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ABSTRACT

Context. Superclusters are the largest systems in the Universe to give us information about the formation and evolution of structures in
the very early Universe. Our present series of papers is devoted to the study of the morphology and internal structure of superclusters
of galaxies.

Aims. We study the morphology of the richest superclusters from the catalogs of superclusters of galaxies in the 2dF Galaxy Redshift
Survey and compare the morphology of real superclusters with model superclusters in the Millennium Simulation.

Methods. We use Minkowski functionals and shapefinders to quantify the morphology of superclusters: their sizes, shapes, and
clumpiness. We generate empirical models of simple geometry to understand which morphologies correspond to the supercluster
shapefinders (Appendix A).

Results. Rich superclusters have elongated, filamentary shapes with high-density clumps in their core regions. The clumpiness of
superclusters is determined using the fourth Minkowski functional V3. In the K;—K, shapefinder plane the morphology of superclusters
is described by a curve which is characteristic of multi-branching filaments as shown by our empirical models.

We found several differences between observed and model superclusters. The curves of the fourth Minkowski functional V3 for ob-
served and model superclusters have different shapes indicating that their structure is different. The values of V; for the supercluster
SCL126 (the Sloan Great Wall) show that this supercluster has a very high density core which is absent in other superclusters. The
values of the shapefinders H;—H3 and K; and K, for observed superclusters have much larger scatter than for model superclusters.
The differences between the fourth Minkowski functional V3 for the bright and faint galaxies in observed superclusters are larger than
in simulated superclusters.

Conclusions. Our results show how the Minkowski functionals and shapefinders can be used to describe the morphology of super-
clusters: their shapes, sizes and clumpiness.

The shapes of observed superclusters are more diverse than the shapes of simulated superclusters. The larger scatter of the fourth
Minkowski functional V; for the bright and faint galaxies for observed superclusters compared to simulated superclusters is an
indication that the clumpiness of bright and faint galaxies in models does not reflect well the clumpiness of different galaxies in
observed superclusters.

Our results suggest also that the volume covered by the Millennium Simulations may be too small to properly describe the large

morphological variety of superclusters.

Key words. cosmology: large-scale structure of Universe — galaxies: clusters

1. Introduction

Superclusters of galaxies with characteristic dimensions of
up to 100 h~'Mpc! are the largest relatively isolated den-
sity enhancements in the Universe. Superclusters give us in-
formation about the early evolution of the structure in the
Universe (Kofman et al. 1987) and about the properties of the
supercluster-void network.

Early relatively deep all-sky catalogs of superclusters of
galaxies were complied by Zucca et al. (1993) and Einasto
et al. (1994, 1997, 2001) on the basis of Abell clusters of galax-
ies (Abell 1958; Abell et al. 1989). New deep redshift surveys of
galaxies (the Las Campanas Redshift Survey, the Sloan Digital

! h is the Hubble constant in units of 100 km s™! Mpc™.

Sky Survey and the 2 degree Field Galaxy Redshift Survey)
cover large regions of sky and allow us to investigate the dis-
tribution of galaxies and the properties of galaxies up to rather
large distances from us. These surveys have served as the basis
for compiling catalogs of superclusters of galaxies (Einasto et al.
2003a,b; Basilakos 2003; and Erdogdu et al. 2004).

On the basis of the 2dF Galaxy Redshift Survey, we recently
compiled a new catalog of superclusters of galaxies — Einasto
et al. (2007a, hereafter Paper I). In this study we also com-
piled a catalog of superclusters of the Millennium Simulation
by Springel et al. (2005), and used it to study possible selection
effects. In Einasto et al. (2007b, hereafter Paper II) we studied
the properties of superclusters. We characterized overall geom-
etry of superclusters by their size and the degree of asymmetry

Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20078037



http://www.edpsciences.org
http://www.aanda.org
http://dx.doi.org/10.1051/0004-6361:20078037

698

and compactness, and compared them with similar parameters of
simulated superclusters. In Einasto et al. (2007c, Paper III) we
discussed properties of galaxies in superclusters, compared the
density distributions and the properties of galaxy populations in
rich and poor superclusters. We also compared the luminosity
and multiplicity functions of observed and simulated superclus-
ters (Einasto et al. 2006).

One of the goals of the forthcoming Planck mission is the
study of the large scale structure using the Sunyaev-Zeldovich
(SZ) effect. Cross-correlation of SZ selected and optically se-
lected superclusters and rich superclusters in particular is part of
the research which will be done using the Planck data.

In Papers I and II we showed that most properties of simu-
lated superclusters and observed superclusters analyzed in these
papers agree well with each other. This means that we can use
the Millennium Simulation to generate superclusters for com-
parison with observations.

However, our studies showed that several differences exist
between rich and poor superclusters. Rich superclusters con-
tain high density cores, collections of rich galaxy clusters, poor
groups and single galaxies, which are absent in poor super-
clusters (Paper III). Rich superclusters have a larger fraction of
passive, red, non-star-forming galaxies than poor superclusters.
Interestingly, we found that the fraction of very luminous su-
perclusters in observed catalogs is larger than in simulated cat-
alogs. Of course, it is possible that the Millennium Simulation,
one realization of initial perturbations, may not be big enough
to find a large number of very rich superclusters. However,
its volume (500 Mpc? h73) is three times larger than the to-
tal volume covered by our 2dFGRS group catalog (Tago et al.
2006, hereafter T06), used to build the observed superclusters.
Furthermore, we see rich superclusters in both halves of the
2dFGRS; this indicates that rich superclusters could be a typical
feature of the galaxy distribution.

Therefore, among all superclusters, the richest superclus-
ters deserve special attention. The richest relatively close super-
clusters are the Shapley Supercluster (Proust et al. 2006, and
references therein) and the Horologium-Reticulum Supercluster
(Rose et al. 2002; Fleenor et al. 2005; Einasto et al. 2003c). Very
rich superclusters began to form earlier than other structures,
they are sites of early star and galaxy formation (e.g. Mobasher
et al. 2005) and first places where systems of galaxies form (e.g.
Ouchi et al. 2004; Venemans et al. 2004). The supercluster en-
vironment affects the properties of groups and clusters located
there (Plionis 2004). The fraction of X-ray clusters in rich super-
clusters is larger than in poor superclusters (Einasto et al. 2001),
and the core regions of the richest superclusters may contain
merging X-ray clusters (Rose et al. 2002; Bardelli et al. 2000).

In Paper II we presented a thorough review of earlier studies
about the shapes and sizes of superclusters as well as a detailed
comparison of sizes and shapes of rich and poor superclusters,
using a number of parameters. Our study showed that the rich-
est superclusters are more filamentary, less compact and more
asymmetrical than poor superclusters.

One possibility to characterize the shape of an object was
suggested by Sahni et al. (1998), who introduced shapefinders
on the basis of Minkowski functionals. These shapefinders have
been used before to estimate the filamentarity of superclusters
(Sheth et al. 2003; Basilakos 2003).

In the present papers our goals are, first, to show how the
morphology of individual superclusters can be quantified using
the Minkowski functionals and shapefinders. Second, we apply
these methods to study the morphology of the richest 2dFGRS
superclusters and for comparison — the morphology of individual
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richest superclusters from the Millennium Simulation in detail
(this paper) and to study substructures and galaxy populations in
these richest superclusters (Einasto et al. 2007d, hereafter RII).
This is the first time that the morphology and galaxy popula-
tions of observed superclusters is studied in detail, using the
Minkowski functionals and shapefinders.

Therefore, in the present paper we use the Minkowski func-
tionals and shapefinders to quantify the morphology of observed
and simulated rich superclusters. In contrast to most earlier stud-
ies, we calculate the Minkowski functionals for the whole range
of threshold densities, starting with the lowest density used in
the supercluster search, up to the peak density in the superclus-
ter core. We determine the clumpiness of superclusters using the
fourth Minkowski functional V3 and quantify the overall shape
of superclusters by the K;—K, shapefinder curves (the morpho-
logical signature). We also compare the Minkowski functionals
of bright and faint galaxies. We generate a series of geometrical
models which serve as prototypes of morphology to simulate the
morphological signature of observed superclusters.

For our study we select the richest observed and simulated
superclusters as described in Sect. 2.2.

The paper is composed as follows. In Sect. 2 we describe the
galaxy data, the supercluster catalog and the data on the richest
superclusters. In Sect. 3 we describe the Minkowski functionals
and shapefinders used to study the morphology of superclusters,
and present the results on supercluster morphology. In Sect. 4 we
discuss our results and provide our conclusions. In the Appendix
we introduce geometrical models as prototypes of morphology
to study the shapefinders, and describe different kernels used to
calculate the density fields of superclusters.

2. Data
2.1. Catalogs of superclusters and groups

We used the 2dFGRS final release (Colless et al. 2001, 2003)
that contains 245591 galaxies. This survey has allowed the
2dFGRS Team and many other groups to estimate the funda-
mental cosmological parameters and to study intrinsic proper-
ties of galaxies in various cosmological environments; see Lahav
(2004, 2005) for recent reviews. We used the data about galaxies
and groups of galaxies (T06) to compile a catalog of superclus-
ters of galaxies from the 2dF survey (Paper I). The 2dF sample
becomes very diluted at large distances, thus we restrict our sam-
ple by a redshift limit z = 0.2; we apply a lower limit z > 0.009
to avoid confusion with unclassified objects and stars. When cal-
culating (comoving) distances we use a flat cosmological model
with the standard parameters: matter density Q,, = 0.3, dark en-
ergy density Q4 = 0.7 (both in units of the critical cosmological
density).

Galaxies were included in the 2dFGRS, if their corrected
apparent magnitude b; lied in the interval from m; = 13.5 to
my = 19.45. The faint limit actually fluctuates from field to
field. Our aim is to restore as well as possible the actual lumi-
nosity density, accounting also for galaxies outside the survey
magnitude limits (for details see TO6 and Paper III). Therefore
these fluctuations have been taken into account in the calcula-
tion of weights assigned to galaxies, needed to find the luminos-
ity density field. The weights are proportional to the ratio of the
expected total luminosity to the luminosity in the observational
window of the survey at the distance of the galaxy.

In the calculation of weights we used, for every galaxy,
the individual values of the faint end magnitudes of the ob-
servational window, m,. We also used a correction for the
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incompleteness factor ¢ = y(1 — exp (m — u)), where y = 0.99,
m is the observed magnitude of the galaxy, and the parameter u
varies from field to field (see Eq. (5) of Colless et al. 2001). The
weight of the galaxy is proportional to the inverse of the incom-
pleteness factor. To calculate weights, we assumed that galaxy
luminosities are distributed according to the Schechter (1976)
luminosity function.

We used the weighted luminosities of galaxies to calculate
the luminosity density field on a grid with cell size of 1 2~! Mpc
and smoothed with an Epanechnikov kernel of radius 8 #~! Mpc
(see Appendix B for details); this density field was used to find
superclusters of galaxies. We defined superclusters as connected
non-percolating systems with densities above a certain thresh-
old density; the actual threshold density used was 4.6 in units of
the mean luminosity density. A detailed description of the super-
cluster finding algorithm can be found in Paper I.

Later we shall use the data on the luminosities of galaxies
to divide galaxies by their luminosity into the populations of
bright and faint galaxies. We wanted to use an absolute mag-
nitude limit close to the break luminosity M* in the Schechter
luminosity function. According to the estimates of the luminos-
ity function, the value of M™* is different for different galaxy pop-
ulations (Madgwick et al. 2003a; de Propris et al. 2003; Croton
et al. 2005); having values from —19.0 to —20.92. Therefore we
used a bright/faint galaxy limit M;; = —20.0 as a compromise
between the different values (see also Paper III).

For comparison we used simulated galaxy samples of the
Millennium Simulation by Springel et al. (2005). This simula-
tion was made using a very large number of dark matter par-
ticles (2160%) in a periodic box of 500 4~! Mpc, and adopting
standard values of cosmological parameters. For identifying su-
perclusters in simulations, we adopted the same selection win-
dow as in the case of observed superclusters (Paper I). Using
semi-analytic methods, catalogs of simulated galaxies were cal-
culated by Croton et al. (2006). The simulated galaxy catalog
contains almost 9 million objects, for which positions and ve-
locities are given, as well as absolute magnitudes in the Sloan
Photometric system (u,g,r,1i,z). The limiting absolute magni-
tude of the catalog is —17.4 in the r band.

Our analysis in Paper I showed that, in general, the proper-
ties of superclusters from the Millennium Simulation and the
2dFGRS sample agree well. We did not find systematic dif-
ferences between the observed and model superclusters which
could be caused by the use of different photometric systems
(2dF versus SDSS for Millennium).

The catalogs of observed groups and isolated galaxies
can be found at http://www.aai.ee/~maret/2dfgr.html,
the catalogs of observed and model superclusters — at
http://www.aai.ee/~maret/2dfscl.html.

2.2. The richest superclusters in real and simulated catalogs

Since our present analysis is focused on the study of the richest
superclusters, we selected from both our catalogs four very rich
superclusters. From the 2dF superclusters we chose, firstly, the
two richest superclusters, one from the Northern and one from
the Southern sky. These are the richest superclusters in our cat-
alog: the supercluster SCL126 in the Northern sky, and the su-
percluster SCL9 (the Sculptor supercluster) in the Southern sky,
according to the catalog by Einasto et al. (2001, hereafter EO1).

The other two observed superclusters were selected as
follows. There are several rich superclusters in the 2dFGRS

2 All absolute magnitudes have been calculated for 4 = 1.
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supercluster catalog, but they are far away, and due to the mag-
nitude limit of the survey, we would only get a small number
of galaxies in volume-limited supercluster galaxy samples. As
we wanted to study the galaxy content of the superclusters in an
accompanying paper, we had to select rich, but also relatively
nearby superclusters. In the Northern sky we selected the super-
cluster SCL88 (Sextans); this supercluster is the third richest in
the Northern sky, according to the number of galaxies, but we
chose this supercluster because it is relatively nearby and thus
includes fainter galaxies than more distant rich superclusters. In
the Southern sky we chose the nearby supercluster SCL10 (the
Pisces-Cetus supercluster, this is also the second richest super-
cluster in the Southern sky according to the number of galaxies).
All these superclusters are only partly covered by the 2dF Survey
region (EO1; Einasto et al. 2003c).

A description of these superclusters is given in Table 1.
There we provide the coordinates and distances of superclusters,
the numbers of galaxies, groups and Abell and X-ray clusters in
the superclusters, the mean values of the luminosity density field
in the superclusters and their total luminosities (from Paper II).
In our analysis we use volume-limited samples of galaxies from
these superclusters. The luminosity limits for these samples for
each supercluster are also given in Table 1.

The most prominent Abell supercluster in the Northern
2dF survey is the supercluster SCL126 (in EO1, N152 in Paper I)
in the direction of the Virgo constellation. This supercluster has
also been called the Sloan Great Wall (Vogeley et al. 2004; Gott
et al. 2005; Nichol et al. 2006).

Another rich supercluster in the Northern Sky is the Sextans
supercluster, SCL88 (in E01; N20 in Paper I). Only a small part
of this supercluster is located inside the 2dF survey volume, in-
cluding one of seven Abell clusters from this supercluster.

The richest supercluster in the Southern Sky is the Sculptor
supercluster (SCL9 in EO1; S34). There are several X-ray
clusters in this supercluster. This supercluster contains the
largest number of Abell clusters in our supercluster sample, 25.
However, only 12 of them are located in the region covered by
the 2dF redshift survey.

Another nearby prominent supercluster in the Southern sky
is the Pisces-Cetus supercluster (SCL10 in EO1, S5 in Paper I)
which contains the rich X-ray cluster, Abell 2734. Only one
of 19 Abell clusters from this supercluster is located inside the
2dF survey boundaries. This supercluster was recently described
as a rich filament of Abell clusters by Porter & Raychaudhury
(2005).

From the Millennium simulation, we also selected the rich-
est superclusters. We first use the data on the three richest super-
clusters. The supercluster M3 is the ninth richest in the catalog
by the number of galaxies, but the reason to include this system
in our analysis is that this supercluster is the second richest by
the number of density field (DF) clusters in it.

We define DF clusters (see Paper II) as local maxima of the
luminosity density; they correspond to observed galaxy clusters.
In Paper II we divided superclusters into richness classes, using
the number of DF clusters in them as a quantitative richness in-
dicator. Superclusters with 1 or 2 DF clusters are classified as
poor, and those with more than 10 DF clusters as rich superclus-
ters (the large number of DF clusters was the reason why we
included the simulated supercluster M3 in our analysis, see the
previous paragraph).

Most superclusters in our catalog are poor. Thus as a mor-
phological template for poor superclusters we use the data on
the best-known nearby supercluster, the Local Supercluster, de-
noted as V20 due to the chosen distance limit. The Local
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Table 1. Data on rich superclusters.
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ID RA Dec D Ngal Mlim Nvol Ncl Ngr NACO NX 6m Ltot
deg deg h7!'Mpc

SCL88 (20) 155.11 -2.54 184.5 556 -17.50 484 2 7 1(7) 2 57 0.319E+13
SCL126 (152) 194.71 -1.74 2512 3591 -19.25 1308 18 40,2 9 5 77 0.378E+14
SCL10 (5) 1.85 -28.06 177.4 952 -17.50 757 5 5 1(19) 5 62 0.482E+13
SCL9 (34) 9.85 -28.94 3263 3175 -19.50 1176 24 26,9 12(25) 6 81 0497E+14
M1 (195) 5437 -19.25 1589 9 8.2 0.204E+14
M2 (1089) 5047 -19.5 4048 25 74 0.489E+14
M3 (1386) 2016  -19.5 2007 17 7.2 0.638E+14
M4 (207) 3645 -19.5 1794 9 7.8 0.581E+14

Note: Identity ID is according to Einasto et al. (2001) with the name of Paper I in parenthesis; with sky coordinates and distance D for our
cosmology; the galaxy number Ny, for the whole superclusters; the magnitude limit My, and the galaxy number N, for volume limited parts of
the supercluster galaxies; N and N, are density field cluster and group numbers according to Paper I; Naco and Nx gives the number of Abell
and X-ray clusters, respectively, in that part of the supercluster covered by 2dF survey, the number inside parenthesis is the total number of Abell
clusters in this supercluster by Einasto et al. (2001) list; 6, — the mean values of the luminosity density field in superclusters, in units of mean

density; L, — supercluster total luminosity in Solar units.
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Fig. 1. The density field view of the superclusters. The light gray region shows the full supercluster, and the dark gray shows the density level for
the central (core) region which corresponds to the maximum value of the Minkowski functional V; (the richest substructure). This region contains
about 0.4—0.1 of the total mass of the supercluster (see Table 2). Galaxies are shown with small dots. Upper panels from left to right: SCL126,

SCLS88, SCL9, SCL10. Lower panels from left to right: M1, M2, M3, M4.

Supercluster represents a typical poor supercluster of a rather
small size, with one rich galaxy cluster, the Virgo cluster,
in the center, surrounded by filaments of galaxies and poor
groups. The Local Group is located near the edge of the su-
percluster. The total luminosity of the Local Supercluster is
L =3x102%h?% Ly, and its mass is M = 1 x 105 p~1 M.
Most superclusters in our catalog of the 2dFGRS superclus-
ters are of the Local Supercluster type (Paper I). The data
on the Local Supercluster galaxies are taken from ZCAT
(http://www.cfa.harvard.edu/~huchra/zcat/). In total
we have in this supercluster 328 galaxies in a volume-limited
sample (M < —18.0), with the maximum distance of 20 4~! Mpc.

The distribution of galaxies in regions of different density
in real and simulated superclusters is shown in Fig. 1. We see
at a first glance how filamentary all the superclusters are. The
presence of several concentration centers, as well as many high-
density knots is also clearly seen. Historically, the first paper to

show quantitatively the filamentary nature of superclusters was
by Einasto et al. (1984) using the friend-of-friends method. The
filamentary structure of superclusters is not a kernel effect, as
the kernels used in density estimation are isotropic. However,
the lengths of these filaments (supercluster sizes) depend on the
choice of the kernel size. See Sect. 3.2 and Appendix B for
the description of our choices; see also a detailed discussion in
Paper L.

3. Morphology of superclusters
3.1. Morphological descriptors

We characterize superclusters by their outer (isodensity) surface,
and its enclosed volume. When increasing the isodensity level
over the threshold overdensity, we move into the central parts of
the supercluster. The morphology and topology of the isodensity
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Table 2. The Minkowski functionals and shapefinders for rich superclusters.

ID mg Vo Vi Vo, Vs Hi(D) H, (W) H3;(@) Ki(P) KyF) Ki/K,
SCL126 0.0 1.27e5 2566.0 56.9 1 24.67 28.71 42.67 0.08 0.20 0.39
0.89 1462 210.2 41.2 9 3.48 3.25 30.91 -0.03 0.81 -0.04

SCL88 0.0 2.84e4 743.10 24.44 1 19.11 19.36 18.33 0.01 -0.03 -2.36e-01
0.65 927 103.40 15.33 4.48 4.29 11.50 -0.02 046 —4.71e-02

SCL9 0.0 1.75e5 3591.0 78.11 1 24.42 29.27 58.58 0.09 0.33 0.27
0.79 3855 4453 71.11 15 4.33 3.99 53.33 -0.04 0.86 -0.05

SCL10 0.0 3.72¢4 885.80 27.11 1 20.97 20.80 20.33 -0.004 -0.01 0.35
0.86 425 59.56 11.33 3.57 3.35 8.50 -0.03 0.43 -0.07

V20 0.0 3.05¢4 736.90 23.33 1 20.72 20.11 17.50 -0.02 -0.07 0.22
0.43 1589 121.60 11.56 2 6.53 6.70 8.67 0.01 0.13 0.10

M1 0.0 7.294 1649.00 42.56 1 22.09 24.67 31.92 0.06 0.13 0.43
0.59 2354 244.00 33.89 5 4.82 4.58 25.42 -0.03 0.69 -0.04

M2 0.0 1.82e5 3772.0 77.78 1 24.18 30.87 58.34 0.12 0.31 0.40
0.65 5930 6440 91.89 15 4.60 4.46 68.92 -0.02 0.88 -0.018

M3 0.0 1.19e5 2624.0 63.67 1 22.64 26.24 47.75 0.07 0.29 0.25
0.65 3860 420.9 60.00 4.59 4.47 45.00 -0.01 0.82 -0.02

M4 0.0 1.06e5 2381.00 58.00 1 22.26 26.13 43.50 0.08 0.25 0.32
0.60 3454 37490 55.78 9 4.61 4.28 41.84 -0.04 0.81 -0.05

Columns: Col. 1: Supercluster ID, Col. 2: mass fraction, m;, Cols. 3—6: Minkowski functionals V, — V3, V; in (h! Mpc)3, Vyin (07! Mpc)z, V,
in 27! Mpc, Cols. 7-9: shapefinders H, (thickness), H, (width) and H; (length), in 4#~! Mpc, Cols. 10—12: shapefinders K (planarity), K, (filamen-

tarity) and their ratio, K /K;.

contours is (in the sense of global geometry) completely charac-
terized by four Minkowski functionals.
For a given surface the four Minkowski functionals are:

—_—

the first Minkowski functional V), is the enclosed volume V,

2. the second Minkowski functional V; is proportional to the
area of the surface S, namely,
1
Vi=gS; (1
3. the third Minkowski functional V, is proportional to the in-
tegrated mean curvature C,
1 1 1 1
V:_C’ C=—- — + — dS, 2
2 371' 2 L (R 1 Rz) ( )
where R; and R, are the two local principal radii of
curvature;
4. the fourth Minkowski functional V3 is proportional to the in-

tegrated Gaussian curvature (or Euler characteristic) y,

1 1 1
V==, = — ds. 3
T YT g (Rle) @
The Euler characteristic is simply related to the genus, G
G=1-Vs. “)

The fourth Minkowski functional gives us the number of isolated
clumps (or voids) in the sample (Martinez et al. 2005; Saar et al.
2007). One should beware of extra factors of 2 that are some-
times seen in formulae as (4). With conventional normalization
there should be no extra factors in (4).

To characterize the shape of an object Sahni et al. (1998) and
Shandarin et al. (2004) introduced shapefinders, a set of com-
binations of Minkowski functionals: H; = 3V/S (thickness),
H, = §/C (width), and H3 = C/4r (length). These quantities
have dimensions of length and are normalized to give H; = R
for a sphere of radius R. For a convex surface, the shapefind-
ers H; follow the inequalities H; < H, < Hj. Oblate ellipsoids
(pancakes) are characterized by H; < H, ~ Hj3, while prolate
ellipsoids (filaments) are described by H, ~ H, <« Hj.

Additionally, Sahni et al. (1998) defined two dimensionless
shapefinders K| (planarity) and K, (filamentarity): K; = (H, —
H\)/(Hy + Hy) and K, = (H3 — H>)/(H3 + Hy).

Then, after Sahni et al. (1998), the following shapes can be
distinguished:

spheres with H) = H, = H3,i.e. K| = K; = 0;
ideal filaments with K; =~ 0, K> =~ 1;

real filaments with K; < K5;

ideal pancakes with K} ~ 1, K, = 0;
pancakes with K| > K5;

ideal ribbons with K; ~ K, =~ 1;

ribbons with K1 /K, ~ 1.

Nowunkwh -

In the (K, K;)-plane filaments are located near the K-axis, pan-
cakes near the K;-axis, and ribbons along the diagonal, connect-
ing the spheres at the origin with the ideal ribbon at (1, 1).

3.2. Supercluster morphology

We present the results of our calculations of Minkowski func-
tionals and shapefinders in Table 2 and Figs. 2—4. The orig-
inal luminosity density field, used to delineate superclus-
ters (Papers I, II), was calculated using all galaxies. For
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Fig. 2. The Minkowski functional V3 (the Euler characteristic) (left panels) and the shapefinders K; (planarity) and K, (filamentarity) (right panels)
for the observed (upper panels) and simulated (lower panels) superclusters. In the right panels we indicate for SCL126 and M1 with triangles the
values of K, K,, where the mass fraction m; = 0.0 (the whole supercluster), and for all superclusters with filled circles the values of K, K>,

which correspond to the m;, at which V3 has a maximum.

morphological studies we have to use volume-limited galaxy
samples; this makes our results insensitive to selection correc-
tions. For this reason the density field had to be recalculated.
We used a kernel estimator with a B3 box spline as the smooth-
ing kernel, with the total extent of 16 4~ Mpc (for a detailed
description see Appendix and Saar et al. 2007). This kernel cov-
ers exactly the 16 h~' Mpc extent of the Epanechnikov kernel,
used to obtain the original density field, but it is smoother and
resolves better density field details (its effective width is about
8 h~! Mpc). As the argument labeling the isodensity surfaces, we
chose the (excluded) mass fraction m; — the ratio of the mass in
regions with density lower than the density at the surface, to the
total mass of the supercluster. When this ratio runs from 0 to 1,
the iso-surfaces move from the outer limiting boundary into the
center of the supercluster, i.e. the fraction my = 0 corresponds to
the whole supercluster, and m; = 1 to its highest density peak.
This definition may seem unnatural, but we kept it as it is in
accordance with that used in all topological studies of the large-
scale structure to date (see, e.g., Sheth et al. 2003; Saar et al.
2007, and references therein). The reason for this convention
(the higher the density level, the higher the value of the mass

fraction) is historical — the most popular argument for the genus
and for the Minkowski functionals has been a volume fraction
that grows with the density level; all other arguments are chosen
to run in the same direction.

In Table 2 we give for all superclusters the values of the
Minkowski functionals and shapefinders for two mass fraction
values: my = 0.0, which corresponds to the whole supercluster,
and the value of my, at which the fourth Minkowski functional V3
has a maximum (except for SCL126, see below) — this shows the
maximum number of isolated cores (clumps) that the superclus-
ter breaks into. At lower densities (mass fractions) these clumps
are joined together, and at higher densities they start to disap-
pear, when the density levels get higher than their maximum
density.

3.2.1. Minkowski functionals for superclusters
At small mass fractions the iso-density surface includes the

whole supercluster. Thus volumes and areas of superclusters
(Vo and V), Table 2) are large. As we move to higher mass
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Fig. 3. Shapefinders H, (thickness), H, (width), H3 (length) (in 4~' Mpc) for the observed superclusters (upper panels) and for the simulated

superclusters (lower panels) versus the mass fraction my.
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Fig. 4. Shapefinders K, (planarity) and K, (filamentarity) for the observed superclusters (upper panels) and for the simulated superclusters (lower

panels) versus the mass fraction m;.

fractions, the iso-density surfaces include only higher density
parts of superclusters, and their volumes and areas get smaller.
At very high mass fractions only the highest density clumps in
superclusters give their contribution to the supercluster. Indi-
vidual high density regions in a supercluster, which at low mass
fraction are joined together into one system, began to separate
from each other, and the value of the fourth Minkowski func-
tional (V3) increases. At a certain density contrast (mass frac-
tion) V3 has a maximum showing the largest number of iso-
lated clumps in a given supercluster at the spatial resolution
determined by the smoothing kernel. At still higher density

contrasts only the highest density peaks contribute to the super-
cluster.

Figure 2 (left panels) shows the fourth Minkowski func-
tional V3 for the most massive real and simulated superclus-
ters. The Vi curve for the supercluster SCL9 in the left upper
panel shows a characteristic behavior. At the mass fraction value
of about 0.2, the value of V3 for SCL9 begins to increase and
reaches a maximum value at my ~ 0.75. The values of V3 then
begin to decrease. This indicates that the overall morphology of
the supercluster SCL9 is clumpy; this supercluster consists of
a large number of clumps or cores connected by relatively thin
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filaments, in which the density of galaxies is too low to con-
tribute to the supercluster center over a certain mass fraction.
The maximum value of the fourth Minkowski functional V3
(Table 2) shows that the supercluster SCL9 has the largest num-
ber of isolated clumps, although this supercluster is only partly
covered by our sample — the value of V3 for the whole superclus-
ter may be twice as large as our present calculations show. This
supercluster is the largest and richest of observed superclusters
in our present sample, with the largest size and volume.

The second richest and largest supercluster among the ob-
served superclusters is the supercluster SCL126. Figure 2 shows
that the V3 curve for SCL126 has a shape which is quite dif-
ferent from that for SCL9. At a mass fraction my ~ 0.4 the
value of V3 increases rapidly, peaks, decreases again and has
another peak at a mass fraction of about my ~ 0.85. This be-
havior indicates that the overall morphology of the supercluster
SCL126 is quite homogeneous, which is characteristic of a rich
filament with several branches (see also Sect. 3.3). Interestingly,
the V3 curve for the supercluster SCL126 shows several peaks at
a high mass fraction, ms > 0.95. This indicates the presence of
a very high density core region with several individual clumps
in it — this is the main core region of the supercluster with sev-
eral Abell clusters, which are also X-ray clusters (Einasto et al.
2003c). In other superclusters we do not see such a high den-
sity and very compact core. Another example of a supercluster
with a high density core is the simulated supercluster M2, but in
this supercluster the peaks at high mass fraction in the V3 curve
appear at mass fractions my < 0.95.

In Fig. 2 the observed superclusters separate clearly into
two different classes. The superclusters SCL88 and SCL10 have
much smaller numbers of density peaks than the superclusters
SCL126 and SCLO. This may be partly explained by the incom-
pleteness of the SCL10 and SCL88, which are cut by the sur-
vey boundaries. In the case of the Virgo supercluster V20 the
maximum value of the fourth Minkowski functional is only 2,
describing a compact supercluster.

The shapes of the V3 curves for simulated superclusters in
Fig. 2 and their maximum values show large variations. In the
case of the supercluster M2 the V3 curve shows a rapid increase
at the mass fraction m; ~ 0.4, and three maxima, one at ms ~ 0.9
showing that this supercluster is very clumpy. The maximum
value of V3 is comparable to that for the observed supercluster
SCL9, and the presence of a peak at high values of m; is com-
parable to that for SCL.126. However, the mass fraction at which
the peak occurs is lower than in the case of SCL126.

The shapes of the V3 curves for simulated superclusters M3
and M4 resemble those for the observed supercluster SCL9;
however, the maximum values of V3 are less than 10, showing
that the number of isolated cores or clumps in these simulated
superclusters is smaller than in SCL9. The simulated superclus-
ter M1 has the smallest maximum value of V3 among the se-
lected simulated superclusters showing that this supercluster is
less clumpy than other simulated superclusters. The number of
isolated clumps in this supercluster is still larger than that for the
observed superclusters SCL.10 and SCL8S.

We have determined the number of density field clusters in
superclusters (Paper I). Tables 1 and 2 show that in all superclus-
ters except SCL88 and M4 the maximum value of V3 is about
half that density field clusters indicating that typically high den-
sity cores in superclusters contain two density field clusters. In
superclusters SCL88 and M4 these values are equal. The value
of V3 for SCL9 and M2 is negative at the mass fraction m; =~ 0,
indicating that there are holes through the supercluster.

M. Einasto et al.: 2dF rich superclusters. I.

Using the data in Table 2 we can estimate that in high density
regions of superclusters (at mass fractions where the value of
the fourth Minkowski functional has a maximum) the density
of galaxies is about ten times higher than the mean density of
galaxies in the same supercluster.

In summary, in this subsection we showed how the
Minkowski functionals characterize the volume, area and
clumpiness of a supercluster. We quantified the clumpiness of
a supercluster by the fourth Minkowski functional V3 which
determines the number of isolated cores or clumps in super-
clusters. The shape of the Vi(m¢) curve gives us information
about the overall morphology of a supercluster. We showed that
the supercluster SCL126 resembles a rich filament with several
branches, while other rich superclusters can be described as hav-
ing a large number of clumps connected by chains of galaxies
(“multispiders”). The maximum values of the fourth Minkowski
functional V; for the richest superclusters from observations and
from models (SCL9 and M2) coincide (Vi** = 15). However,
the shapes of the V3(my) curves for these superclusters are dif-
ferent, indicating that the structure of these superclusters differs,
the supercluster M2 having a larger number of clumps for a wide
range of mass fraction values.

We note that in the Millennium Simulation we use the SDSS
r-band luminosities, i.e. more strongly clustered red galaxies
should dominate. This could lead to systematically larger num-
bers of clumps at high mass fraction values for model super-
clusters and, as a result, systematically larger values of the
fourth Minkowski functional V3 than in observed superclusters.
Figure 2 shows that this is not the case. Therefore the differences
between model and observed superclusters are not due to the dif-
ferent photometric systems.

3.2.2. Shapefinders Hi—H;

Next we analyze the shapefinders H—H3 for superclusters.
These quantities have dimensions of length, and H; < H, < H3
in the case of a convex body (e.g., triaxial ellipsoid). Therefore,
they can be used to study the dimensions of superclusters. The
shapefinder H; is the smallest and characterizes the thickness
of superclusters. The shapefinder H, as an intermediate one is
an analogy of the width of a supercluster. The width is calcu-
lated as H, = S/C, and contains information about both the area
and curvature of an isodensity surface. The shapefinder Hj is the
longest and describes the length of the superclusters. Of course,
this is not the real length of the supercluster, but a measure of
the integrated curvature of the surface which may become very
large for irregularly shaped and curved surfaces.

In Fig. 3 (upper panels) we plot the shapefinders H, to H3 for
the richest superclusters. This figure shows that the extension of
the superclusters as measured by the shapefinders H; and H, is
about 15-20 A~! Mpc for the complete supercluster (m; = 0,
Table 2). At higher mass fractions, ms ~ 0.5, the iso-surfaces in-
clude only higher density parts of superclusters, H; and H, are
less than 10 ~~! Mpc, i.e. the supercluster centers are still typi-
cal 3-dimensional objects. At mass fractions which correspond
to the maximum value of Vj (the core regions of superclusters)
H; and H, are about 5 4! Mpc. The scatter of the shapefinder H,
for observed superclusters is larger than that of H; showing the
influence of a different number of substructures (isolated clumps
or cores) in these systems.

The shapefinder H; differs strongly for the four observed
superclusters. For the whole superclusters (my = 0) the val-
ues of Hs are about 20 4~! Mpc for poorer superclusters and
40-60 h~! Mpc for the two richest superclusters, SCL126 and
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SCL9 (Table 2). We note that for the richest two superclusters
at mean mass fractions ms = 0.5 the value of Hj is larger than
at my = 0, reaching a maximum value of about 60—80 4~ Mpc.
This shows their complicated structure with subsystems of large
curvature. The value of Hj is largest in the case of the super-
cluster SCL9, which is the longest supercluster with the largest
number of isolated clumps or cores in it. In the case of other ob-
served superclusters the value of H3 decreases when we increase
the mass fraction and move into the central parts of the super-
clusters. This is additional evidence that these superclusters are
less clumpy than SCL9 and SCL126. At mass fractions m =~ 0.5
the value of Hj for these superclusters is less than 20 4~ Mpc.

Figure 3 (lower panels) shows the shapefinders H,—H3 for
simulated superclusters. We see that the shapefinder H; (thick-
ness) for the simulated superclusters has values close to those
for observed superclusters, but with a much smaller scatter. The
widths of the simulated superclusters (H;) have values interme-
diate between those for the observed superclusters SCL9 and
SCL126, and for other observed superclusters. Again, the scatter
of these values is very small.

The shapefinder H3 (length) shows a rather different picture.
The curve for the simulated supercluster M2 is quite similar to
that of the observed supercluster SCL9; H3 for the superclus-
ters M3 and M4 are close to those of SCL126. The length of the
shortest simulated supercluster M1 is still greater than the length
of the shortest observed superclusters, SCL10, SCL88, and the
Local Supercluster. The large values of H3 at intermediate mass
fractions, m; ~ 0.5 (30 and 90 h~! Mpc) indicate the presence
of substructures in superclusters with high values of the curva-
ture C.

In summary, we show how to quantify the thickness, width
and length of a supercluster using the shapefinders H;—H;
(Table 2 and Fig. 3). Our calculations show that the largest differ-
ence between the shapefinders H; to H3 for real and simulated
superclusters is that in the case of real data, the scatter of the
values of these shapefinders is much larger than in the case of
model superclusters.

3.2.3. Shapefinders Ky and K»

Next we study the shapefinders K; and K, for the richest super-
clusters (Fig. 4 and Table 2). K; is defined by the thickness H;
and the width H,, this characterizes the planarity of the super-
clusters; K is calculated from the width H, and the length H;
which characterizes the filamentarity of superclusters.

In the upper panels of Fig. 4 we present the planarity and the
filamentarity for observed superclusters. The values of the pla-
narity K; for the full superclusters (the mass fraction my = 0)
are 0.10—0.15 for the richest superclusters, SCL.126 and SCL9,
and about 0.05 for other observed superclusters. As the mass
fraction increases and only the higher density parts contribute
to superclusters, the values of the planarity K start to decrease.
For the supercluster SCL126 the K| curve has a small minimum
at the mass fraction m; ~ 0.4; this is the mass fraction value at
which the value of the fourth Minkowski functional V3 starts to
increase. In all rich superclusters, the value of K for the core re-
gions becomes negative. This shows that at very high mass frac-
tions, which include only the central regions of superclusters,
the isodensity surfaces have complex shapes, different from the
heuristic classification based on convex ellipsoids as described
above.

The values of the filamentarity for observed superclusters,
K>, have much larger scatter than the values of the planarity, K.
For the richest superclusters, SCL.126 and SCL9, K, ~ 0.2-0.3,
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the other observed superclusters have smaller K, (at the mass
fraction m¢ = 0). The central parts of these superclusters (at high
values of mass fractions) are more filamentarity than the full su-
perclusters. The Virgo supercluster V20 has a different shape, for
this supercluster the the filamentarity K2 decreases for m; < 0.2.

In the case of simulated superclusters, the filamentarities K,
have a smaller scatter than those for the observed superclus-
ters. The simulated supercluster M2 has the largest value of K,
in our sample, K, = 0.6, other simulated superclusters have
K> ~ 0.3-0.5, similar to the observed superclusters SCL126 and
SCL9 (for the whole supercluster).

In earlier studies the shapes of superclusters have been
characterized using the ratio K|/K, for the full superclusters
(Basilakos et al. 2001; Basilakos 2003). We plot this ratio for
the whole mass fraction interval in Fig. 4, right panels. This fig-
ure shows that the ratios K;/K, for the observed and simulated
superclusters are quite similar, having values of about 0.25-0.4.
This shows a high degree of filamentarity in the case of the whole
superclusters. The ratios K;/K, slowly decrease, as we increase
the mass fraction and move to central regions of superclusters.
Exceptions are the observed supercluster SCL10 with the high-
est values of K/K; at intermediate mass fractions, and the Virgo
supercluster V20 for which this ratio changes strongly.

Figure 4 (right panels) and Table 2 show that the model su-
percluster M2 has the largest ratio K;/K, among the superclus-
ters under study — this is the most planar supercluster which also
has the largest number of clumps in it.

The information about the shapes of superclusters can be
best described by their morphological signature, the path in the
shapefinder K|—K; plane for varying m (Fig. 2, right panels),
both for the observed and model superclusters. To show which
part of the shape plane corresponds to the whole supercluster,
we mark with triangles the values of K, K, at the mass frac-
tion my = O for the superclusters SCL126 and M1. We also mark
with circles the values of K|, K; at the mass fraction correspond-
ing to the maximum value of the fourth Minkowski functional V3
(Table 2). As explained in Appendix B, we restrict the m; from
below, starting the curves from m; = 0.01. This is done to elim-
inate the influence of the slight non-isotropy of the B3 kernel at
low densities.

In the shapefinder plane K|—K>, the observed superclusters
SCL126 and SCL9, and the simulated superclusters have sim-
ilar trajectories. As we change the mass fraction, the K|—K;
shapefinder path moves from low K; and K, values (this cor-
responds to the whole supercluster and low mass fractions) to
the upper left region with higher K, and smaller K; (high mass
fractions, the core of the supercluster). At first, as the mass
fraction increases, the value of the shapefinder K; (the indica-
tor of planarity) almost does not change, but the value of the
shapefinder K, (the indicator of filamentarity) increases, in ac-
cordance with Fig. 4. At a certain mass fraction the value of
the shapefinder K, reaches its maximum value. As we futher in-
crease the value of the mass fraction (and move to higher densi-
ties, into the cores of superclusters), the value of the shapefinder
K> changes a little, but the value of the shapefinder K; decreases.

We see that the richest superclusters have a distinct signature
in the shapefinder K;—K) plane — a characteristic curve which de-
scribes the typical morphology of superclusters. This signature
is characterized by a rising path with a small fixed positive K, a
plateau at the maximum value of K3, and a descending branch at
a small fixed negative value of K. In Appendix A we show that
this curve is characteristic of multi-branching filaments.

In summary, superclusters are extended 3-dimensional
objects composed of multi-branched filaments. Among the
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Fig. 5. The fourth Minkowski functional V; for the bright (B, M < —20.0) and faint (F, M > —20.0) galaxies of the observed superclusters (upper
panels, from left to right: SCL126, SCL88, SCL9 and SCL10) and for the Millennium simulation (lower panels, from left to right: M1, M2, M3,

M4).

observed superclusters, there is a large scatter of the different
curves in the K;—K; plane. We find two main types of behav-
ior. In the K;—K; shapefinder plane the morphology of rich su-
perclusters is described by a curve (morphological signature),
which is characteristic of multi-branching filaments. In the case
of the Virgo supercluster we see how the Minkowski function-
als and shapefinders describe a compact supercluster with one
central cluster and accompanying filaments, where poorer clus-
ters and groups of galaxies reside. The morphological signature
for the Virgo supercluster is characteristic of a spider — a su-
percluster with one central body, surrounded by filaments (see
Appendix A).

3.3. Distribution of bright and faint galaxies

As a further application of Minkowski functionals we investigate
the distribution of bright and faint galaxies in rich superclusters.
We divide galaxies into populations of bright and faint galaxies
using a bright/faint galaxy limit M;; = —20.0. The same division
was used in Paper III (Einasto et al. 2007¢) to study the distribu-
tion of bright and faint galaxies in superclusters. Next we calcu-
late the Minkowski functionals separately for these two popula-
tions of galaxies, for both real and simulated superclusters.

The fourth Minkowski functional, V3, for the bright and faint
galaxies in the observed and simulated superclusters is shown
in Fig. 5. We see that there are large differences of the fourth
Minkowski functional for these populations in observed super-
clusters. This Minkowski functional characterizes the clumpi-
ness of superclusters. In the supercluster SCL126 a high level
of clumpiness is observed over a large range of mass fractions,
both for the bright and faint galaxies. For the bright galaxies V3
reaches a value of about 10, while for the faint galaxies the value
of V3 remains about 5. In the supercluster SCL9 the clumpiness
of both the bright and faint galaxies peaks at a relatively high
value of the mass fraction, but for the bright galaxies in a broader
mass fraction range. In the superclusters SCL88 and SCL10 the
clumpiness is very low, again for galaxies of both brightness
classes. The fact that the values of V3 for the bright galaxies
are larger than for the faint galaxies shows that the bright galax-
ies are located in numerous clumps or cores while the fainter
galaxies form a less clumpy population around them. This is a

reflection of the well-known luminosity segregation effect. For
early determinations of this relation, we refer to Hamilton (1988)
and Einasto (1991); the latest study about this segregation is by
Park et al. (2007), see also references in Paper RII.

In contrast, the values of V; for the bright and faint galaxies
in simulated superclusters differ less than in the case of the ob-
served superclusters. Therefore, the clumpiness of the bright and
faint galaxies in model superclusters is rather similar. The rea-
son for this difference between the real and model superclusters
is not yet clear; one possible explanation is that the luminosity-
density correlation is not well modeled. In Paper I we showed
that, on large scales, the luminosity-density relation is built into
the Millennium Simulation galaxy sample. However, at small
scales there are large differences of clumpiness between these
samples; this represents the largest difference between the real
and simulated galaxy populations found in this paper.

4. Discussion
4.1. Shapes and sizes of superclusters

To characterize the shape of an object Sahni et al. (1998),
Sheth et al. (2003) and Shandarin et al. (2004) have investi-
gated the morphology of simulated superclusters and voids us-
ing the Minkowski functionals and shapefinders. They studied,
among others, the largest (percolating) supercluster, and showed
that according to shapefinders, this system is filamentary. Sheth
et al. (2003) plotted the morphology of the largest (percolat-
ing) supercluster in the shapefinder K;—K, plane for a limited
interval of threshold densities. In this paper the shapefinder
H; = C/4n(G + 1) (G is the genus) is defined differently from
their earlier definition that we use (Hz = C/4n); the first defi-
nition gives length per clump). However, if we recalculate our
shapefinder in the same way as Sheth et al. (2003), we get rather
similar shaped curves as their Fig. 18.

The shapes and sizes of the observed superclusters were
studied by Basilakos et al. (2001), Kolokotronis et al. (2002),
and by Basilakos (2003), and those of LCDM superclusters
by Basilakos et al. (2006) using Minkowski functionals and
shapefinders for the density field, which was smoothed with
a Gaussian kernel. Kolokotronis et al. (2002) calculated the
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shapefinders K, K5, and their ratio K; /K, for Abell superclus-
ters and showed that about 50% of all superclusters have the
ratio K; /K, < 1 as is typical for filaments. They also showed
that the ratio K /K is larger for poor superclusters, which are
typically planar structures (pancakes), and smaller for rich su-
perclusters, which are more filamentary. This also agrees with
our study which showed that the richest superclusters are multi-
branching filaments. Similarly, Basilakos (2003) showed that at
least 70% of superclusters from their SDSS supercluster catalog
are filamentary (the shapefinder K;/K, < 1). They showed also
that in models, filamentary superclusters dominate.

All these studies concern only the “outer” shapes of super-
clusters and do not treat their substructure. We expand this ap-
proach by using the Minkowski functionals and shapefinders to
analyze the full density distribution in superclusters, at all den-
sity levels.

The Local Supercluster, as the closest and best studied super-
cluster, serves as a supercluster template for poor superclusters,
which are the most numerous superclusters in our catalog. As
seen in the morphology figures, its morphology is still different
from that of other superclusters in the present selection (see, es-
pecially, the K /K, ratio and its morphological signature in the
K-K; plane).

4.2. The peculiar supercluster SCL126

One of the two richest superclusters from the 2dF survey cat-
alog is the supercluster SCL126 in the Northern sky. In the
K1—K; shapefinder plane this supercluster is similar to a multi-
branching filament. The V3 curve for SCL126 has peaks at very
high mass fractions (m¢ > 0.95) — an indication of a high density
compact core. In Einasto et al. (2003c) we showed that the core
region of this supercluster contains several Abell clusters, which
are also X-ray clusters. This region is about 10 2~! Mpc. This su-
percluster is located almost perpendicularly to the line-of-sight
(Jaaniste et al. 1998; Einasto et al. 2003c). In Paper RII we shall
show that the fraction of star-forming galaxies, especially in the
core region, in this supercluster is lower than in the superclus-
ter SCL9. A possible interpretation of these findings is that this
supercluster started to form earlier than the supercluster SCL9.

The Minkowski functionals and shapefinders indicate that
this supercluster resembles a rich filament with several branches,
and is less clumpy than the other richest superclusters (SCL9,
and simulated superclusters). This interpretation agrees with the
description of this supercluster as a wall in other papers (the
Sloan Great Wall, Hoyle et al. 2002; Vogeley et al. 2004; Gott
et al. 2005, 2006; Nichol et al. 2006). This supercluster af-
fects the measurements of the correlation function (Croton et al.
2004), and the genus and Minkowski functionals of the SDSS
and 2dF redshift surveys (Park et al. 2005; Saar et al. 2007).
The “meatball” shift in the measurements of the topology in the
SDSS data is partly due to this supercluster (Gott et al. 2006).
Gott et al. conclude that N-body simulations with very large vol-
ume and more power at large scales are needed to model such
structures more accurately than present simulations. Similar con-
clusions were reached by Einasto et al. (2006).

5. Conclusions

We used a catalog of superclusters of galaxies for the 2dF Galaxy
Redshift Survey and a catalog of model superclusters from the
Millennium Simulation to study the morphology and internal
structure of the richest superclusters. Our main conclusions are
the following.
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— We show how to quantify the morphology of superclusters
using the Minkowski functionals V,—V3 and shapefinders
H]—H3 and K1 and Kz.

— We find that the fourth Minkowski functional V5 describes
the clumpiness of superclusters.

— The value of V3 indicates that the supercluster SCL126 re-
sembles a multibranching filament, while the supercluster
SCL9 can be described as a collection of spiders (a mul-
tispider), consisting of a large number of cores connected
by relatively thin filaments. Simulated superclusters have
the V3(mys) curves which differ from those for observed su-
perclusters. The maximum values of the fourth Minkowski
functional V3 for the richest superclusters from observations
and from models (SCL9 and M2) coincide (V3'* = 15),
but the shapes of the V3 curves for these superclusters are
different, indicating that the structure of these superclusters
differs.

— The V3(my) curve for SCL126 has peaks at very high mass
fractions (m; > 0.95) — an indication of a high density com-
pact core.

— We show, using empirical geometrical models, that the tra-
jectory traced by the supercluster when we change the mass
fraction, forms a curve in the K;—K5 plane (the morphologi-
cal signature), which is characteristic of multibranching fila-
ments. For the Local Supercluster, this curve is characteristic
of a system with one central cluster sprouting filaments (the
spider type).

— The Minkowski functionals and shapefinders for observed
rich superclusters have a much larger scatter than those
for simulated superclusters. The selected rich Millennium
superclusters show very similar morphological scaling re-
lations (H(my), Hy(my), K1(m¢), K1/ K>(m¢)), while these
curves vary considerably for the observed superclusters. This
shows that the shapes of observed superclusters are more di-
verse than the shapes of simulated superclusters.

— The values of the fourth Minkowski functional V3 show that

the clumpiness of real superclusters, for galaxies of different
luminosity, has a much larger scatter than the clumpiness of
model superclusters.
This is an indication that the fine structure of superclusters
(their clumpiness) as expressed by the fourth Minkowski
functional Vj for bright and faint galaxies in real and sim-
ulated superclusters is different, i.e. the model does not yet
explain all the features of observed superclusters.

The present analysis supplements previous work, adding more
details and using the Minkowski functionals in a novel way. In
summary, different methods describe together many aspects of
the morphology of superclusters — their sizes, shapes, volumes,
compactness and clumpiness, giving an overall picture of their
morphology.

The aim of the present paper was to study the morphol-
ogy of the richest superclusters from the 2dFGRS in detail, and
to compare it with that of the richest superclusters from the
Millennium Simulation. However, all our superclusters are cov-
ered only partly by the 2dFGRS. Therefore, the next step in our
analysis is to use the SDSS data to generate supercluster cata-
logs and to study their morphology. In particular, the region of
the supercluster SCL126 is covered by both surveys, therefore
giving us a good chance for the comparison of the properties of
this supercluster from both data sets. Using a larger sample will
also increase the number of superclusters and allow us to obtain
statistically significant results. In the present work we studied
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only the richest superclusters, so the results we obtained have
only a heuristic nature.

In addition, the volume covered by the Millennium
Simulation may be too small to include a large number (and a
large morphological variety) of very rich superclusters. Thus we
started a study of superclusters from the Hubble Volume simula-
tion, which covers the largest volume at present.
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Appendix A: Morphological templates

While shapefinders have been used in a number of papers,
their meaning needs clarification. In the original paper (Sahni
et al. 1998) they were illustrated by calculating them for regu-
lar geometric bodies (ellipsoids and tori). The superclusters we
find from observations are more complex, frequently branch-
ing structures, and kernel estimators give us, as a rule, corru-
gated density isosurfaces. So, in order to understand better the
shapefinders, we calculate them first for a well-known household
object, a common kitchen table, and then for several possible su-
percluster templates.

We build the table by adding layers of different density to a
skeleton, consisting of a plate of the size of 40 x 100 (grid units),
and of four legs (rods) of the length of 60, which join the plate
perpendicularly at its corners. We use the parabolic density law:

or)=1-7r/R*, r<R;o(r)=0, otherwise,

where 7 is the nearest distance from a point to the skeleton, and
we have taken the limiting distance R = 10 grid units. This is a
rather thick table with thick legs; the reason being follows. First,
as we use Crofton formulae to calculate the Minkowski function-
als, we have to ensure that our table occupies a generic position
in space (the specific weights we use are obtained by assuming
statistical isotropy of the isodensity surfaces, see Schmalzing
& Buchert (1997). We do this by aligning the normal to the
plate in the direction n = (1 /V3,1/V3,1/V3). As the plate
is inclined with the respect to the coordinate grid, the isosur-
faces are inevitably slightly jagged, and large R makes them
smoother. When following the density isosurfaces inwards, to-
wards larger my, we find another effect — because of the inclina-
tion of the skeleton the high density regions on the grid break up
into a large number of isolated clumps around grid points. So we
present the shapefinders only for mass fractions m¢ < 0.93 (up
to the break-up). The shapefinders are given in Fig. A.1, for the
full table, for the plate, for a single leg and for four legs together.

Let us start with the first shapefinder, the thickness H;. We
know by construction that the true thickness is 2R = 20 at the
outer edges of the table, and reaches 0 inside. The figure shows
that H; almost finds the true thickness for the plate, is slightly
lower for the leg(s), starting from 13, and runs in between those
two relations for the full table.

The second shapefinder, H,, should give the width of the ta-
ble. For the plate it should be 40 + 2R = 60 at low densities
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and 40 at high densities. As we see, it runs from about 33 to 22,
closer to the half-width of the plate; this is logical, considering
that the shapefinders are normalized requesting that the “width”
of a sphere should equal its radius, not diameter. But a similar
normalization is used for the thickness above, which, however,
finds the full thickness. The width of the leg(s) is equal to their
thickness, H = H, — the legs are cylinders. And the “width”
(half-width, to be more precise) of the table, the combination of
the above details, is closer to the widths of the legs; these four
appendices dominate the width shapefinder for the full table.

The third shapefinder Hz should give the length of the ob-
jects. It starts from about 47 for the plate, and from 28 for a leg.
Here, finally, the shapefinder for four legs is four times that for a
single leg, as it should be. But these values show that H3 really
gives the half-length of the object, because of the normalization.
And the half-length of the full table is larger than any of its de-
tails, but does not equal their sum. Moreover, while the lengths
of the details approach those of their skeletons, the length of the
full table, which is also reduced to its skeleton for my — 1, stays
constant for all values of my, from the “fat” table to the skeleton.

The “second-order” shapefinder, the planarity K, is small
(about 0.06) for the leg(s), runs from 0.27 (thick plate) to 0.8
(fat skeleton) for the plate, and from 0.18 to 0.6 for the full table.
These numbers are as expected, only the maximum planarity for
the plate seems to be too small; but, as explained above, this
might be simply a non-aligned grid effect.

The filamentarity K, is smallest for the plate, ranging
from 0.17 to 0.27. It is not too large for a single leg (from 0.3
to 0.7, the legs are thick), but ranges from 0.76 to 0.92 for the
collection of four legs. The filamentarity of the full table is dom-
inated by that of the legs; it ranges from 0.64 to 0.85; a kitchen
table is basically a filamentary object.

The planarity/filamentarity ratio K;/K, that is frequently
used, runs from 0.2 to about 0.1 for a single leg, and is lower
than 0.07 for the collection of four legs. It is high (larger
than 1.5) for the plate, but pretty low (between 0.5 and 0.7)
for the full table; another indication that legs define the mor-
phology of a table. This curve is quite jagged, and the reason
for that is clear — the “first order” shapefinders H; are ratios of
Minkowski functionals, the “second order” shapefinders K; are
ratios of these ratios, and the ratio K /K, becomes noisy. This is
also seen in the case of our observed superclusters (see Fig. 4),
especially for small values of K, and may partly explain the
large scatter of the ratio K;/K;. Because of this, we advocate the
use of the morphological signature (see below).

We can also look at the morphological signatures (the tra-
jectories in the K;—K; plane, parameterized by miy) of the table
and its details (Fig. A.1, lower right panel). We limit the mass
fraction range for this figure also from below, using only m; €
[0.01,0.94], as done in the main paper (see also Appendix B).
This choice eliminates grid effects at low and high densities,
where our Bj kernel is not isotropic. The Crofton formulae we
use assume isotropy, so it is safer to avoid these densities.

Ignoring the jagged nature of the curves (these can be elim-
inated, in principle, by constructing direct estimates for the
shapefinders K| and K;) we see that the details and the table have
clear and distinct signatures. The signature for the plate lies in
the planar region, that for the leg(s) in the region describing fil-
aments (and four legs together are clearly more filamentary than
a single leg). The full table is both planar K; € [0.2,0.7] and
filamentary K, € [0.65,0.9], but clearly rather filamentary than
planar (K, > Kj).

The kitchen table was an example of a smooth density distri-
bution. The density of our superclusters is obtained by summing
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Fig. A.2. The shapefinders H; (thickness), H, (width), Hs (length), upper row, and K, (planarity), K, (filamentarity), and the morphological
signature (lower row) for different templates. The labels are: 1 — filament, 2 — spider, 3 — Jacob’s staff, and 4 — Cross of Lorraine (Karelian

reindeer).

together almost isotropic kernels around galaxy locations. This
results in a much more patchy density distribution; on the other
hand, it automatically guarantees statistical isotropy of the den-
sity isolevels. In order to better understand the shapefinders of
the observed superclusters, we calculate them for a number of
simple templates which resemble the superclusters. These are:
1) a single long filament, 2) a spider (two long filaments, cross-
ing, with a small cube at the center), 3) Jacob’s staff or ballestina
(an astronomical instrument from middle ages for measuring an-
gular distances; a long staff with a perpendicular smaller staff),

and 4) the Cross of Lorraine (similar to the Jacob’s staff, but
with two perpendicular staves, with a spherical blob at the cen-
ter). The last configuration resembles also ancient petroglyphs
from Karelia, depicting thunder and reindeer. The dimensions
are: 100 (grid units) for the filament (and staff) length, 40 for the
small staff length, 10 for the radius of the blob, and the effective
width of the density kernel is 8 (total width 16). The correspond-
ing shapefinders are shown in Fig. A.2.

As we see, the shapefinders are smoother, and clearly distinct
for different morphologies. The complex (corrugated) nature of
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the isodensity surfaces causes local minima for the lengths H; at
certain mass fractions (in the thickness and in the width of the
spider). Also, the length shapefinder H3 almost does not change
for a wide initial interval of mass fractions, while the isoden-
sity surfaces contract towards the skeletons of our templates. As
this length is defined both by the isodensity surface area and its
curvature, a simple behavior cannot always be expected.

A new feature here is that the “second order” shapefinder
K, acquires negative values for specific density isolevels. This
is possible, as the inequalities H; < H, < Hj3 which are usu-
ally assumed, are valid only for convex bodies. The isolevels for
kernel-estimated densities are usually corrugated, and the real
limits for K; are: K; € [—1, 1]. This may prevent the use of the
usual morphological index K;/Kj; it is better to use the “mor-
phological signature” K, versus K| instead.

Looking at Fig. A.2 we see that there are two morphologies
which resemble those of the observed superclusters. The “spi-
der” imitates poor Virgo-type superclusters, although our model
spider has a large value K5, rich superclusters (as SCL126, see
Fig. 2) are best represented by the Cross of Lorraine, a multi-
branching filament. Adding a central body to that system im-
proves the similarity even more.

We do not attempt to fit supercluster models to observations
in this paper; this will need a well-parameterized basic model.
However, we see that a good starting point for such a project
would be the two models listed above.

Appendix B: Kernel densities

When studying the morphology of superclusters of galaxies, a
necessary step is to convert the spatial positions of galaxies into
spatial densities. The standard approach is to use kernel densities
(see, e.g., Silverman 1986):

o(x) = > K(x = x;; ym;,

where the sum is over all galaxies, x; are the coordinates of the
ith galaxy, and m; is its mass (or luminosity, if we are estimat-
ing luminosity densities; for number densities we set m; = 1).
The function K(x; h) is the kernel of the width £, and a suitable
choice of the kernel determines the quality of the density esti-
mate. If the kernels widths depend either on the coordinate x or
on the position of the ith galaxy, the densities are adaptive. We
are using constant width kernels in this paper, defining super-
clusters as density enhancements of a common scale (the typical
density scale of about 8 # Mpc™!). Kernels have to be normalized
and symmetrical:

fK(x; hdVv =1, fo(x;h)dV =0.

Statisticians classify kernels by their MSE (minimal standard
error); the best kernel is the Epanechnikov kernel Kg (see
Silverman 1986):
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Ke(x; h) = (1-x2/h%, 0 otherwise

(all the kernel expressions in this appendix are for 3D kernels).
In cosmology, the Gaussian kernel Kg has been the most
popular:

Kg(x;h) = exp (-x?/21?). (B.1)

1
Qn) 2

M. Einasto et al.: 2dF rich superclusters. I.

0.7
0.6 Epanechikov
0.5
0.4
Z 03
0.2

0.1

0

-0.1 L L L L L
-3 -2 -1 0 1 2 3

Fig. B.1. Three popular kernels for density estimation — Epanechnikov,
Gaussian, and the B; box spline. All the profiles have approximately the
same extent (the Gaussian profile width & = 1, the B; profile is given
for N = 1, and for the Epanechnikov profile 2 = 2. All profiles are
normalized for the 1D case.

For the usual case, when densities are calculated for a spatial
grid, good kernels are generated by box splines B; (usually used
in N-body mass assignment). Box splines have compact support
(they are local), and they are interpolating on a grid:

D Bix=i=1,

for any x, and a small number of indices that give non-zero
values for Bj(x). In this paper we restrict us to the popu-
lar Bj splines:

1
By(x) = - [Ix =287 = 41 = 17 + 6lxf® — 4lx + 1P + [x + 2P|

(this function is different from zero only in the interval x €
[-2,2], see Fig B.1). We define the (one-dimensional) B3 box
spline kernel of width 4 = N as

KL (x; N) = B3(x/N)/N.

This kernel preserves the interpolation property (mass conserva-
tion) for all kernel widths that are integer multiples of the grid
step, h = N. The 3D K;;) box spline kernel we use is given by
the direct product of three one-dimensional kernels:

Kp(x;N) = K (6 N) = K)o MKy (y; MKy (23 N),

where x = {x, y, z}.
These kernels encompass all the “good” and “bad” kernel
properties (good and bad for our application).

— First, the Epanechnikov and the Bj kernels are both compact,
while the Gaussian kernel is infinite and has to be cut off at
a fixed radius. This introduces an extra parameter and, what
is more important, generates small-amplitude density jumps
which may distort the Minkowski functionals (these are ex-
tremely sensitive to small-amplitude density details).

— Second, the B3z kernel conserves density (it is exactly nor-
malized on a grid). For continuous kernels normalization
on a grid is equivalent to simple numerical integration of
the profile; the (truncated) Gaussian kernel demands fever
grid points for this than the Epanechnikov kernel. Many grid
points inside the kernel profile means that kernel widths must
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For an isotropic kernel this ratio should be 1.

be much larger than the grid step. Bad normalization leads to
distortion of the final densities; how well the contribution of
a galaxy to the final density is accounted for depends on the
location of the galaxy with respect to the grid.

— Third, an important kernel property is its isotropy. The for-
mulae we use to estimate the Minkowski functionals assume
average isotropy of the density isosurfaces (their isotropic
orientation). Both the Epanechnikov and Gaussian kernels
are exactly isotropic, the 3D Bj kernel is not. But this kernel
is approximately isotropic to a high degree.

A simple characteristic of isotropy of the kernel isolevels would
be the ratio of its surface to the surface of the sphere that cuts
coordinate axes at the same point as the isolevel. Alas, surfaces
are not easy to calculate, and we replace this ratio by the ra-
tio of the volumes encompassed by these two surfaces; volumes
are easy to estimate by Monte-Carlo integration. These ratios
are close (e.g., for a cube and the inscribed sphere the volume
ratios coincide with the surface ratios). For the 3D B3 kernel,
the dependence of this ratio (the sphere volume to the excursion
set volume) as a function of the mass fraction (integrated kernel
mass outside the isolevel) is shown in Fig. B.2.

As we see, this ratio is close to unity for almost all mass
fractions for the B3 kernel; considerable deviations can be seen
only for small mass fractions. The deviation from isotropy is
less than 10% for m; > 0.058. When displaying our results on
the morphological descriptors, we used a mass fraction limit for
the full supercluster; this is smaller than the value cited above
by the ratio of the number of galaxies defining the supercluster
limits to the total number of galaxies in the supercluster. To be
on the safe side, we deliberately underestimated this ratio and
we chose the limit m¢ > 0.01 for the full supercluster.
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