw

Then (D,p) is a complete metric space which induces the usual topology of D. The
distance p will be called the pseudohyperbolic distance.

It is clear, by the Schwarz-Pick Lemma, that analytic mappings f : D — D are
contractive for the pseudohyperbolic distance, that is,

p(f(z),f(w)) <p(z,w) foranyz,weD. (1.4)

Moreover, the equality is satisfied if and only if f belongs to Aut(D).

The following lemma summarizes well-known results on the pseudohyper-
bolic distance. They are simple calculations.

Lemma 1.7.2. We have the following statements,

a)  p(lzl,Iwl) <p(z,w)  forallz,w €D, (1.5)
2 2 2
C|z=w P (A= DA = W)
D) 1 ol = 1=zl forall z,w € D. (1.6)
From b) we conclude
12V (1 — |2
1—p(z,w)* = (1= 7)1 = Jwl") forall z,w € D.

[1—zw]?
Since this metric is an isometry for f € Aut(D), we have
p(z,w) =sup{p(f(z),f(w)): f € HT, ||f]| < 1}. (1.7)

Then, the notion of pseudohyperbolic distance can be carried over to uniform
algebras as follows,

Definition 1.7.3. Let A be a uniform algebra, My its spectrum and x,y € M. The pseu-
dohyperbolic distance pa(x,y) is defined by

pa(x,y) = sup{p(f(x),f () : f € A, | f| <1}
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From now on, we will not specify the uniform algebra A in pa (x,y) unless it is
necessary.

If we deal with E = Cy(X) and A = H*(Bg), in [AGL03] we find an explicit
expression for the pseudohyperbolic distance given by

M for all x,y € Bg. (1.8)

plx) = sup| -

teX

1.8 Composition Operators

Now, we introduce some background related to composition operators. Fur-
ther results can be found in [CM95] and [Sha93].

Let E and F be complex Banach spaces and U and V open sets in E and F
respectively.

Definition 1.8.1. Let ¢ : U — V be an analytic function and let </ (U), </ (V) be
spaces of analytic functions defined on U and V respectively. The composition oper-
ator Cy : o/ (V) — &/ (U) of symbol ¢ is defined by

Co(f)=foo
whenever fo¢ € o/ (U) forany f € o/ (V).

It is easy to check that any symbol ¢ : Be — BF gives rise to a composition
operator Cy : H*(Br) — H”(Bg). On the other hand, if we deal with A,(Bg)
and A, (Br), the corresponding composition operator with symbol ¢ : By — Br
will not be well-defined in general as the following example [AGL97] shows,
Example 1.8.2. Let ¢ : By, — By, be the analytic map given by ¢(x) = (x);_,. The

n/n=1°

composition operator Cy : A,(By,) — Au(By,) of symbol ¢ is not well-defined.

Proof. Consider € = 1/4. For any 6 > 0, consider r=1—-6/2and s, =1 — % for
any n € N. Then, there exists ny € N such that for any n > ny we have ||re,, —spe,||2 =
|r—s,| < & but

1
H(p(ren) _¢(snen)‘|2 - |Vn_SZ| E— ; forn — oo,

so the function ¢ cannot be uniformly continuous. Now, taking the function
f € Au(By,) given by f(x) =¥ x2, we have that fo ¢ ¢ A,(By,).

n=1
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This situation can be overcome by considering the symbol ¢ : Be — Br to
be uniformly continuous. Then, the composition operator Cy : A,(Br) — A,(BE)
is clearly well-defined. Nevertheless, when we deal with E = ¢, this assump-

tion is unnecessary since composition operators are always well-defined (see also
[AGL97]).

Now we recall some results which characterize some classes of composition
operators. The characterization of compact composition operators can be found
in [AGL97]. The other ones are in [GLR99]. Recall that a set A C E is said to be a
Dunford-Pettis set if for any sequences (x}) C E* such that x’: - 0, and (x,) C A, we
have that x};(x,) — 0 when n — oo,

Theorem 1.8.3. Let Cy : H*(Br) — H”(Bg) be a composition operator of symbol ¢.
Then,

a) Cy is compact if and only if ¢ (Bg) is a relatively compact set in Br and there exists
0 <r < 1such that ¢(Bg) C rBr, that is, ¢ (Bg) is strictly inside Br.

b) If there exists 0 < r < 1such that ¢ (Bg) C rBr and ¢ (Bg) is a o (F, P(F))-relatively
compact set, then Cy is weakly compact. The converse is satisfied if F' has the ap-
proximation property .

c) Cy is completely continuous if and only if ¢ (Bg) is a Dunford-Pettis set in F and
there exists 0 < r < 1 such that ¢ (Bg) C rBF.
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Chapter

Interpolation theory has been developed since the earliest times to the present
date. There are many connections between the results obtained in different ages,
thereby putting the techniques currently used in many fields of science. In this
chapter, we will study interpolating sequences for uniform algebras and their
connection with linear interpolation when we deal with dual uniform algebras.
In addition, we give a new approach to prove the existence of interpolating se-
quences which are not linear interpolating by using results on composition oper-
ators. Some results will allow us to study linear interpolating sequences for the
particular algebras of analytic functions H*(Bg) and A.(Bg) in Chapter 3.

2.1 Background

We begin this chapter by giving some background related to interpolating se-
quences for uniform algebras. In this section we give the concepts of interpolating
sequence and linear interpolating sequence for a uniform algebra. We also intro-
duce cp—interpolating sequences and the constant of interpolation. In addition,
some results related to interpolating sequences are quoted.

2.1.1 Interpolating sequences

Let A be a uniform algebra and (x,) a sequence of elements in My. Recall that
the Gelfand transform f is continuous on the spectrum M, and this is a compact

space, so then the sequence (f(x,)) is bounded. Consider the restriction map
R:A — /. defined by

R(f) = (f(x)).

It is clear that R is well-defined. Moreover, R is linear and continuous since

IRCH)I = supiy_y (7)) < 11|
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Definition 2.1.1. Let A be a uniform algebra and (x,) a sequence in My. If there is a
map T : les — A such that RoT = id,_, then (x,) is called an interpolating sequence for
A. If the map T : lss — A is a linear operator, then (x,) is called a linear interpolating
sequence for A.

If there exists an interpolating sequence for A, then A is not separable since
the map R is onto. It is also clear that a sequence (x,) C My is interpolating for
A if and only if for any bounded sequence (o), C C, there exists f € A such
that f(xn) = a,. If we deal with a finite sequence {xi,...,xy}, we say that the
sequence is interpolating for A if for any (e, ...,0y) € CV, there exists f € A such
that f(x,) = o, for anyn=1,...,N.

In order to control the interpolating functions, the constant of interpolation is
introduced.

Definition 2.1.2. Let (x,) be an interpolating sequence for A. For any o0 = () € oo

~

consider the set My = inf{||f||oo f(xj))=aj, jeN, fe A}. The constant of interpo-
lation for (x,) is defined by

M =sup{My : & € l,||Ot]|o < 1}.

Analogously, the notion of co—(linear) interpolating sequence is defined by sim-
ply replacing /., by cp in Definition 2.1.1. The constant of interpolation for
co—interpolating sequences is defined by

M = sup{My : @ € co,||&t]| < 1}.

We will say that M is a constant of interpolation for (x,) if it is an upper bound
for the constant of interpolation of (x;,).

As we stated in paragraph 1.3.2, the bidual of a uniform algebra A is also a
uniform algebra and we can regard My as a subset of My++. We say that a sequence
(x,) C My is interpolating for A** if (x,) is interpolating for A** as a subset of M.
See also [GGLO04].

2.1.2 Results on uniform algebras

We recall several results about interpolating sequences for uniform algebras.
They will pave our way to study linear interpolating sequences, in particular
when we deal with dual uniform algebras.

Our starting point for this research is a result of P. Beurling (see [Gar81] and
[Car62]):
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Theorem 2.1.3. Let (z;) C D be an interpolating sequence for H* and let M be its con-
stant of interpolation. Then, there exists a sequence of functions (f;) C H* such that

filzj)=6; fork,jeN and Z|f] <M foranyze€D.

In order to extend the results of this theorem, we introduce the following def-
inition,
Definition 2.1.4. Let A be a uniform algebra, a sequence (x;) C My and a sequence of

functions (fi) C A. We say that (f;) is a sequence of Beurling functions for (x,) if
there is M > O such that

fk(xj):Skj forany k,j e N and Z|f] )| <M forany x € My.

N. Th. Varopoulos proved ( see [Var71] and [Gar81]) a general result on uni-
form algebras replacing the constant of interpolation M by a worse one.

Theorem 2.1.5. Let A be a uniform algebra on a compact set K. Let {x1,x2,...,x,} bea
finite sequence in K and let M be the constant of interpolation of this sequence.

For any € > 0, there exist functions fi, f2,...,f, in A such that fk(xj) = &; for any
k,j € N and such that

supZ|fJ |<M2—|-8
xGK]

P. Galindo, T.W. Gamelin and M. Lindstréom improved this result in [GGL04],

Theorem 2.1.6. Let A be a uniform algebra and (x,) C Ma. Let M > 1 such that for each
finite collection {a, 0, ..., 0} of complex numbers in dD, there exists f € A satisfying
fxj)=oj forany 1 < j <nand |f|| < M. Then, there is a sequence of functions
(fu)oo_; C A* such that

fk(xj):5kj forany k,je N and Z|fJ (x)| <M?  forany x € My~

2.2 Linear interpolation

In this section we will study the connection between interpolating sequences,
linear interpolating sequences and co—(linear) interpolating sequences.

First, we recall a result which shows the connection between cy—interpolating
sequences and cp—linear interpolating sequences when we deal with the disk al-
gebra A(D). It follows from Theorem 3.1 in [Dav?72],
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Theorem 2.2.1. Let (z,) be a co—interpolating sequence for the disk algebra A(D). Then,
(zn) is a co—linear interpolating sequence for A(D).

The following result shows the equivalence for a sequence (x,) C My to be
co—linear interpolating and the existence of Beurling functions in A.

Proposition 2.2.2. Let A be a uniform algebra and (x,) C My. Consider the following
statements:

a) (x,) is a linear interpolating sequence for A.
b) There exists a sequence (f,) C A of Beurling functions for (x,).
c) (xn) is a co—linear interpolating sequence for A.

Then b) and c) are equivalent and a) implies both b) and c).

Proof. It is clear that a) = ¢) by considering the restriction mapping
T|c03 co — A.

¢) = b) Set f, :=T(en) € A so that f,(xy) = 8. Now we consider the adjoint
T* : A* — cj;, which satisfies that
T*(8:)(en) = 8(T (en)) = 8:(f2) = fulx)-

Since T* is continuous, we have that M = ||T*|| is finite. Therefore, by the
duality given by ¢ = ¢1, we have that

1780l = Y IT(80) (en)] = i'f“(’”
and we obtain

M = ||T"|| = sup |T7(d)lc; = sup IT7(d)l; =

XGSA* xEMy
sup Z |T%(8x)(en)| = sup Z | fa(%)
XEMY p— XEMy p=

so there exists M > 0 such that sup,.,, ¥, | 2 (x)] <M and condition b) is satis-
fied.

b) = ¢) Set a = () € co. Since sup,cyy, Yoo |fn(x)] < M for any x € My, we

have that ¥=°_, o, f,(x) is also defined for any x € M. Moreover, Y*_, &, f;, € A
converges uniformly on M, to the function Y | &, f, since

| Z Oln fin — Z O | = sup | Z O‘nfn
n=1

xeMp p=fk+1
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sup (0] sup Y [Falx)| <M sup |on| 0.
n>k+1 XEMA p=f+1 n>k+1

Therefore, Y, o, f,, belongs to A since A is a Banach space. Let R : A — ¢( be the
restriction map. We define its right inverse T : co — A by

T (o) = il G fi

This is a well-defined linear operator and we have that

e}

RoT(a) =R<i1anfn> - (ianfn(xj)) — (o) =

j=1

for all & € cp. Therefore, (x,) is a co—interpolating sequence for A. O

It is not difficult to prove that, in general, (¢) does not imply (a). A coun-
terexample can be found just considering the disk algebra A(D) and a convergent
sequence in the unit circle. By the Rudin-Carleson Theorem 1.4.1, this is is a
co—interpolating sequence for A(D) and further linear interpolating by Theorem
2.2.1. Tt is clear that this sequence is not interpolating for A(D) since A(D) is sepa-
rable. But, though there are cyp—interpolating sequences which are not interpolat-
ing sequences, cp—linear interpolating sequences are always linear interpolating
when we deal with the bidual A**. Indeed, we have

Proposition 2.2.3. Let A be a uniform algebra and (x,) C Ma. If (x,) is a co—linear
interpolating sequence for A, then (x,) is linear interpolating for A**.

Proof. Since (x,)is co—linear interpolating, then there exists a linear operator
T :co— AsuchthatRoT =1Id,,. Then, for oo = (o) € co, we have that

T(a)(xn) =0, foranyn €N.

Consider the second adjoint 7** : /o — A™ and fix a € f.. We have that
T*(x,) € ¢1 and, considering the sections o* = (o, ..., ,0,...) € ¢y, we have that
the sequence (o¥) w(/w, ¢1)—converges to a. Therefore, it follows that

T (a),xy >=<a,T" (xy) >=< 1i/£n(051,---,05k,0, ), T () >=
liIEn <(0q,...,04,0,...),T"(x,) >= lilzn <T((ag,...,04,0,...)),x%;, >= 0.
Hence, for any « € /.., we have that 7** (o) (x,) = o, foranyn e N. O
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2.3 Results for dual uniform algebras

In this section, we deal with dual uniform algebras A = X*. We begin by prov-
ing that co—linear interpolating sequences for A are also linear interpolating when
we deal with sequences (x,) C My NX. Then we prove that the result remains true
if we consider cp—interpolating sequences.

Proposition 2.3.1. Let A be a dual uniform algebra A = X* for some Banach space X,
and consider (x,) C Ma N X a co—linear interpolating sequence for A. Then, (x,) is also
linear interpolating for A.

Proof. Since (x,) is cop—linear interpolating, by Proposition 2.2.2 we can choose
a sequence of Beurling functions (f,) C A for (x,), that is, fulxe) = 8y and
SUDPep, Ll |f(x)| < M for a constant M > 0.

Fix a sequence a = (@) € {.. We have, for any x € My,

Z |06 fu(®)] < ]l Z /()] < M| ]|

so the series converges for any x € M4. Moreover, for u € A* we have that

Z ) < |lu] | 2 O fo oo = ||ul| sup | 2 00 fo(x

XEMy p=

ull[[ex]]eo sup Z [Fn )] < M Julfot]|o-

XEMy p=1

This shows that Y~ ,o,.f, is a w(A,A*)—Cauchy series in A and, then, a
w(A,X)—Cauchy series, hence convergent by the w(A,X)—compactness of the ball
in A of radius M||¢||. In addition, we have that

1Y onfall < M|ot]|o.
n=1
Define the map T : .. — A by
o ) = Zajfj'
j=1

The map T is clearly a linear operator and, since each x; belongs to X, we
obtain that

(z a,fj) - it
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Thus (x,) is linear interpolating for A. O

From Proposition 2.3.1 we conclude the following,

Corollary 2.3.2. Let A be a dual uniform algebra A = X* and (x,,) C My NX. If there
exists a sequence (fy) C A of Beurling functions for (x,), then the sequence (x,) is linear
interpolating for A.

Theorem 2.3.3. Let A be a dual uniform algebra A = X* and consider a sequence
(xn) C MaNX. The following statements are equivalent:

i) Every finite subset of (x,) is interpolating for A and there exists a constant of inter-
polation independent of the number of interpolated terms.
ii) (x,) is co—interpolating for A.
iii) (xp) is linear interpolating for A.

Proof. It is clear that iii) = ii).

ii) = i) Let (x,) be a cop—interpolating sequence. Then, there isamap 7 : co — A
such that Ro T = id.,. Consider the set B= R !(cg). Since R is continuous, we
have that B is a closed subspace of A and, therefore, it is a Banach subspace of
A. Moreover, the mapping R, : B — co is surjective since for all o € ¢o we have
that () € Band R(T (o)) = a. In consequence, R|, is an open mapping and the
quotient mapping

I/?E : B/ ker (R|B) — Co

. . . . —~——1
has a continuous linear inverse. Consider M = ||R|, || > 0. We have that

~

sup {inf{[|f]lw : f €A, (f(xa))n = a}} <

lefl<1

~

sup {inf{||fllw: f € B, (f(xn))n = a}} = M.
llolleo<1
Now, for every finite subset {xi,...,x,}, it is clear that the constant of interpo-
lation

My:= sup {inf{|f]lo: f €A f(x;) =7y j=1,2,....n}}
1(nj)ll<1
satisfies the inequality M, < M.

i) = iii) We will use Theorem 2.1.5 and a normal families reasoning. In addi-
tion, we will use some ideas from Theorem 2.1.6. Let (&,) be a null sequence of
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positive numbers. By Theorem 2.1.5, we have that for each ¢, there are functions
fT,-.., /i in A such that f]’.‘(xk) =0 for j,k=1,...,n and such that

Since A = X*, its unit ball is a w(A,X)—relatively compact set, thus from the
sequence (f7).>; we may obtain a net f w(A,X)—convergent to an element
F; € A. Since x; € X, it follows that

Fjx) =lim f%(x) = 8 forany j,k € N.

Fix m > 1 and let ay,...,a, be complex numbers of unit modulus. For any
n > m and all x € M4, we have

m m n
L il < LIFEI< X IF0I<M +e
=1 j=1 j=1

From this, we have for any n > m, | L7, a;f} |« < M+ &,. Thus for all u € By,
we have | <u, Y a;f7 > | < M? + ¢,, and by passing to the w(A,X)—limit, we
obtain | <u, YL a;F; > | < M?, hence X7 ajFjlle < M?. Therefore, we obtain

|Za] (x)] <M?*  forany x € My.

This is true in particular for a; = |F (x)|/ I?J (x) if Fj(x) # 0 and, therefore, we obtain

Z (x)| <M? forallx € My.

By Proposition 2.2.2, we obtain that (x,) is a cop—linear interpolating sequence
for A and the proof is completed by applying Proposition 2.3.1. O

The following corollary proves that, under some assumptions, uniform alge-
bras A are dual algebras A = X* and we can choose the predual X to contain the
interpolating sequence (x,).

Recall that the set of complex-valued bounded functions on Y is denoted by
l(Y'), which is the dual space of ¢;(Y). If A is a subalgebra of /.(Y), we consider

={x€lo(Y) :< f,x>=0 forall f€A},
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SO
GY)NAt ={xe(Y):<x,f>=0 forall f€A}.

We define X to be the quotient space

_ L)
Ch(Y)nAL

If A is a weak* closed subspace of /.(Y), we have that the space X* is isomor-

phic to (¢1(Y;) NA*) * since the dual of a quotient space E/F is isomorphic to the
orthogonal F if F is a weak* closed subspace of E. Moreover,

(00)na) = {Fetur): 1) =0 forany xe fi(r)nat} =

lo(Y)NALE

ALL

Since A is a weak* closed subspace of /..(Y), we have that = A and, therefore,

A=X*.

Corollary 2.3.4. Let A be a closed subalgebra of {.(Y) for some set Y whose points are
separated by A. Suppose that the limit of any bounded net of functions in A that converges
pointwise on Y also belongs to A. If (x,) is a co—interpolating sequence for A, then it is
linear interpolating for A.

Proof. Set Y} =Y U{x, : n € N}. Clearly, Y C My, so we have that
YCYH CMy

and A is also a closed subalgebra of /(Y7 ). Since Y; satisfies the same assumptions
as Y, the condition on pointwise bounded limits guarantees that A is a weak*
closed subspace of ¢..(Y;). Thus, as we have mentioned above, such an algebra A
is the dual of the Banach space

()
o Kl(Yl) NAL

and every y €Y; is identified with the characteristic function 6,. Therefore,
(x,) C X. Now, it suffices to apply Theorem 2.3.3. O

J. Mujica proved that if (x,) C U is an interpolating sequence for H*(U ), then
it is also linear interpolating [Muj91b]; this is a particular case of Theorem 2.3.3
since (x,) C G*(U), the predual space of H*(U) found by J. Mujica in [Muj91a].
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This result is extended by Corollary 2.3.4 to any cp—interpolating sequence since
H*(U) is a closed subalgebra of /.. (U) fulfilling the assumptions by Montel’s the-
orem 1.6.2.

On the other hand, there are examples of cp—interpolating sequences which
are not cp—linear interpolating. Indeed, A. M. Davie proved [Dav72] that, when
we deal with the algebra A,(2B,) on its spectrum My = 2B,_, there exists an ex-
ample of a co—interpolating sequence which is not cp—linear interpolating. We
provide a somehow different proof of this result as an application of results on
composition operators.

Theorem 2.3.5. Let A be the algebra A,(2B.,). There exists a co—interpolating sequence
for A which does not admit linear interpolating subsequences.

Proof. Let { fj } be a dense sequence in the unit ball of ¢(, chosen in ¢, that is,
f/(n) = 0 for n large enough depending on j. Define x' € By_ by x'(j) = f/(i). We
know, by Theorem 1.6.9, that the spectrum of A,(2B,,) is given by

My = 2By, = {(z) : lza] <2}

It is clear that each x' belongs to the spectrum and the sequence (x') converges
to 0 there since the Gelfand topology coincides with the pointwise topology and
x'(j) = f/(i) — 0 when i — oo

Consider the restriction map R : A,(2B.,) — ¢ defined by R(f) = (]?(x’))‘l’":1
For any j € N, let z; € A,(2B,,) be the coordinate functions defined by z;(x) = x;.
We have that z;(x) = x'(j) = f/(i), so then R maps the unit ball of A,(28,,) onto
a dense set of B.,. In consequence, the mapping R : A,(2B.,) — c is onto by the
open mapping Theorem and therefore, by the Bartle-Graves Theorem 1.1.3, there
existsamap T : ¢ — A,(2B,,) such that Ro T = Id.. By taking the restriction map
T : co — Au(2B,), we obtain that (x') is a co—interpolating sequence.

We show that (x) has no linear interpolating subsequences. Consider the nat-
ural embedding 1 : B, — 2B, and the composition operator

C,: H°(2B,,) — H”(B,)

defined by Ci(f) = f|g,,- This operator is completely continuous according to
Theorem 1.8.3. Observe that the restriction C; : A,(2B.,) — Au(Bg,) is still com-
pletely continuous and the adjoint C;* restricted to the spectrum B,_ is the canon-
ical embedding

B, — 2B, .
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Indeed, if &, € By, the homomorphism C;(8,) coincides with §, since both coin-
cide on the linear functionals on ¢¢ (i.e., on ¢;) and consequently on the dense
subspace of finite type polynomials Ps(co).

Suppose that (x') has a ¢p—linear interpolating subsequence. Without loss of
generality, we can assume that (x') itself is co—linear interpolating. Then there
exist a linear operator 7 : ¢c) — A,(2B.,) and a sequence (F;) C A,(2B,,) such that
Fi(x') = &; and further,

Y |Fj(x)| <M forallx€B,,.
j=1

That means that the series Y7, F; is weakly Cauchy, so the series Y7 G, (F)) =
Y1 Fjls,, is a Cauchy series in A,(B,). Therefore, (F¢|p,, )« is a null sequence
there. However, this is not possible since

1Filso |l = ICU(F) ] = | <, Cu(F) > | = | < G (&), Fe > | = [FR()| = 1.
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Interpolation for H*(Bg ).
Separability of A.,(Br) and
AM(BE )

Chapter

This chapter is concerned with the study of interpolating sequences for the al-
gebras of analytic functions defined in 1.6.3. First, we aim to study sufficient con-
ditions on a sequence (x,) to be interpolating for H*(Bg). At this point, we will
study the extension of the classical Carleson and Hayman-Newman Theorems
on interpolating sequences for H”. In particular, we prove the sufficiency of the
Hayman-Newman condition on a sequence (x,) to be interpolating for H*(Bg)
and the sufficiency of the Carleson condition on (||x,||) for the sequence (x,) to
be interpolating for H*(Bg). In addition, when we deal with Hilbert spaces, we
provide explicitly the interpolating functions.

The existence of interpolating sequences for A.(Bg) was proved by
J. Globevnik [Glo78] for a big class of infinite-dimensional Banach spaces. We
prove that this fact can be extended to any infinite-dimensional Banach space,
solving open questions asked in [Glo78] and characterizing the separability of
Aw(BEg) in terms of the finite dimension of E.

Finally, we study some conditions related to the separability of the algebra
Ay(BE).

3.1 Background

We begin with some background which includes some results related to the
pseudohyperbolic distance and the classical theorems of interpolation for H*(Bg).

3.1.1 The pseudohyperbolic metric

In this paragraph, we present some results related to the pseudohyperbolic
metric. The following lemma summarizes several calculations which will be very
useful.
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Lemma 3.1.1. We have the following statements:

a) p(a,c) > p(b,c) forreal numbers 0 <a<b<c<I. (3.1)

D) l-x<—logx forO<x<l1. (3.2)
1+ az 1—|o]?|z|? —

c) Re ll—az] = ol forany o € D,z € D. (3.3)

Proof. a) Let0 <a <b <c<1Dbereal numbers. We have that

_c—a c—b
l—ac ~ 1—bc

p(a,c) =p(b,c)

if and only if (¢ —a)(1 —bc) > (¢ —b)(1 — ac), which is equivalent to inequality
¢ —a—bc*+abc > ¢ —b— ac*+abc. This happens if and only if (1 —c?) > a(1 —c?)
and this condition is equivalent to b > a since 1 — 2 >0.

b) Consider the function f(x) = 1 —x+logx defined for x € (0,1]. Then, the
derivative is given by f’(x) = —1+ 1/x and, therefore, f'(x) > 0 for any x € (0, 1].
Hence, the function f is increasing in (0, 1] and, since f(1) = 0, we conclude that
f(x) <0 forx € (0,1] and we obtain the inequality.

c) Let o € D and z € D. Since Re w = (w+w)/2 for any w € C, we have that

2

l1+az} lll+ocz 1+Oc_z}
FRe +

1—o0z - l—az 1—az

1 [1 —0z+oz— P+ 1+ oz — oz — |Ot|2|z|2] 1 —|af?|z]?
2

11— az]? T 1—oaz

]

The following result will prove that the norm is a contractive function when
we deal with the pseudohyperbolic distance on A = H*(Bg). Recall (see para-
graph 1.6.4) that elements x,y € Bg can be also seen as elements of M,. Therefore,
when we deal with p(||x||,]|y||), we mean the pseudohyperbolic distance on D and
the norm is calculated for x and y as elements of the Banach space E. However,
the expression p(x,y) denotes the pseudohyperbolic distance on A = H*(Bg), that
is, x and y are considered as elements of My,.
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Proposition 3.1.2. Let E be a complex Banach space, A = H*(Bg) and x**,y** € Bg+.
Then,

P < p (™, y™).

Proof. If p(||x**,|ly**||) = 0, the result is clear. So then we can suppose that
y**|l < ||lx**|| without loss of generality. Since x** € Bg+, there exists a sequence
(fn) C E* C A, such that || f,]| = 1 and lim,, | f,,(x**)| = ||x**||. It is clear that

P(fa(x™), /(™)) < p (™, ™)

and, using 1.5, we obtain that

P () < p (™, y™).

Since ||y**|| < ||x**||, we can suppose that ||y**|| < |f,(x**)| for all n. In consequence,
we have that |f,,(y")| < [|y™*|| < |fn(x**)| and we can apply 3.1 to obtain

PGy < p (™) LA (D)

Therefore, we obtain that p (| f,,(x*)|, ||y**]|) < p(x**,y**) and, taking limits when
n — oo, we get
Pyl < p (5 5™).

[]

It is clear that Proposition 3.1.2 can be extended to other algebras of functions.
In particular, we can consider elements x**,y** € Bg+ in the algebra A, (BE).

3.1.2 The classical interpolating theorems in H*

L. Carleson [Car58], WK. Hayman [Hay58] and D.]. Newman [New59] stud-
ied sufficient conditions for sequences (x,) C D to be interpolating for H* at the
end of the 50’s. In this paragraph we recall their results.

The works of WK. Hayman and D.J. Newman are deeply related and it is easy
to conclude the following result [Hof62],

Theorem 3.1.3 (Hayman-Newman). Let (z,) be a sequence in D. A sufficient condi-
tion for (z,) to be interpolating in H* is the existence of 0 < ¢ < 1 such that

=fonnl (3.4)
1 — |z,
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A sequence which satisfies condition 3.4 is said to increase exponentially to
the unit circle. It is easy to show [Hof62] that this condition is also necessary if
zn > 0 for all n € N and (z,) is increasing. In addition,

Corollary 3.1.4. Let (z,) C D be a sequence such that lim,_,. |z,| = 1. Then, there exists
a subsequence (z,, )x which is interpolating for H*.

The main result of D.]. Newman in the study of interpolating sequences for
H? is the following,

Theorem 3.1.5 (Newman). A sequence (z,) C D is interpolating for H* if and only if
the following two conditions are satisfied,

Zlf(zk)|(1—|zk|)<oo forany f € H' and (3.5)
k=1
there exists & > 0 such that Hp(Zk,Zj) >6 forany jeN. (3.6)
k#j

L. Carleson improved Newman’s result by showing that condition 3.5 could
be removed, that is, condition 3.6 is sufficient for a sequence (x,) C D to be inter-
polating for H*. From now on, we will refer to this condition as Carleson condition.

Theorem 3.1.6 (Carleson Interpolation Theorem). A sequence (z,) in D is interpo-
lating for H” if and only if the Carleson condition 3.6 is satisfied.

3.2 Interpolating Sequences for H(Bg)

In the spirit of paragraph 3.1.2 we focus on interpolating sequences for A =
H*(Bg). Recall that Bg+ C M4 by 1.6.7. In this section we will study sufficient
conditions for a sequence (x,) C Bg+ to be interpolating for H*(Bg). In some
particular cases, we will provide explicitly the interpolating functions.

Since we deal with Banach spaces E and sequences (x,) C Bg, the natural ex-
tension of the Hayman-Newman condition is to consider the sequence (||x,||) in-
creasing exponentially to 1.

To simplify some further statements, we introduce the following definition,
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Definition 3.2.1. Let A be a uniform algebra and (x,) a sequence in My. The sequence
(x,) is said to satisfy the generalized Carleson condition if there exists 6 > 0 such that

[1p(k,x;) =8  forall jeN. (3.7)
oy

Several questions arise. On one hand, we wonder if the Hayman-Newman
condition for the norms and the generalized Carleson condition are sufficient for
a sequence (x,) to be interpolating for H*(Bg). On the other hand, B. Berndts-
son, S-Y. A. Chang and K-C. Lin [BCL87] showed that the generalized Carleson
condition is not necessary when we deal with H>(D?).

In order to find sufficient conditions for a sequence to be interpolating for
H*(Bg), B. Berndtsson [Ber85] studied the generalized Carleson condition for se-
quences in H*(B,), thatis, when we deal with the finite dimensional Hilbert space
(C", || - I]2), whose unit ball is denoted by B,. He found that this condition was
sufficient for a sequence to be interpolating for H*(B,). He showed this result by
means of a construction provided by P. Jones in [Jon83] to give a new approach
to the Carleson Interpolation Theorem.

In [BCL87], it is also proved that the generalized Carleson condition is suf-
ficient for a sequence (x,) to be interpolating for H*(D"), that is, when we deal
with the finite dimensional Banach space (C”, || - ||o)-

P. Galindo, T. W. Gamelin and M. Lindstrom extended the result given by
B. Berndtsson for finite dimensional Hilbert spaces to any complex Hilbert space
H in [GGLO8]. Nevertheless, their proof does not provide explicitly the interpo-
lating functions.

Before the main results of this chapter, let us recall that from the results on
interpolation for uniform algebras from Chapter 2 we obtain

Proposition 3.2.2. Let A = H*(Bg) and (x,) C Ma. Then, the following conditions are
equivalent,

a) There exists a sequence (f,) of Beurling functions for (x,).
b) The sequence (x,) is interpolating for H*(Bg).
c) The sequence (xy) is co—interpolating for H*(Bg).

Proof. The equivalences are clear since the algebra A = H*(Bg) satisfies as-
sumptions of Corollary 2.3.4 by Montel’s Theorem. O

The following lemma includes some inequalities which can be found in [Ber85]
and [BCLS87].
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Lemma 3.2.3. Let h(t) be a positive non-increasing function on (0,e0), and let (c;) a
sequence of non negative real numbers such that the series Y, ¢, converges. Then,

;cjh (ch> g/omh(t)dt.

k>j

In particular, if A(f) = min (1,1/7%), then

i th (Z Ck) <2. (38)
Jj=1

k>j

Moreover, suppose that i(t) = exp(—t) and there exists a sequence (S;)of sets of
N satisfying the property that if k ¢ S, then j € Si. Then,

i cjh < Y ck> < 2e. (3.9)

j=1 keS;

3.2.1 The case of Hilbert spaces

We will improve the result given by P. Galindo, T. W. Gamelin and M. Lind-
strom by providing the Beurling functions required in Corollary 2.3.2.

Recall that the set of biholomorphic automorphisms on D is denoted by Aut (D). It
is well-known that this set is generated by rotations and by Mdbius transformations
my : D — D defined for any a € D by

Z+a
J(2) = . 1
Mal(2) 1+az (3.10)
For any a € D, the function m, satisfies
i) my(—a) =0 and
ii) m, is defined on D and |m,(e'®)| = 1.

The analogues of Mobius transformations on a complex Hilbert space H are
given by M, : By — By for any a € H. This function is defined by the analytic
map

M,(x) = (y/1—||all?>qa+ pa)(mq(x))  for any a € By (3.11)
where m, : H — H is given by the analytic mapping
z+a
alX) = —F—, 12
() 14+ <x,a> (3.12)
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the function p, : H — H denotes the orthogonal projection on H whose rank is
the one-dimensional subspace spanned by a and ¢, : H — H is the orthogonal
complement g, = Idy — p,. It is also known [GR84] that the pseudohyperbolic
distance defined in 1.7.3 for H*(Bp), H a Hilbert space, satisfies

p(x,y) = [[M_y(x)]l (3.13)

and, therefore, it is easy to deduce that

(1 =[x (1 —[|y[|*)
11— <x,y>|?

p(x,y) =1- (3.14)

just making some calculations.

As we have mentioned above, B. Berndtsson proved [Ber85] that the Carleson
condition is sufficient for a sequence to be interpolating when we deal with finite-
dimensional Hilbert spaces and the proof of this result is based on the P. Jones
construction [Jon83] of Beurling functions. P. Galindo, T. Gamelin and M. Lind-
strom pointed out [GGL08] that the Carleson condition is also sufficient for a
sequence when we deal with infinite dimensional Hilbert spaces. Indeed, it is
sufficient to notice that finite subsets of the sequence are interpolating and the
constants of interpolation are uniform by the B. Berndtsson’s work in [Ber85] and,
then, a normal families argument to pass to a limit as n — o is applied. Our aim
here is to give an explicit formula for the Beurling functions and the interpolating
functions. First, we provide a lemma which includes some calculations related to
the automorphisms M,

Lemma 3.2.4. Let x,y € By and M_, : H — H the corresponding automorphism defined
as in 3.11. Then, we have that

(I—<x,z2>)(1—<yy>)
(1= <x,y>)(1=<ypz>)

<M_y(x),M_y(z) >=1—
Proof. Since for any x € By we have

M) = (V1= P+ ) )

we obtain that < M_y(x),M_,(z) >=

< (V104 ) s, (V1= ITPas 4y ) s (2) 5=
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(1= ¥1?) < gy (m—y(x)),q—y(m—y(2)) > + < p—y(m—y(x)), p—y (m—y(2)) >=

(1= y?) < g—y(x—=),q—(z—=y) >+ < p_y(x—y), p—y(z—Y) >
(I—<x,y>)(1—<y,z>)

by 3.12 just making some calculations. Since we have that p, + ¢, = Idg for any
a € H, we obtain that < M_,(x),M_,(z) >=

<x—=yz—y>—|PpI? <g-y(x—y),q-y(z—y) >
(1_<x7y>)(1_<y7Z>) .

The complement of the orthogonal projection is given by

<Xx,y>
<yy>"

q-y(x) =x

hence g—y(x—y) = g—y(x) and gy (z—y) = g (2).

Moreover,
<x,y> <z,y>
< g—y\X),q—y(2) >=<x— ,Z— =
Qy()Qy() <y,y>y <yy>
1
<mz>—wﬂ§<my><%z>—

1 1

Ty <HLYSNIS s <X,y >< Y2 >=

I Il

1 <X, Z2><Yy>—<x,y><yz>

<%Z>_WW§<Ly><%Z>: iR yyHﬂzxy %<

Therefore, < M_(x),M_y(z) >=

|2 <X,2> <Y Yy>—<XY><Y,2>
HE

(1_ <X,y >)(1_ <Nz >)

<x=y,z—y>—|yl

<X—=Y,2—y> —<x,2><yy>+<xy><yz>
(1_<x7y>)(1_<y7Z>) .

Since <x—y,z—y>=<x,z>— <x,y>— <y,z>+ <y,y >, we have that the
numerator <x—y,z—y > — <x,z><y,y >+ <x,y ><y,z > equals to

<X, ZD>— <X,y > —< V72> F+F <P Yy> —<x,72><PYy>+<x,y><y7>.
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Adding and subtracting 1 and arranging terms, we obtain that the numerator
equals to
(I-<xy>)(l-<yz>)—(1-<xz>)(1—<yy>).

Therefore, dividing by the denominator, we have that
(1_ <X,y >)(1_ <Mz >> _ (1_ <X,z >)(1_ <»nYy >)

<M_y(x),M_y(z) >= (1— <x,y>)(1— < y,z>) -

(1_ <X,z >)(1_ <)Y >)

1—
(1-<x,y>)(1—- <y,z>)’

and the lemma is proved. O

We will also need some technical lemmas. For the first one, we will need
Proposition 5.1.2 in [Rud80], which states as follows,

Lemma 3.2.5. Let a,b,c points in the unit ball of a finite dimensional Hilbert space.
Then,

1—<ab>|<(|l-<a,c>|+/|[1— <b,c>|)?

Then, we obtain the following lemma which is an extension of Lemma 5 in
[Ber85] to any complex Hilbert space,

Lemma 3.2.6. Let H be a complex Hilbert space and x;,x2,x3 € By. Then,
|1— < X1,X2 > | < 2(’1— < X1,X3 > |+|1— < Xp,X3 > |)

and
I—|<xp,x> | <2(1—|<x,x3>|+1—| <xp,x3>]).

Proof. Let x;,x2,x3 € By and set the tridimensional space Hy = span{xj,x2,x3}.
We have that H; is itself a Hilbert space and we can consider an orthonormal
basis {ej,e2,e3} of Hi. Consider for j =1,2,3 the vectors y; = (y},y%,y?) given
by the components of x; in that basis. It is clear that these vectors are in the unit
Euclidean ball of C* and < x;,x; >=<y;, ) >, so we apply Lemma 3.2.5 to deduce

[1— < xp,x > < (\/|1— < X1,X3 > |+\/|1— < Xx2,X3 > ’)2:

|1— < X1,X3 > |—|—|1— < Xp,X3 > |—|—2\/|1— < X1,X3 > |\/|1— < X2,X3 > |

Applying the arithmetic-geometric means inequality, we have |1— <xj,x > | <

1— <xp,x3 > |+ [1— <x2,x3 >
5 -

11— <xp,x3 > |+ |1— <x2,x3 > |42
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2(|1= <xp,x3 > [+]1— <x2,x3 > ).

To prove the other result, notice that

l—|<xix>|= min [1—€® <x; x>
| Jork | 96[0,27‘[)| Jork |
We have that .
-] <xp,x3>]=]1—€% <xp,x3 > |
and

1= <xo,x3> | =[1—eP <xp,x3>|
for some o, 8 € [0,27). Then, applying the inequality above, we have that
l—|<xpx>|=1-]< ¢%xy,ePxy > |<|1—-< ey Py > | <
21— < xpx3 > |+ [1—eP <xpx3> ) =2(1— | <x1,x3 > |+1—| <x2,x3 > |).
]

Then, we obtain the following lemma which is an extension of Lemma 6 in
[Ber85]. The result was proved by B. Berndtsson for finite dimensional Hilbert
spaces. We do not provide a proof since it does not depend on the finite di-
mension of H but only on the previous lemmas which have been proved for any
Hilbert space H.

Lemma 3.2.7. Let H be a Hilbert space and xi,x; € By. If ||x¢|| > ||x;|, then

1—| < xp,x>|? >1 1 — [JxI?
1—\<xk,xj>|2 _81—’<XJ',X>’2.

(3.15)

The following lemma is just a calculation,

Lemma 3.2.8. Let h(t) = min{1,1/¢*}. Then, the function x*exp (—xt/8) is bounded
by 256h(t)/e?* for 0 <x<1landt>0.

We will also need the following lemma,

Lemma 3.2.9. Let {x,} C By and 6 > 0 satisfying

[1p (e x) > 6. (3.16)
k#j
Then, we have that
> 1.1 ;
Y (1= [lxll®) < (1+2log <) i VjeN. (3.17)
y 671 — x|
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Proof. Taking squares and logarithms in 3.16 we obtain
— Z logp(xk,xj)2 < —2logd.
k#]

By (3.2), we have that 1 — p(xk,xj)2 < —logp(xk,xj)2 for any k # j, so bearing
in mind (3.14), we obtain

i (1 — fleel) (1 = flc; %))

s |1—<xk,xj>]2

< —2logé.

In consequence,

> > — e P = I )12 1= < xp, x5 > |2
Z(l_ka”Z):Z (1 H kH )(1 H J)H )|1 < Xk, J>| <

=y =y |1—<xk,xj>]2 I—HXJ'HZ
(1+1lx)? L) Ll
—2(logd) ———5 =2 log—<
1= lxj1? &/ 1=l
and the lemma is proved. O

Now we are ready to prove the result for complex Hilbert spaces. In addition,
we will provide an upper estimate for the constant of interpolation depending
only on d and the sequence (x;,).

Theorem 3.2.10. Let H be a Hilbert space and (x,,) a sequence in By. Suppose that there
exists 8 > 0 such that (x,) satisfies the generalized Carleson condition for 8. Then, there
exists a sequence of Beurling functions (Fy) for (x,). In particular, the sequence (x,) is
interpolating for H (B ) and the constant of interpolation is bounded by

2048 1,
——(1+2log—=)~.
o5 (1 +2log)

Proof. Define, for any k, j € N, k # j, the function g; ; : H — C given by
gk,j(x) =< M_xk(X),M_xk(Xj) >

For each j € N we define the function B; : By — C by

Bj(x) =[] 8k.;(x)-
[y
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First we check that the infinite product converges uniformly on
rBy ={x€ By : ||| < r}
for fixed 0 < r < 1. Let x € rBy. We have, by Lemma 3.2.4, that

(1— <x,x; >)(1— < xp,x, >)

1_ . = 1— <M_ M_ >
8k,j(%) e () M () (1= <xx >)(1— <xp,xj>)

Itis easy that |[1— <x,x; > | <1+7r, [I-<x,x>|>1—-rand
1= <o, > | = 1= e[ [lxjl] = 1 =[]
Then, we have that

L7 1 — |l
L—r 1= x| 7

1 =g ()] <

so for any j € N, the series };.;|1 — g ;(x)| is uniformly convergent on rBy by
Lemma 3.2.9. In particular, the infinite product [T, g, j(x) converges uniformly

on compact sets, so B; € H*(By ), as we wanted.
Note that for x € By,

x)| = [Tlgej@)| =[] < Mo (x), My (xj) > | < [T 1M () [[M-, (x))]| <1

=y =y i

s0 ||Bj||l < 1. Itis clear that B(x;) = 0 for k # j since M_, (x;) = 0 and, according

to 3.13, we have that

‘B xj’_H|gk]xl‘_H’<M—xk )M—xk(xj)>’_

k#j k#j
HHMxk x] ||2 Hp xk,x] > 82,
k#j k#j

Consider, for any j € N, the function ¢; : By — C defined by

2
1 [lx?
4;(x) = (1— <x,xj>) "’

which clearly satisfies g; € H”(By) for any j € N. Define A; : By — C by

(1= [l ) (1 = Jlj 1) 14 < 3, >
—|<xk,xj>|2 1—<xk,x>'

Aj(x) =
{21}
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These functions are analytic since for 0 < r < 1 and x € rBy we have that

— JloelI*) (1 = [l ]*) T+ 7 r
(1 H k“ )(1 || JH )1+ < 1+ Z (l_kaHZ)

Aj(x)] < -
1— [lx 12 1— 1—
%11 r " el =l }

(bl = 11 }

so the series converges uniformly on rBy and hence A; € H(By). Moreover,
exp (—A;) belongs to H(By) since |exp (—A;)| =exp (—Re A;) and Re A; > 0 by
the formula 3.3. Consider, for any j € N, the analytic function F; : By — C de-
tined by

A0 = AP exs (~ 1 gi0a7 0 ~ i) )

It is clear that Fj(x;) = 1 and F;(xx) = O for any k # j. We will find M > 0 such that
Y71 [Fj(x)| <M forany x € By.
We also have by 3.3 that

(1=l P) (1 = [l 1) (1 = | <0, > )

Re Ai(x) =
¢4 (1—] <xp,xj > ?)(|1— < xg, x> |?)

(e el > 111}

In particular, for x = x;, we obtain

(1= Jlse ) (1 = [ 2) (1 = | < x5 > )

Re A;(x;) =
e J(x]) (1—] < Xp,Xj > |2)(|1— < Xk, Xj > |2)

Ll =l 1}

Using the formula 3.14 we obtain that

ReAjix)= Y  (1-p*(x))=1+ Y  (1-p*(xx)))
{kelll =11 } {1 > I}
and, by 3.2, we have that
ReAj(x;)<1— Y logp(xexj)® <1—Y logp(x,x))* < 1+210g%.
Ll > sl ki

Moreover, to estimate Re A j(x) from below we use Lemma 3.2.7 and we obtain
that ) -
11— [l (1 — [l l*)

1 - <X
Re Aj(x) > |
> —8 1—< X > 2 1— < , X > 2
| <xj,x>| A | ' |
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We define )
1 — x|

b = .
) = T xS 2

Then, we have that

Re Aj(x) > ébj(x) Z |qi(x)]-
Ll =11}

Since 1 —| <xj,x> = (1—| <xj,x> (14| <xj,x>|) <2[1- <xj,x > |, we

have that
2 2 2
1_ .
<4 AP ap o
1 —| <x,xp > |

1— ;12

- <xj,x>

4] < ]

Therefore, we obtain that

- 4e ’ —1
. < g . . )
Z [Fi(x)| < —<lgj(x)|bj(x)"exp (8(1 2log1/3) bj(x) Z Qk(x)|)
el = e 1 }
We denote 1
cl0) = 1+2logl/8

and A(t) = min (1,1/¢?) for t > 0. Since 0 < b;(x) < 1, by Lemma 3.2.8 we have that
Y71 [Fj(x)| is bounded by

5 L i) ( > qk<x>>.

{ke el 1=l 1}
Since [, h(t)dt =2, we apply 3.8 in Lemma 3.2.3 to obtain

o 2048 1
< 277
E (x)] < 5 (14+2lo ga)

Then, (F;) is a sequence of Beurling functions and, by Corollary 2.3.2, we have
that (x;) is interpolating for H(Bpy). O

The sequence of Beurling functions in Theorem 3.2.10 is bounded by
2048 =5 (1+2log 5) so this is an upper bound for the constant of interpolation of
(xn)
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3.2.2 The case of Banach spaces

We have shown that the generalized Carleson condition 3.7 is sufficient for a
sequence (x,) C By to be interpolating for H*(By) when we deal with complex
Hilbert spaces. In general Banach spaces, there are no known explicit formulas
tor the pseudohyperbolic distance. This makes it difficult to study such condition
in this case and, hence, to prove whether it is sufficient for a sequence to be inter-
polating for H*(Bg). Thus, we introduce a stronger condition. We are interested
in sequences (x,) whose sequence of norms (||x,||) satisfies the Carleson condition
3.6. By the Carleson interpolation Theorem 3.1.6, it is clear that this condition is
equivalent to (||x,||) being interpolating for H*. In addition, it is stronger than the
generalized Carleson condition 3.7 since p (||xk|, ||x;||) < p(xk,x;) by 3.1.2. There-
fore, we wonder if this condition is sufficient for a sequence to be interpolating
for H*(Bg). We will prove that this is true. We begin giving a number of lemmas.

Lemma 3.2.11. Let E be a complex Banach space and (x,) a sequence in Bg+. Consider
the sequence of norms (||x,||) and suppose that 0 is not a cluster point of (||x,||). Then,
we have the following results,

1) For k,j € Nand oy ; > 0, there exists a functional Ty ; € E* such that ||T; ;|| <1
and

P (T j () T (%)) = p (el [1x511) — o - (3.18)
Moreover, there exists m > 0, which depends only on the sequence (x,), such that
m < |Ty j(xx)| for indexes k, j € N which satisfy ||xg| > ||x;]|. (3.19)

2) If, further, lim ||x,|| = 1, then for any oy > 0, there exists a functional Ly € E* such
that ||Li|| < 1 and

P (Lic(xi), Lie(xj)) = P[], [[x1]) — o for j € N such that [|xi[| = [|x;]| (3.20)
and
Li(xx) > ||x;|| for indexes j € N such that ||xi|| > [|x;]|. (3.21)

Proof. 1) Since 0 is not a cluster point of (x,), it is clear that there exists m > 0
so that

m < inf {{bxa| : |l 7 O}
neN
For every k € N, there exists a sequence {T)*}, in B+ such that

Tim (7, ()| = - (3.22)
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If x; # 0, we may assume as well that |T¥(x;)| > m for any n € N. Set j € N. If
x|l = |||, then p(|[x«]], ||x;]|) = O, so 3.18 is satisfied by any oy ; > 0. So, suppose
that ||x¢|| > ||x;||. When considering the pseudohyperbolic distance between ||x||

and ||x;||, there are two possibilities:
i) Either, there is m; € N so that p(|T% (x)],|T% (x;)]) = p(|lxell, |lx;]])- In this
case, by 1.5, we choose Ty j = T, and then (3.18) also holds for arbitrary o ; > 0.

ii) Or such m; does not exist, that is,
P (T ()|, Tk () ) < p(llxill, [1x;]1) - for any n.

Since ||x;|| < ||xx|| there is my > m, such that ||x;| < |T,*(x¢)| for n > my by 3.22.
Thus, after using (3.1), we have

P (T3 (o)l 1T ()] = p (1T (o)l 1x51))-

Consequently,
p(ITy )l 1) < p (T )l Ty (e)]) < p el 1) for any 7> my.

Hence, by the choice in (3.22),

Tim p (|7, () | | T () ) = (Ul s )-
Therefore, for any oy ; > 0 there exists m3 > m; such that

p(Ty ) | 1Ty (o)) = p (el 1 [1) — o for n > ms,
and, by 1.5, we obtain
(T (), Ty (x7)) = p (|l 1xjl]) — o, for n > m,

so we can choose Tj ; = Tn’§3 and (3.18) holds in this case as well .

2) Assume now that lim, .. ||x,|| = 1 and fix k € N. Observe that there are only
a finite number of terms x; in the sequence satisfying ||x;|| < ||xx||. For such j € N
we consider the set

Bj = {n: pUTE )L ITEC)D) < Pl i) }
In case B is a finite set, we may find n; € N so that
P(Ty ()| 1T (xp)]) = plxell, 1)) > p (el I1x;]1) — o for any n > nj. (3.23)
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Whenever B; is not finite, we argue as in ii) above to show that

lim p (|7, (x|, 175 (o)1) = (sl [lx1)-

neB;
Therefore, an n; can be found so that
PUTEOLITEE))) = p(lell, llsll) — o for any n € B such that n > n.
Note that this inequality also holds for n ¢ B;. Consequently,
PUTE )l 1T (xe)) = p(lleell, lxjll) — o for any n > n;.

Since we are considering a finite number of j, we have that max{n;} is finite.
In addition, lim, e |T;¥(x¢)| = ||xx|| and max{|jx;| : ||x;|| < [lx|} < ||lx«|l, so we may
take ng > max{n;} big enough so that

|Tn]f)(xk)] > ||lx;|| for any j € N such that ||x;|| < |lxg]|.

By setting L, = and using (1.5), we are done. ]

We continue with a result similar to Lemmma 3.2.9.

Lemma 3.2.12. Let (x,) C Bg+= and & > 0 such that (||x,||) satisfies the Carleson condi-
tion 3.6. Then, for any 0 < s < 1, there exists a sequence of positive numbers (0 ;) such
that the set of functionals (Ty ;) found in Lemma 3.2.11 satisfy

[P (T j(x0). T j(x}) = (1= 5)8 (3.24)
k]
and
< 1+ [l .
; (1 =T j(x)|?) < (1+210g(1_s)6) | VjeN. (3.25)

Proof. Since 0 <s < 1, a sequence (Bx) C (0,1) can be found such that
[1(1 = Bx) > 1 —s and then put oy ; = Brp(|[x«||, [|x;]|). Now, apply Lemma 3.2.11 to
find the functionals (7 ;) such that

P (T j0ek)s T j () 2= p (el Nl ll) = e j = (1= Bi)p (lleell, Nl 1)

Hence, considering the corresponding infinite product, we obtain 3.24.
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Let us prove the other inequality. Taking squares and logarithms in 3.24, we
obtain that

2
Y log Ty j(x7) — Ti j ()
k) 1 =T j (o) T (%)

Moreover, by 3.2, we obtain

< —2log(1 —s)d.

)
Ti,j(x;) — Tr j(xx)
1 — T j (i) T j (x)

2
| Tj(xg) = T ()
1 —Tp j (x) T ()

for any k # j

and bearing in mind 1.6, it results

Z (1 — |Tk7j(xk)\2)(1 - ‘Tk,j(xj)‘z‘) S _210g(1 —S)6.

k#j 1 —Tk,j(xk)Tk,j(xj)’2

As consequence,

- (1-|T;, 2 (=T (=T () 1P) 11— T () T () 12
k=1 k=1 11— To,j (i) T, ()| k,j(Xj
(1+]1x;0)* 1+ [|xj]|

(1—2log(1—1s)0)

1
-~ 42 = 1+421 .
A ( - °g<1_s>5)1_||x,.||

Lemma 3.2.13. Let {x,} C Bg+ and & > 0 such that the sequence (||x,||) satisfies the
Carleson condition 3.6. Then, for any 0 < s < 1, there exists a sequence (o) of positive
numbers such that the set of functionals (Ly) found in Lemma 3.2.11 satisfy

P (Li(xk), Lie(x;)) = (1 —5)6 (3.26)
{Relleell> N1 }

and

) (1—|Li(x)]?) < (1+210g ! ) L+ x| forany je N. (3.27)
{lwll> 0} (1=5)8/ 1= x|
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Proof. The proof follows the same pattern as Lemma 3.2.12. Simply choose

in - {Bep (llxll, lll) }

Oj =  min
(el <l
and pick Ly from Lemma 3.2.11. O

Now we proceed to show our main result in this section.

Theorem 3.2.14. Let (x,) be a sequence in Bg+ and suppose that the sequence (||xy||)
satisfies the Carleson condition 3.6. Then, for any 0 < s < 1, there exists a sequence of
Beurling functions (F;) C H*(Bg) for (x,) depending on s. In particular, the sequence
(xp) is interpolating for H*(Bg) and the constant of interpolation can be chosen to be
bounded by

4¢?

g (1),

Proof. Fix 0 < s < 1. Let {7 ;} be the set of functionals furnished by Lemma
3.2.12. We define the function g j : Bg+« — C by

g (%) = ag =L Vk,jEN k# ].

For each j € N we define

Bj(x) =[] &k,;(x)-
k#j

Firstly, in order to check that B; : Bg»» — C is analytic, we prove that this
infinite product converges uniformly on rBg« for fixed 0 < r < 1. Recall that,
for indexes k, j such that |x;|| > ||x;||, there is a constant m > 0 which satisfies
| Tk j(xx)| = m > 0. Then, we have

_ 1 )l Tl g @) | L
| T, (xx)| 1 =T j(xx) T j (x) 1T, (30|

1 — g j(x)
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VT Gl | 1+ [T ()|

T ()l | 1 =T j (o) T

Moreover, |T; j(x)| < ||x|| < r < 1, s0 we get

1 — [Ty ()|
| The.j ()|

Since limy ||x¢|| = 1, there exists k; € N such that ||x|| > ||x;||, for k > k; and,
recalling (3.19) in Lemma 3.2.11, we obtain

- 1] for [lxell > [l
)

2
11— gxj(x)| < [1 —r+1] for ||xx | > |lx;]|-

1 2
=gl < 5 |2+ 1] 0=l vk
m|l—r

Now we use inequality (3.25) to show that the series } ;" | |1 — g j(x)| is uniformly
convergent on {x : ||| < r}, as we wanted. In particular, [];; g, ;(x) converges
uniformly on compact sets, so B; € H”(Bg++).

Note that ||Bj|| < 1, Bj(xx) = 0 for k # j and, according to (3.24),

1Bj(x))] = ]g_p(TkJ(xk)»Tk-,j(xj)) > (1-5)8.

Next we take the sequence (L;) found in Lemma 3.2.13 and define the function
A j . B Exx —— C by

1+ Ly () Ly (x)
1 — Lk (xk)Lk(x)

Aj(x) =
kel el =111 }

] (1= |Le(xe) %)

We prove that A is analytic on Bg+. Indeed, since |Li(x)| < ||x|| and |Li(xx)| < 1,
we have that

o LI o2 oo 1 [l 14 [|x]]
el [T 0ty < (1210 ) PR

where we used (3.27). Hence, the convergence of the series is uniform on rBg«
and therefore A; is analytic on Bg«.

Consider the mappings ¢; € H*(Bg++) defined by

FRR R,

1—L;(x;)Lj(x)
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and denote by C(s, §) the constant given by
1

2(1+210gﬁ>'

Let F; € H”(Bg++) be given by

B;(x)
Bj(x;)

Recall that the Aron-Berner extension is continuous whenever both H*(Bg)
and H”(Bg+) are endowed with the topology of the uniform convergence on balls
of radii less than 1 (see [ACG91] (10.1) p. 86). Consequently, each of the functions

8k.j»Bj,q; and Fj is the Aron-Berner extension of its restriction to Bg.
We claim that

Fi(x)= gj(x)exp (—C(s,8) (A;(x) —Aj(x;))) .

Fj(xk) = 5j,k for j,keN and that (328)

there exists M > 0 such that )_|F;(x)| <M. (3.29)

Condition (3.28) is trivially verified. To prove (3.29), we first recall that
|Bj(xj)| > (1 — s) &. Then,

2|F](x)| Z lg;(x) exp C(s,0)Re (Aj(x)—Aj(xj))).
Applying 3.3 in Lemma 3.1.1 we obtain
(1 — | L (o) PILi () P) (1 — | L () [2)
Re Aj(x) = . 3.30
e {k:||xk|Z>|xj||} |1 = Li (o) Li (%) 2 &0

If ||xg | > |lx]l, then |Lg(x;)| < |lxj]] < Ly (xx) by (3.21). Now, applying the inequality
1—oaf <2(1-p) for a > B, it turns out that 1 — Ly (x;)?[Le (x;) > < 2(1 — | Li(x/) %)
Thus

e 4,fx) <2 (1= L4 )0 = 1)) _
T By 1 ()P
S P G 1 2
{koell> ;11 } 1 — L (xj) e
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Since ||x¢|| # ||xj|| for any indexes k # j because of the Carleson condition for
(x,), we have that ||x¢|| = ||x;|| is only satisfied for one index, that is, k = j. Hence,

2
Z { ] +2 {1 —
{ke ekl > 11 }

Y 21— p(Lix)), Li(x))*] +2
kel > sl
after bearing in mind (1.6). Next, using inequality (3.2) in Lemma 3.1.1 we obtain

2
Lj(xj) — 1%l
=L (xj) [l |

Li(xj) — |l

ReAj(xj) <2
7 1 — L () [ |

ReAj(x;) <—2log [  pLilxj),Li(xe))* +2 < 2(1+2log

L)
{kelleel > 111} (1—5)6

and then
; [Fi(x)| < (=93 Z |qj(x)| exp (—C(s,8)Re A;(x)).

Therefore, bearing in mind (3.30), we have that }7, |F;(x)| is bounded by
S IL (xj)?

5 2
Z exp (—C(S,S) Z ) )
l—s 5 Li(x;)L;(x) {kelloel =110 }

To apply inequality 3.9 in Lemma 3.2.3 we put

1— |Li(xe) |
1 — Ly (o) Ly (x)

L—|Lj(x))?
I —L;(x;)Lj(x)

cj=C(s,0)

and then we obtain that

a 2e 1 4¢? 1
j_zl |Fi(x)| < =5 (1 +210g(1_—s)5> Qe = (BT <1 +210gm) :

O

The converse of Theorem 3.2.14 is false for any Banach space. To show this,
consider a vector x € Sg and (4,) C]0, 1] an interpolating sequence for H* such that
A1 =1/2. Let ¢ # 0 be a linear mapping whose norm is 1 and ¢(x) = 1. Since the
sequence {—A1,A1,...,4,,...} is interpolating for H*, we obtain that the sequence
{—Ax,Mix, ..., Ax, ...}, is interpolating for H*(Bg). However || — Ax|| = || Aix|| =
1/2, so the Carleson condition 3.6 for (||x,||) clearly fails.

We have the following corollaries,
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Corollary 3.2.15. Let (x,) be a sequence in Bg=. If (||x,||) is an interpolating sequence
for H*, then (x,) is an interpolating sequence for H*(BEg).

Proof. If (||x,||) is an interpolating sequence for H*, the Carleson condition for
(|lx4||) is satisfied. Then, Theorem 3.2.14 shows that {x,}’_, is an interpolating
sequence for H*(Bg). O

Corollary 3.2.16. Let (x,) be a sequence in Bg+ and 0 < ¢ < 1 such that

1 — |31 ] <c (3.31)
1 =[x

Then (x,) is interpolating for H*(BE).

Proof. Since (||x,||) satisfies the Hayman-Newman condition, then (||x,|) is
interpolating for H~. Thus, apply Corollary 3.2.15 and we are done. O

In addition, from Corollary 3.2.16 we derive the following interpolation result
due to R. M. Aron, B. Cole and T. Gamelin [ACG91] which generalizes Corollary
3.14.

Theorem 3.2.17. Let (x,) be a sequence in Bg+ satisfying limy,_.. ||x,|| = 1. Then there
is an interpolating subsequence for H*(BE).

Proof. Since lim,_... |[x,|| = 1, there exists a subsequence of (||x,||) which in-
creases exponentially to 1, that is, satisfying the Hayman-Newman condition. By
Corollary 3.2.16, we obtain that this subsequence is interpolating for H*(Bg). [

3.2.3 Further results

As we have mentioned above, in [BCL87] the authors proved that the gen-
eralized Carleson condition is sufficient for a sequence (x;) to be interpolating
for H*(D"). In addition, they noticed that if the constant of interpolation was
independent of dimension 7, then for arbitrary uniform algebras A and finite se-
quences (x)¥_, C My satisfying the generalized Carleson condition, we would
obtain that (x¢)}_, is an interpolating sequence for A with the constant of interpo-
lation depending on & only, and not on the number of points N in the sequence.
Following this idea, we have
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Proposition 3.2.18. Suppose that any sequence (x,) C B, satisfying the generalized
Carleson condition 3.7 is interpolating for H*(B.,) with interpolation constant depend-
ing only on 8. Then, for any dual uniform algebra A = X*, all sequences (x,) C X N My
satisfying the generalized Carleson condition 3.7 are linear interpolating sequences for A
with constant of interpolation depending only on O.

Proof. Assume there is 6 > 0 such that [];.. pa(x;j,xx) > & forall k. Fork,j €N
there exists f; ; € A such that fi j(xx) =0, || f ;]| <1 and
1
Palxjxic) 2 [ fixej)l = (1= 5 )pa(xj,x)-
Fix n € N and define ¢ : My — B, according to

¢(u) = (u(fl,l)vu(f1,2)7u(f271)7'">u(fn,n)70707"')'

Then, by the expression for the pseudohyperbolic distance 1.8 for ¢o, we have
that

Pr=(8,,) (¢ (), 0 (v)) = H}f}{X{P(“(fj,k),V(fj,k)}-

Thus
pr(Bco)((p(xr)?(p(xS)) = H}E}Cx{p(fj,k(xr)7fj7k(x5))}) Z
pUfsrlxe). (1)) 2 (1= 2 )oar ).
Hence 1
HPHOG Be) (p x‘s > H 1 B 2r+s)pA<xr7xS) >
r#s r#s
oo 1 N
1;1(1 r+s HPA XryXs >I;I 1_2r+s > I:Il 1——

which is greater than C§ since the product converges. Then, the hypothesis guar-
antees that the finite sequences (¢ (x;))}_, are interpolating sequences for H*(B,)
with interpolation constant M depending only on 6.

Therefore, for given ()} in the unit ball of /., there is F € H”(B,) such that
|F|| <M and (Fo¢)(x;) =F(¢(x;)) = &;. Since F actually depends only of a finite
number of variables, it turns out that F o ¢ € A. Hence (x;)_, interpolates (;)’}
by means of (Fo¢) and ||[F o ¢|| < M. By Theorem 2.3.3, the sequence (x,) is
interpolating for A and, in addition, the constant of interpolation is bounded by
M?, O
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Notice that for finite dimensional Banach spaces E, interpolating sequences
for H*(Bg) converge in norm to 1. Indeed, let E be a finite dimensional Banach
space and (x,) C B an interpolating sequence for H*(Bg). If ||x,|| does not con-
verge to 1, then, passing to a subsequence if necessary, we have that (x,) C rBg
for some 0 < r < 1 and x, should converge to some x € Bg since rBg C Bg is a
compact set. If we deal with infinite dimensional Banach spaces, we can extend
this result as follows,

Proposition 3.2.19. Consider the following statements:

a) All polynomials on E are weakly continuous on bounded sets.
b) If (x,) C Bg is a interpolating sequence for H*(Bg), then ||x,|| converges to 1.
c) The space E does not contain copies of {;.

Then a) implies b) and b) implies c). In addition, if all polynomials on E are weakly
sequentially continuous, then c) implies a) and, therefore, the three statements are equiv-
alent.

Proof. b) = c) If E contains a copy of /;, then it is well-known that ¢ is a
quotient of E. Let ¢ : E — /, be the quotient map and denote by e, the n'" unit
vector of the canonical basis of ¢,. Let (y,) C E be a bounded sequence such that
q(yn) = e, for any n € N. Let C > 0 be such that ||y,|| < § and set x, = 2.

We check that (x,) is a ¢ interpolating sequence. Indeed, take (¢,) € co. Let
P € P(’E) the polynomial defined by

P(x) = Z C o, x2 for x = (x,) € £5.
n=1

The polynomial Pog: E — C also belongs to P(*E). In addition,

(q(yj)) _ Plej) _ o).

(Poq)(xy) = P(T) = =5

Then, (x;) is co—interpolating but ||x,|| < 3. This contradicts b).

a) = b) Suppose that the conclusion fails. We can suppose, passing to subse-
quences if necessary, that ||x;|| < r < 1 for all j. By the assumptions on E, every
f € H*(Bg) is weakly uniformly continuous on rBg. Hence every f € H*(Bg)
extends to an analytic function f on Bg+ which is w*-continuous on rBg+-.

By Rosenthal’s ¢; Theorem, either (x;) has a subsequence equivalent to the
unit basis of ¢; or it has a weak Cauchy subsequence. The first alternative cannot
hold since otherwise we could find, in the same way we have done in (b) = (¢),
a polynomial which would be non weakly continuous on the unit ball. So we can
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suppose that (x;) is a weak Cauchy sequence. If we consider (x;) as a sequence in
E**, we get that (x;) is a w*-convergent sequence in E** since B« is w*-compact.
Let x; — x in (rBgs,w(E**,E*)). Then f(x;) — f(x) for all f € H*(BE).

On the other hand, since (x;) is cp—interpolating, it is interpolating by Theo-
rem 2.3.3, which contradicts the former assertion.

It is easy that ¢) = a) under the assumption that all polynomials are weakly
sequentially continuous since if £ does not contain copies of ¢, all weakly se-
quentially continuous polynomials are weakly continuous on bounded sets by
Proposition 1.5.1 c). O

Recall (see [ACGOI1]) that for E = ¢,, 1 < p < 4o, any sequence (A,e;) with
0 <inf|A;| and |4;| < 1 is co—interpolating for H*(Bg), so (¢) may not imply ei-
ther (») or (a) in the above proposition if the assumption on polynomials is not
satisfied. Let us also remark that for (¢) to imply (a) it suffices that E enjoys the
Dunford-Pettis property. In [CGG99], several examples of spaces satisfying that
all polynomials are weakly sequentially continuous and lacking the DP property
are exhibited; let us mention among them the dual S* of the Schreier space (see
[CGGI9]) and the predual d.(w) of some Lorentz sequence space d(w;1).

3.3 Separability in A..(Bg) and A, (Bg)

3.3.1 Separability in A..(Bg)

J. Globevnik studied in [Glo78] the existence of interpolating sequences for
Aw(Bg) when E belongs to a big class of infinite dimensional Banach spaces. In
particular, he proved such existence for the class of all infinite dimensional re-
flexive Banach spaces. In this paper, he asked if this result can be extended to
all infinite dimensional Banach spaces. We answer this question affirmatively by
proving the existence of interpolating sequences for A.(Br) when we deal with
infinite dimensional non-reflexive Banach spaces.

The general result given by J. Globevnik was given for infinite dimensional
Banach spaces such that there exists a sequence (x,) C Sk of strongly exposed
points with no cluster points. He proved that strongly exposed points of Bg are
strongly peak points of A..(Bg) and this allowed him to give the following result,

Theorem 3.3.1. [Glo78] Let E be a complex Banach space and (x,) a sequence of strongly
peak points for Aw(Bg) with no cluster points. For any a = (), € £ there exists a
function ¢ € Aw(BE) such that ¢ (x,) = o, for any n € N.
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This theorem solves the interpolation problem for the class of Banach spaces
mentioned above. It states as follows,

Theorem 3.3.2. Let E be an infinite dimensional complex Banach space whose unit
sphere S contains a sequence (x,) of strongly exposed points of Bg with no cluster points.
Then (x,) is an interpolating sequence for Aw(BE).

It is clear that the class of Banach spaces which satisfies the conditions of the
theorem contains the reflexive spaces. The following theorem proves this result
for any infinite dimensional Banach space.

Theorem 3.3.3. Let E be an infinite dimensional complex Banach space. Then, there
exist interpolating sequences for A« (BE).

Proof. If E is reflexive, the problem is solved by Theorem 3.3.2. Otherwise,
since E is not reflexive, by the James theorem there exists a functional L € E*
such that ||L|| = 1 which does not attain its norm on Bg. Moreover, there exists
(x,) C Sg such that |L(x,)| — 1. By Corollary 3.1.4, there exists a subsequence
(L(xy,))x Which is interpolating for H*. Set (), € lw. There exists a function
h € H* such that h(L(x,,)) = o4. Consider the function g : By — C defined by

g(x) =hoL(x) foranyx € Bg.

We claim that g belongs to A.(Bg). Indeed, for x € Bg, there exists §, > 0 such
that |[L(x)| < 1 — &,. Then,

|L(y)| < 1 for any y € B(x, 6x)

so g is analytic on B(x, ;) for any x € Bg. Therefore, g is analytic and bounded
on an open neighbourhood of Bg and, in particular, g € Aw(Bg). Thus (x,,) is
interpolating for A« (Bg). O

From this result we obtain the following corollary which characterizes the sep-
arability of A.(Bg) in terms of the finite dimension of E.

Corollary 3.3.4. Let E be a complex Banach space. The following assertions are equiva-
lent:

i) Aw(BE) is non-separable.

ii) E is infinite dimensional.
iii) Aw(BE) contains interpolating sequences.

Proof. If E is finite-dimensional, then A.(Br) = A,(BE) is separable. If E is
infinite dimensional, by Theorem 3.3.3 we have that there exist interpolating se-
quences for A (Bg). If an algebra contains an interpolating sequence, then it is
not separable. O

81



@ Interpolation for H*(Bg). Separability of A.(Bg) and A,(Bg)

3.3.2 Separability in A, (Bg)

There are several conditions on E which assure that the algebra A,(Bg) is sep-
arable. In this section we will recall these conditions and will give a rather trivial
characterization of it that will lead us to study the metrizability of the polynomial
topologies.

Notice that a necessary condition to assure that A, (Bg) is separable is the sep-
arability of E* since this is a closed subspace of A,(BE).

It is known (see the proof of b — ¢ in Proposition 3.2.19) that if ¢; C E, then,
there exists an interpolating sequence for A, (Bg) and, therefore, the algebra A, (Bg)
is not separable. The converse is false. Indeed, given 1 < p < « and the algebra
A =A,(By,), we have that the canonical basis (e,) is an interpolating sequence for
Abut ¢, € £, since ¢, is reflexive. This example also shows that the non contain-
ment of /; copies is not sufficient to assure that A,(Bg) is separable.

It is also clear that A, (B) is separable if E* is separable and P;(E) is dense in
Au(BEg). This condition is satisfied by ¢ and the Tsirelson space 7* by Proposition
1.5.1 and 1.6.4.

In order to give other conditions for A = A,(Bg) to be separable, we will deal
with the metrizability of the spectrum M, for the polynomial topology. It is well-
known that a Banach algebra is separable if and only if M, is metrizable. Indeed,
it is sufficient to notice that M, is a subset of B4- and the Gelfand topology in M, is
the restriction of the w(A*,A)-topology to M4. From this, we obtain the following
result,

Proposition 3.3.5. Let E be a complex Banach space and A = A,(Bg). Then, A is sepa-
rable if and only if My is w(A*, P(E))-metrizable.

Proof. As we have mentioned above, A is separable if and only if M, is
w(A*,A)-metrizable. Since P(E) is a dense set in A,(Bg), the Hausdorff topology
w(A*,P(E)) coincides on M4 with the finest compact w(A*,A). O

This proposition leads us to study the metrizability for the polynomial topol-
ogy of bounded sets of My, in particular those of Br. If we replace My by a
smaller set L in Proposition 3.3.5, the metrizability may not lead to the separa-
bility for the seminorm || - ||z. Indeed, the following example shows that there
exist Banach spaces E and closed bounded separable subsets L C B such that
L is T(E,P("E))-metrizable but (P"(E),| - ||z) is not separable. Indeed, consider
E =/ and L = {e,/2:n &€ N}. Tt is clear that L is a closed bounded separa-
ble 7(¢, P(>())-metrizable subset of By, since it has no cluster points. However,
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(P(*62),]| - ||) is not separable since it contains /... Indeed, set a = (&) € f.. and
consider the polynomial P, € P(*¢,) given by

Py(x) =4 Z Ot x2.
n=1

The map T : fe — (P(*(2), ] - ||L) given by T (a) = Py is a linear isometry since

17 (@)l = sup || ot]|oo-
neN
At least, the metrizability for the polynomial topology of closed bounded ab-
solutely convex separable subsets L does lead to the separability of the dual space

(E% [ -1]2)-

Proposition 3.3.6. Let E be a real or complex Banach space and L a closed bounded
absolutely convex separable set in E which is T©(E,P(E))-metrizable. Then, (E*,||-||L) is
separable.

Proof. Since L is a bounded set, we can assume without loss of generality
that L C Bg. Since L is ©(E,P(E))—metrizable, there exists a countable basis of
7(E,P(E))—neighbourhoods (V) of 0 in L. Therefore, there exists a sequence (F;,)
of finite subsets of P(E) such that the sequence (V,) is given by

Va={x€L:|P(x)—P(0)| <1forany P € F,}.

Set G, = {dP,:x € L, P € F,}. Since the mapping x € E — dP, € E* is contin-
uous, G, is a norm separable set in E* for all n € N. Let G be the norm closure
in E* of span(U;,_,G,). It is clear that G is a separable subspace of E* and G is
| - [|L-separable as well.

We want to prove that E* = G+ L°. For this, let g € E* and consider U the
7(E,P(E))-neighbourhood of 0 defined by

U={xeL:|gx)|<1}.

Then, we find m € N such that V,, C U. Moreover, we have that G,, "L C {g}°.
Indeed, for z € G;,NL, it follows from an application of the mean value theorem to
each of the polynomials P € F, in the segment [0,z] C L, that there exists 0 <t < 1
so that |P(z) — P(0)| < |dP;(z)| < 1 since 1z € L. Therefore, |P(z) — P(0)| < 1 for all
P € F,, thatis, z € V,,,. Hence, |g(z)| < 1 and, therefore, z € {g}°.

Further, since F(Gm)w*, the w(E*, E)—closure of the absolutely convex hull of
Gn, is also a w(E*,E)—compact set and L° is a w(E*, E)—closed set, their sum is an
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absolutely convex w(E*, E)—closed set to which g belongs to, since, otherwise, if
g¢ F(Gm)w* +L°, we may appeal to the Hahn-Banach theorem to get some x € E
such that |g(x)| > 1 and |¢(x)| < 1 for all ¢ € F(Gm)w* +L°, thatisx € L°° =L, and
x € Gy, contradicting the relation G;,, "L C {g}°. Hence, g € G+L°.

Finally, for any p € N, we have that pg € G+L°, so thereare ¢ € Gand € L°
such that pg = a+ 3, so

:HE <L
L Pl P

Therefore, G is || - || -dense in E*, thus (E*, || - ||1) is a separable space. N

‘ o
g _——
p

The separability of L cannot be removed in Proposition 3.3.6 as we show in
the following example.

Consider the real Hilbert space H = /,(R). We have that a net (x;) which
T(H,P(H))—converges to x is also norm convergent since the expression
l|x; — x[|2 = ||x:||> + ||x]|> — 2 < x;,x > tends to 0 because < -,x > and the norm are
actually polynomials. Therefore, the norm and the polynomial topology coincide
and we obtain that the unit ball By is T(H,P(H))—metrizable. Nevertheless, we
have that (62(R)*, || - ||z, ) = £>(R), which is not separable.
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Applications to Composition
Operators on H™(By)

Chapter

In this chapter, we will deal with composition operators Cy on H*(Bg). First,
we will deal with the spectra of composition operators on H(Bg); results on
interpolation studied in Chapter 3 will be used to describe the spectra of such op-
erators. Then, we will study the class of Radon-Nikodym composition operators.
In order to do this, we will give some results on Asplund sets, which are deeply
related to this class of operators.

41 A Lemma

The next lemma is closely related to Proposition 2 in [GLR99]. We prove it as
an application of Corollary 3.2.16.

Lemma 4.1.1. Let ¢ : B — Br an analytic map and suppose that there isno 0 < r < 1
such that ¢©(Bg) C rBr. Then, there exist linear operators T : H*(Bg) — (> and
S:0* — H>(BF) such that

ToCpoS=lds-.

Proof. Given Cy, we find, by hypothesis, a sequence (x,) C Bg such that

lim [ (x, )| = 1.

n—o0

It is easy to find a subsequence of (¢(x,)) which converges fast enough in
order to satisty the generalized Hayman-Newman condition. We still denote this
subsequence by (¢(x,)). By Corollary 3.2.17, the sequence (¢(x,)) is interpolating
for A = H*(Br). In particular, there exists a sequence (f;) C H*(Br) such that

fi(@(x,)) =&, foralln,keN
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and
Z’fn ) <M forall x € My.

Define the operator S : £~ — H*(Br) by S((a)) = Y.i_| o fx and the operator
T :H*(Bg) — ¢ by T(f) = (f(xn))z-,, which is well-defined, linear and contin-
uous. It is clear that

TOC(POS((OCk)k) = TOCq)(i akofk) =
k=1

Zakofko(l) (i 0 fro @) Xn)) = (0tn)n

and, therefore, T oCy 0§ = Idy~. H

4.2 Spectra of Composition Operators on H*(Bg)

In the study of the spectra of composition operators C, on H*(Bg), we are
led to consider the sequence of the iterates of ¢, that is, the sequence (¢, ) where
¢, : B — Bg is the map given by

(pn — (PO .’:l. o(p‘

If Cy is power compact, the operator Cy, is compact for some n € N. It is clear
that Co = Co, and, hence, by Theorem 1.8.3, we have that there exists 0 < r < 1
such that ¢,(Bg) C rBg. If E is finite dimensional, it is clear that the converse is
also true since @(Bg) is always relatively compact. Nevertheless, this fails in the
infinite dimensional case. Just consider ¢(x) = x/2 for which ¢,(x) = x/2", and
thus Cj is not compact. Indeed, we need in addition to consider ¢(BE) to be a
relatively compact set in B; when E is infinite dimensional.

We introduce the following notation,

Definition 4.2.1. Let ¢ : Be — B an analytic map. A finite or infinite sequence
(xx)k>0 C B is said to be an iteration sequence for @ if @ (x;) = xp41.

H. Kamowitz studied the spectrum of composition operators on A(D) and H?
in [Kam73] and [Kam75]. L. Zheng completed the description of the spectrum of
composition operators Cy : H” — H* under the assumption that the symbol ¢
has an interior fixed point.
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Theorem 4.2.2. Let ¢ : D — D be a non constant, analytic self-map and suppose that
@ is not an automorphism. If there is zo € D such that ¢(zo) = zo, then either

0(Cy) =D, if Cyp is not power compact.

or
0(Cy) = {(p’(z())k ke N} U{0,1} if Cy is power compact.

P. Galindo, T. W. Gamelin and M. Lindstrom extended Theorem 4.2.2 to Ba-
nach spaces for power compact composition operators Cy : H*(Bg) — H>(Bg)
in [GGLO8]. Indeed, they described the spectrum of Cy as follows,

Theorem 4.2.3. If C is power compact, then ¢ has a fixed point xo € Bg such that
19’ (x0)|| < 1 and the spectrum of Cy consists of A =0 and A = 1, together with all
possible products A = Ay - - A, where k > 1 and the As are eigenvalues of ¢'(xo).

P. Galindo, T. W. Gamelin and M. Lindstrom [GGL08] proved that the result
given by L. Zheng for the non power compact case also remains true for the Eu-
clidean unit ball of C" (see Theorem 4.2.7 below). So we are led to study spectra of
non power compact composition operators on H*(Bg). Just bearing in mind the
finite dimensional case, we are led, by Theorem 1.8.3 a), to the case that ¢,(Bg) is
not strictly inside Bg for all n € N since, otherwise, Cy is power compact because
¢(BE) is relatively compact in E. For simplicity, we will refer to such situation by
saying that ¢ satisfies the approaching condition,

Definition 4.2.4. Let ¢ : B — Bg be an analytic map. We say that ¢ : Bc — Bg
satisfies the approaching condition if ¢,(Bg) is not strictly inside Bg for any n € N.

Notice that Theorem 1.8.3 a) also tells us that whenever ¢(Bg) is relatively
compact, Cy is non power compact if and only if ¢ satisfies the approaching con-
dition.

We recall some useful calculations:

Suppose that the symbol ¢ : B — B, satisfies ¢(0) =0 and ||¢’(0)|| < 1. Con-
sider the analytic function 2 : D — D given by

h(A) = L(¢(Aw))/4,

where w € E and L € E* satisfy |w|| = ||L|| = 1. It is easy that each such & satisfies
|h| <1and |h(0)| <[ ¢'(0)]|. Anormal families argument shows that for each s < I,
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there exists a < 1 such that any such 4 satisfies |h(A1)| < a for |A| <s. Taking the
supremum over L and setting x = Aw, we obtain

le()|| <allxl], forxekE, [x|<s. (4.1)

Hence,

L=lleMIl o L—allx]
E= el = 1= {l]

forxeBg, 0<|x||<s, 4.2)

so given 0 < r <s < 1, there exists € > 0 such that

1= lle@)ll

>1+e, x€Bg, r<|x|<s.
B

When we deal with the open unit disk D this estimate remains valid even as
|[x]| — 1 (see Lemma 7.33 in [CM95]),

Lemma 4.2.5. If ¢ is an analytic map, not an automorphism, of the unit disk into itself
and @(0) =0, then for 0 < r < 1, there is € > 0 such that

1-lo(2)|

SR >1+¢ forall zwith |z > r.
-z

This result is typically obtained by using Julia’s lemma (see Lemma 2.41 in
[CM95]) and angular derivatives. This kind of estimate will be called Julia-type
estimate.

We say that a subset W C Bg approaches Sg compactly if any sequence (z,) C W
such that ||z,|| — 1 has a convergent subsequence.

The following Julia-type estimate for Hilbert spaces was shown in [GGLO08],

Theorem 4.2.6. Let H be a Hilbert space and ¢ : By — By an analytic map satisfying
¢(0) =0 and ||@’(0)|| < 1. Suppose that W approaches Sy compactly. Then, for any
0 < & < 1, there exists € > 0 such that

1=lleMll

T >1+e¢, forall x e W such that ||x|| > 4.
— ||x

This Julia-type estimate allowed them to conclude the result mentioned above
which extends Theorem 4.2.2 in the non power compact case to Hilbert spaces,

Theorem 4.2.7. Let H be a Hilbert space. Let ¢ : By — By an analytic map satisfying
©(0) =0, |9’ (0)]| < 1 and @(By) is a relatively compact subset of H. Suppose that ¢
satisfies the approaching condition. Then, the spectrum of Cy coincides with the closed
unit disk, that is, 6(Cy) = D.
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4.2.1 Results on the spectrum of Cy,

In this section, we aim to extend Theorem 4.2.7 under the assumption that ¢
satisfies a Julia-type estimate as in Theorem 4.2.6.

In [Zhe02] and [GGLO8], an interpolation result is necessary in order to get
the description of the spectrum of Cy, (see also Lemma 7.34 in [CM95]). The inter-
polation result given in [GGLO8] uses the Julia-type estimate 4.2.6 and states as
follows,

Proposition 4.2.8. Let H be a Hilbert space, and let ¢ : By — By be an analytic map
such that ¢(0) = 0 and ||@’(0)|| < 1 and suppose that @(By) is a relatively compact
subset of H. Let 0 > 0. Then there exists a constant M > 1 which depends only on & such
that any finite iteration sequence {zo,z1,...,zy} satisfying zo € @(Bg) and ||zy|| > & is
an interpolating sequence for H*(By ) with constant of interpolation not greater than M.

When we deal with Banach spaces, under the assumption that ¢ satisfies a
Julia-type estimate, we will also get an interpolation result which extends Propo-
sition 4.2.8 in order to give a Theorem which describes the spectrum of Cy, for the
non power compact case. This interpolation result will be proved by appealing
to Corollary 3.2.16,

Lemma 4.2.9. Let E be a Banach space and let ¢ : Bt — Bg be an analytic self-map
such that ¢(0) = 0and ||¢’(0)|| < 1. Suppose that there exist & > 0 and € > 0 such that

1-lleM™l

T >1+¢€, forallxe @(Bg) suchthat ||x|| > 4. (4.3)
— ||x

Then, there exists a constant M > 1 which depends only on €, such that any finite iteration
sequence {xo,x1,...,xy} satisfying xo € @(Bg) and ||xy|| > 6 is an interpolating sequence
for H*(Bg) with constant of interpolation not greater than M.

Proof. Let (x;)Y_, be a finite iteration sequence satisfying xo € ¢(Bg) and
|xn|| > 6. Recall that x; | = @(xx) for any 0 <k <N —1 and consider the sequence

{xNafoh ce 7x13x0} :
By inequality 4.3, we have that

[l 1573 I St 77
=l 1= lloCa)l] = 1+¢
Then, the assumption in Corollary 3.2.16 is satisfied by the finite sequence

{xn,xn_1,...,%0} (note the reversal of the order). Thus, this sequence is interpo-
lating and its constant of interpolation depends only on &. O

forany 0 <k <N —1.
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In addition, we will need the following lemmas.

The first one is an improvement of Lemma 7.17 in [CM95].

Lemma 4.2.10. Let E and F be Banach spaces. Let C: E®F — E®F be a linear
operator which leaves F invariant and for which C|g : E — E & F is a compact operator.
If the operator C has the matrix representation

X 0
C= (Y z) (4.4)

with respect to this descomposition, then ¢(C) = o(X)Uoc(Z).
Proof. Let A ¢ 6(C) and suppose that

1 (T R
(C—Al) _(U v)' (4.5)
Then,
X — Al 0 T R\ (L1 O
( Y Z—?LIzz) (U V)_(O 122) (4.6)

which implies that (X —A1;)T =1;. If A #0, since X : E — E is compact, the
Fredholm alternative 1.1.4 holds, so X — A1}, is surjective if and only if X — A1;; is
injective; hence X — A1}, is invertible. If A =0, then I} is a compact operator, so E
is finite dimensional, and again X — Al}; is invertible. Thus in any case we obtain
that R = 0. This gives that (Z— A5,)V = ;. Multiplying the opposite order gives
that V(Z — ALhn) = I, so the operator Z — A1, is invertible and obtain

c(X)uo(Z) Cc o(C).

The converse inclusion is proved as in Lemma 7.17 in [CM95]. We prove it by the
sake of completeness. If X and Z are invertible, it is easy to see that

X 0\ x! 0
Y Z - \—zlyxt z7t)’

so C is invertible. ]

-1

Denote by P,f the n-th term of the Taylor series of the analytic function
f € H?(Bg) at 0. Set

H(Bg)={f€H”(Bg):P,f=0forn=0,1,....,m—1}.
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In other words, a function in H*(Bg) belongs to H; (Bg) if the first m — 1 terms
of its Taylor series at 0 vanish. Denoting by P(<"E) the subspace of polynomials
of degree less than m, it is clear that H*(Bg) is isomorphic to H,; (Bg) & P(~"E).

In order to apply Lemma 4.2.10, we show that Cy leaves invariant the space
H;;(Bg) under the assumption that ¢(0) = 0.

Lemma 4.2.11. Let ¢ : Be — Bg be an analytic map such that ¢(0) = 0. Then C,
leaves invariant the space H,,; (BEg).

Proof. Let f € H,7(Bg) and fix x € Bg. It is easy, from the Taylor series ex-
pansion of ¢ at 0, that the function g : D — C defined by g(1) = ¢(Ax) satisfies
g(A) = Ahy(A) for a particular analytic function 4, which depends on x and A. Set
f € Hy(Bg). We have that

(fop)(Ax) = Z B.f(o = Z Pf(Ahe(R)) = Z APy f (he(2))

n>m n>m n>m

and there is no non-null term of degree less than m in this series expansion. There-
fore, it ), O, is the Taylor series of f o ¢, there must be no non-null term of degree
less than m in

Y On(Ax) =} A"0n(x)

since both polynomialson A, Y., A"Q,(x) and },,>,,, A" P, f (hc(A)) must be the same.
Thus Q,(x) =0forn=0,1,...,m— 1 and, therefore, Cy(f) € H,,(BE). O

Then, we have the main result which describes the spectrum of C,, for the non
power compact case. The proof is an adaptation of Theorem 4.2.7.

Theorem 4.2.12. Let ¢ : Be — Bg, be an analytic map satisfying ¢(0) =0, |¢’(0)| < 1
such that ¢(Bg) is a relatively compact subset of E. Suppose that ¢ satisfies the approach-
ing condition and the following Julia-type estimate: For any 0 < 6 < 1, there exists € >0
such that

1= [le)]l

T[] >1+¢, forallx € ¢(Bg) such that ||x|| > 6. 4.7)
—||x

Then, the spectrum of Cy coincides with the closed unit disk D.

Proof. Since the spectrum 6 (Cy) is a closed subset of D, it is sufficient to prove
that D\ {0} C 0(Cy). Therefore, we deal with A € D such that 0 < |A| < 1.
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Notice that for every m € N, each norm bounded subset of P("E) is relatively
compact for the compact-open topology by Montel theorem. Since ¢(Bg) is a
compact set in E, we conclude that the linear operator

Colp(<ng) : P(""E) — H™(BE)

is compact by Theorem 1.8.3 a).
As we mentioned above, for any m € N we have that

H”(Bg) = P("™E)®H, (Bg).

Let C,, denote the restriction of Cy to H,, (Bg), which is an invariant subspace
of Cyp by Lemma 4.2.10. Then, if A € 6(C,,) for some m € N, we will get A € 6(Cy)
by Lemma 4.2.11.

Notice that A € 6(Cy,) if C,, — Al is not invertible and, for this, it is sufficient to
show that (G, — AI)* is not bounded from below, so we will prove this assertion.

Given an iteration sequence (xx);_,, in view of inequality 4.1, there exists
0 < a < 1 such that

lp()[l < allx]|  forany [lx[| < lxol| (4.8)
Therefore, we get
boell = [l @x(xo0) | < a[|xo
so the norms of the elements of any iteration sequence {xo,x1,..., } decrease to 0.

Fix 0 < 6 < 1. For any iteration sequence (xx);>, C ¢(Bg), we denote by
N = N(xp) the largest integer such that ||xy|| > 6. Since the approaching condition
guarantees that ¢, (Bg) is not contained in the ball §Bg for all k > 1, we have that
for any arbitrarily large N € N, we can find xy € Bg such that N = N(xp).

Since 0 < V/8 < 1, by inequality 4.1, there exists 0 < ¢ < 1 satisfying

lo@)ll <cllxll,  forany [lx] < V8. (4.9)

We can suppose without loss of generality that c is close to 1, so we choose ¢ such
that ¢ > /8. In addition, we can assume that ¢ = 1/(1 +€) and get

1 — |l
=l

since we can take € closer to 0 and inequality 4.7 remains true.

<cfor any |lx|| > & (4.10)
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We claim that for any such interation sequence (x;);%, we have
[lev1 [} < el (4.11)

Indeed, we have two possibilities. If |jxy|| < V/§, it is exactly 4.9; if otherwise
lxv || > /8, inequality 4.11 is also satisfied since, otherwise, we have that

1]l > ellev ]| = VEVE =8,

a contradiction since N is the last index k such that ||x|| > §.

For any n > N+ 1, we also have that ||x,11|| < c||x,]| since ||x,| < |xn]|, so we
obtain by induction that

xvsell < Kllew]|  for any & > 0.

Let {x¢};_, be an iteration sequence in ¢(Bg). Notice that for f € H,;(Bg), we
have that |f(x)| < ||f]|e|[x]|™ for all x € Bg by the maximum modulus principle.
Hence, if we choose m so large that ¢ < |1|, we obtain

Z |f(xk)| < Hf||°° ||xk|| < ||f||oo ||)CN’ Z

Ckm
- K1 |)‘|k+1 |A|N+1 = )‘|k

Therefore, we define the linear functional L on H,;(Bg) given by

L=y 2 penzm
k=0

and we obtain an estimate for the tail of the series,

[E

SHfH‘X’VwN_._] |l|—Cm’ feHrono(BE) (412)

i f ()

I

k=N+1

Now choose an m—homogeneous polynomial P satisfying ||P| =1 and
|P(xn)| = |lxn||™. By Lemma 4.2.9, there is an interpolation constant M = M(c)
and g € H*(Bg) such that ||g]| <M, g(xx) =0 for 0 <k <N, and g(xn) = 1. Then
P-g € Hy(Bg) satisfies ||P- g|| < M, and using the estimate 4.12 for f =P-g, we
obtain

- (P-8)(%)

|L<P~g>|=‘2 )\, 5 B,

AN+1 Ak | =
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‘(P‘g)(xzv) _‘ i (P-g) () | o [he[[™  [lew|™ Mc™
ANT1 AR S AT AN A = e
Since Mo
m — 0 when m — oo,
we can choose m so that, in addition to ¢ < |A|, we have
Mc™ 1
A—em =2

Then, since |L(P-g)| < M||L|| and |lxy|| > 6 > 1/4, we get

e [ 1

MI||L|| > |L(P-g)| > SN Z 3 G (4.13)
Next observe that for f € H(Bg),
(A =Cn)" (L)) () = AL(f) = L(Cu(f)) = AL(f) = L(f 0 @) =
A Z ;Lk+1 Z ;L)‘Zjll = f(x0).
Hence
|(AI—Cn)*(L)| < 1. (4.14)

As we have mentioned above, we can form iteration sequences for which N is
arbitrarily large, hence by 4.13 for which ||L| is arbitrarily large. In view of 4.14,
we show then that (A7 —C,,)* is not bounded below. Consequently (A1 —Cy,)* is
not invertible, and neither then is A1 —C,,, so that A € 6(Cy,). |

4.2.2 A Julia-Type Estimate for Cy(X) spaces

In Theorem 4.2.12 we need to assume that a Julia-type estimate for E is satis-
fied in order to describe the spectrum of Cy. As we recalled in Theorem 4.2.6, this
estimate exists when we deal with Hilbert spaces. In this section we will give a
Julia-type estimate for Co(X) spaces, in particular for the n-fold space C" and cy.

Recall that the pseudohyperbolic distance for A = H*(Bg) with E = Cy(X), X a
locally compact space, is given by formula 1.8:
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p(x,y) =supp(x(t),y(t)) forallx,y€ Bg. (4.15)
teX

We will also need the following lemma,
Lemma 4.2.13. The following holds:

a) Let {o; : i €1} be a set of real numbers such that 0 < o; < 1. Then,

sup{ ! } ! (4.16)

icr L 1—o? 1 — sup;¢; o

b) The function h(x) = (1 —x)/(1 +x) is decreasing in [0, 1).
Then, we state the main result,

Theorem 4.2.14. Let E = Cy(X) and consider an analytic map ¢ : B — Bg such that
®(0) =0, |9’ (0)|| < 1. Suppose that W approaches Sg compactly. Then, the following
Julia-type estimate holds: For any & > 0, there exists € > 0 such that

1= lle]l

T[] >1+¢ forany x € W such that ||x|| > 6. (4.17)
—||x

Proof. Suppose that the estimate (4.17) fails. Then, we can choose a sequence
(xn) CW, ||xn|| > 6 such that

=0l

1= {lxall

In particular, ||x,|| — 1 and ||@(x,)|| — | when n — oo. By the assumption on W, we
may suppose, passing to a subsequence if necessary, that x,, — xo, for xo € Sg.

Fix z € Bg. We denote ¢;(x) = ¢(x)(¢) for x € Bg and r € X. Then, by 4.15 and
1.6, we have that

I=lloe)> = e@eta)l® 1= [l
1—p%((2), 0(xa)) _te)lg{ 1—]e(2)]>  1—|@(xn)|? } (4.18)

Since

1-o@e)* _ (1-le@)? _1-le@)] _ 1-]le@l
I-lg@P  — 1=l  1+]eGE)] ~ 1+l
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we have that

{u—m«p,(xmz1—H<p(xn>|12} _1=lle@ll 1= o)

su .
T—1e@F  T- @) [ = T+1o@ ex 1 o)

sup
reX

Therefore, by (4.18) and using Lemma 4.2.13 a), we obtain

I—lleea)l*  _ 1=lle@ 1=letw)l® _ 1-[le()l

> u = . (4.19)
[=p2(0@),0(x) = T+[0@) rex 1— |2~ 1+[9()]]
On the other hand, using the contraction property 1.4 we have
Lol _ 1 lloG)l?
2 = 2 =
1=p*(@(2), @(xn)) = 1—p*(z,xn)

1—[[oCxa)l? 1= 2(0xa(0)* 1~ [|a®
su : 4.20
a2 b T-ROF 1=l e

Fix 0 < r <1 and set z = rxo. Consider for any n € N the continuous function
gn : X — R defined by
_ = rxo(0)xa (1) ?
gn(t) = 2 2
1 —r?|xo(1)|
It is easy to prove that g, converges uniformly to the function g: X — R given
by

(P
R e

so passing to a subsequence we can consider that

gn(t) <g(t)+eforallr € X. (4.21)
Consider the continuous function 4 : [0,1] — R given by

(1= ru2)2
h(u) = 2

We have that for € > 0 there exists 0 < uy < 1 such that

+:+8f0ranyu0§u<l. (4.22)

h(u) <
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gi‘t = 28 fOI aIls' X0 uop.
1 +’

Consider the supremum from inequality (4.20) and pay attention to items with
|xo(2)| < up. We have

1 —=x0(0)xn (@ 1= llxall® _ 1= rxo()xn()]” 1= [Pxall? _~ 4(1 — flxa?)
1=rx()> 1—=|x@)P = 1= 1-ud ~— (1—ud)(1—r2)

On the other hand, if we pay attention to items with |xo(7)| > up we obtain that

1—||@(xn)]?
1—p2(@(rxo0), 9(xa)) ~

(4.23)

Su )
L= 2 ot I—lmo@)]F 1= @) 1—)(1-r2)

beo (1) Zuo

1—[[@(xa)|2 {u—mxn(mz L= ll> 40— |x]?) } .

L= ()| {rl —rxo(x() 40— ) }

max ,
L= %2 ot)zue | 1= |rxo(@)]> (1 —ud)(1—7r2)

If we let n —  in the last term, we obtain

| - llo@)l> (-7
1 <
P T p2(0(m0), 0(%)) = 147

+ 2. (4.24)

Consequently, by (4.19) and (4.24), we obtain

(1—r) 1—[|@(rxo)||
—+28 2 _rA M/
I+r 1+ |[o(rxo)l

and hence, if € tends to 0, we obtain that ||@(rxo)|| > r = ||rxo||, a contradiction. []

By Theorems 4.2.12 and 4.2.14, we obtain an extension of Theorem 4.2.2 for
non power compact composition operators Cy.

Theorem 4.2.15. Let E be a Co(X) space and consider an analytic map ¢ : B — Bg
such that (0) =0, ||¢'(0)|| < 1 and @(Bg) is relatively compact in Bg. Suppose that ¢
satisfies the approaching condition. Then, 6(Cy) = D.
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Proof. Apply Theorem 4.2.14 to W = ¢(Bg), which approaches S compactly
since @(Bg) is relatively compact and does not lie inside Bg. Then, we find the

Julia-type estimate necessary to apply Theorem 4.2.12 and conclude the result.
O

In particular, the result is valid for ¢y and we obtain the following corollary
for the n-fold space C”,

Corollary 4.2.16. Let ¢ : D" — D" an analytic map such that ¢(0) =0 and
9" (0)|| < 1. If Cp : H*(D") — H*(D") is non-power compact, then 6(Cy) = D.

4.3 Radon-Nikodym Composition Operators

In this section we aim to study Radon-Nikodym composition operators. In
order to do it we use the Asplund sets. The notion of Asplund set in a Banach
space E arises in studying differentiability properties of the norm of E. At same
time, there exists a strong duality between the Asplund property and the Radon-
Nikodym property on Banach spaces. Further references can be found in [Asp68],
[Ste81], [Fit80] and [Bgi83].

We begin with some background on the Radon-Nikodym property.

4.3.1 Background on the Radon-Nikodym Property

In order to introduce the class of Radon-Nikodym operators, we will give
some background on the Radon-Nikodym property for Banach spaces. For fur-
ther results, see [Saa80], [Ste81] and [DU77].

A measurable space is a pair (Q,X), such that Q is a set and X a o-algebra of
subsets of Q. The triple (Q,X, u) is a measure space if (Q,X) is a measurable space
and u is a finite nonnegative measure on X. All the measures treated are count-
ably additive unless the contrary is explicitly stated. The classical Radon-Nikodym
Theorem states as follows:

Theorem 4.3.1 (Radon-Nikodym). Let (Q,X, 1) a finite measure space and m : £ — R
a finite measure which is absolutely continuous with respect to u (m << ). Then, there
exists a u-integrable function f : Q — R, denoted by dm/d, such that

/Afdu =m(A) forany A € ¥.
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In order to replace R by a general Banach space E in both instances above, we
recall the following:

Let X be a o—algebra and E a Banach space. A map m : X — E such that
m(0) =0 € X is called a vector measure (or an E-valued measure) if it is countably
additive; that is, whenever {A j};o: , is a sequence of pairwise disjoint sets in E,

then .
Uj= lA Z

Such a measure is said to be absolutely continuous with respect to pu (m << ) if for
A € X, the condition u(A) = 0 implies m(A) = 0.

Now we give the concept of Bochner integrability, which generalizes measure
theory to vector measures.

Denote by x4 the characteristic function of a subset A C E. A functions: Q — E
is called a simple function if s can be written in the form Y | x; x4, for distinctx; € E,
i=1,...,nand a finite partition {A;}"_, of Q chosen from X.

Definition 4.3.2. A function f: Q — E is said to be u-Bochner integrable if there exists
a sequence (s,) of simple functions such that
i) lim, sy(®) = f(w) U—ae.
ii) limy Jq [|f (@) = sn(@)[|dp (@) =0.
The set of Bochner integrable functions is denoted by Li(Q,%, 1) or simply

Ly (1t). When f is Bochner integrable, the limit lim, [, s,du exists independently
of the particular choice of (s,) and the integral is defined by

/fdu:lim/sn du.
A noJA

Definition 4.3.3. A closed, bounded, convex subset C of a Banach space E is called a
Radon-Nikodym set if, for any probability space (Q,Z,P) and any E-valued vector
measure m : ¥ — E such that the average of m is in C (i.e. m(A)/P(A) is in C for every
A €X), there exists a P-Bochner integrable function f : Q — E such that

= /fdP forall A eX.
A
A Banach space E is said to have the Radon-Nikodijm property if each E-valued
measure on X which is of finite total variation and satisfies m << u, admits an

f € LY(Q,%, 1) such that

/fdu =m(A) foreach A € X.
A
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The concept of Radon-Nikodym operator is the following [GS84],

Definition 4.3.4. The linear operator T : E — F is said to be a Radon-Nikodym
operator if for every finite measure space (Q,X,A) and for every vector measure
G : X — E such that |G(B)|| < A(B) for all B € ¥, there exists a Bochner integrable
function f: Q — F such that

ToG(B)z/fd?L forall BEX.
B

It is well-known that E has the Radon-Nikodym property if and only if /¢ is a
Radon-Nikodym operator [Bgi83].

It is also well-known [Pie80] that the set of Radon-Nikodym operators is a
closed ideal of operators. In connection with Radon-Nikodym operators, the
strong Radon-Nikodym operators are defined as follows,

Definition 4.3.5. We say that T : E — F is a strong Radon-Nikodym operator if

T (Bg) is a Radon-Nikodym set.

If T : E — F is a strong Radon-Nikodym operator, then T is a Radon-Nikodym
operator by [Edg80]. The converse is not true since any quotient Q from ¢; onto
co is a Radon-Nikodym operator but is not a strong Radon-Nikodym operator
[GS84]. Nevertheless, it follows from [Ste81] the following result which states
that these concepts are equivalent for adjoint maps,

Theorem 4.3.6. Let T : E — F be a bounded linear operator. Then T* : F* — E* isa
strong Radon-Nikodiym operator if and only if it is a Radon-Nikodym operator.

4.3.2 Asplund sets

This section is devoted to the study of the Asplund property. We will give
some background on Asplund sets and operators and will study some related
properties. Then, we will give conditions for polynomials between Banach spaces
to preserve the Asplund property of some sets and will derive some consequences.

We recall the definition of S. Fitzpatrick [Fit80] of Asplund set. He showed that
this definition is equivalent to the earlier one related to the differentiability of the
norm of E. Recall that, given a subset A C E, the seminorm || - |[4 : E* — [0, 0) of
E* is given by

1flla = sup|f(x)].
x€A

100



thesection Radon-Nikodym Composition Operators @

Definition 4.3.7. Let E be a Banach space and A C E. A bounded set D C E is said to
be an Asplund set if, for any countable set A C D, the seminormed space (E*, || -||a) is
separable. The space E is said to be an Asplund space if its unit ball Bg is an Asplund
set.

Proposition 4.3.8. Let D C E. Then, D is an Asplund set if and only if the closure of its
absolutely convex hull T(D) is an Asplund set.

There are many characterizations of Asplund spaces [Bgi83]. The following
one will be used later,

Proposition 4.3.9. The Banach space E is Asplund if and only if, for any separable
subspace F C E, we have that F* es separable.

By 4.3.9, it is clear that any reflexive Banach space is an Asplund space. Fur-
thermore, if E* is separable, then E is also an Asplund space. In addition, we
have the following proposition:

Proposition 4.3.10. Let T : E — F a linear operator and D C E a bounded set. If D is
an Asplund set, then T (D) is an Asplund set as well.

We wonder if it is possible to extend Proposition 4.3.10 to nonlinear mappings.
In particular, we are interested in studying analytic maps from E to F. The fol-
lowing example shows that this extension cannot be done in general.

Example 4.3.11. Set E = ¢, and F = (. Consider the polynomial P € P(*ly,01) given
by
P((xn)i=1) = (5t

Then P does not transform Aslpund sets into Asplund sets.

To show this, consider the set D = {¢, : n € N}, which is is an Asplund set in /5.
However, P(D) = D is not an Asplund set in /;; indeed, ¢ = /.. and the space
(Ys, ] - ||p) is not separable since for f = (f,) € {- we have

1fllp = sup|f(x)| = sup|fu] = [| /]l
x€D neN

so || - ||p is the usual norm for /.. and, therefore, (/«,|| - ||p) is not separable. O

Therefore, we aim to find sufficient conditions for analytic mappings to trans-
form Asplund sets into Asplund sets. This will lead us to characterize Radon-
Nikodym composition operators Cy, in terms of ¢(Bg). The following lemma (see
[Bgi83]) will be needed,
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Lemma 4.3.12. Let E be a Banach space. Then,

a) The sum and the union of a finite number of Asplund sets in E is an Asplund set.
b) Let (Dy) be a sequence of Asplund sets in E and let (t,) be a sequence of positive
numbers such that lim,, t, = 0. Then, the set

D=

n

(Dn + tnBE)
1

[

is an Asplund set.

Let U be a subset of E. A subset D C U is said to be U-bounded if D is bounded
and d(D,E~U) > 0. A function f: U — F is said to be of bounded type if it maps
U-bounded sets into bounded sets.

Proposition 4.3.13. Let E and F be Banach spaces and D C E an Asplund set.
a) Suppose that P(*E) = P¢(XE)) for some k € N. If P: E — F is a k-homogeneous
polynomial, then P(D) is an Asplund set.

b) Suppose that P(*E) = P¢(*E) forany k e N. If f : U C E — F is an analytic function
of bounded type and D is U- bounded, then f(D) is an Asplund set.

Proof. We can suppose, without loss of generality, that D C Bg, since the class
of Asplund sets is stable under translations and homotheties.

a) Set A C P(D) a countable set, that is, A = P(C) for some countable set C C D.
Since D is Asplund, we have that (E*,||-||c) is separable, so there exists a
countable set § which is dense in (E*,||-[|c). Consider the adjoint mapping
P*: F* — P(*E) given by

P (@) =¢@oP.

Clearly, the mapping P* : (F*,| - |la) — (P(*E),|| - |lc) is a linear isometry.
Therefore, (F*,| - ||l4) is separable if P*(F*) C (P(*E),|| - ||c) is separable and this
will be a consequence of the separability of the seminormed space (P(*E), || - ||c).
This space is separable since the algebra generated by S is dense in (Pr(*E), || -||c),

which is, again, dense in (P(*E),| - ||c) since P¢(*E) = P(*E) by assumption and
the norm topology is finer than the || - ||c - topology.

b) By 4.3.12 a) and a) in this Proposition, any polynomial defined on E maps
D into an Asplund set. Set n € N. Since f is of bounded type, there exists a
polynomial P, such that || f(x) — B,(x)|| < 1/n for any x € D. Therefore,

/(D) € PA(D) + - Br.
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and, hence, f(D) is an Asplund set by 4.3.12 b). O

The following example shows that the G*(Bg), the predual of H*(Bg) defined
in paragraph 1.6.5 is not an Asplund space regardless of the Banach space E.

Example 4.3.14. The space G*(Bg) is not Asplund.

Indeed, we know that ¢co C H*(Bg) by Theorem 1.3.4 and, then, ¢; C G*(Bg) by
Theorem 4 in [BP58]. Therefore, G*(Bf) has not the Asplund property by Propo-
sition 4.3.9 since /] = (.. is not separable.

This remark leads us to show that Proposition 4.3.13 b) does not hold for non
U-bounded sets. To show this, consider the map 0 : D — G given by 6 (x) = §,, the
evaluation at x. Then 6(D) = {8, : x € D} is not an Asplund set since the closure
of its absolutely convex hull is Bg~ by Proposition 1.3.

The following result gives a sufficient condition for all functions in the alge-
bra A,(Bg,F) to transform Asplund sets into Asplund sets. This result can be
extended to other algebras of analytic functions on Bg.

Proposition 4.3.15. Let E and F be complex Banach spaces and suppose that A,(BE) is
separable. Then, any f € A,(Bg, F) transforms Asplund sets into Asplund sets.

Proof. We denote by A the algebra A,(Bg,F). Pick f € A and consider the re-
striction f*:=Cy|p : F* — A,(Bg) given by f*(y*)(x) =y*(f(x)) for any x € E. Let
D C Bg be an Asplund set. To show that f(D) C F is also an Asplund set, consider
the space (F*,||- | spp)) and B C f(D) a countable set. There exists a countable
set C C D such that f(C) = B. In consequence, (A,(Bg), || - ||c) is separable since
s~ hllc < llg — k]l for any g.h € Ay(Br). Since f*: (F*. || 10) — (Au(BE). | - [0)
is a linear isometry, we have that (F*,|| - ||s)) is separable and, therefore, f(D) is
an Asplund set. O

Remark 4.3.16. We have the following results,

(i) There exist Banach spaces E such that E* is separable, so E is Asplund, but there exist
functions f € A,(Bg,F) which do not transform Asplund sets into Asplund sets.
To show this, it is sufficient to consider Example 4.3.11.

(ii) There exist Banach spaces E whose dual spaces E* are not separable but any
f € Ay(Bg, F) transforms Asplund sets into Asplund sets for any Banach space F.
Consider, for instance, E = co(I") for I an uncountable set, whose dual space ¢1(I")
is not separable. However, any function f € Ay(Bg,F) transforms Asplund sets
into Asplund sets by Proposition 4.3.13 b).
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4.3.3 Radon-Nikodym Composition Operators

Now we recall the duality between the Radon-Nikodym property and the As-
plund property. Then, we will give some conditions for composition operators to
be Radon-Nikodym operators.

Definition 4.3.17. The linear operator T : E — F is said to be an Asplund operator
if T(Bg) is an Asplund set.

The following result can be found in [Bgi83],

Theorem 4.3.18. Let T : E — F be a linear operator. Then,
T is Asplund if and only if T* is (strong) Radon-Nikodjm.

Notice that condition on strongness on 7* can be removed since, as we men-
tioned in the background, an adjoint operator 7* is strong Radon-Nikodym if and
only if it is Radon-Nikodym.

In the following corollary we apply this theorem to Cy : H*(Br) — H*(BEg).
It is easy that the range of Cy|g=(p,) is contained in G(Br) since for any
u € G*(Bg), the composition u o Cy is still 7.-continuous on Bg=(z,). We denote by
C? the restriction Cy*|g=(p,). Since (C?)* = (Cy*|G=(p,))" = Cp, We obtain

Corollary 4.3.19. A composition operator Co : H*(Br) — H*(BE) is Radon-Nikodym
if and only if the operator C? : G*(Bg) — G*(Br) is Asplund.

The following result makes it easier the study of the Asplundness of the oper-
ator C?.

Proposition 4.3.20. The operator C? is Asplund if and only if the set {S(P(x) :x € Bg}
is Asplund in G (BF).

Proof. Set B = Bg=(p,). The set Cy"(B) = {uoCy:p€B} is Asplund if and
only if I'({8,0Cy : x € Bg }) is Asplund if and only if {6, 0Cy : x € B } is Asplund
if and only if {8, : x € Bg } is Asplund. O

Notice that Example 4.3.14 shows that {§,,) : x € Br } being an Asplund set is
not equivalent to ¢(Bg) being an Asplund set.

In the following result, we apply Proposition 4.1.1.

Proposition 4.3.21. Let Cy : H*(Br) — H*(Bg) be a Radon-Nikodym operator. Then,
there exists 0 < r < 1 such that ¢(Bg) C rBF.
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Proof. If such an 0 < r < 1 does not exist, we apply Proposition 4.1.1 and find
linear operators T : {.o — H*(Bg) and S : H*(Bg) — /e such that SoCyoT =1d,_,.
This is not possible since the class of Radon-Nikodym operators is an operator
ideal and /d,_ is not Radon-Nikodym. O

Now we present a characterization of Radon-Nikodym composition opera-
tors in terms of the Asplund property and the condition given in the previous
proposition.

Theorem 4.3.22. The composition operator Cy : H*(Br) — H*(BE) is Radon-Nikodym
if and only if there exists 0 < r < 1 such that ¢(Bg) C rBr and (P(F),|| - ||a) is separable
for any countable set A C ¢(BE).

Proof. To prove the sufficient condition it is enough to show that 8,5,) =
{0:: x € (Bg)} is an Asplund set in G*(Br) by Proposition 4.3.20 and Corollary
4.3.19. Let 0 < r < 1 such that ¢(Bg) C rBr. Let A C ¢(Bg) a countable set. This
set can be described as A = ¢(C) for some countable set C C Bg. Recall that the
Taylor series of f € H*(BFr) converge uniformly to f on rBr and, therefore, f is
uniformly approximable by polynomials on ¢(C). In consequence, P(F) is dense
n (H”(BF),| - lg(c))- Since (P(F ), - lo(c)) is separable and (G(Br))" = H™(BF) ,
it follows that ((G*(BF))*, | - [l¢(c)) is separable. Then, 5y, is an Asplund set in
G”(Br) and C, is Radon-Nikodym.

Now we prove the necessary conditions. Let Cy Radon-Nikodym. Then, by
Proposition 4.3.21, there exists 0 < r < 1 such that ¢(Bg) C rBr. To show the other
condition, let A C ¢(Bg) a countable set, that is, A = ¢(C) for some countable set
C C Bg. Since C?(Bg=(g,)) is an Asplund set, the space (H”(Br), || - [ o(c)) is sepa-
rable. Therefore, since P(F) C H(Br), it follows that (P(F), | -||y(c)) is a subspace
of the seminormed space (H”(Br), || - [lo(c))- Then, (P(F),||-[|4) is separable. [

Corollary 4.3.23. Let ¢ : B — Br be an analytic map.

a) Suppose that P(*F) = P;(*F) forany k € N. If @(Bg) is an Asplund set and
there exists 0 < r < 1 such that @(Bg) C rBr, then the composition operator
Cy : H”(Br) — H*(Bg) is Radon-Nikodym.

b) Suppose that the algebra A,(Br) is separable. If @(Bg) is an Asplund set and
there exists 0 < r < 1 such that @(Bg) C rBr, then the composition operator
Cy : H*(Br) — H”(Bg) is Radon-Nikodym.

Proof. a) In Proposition 4.3.13 a), we show that for any countable set

C C ¢(Bg), the space (P(*F),|| - ||c) is separable. Then,

(PF),|I-lle) = U PCEF) - lle)

keN
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is also separable and, therefore, we can use the previous theorem to get the result.

b) Since ¢(Bg) C rBr is an Asplund set and the function 6|5, belongs to
Au(rBr,G*(BF)), we have, if A,(Br) is separable, that the set 6(,0(BE) is also an
Asplund set by Corollary 4.3.15 and, therefore, the composition operator Cy is
Radon-Nikodym. O
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Chapter

Hankel operators were first studied acting on the Hardy space H? and they
were extended to act on closed subspaces of C(K) spaces, in particular, on uni-
form algebras. Several properties of these subspaces can be described through
these operators, which will be called Hankel-type operators. Their weak com-
pactness and their compactness led to introduce the concept of tightness of a uni-
form algebra. The complete continuity of the Hankel operators led to define the
so-called Bourgain algebras, which are closely related to the Dunford-Pettis prop-
erty.

5.1 Background

Let us introduce some basic results and notation related to Hankel operators.
For further results, see [Pow82], [Zhu90] and [Pel98].

5.1.1 The Hankel-type operators

Let H? denote the usual Hardy space of functions on the circle 9D and consider
the Cauchy projection ¢ from L? onto H? defined in paragraph 1.4.1. The classical
Hankel operators correspond to functions g € L? which act on H? by defining
Se: H> — (H*)* by

Sr(g) =8f —€(gf).

The aim of the Hankel-type operators is the extension of Hankel operators to
closed subspaces of C(K), in particular, to uniform algebras. Since such operators
are multiplication operators into the orthogonal, the most natural candidate is to
consider the following definition found in [CG82],
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Definition 5.1.1. Let A be a uniform algebra on K and g € C(K). The Hankel-type
operator Sq : A — C(K) /A is defined according to

Se(f) =gf +A.

It is obvious that Hankel-type operators are linear. They are also continuous
since

1Ss () = llef +All = inf{{lgf +xlleo - x € A} < [|gflleo < [lleo| /-

When we deal with closed operator ideals %, we define the sets
Ay ={8€C(K):S; e} and Ay~ ={gcC(K):Sy" e}
We have the following result,

Proposition 5.1.2. Let % be a closed operator ideal. Then, A, and Ag« are closed
subspaces of C(K).

Proof. It is easy to show that Ay and Ay« are subspaces of C(K). Then,
we prove that Ay is closed. Recall that S, is continuous and ||S,|| < ||g||. Let
{gn} a sequence of functions of Ay converging to go € C(K). By the inequality
1S¢ll < /8]l we deduce that S,, converges to S,, and, since % is a closed operator
ideal, we obtain that S, € % . As consequence, gy € A7 and therefore the set is a
closed subspace. O

Examples of closed operator ideals are the class of compact and weakly com-
pact operators and the class of completely continuous operators. When we deal
with these classes of operators, the sets Ay, and Ay« are, indeed, closed subalge-
bras of C(K) as we will recall later.

5.1.2 The Dunford-Pettis property and Bourgain Algebras

The birthplace of the Dunford-Pettis property is a work of A. Grothendieck
[Gro53] where he proved that weakly compact operators T : C(K) — F are com-
pletely continuous for any Banach space F. This was an extension of the work
done by N. Dunford and B. J. Pettis in [DP40] for weakly compact operators on

L'(p).

Definition 5.1.3. A Banach space E is said to have the Dunford-Pettis property (DP
property) if any weakly compact operator T : E — F is completely continuous for any
Banach space F.
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It is well-known [Die80] that E has the DP property if and only if
lim,, x(x,) = 0 for sequences x, — 0 in E and x; - 0 in E*. Then, it is clear that E
has the DPP if E* also enjoys it. The reciprocal is false in general, as was shown
by C. Stegall [Ste72]. The DP property is hereditary for complemented subspaces
but not for closed subspaces in general [PS65]. It is also well-known that there are
no reflexive infinite dimensional Banach spaces satisfying the DP property. For
turther results about the DP property, see [Die80].

If we deal with algebras of analytic functions, we find several results related
to the DP property; J. Chaumat [Cha74] proved that the disk algebra A(D) has
the DP property and J. Bourgain proved it for H* [Bou84b], the ball algebras
A(Bp) and the polydisk algebras A(D") [Bou84a]. We recall the main results of the
Bourgain’s work in [Bou84a], which will be connected to our results on Bourgain
algebras given in section 5.2. The main theorem in [Bou84a] allows to prove that
A(B,) and A(D") enjoy the DP property:

Theorem 5.1.4. Let E be the ball algebra A(By,) or the polydisk algebra A(D"). Then, any
bounded sequence (x,) in E* either tends uniformly to zero on weakly compact subsets of
E** or ¢y C E and (x;,) does not tend uniformly to zero on the co-basis (ex).

Besides,

Proposition 5.1.5. If E satisfies the thesis of Theorem 5.1.4, then E*, and hence E, have
the DP property.

To prove Theorem 5.1.4, ]. Bourgain develops a procedure to obtain cy—se-
quences. Recall that the product defined in C(K)** is given by the Arens product
(see paragraph 1.3.2). We denote by (e;) the canonical basis of ¢ or an isomorphic
space to co. Bourgain’s result states as follows,

Theorem 5.1.6. Let E be a closed subspace of C(K), (x;;) a bounded sequence in E* and
0 > 0. Suppose that the following property holds,

(P) For each g € C(K) and each € > 0, there exists a sequence (x);*) C Bg+ which is
weakly convergent to 0 such that

i) limsup,, |x*(x})| > &
ii) d(g-x;*,E**) < € forany n € N.
Then, co C E and sup,, |x;;(ex)| > 8 /2.

Theorem 5.1.6 led him to prove that the ball algebras A(B,) satisfy Theorem
5.1.4, and hence the Dunford-Pettis property. Recall that the spectrum of the ball
algebra A(B,) is given by B,,. J. Bourgain’s way to Theorem 5.1.6 was opened by
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Proposition 5.1.7. Let A be the ball algebra A(B,). Then, for any x:* 2 0 in A** and

g € C(By), we have that lim,_,..d(g-x:*,A) = 0.

Proposition 5.1.7 proves that property (P) in Theorem 5.1.6 is satisfied when
we deal with A(B,) and, hence, Theorem 5.1.4 as mentioned above. We obtain
that A(B,) and A(B,)* enjoy the DP property.

J. A. Cima and R. M. Timoney [CT87] studied the Bourgain’s work and found
a convenient reformulation of his results. They introduced the so-called Bour-
gain algebras, which are closely connected to Theorem 5.1.6 and Proposition 5.1.7.
Such sets contain the symbols of Hankel-type operators on the algebra which
are completely continuous. This will give a connection between tightness, the
Dunford-Pettis property and the Bourgain algebras.

Definition 5.1.8. Let X be a closed subspace of C(K). Then, the sets defined by
Xy ={g€C(K): Sy : X — C(K)/A is completely continuous } and

Xp={g€C(K):S; : X** — C(K)™ JA™ is completely continuous } .
are closed subalgebras of C(K) and are called the Bourgain algebras of X.

We will refer to X, as the big Bourgain algebra and Xp as the small Bourgain
algebra. In addition, we have the following result [CT87],

Proposition 5.1.9. Let A be a closed subalgebra of C(K). Then, its Bourgain algebras Ay,
and Ap satisfy A C Ap C Ap.

The J. A. Cima and R. M. Timoney reformulation can be summarized as fol-
lows,

Theorem 5.1.10. Let X be a closed subspace of C(K). Then,

i) If X, = C(K) then X has the DPP.
ii) If Xp = C(K) then both X* and X have the DPP.

Theorem 5.1.11. Let A be the ball algebra A(B,) on K = By,. Then, its Bourgain algebras
Ap, and Ap are both equal to C(K). Hence, A* and A have the DP property.

A proof by induction using Theorem 5.1.4 allowed J. Bourgain to conclude
that A(D") and its dual also enjoy the DP property. Nevertheless, the line of the
proof is different to the one used for A(B,) because it was not clear whether the
Bourgain algebras of A(D") were the whole C(K) or not.
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5.1.3 Tightness

The concept of tightness was introduced by B. ]J. Cole and T.W. Gamelin in
[CG82]. It is related to Hankel-type operators on uniform algebras and reads as
follows,

Definition 5.1.12. Let K be a compact space. A closed subspace X of C(K) is said to be
tight if the Hankel-type operator S, is weakly compact for any g € C(K).

S. F. Saccone introduced a concept related to tightness in [Sac97]:

Definition 5.1.13. A closed subspace X of C(K) is said to be strongly tight if for any
g € C(K), the Hankel-type operator S, is compact.

It is clear that a strongly tight subspace is also tight. Saccone also observed
that infinite-dimensional reflexive spaces are tight in any C(K) space they are
embedded in, but can never be realized as strongly tight subspaces. However,
there is no known example of a tight uniform algebra which fails to be strongly
tight. If X is strongly tight, then X*, hence X enjoy the DP property by Theorem
5.1.10. S. F. Saccone also proved that X enjoys the Pelczyriski property (V) and its
dual is weakly sequentially complete if X is tight.

The space A** + C(K) is always a closed subspace of C(K)**. In [CG82] it is
proved that A is tight if and only if A** 4+ C(K) is a closed subalgebra of C(K)**.
In addition, this property is, roughly speaking, the abstract analogue of the solv-
ability of a certain abstract d-problem with a small gain in smoothness.

B. J. Cole and T. W. Gamelin proved that A(D") is not tight for n > 2. How-
ever, they proved that the algebra A(D) is tight when D is a strictly pseudoconvex
domain in C” for which a certain d-problem is appropriately solvable. Further re-
sults on tightness of the algebra generated by the weak*-continuous linear func-
tionals on the closed unit ball B of a complex dual Banach space E were given
by J. Jaramillo and A. Prieto in [JP93].

Most of the cases where we will study tightness involve uniform algebras.
Tightness for a closed subalgebra A of C(K) involves the compact space K. There-
fore, unless it is otherwise specified, when we deal with the tightness of an al-
gebra A, the algebra will be considered as a space of continuous functions on its
spectrum My.

5.2 The Bourgain algebras of A(D")

As mentioned above, neither from Cima and Timoney’s work nor from Bour-
gain’s work can we describe the Bourgain algebras of A(D"). Indeed, these will
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be examples of algebras of analytic functions enjoying the DP property whose
Bourgain algebras are themselves. For further results, see [Mir08].
Consider the case of the bidisk algebra, that is, A = A(D?). Consider A as a

closed subalgebra of C(ﬁz). Given h € Ay and 6, y € R, the function hg y, : C?—cC
defined by

I’l671’/(Z, W) = h(eieza ei‘l’w)

belongs to A,. This follows by noticing that the mapping (z,w) + (e®z,¢/¥w) is an
automorphism that leaves A invariant. Moreover, we have the following result,

Proposition 5.2.1. If o and By are integers, and the function g(z,w) is defined by
sew) = [ hoy(zwle 0 Virdoay,
0272

we have that g € Ay,.

Proof. Fix (z,w) € D Then, since g(z,w) is defined by a Riemann integral,
there exists a sequence of partitions (P,) such that

B, = {(ek()alllko)a-" ) (eknall/kn)}a ek() = lVk() = 07 ekn = VY, = 27[7
and t, € (0k,0n,.,,), Sk; € (Wi Wk,.,) fori=0,1,...,n— 1 such that

kﬂ

r}EEo Z hfkmsni (z, W)eiitkiaoeiilskiﬁ()(ekiﬂ - eki)(ll/km - Wki) =
k=0

/[O - h.y(z,w)e 0% VPodgdy.

Therefore, the integral is the limit of linear combinations of functions of type
hg y(z,w), which are in A, as we mentioned above. Hence, g is the pointwise limit
of a sequence in A, and we conclude that g is the weak limit of this sequence in
Ap by the Lebesgue Dominated Convergence Theorem. Since A, is weakly closed
by the Mazur’s Theorem 1.1.1, we obtain that g € A,. O

These results are easy to extend to A(D") for any n > 2. Our main result about
the Bourgain algebras of A(D") is the following,

Proposition 5.2.2. Let A be the algebra A(D") considered as a subspace of C(D") for
n>2. Then
Ap=A, = A.
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Proof. We show that A, = A for n = 2. The proof for A(D") follows the same
pattern. It is well-known that any infinite-dimensional Banach algebra contains a
copy of co; thus A(D) does not have the Schur property. So, there exists a sequence

{f,} C A(D) such that f, % 0 and || f,|| = 1.

We know that A C Aj, and that A, is a closed subalgebra of C(9D?). Suppose
that A C A;,. Then we show that there exists a trigonometric monomial in A, \ A;
since A C A,, there exists a function & € A, \ A and then h(e®z, ¢/Yw) belongs to Ay
for all real 6 and v. Indeed, since ¢ A, we have that & restricted to the torus dD?
must have a nonzero Fourier coefficient with at least one negative index, say the
coefficient ay, g, of z%who and suppose, without loss of generality, that By < 0. We
consider the function

/[ ]zh(eiez,ei"’w)eiaﬂeeiﬁo(”d@dq)
0,2x

to get an element of A;, again which restricts on the torus to the function g(z,w) =
Agy. By z%who, Therefore, it is clear that the monomial g belongs to Aj, \ A.

Put f, = fn /lag, p,|- Since g € A, and fn 50, there exist a sequence (y,) C A

such that ||g fn +yu|| —0.Setg,=¢ f,, + y, and consider the linear and continuous
operator P : C(dD?) — C(dD?) given by

PG = ( [ e an )b
Then, we have

Plonew) = ( [ (6@ ) n o ) b =

00 11 Bo fn(2) —Pog ) Bo+(/ —Pog ) Bo
(/aDaaoﬁo n |O(OB0|77 nj|w aD)’n(Z,rl)n njpwe.

Therefore, we have

P(gn)(z,w) = Aoy, (/ Olonﬁ()f ﬁodn) who.

|a0¢0 I30

Since we take the normalized Lebesgue measure on the circle, we have that

PGl =0 ([ an ) Il = sl = 1

which is a contradiction as we wanted. The result for Ag follows from the rela-
tionship A C Ap C A, given in Proposition 5.1.9. O
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5.3 Tightness in some algebras of analytic functions

In this section, we will study tightness in some algebras of analytic functions.
B. Cole and T. W. Gamelin proved that A(D) is strongly tight. We begin giving an
easy proof of this fact. Recall that the set of compact Hankel-type operators on a
uniform algebra A, which we will denote by A », is a closed subalgebra of C(K)
by [CG82] and [Sac95].

Theorem 5.3.1. Let A be the disk algebra A(D). Then, A is strongly tight.

Proof. Since A is an algebra by the comments above and it is clear that
A C A, we only need to prove that the function g : D — C defined by g(z) = 2
belongs to A by the Stone-Weierstrass theorem. Let (x,) be a bounded sequence
of functions in A and define y, : D — C by

_*n (z) —xa(0)
These functions belong to A, so
2xn(2) =26 (0) = yn(z) €A
when we consider z € dD. In consequence,
2y +A = 7x,(0) + A.

The sequence (x,(0)) is also bounded in C, so there exists a convergent subse-
quence which converges to zgp € C. We suppose, without loss of generality, that
this sequence is x,(0) itself, that is, x,(0) — zo. Then, the sequence given by

Sg(xn) =20 +A = 2x,(0) +A

tends to Zzp +A since zx,(0) — Zzp and the quotient map C(K) — C(K)/A is contin-
uous. Therefore, S, is compact, A » = C(K) and we conclude that A(D) is strongly
tight. O

As we mentioned in section 5.1.3, B. Cole and T. Gamelin proved that the poly-
disk algebras A(D") are not tight for n > 2 (see also [Sac95]). We offer two new
approaches to this result. First, by Proposition 5.2.2, we know that the Bourgain
algebra A, of A = A(D") is A itself and not the whole C(K). Since A(D") has the DP
property by the Bourgain’s work, if A were tight, then all the Hankel-type opera-
tors S, would be weakly compact and, hence, completely continuous. Therefore,
its Bourgain algebra A, would be the whole C(K), a contradiction. In general, we
obtain [Mir08],
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Corollary 5.3.2. Let X be a closed subspace of C(K). If X has the DP property, then
X is tight if and only if the Bourgain algebras X, and Xg are both equal to C(K).

On the other hand, we give a new technique which allows us to extend the
results about the tightness of A(D"). Let E be any Banach space and consider
F the Banach space F = C x E endowed with the supremum norm ||(z,x)|r =
sup{|z, ||x||[c}. We prove that A = A,(Bg) is never tight on its spectrum [Mir08]
and, therefore, in particular, the polydisk algebra is not tight on its spectrum. In
addition, we can apply this result in algebras as A, (B.,) and we also conclude that
they are not tight on their spectra.

Theorem 5.3.3. Let E be a Banach space and F = C x E endowed with the supremum
norm ||(z,x)||r = sup{|z|, [|x||g }. Then A = A,(BF) is not tight on its spectrum.

Proof. We have that By = D x By C M4 by Proposition 1.6.7. To prove that
A is not tight on its spectrum, we consider the function g : D x B — C defined
by g(z,x) = z. This function can be extended continuously to M, and we still
denote this function by g. Given g € C(M,), we will show that the Hankel-type
operator S, : A, (Br) — C(My)/A,(Br) is not weakly compact. For this, consider a
functional L € E* and xy € Bg such that ||xo|| = 1 and ||L|| = L(xo) = 1. Let {f,,} CA
be the bounded sequence defined by f,(z,x) = L(x)". If S, was weakly compact,
then there would exist a subsequence {f,, } of {f,} and h € C(M,) such that

Sefu, — h+A.
Recall that the dual space of C(M,4)/A is isomorphic to
At ={ueCcMy)* :u(f)=0forany f € A},

so we will refer indistinctly to u(h+A) or u(h) for any h € C(M4) when we deal
with u € (C(M4)/A)". Define the linear functional L, : C(Ms) — C by

1 1 f(z,¢"x0)
L = f(5,ePx)) —— | 2 ——"ld
o) =F(5,e%50) =5 | = i &
for all b € [0,27w). These functionals are well-defined since f € C(M4) and
|z—1/2| > 1/2 for all z € JD, so, in consequence, the integral is well-defined. It is
clear that they are linear and continuous since

1 1
L < WSl t g o5 [ 2 <31
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In addition, for any f € A,(dD x Bg), we have that

f(%aeibx()) =

| f(z,e®xp)
— ———dzf aD.
27 Jop 212 cLrorany e
Indeed, the functions defined by g,(z) = f(z,re’xy) converge uniformly to the
function g(z) = f(z,¢"xy) on z € D when r — 1~ for any 0 < r < 1 and, therefore,
the convergence is uniform when we divide by z—1/2 since |z—1/2| > 1/4. Then

ib
f z,re' x() 1 / lim f(z,re xo)dZ
27rlr—>l Z—1/2 27'“ oD r—1 Z—1/2
and by the Cauchy Formula we obtain
1 : L N f(z,rexq)
— =1 —,re' = lim — ———dz =
(rex0) = lim f(5,reTx0) = lim oo 1 &

ib ib
LIy QY Ny Y T
27 JoD r—1- Z—1/2 27i Jop Z—1/2

In consequence, we have that L,(f) = 0 for any f € A and thus L, € A* for any
b €10,2m). Since g f,, converges weakly to L,(h), we have

Ly(gfn,) — Lp(h) for any b € [0,27).

The functionals L, on gf,, are given by

1. 1 Ze™b L (x0 )"
L = —M "k——/ ——dz.

Since L(xg) = 1 and Z = 1/z for any z € dD, we have that

Zelnkb b 1 b 2 2
—dz=¢€"% / —dz=¢" / ——+ dz =
/anz—l/Z op 2(z—1/2) b\ z z—1/2

mk”l 2/ Sdi+ /Dz_ll/zdz}

By the Cauchy Formula we have that both integrals are equal to 27, so

Zemkb
dz=0
/anz—l/z <
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and we obtain that L,(gf,,) = s¢"™. In consequence, ¢"*/2 — L, (h) for any
b €10,2x), so |Ly(h)| = 1/2 and therefore

pet?  Ly(h)
%einkb Lb (h)

o (mr1—mi)b

=1.

Set my = ny41 — nx and consider, passing to a subsequence if necessary, that
my, < my, 1. We obtain that
imkb

e —1

and, by the Lebesgue Dominated Convergence Theorem, we have

2r 2n
lim [ e™Pdb = / 1db. (5.1)
k—eo )0 0

The first integral equals to

o 1 . 2n
/ eMbdp = {,—e’mkb] — ¥ =1-1=0for any k e N
0 imy 0

so equality 5.1 is a contradiction. We conclude that S, is not weakly compact and,
therefore, the algebra A is not tight on its spectrum. O

Now, we turn on attention to the tightness for H*(Bg). Recall that L* denotes
the space of bounded measurable complex-valued functions on the unit circle
dD, where the measure considered is the normalized Lebesgue measure on dD.
It is well-known that this space becomes a Banach algebra endowed with the
norm given by the essential supremum (see [Hof62]). It is also easy that H” is a
closed subalgebra of L. Furthermore, the spectrum M;-~ is the Shilov boundary
of H”. We also have that L* is isometrically isomorphic to C(dH*) via the Gelfand
transformation. For further results about H* as a Banach algebra, see [Hof62].

The following result given by J. A. Cima, S. Janson and K. Yale [C]Y89] about
the big Bourgain algebra of H* will be needed to prove Theorem 5.3.7,

Theorem 5.3.4. Let H* be a closed subalgebra of L. Then the Bourgain algebra (H*),
equals to H” + C(JD).

Let B be a uniform algebra and L a closed subset of its spectrum Mp. The
algebra B|; is given by the restrictions to L of elements in B. We will also need the
following proposition for Theorem 5.3.7,
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Proposition 5.3.5. Let A,B be uniform Banach algebras. Suppose that A is tight on its
spectrum and let L be a closed subset of the spectrum Mp such that By, is closed in C(L).
If there is an onto homomorphism T : A — B\, then By is tight on L.

Proof. Since T is onto, the restricted adjoint 7" : L — M, is a one to one
continuous mapping. We consider the continuous linear multiplicative mapping
T* :C(My) — C(L) given by T**(h) = hoT' for all h € C(M,). It is clear that for any
a € A, this operator on the Gelfand transform d equals to 7'(a), that is, 7%*(d) =
T (a). Observe also that the linear mapping ¥ : C(M,)/A — C(L)/B,, defined by

Y(h+A)=T"(h) +B,
is well-defined and continuous as well, since

177 (h) +By |l = inf ||7(r) +b]| = inf ||T™(h) + T (a)]] <
EBlL acA

(T | inf [[h+al| = [|T|] - [||n+Al[].
acA

Since T is onto, by the Bartle-Graves selection principle 1.1.3, there is a contin-
uous mapping S: B, — A such that T oS = idp, .

We prove that S, is weakly compact for any g € C(L). Given g € C(L), the
function go (T*)~! is continuous on the compact subset 7*(L) of M since T* is
one to one. Hence, go (T*)~! may be extended to M, in a continuous way. Denote
this extension by g. Thus, §oT* = g. Now we show that

bg =T"(S(b)g) forany b € B,.
Indeed, if u € L, we have

(bg)(u) = u(b) - g(u) = u(T(S(b))) - g(u) = (uoT)(S(b)) - g(u) =
S(b)(uoT)-(§oT")(u) = SB)(T" (u)) - &(T" () = (S(b) - &)(T* () = T"(S(b)3) (u)-
Thus we have shown that W o S;0S = S, and therefore we obtain that S, is

weakly compact. O

To prove the main theorem on tightness for H*(Bg), we summarize in the
following lemma some results related to the spectrum of H* and H*+C(dD). We
will denote by HZ® the space H* 4 C(dD). These results can be found in [Gar81].

Lemma 5.3.6. We have the following results,
a) The spectrum of HZ is given by My~ \.D.
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b) Consider dH*, the Shilov boundary of H”. Then, there are elements on My~ which
are not in DUJH.

In addition, recall also that J. Bourgain proved that H* has the Dunford-Pettis
in [Bou84b]. Then, we obtain the result for H*(Bg),

Theorem 5.3.7. Let E be a Banach space. Then, H*(Bg) is not tight on its spectrum
regardless the Banach space E.

Proof. First we prove that H” is not tight on its spectrum. By Lemma 5.3.6 a),
the spectrum of H;” is given by My~ ~D. We claim that H;* does not coincide with
L. Indeed, if these spaces coincide, their spectra would also coincide and, as we
have mentioned, the spectrum of L., is the Shilov boundary dH* of H*. Thus
JH” = M=\ D; that is, My~ = dH* UD. However, we know by Lemma 5.3.6 b)
that there are elements in My~ \ (dH* UD), a contradiction.

Since H” has the DP property, every weakly compact Hankel-type operator
Sg: H® — C(dH”)/H" is completely continuous. Therefore, we have that

{g € C(dH™) : S, is weakly compact } C (H”),.

However, the Bourgain algebra (H*), of H* in L* is H?’ by Theorem 5.3.4. In
consequence, H” is not tight on dH*, neither in its spectrum by Proposition 5.3.4.
Now, let E be a Banach space and consider the algebra H*(Bg). Pick e € E such
that ||e|| = 1 and set ¢ € E*, ||¢|| = 1, such that ¢(¢) = 1. Consider the mapping
i : D — Bg given by i(z) = ze and the composition operator C; : H*(Bg) — H®
given by
C,' (X) =Xxol.

This homomorphism is onto since for all f € H* we have that f o ¢ belongs to
H*(Bg) and Ci(fo @) = fogoi= f. If H*(Bg) was tight on its spectrum then, by
Proposition 5.3.5 above, H” would be a tight algebra on Mg, a contradiction. [l
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set, 42
Dunford-Pettis property, 108

entire function, 36
exposed point, 28
strongly exposed point, 28

Fredholm alternative, 27, 90
Fréchet derivative, 35

Gelfand
topology, 30
transform, 30
Gelfand topology, 30
Gateaux derivative, 35

Hankel operator, 107
Hankel-type operator, 111
Hardy space, 32
Hayman-Newman, 57
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interpolating sequence, 18, 43, 44
co—interpolating, 18, 44
co—linear interpolating, 18, 44
linear interpolating, 18, 44

invertible element, 29

iteration sequence, 86

Julia-type estimate, 88, 91

linear operator, 25
compact, 26
completely continuous, 27
finite rank, 27
power compact, 26
weakly compact, 27

maximal ideal, 29

space, see spectrum
measurable space, 98
measure

absolutely continuous, 99
measure space, 98
Montel’s theorem, 36
multiple power series, 33
Mobius transformation, 60

Newman theorem, 58

peak point, 31
strong, 31
polar of a set, 26
polydisk, 33
polydisk algebra, 33
polynomial
n—homogeneous, 34
approximable, 35
expansion, 35
finite type, 34
on a Banach space, 34
topology, 35

pseudohyperbolic distance, 40, 55, 61

Radon-Nikodym
composition operator, 98
operator, 100
property, 99, 100
set, 99
strong operator, 100

reflexive space, 25

Schur property, 28
simple function, 99
spectral radius, 29
spectrum

of f€A,29

of an algebra, 29, 38, 43
strictly inside, 42
symbol function, 41

theorem
Bartle-Graves, 27, 52
Bipolar, 26
Carleson interpolation, 58
James’ reflexivity, 28
Mazur, 26
Radon-Nikodym, 98
Rudin-Carleson, 32
Zheng, 87

tight, 111
strongly, 111

tight algebra, 114

tightness, 107, 114

uniform algebra, see Banach algebra
unit disk, 31

vector measure, 99

weak topology, 26
weak* topology, 26

Index

128



	Presentation
	Cover
	Agradecimientos
	Contents
	Resumen y Conclusiones en Español
	Introduction
	1 Preliminaries
	1.1 Topology and Banach spaces
	1.2 Geometry of Banach spaces
	1.3 Banach and uniform algebras
	1.3.1 Banach algebras
	1.3.2 Uniform algebras

	1.4 Complex Analysis
	1.4.1 Algebras of analytic functions on D
	1.4.2 The polydisk and ball algebras

	1.5 Polynomials on Banach spaces
	1.5.1 Polynomials on Banach spaces
	1.5.2 The polynomial topologies

	1.6 Algebras of analytic functions on Banach spaces
	1.6.1 Analytic functions on Banach spaces
	1.6.2 Algebras of analytic functions on Banach spaces
	1.6.3 The Davie-Gamelin extension
	1.6.4 Spectrum of algebras of analytic functions
	1.6.5 H (U) as a dual space

	1.7 The pseudohyperbolic metric
	1.8 Composition Operators

	2 Interpolation
	2.1 Background
	2.1.1 Interpolating sequences
	2.1.2 Results on uniform algebras

	2.2 Linear interpolation
	2.3 Results for dual uniform algebras

	3 Interpolation for H (BE). Separability of A (BE) and Au(BE)
	3.1 Background
	3.1.1 The pseudohyperbolic metric
	3.1.2 The classical interpolating theorems in H

	3.2 Interpolating Sequences for H (BE)
	3.2.1 The case of Hilbert spaces
	3.2.2 The case of Banach spaces
	3.2.3 Further results

	3.3 Separability in A (BE) and Au(BE)
	3.3.1 Separability in A (BE)
	3.3.2 Separability in Au(BE)


	4 Applications to Composition Operators on H (BE)
	4.1 A Lemma
	4.2 Spectra of Composition Operators on H (BE)
	4.2.1 Results on the spectrum of C
	4.2.2 A Julia-Type Estimate for C0(X) spaces

	4.3 Radon-Nikodým Composition Operators
	4.3.1 Background on the Radon-Nikodým Property
	4.3.2 Asplund sets
	4.3.3 Radon-Nikodým Composition Operators


	5 Hankel-type Operators Hankel-type Operators
	5.1 Background
	5.1.1 The Hankel-type operators
	5.1.2 The Dunford-Pettis property and Bourgain Algebras
	5.1.3 Tightness

	5.2 The Bourgain algebras of A(Dn)
	5.3 Tightness in some algebras of analytic functions

	Bibliography
	Index

