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The self-consistent size consistent on a complete active space singly and doubly configuration
interaction~SC!2CAS-SDCI method is applied to excited states. The (SC)2 correction is performed
on a closed shell state, and the excited states are obtained by diagonalization of the dressed matrix.
A theoretical justification of the transferability of the improvement concerning the dressing state to
all roots of the matrix is presented. The method is tested by three tests on the spectrum of small
molecules. ©1998 American Institute of Physics.@S0021-9606~98!30843-0#
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I. INTRODUCTION

Configuration interaction~CI!1 and coupled cluste
~CC!2 are approximate methods because they must use
cated basis sets. However, the consequences of the trunc
are not equivalent for CI and CC results. In the CC form
ism, the wave function keeps its product form thanks to
exponential development, so that all nonvanishing produ
of a double excitation with a single or another double ex
tation remain in the wave function. This guarantees a cor
scaling of the energy with the number of electrons and
absence of unlinked diagrams. Consequently, the CC m
ods are called size extensive~size consistent and separable!.
This is not the case for CI methods which loose the si
extensivity property of the full CI. The most common tru
cation of a CI or CC expansion is after the singly and dou
~SD! excited configurations with respect to a single refere
determinant, which corresponds to SDCI or CCSD metho

A truncation limited to a single reference determinant
in general not sufficient for a correct description of excit
states. Unfortunately, the single reference CC approach
when the single reference determinant is not a good ze
order function, and the generalization of CC to multirefe
ence problems gives rise to a lot of theoretical and pract
problems.3,4 On the other hand, various methods which a
more in the CI spirit have been investigated and are alm
or strictly size extensive. Some of them are derived fr
coupled electron pair approximation~CEPA! methods5–8 and
have a functional form like coupled pair functional~CPF!9 or
CEPA-VAR.10 Concerning multireference approaches, L
dig et al. proposed the multireference linearized quadra
coupled-cluster method~MR-LCCM!,11,12 and more recently
Szalay and Fu¨sti-Molnár13 proposed a generalization calle
multireference averaged quadratic coupled clus
~MR-AQCC!.14 Several other approximately size-extensi
8270021-9606/98/109(19)/8275/8/$15.00
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methods have been developed during the last few year
very clear and accurate review is presented by Szalay
Bartlett.15

The Toulouse group has proposed the~SC!2CI ~size-
consistent self-consistent CI!16 method which avoids size
extensivity errors in truncated CIs. The~SC!2CI method is
based on the theory of intermediate Hamiltonians. The s
extensivity properties are obtained by adding a correctionD i i

to the diagonal termsHii . It is said that the CI matrix is
dressed. The dressing is commonly used on SDCI matri
but can be applied on any type of truncated CI matrix,
cluding an energy selected configurational space.16 Some
multireference tests@~SC!2MRCI# have been presented17,18

and gave encouraging results. Finally, the~SC!2CAS-SDCI
method has been proposed with an efficient code.19 It con-
sists in a (SC)2 treatment of a self-consistent complete acti
space SDCI CAS-SDCI Hamiltonian matrix. Using a CA
reference space leads to quite large CI spaces and ma
costly if the number of active orbitals must be large, but t
advantages are a better efficiency concerning the progr
mation and that a CAS space is very convenient for the st
of bond breaking or excited states.

A preliminary study20 has shown that the excited eige
values of the dressed (SC)2 matrix are not phony solutions
but correspond to real excited states. It is noted in Ref.
that, if the most relevant determinants are included in
reference space, the accuracy of the excited roots is v
good. This encouraging result is obtained in spite of the f
that the dressing has a single reference nature. It is also n
in Ref. 19 in the example of the inclusion of a Be atom in t
H2 molecule21 that when there is more than one domina
determinant in the zeroth order description of the wave fu
tion, the effect of the (SC)2 dressing depends very weakly o
whether it is done with respect to one dominant determin
5 © 1998 American Institute of Physics
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8276 J. Chem. Phys., Vol. 109, No. 19, 15 November 1998 Ben Amor et al.
or the other. The aim of this article is to propose an extens
of the ~SC!2CAS-SDCI method to excited states, starti
from the same program. A first part gives a brief recall of t
~SC!2CAS-SDCI method for the ground state and descri
from two different points of view the modifications require
to treat excited states. In this way, an analysis of the theor
provided ‘‘on the flight.’’ It aims to understand why thi
method, that was conceived for the ground state, gives g
excitation energies. In a second part, some test calculat
are presented for chemical problems for which benchm
results can be found in the literature or have been calcul
in this work.

II. FORMALISM AND IMPLEMENTATION

A. Brief recall of the †„SC…

2-CAS-SDCI‡ method

The following three categories of orbitals are defined:~i!
theactive orbitalsthat define the CAS space;~ii ! the inactive
orbitals that are always doubly occupied in the CAS det
minants; and~iii ! the virtual orbitals that are always empty
in the CAS determinants. The full CI space is divided in
three parts:

~a! TheP space contains all the CAS configurations and
called the reference space.

~b! The Q space includes all the determinants singly a
doubly excited with respect to theP space. The union
of P andQ defines the model spaceS.

~c! The R space includes all other excitations.

The definition of theQ space is not unique. It may con
tain only the determinants that interact with one determin
of P. This is the minimal definition. TheQ space is maxima
when it includes all the determinants with a maximum of tw
nonoccupied inactive orbitals~holes! and two occupied vir-
tual orbitals~particles!. These two definitions are far from
being equivalent. The minimal definition presents the adv
tage of dealing with much smaller CI matrices, but does
give spin eigenfunction, at least if the formalism is written
determinants and not in spin configurations. The maxim
definition is also the simplest to present and to program a
for the sake of simplicity, we shall take it hereafter. We w
also assume that at least one closed shell determinan
longs toP.

The wave function may be written as

c5cP1cQ1cR, ~1!

with

cP5(
I

CIf I
P , cQ5(

i
cif i

Q , cR5(
a

cafa
R .

~2!

The diagonal dressing of theQ determinants allows the can
cellation of the unlinked contributions. Their diagonal en
gies are shifted down under the effect of the determinant
R. The diagonal matrix elementHii corresponding to a given
determinantu i &PQ is shifted by the determinantua&PR if a
double excitationD j

1 is possible fromui& to ua&.
Note that the excitation operatorD j

1 is defined with re-
spect to a closed shell single reference configurationu0&. u0&
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is in general the closed shell dominant determinant of
ground state but it may as well lie higher in energy than
ground state, as in the1A1 state of CH2, for example. When
there is no highly dominantu0& determinant, a multireferenc
dressing should be the relevant solution. However, it
been shown in Ref. 19 that the results are still quite satis
tory when there are two dominant determinants and the
efficients of them are close to 221/2,. D j

1 is a double exci-
tation from the occupied to the virtual orbital ofu0&. This
condition can be written asD j

1u0&Þ0. Note thatD j
1 is in-

dependent of the definition of the CAS space.D i i may be
written as

D i i 5 (
j ,D j

1u i &Þ0

D j
1u i &¹S

H0 j cj , ~3!

whereS5P1Q is the model space and

H0 j5^0uHu j &. ~4!

Equation~3! may be rewritten as

D i i 5 (
j ,D j

1u i &¹S

H0 j cj2 (
j ,D j

1u i &50

H0 j cj . ~5!

Using the concept of ‘‘excitation classes’’ introduced b
Ruttink et al.22 and Szalay and Bartlett,14 it is possible to
remember each term of Eq.~5!, and this allows a rapid dress
ing of the CI matrix.

B. Excited states of the „SC…

2 dressed matrix

In order to better understand the performance of
method for the calculation of excitation energies, we pres
in this section two approaches. In the first one, we pres
the method as a simplification of a reference-dependent
state-universal formulation of the multireference coup
cluster~MRCC! problem. In the second one, we present
approach from the quasidegenerated perturbation the
~QDPT! that allows an analysis by means of many bo
perturbation theory~MBPT! diagrams.

1. The MRCC description

The excited roots of a dressed CI matrix are ve
accurate20 even though the coefficients of the doubles in t
ground state are used in Eq.~5!. One may briefly rationalize
this efficiency by noting that the dressing also applies to
excited statecm where the determinantui& is now obtained
from ~several! referencesuI&, uJ& having different coefficients
CI

m , CJ
m .

If one refers to a Jeziorsky–Monkhorst23-type cluster ex-
pansion of the excited wave function from the referencesuI&,
the wave function of statem

cm5 (
I PP

CI
muI &1(

i ¹P
ci

mu i & ~6!

is written as

cm5 (
I PP

eSICI
muI &. ~7!
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Closing Eq.~7! by the left with ^iu one gets

Ci
m5^ i ucm&5 (

I PP
CI

m^ i ueSIuI &. ~8!

One may define pseudocoefficientsdiI as:

diI 5^ i uexp SI uI & ~9!

so that

ci
m5(

I
diI CI

m . ~10!

Performing a double excitationDk
1 on ui&, one obtains an

outer space determinantua&. A partial contribution to the
coefficient ofua& can be obtained from a summation of di
connected contributions as

ca
m5(

I
tk,IdiI CI

m . ~11!

If one substitutes the reference specific diexcitation am
tudetk,I by the unique amplitude of theDk

1 double excitation
for the ground state expansion fromu0&, one obtains an
evaluation ofca

m

ca
m5dk

0(
I

diI CI
m5dk

0ci
m . ~12!

In this equation we have used the relation~10! and we have
assumed, whateverI and i are, that

tk,I5tk,05dk
0 ~13!

provided thatDk
1 is possible onui&. The equalities in Eq.~13!

stress the fact thatdk
0 depends only onDk

1 , the second
equality being a good approximation when the coefficients
the single excitations in the ground state wave function
small since

dk
05tk,01

1

2 (
~m,l !

Dk
1

5Mm
1Ml

1

tm,0t l ,0 , ~14!

whereM 1 is a single excitation operator and~m,l! denotes
the summations running over all the pairs of the single ex
tations satisfying the stated conditions. This derivation he
to explain the accuracy of the excited roots of the diagon
dressed~SC!2CI matrix, which assumes that the amplitud
of the double excitations in the excited state may be take
those of the ground state. However, in Eq.~12!, the evalua-
tion of ca

m is rather hybrid since it combines a coefficient f
the excited stateci

m with a ground state amplitude, take
from a reference determinantu0& which may be absent from
the excited state function for symmetry reasons. More ins
into the reasons for the performance of the method can
obtained by means of the QDPT.

2. The perturbation theory description

The (SC)2 formalism does not depend on the fact that
space is a CAS-SD. Any multireference CI~MRCI! space
could be used. Only the code would be more difficult
write. In this paragraph, we shall consider that we deal w
a MRCI space.
Downloaded 29 Jan 2010 to 147.156.182.23. Redistribution subject to AI
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It is useful to compare the~SC!2MRCI approach to an
effective Hamiltonian built to second order for a few refe
ence determinantsuI&, uJ&,... . In this case, we can take th
spaceP as the model space of theHeff and, in second orde
of QDPT we have:

~Heff
~2!! IJ5 (

a¹P

^JuHua&^auHuJ&
EI

02Ea
0 5D IJ . ~15!

The arguments that follow apply both to double or sing
excitations acting as reference determinants inP. Suppose,
for simplicity, that we are in the case of excited states do
nated by one single excitationuI& so that theP space includes
only it ~of course, the strictly degenerated spin partners
also supposed to always be included inP!. In this case, the
indexa in Eq. ~15! runs over other single, double, and a fe
triple replacements, the ones that couple touI&. Now, we will
verify whether all the second order contributions taken in
account inHeff

(2) are actually included by going from SDCI t
~SC!2SDCI.

We take at first the simplest (SC)2 approach to excited
states, i.e., dressing the SDCI matrix ofu0& and using, in Eq.
~5!, just the ground state coefficients for doubles. Even t
single-reference case allows us to understand the work d
by the diagonal dressing on the excited roots.
Consider the diagonalD II elements of Eq.~15!. Each contri-
bution due to a givenua&5Dk

1uI & has the form

HIa3HaI

EI
02Ea

0 'H0k3
Hk0

E02ED
k
1F0

5H0k3ck
0~1! ~16!

so that

D II 5 (
k

Dk
1F IÞ0

H0kck
0~1! . ~17!

One sees, compared to Eq.~3!, that these first-order term
~and higher order contributions included in theck

0 coeffi-
cients! are actually added by the ground state (SC)2 dress-
ing. In terms of MBPT-like diagrams, the contributions
the excited state characterized byuI& can be represented a
shown in Fig. 1.

FIG. 1. Second-order-like diagrams taken into account in the diago
(SC)2 dressing of a single excitation reference. Double arrows mark
hole or particle lines belonging to the reference determinant. The thick h
zontal lines mean that the coefficients of the doubles are not purely pe
bative, but ground state converged (SC)2 ones. The crossing lines indicat
that hole or particle labels are repeated so that the diagrams violate
exclusion principle~EPV diagrams!. Labels and hole–particle arrow com
binations are avoided for simplicity.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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The diagonalization of the dressed CI matrix allows t
contributions~a! in Fig. 1 to remove the nonlinked term
while diagrams~b! and~c! illustrate actual contributions tha
remain in the energy.

Consider now the nondiagonalD IJ terms in Eq.~15!. It
is immediately seen that these terms are not taken into
count by the (SC)2 diagonal dressing. So, very importa
connected processes such as those shown in Fig. 2 are
ing.

We can then say that the great improvement of the
citation energies in the (SC)2 dressed SDCI comes mainl
from the size-extensivity correction. This correction impli
the cancellation of the nonlinked diagrams, which are di
onal in nature. However, important contributions, that can
described at the second order relative to the reference s
P, are still lacking. The natural choice, looking for an im
provement, is to enlarge the CI space. One can try to incl
at least all the second-order effects we are comparing to
Heff built from a small reference. Hence, we will consid
that the (SC)2 dressing is added to the MR-SDCI built o
this small reference made ofuO& and a fewuI&, uJ&... . We
have now, in the model spaceS, all singles, doubles, and th
most relevant triples concerning the states of interest.
second-order effects described in Fig. 2 are present, as
as others that include couplings between the determinan
P and some triples through third-order-like diagrams such
those shown in Fig. 3. It can be remarked that higher-ord
like diagrams that involve only one triple excitation are a
included in the model, as well as the nonlinked higher-or
diagrams. Remember, at this point, that the diagonal s
consistent corrections bring intoS the nonlinked corrections
due to quadri-excitations on the doubles and pen
excitations on the triples. Many other effects, such as so

FIG. 2. Second-order-like diagrams that are not taken into account in
diagonal (SC)2 dressing of a single excitation reference.

FIG. 3. Third-order-like diagrams passing through one triple that are
cluded in MR-SDCI of a reference space made of singles after (SC)2 dress-
ing. See the caption of Fig. 1 for further information. The EPV diagrams
not included.
Downloaded 29 Jan 2010 to 147.156.182.23. Redistribution subject to AI
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triple–triple interactions and exclusion principle violatin
~EPV! effects are in fact included in the model by means
the variational root solving.

In the case of excited states dominated by double e
tations, some doubles would be included inP. The analysis
goes in the same way described above, but the most rele
quadruples, i.e., those generated by double replacemen
the doubles ofP, are present in the model spaceS while the
size-consistent correction implies nonlinked effects going
to some hexa-excitations.

In practice, one would be interested in keeping theP
space as small as possible, but it must be large enoug
properly characterize the state~states! of interest. However,
from the point of view of computational and programmin
efficiency, it has been found more convenient to work with
CAS space inP. Of course, this does not change the valid
of the analysis above, which is easily generalized taking i
account that all the possible excitations in the active sp
are present inP. The problem in the selection of an appr
priate model space is then transferred to the problem
choosing the appropriate active space of one-electron fu
tions. All the calculations reported in this work used a CA
space inP.

Once the dressing of the CI matrix and thus the fi
eigenvector has been obtained, the excited roots of the s
symmetry are easy to compute, as in any other Davidso
diagonalization procedure. For the excited states of ano
symmetry, the process is not so straightforward. The ma
to diagonalize is a new symmetry block of the CAS-SD
matrix, which is computed in a separate step. Is it neces
to build the new dressing operator with respect to the fi
state in this symmetry, as it was done for symmetry 1?
can we transfer the previous dressing terms? To answe
above questions, one must consider the total CI matrix,
cluding all P1Q determinants of all symmetries. This is
block matrix which corresponds to the matrix we would de
with if the symmetry of the problem was not taken into a
count. It is possible to dress this total matrix as it is e
plained in Sec. II A. Note that the tables built to manage E
~5! are not symmetry dependent and therefore all diago
elements can be corrected, including those of a differ
symmetry.

Turning back to the real procedure of treating each sy
metry separately, it is now clear that it is sufficient to trans
the tables of Eq.~5! to dress each new symmetry block of th
total CI matrix, which is treated as a separate matrix. T
operation is performed at the beginning of the calculati
and afterwards the new symmetry dressed matrix can be
agonalized in a classical manner.

III. NUMERICAL TESTS

The method is tested on two examples studied in artic
by Bauschlicher and Taylor24,25 and by Kochet al.26 The
first example concerns CH2 for which various excited state
are studied in Refs. 24, 25, and 26. The second one is the
molecule for which the lowest excited states are given
Ref. 26. Moreover, we present a study on the~D,S! manifold
of states of the C2 molecule for which the full CI calculations
have been performed by one of us~S.E.!.

e

-

e
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Table I gives a comparison of the CC327 and coupled
cluster of the singles, doubles and triples~linear response!
@CCSDT-1a~LR!#28 methods used in Ref. 26. This compa
son concerns the order of perturbation at which the excita
energies are correct and the time dependence as a functi
the number of orbitals. The order to which the excitati
energies are correct depends on the degree of excitatio
the determinant which is dominant in the wave function.26

A. CH2 excitations energies

The 3B1 , 11A1 and 21A1 states of CH2 are computed in
Refs. 24 and 25. The carbon basis set is the Dunning do
zeta contraction of the Huzinaga (9s5p) primitive set,29 and
the hydrogen basis set is the Dunning (4s)/@2s#
contraction,29 with the exponents scaled. 2p and 3d polar-
ization function are added to the hydrogen and carbon ato
The basis sets, the geometries, and the computational de
are given in Ref. 24.

The occupation of the 11A1 closed shell state and of th
13B1 and 21A1 states are

~11A1! 1a1
22a1

21b2
23a1

2

~13B1! 1a1
22a1

21b2
23a1

11b1
1

~21A1! 1a1
22a1

21b2
21b1

2.

In the calculations of Bauschlicher and Taylor, the 1s carbon
electrons are frozen and the set of active orbitals contains
2s and 2p carbon orbitals and the 1s of hydrogen

~2a11b23a11b14a12b2!CAS
6 .

To compare our results to those of the corresponding artic
we have kept the same conditions.

TABLE I. Comparison between coupled cluster and~SC!2CAS-SDCI: the
order in which the excitation energies are correct and the dependence
computational time on the number of orbitalsn. For the (SC)2 formalism,
the computational time must be multiplied by the dimension of the CASnc .
The n6 dependence only concerns the nonactive orbitals.

Single
excitations

Double
excitations

Computational
time

CC3 3rd order 2nd order n7

CCSDT-1a~MR! 2nd order 2nd order n7

~SC!2CAS-SDCI 3rd order 3rd order n6nc
Downloaded 29 Jan 2010 to 147.156.182.23. Redistribution subject to AI
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The 3B1 ground state is an open shell and therefore
iterative (SC)2 dressing is performed on the 11A1 first ex-
cited state. This particular condition has no consequence
the quality of the results. A comparison with the results
Bauschlicher and Taylor is given in Table II. Compared w
the CAS-SDCI calculation, the (SC)2 reduces the error to the
full CI to approximately a half.

In another study on CH2, Koch et al. performed CC cal-
culations and compared their results to full CI and to expe
mental results using a correlation consistent polarized
lence double zeta basis set~cc-pVDZ! spherical basis of
Dunning30 augmented with as diffuse orbital of exponent
0.015 for C and 0.025 for H. This corresponds to the follo
ing basis sets: (10s,4p,1d)/@4s,2p,1d# for the carbon atom
and (5s,1p)/@3s,1p# for H. We have kept the same CA
space for comparison with the results of Refs. 24 and 25
spite of the fact that the excited states investigated here—
11 lowest singlets—are very different. As a consequen
some of them cannot be obtained by determinants built
the CAS. This allows us to test the method in a difficu
situation. The excitation energies of the 11 lowest sing
states of CH2 are given in Table III with a comparison to th
CC results of Ref. 26.

Table IV presents the excitation energies of CH2 with
respect to the 11A1 state as a function of the single o
doubled excited nature of the state. When the dominant
terminant is doubly excited, the CC3 and CCSDT-1a me
ods fail to give correct values, since they are correct at s
ond order only. On the contrary, the multireference chara
of ~SC!2-CAS-SDCI allows us to treat any degree of excit
tion, provided that the dominant determinant can be built
the CAS space. If this is not the case, the method fails
occurs for the 41A1 and 31B2 states. For the 41A1 , the domi-
nant determinant is singly excited, and therefore the coup
cluster approaches give accurate results. Even in this c
the (SC)2 dressing greatly improves the CAS-SDCI resul
For what concerns the 21A2 state, the bad (SC)2 results are
due to other reasons. The molecular orbitals are not ada
to describe it. An iterative differences dedicated
~IDDCI!31 optimization of the orbitals by Garcı´a et al.32 gave
accurate results for the same level of calculation.

the
the
tes are
.5
ethods,
TABLE II. Energies of some states of CH2 at different geometries of the ground state. Comparison with
results of Refs. 24 and 25 of Bauschlicher and Taylor. Total energies in hartree. Cartesian coordina
C~0,0,0! and H~61.644403, 0, 1.32213! in atomic units. 1.5Re means that the CH distance is multiplied by 1
and 1.70° that the HCH angle is 170°. For the full CI results, the energies are in hartree. For the other m
the values correspond to the energy differences with the full CI in mhartree.

11A1 21A1 11A1 21A1

11A1 21A1 13B1 (1.5Re) (1.5Re) ~170°! ~170°!

Full-CI 239.027 18 238. 858 28 239.046 26 238.899 24 238.735 70 238.979 23 238.940 00
CASSCF 90.6 95.2 80.3 75.0 100. 93.7 92.3
CAS-
SDCI

1.72 1.93 1.39 0.96 1.36 1.83 1.86

CAS-
SDCI1Q

21.58 22.14 0.00 21.73 22.31 21.88 21.80

(SC)2 0.78 1.16 0.81 0.34 0.80 1.02 1.04
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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TABLE III. Eleven lowest singlet states of CH2. A comparison with the values is given in Ref. 26. For the 11A1

state, the values correspond to total energies. For the other states, the table gives the energy differences~vertical
transitions! with the 11A1 state. All energies are in hartree.

CC2a CCSDLRa
CCSDT-
1a~LR!a CC3a Full-CIa

CAS-
SCFb

CAS-
SDCIb (SC)2 b

11A1 238.9945 239.0218 239.0249 239.0249 239.0257 238.9065 239.0209 239.0225
21A1 — 0.2246 0.1884 0.1884 0.1711 0.1696 0.1717 0.17
31A1 0.2356 0.2392 0.2417 0.2392 0.2394 0.2351 0.2393 0.23
41A1 0.3039 0.3109 0.3139 0.3114 0.3116 0.5204 0.3454 0.30
11B1 0.2783 0.2835 0.2861 0.2837 0.2831 0.2658 0.2825 0.28
21B1 — 0.3535 0.3137 0.3136 0.2946 0.3035 0.2961 0.29
11B2 0.0612 0.0654 0.0680 0.0657 0.0659 0.0869 0.0683 0.06
21B2 — 0.3934 0.3482 0.3483 0.3273 0.3237 0.3276 0.32
31B2 — 0.4548 0.4102 0.4104 0.3878 0.4724 0.4266 0.41
11A2 0.2166 0.2153 0.2174 0.2153 0.2151 0.2216 0.2164 0.21
21A2 — 0.4346 0.3888 0.3889 0.3458 0.3569 0.3685 0.36

aData from Ref. 26.
bThis work.
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B. BH excitations energies

Like CH2, the BH molecule is studied in Ref. 26 at fu
CI and coupled cluster levels. We have chosen the follow
partition of the orbitals. The 1s orbital of the boron atom is
inactive, and the molecular orbitals constructed with thes
of the hydrogen and the 2s and 2p of the boron are active

~1s! inactive
2 ~2s3s1px1py4s!CAS

4 .

The details concerning the cc-pVDZ augmented basis set
be found in Ref. 26. The results are given in Table V. T
(SC)2 values are very close to the full CI, and improve t
CAS-SDCI ones.

Concerning the nature of the states and the errors,
same remarks can be made for that of CH2. The D 1P,
E 1S1, and G 1P states do not correspond to the sta
obtained at a CAS level. Their dominant configurations
two single excitations from the 3s orbital to two differentp
~for the D 1P andG 1P! ands ~for the E 1S1! nonactive
orbitals, with comparable weight on both configurations. T
error for both states is about 0.02 hartree at the CAS-SD
level, while it is only 0.004 and 0.002 for the (SC)2 results.
Here again, despite the improvement due to (SC)2, the CC3
results are better. On the contrary, (SC)2 is more accurate
when the dominant determinant is doubly excited.

TABLE IV. Excitation energies of the lowest singlet states of CH2. Energy
differences between CAS-SDCI, (SC)2, CC3, and CCSDT-1a~LR!. The de-
gree of excitation of the dominant determinant of the state is given betw
parenthesis. All energies are in mhartree.

CAS-SDCI (SC)2 CC3 CCSDT-1a

2A1(2) 20.6 21.0 217.3 217.3
3A1(1) 0.1 0.0 0.2 22.3
4A1(1) 33.8 2.9 0.2 22.3
1B1(1) 0.6 0.0 20.6 20.3
2B1(2) 21.5 21.6 219.0 219.1
1B2(1) 22.4 22.5 0.2 22.1
2B2(2) 20.3 21.1 221.0 220.9
3B2(2) 238.8 226.5 222.6 222.4
1A2(1) 21.3 21.3 20.2 22.3
2A2(2) 222.7 223.4 243.1 243.0
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C. The C2 molecule

The C2 molecule is investigated in the present work bo
at full CI and (SC)2 levels. The basis set is a@3s2p1d#
contraction of the (9s4p1d) of Dunning.33 At the equilib-
rium distance the orbital occupation of the ground state i

1sg
21su

22sg
22su

21pu
4.

The core 1sg and 1su orbitals are kept frozen in all calcu
lations. The orbitals are optimized at the CAS-SCF le
with eight electrons in the eight orbitals corresponding to
2s and 2p atomic orbitals

~1sg1su! frozen
4 ~2sg2su1pxu1pyu3sg1pxg1pyg2su!active

8 .

With these orbitals, the lowestSg andDg states are investi-
gated. Most of them do not correspond to the bottom of
C2 spectrum and are quite high in energy. Two kinds
studies are presented. In the first step, the spectrum is ca
lated with eight electrons in eight active orbitals at the eq
librium distance and for 1.5 and 2 times the equilibrium d
tance. The results are given in Table VI. The (SC)2 results
are in very good accord with the full CI, while the dimensio
of the diagonalization problem has been reduced by 2 ord
of magnitude. One should note that, for the 3.6 and 4.5
teratomic distances, theDg lowest state is mostly describe
by four determinants and therefore no one has a weight c
to one in the wave function. This state has been used to b
the dressing operator. In spite of this, the mean absolute e
for the (SC)2 excitation energies at both distances compa
to full CI is less than 0.02 eV~0.7 mhartree!. In a second
step, the active space is reduced for the Re52.40 bohr case.
The results are particularly interesting~see Table VII!, since
the improvement of the results due to the (SC)2 correction is
very clear. For the single reference calculation, the SD
results are very poor because a large part of the second-o
contributions is lacking, while the (SC)2 results are fairly
better. For larger active spaces, the case of the5Dg is very
representative. At SDCI level, the ordering of the states
wrong, while the (SC)2 dressing corrects this defect. How

en
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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TABLE V. Eight lowest states of BH. Comparison with the values given in Ref. 26. The energies are inEH . For the1S1 ground state, the total energy i
obtained by adding225 hartree to the given values. For the other states, the table gives the energy differences with the1S1 state.~SC!2-SCF means that the
orbitals are canonical SCF orbitals. The degree of excitation of the dominant determinant of the state is given between parenthesis. All energies ar

State CC2a
CCSD
~LR!a

CCSDT
21a~LR!a CC3a Full-CIa Expb

CAS-
SCFc

CAS-
SDCIc (SC)2 c

(SC)2

SCFc

X 1S1 20.1907 20.2176 20.2192 20.2192 20.2197 — 20.1468 20.2183 20.2192 20.2168
A 1P(1) 0.1051 0.1090 0.1093 0.1085 0.1082 0.1054 0.1233 0.1088 0.1087 0.1
C8 1D(2) ¯ 0.2453 0.2276 0.2275 0.2161 0.2101 0.2237 0.2214 0.2167 0.23
B 1S1(1) 0.2312 0.2359 0.2361 0.2350 0.2344 0.2385 0.2269 0.2345 0.2344 0.2
C 1S1(2) ¯ 0.2715 0.2640 0.2637 0.2571 0.2521 0.2666 0.2588 0.2575 0.26
D 1P(1) 0.2695 0.2757 0.2761 0.2749 0.2744 — — 0.2915 0.2707 0.27
E 1S1(1) 0.2700 0.2849 0.2808 0.2797 0.2778 0.2819 — 0.2958 0.2759 0.28
G 1P(1) 0.2976 0.3042 0.3048 0.3034 0.3028 — 0.4298 0.3192 0.2987 0.30

aData from Ref. 26.
bReference 35.
cThis work.
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ever, the highest1Sg
1 state is a very multireferential stat

that requires a larger CAS to be calculated with the expec
accuracy~see Table VI!.

IV. CONCLUSION

The ~SC!2CAS-SDCI method holds both multi- an
single reference aspects. The CAS-SDCI is multireferenc
nature, and any excited state can be described with the s
accuracy as the ground state, provided that all orbitals of
determinants that dominate it are active. On the contrary,
dressing takes into account only one closed shell state, w
is in general—but not necessarily, the ground state of
system. Its nature is therefore fundamentally single re
ence.

One could expect that such a mixture of two differe
approaches should lead to an improvement of the clo
shell dressing state, but should deteriorate the other s
and, as a consequence, the whole spectrum. It has bee
served in previous and present works that this is not the c
and the reasons for the good behavior of the dressing for
excited states have been discussed. These reasons a
straightforward, and it is worth viewing some of them here
a more simple and intuitive way.

~i! The size consistency error becomes very import
when the number of electrons increases. In this case,
number of inactive orbitals is large, and a great number
determinants are double excitations from the inactives to
Downloaded 29 Jan 2010 to 147.156.182.23. Redistribution subject to AI
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virtuals. These double excitations are common to the clo
shell state used as a dressing state and to all other state
states will therefore benefit from an improvement in t
dressing state through this treatment.

~ii ! It is demonstrated that the (SC)2 dressing has no
undesirable effect from the point of view of the QDPT. Th
would not be the case if state specific effects~e.g., connected
triple effects! were included in the dressing and transferr
to the whole set of states.

~iii ! Quite often an excited state is described by mo
than a few determinants. It can happen that its total wei
on the CAS determinants will be smaller than for the grou
state, despite an accurate choice of the active orbitals. E
if we do not consider the size consistency error, it is the
fore likely that the ground state will be better treated than
excited one in this case. By taking into account the deter
nants belonging to theR external space the (SC)2 dressing
plays, in this case, two different roles for the ground and
excited state. For the well described ground state, (SC)2 cor-
rects the size consistency error. For the excited state,
(SC)2 dressing, which takes into account the determinants
R in an indirect way, improves its description as if the
determinants were added to the CI space. The improvem
through the (SC)2 treatment for states that are not describ
by active orbitals, which can be observed in some examp
in this article, has no magic or spurious origin but is due
this effect.
CI

nces with
TABLE VI. Energies of someS andD states of C2 at three interatomic distances. Comparison between full
and (SC)2 results for theS andD states. For 3.6 and 4.8 bohr, the lowest state is1Dg . For the ground state, the
values correspond to absolute energies. For the other states, the values correspond to the energy differe
the lowest one. All energies are in hartree.

R52.40 bohr R53.60 bohr R54.80 bohr

full CI (SC)2 full CI (SC)2 full CI (SC)2

1Sg
1 275.729 938 275.728 698 ¯ ¯ ¯ ¯

1Dg 0.0797 0.0815 275.602 637 275.600 266 275.536 662 275.534 133
1Sg

1 0.0899 0.0917 0.0051 0.0050 0.0010 0.0010
5Sg

1 0.1889 0.1895 0.0302 0.0293 0.0119 0.0114
5Dg 0.2393 0.2404 0.0976 0.0971 0.0192 0.0188
1Sg

1 0.2586 0.2597 0.1586 0.1577 0.0397 0.0389
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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TABLE VII. Energies of someS andD states of C2 equilibrium distance. SDCI and (SC)2 results for different
active spaces~single reference, four electrons in three molecular orbitals, six electrons in four mole
orbitals! compared with the full CI. The three active orbitals are the 1pxu , 1pyu , and 3sg . When there are
four active orbitals, the 2su is added. All energies are in hartree.

Single reference 4 el/3 MO 6 el/4 MO

Full-CI SDCI (SC)2 SDCI (SC)2 SDCI (SC)2

1Sg
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1Dg 0.0797 0.2000 0.1353 0.0647 0.0756 0.0719 0.0772
1Sg

1 0.0899 0.2062 0.1363 0.0829 0.0898 0.0860 0.0905
5Sg

1 0.1889 0.2876 0.2063 0.2661 0.1972 0.2717 0.1991
5Dg 0.2393 0.3257 0.2449 0.3019 0.2372 0.3120 0.2387
1Sg

1 0.2586 0.3670 0.2743 0.3067 0.2316 0.2887 0.2766
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~iv! The (SC)2 formalism may be used in different situ
ations. As it is presented in this article, it can be applied
systems of medium size like those that can be treated by
coupled cluster methods. For larger systems, and large b
sets, it can hardly be applied in its present form. It rema
however, an interesting approach and several impleme
tions may be envisaged. Work is in progress to apply
method to open shell systems. Moreover one can hope
even for large systems, the relevant information could
more efficiently concentrated on a small number of natu
active orbitals, thank to methods like IDDCI.31 Concerning
the spectroscopy of large molecules, the differences d
cated CI~DDCI! method has given very encouraging resu
But, for a large number of electrons, a size-consistency e
should appear, and a (SC)2 approach will be convenient
Finally, for large systems, a perturbative treatment may
added. The method could be compared to CASPT2
Andersonet al.34 In this case, the complete active space se
consistent field~CASSCF! step would be replaced by a CAS
SDCI, with a smaller number of active orbitals. With respe
to second order perturbation theory with a complete ac
space self-consistent field reference function~CASPT2!, for
which the CASSCF step is size consistent, the variatio
step is not, and a (SC)2 correction should be added.
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