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ABSTRACT

Context. Possible effects of magnetic fields in core collapse supernovae rely on an efficient amplification of the weak pre-collapse
fields. It has been suggested that the magneto-rotational instability (MRI) leads to a rapid growth for these weak seed fields. Although
plenty of MRI studies exist for accretion disks, the application of their results to core collapse supernovae is inhibited as the physics
of supernova cores is substantially different from that of accretion discs.
Aims. We address the problem of growth and saturation of the MRI in core collapse supernovae by studying its evolution by means
of semi-global simulations, which combine elements of global and local simulations by taking the presence of global background
gradients into account and using a local computational grid. We investigate, in particular, the termination of the growth of the MRI
and the properties of the turbulence in the saturated state.
Methods. We analyze the dispersion relation of the MRI to identify different regimes of the instability. This analysis is complemented
by semi-global ideal MHD simulations, where we consider core matter in a local computational box (size ∼1 km) rotating at sub-
Keplerian velocity and where we allow for the presence of a radial entropy gradient, but neglect neutrino radiation.
Results. We identify six regimes of the MRI depending on the ratio of the entropy and angular velocity gradient. Our numerical models
confirm the instability criteria and growth rates for all regimes relevant to core-collapse supernovae. The MRI grows exponentially on
time scales of milliseconds, the flow and magnetic field geometries being dominated by channel flows. We find MHD turbulence and
efficient transport of angular momentum. The MRI growth ceases once the channels are disrupted by resistive instabilities (stemming
from to the finite conductivity of the numerical code), and MHD turbulence sets in. From an analysis of the growth rates of the
resistive instabilities, we deduce scaling laws for the termination amplitude of the MRI, which agree well with our numerical models.
We determine the dependence of the development of large-scale coherent flow structures in the saturated state on the aspect ratio of
the simulation boxes.
Conclusions. The MRI can grow rapidly under the conditions considered here, i.e., a rapidly rotating core in hydrostatic equilibrium,
possibly endowed with a nonvanishing entropy gradient, leading to fields exceeding 1015 G. More investigations are required to cover
the parameter space more comprehensively and to include more physical effects.
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1. Introduction

The magneto-rotational instability (MRI) (Balbus & Hawley
1991) is a local linear instability of weakly magnetized differ-
entially rotating fluids. A large number of analytic, as well as
numerical studies support the assertion that the MRI is the main
agent for exciting turbulence in Keplerian accretion disks (for
a review, see, e.g., Balbus & Hawley 1998). The MRI ampli-
fies seed perturbations exponentially with time until turbulence
sets in. In the turbulent state, the magnetic field, b, gives rise
to a non-vanishing (spatial and temporal) mean Maxwell stress
tensor Mi j = bib j. Simulations of accretion disks show a high
negative mean value of the component M�φ (where� and φ are
the radial and azimuthal coordinate of a cylindrical coordinate
system), which gives rise to an efficient outward transport of an-
gular momentum.

Akiyama et al. (2003) pointed out that the layers surrounding
the nascent proto-neutron star quite generically fulfill the MRI
instability criteria. Consequently, any (weak) seed magnetic field
will be amplified exponentially. In the saturated state of the MRI
instability, sustained magneto-hydrodynamic turbulence might

then provide an efficient means for an angular momentum redis-
tribution and for the conversion of rotational energy into thermal
energy of the gas. Imparting additional thermal energy into the
post-shock stellar matter the MRI might thus be important for the
currently favored neutrino-driven core collapse supernova explo-
sion mechanism (e.g. Thompson et al. 2005; Janka et al. 2007),
although possibly only for rapidly and strongly differentially ro-
tating progenitors. Furthermore, the growth of the magnetic field
resulting from the MRI may provide the adequate physical con-
ditions in the collapsed core to launch bipolar outflows, which
result in gamma-ray bursts (Aloy & Obergaulinger 2007). As
the physical conditions in accretion disks and stars differ signif-
icantly, and as only a few analytic studies of the MRI in stars
exist (e.g., Acheson 1978), it remains unclear whether existing
results on the MRI in disks apply to stars, and particularly to
supernovae, as well.

Numerical simulations of the MRI face a severe problem,
since the growth rate of MRI-unstable modes depends on the
product of the initial field strength and the wave number of the
mode. For a weak field, only fairly short modes grow rapidly.
Simulations of astrophysical flows, on the other hand, often fail
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to resolve just those modes, as it would require prohibitively
high computational costs to cover spatial scales ranging from
the global extent of the astrophysical system (which may be
much larger than the MRI-unstable region) down to the wave-
lengths of the fastest growing MRI modes. This dependence
of the growth rate on the wavelength of the mode suggests a
twofold approximate numerical approach: one either performs
simulations which properly cover the global scales of the astro-
physical system foregoing to resolve the small scales set by the
wavelengths of the fastest growing MRI modes (global simula-
tions), or vice versa (local simulations).

Local simulations evolve only a small part of the entire
MRI-unstable system, known as the shearing box. However, in-
formation on the scales exceeding the size of the computational
grid has to be provided using suitably chosen boundary condi-
tions. No unique recipe exists for this procedure, but the use of
reflecting and periodic boundaries is a common practice. In most
studies of accretion disks, the boundary conditions of Hawley &
Balbus (1992) are used in radial direction, which are essentially
periodic boundary conditions but account also for the relative
shear between the inner and the outer radial edge of the grid.
They are often combined with a Galilei transformation into a
frame of reference co-rotating at the mean angular velocity of the
shearing box, and a linearizion of the angular velocity within the
box. Local (shearing box) simulations using this kind of bound-
ary treatment are commonly called shearing-sheet simulations.

The general drawback of local simulations obviously lies in
their inability to account accurately for large-scale phenomena.
In addition, there is only a limited possibility to model global
gradients other than differential rotation in shearing-sheet simu-
lations. Independent of the boundary treatment only modes with
a wavelength less than the size of the grid can be excited, i.e.
modes with a wavelength comparable to the dimensions of the
whole system cannot develop. Consequently, MRI-driven turbu-
lence may saturate at a level determined (at least partially) by
numerical rather than (only) by physical parameters. A careful
analysis is necessary to disentangle the respective influence (see
e.g., Pessah et al. 2007; Fromang & Papaloizou 2007; Regev &
Umurhan 2008).

Global simulations, on the other hand, follow the evolution
of the entire system, albeit with a much coarser resolution than
local ones. Thus, they can account for the large-scale structure of
stars and disks, for the back-reaction of the MRI instigated tur-
bulence on the global flow, and allow one to draw conclusions on
how the saturated state depends on global properties of the sys-
tem, e.g., the density or pressure stratification. However, fore-
going the ability to resolve short-wavelength modes, the growth
of the MRI will be underestimated or suppressed even entirely.
In many applications of numerical analysis, it is possible to use
suitable models for the unresolved physics on sub-grid scales,
e.g., sub-grid diffusivity. This requires a good knowledge of the
physics on these scales, and is facilitated greatly if processes at
the unresolved scales act merely as a sink for kinetic or mag-
netic energy cascading down from the integral scale. During the
growth of the MRI, however, the power shifts gradually from
short to long modes. Thus, sub-grid models for global MRI sim-
ulations tend to be complex, and are not used widely.

As a remedy for this problem, global simulations may be
performed using unrealistically strong initial fields to guaran-
tee that the fastest growing MRI modes are resolved numeri-
cally. This approach presumes that the unresolved MRI modes
are able to amplify the much weaker actual initial fields to the
field strengths used as initial value in global simulations. This
assumption can be justified, if the MRI acting on the unresolved

scales saturates at the initial field strengths imposed in global
simulations, i.e., if rapid amplification by the MRI takes place
over many orders of magnitude. However, this can only be
proven by high-resolution local simulations. Enhancing the ini-
tial magnetic field by a constant factor throughout the computa-
tional domain, as it is often done in global simulations, is prob-
lematic as the MRI is a local instability, i.e. it is not expected
to cause a constant amplification of the field everywhere. The
ambiguities regarding differences between the topology of this
artificially enhanced field and that of a field amplified locally by
the MRI add to the uncertainties clouding the influence of mag-
netic fields on the overall dynamics.

Both the local and the global numerical approach has been
used for studying the MRI in accretion disks, and this combined
effort has led to the rapid development of the field. Simulations
of the MRI in core collapse supernovae, on the other hand, have
not yet reached this advanced stage, mainly because of the weak-
ness of the initial field of the progenitors. According to current
stellar evolution models (Heger et al. 2005), the canonical pre-
collapse magnetic fields are so weak that they are unable to affect
the dynamics of the explosion unless they are amplified strongly.
Correspondingly, the wavelengths of the fastest growing MRI
modes are approximately a few meters at most1. Thus, the pos-
sible importance of MHD effects in core collapse supernovae
depends on the existence of mechanisms which can amplify the
field efficiently during core collapse and the post-bounce phase.
The timescale available for the growth of the magnetic field is
set by the time required to turn the accretion of matter onto the
proto-neutron star into an explosion, i.e., a few hundreds of mil-
liseconds. As already mentioned above Akiyama et al. (2003)
suggested that the MRI might provide this mechanism. They
estimated the saturation field strength to be 1015−1016 G, i.e.,
clearly in excess of the artificially enhanced initial field strengths
used in global simulations.

Up to now, there exist only global simulations of MHD core
collapse supernovae, which evolve the entire core of a massive
star through gravitational collapse, bounce, and explosion (e.g.,
Kotake et al. 2004; Yamada & Sawai 2004; Takiwaki et al. 2004;
Obergaulinger et al. 2006b,a; Burrows et al. 2007). These global
simulations fail to find the MRI unless they employ drastically
stronger initial fields. Obergaulinger et al. (2006b,a), e.g., re-
quire a pre-collapse field strength exceeding 1012 G to resolve
the MRI in the post-bounce state. The rationale behind the arti-
ficially increased initial field strengths is that, once triggered by
the differential rotation in the proto-neutron star, the MRI will
exponentially amplify a much weaker seed field up to the values
used in the simulations.

Due to the lack of local simulations, the importance of the
MRI in MHD core collapse models remains unclear. As a first
step to resolve this issue, we have performed high-resolution
simulations of small parts of simplified post-bounce, rotating,
magnetized cores. We have used a recently developed high-
resolution MHD code, and employed shearing-disk boundary
conditions (Klahr & Bodenheimer 2003). These boundary con-
ditions derive from the shearing-sheet boundary conditions of
Hawley & Balbus (1992), but allow one to consider global gra-
dients of, e.g., density or entropy. Combining elements of global
and local simulations, viz. the presence of global background
gradients, and a high-resolution local grid, we find it justified to
call our approach semi-global (for more details see Sect. 3.2).

1 Note, however, that these predictions still involve uncertainties, and
hence rare, but much more strongly magnetized progenitors cannot be
excluded presently.
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Differences in the physical conditions in disks and stars
impede the direct application of the MRI results from accre-
tion disks to supernovae. Most obviously, the geometry of both
systems differs strongly. Furthermore, while accretion discs are
stabilized against gravity by (Keplerian) rotation, stars are sup-
ported mainly by pressure gradients, with only a minor contribu-
tion from rotation, i.e. thermal stratification is much more impor-
tant in stars than in disks. Thus, entropy gradients can stabilize
an MRI-unstable region or modify the instability in convectively
unstable regions. Consequently, the problem of the MRI in core
collapse supernovae has to be addressed by simulations account-
ing for their specific properties, which is the goal of this study.
We investigate the growth of the MRI from initial fields compa-
rable to the ones expected from realistic stellar evolution mod-
eling, and we seek to probe the possibility of MRI-driven field
amplification under typical conditions of supernova cores and on
timescales similar to the dynamic times of the system, (i.e., a few
tens of milliseconds). Apart from the restrictions inherent to lo-
cal and semi-global simulations, several simplifications limit our
approach: we use simplified initial equilibrium models, a simpli-
fied equation of state, and neglect neutrino heating and cooling.
The main physical questions that we try to address are: (i) does
the MRI grow on sufficiently short time scales to influence the
explosion, i.e., within at most 100 ms, given typical post-bounce
rotation profiles and magnetic fields?; (ii) How does an entropy
gradient affect the growth of the instability?; (iii) How does the
saturated state of MRI-driven turbulence depend on these fac-
tors? In particular, is the saturation field strength estimated by
Akiyama et al. (2003), i.e., the conversion of most of the rota-
tional energy into magnetic energy, realistic?

Analogous questions are studied by local simulations of
the MRI in accretion disks. The answers may lead the way
to formulate a turbulence model to be used in global simula-
tions. The simplest model would provide a parametrization of
the angular momentum transport by an α viscosity (Shakura &
Syunyaev 1973), i.e., a turbulent viscosity proportional to the lo-
cal sound speed and the pressure scale height. However, despite
a large number of local simulations, no unique formulation of an
α model for accretion disks has been found up to now. Lacking
similar comprehensive local simulations, a turbulence model for
the MRI in supernovae is even less conceivable. Our simulations
intent to provide only a first step towards these highly desired
turbulence models.

The paper is organized as follows: after a discussion of the
main properties of the MRI in disks and stars (Sect. 2), we
outline our numerical method in Sect. 3, discuss our results in
Sect. 4, and summarize our main results and give conclusions in
Sect. 5.

2. MRI in discs and stars

2.1. Physical model

We work in the limit of ideal magnetohydrodynamics (MHD),
solving the the equations of ideal MHD in the presence of an
external gravitational potential ϕ,

∂tρ + ∇ j

[
ρv j

]
= 0, (1)

∂t p
i + ∇ j

[
piv j + P�δ

i j − bib j
]
= ρ∇iϕ, (2)

∂te� + ∇ j

[
(e� + P�) v j − bivib

j
]
= ρv j∇ jϕ, (3)

∂t b = −c ∇ × E, (4)

∇ jb
j = 0. (5)

Here, ρ, p, u, and e� denote the mass density, momentum density,
velocity, total-energy density, of the gas, respectively; b is the
magnetic field. The total-energy density and the total pressure,
P�, are composed of fluid and magnetic contributions: e� = ε +
1
2ρu

2 + 1
2 b2 and P� = P + 1

2 b2 with the internal-energy density
ε and the gas pressure P = P(ρ, ε, . . .). The electric field, E, is
given by E = − uc × b. Here, c = 2.998× 1010 cm s−1 is the speed
of light in vacuum and Einstein’s summation convention applies.

We use the hybrid equation of state (EOS) due to Keil et al.
(1996) as a rough model for neutron-star matter. Following this
EOS, the total gas pressure, P, consists of a barotropic part, Pb,
and a thermal part, Pth. The two parts are given by

Pb = κρ
Γb , (6)

Pth = (Γth − 1)εth. (7)

Here, Γb and κ refer to the barotropic adiabatic index, and the
polytropic constant of the EOS, respectively; εth = ε−Pb/(Γb−1)
is the thermal part of the internal energy, and Γth the corre-
sponding adiabatic index. Please note that we consider only sub-
nuclear densities, ρ < ρnuc = 2×1014 g cm−3 here since the max-
imum density reached in our models is a few times 1013 g cm−3.

We define a pseudo-entropy S for this equation of state by

S =
Pth

Pb
· (8)

In the Schwarzschild criterion for convective stability (see be-
low), this quantity appears instead of the entropy of, e.g., an ideal
gas.

A few quantities used frequently in the remainder of this
paper are:

1. the Alfvén velocity

cA =
|b|√
ρ
, (9)

2. the (local) magnetic energy density

emag =
b2

2
, (10)

and the corresponding volumetric mean value

emag =
1
V

∫
dV emag, (11)

3. the (local) Maxwell stress tensor

Mi j = bib j, (12)

and the corresponding volumetric mean value

Mi j =
1
V

∫
dVMi j. (13)

We will use most frequently the component M�φ which
governs the transport of angular momentum in radial direc-
tion, and we will sometimes refer to this component as the
Maxwell stress for short.
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2.2. General properties of the MRI

The stability criteria for the MRI was first discovered by
Velikhov (1959); Chandrasekhar (1960) and further discussed by
Balbus & Hawley (1991) in a series of papers. These authors an-
alyze wave-like (WKB) perturbations of the form exp[i(k·r+ωt)]
in a background equilibrium of the MHD equations. For con-
venience cylindrical coordinates (�, φ, z) are used in the fol-
lowing equations. From the dispersion relation, they derive the
criteria for exponential growth and, if applicable, the growth
rates of WKB modes. Because the main astrophysical context
of this series of papers is accretion discs, some assumptions are
made which considerably simplify the analysis: i) weak mag-
netic fields where |uA| � min(cs, |vϕ|); ii) incompressible gas
(Boussinesq approximation), and iii) angular velocity constant
on cylinders, Ω(�). The discussion is mostly restricted to thin
discs (i.e., to equatorial regions and to a Keplerian rotation law)
and 5/3-polytropes. Under these assumptions the stability crite-
rion for a differentially rotating magnetized fluid is (Balbus &
Hawley 1991)

R� ≡ �∂�Ω2 > 0. (14)

If the criterion is not fulfilled only modes with (dimensionless)
wavenumber

k̂ <
√
−R̂� = k̂crit (15)

are unstable, where k̂ ≡ k · uA/Ω, k̂crit ≡ kcrit · uA/Ω and R̂� ≡
R�/Ω2. The (dimensional) growth rate of the fastest growing
mode is (Balbus & Hawley 1992)

ω̂FGM ≡ ωFGM/Ω = −R̂�/4 (16)

which is independent of the magnetic field and corresponds to
(dimensionless) wave numbers close to k̂crit.

However in the context of core collapse supernovae some of
these assumptions do not apply: entropy and composition gradi-
ents are important, more general rotation laws Ω(�, z) have to
be considered, and the analysis can no longer be restricted to
equatorial regions. In this general case the dispersion relation of
WKB modes is (cf. Balbus 1995; Urpin 1996),
(
ω̂2 − k̂2

)2 −
(
ω̂2 − k̂2

) (
ω̂2

G + ω̂
2
R + 4 cos2 θk

)
(17)

− 4 k̂2 cos2 θk = 0 (18)

where ω̂ = ω/Ω is the dimensionless growth rate of the insta-
bility, and θk is the angle between k and the z-axis. The (dimen-
sionless) frequencies related to buoyancy terms and differential
rotation are

ω̂2
G =

1
Ω2

[
G · B − (k · B)(k · G)

k2

]
(19)

and

ω̂2
R =

1
Ω2

[
R · e� − (k · e�)(k · R)

k2

]
, (20)

respectively, where e� is the unit vector in �- direction,

G ≡ ∇P
ρ

(21)

R ≡ �∇Ω2 (22)

B ≡ ∇ρ
ρ
− ∇P
Γ1P
= − 1
Γ1

∂ ln P
∂s

∣∣∣∣∣
ρ
∇s (23)

Fig. 1. Imaginary part of the growth rate normalized to the imaginary
part of the maximum growth rate, �(ω̂)/�( ˆωFGM) as a function of C and
k̂/ cos θk ≡ k · uA/(Ω cos θk). The dashed line shows the value of k̂ cor-
responding to the fastest growing mode, �(ω̂)/�( ˆωFGM) = 1, the solid
line gives the boundary between the two branches of unstable modes
(Alfvén and Buoyant modes), and the dash-dotted line corresponds to
the stability limit (k̂ = k̂crit). For −4 < C < 0 only Alfvén modes ap-
pear, with a narrow spectrum of fast growing modes close to k̂crit (dash-
dotted line). For C < −4 buoyant modes appear and become dominant
for C < −8. In the latter case the spectrum of fast growing modes is
much wider covering the entire region from k̂crit to 0.

are the gravitational, rotational, and buoyancy terms, respec-
tively, and Γ1 ≡ ∂ ln P/∂ ln ρ|s. It is convenient for the mode
analysis and if cos θk � 0 to define the quantity

C ≡ ω̂
2
G + ω̂

2
R

cos2 θk

= (GzBz tan2 θk − 2B�Gz tan θk + G�B� + R�)/Ω2, (24)

where the curl of Eq. (2), i.e. the vorticity equation, has been
used to simplify the expression of C. Note that this quantity de-
pends on the direction of the perturbation θk, but not on k2 itself.
If cos θk = 0, which corresponds to velocity perturbations par-
allel to the rotation axis, the value of C diverges, but all length
scales and growth rates of the discussion below are finite, and
can be computed by taking the limit cos θk → 0.

In the absence of a magnetic field, i.e. k̂2 = 0, the stabil-
ity condition is simply C + 4 > 0, which is equivalent to the
Solberg-Høiland stability criteria for a non-magnetized rotating
fluid (Tassoul 1978).

Because we want to study instabilities of magnetized fluids,
we consider hereafter only the case k̂ � 0. Then the stability
condition is C > 0, which corresponds to that of Balbus (1995),

G · B + R · e� ≥ 0 (25)

(G × e�) · (B × R) ≥ 0. (26)

Modes with wave numbers smaller than the (dimensionless) crit-
ical wavenumber

k̂crit = cos θk
√−C (27)

are unstable and grow. The critical wavenumber depends on the
angle θk in a complicated way involving, in general, the rotation
profile, R, the thermal structure, B, and the stratification, G.

Two branches of unstable modes arise from the dispersion
relation with k̂ � 0 (Urpin 1996): the branch of Alfvén modes
appearing for C < 0, and the branch of buoyant modes which
only appear for C + 4 < 0 (Fig. 1).

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811323&pdf_id=1
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For a given θk the fastest growing mode is obtained from the
condition ∂k̂ω̂ = 0. For −8 < C < 0 it has a (dimensionless)
wavenumber

k̂FGM = cos θk

√−C(C + 8)
4

, (28)

and a (dimensionless) growth rate

ω̂FGM = cos θk

√−C2

4
· (29)

If C ≤ −8, the fastest growing mode corresponds to k̂FGM = 0,
i.e. it is dominated by buoyant modes with a (dimensionless)
growth rate

ω̂FGM = cos θk
√C + 4. (30)

Thus, there exist two different instability regimes depending on
the value of C. For −4 < C < 0 only Alfvén modes are pos-
sible. This magneto-shear regime was discussed by Balbus &
Hawley (1991). A mixed regime is found for −8 < C < −4,
where both Alfvén and buoyant modes compete. For C < −8 the
buoyant modes completely dominate the growth of the instabil-
ity, and this regime is thus called magneto-convective regime. It
is similar to the convective regime, but the critical wavenumber
is determined by the strength of the magnetic field.

Note that for a given fluid element the behavior of the unsta-
ble modes depends on the angle θk. Thus, different regimes can
hold in different directions. To find the absolute fastest growing
mode of a fluid element, i.e. not considering a fixed angle θk, one
has to determine the zeros of ∂ω̂/∂θk, which involves the solu-
tion of a quartic equation. This fact makes a more detailed study
of the instability difficult.

To simplify the analysis, we restrict ourselves in the follow-
ing discussion to regions near the equator, where it is reasonable
to assume only a radial dependence of the hydrodynamic quan-
tities and a vertical magnetic field. Therefore,

C90 = (N2 + R�)/Ω2, (31)

where N2 ≡ B·G is the square of the Brunt-Väisälä or buoyancy
frequency. Because C90 does not depend on θk, all modes of the
considered fluid element belong to the same branch of modes,
i.e. they are either buoyant modes or Alfvén modes. All modes
with wavelengths shorter than

λcrit ≡ 2π
kcrit
=

2π |uA |√−(N2 + R�)
, (32)

are stabilized by magnetic tension. It is easy to show that the
modes grow faster when k is parallel to the z-axis (θk = 0),
i.e. velocity and magnetic field perturbations grow in direc-
tion perpendicular to the rotation axis. The stability criterion,
N2 + R� > 0, can easily be interpreted according to the relative
size of the buoyancy term, N2, and the shear term, R�. Several
different regimes result (Fig. 2):

– Magneto-shear instability (MSI): R� � N2 and −4Ω2 <
N2 + R� < 0. All modes longer than λcrit are unstable al-
beit with a vanishing growth rate as their wavelength λ ap-
proaches infinity. The growth rate peaks for

λMRI ≡ 2π/kFGM ∼
√

2 λcrit, (33)

where the limit |C| � 8 is used to obtain the second ex-
pression. It is important to note that λMRI, which scales with
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Fig. 2. Stability regions in the plane R�/Ω2 vs N2/Ω2. The solid thick
line separating the stable region from the magneto-rotational instabili-
ties (MSI and MBI) corresponds to C = 0, and the solid thick line sep-
arating the magneto-rotational instabilities from the hydrodynamic in-
stabilities (convection and shear instability) corresponds to the C = −4.
The mixed zone is arbitrarily defined by |R�/Ω2 − N2/Ω2| < 2.

the background field strength b0, becomes small for weak
initial fields. Hence, in the limit of a pure shear instability,
only relatively strong initial fields are accessible by numer-
ical simulations due to the restrictive constraint on the grid
size imposed by the requirement to resolve λMRI by at least
several grid zones;

– Magneto-buoyant instability (MBI)2: N2 � R� and −4Ω2 <
N2 + R� < 0. This regime resembles the magneto-shear
regime, but the instability is not driven by the shear, but
rather by the unstable stratification;

– Magneto-convective instability: N2 � R� and N2 + R� <
−4Ω2. This regime corresponds to magnetized convective
flow. The main difference is the stabilization of short modes
(λ < λcrit) due to the magnetic tension. The more important
the negative entropy gradient becomes with respect to the an-
gular velocity gradient, the faster is the growth of infinitely
long modes compared to the growth rate at λMRI;

– Hydrodynamic shear instability: R� � N2 and N2 + R� <
−4Ω2. This case is not of interest in core collapse since for
the differential rotation of PNS we always find R� > 1.5Ω2.

Core collapse occurs in general in a mixed regime, where Alfvén
modes and buoyant modes compete. Therefore, none of the
above mentioned pure regimes holds for the MHD instabilities
appearing during core collapse.

3. Method

3.1. Code

We use a newly developed three-dimensional Eulerian
MHD code (Obergaulinger et al., in preparation) to solve the
MHD equations, Eqs. (1)–(5). The code is based on a flux-
conservative finite-volume formulation of the MHD equations

2 The reader should not confuse this instability with the magnetic
buoyancy or Parker instability (Parker 1966), related to the magnetic
field strength gradients.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811323&pdf_id=2
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and the constrained-transport scheme to maintain a divergence-
free magnetic field (Evans & Hawley 1988). Using high-
resolution shock capturing methods (e.g., LeVeque 1992),
it employs various optional high-order reconstruction algo-
rithms including a total-variation diminishing piecewise-linear
(TVD-PL) reconstruction of second-order accuracy, a fifth-
order monotonicity-preserving (MP5) scheme (Suresh & Huynh
1997), and a fourth-order weighted essentially non-oscillatory
(WENO4) scheme (Levy et al. 2002), and approximate Riemann
solvers based on the multi-stage (MUSTA) method (Toro &
Titarev 2006). The simulations reported here are performed
with the MP5 scheme and a MUSTA solver based on the HLL
Riemann solver (Harten 1983).

The simulations are performed using cylindrical coordinates,
and include both three-dimensional and two-dimensional (i.e.,
axisymmetric) models. The computational grid covers a region
of a few (typically one or two) kilometers aside resolved by at
least 26 and at most 800 zones per dimension, corresponding to
a resolution between 40 and 0.625 m.

3.2. Boundary conditions

In local simulations, the choice of boundary conditions is a cru-
cial issue, with possibly subtle effects on the flow geometry. The
standard technique for local simulations of the MRI in accre-
tion disks is the shearing-sheet method due to Hawley & Balbus
(1992). This approach consists of two important ingredients: (i) a
transformation into a frame of reference co-rotating at the mean
angular velocity of the shearing box, Ω0, and the linearizion
of the rotation profile around Ω0; (ii) the use of shearing-sheet
boundaries in the radial direction, and (in most cases) periodic
boundary conditions in the perpendicular directions.

Periodic boundary conditions are often used in simulations
of a small, representative sub-volume of a larger system. These
boundary conditions are based on the idea that the entire sys-
tem is covered by a homogeneous (e.g., cubic) lattice of iden-
tical sub-volumes. Consequently, the, e.g., left boundary of the
simulated sub-volume is identified with the right boundary of an
identical sub-volume translated by one lattice width.

A shearing box represents only a small part of the entire
system. The influence of larger scales is considered by suit-
able boundary conditions, the most natural choice being periodic
ones. These boundary conditions, however, do not allow one to
impose global gradients throughout the shearing box, e.g., for
differential rotation (∂�Ω � 0). This shortcoming is eliminated
by the linearization of the rotation profile and the transforma-
tion into the co-rotating frame since, in this case, the deviation
from the background profile, δΩ, is the dynamical variable rather
than Ω itself. Thus, it is possible to use periodic boundary con-
ditions in the radial direction accounting for differential rotation
by an offset δφ(t) = t (Ωout −Ωinn), as described by (Hawley
& Balbus 1992), where Ωout,inn are the angular velocities at the
outer and inner radial surface of the shearing box, respectively.

In contrast to accretion disks, thermodynamic variables in
stars may have global gradients both in the direction perpendic-
ular and parallel to the gradient of Ω. Thus, standard shearing-
sheet boundaries cannot be used. Instead, we follow Klahr &
Bodenheimer (2003) and employ shearing-disc boundary condi-
tions. We abandon the transformation into the co-rotating frame
and assume radial periodicity of the deviation, δq ≡ q − q0, of
a variable q from a given background distribution q0, instead of
periodicity of q itself. We define the background distribution q0
by its distribution at the initial time t = 0, i.e. q0 ≡ q(�; t = 0).
This recipe is applied to density, momentum, and entropy. As

Klahr & Bodenheimer (2003), we observe the development of
resonant radial oscillations which are suppressed, however, by
damping the radial velocity in the first n (we use n = 2) com-
putational zones at both radial boundaries. We point out that
shearing-disc simulations allow for large-scale modifications of
global gradients. In particular, angular momentum transport may
modify the global rotation profile, and change the angular mo-
mentum and rotational energy of the matter in the computational
volume. This process can eliminate the differential rotation caus-
ing the instability, and thus, terminate the growth of the MRI.

As we will show later, the evolution of our models depends
crucially on whether we do or do not apply this damping term.
However, we note here that the artificial oscillations prevented
by the damping do not have a strong influence on the evolu-
tion of the MRI. We use, if at all, a damping of v� by 1.25%
in the innermost and outermost two zones of the grid, which
is a considerably weaker damping than in the simulations of
Klahr & Bodenheimer (2003). Despite its relative weakness, the
damping term is able to suppress weak radial motions across
the boundary. Thus, it introduces a preferred length scale (the
radial size of the box) into the otherwise shear-periodic simula-
tion. Comparing simulations with and without damping (we will
refer to these boundary conditions by d and p, respectively), we
can study the influence of a preferred scale on the MRI.

The box size of standard shearing-sheet simulations does not
define a preferred length scale, i.e., these simulations are scale
free and entirely local. In shearing-disc simulations, in contrast,
the scale height of the thermodynamic variables introduces a
physical length scale into the simulation. If this preferred length
scale is smaller than the entire size of the star or disk, the simu-
lations can be characterized as being semi-global.

The semi-global approach falls in between a purely local and
a global one sharing merits and drawbacks with both methods.
Similar to local simulations, semi-global simulations allow one
to resolve a small part of the entire system better. Because they
rely on a fixed lab frame and do not eliminate the mean rotation,
the basic time scales are the same as in a global simulation of
the same resolution. In a Keplerian disk dominated by rotation
this might add a major difficulty to the numerical treatment of
the problem. On the other hand, with pressure dominating over
kinetic energy, the time step of our simulations is governed by
the sound speed rather than the rotational velocity. As there is no
way of eliminating the sound speed, we do not feel a need to use
a shearing-sheet transformation.

We expect the MRI in core collapse to grow and reach
saturation within several tens of milliseconds. The time step
δt � δx/cS, on the other hand, is much smaller because of the
high value of the sound speed in a post-collapse core (cS ∼
1010 cm s−1), where δx is the width of the computational zone.
Thus, we have to perform a large number (typically several mil-
lions) of time steps, which implies a limit on the grid resolution
we can afford in the simulations, although the resolution is still
much better than that of a global simulation.

3.3. Initial conditions

We use equilibrium initial models based on post-bounce cores
from Obergaulinger et al. (2006b). Several tens of milliseconds
after the core bounce, the shock wave has reached distances of
a few hundred kilometers, the post-shock region exhibiting a
series of damped oscillations as the proto-neutron star relaxes
into a nearly hydrostatic configuration. We extract the radial
profile of the gravitational potential along the equator of their
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Fig. 3. Hydrostatic structure of the initial models. The diagram shows
the gravitational potential ϕ19 = ϕ/(1019 erg cm−3) (solid lines, right
y axis), the density ρ13 = ρ/(1013 g cm−3) (dashed line, left y axis), and
the angular velocity Ω3 = Ω/(103 s−1) (dash-dotted line, left y axis).
The entropy profile of this specific model is assumed to be flat.

model A1B3G33, and construct from that the density stratifica-
tion within our shearing box solving the equation of hydrostatic
equilibrium

0 = ρ∂�ϕ − ∂�P +�ρΩ2 (34)

for a given rotation profile

Ω(�) = Ω0�
αΩ , (35)

whereΩ0 and αΩ are constants. The pressure is determined using
the hybrid equation of state in the form

P = (S + 1)ργ, (36)

assuming an entropy profile of the form

S (�) = S 0 + S 1(� −�0) (37)

with constants S 0 and S 1. Equation (34) is solved in a radial
domain of size, Δ�, which is either one or two kilometers large,
centered at �0 = 15.5 km. The structure of an initial model,
characterized by the set of parameters Ω0 = 1900 s−1, αΩ =
−1.25, S 0 = 0, and S 1 = 0, is shown in Fig. 3. This model
has a radial density scale height of Hρ = P

∂�P ≈ 3.8 km, i.e.,
our computational grid covers a significant fraction of a density
scale height. The rotation rate of ∼2000 s−1 corresponds to that
of a rapidly rotating proto-neutron star with a rotational period
of ∼3 ms.

Assuming that the background gravitational potential is a
function of � only, we construct cylindrically symmetric ini-
tial models. This approximation is justified by the small size of
the simulation box in z-direction (1 km) compared to its radial
position (15 km).

We added three different types of initial magnetic fields to
the initial hydrostatic model:

[Model UZ:] a uniform B-field in z-direction, b =
(
0, 0, bz

0

)T
.

3 This model experiences a core collapse that is halted by the stiffening
of the equation of state above nuclear matter density.

[Model VZ:] a B-field in z direction with vanishing net flux, b =(
0, 0, bz

0 sin (2π(� −�0)/Δ�)
)T

.
In all models, the initial field is weak, both in comparison

with the thermal and the rotational energy of the models. The
weakness of the associated Lorentz force justifies the use of
hydrostatic instead of hydromagnetic equilibria as initial con-
ditions.

From Eq. (33) and the values of typical model parameters we
obtain the following estimate for the MRI wavelength

λFGM∼6.9 km

(
b

1015 G

) (
ρ

2.5 1013 g cm−3

)− 1
2
(
Ω

1900 s−1

)−1

· (38)

To properly simulate the evolution of the MRI, λMRI should be
resolved by at least a few grid zones. Using a grid resolution
of 10 m or 20 m, we thus can follow the growth of the MRI for
magnetic fields exceeding several 1012 G (Obergaulinger et al.
2006b,a). To trigger the instability, we impose a small random
radial velocity perturbation with an amplitude of a few times
10−4..−2 of the rotational velocity.

4. Results

4.1. General considerations

In axisymmetry, the growth of the MRI requires a non-vanishing
poloidal initial field. Axisymmetry restricts the dynamics of the
MRI, suppressing a class of instabilities that affect the evolu-
tion of MRI-unstable modes (see below). Consequently, the pre-
dictive power of axisymmetric simulations for the evolution of
the MRI is limited, and we cannot rely on them in determining
the saturation amplitude of the instability in supernova cores.
The growth of the instability does, however, not differ strongly
from full 3D models. Thus, we can use 2D models to determine
growth rates, while detailed conclusions can only be drawn from
3D models.

In axisymmetry, the flow is dominated by channel modes,
a pattern of predominantly radial4 flows of alternating direc-
tion stacked in z direction (Balbus & Hawley 1991). As the
MRI grows, the channels start to merge and their characteristic
length scales increase, but they survive as coherent flow struc-
tures throughout the entire evolution and, particularly, do not
dissolve into turbulence.

The analysis of Goodman & Xu (1994) shows that channel
modes are an exact nonlinear solution of the axisymmetric MHD
equations, which explains their stability observed in many nu-
merical simulations. They are, on the other hand, unstable to
genuinely 3D parasitic instabilities of, e.g., Kelvin-Helmholtz
type. Consequently, in 3D, the channel modes appearing during
the early growth phase of the MRI, do not persist until satura-
tion. Instead, the channels decay due to the growing parasitic
instabilities, and turbulence develops.

This basic picture emerged from many simulations of the
MRI in accretion disks. As we will discuss in the following, our
simulations confirm this result for the MRI in supernova cores.

4.2. Axisymmetric models with no entropy gradient

4.2.1. Uniform initial magnetic fields

Our models having no entropy gradient show the same dynam-
ics as that observed in previous simulations of the MRI in ac-
cretion discs (see, e.g., Balbus & Hawley 1998). We discuss first

4 In general, the channels are oriented parallel to the gradient of Ω,
wherever it points to.
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Fig. 4. Evolution of the mean magnetic energy density emag (solid black
line), the mean energy densities corresponding to the � (dotted red),
φ (dashed brown), and z (dash-dotted green) component of the mag-
netic field, and the absolute value of the mean Maxwell stress compo-
nent M�,φ (dashed blue line) for an axisymmetric model with an initially
uniform magnetic field bz

0 = 2×1013 G in z-direction, and a rotation law
given by Ω0 = 1900 s−1 and αΩ = −1.25. The model was computed in a
box of L� × Lz = 1 km × 1 km with a grid resolution of 5 m.

the models with a uniform initial field bz
0 in z-direction (model

series UZ2) focusing on models with a rotational law given by
Ω0 = 1900 s−1 and αΩ = −1.25 (see Eq. (35)). The evolution
of these models is characterized by an exponential growth of the
magnetic field, see e.g., Fig. 4 for a model with bz

0 = 2 × 1013 G.
The fastest growing MRI mode is well resolved in this model,
and its growth rate σMRI = 1.08 ms−1 is found to be close to the
theoretical prediction σMRI ≡ �(ωFGM) ≈ |αΩΩ0/2| = 1.14 ms−1

(see Eq. (29)). The magnetic field reaches a maximum value of
about 1015 G at t ≈ 15 ms, and the mean Maxwell stress com-
ponent M�φ (see Eq. (13)) becomes large enough to alter the
rotation profile considerably within a few tens of milliseconds.
Consequently, the angular momentum of the gas drops drasti-
cally at t ≈ 25 ms.

The growth of the MRI proceeds via channel flows, whose
vertical extent and number depends on the initial magnetic field.
Two typical channel flows are shown in Fig. 5. During the early
phase of the instability (t = 10.6 ms; upper panel) eight distinct
channels are present each one consisting of a pair of up- and
down-flows in radial direction. The magnetic field is organized
into eight elongated radial sheets, and this pattern is also im-
printed onto the distribution of Ω, as the magnetic field enforces
co-rotation along field lines.

A flow topology dominated by channel modes implies a
phase of exponential growth of the magnetic field, which ends
when the channel modes are disrupted and a less organized, more
turbulent state ensues (in Fig. 4 this happens at t ≈ 11 ms). In
most axisymmetric models, the turbulent state is only of tran-
sient nature, because after some time coherent channel flows
form again leading to a secondary phase of exponential growth
(see Fig. 4 at t ≈ 23 ms).

Very late in the evolution (t = 30.7 ms; lower panel of
Fig. 5) we find only one large-scale channel flow which ex-
tends across the entire domain in radial direction. The mag-
netic field is now predominantly radial and is concentrated near
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Fig. 5. The channel modes present in two snapshots taken from the
model for which Fig. 4 shows the time evolution. The snapshots are
taken at t = 10.6 ms (upper panel) and t = 30.7 ms (lower panel), re-
spectively. The panels show the color coded angular velocity Ω, the
magnetic field lines (white), and the flow field. The colors of the ve-
locity vectors indicate the magnitude and the direction of the flow:
up- and down-flows are represented by blue and red vectors, respec-
tively, their color intensity corresponding to the absolute value of the
(poloidal) velocity (the darker the larger). The maximum velocities are
2.7 × 107 cm s−1 (upper panel), and 8.8 × 108 cm s−1 (lower panel),
respectively.

the channel boundary. This coherent flow pattern is the result
of a strong transport of mean angular momentum by Maxwell
stresses. The stresses enforce co-rotation along field lines, and
consequently turn the rotation profile, initially constant on cylin-
ders � = const., by 90 degrees, so that Ω becomes a function
of z only. We can distinguish two regions of slow and fast rota-
tion inside and outside z ∈ [−0.15; 0.25], respectively. Inside the
slowly rotating channel matter is accreting towards the center
with v� ∼ 4 × 108 cm −1, while the rapidly rotating gas outside
the channel has much slower, random velocities.

To investigate the dependence of the channel geometry on
the initial magnetic field and the grid resolution we compute
Fourier spectra of the radial component of the magnetic field,
b�, for models with Ω0 = 1900 s−1 and αΩ = −1.25, and an
initial field strength of 4, 10, and 20 × 1012 G, respectively. The
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Fig. 6. Radially averaged Fourier spectra of the radial component of the
magnetic field, b�(z), for different uniform-field models at t ≈ 7.5 ms.
Models with b0 = 4 × 1012 G, 1012 G, and 2 × 1013 G are shown by
the red dash-dotted, the blue dashed, and the black solid line, respec-
tively. Thick and thin lines refer to a computational domain of 1 km2

and 2 km2, respectively. For all models a grid of 4002 zones is used.

simulations are performed in a box of either 1×1 km2 or 2×2 km2

using a 4002 grid (Fig. 6). At each radius we Fourier-transform
b�(z), and the resulting spectra b�(kz) (where kz is the vertical
wave number) are then averaged over radius. We applied this
procedure to the models during the growth phase of the instabil-
ity at t ≈ 7.5 ms. The first set of models (1 km2 domain, 2.5 m
spatial resolution) exhibits growth rates close to the theoretical
values, while this only partially holds for the models of the sec-
ond set of models (4 km2 domain, 5 m spatial resolution). Due
to insufficient spatial resolution the MRI in the model with the
weakest initial field (bz

0 = 4×1012 G) grows slower than theoret-
ically predicted. However, for the two more strongly magnetized
models of this set (bz

0 = 10, and 2 × 1013 G) the fastest growing
modes are well resolved, and the MRI growth rates agree with
the theoretical ones.

For each model the spectrum shows a distinct maximum cor-
responding to a dominant vertical length scale given by the width
of one channel mode. The position of this maximum is a func-
tion of the initial magnetic field only, kmax ∝ b−1

0 , and thus does
neither depend on the size of the computational domain nor on
the resolution. A dependence on the last quantities is only ob-
served, if the fastest growing mode is under-resolved. In this
case, we recover the low-k wing of the spectral peak, but find
a truncated spectral distribution at higher wave numbers/smaller
length scales.

MRI theory predicts that the growth rate is independent of
the initial field strength. Neglecting magneto-convective modes,
we can expect to observe this behavior in numerical simulations
only if the grid is sufficiently fine to resolve the fastest grow-
ing modes close to λMRI. Otherwise, if the grid is too coarse the
growth rate should be much smaller. Our simulations reproduce
this behavior. We show a comparison of the maximum growth
rates from linear analysis (σFGM = �(ωFGM) ≈ | 12αωΩ0|) and
the numerical ones for models with different initial rotation laws
(Ω0 ranging from 950 s−1 to 1900 s−1, and αΩ from –1 to –1.25)
in Fig. 7. If λMRI is under resolved for a given initial field b0, the
growth rate increases with b0, but once the MRI wavelength is
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Fig. 7. Growth rate σ of the MRI for axisymmetric models with uni-
form initial field as a function of the initial Alfvén speed normalized to
the rotational velocity and the grid resolution, cA/(δxΩ0). The colored
symbols distinguish different initial rotational laws, where (Ω0, αΩ) are
equal to (1900 s−1,−1.25) [black plus signs], (1900 s−1,−1) [red dia-
monds], (950 s−1,−1.25) [green squares], and (950 s−1,−1) [brown tri-
angles], respectively.

well resolved, the growth rate becomes constant as theoretically
predicted. Figure 7 implies the following criterion for a suffi-
cient resolution of the MRI: Δ� � 2Ω0/cA. The growth rate of
the instability does not depend on the size of the computational
domain. For models with strong initial fields the computed MRI
growth rate is smaller than σFGM, because the MRI wavelength,
i.e., the wavelength of the fastest growing mode, exceeds the box
size. Thus, we can only properly simulate the slower growth of
shorter modes.

4.2.2. Channel disruption and MRI termination

As long as the dynamics of the model is dominated by channel
modes, the MRI grows exponentially. We observe a termination
of its initial exponential growth – henceforth called MRI termi-
nation – as soon as the coherent channels are disrupted. Further
MRI growth occurs after an eventual reformation of the channel
flows. To understand these processes better, we study MRI termi-
nation in a large number of axisymmetric models with different
initial magnetic fields, boxes of different size and grid resolution,
and different boundary conditions.

Figure 8 shows the value of the mean Maxwell stress com-
ponent Mterm

�,φ at MRI termination as a function of the initial
magnetic field strength, b0 for models with a rotational law
Ω = 1900 s−1�−1.25 and a vanishing entropy gradient. We can
distinguish two classes of models according to the boundary
conditions applied in the simulations (see Sect. 3.2), the quali-
tative difference between the models with and without velocity
damping near the boundaries being quite remarkable given the
weak damping we apply. In models with damping Mterm

�,φ grows
with increasing initial field strength until it levels off at a grid
size dependent value (colored bands in Fig. 8). For the same
models, when simulated without damping, we find that Mterm

�,φ ∝
b16/7

0 (gray band in Fig. 8) independent of the grid size. The
“outliers” in the upper part of the figure correspond to models

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811323&pdf_id=6
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Fig. 8. Volume-averaged Maxwell stress component Mterm
�φ at MRI ter-

mination as a function of the initial magnetic field strength, b0, for ax-
isymmetric models with uniform initial magnetic field in z-direction , a
rotational profile Ω = 1900 s−1�−1.25, and a vanishing entropy gradient
for a set of axisymmetric models. Blue, green, orange, and red symbols
correspond to models computed in a square box having an edge size
of 0.5, 1, 2, and 4 km, respectively. Models computed with and without
velocity damping at the radial boundaries are denoted by asterisks and
diamonds, respectively. The latter models show a box size independent
scaling Mterm

�φ ∼ (bz
0)16/7 (gray band), while in models with damping

Mterm
�φ saturates at high field strengths the saturation value depending on

the box size (colored horizontal bands).

computed with a higher grid resolution than most other models.
We will discuss this fact below.

To determine whether the radial or the vertical size of the
computational grid is responsible for the leveling off of the
Maxwell stress in the runs with radial damping we simulate two
models with a grid of 0.5 km×2 km (for short called high models
in the following), and 2 km×0.5 km (long models), respectively.
Our results show that the determining factor for the growth is pri-
marily the radial rather than the vertical box size, as both models
follow the behavior of M�,φ as a function of b0 for the respec-
tive radial grid sizes. The two classes of models also exhibit re-
markably different post-growth dynamics. In the high models, a
few channel modes reappear from the turbulent state, and a sec-
ondary phase of exponential growth of M�,φ sets in. Eventually,
two of the newly formed channel modes merge. By this process,
which occurs repeatedly, the number of channels decreases, and
the final state of the flow is dominated by one short but wide
channel mode. In the long models, on the other hand, no sec-
ondary exponential growth is observed, and the Maxwell stress
remains approximately constant, albeit oscillating considerably
due to the temporary presence of coherent flow patterns.

To interpret these results, one has to analyze the mecha-
nism responsible for the disruption of the channel modes. We
discuss this mechanism for an undamped model with Ω0 =
1900 s−1, αΩ = −1.25, and an initial magnetic field strength
b0 = 4 × 1013 G using a box of 0.5 km × 0.5 km and a resolu-
tion of 100 × 100 zones. During the growth of the instability a
few large channels are present, which are disrupted at MRI ter-
mination (at ≈15.9 ms).

Figure 9 illustrates the disruption of one of the channel flows
in some detail. At t = 15.850 ms, the channel flow is still in-
tact (left panel), and one recognizes two broad streams of in-
flowing and out-flowing gas both permeated by a strong radial

magnetic field of opposite polarity. A broad current sheet sep-
arates the two flow regions. Owing to small-scale fluctuations
in the flow, the field lines are not perfectly (anti-)parallel, and
the current sheet is slightly deformed. These deformations act
as seed perturbations for resistive instabilities of the tearing-
mode type. Although we evolve the equations of ideal MHD
neglecting resistivity, the presence of numerical resistivity en-
ables the growth of these instabilities, leading to a reconnection
of anti-parallel field lines. As a consequence, the elongated cur-
rent sheet dissolves into a configuration of X and O points (lo-
cated at � ∼ 15.25 km and ∼15.5 km, respectively; see middle
panel of Fig. 9). When field lines reconnect near the X point, the
fluid is accelerated away from the reconnection point towards the
O point. This causes the intense gas flow in positive radial direc-
tion at (�, z) ∼ (15.35, 0.1) km. The change of the topology of
the magnetic field and of the flow continues shortly afterward
(at t = 16.078 ms; right panel of Fig. 9). The O point has grown
in size, and the fluid is in vortical motion. As the vortex grows,
field lines in the vortex are advected towards field lines of oppo-
site polarity belonging to an adjacent channel flow (centered at
z ≈ −0.15 km), where reconnection occurs. Note the formation
of a second X point at (�, z) ≈ (15.38,−0.03) km (Fig. 9, right
panel).

To demonstrate the growth of the tearing-mode instability
and to support its importance for MRI termination, we compare
the evolution of the mean Maxwell stress component M�φ and of
the magnetic energy density of the z-component of the magnetic
field, ez

mag of the model (see Fig. 10). Before the tearing mode
grows M�φ and ez

mag increase, their growth rates being similar
to that of the MRI. At t = 15.850 ms, the growth rate of ez

mag
becomes larger than that of the MRI by one order of magni-
tude within less than 0.2 ms, whereas M�φ approaches a maxi-
mum. Once the tearing mode is fully operative (t = 15.983 ms),
the growth of ez

mag becomes slower but still continues due to the
appearance of more tearing modes (see, e.g., the right panel of
Fig. 10 at (�, z) ≈ (15.38,−0.03) km).Subsequently, ez

mag begins
to decrease as the tearing modes saturate.

According to the previous discussion the dynamics of the
channel flows is dominated by the interplay between their
growth due to the MRI and their destruction by resistive insta-
bilities. Channel flows are unstable against tearing-mode-type
instabilities at any point in their evolution. To study these insta-
bilities in more detail, we have performed a set of simulations
(see Appendix A) using simplified models of channel flows. We
recapitulate our results, summarized in Eq. (A.11), here:

σr ∝ (cA)7/4 (cS)−3/4 (a)−2 (δx)1 , (39)

where σr, cA, cS, a, and δx are the growth rate of the instabil-
ity, the Alfvén velocity corresponding to the channel magnetic
field, the sound speed, the width of the channel, and the grid
resolution, respectively. because the instability is not based on a
physical resistivity, but is of purely numerical origin, no physi-
cal transport coefficient appears in Eq. (39). However, our results
can be interpreted in terms of an effective resistivity cAδx, as de-
tailed in Appendix A. In our models the width of the channel
flow, a, is set by the MRI wavelength corresponding to the ini-
tial vertical magnetic field:

λMRI ∝ bz
0/

√R� ∝ bz
0/(
√
αΩΩ0) (40)

(see Eqs. (32), (33), and (35)). The width remains constant dur-
ing the growth, as only mergers of adjacent channels occurring
as a result of resistive instabilities can change the field topology.
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Fig. 9. The disruption of a channel mode in an axisymmetric uniform-field model. We show a section of a model with an initial field b0 = 4×1013 G
computed on a grid of 0.5 × 0.5 km2. The left, middle, and right panels display the color-coded radial component of the magnetic field b� (top)
and the current density jφ = (∇ × b)φ (bottom) before (t = 15.850 ms), during (t = 15.983 ms), and after (t = 16.078 ms) the violent disruption of
the channel flow, respectively. Additionally, magnetic field lines (black lines), and the velocity field (arrows; top only) are shown. The arrows are
color–coded according to the magnitude and direction of the flow. Inflows and outflows are shown by gray and green vectors, respectively. The
longest vector corresponds to a velocity of |v| = 7 × 108 cm/s.
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Fig. 10. Temporal evolution of the absolute value of the mean Maxwell
stress component M�φ (solid line; the line is colored black where
M�φ < 0, and green otherwise), and of the magnetic energy density
of the z-component of the magnetic field, ez

mag (dashed red line) of the
model shown in Fig. 9. The vertical yellow lines mark the times of the
snapshots shown in Fig. 9.

Our basic proposition for MRI termination is that channel
flows are disrupted once the growth rate of the resistive instabil-
ity exceeds the MRI growth rate:

σr > σMRI ⇒ MRI termination. (41)

Using in addition the functional dependence of σr (Eq. (39)), we
can establish scaling laws for MRI termination for a given hydro-
dynamic background model. As the channel width scales with
the MRI wavelength, a ∝ λMRI, and as the MRI growth rate is
given by σMRI ≡ �(ωFGM) ∝ αΩΩ0 (see Eq. (29)), we find for
the Alfvén speed at MRI termination

cterm
A ∝ (cS)3/7

(
bz

0

)8/7
(Ω0)−4/7 (δx)−4/7 , (42)

and for the corresponding Maxwell stress

Mterm
�φ ∝ (cS)6/7

(
bz

0

)16/7
(Ω0)−8/7 (δx)−8/7 . (43)

The latter equation implies that Mterm
�φ decreases with faster rota-

tion. Two effects play a role in explaining this behavior. Firstly,
slower rotation leads to slower MRI growth (σMRI ∝ Ω0), and
hence weaker magnetic fields are required for the tearing modes
to overcome the MRI growth. Secondly, slower rotation implies
wider channel flows (a ∝ (Ω0)−1), i.e., resistive instabilities grow
slower as σr ∝ a−2 ∝ (Ω0)2 (see Eq. (39)).

The qualitative features of these scaling relations are:

1. stronger initial vertical fields and correspondingly
wider channels tend to suppress resistive instabilities.
Consequently, MRI termination requires more strongly
magnetized channel flows;

2. finer grid resolution implies less numerical viscosity, and
hence larger values for cterm

A and Mterm
�φ ;

3. the scaling of Mterm
�φ with the sound speed implies a propor-

tionality between the Maxwell stress and the background
pressure: P ∝ c2

S, and thus Mterm
�φ ∝ P3/7. This scaling

is reminiscent of the α-law in accretion discs according to
which the (MRI-generated) viscosity is proportional to the
gas pressure.
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Fig. 11. Average Alfvén velocity – of models with uniform initial magnetic field and without velocity damping near the radial boundaries –
corresponding to the radial magnetic field at MRI termination normalized to (δx)−4/7 (left) and (bz

0)8/7 (right) as a function of the initial magnetic
field strength, bz

0 (left), and the grid resolution δx (right). The dashed lines represent the power laws expected from our analysis of resistive
instabilities (see Eq. (42)). Note that we only consider well-resolved models (σMRI ≥ 0.95 ms−1) here.

Figure 11 shows that the average Alfvén velocity correspond-
ing to the radial5 magnetic field at MRI termination is well de-
scribed by the scaling law given in Eq. (42). Similarly, Fig. 8 and
Fig. 12 (upper panel) confirm that the data for Mterm

�φ obey the
corresponding scaling law (Eq. (43)), too. The upper panel of
the latter figure shows Mterm

�φ as a function of the initial magnetic
field strength for models with different initial rotational laws.

Obviously, the proportionality Mterm
�φ ∝

(
bz

0

)16/7
(light gray lines)

provides a good approximation to the behavior of the models.
Due to the small number of models the results should be taken
with care, but a strong anti-correlation of Mterm

�φ with Ω0 is sug-
gested. The data also do not support any dependence of Mterm

�φ

on αΩ. Finally, in Fig. 8 we noticed earlier some outliers at large
values of Mterm

�φ which correspond to models computed on a fine
grid. However, considering that MRI termination depends on
grid resolution, all models lie within a narrow band which cor-
roborates our scaling laws and provides more evidence of the
importance of resistive instabilities in understanding the MRI.
Consequently, physical (instead of numerical) transport coeffi-
cients should be used in MRI simulations, which may give rise
to different scaling laws considering the growth rate of tearing
modes.

Models with velocity damping. In models with uniform ini-
tial magnetic fields where the radial velocity is damped near
the inner and outer radial boundary, i.e., in models located in
the horizontal bands in Fig. 8, MRI termination happens earlier
than predicted by our scaling laws, and the Maxwell stresses
saturate for strong initial magnetic fields, the saturation value
of Mterm

�φ being smaller for slower rotation (see lower panel of
Fig. 12). This is due to the reconnection instability occurring
close to the radial boundaries well before the theoretically pre-
dicted time of MRI termination. This premature reconnection
is caused by the field geometry: due to the suppressed motion
across the inner and outer radial boundary field lines must bent

5 The radial field is typical for all three components. Thus the Alfvén
velocity corresponding to the total magnetic field shows the same
dependence.

there in z-direction. Consequently, field lines of opposite polar-
ity approach each other much earlier than in models without ve-
locity damping, and efficient reconnection ensues. In this case,
the onset of reconnection is determined by the field geometry
rather than by the initial field strength. With reconnection occur-
ring in the bent flux sheets near the radial boundaries instead be-
tween parallel flow sheets in the bulk volume as for non-damping
boundaries, the width of a flux sheet is less important in deter-
mining the resistive growth rates. Thus, a slower MRI growth
and smaller Maxwell stresses are found for slower rotating mod-
els when velocity damping is imposed. Apart from the depen-
dence of Mterm

�φ on Ω0, we also find a dependence on αΩ. Both
dependences together give rise to a monotone relation between
the strong-field limit of Mterm

�φ and the MRI growth rate, σMRI,
which qualitatively agrees with the above reasoning.

Once the initial channel flows are disrupted and the field ge-
ometry is changed by reconnection, the mean magnetic and ki-
netic energies, and the absolute value of the Maxwell stresses
begin to fluctuate strongly around roughly constant values (see
the phase between 11 ms and 23 ms in Fig. 4). Subsequently, a
second phase of exponential MRI growth is possible, exhibiting
a similar dynamics but involving less channel flows than the pre-
vious growth phase. The reduced number of channels is probably
due to the strong increase in the vertical magnetic field during
the growth of the tearing modes. Similarly to their predecessors,
the newly formed channels are also unstable against resistive in-
stabilities, but due to their larger width their disruption requires
much higher Alfvén velocities, i.e., the MRI can lead to much
higher Maxwell stresses in the second generation of channels.
In principle, this process of formation and merger of channels
can continue until only one single channel flow remains cover-
ing the entire box. We note that in later growth phases, the radial
velocity and the magnetic field strength are typically so large
that damping at the radial boundaries, if applied, does not lead
to early saturation.

4.2.3. Models with non-uniform initial magnetic fields

Models having a non-uniform initial magnetic field exhibit a
different evolution (see also Balbus & Hawley 1998). To study
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Fig. 12. Maxwell stress, Mterm
�φ at MRI termination as a function of the

initial magnetic field strength, bz
0 for models with different initial ro-

tational profiles. The upper and lower panels show models with non-
damping and damping boundary condition, respectively. The colored
symbols distinguish different initial rotational laws where (Ω0, αΩ) are
equal to (1900 s−1,−1.25) [blue diamonds], (1900 s−1,−1) [green dia-
monds], (950 s−1,−1.25) [brown asterisks], and (950 s−1,−1) [red aster-
isks], respectively. Note that only models with a box size L� × Lz =
1× 1 km2 and a resolution of 50, 100, or 200 zones (per dimension) are
considered here. The light gray lines in the upper panel illustrate power

laws ∝
(
bz

0

)16/7
.

this evolution we simulated a set of models varying the initial
magnetic field configuration and the boundary condition (apply-
ing velocity damping or not; see previous subsection). All mod-
els rotate initially according to the law given in Eq. (35) with
Ω0 = 1900 s−1 and αΩ = −1.25.

We considered three types of non-uniform initial magnetic
fields all of which have only a z-component. The first one

bz
ZNF = bz

0 sin

(
2π�

λb
�

)
× �
�0

(44)

varies sinusoidally with radius and scales in addition as ∝� to
guarantee that the net magnetic flux through the surfaces of the
computational box at z = z0,1 vanishes. This is the standard zero
flux field used in most MRI simulations. The second type of a
non-uniform initial field considered by us is given by

bz
Abs =

∣∣∣bz
ZNF

∣∣∣ . (45)
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Fig. 13. An early state (t = 12.1 ms) in the evolution of a model with
bz

0 = 2 × 1013 G computed in a box of L� × Lz = 1 km2 covered by
200 × 200 grid zones. Shown are the same variables as in Fig. 5. The
maximum velocity is 1.1 × 107cm s−1.

Finally, the third type also has a vanishing net magnetic flux, as
bz

ZNF, but a step-like dependence on�, i.e.,

bz
step = bz

0Θ (� −�c)
�

�0
, (46)

where Θ and �c denote the Heaviside step function and the ra-
dial coordinate of the center of the box, respectively.

For the first type of models the MRI starts growing via a
multitude of channel modes giving rise to less amplification of
the magnetic field than in models with a uniform initial field.
Separate channels develop in the two radial regions of negative
and positive bz (see Fig. 13), whereas the channels span the full
radial extent if the initial field is uniform. The channel flows
do not merge to form a few large-scale channels, but are de-
stroyed by turbulence. After reaching a transient maximum, the
magnetic energy and the Maxwell stress level off at values much
less than for uniform-field models. The magnetic field becomes
strongest right after MRI termination (∼1015 G). After 60 ms the
maximum field strengths are about 2 × 1014 G, and decrease to
1014 G until the end of the simulation. Fields of this strength can
change the Ω profile significantly only on time scales of many
tens of milliseconds, i.e., at the end of the simulation the rotation
profile is basically unchanged.

Figure 14 shows a comparison of the maximum Maxwell
stress at MRI termination for the models with a non-uniform ini-
tial magnetic field. When velocity damping is applied the value
of Mterm

�φ does not depend on the initial field geometry, and is
determined by reconnection of anti-parallel field lines occurring
close to the boundaries. If no velocity damping is applied, the
evolution is similar to that of uniform field models, but depends
on the field geometry. This finding can be understood in the light
of our previous discussion of re-connective instabilities, and by
the fact that Mterm

�φ is determined by reconnection in the bulk vol-
ume, and not by reconnection near the boundaries.

Models without velocity damping and the initial field, bz
Abs

develop large Maxwell stresses which increase with the initial
field strength. The evolution of these models and the geometry of
their channel flows are similar to those of models with uniform
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Fig. 14. Maxwell stress Mterm
�φ at MRI termination as a function of the

initial magnetic field strength bz
0 for models with non-uniform initial

fields. Models with and without velocity damping are shown by as-
terisks and diamonds, respectively. The blue, green and red symbols
denote models where the z-component of the initial magnetic field is
given by bz

ZNF (see Eq. (44)), bz
step (see Eq. (46)), and bz

Abs (see Eq. (45)),

respectively. The light gray lines illustrate power laws ∝
(
bz

0

)16/7
.

initial fields, i.e., the growth rates of tearing-modes are similar
for both classes of models. For models in which the net magnetic
flux vanishes initially we find that Mterm

�φ is roughly constant for
sufficiently strong initial fields, the stress being slightly larger
for sinusoidal (bz

ZNF) than for step-like initial fields (bz
step). The

models develop a more complex field morphology with more
intense current sheets and more potential sites for reconnection
than uniform field models. Thus, the growth rates of the resistive
instabilities are comparable to those of the MRI for much weaker
fields than in the uniform-field models. MRI termination also
occurs at smaller values of Mterm

�φ .

4.3. Axisymmetric models with entropy gradients

We also simulated some axisymmetric models imposing an ad-
ditional entropy gradient. In this case, the instability criterion
is more complicated and various instability regimes exist (see
Sect. 2): (magnetic) shear instability, convection, and magneto-
buoyant instability. Otherwise unstable modes may be stabilized
by a stable thermal stratification or by fast (not necessarily differ-
ential) rotation. Tables B.1 (models with a positive entropy gra-
dient) and B.2 (models with a negative entropy gradient) provide
a list of the simulated models. Note that all models discussed in
this subsection have a uniform initial magnetic field.

4.3.1. Positive entropy gradients

We first discuss differentially rotating models having a stabiliz-
ing entropy gradient comparing models with and without mag-
netic field. The non-magnetic models are stable due to the posi-
tive entropy gradient, i.e. initial perturbations do not grow.

The models with a magnetic field belong to the MSI regime
(cf. Fig. 2), their MRI growth rates being reduced compared to
models with no entropy gradient. We simulated models with dif-
ferent entropy gradients (∂�S = 0.02, 0.04, 0.08 km−1) and dif-
ferent adiabatic index of the equation of state (Γb = 1.31, 5/3).

Generally, we find a good agreement between the analytic pre-
dictions and the numerical results. For ∂�S < 0.08 the mod-
els are unstable belonging to the MSI regime, whereas an en-
tropy gradient of ∂�S = 0.08 suffices to stabilize the model. The
growth rates agree well with the analytic ones, and the numer-
ical models show the typical dependence of the growth rate of
the MRI on the initial magnetic field strength. However, there
exists one interesting difference: σ increases from small values
for weak initial fields for which λMRI is under resolved and con-
verges to the correct growth rate for strong fields for which λMRI
exceeds the grid resolution significantly. Unlike for models with-
out entropy gradient, the growth rate becomes largest for mag-
netic fields for which the MRI wavelength is similar to the grid
resolution, and at these field strengths the numerical growth rates
can exceed the theoretical ones.

Dynamically the models behave similarly as models without
an entropy gradient. Channel flows develop during the growth
phase of the MRI, their width being set by the MRI wavelength.
MRI termination occurs due to the growth of tearing-mode-like
resistive instabilities. When velocity damping is applied, the
maximum Maxwell stress at MRI termination, Mterm

�φ , is deter-
mined by the box size. Comparing models with a positive en-
tropy gradient and with no entropy gradient we find a common
linear relation between Mterm

�φ and σMRI, indicating a common
reason for MRI termination (see Fig. 15).

According to Eq. (28), the channels are wider in models with
larger entropy gradients. As wider channels are less prone to re-
sistive instabilities, they can support stronger fields before be-
ing disrupted (see discussion above), i.e. Mterm

�φ is larger in mod-
els with larger entropy gradients. The MRI growth rate, on the
other hand, is smaller for larger entropy gradients (see Eq. (29))
implying that Mterm

�φ decreases with increasing entropy gradient.
Both effects taken together suggest a weak anti-correlation of
Mterm
�φ with the size of the (positive) entropy gradient. An anti-

correlation is also suggested by our numerical results, although
more models are needed to confirm it. It is unclear, for exam-
ple, whether the growth rates of resistive instabilities derived in
Sect. 4.2.2 also hold for stably stratified media, and whether the
boundary conditions have an influence in models with large en-
tropy gradients. Small perturbations of the quasi-periodic (be-
cause of global gradients) radial entropy distribution may leave
their imprint on MRI termination by enforcing a preferred length
scale, thus clouding effects due to a variation of ∂�S .

We have also simulated a few of the models using an ideal-
gas equation of state, P = (Γ − 1)ε, instead of the hybrid EOS
finding, however, no effect on the evolution of the models.

4.3.2. Negative entropy gradients

Convection can develop in models having a negative entropy gra-
dient, but it can be suppressed by rapid rigid or differential rota-
tion. If a magnetic field is added to a convectively unstable sys-
tem which cannot be stabilized by rotation, the system is located
in the “convection” regime of Fig. 2. In a situation where rota-
tion suffices to suppress the convective instability, the addition
of a weak magnetic field puts the system into the “MBI” regime,
and a magneto-buoyant instability similar to the standard (i.e.,
∂�S = 0) MRI develops. When ∂�S < 0 the equivalent of the
standard MRI corresponds to the “MSI” regime in Fig. 2.

Before discussing our results (see Table B.2 for a list of the
simulated models), we need to comment on the boundary con-
ditions. Allowing for radial transport of energy shearing-disc
boundaries can, in principle, lead to a transport of entropy across
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Fig. 15. Maxwell stress at MRI termination, Mterm
�φ , as a function of the

MRI growth rate, σMRI, for models with zero (diamonds) and positive
(plus signs) entropy gradients.

the pseudo-periodic boundaries, thus modifying the initial en-
tropy profile. By comparing shearing-disc models and models
with reflecting boundary conditions, we verified that none of
these boundary conditions suppresses the growth of the MRI,
and that both give similar results.

Let us first consider a non-magnetic model which rotates
rigidly with an angular velocity Ω0 = 1000 s−1 and has an en-
tropy profile given by S 0 = 0.2 and ∂�S = −0.075 km−1 (see
Eq. (37)). With N2/Ω2

0 ≈ −14 and R�/Ω2
0 = 0, the model be-

longs to the convective regime. Buoyant modes are unstable
and grow at a theoretical rate σth = 3.4 ms−1. Simulated on a
grid with 2.5 m spatial resolution, the model is unstable with
a numerical growth rate σ = 2.7 ms−1, and convection sets in
quickly. The flow is dominated by a few (one or two) fairly cir-
cular convective rolls. Due to the transport of entropy and an-
gular momentum by the overturning fluid, the model develops
complementary entropy and rotation profiles characterized by
“cold” (i.e., low-entropy), rapidly rotating matter in down-flows
and “hot” (i.e., high-entropy), slowly rotating matter in up-flows.
The redistribution of angular momentum and entropy leads to an
average (with respect to the z-coordinate) rotational profile of
the form Ω ∝ �−2, i.e., constant specific angular momentum
(see Fig. 16), and a flat entropy profile.

For a faster rotation rate of Ω0 = 1500 s−1, corresponding to
N2/Ω2

0 ≈ −5.7, i.e., still in the convective regime, the evolution
is similar except for a reduced growth rate (σ ≈ 1.6 ms−1) due to
rotational stabilization. The model develops differential rotation
with the same�-dependence as in the case of slower rotation. If
we increase the rotation rate to Ω0 = 1900 s−1 (N2/Ω2

0 ≈ −3.2)
buoyant modes are stabilized by rotation.

The above results also hold if the initial model is rotating
differentially. In particular, convection (i.e., the negative initial
entropy gradient) gives also rise to a rotation law of the form
Ω ∝ �−2, and a flat entropy profile.

Next, we add a magnetic field of bz
0 = 1013 G to a convective

model, i.e., to a model with a negative entropy gradient rotating
too slowly (in our case, for rigid rotation, with Ω0 <∼ 1500 s−1)
for convection to be stabilised by rotation. The temporal evo-
lution of the magnetic energy and the Maxwell stress of this
model is shown in Fig. 17, while Fig. 18 gives the spatial dis-
tribution of the entropy of the model at two different times.

15 15.2 15.4 15.6 15.8 16
 ϖ [ km ] 

1400

1450

1500

1550

1600

Ω
 [

 s
 −

1  ]
 

Fig. 16. Ω, averaged over z, as a function of � for non-magnetic con-
vective models at t = 51.9 ms (green dashed), with an initial magnetic
field bz

0 = 1012 G at t = 51.9 ms (red dash-dotted), and an initial field
bz

0 = 1013 G (blue solid lines), respectively. For the latter model the
different symbols indicate different epochs: t = 11.5 ms (plus signs),
t = 20.8 ms (diamonds), and t = 41.7 ms (squares). The dotted black
lines show the initial rotation law (Ω0 = 1500 s−1, and a power-law
profile Ω ∝ �−2.

Initial perturbations are amplified rapidly, but saturation sets in
within 6 milliseconds the growth rate being slightly higher than
in the non-magnetic models. With N2/Ω2

0 ≈ −5.7, the model
is dominated by buoyant modes, but there still exists some in-
fluence of the Alfvén modes. In particular, although infinitely
long modes grow rapidly, the fastest growing modes are Alfvén
modes of finite wavenumber which depends on bz

0. For suffi-
ciently strong initial fields (or sufficiently fine resolution), these
modes are numerically resolved, and have a growth rate exceed-
ing that of the corresponding non-magnetic model. The magnetic
field strength increases exponentially as the instability devel-
ops, and at the onset of saturation large convective rolls develop
(left panel of Fig. 18). In the saturation phase (right panel of
Fig. 18) the flow geometry differs considerably from that of the
corresponding non-magnetic model. It consists of down-drafts
of cold material and up-flows of hot gas forming small-scale
structures rather than large circular convective rolls. Like in the
non-magnetic model, cold and hot regions correspond to regions
of low and high angular velocity, respectively. Differential rota-
tion with constant specific angular momentum, Ω ∝ �−2, de-
velops due to hydrodynamic transport of angular momentum in
convective overturns. The magnetic energy related to the radial
component of the magnetic field and the Maxwell stress compo-
nent M�φ remain high during saturation, i.e. angular momentum
transport converts the�−2 rotation law prevailing at early epochs
into nearly rigid rotation (Fig. 16).

If for the same initially rigidly rotating model the initial mag-
netic field is too weak to resolve λMRI (we simulated two mod-
els with b0 = 104 and 1012, respectively) convection develops.
The growth rates are similar to those of non-magnetic models.
The weakest initial field, bz

0 = 104 G, has no impact at all, and
the evolution of the model with an initial field of 1012 G differs
only slightly from that of the non-magnetic model. The magnetic
field increases exponentially as the instability grows. Large per-
sistent convective rolls form, and differential rotation develops.
After an initial exponential growth the mean magnetic energy
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Fig. 17. Evolution of the mean magnetic energy density emag (solid
black line), the mean energy densities corresponding to the � (dot-
ted red), φ (dashed brown), and z (dash-dotted green) component of
the magnetic field, and the absolute value of the mean Maxwell stress
component M�,φ (dashed blue line) for the model whose rotational pro-
files at different times are shown in Fig. 16, i.e., a rigidly rotating model
(Ω0 = 1500 s−1) with an initial magnetic field of bz

0 = 1013 G.

remains large, but the contribution of the radial component of the
magnetic field and the mean Maxwell stress component M�φ de-
crease almost by four and two orders of magnitude, respectively.
Consequently, no significant angular momentum transport oc-
curs due to magnetic stresses, and similar to the non-magnetized
model a Ω ∝ �−2 rotation law develops. Fig. 16).

We now consider the MBI regime (see Fig. 2) and discuss
models rotating initially rigidly with Ω0 = 1900 s−1 and hav-
ing an initial entropy gradient ∂�S = −0.1 km−1 (see Table B.2),
which implies N2/Ω2

0 ≈ −3.6. Without magnetic field, the insta-
bility of the buoyant modes is suppressed by the fast rotation.
However, if a weak magnetic field is added, an instability of the
MBI type develops, i.e., the Alfvén modes become unstable. The
numerical growth rates show a similar dependence on the mag-
netic field strength as in case of the standard (i.e., ∂�S = 0)
MRI, because λMRI is resolved. The instability grows rapidly
(σ ∼ 1.4 ms−1, similar to the theoretical value σth ≈ 1.7 ms−1).
During the growth phase channel modes appear, which lead to a
transport of both angular momentum and entropy. After an expo-
nential initial growth and some decrease after MRI termination
the mean magnetic energies contained in the total magnetic field
and all three field components remain large (corresponding to
field strengths of ∼1014 G), but the mean Maxwell stress compo-
nent M�φ drops to zero within ten milliseconds oscillating after-
ward with decreasing amplitude between positive and negative
values. Hence, large-scale angular momentum transport is lim-
ited. At the end of the simulation, the model shows considerable
variations in Ω, but there is no clear indication of a mean differ-
ential rotation of the form Ω = Ω(�). The entropy profile in the
saturated state is almost flat.

Finally, we summarize a few common features of the mod-
els having a negative entropy gradient (see Table B.2). All mod-
els develop instabilities in accordance with the flow regime to
be expected from their model parameters. The growth rates of
all models are, within the uncertainties, similar to the theoretical

predictions. As for the dynamics, we have to distinguish mod-
els in the convective regime from those in the mixed and MBI
regimes. The former class of models shows convective mush-
rooms and large-scale overturns with only little influence of the
magnetic field, whereas the last class is dominated by channel
flows. Consequently, angular momentum transport by hydrody-
namic flow leads to a rotational profile Ω = �−2 for models in
the convective regime, while models in the mixed-type regime
tends towards rigid rotation the angular momentum transport
being dominated by magnetic fields. Termination of the insta-
bility growth occurs for models both in the MBI and mixed-type
regime analogously to that of models in the MSI regime without
entropy gradient, i.e., by reconnection in resistive instabilities al-
tering the topology of the channel flows. Consequently, we find
similar dependencies on the initial field strength, the grid reso-
lution, and the type of boundary conditions. The instability in
convective models, on the other hand, saturates when the initial
entropy gradient is removed by vigorous entropy transport due
to overturning fluid motions.

4.4. Three-dimensional models

The results of the axisymmetric simulations discussed in the pre-
vious section demonstrate the possibility of MRI-driven field
amplification in core collapse supernovae, and provide some
insight into the evolution of MRI unstable layers in the core.
However, to address the MRI problem in full generality, one has
to consider three-dimensional models, because the assumption
of axisymmetry implies severe restrictions for the dynamics of
the magnetic and kinetic fields. The most important limitations
are that, in axisymmetry, a toroidal field cannot be converted into
a poloidal one, and that the disruption of the channel flows re-
quires non-axisymmetric parasitic instabilities (Goodman & Xu
1994).

As 3D simulations are computationally much more expen-
sive than 2D ones, we could not perform a comprehensive study,
but had to focus on a few selected models. We simulated mod-
els with different field geometries and varied the initial field
strength, the entropy profile, and the grid size (see Tables B.3
and B.4).

4.4.1. Uniform initial magnetic fields, no entropy gradient

We first discuss models which have a uniform initial magnetic
field bz

0 in z-direction, no entropy gradient, and rotate differen-
tially with Ω0 = 1900 s−1 and αΩ = −1.25 (see Eq. (35)). If the
MRI wavelength is well resolved (e.g., for models with initial
field strengths of 2×1013 G and 4×1013 G simulated at a grid res-
olution of δ� = 20 m), the growth rate is high and independent
of bz

0 . Under-resolved models (e.g., models with bz
0 = 1013 G

simulated at the same resolution) exhibit a slower growth of the
MRI. From the growth rates of the MRI, we infer that in 3D the
same resolution criterion applies as in the case of axisymmetry.

During early epochs the evolution is similar to that of the cor-
responding axisymmetric models: a number of radially aligned
channels appear. Strong differential rotation causes significant
wind-up of flow features leading to structures elongated in
φ-direction, i.e., there exists only a modest variation of the MHD
variables with azimuthal angle at this stage. Sheet-like struc-
tures dominate the field geometry. The rotational profile begins
to show distortions due to the transport of angular momentum
by Maxwell stresses (see left panel of Fig. 19). At later epochs
the flow in 3D is more complex than in axisymmetry. Although
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Fig. 18. The entropy distribution (color coded), the poloidal velocity field (arrows), and the magnetic field lines of the model displayed in Fig. 17
at t = 7.3 ms (left panel) and t = 20.8 ms (right panel), respectively, i.e., at the begin of the saturation phase and during saturation.

coherent structures, i.e., flux sheets, are still present, their geom-
etry is more tangled and twisted, and less isotropic than earlier
in the evolution (see middle panel of Fig. 19).

An evolution from coherent channel flows to a more tur-
bulent state is characteristic for all three-dimensional models
with a uniform initial magnetic field. However, as pointed out
by Sano & Inutsuka (2001), channel flows can develop again
from the turbulent state. Consequently, the magnetic field can
continue growing, and the angular momentum transport will
be enhanced strongly. In the most extreme cases, the evolu-
tion is similar to that of a corresponding axisymmetric model.
This is exactly what we observe for some models at late times,
t � 30 ms (see right panel of Fig. 19), when a dominant chan-
nel flow forms. These model enter again a state of exponential
growth, and a large part of the angular momentum is extracted by
Maxwell stresses. The field strengths reach several 1015 G, peak-
ing at 1016 G, and the mean Maxwell stress component M�φ ex-
ceeds 1030 erg cm−3 (see middle panel of Fig. 20), and compare
with the corresponding axisymmetric model in the left panel).
Despite a qualitative similarity between the evolution of the 3D
and axisymmetric models, we note that the secondary exponen-
tial growth is slower in three dimensions.

The emergence of a large-scale structure of the magnetic
field from a turbulent state can be seen in Fig. 21 comparing the
field structure at t = 26.8 ms and t = 42.5 ms, respectively. At
the earlier time (left panel), we find a small-scale field dominated
by slender flux tubes. Field lines of different polarity (indicated
by different colors) are lying close to each other. After the devel-
opment of the channel flow (right panel), the field is dominated
by a large-scale pattern. A smooth surface permeating the box at
nearly constant z-coordinate separates in two large regions field
lines of different polarity from each other. In each of the two re-
gions, we find one broad flux sheet where most of the magnetic
energy is concentrated. The separation layer is filled by gas ro-
tating nearly uniformly at a ow angular velocity (Ω ∼ 1500 s−1).
The surrounding gas rotates uniformly as well, but at a much
higher velocity (Ω ∼ 1800 s−1). The two flux sheets form a
thin transition region between both rotational states. Thus, the
dynamics is similar to that of the corresponding axisymmetric
model.

Because our boundary conditions allow for a loss of angular
momentum, and thus for the total disruption of the differential
rotation profile by transport through the radial boundaries, this
stage represents the end of the evolution, just as it did in ax-
isymmetry: the instability has used up its free-energy reservoir.
Hence, the later evolution consists only of violent oscillations.

Only a subset of our models show a prominent re-appearance
of single channel flows, and most of them do not exhibit a sec-
ondary exponential growth phase. Instead, the mean magnetic
energy and the Maxwell stress remain roughly constant dur-
ing saturation, albeit fluctuating strongly (see the right panel
of Fig. 20). Angular momentum transport is less efficient for
these models, and their initial rotation profiles remain nearly
unchanged. A turbulent flow and magnetic field persist during
saturation, and coherent, channel-like structures develop tran-
siently. The structure of the magnetic field of a model with
bz

0 = 4 × 1013 G computed on a grid of 50 × 100 × 50 zones is
displayed at two different epochs in Fig. 22. At t = 21.5 ms (left
panel) one recognizes a turbulent state, while large-scale patterns
(right panel; yellow structures) dominate the flow at t = 37.2 ms
when the magnetic field strength is largest, and the Maxwell
stress is strongest. Unlike in the model discussed above, the co-
herent flow is unstable and becomes turbulent within a few mil-
liseconds, and the absolute value of the Maxwell stress

∣∣∣M�φ∣∣∣
decreases.

Channel modes and parasitic instabilities. The appearance
and stability of single large-scale flows that lead to a secondary
exponential growth phase and eventually to the disruption of the
rotation profile depend on the geometry of the simulated domain
as well as on the ratio of the grid resolution and the fastest grow-
ing mode.

Models, which are computed in a box of 1 km3 with a res-
olution of 20m and where velocity damping is applied, develop
secondary stable channels, if the initial magnetic field is stronger
than 2 × 1013 G. The MRI growth rates found for these models
(σ = {0.76, 1.03, 1.10}ms−1 for b0 = {1, 2, 4} × 1013 G, respec-
tively) indicate that the grid resolution is sufficiently fine to re-
solve the fastest growing MRI mode for the two most strongly
magnetized models. However, it is too coarse for the model with

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811323&pdf_id=18


258 M. Obergaulinger et al.: MRI in core collapse supernovae

Fig. 19. Structure of a 3D model with bz
0 = 2 × 1013 G computed on a grid of 1 km3 at a resolution of 20 m at t = 16.2 ms (left), t = 26.8 ms

middle), and t = 42.5 ms (right), respectively. Shown is the volume rendered magnetic field strength (blue to green), and a red-orange iso-Ω
surface corresponding to Ω = 1820 s−1 (left and middle) and Ω = 1680 s−1 (right), respectively. The red, green, and blue axes point into �, φ, and
z direction, respectively. Channel flows can be identified as green sheet-like structures.
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Fig. 20. Evolution of the mean magnetic energy density emag (solid black line), the mean energy densities corresponding to the � (dotted red), φ
(dashed brown), and z (dash-dotted green) component of the magnetic field, and the absolute value of the mean Maxwell stress component M�,φ
(dashed blue line) for models with an initially uniform magnetic field bz

0 = 2 × 1013 G in z-direction, and a rotation law given by Ω0 = 1900 s−1

and αΩ = −1.25. The panels show a 2D model computed in a box of L� × Lz = 1 km × 1 km (left), a 3D model computed in a box of
L� × Lφ × Lz = 1 km × 1 km × 1 km (middle), and a 3D model computed in a box of L� × Lφ × Lz = 1 km × 2 km × 1 km (right), respectively.
The grid resolution is 20 m in all three cases.

Fig. 21. Same as middle and right panel of Fig. 19, but showing besides the volume rendered magnetic field strength (blue to green) also the
magnetic field lines, which are obtained by starting the integration of the magnetic field at two surfaces of constant φ-coordinate (i.e., orthogonal
to the green axis) at the left and right hand side of the domain. The field lines originating from the left and right surface are plotted in red and
yellow, respectively. The right panel shows, in addition, the isosurface bφ = 0 (i.e. the magneto-pause).
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Fig. 22. Volume rendered magnetic field strength of a model with bz
0 = 4 × 1013 G computed in a box of 1 × 2 × 1 km3 with a resolution of 20 m at

t = 21.5 ms (left) and t = 37.2 ms (right), respectively. The coordinate directions are indicated as in Fig. 19.

the weakest initial field, because the theoretical growth rate for
the fastest growing MRI mode is σMRI = 1.14 ms−1 for these
models (see Sect. 4.2.1).

To investigate the stability properties of large-scale channel
modes as a function of the box geometry, we simulated mod-
els with an initially uniform magnetic field using boxes of dif-
ferent size and shape. The models were rotating according to
Ω0 = 1900 s−1 and αΩ = −1.25, and their initial magnetic
field was bz

0 = 4 × 1013 G when applying velocity damping
boundaries, and bz

0 = 2 × 1013 G otherwise. We varied both
the ratio between the radial and vertical, L�/Lz, and the radial
and toroidal size, Lφ/L�, size of the box. The grid resolution
was 20 m (see Table B.3). Plotting the stress ratios Mmax

�φ /M
term
�φ

(Fig. 23; damping boundaries) and 〈M�φ〉/Mterm
�φ (Fig. 24; non-

damping boundaries) as a function of the aspect ratio of the com-
putational box, provides some indication of the range of M�φ
values prevailing during the post-growth phase. The ratios al-
low one to distinguish models with a strong variability due to
the dominant re-appearance of channel modes from those mod-
els exhibiting a smooth evolution without dominant large-scale
coherent structures.

We find that models with a radial aspect ratio L�/Lz = 1
and a toroidal aspect ratio Lφ/Lz ≥ 2 are unstable against par-
asitic instabilities, independent of the grid resolution in toroidal
direction. Turbulence develops and leads to a flow structure as
shown in Fig. 22. Models having the same radial aspect ratio,
but a smaller toroidal one are stable and evolve similarly as ax-
isymmetric models, i.e., parasitic instabilities do not grow and
a dominant large-scale channel flow develops, which gives rise
to a morphology of the type presented in Fig. 22. These find-
ings do not depend on how the growth of the MRI ends, i.e.,
whether velocity damping is applied and reconnection between
adjacent channels occurs inside the box, or whether no damp-
ing is imposed and reconnection occurs near the surface of the
computational box.

These results can be understood from the analysis of par-
asitic instabilities by Goodman & Xu (1994), who argued that
three-dimensional flows are unstable against parasitic instabili-
ties, but these instabilities can be suppressed by the geometry of
the computational box. According to their analysis, the growth
rate of the parasitic instabilities is highest for modes with half
the wave number of the unstable MRI modes they are feeding
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Fig. 23. The left panel shows the ratio of the maximum Maxwell stress
per unit volume, Mmax

�φ , and its value at MRI termination, Mterm
�φ , as a

function of the toroidal and radial aspect ratios, Lφ/Lz and L�/Lz for
the models listed in Table B.3. The right panel shows the ratio of M�φ
averaged over the saturation phase and the value at MRI termination.
Each model is represented by a symbol its color reflecting its maximum
Maxwell stress. All models are computed imposing velocity damping
at the radial grid boundaries.

off. Hence, if a channel flow forms at late times with a wave-
length equal to the box size in z-direction, Lz, unstable parasitic
modes must have a toroidal wavelength ∼2Lz to grow rapidly.
Thus results in the criterion for the channel flow instability we
have found in our simulations.

In accordance with simulations presented recently by Bodo
et al. (2008), we find that models with a radial aspect ratio
L�/Lz ≤ 1 experience a second exponential growth phase as
described in Sect. 4.2 (note the large ratios of Mmax

�φ and Mterm
�φ

for the corresponding models in Fig. 23), whereas a larger ra-
dial aspect ratio appears to favor a less violent post-growth phase
where coherent channel modes can appear but are disrupted after
a short time. Bodo et al. (2008) obtained this result for simula-
tions performed with a toroidal aspect ratio Lφ/Lz = 4.
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Fig. 24. Same as Fig. 23, but for models where no velocity damping is
applied at the radial grid boundaries.

We confirm a similar dependence of the dynamics on the ra-
dial aspect ratio also in axisymmetry and for three-dimensional
boxes with smaller Lφ/Lz. In this case, parasitic instabilities are
unable to disrupt the channel modes. Consequently, the MRI
experiences a second exponential growth phase dominated by
just one (two in a few cases) large channel mode of width a
which is determined by the size of the computational box in
z-direction. The maximum Maxwell stress that can be reached
is limited by the onset of resistive instabilities. The dependence
on the channel width (Eq. (A.11)) explains why the maximum
Maxwell stress varies with Lz: larger boxes allow for wider chan-
nels for which the resistive instabilities grow slower, thus requir-
ing higher Alfvén velocities for a growth rate comparable to the
one of the MRI. Hence, the MRI reaches stronger fields for larger
(in z direction) boxes.

Despite the differences in the MRI termination process, the
behavior of models with and without velocity damping is quite
similar, because the velocity damping does not affect the sec-
ond generation of vigorous channel flows significantly. Thus, the
breakup of these channels and the values of the corresponding
maximum Maxwell stress do not depend strongly on the choice
of the boundary condition. On the other hand, MRI termination
(the termination of the initial exponential growth of the MRI)
does depend on whether velocity damping is applied or not, and
thus the ratio Mmax

�φ /M
term
�φ , too.

For boxes having a large toroidal aspect ratio, Lφ/Lz ≥ 2, we
observe a quiet evolution during the non-linear saturation phase
of the MRI when varying the radial aspect ratio, L�/Lz. In par-
ticular, the fluctuations of M�φ are small after MRI termination
for models where both aspect ratios are large. The models in the
upper right corner of Fig. 23 have values of 〈M�φ〉/Mterm

�φ close
to unity.

We may try to infer some consequences from these results
for the MRI in supernova cores. Close to the core’s equator the
region, where the MRI develops, can have to a small radial size,
L�, ranging from a few to a few hundred kilometers determined
by the gradients of Ω and S in the core. The vertical extent of
the unstable region, Lz, can be expected to be of similar size.
The azimuthal extent of the MRI unstable region, Lφ, will be
significantly larger, leading to a non-violent evolution of the

saturated state of the MRI. The geometry is different close to
the pole. However, we cannot apply our results there without
modifications as we have considered only cases where the gra-
dients of Ω and of all thermodynamic quantities are aligned – a
situation which does not apply near the poles.

Effects of resolution and initial magnetic fields in 3D vs 2D.
After having discussed how the aspect ratios of the simulation
box determine the Maxwell stress at MRI termination and during
the subsequent saturation phase, we will now compare whether
the behavior of 3D models differs from that of 2D models.
The models discussed in this paragraph are listed in Tables B.3
and B.4.

First, we note that in 3D, as in axisymmetry, the growth rate
of the instability is not affected by the choice of the grid provided
the fastest growing mode is resolved.

Figure 25 demonstrates that in 3D the dependence of Mterm
�φ

on the initial magnetic field strength is well described by the
same power law as in axisymmetry: models without damping
of the radial velocity line up along a band ∝(bz

0)16/7, and mod-
els with velocity damping are characterized by a roughly con-
stant value of Mterm

�φ , which depends on the size of the radial box
(compare with Fig. 8). This agreement is to be expected as the
growth and the resistive disruption of channel flows are essen-
tially axisymmetric processes, which are, thus, not significantly
modified by three-dimensional effects.

After MRI termination the evolution of M�φ depends on the
aspect ratio of the computational box (see discussion above).
When averaging the fluctuating Maxwell stresses over the sat-
uration phase, we find values for 〈M�φ〉 which differ consider-
ably from those of Mterm

�φ . Lacking a thorough understanding of
the instabilities involved in the MRI saturation process, and hav-
ing only a imited set of 3D models at hand, one is not yet in
a position to formulate a better description of the dependence
of the evolution after MRI termination on the aspect ratio of
the box, and to provide a unified description of MRI saturation
amplitudes.

4.4.2. Uniform bz field, entropy gradients

Mixed regime: let us first consider models from the mixed
regime having an initial rotation law given by Ω0 = 1900 s−1

and αΩ = −1.25, and an entropy distribution given by S 0 = 0.2
and ∂�S = −0.038 (i.e, with a negative entropy gradient). In
axisymmetry the MRI grows in these models with a rate of
σMRI ≈ 1.7 ms−1, i.e., close to the theoretical value of≈2.0 ms−1.
The 3D models show the same growth rate provided the spatial
grid resolution is sufficiently high.

The long-term evolution (i.e., many rotational periods into
the non-linear phase) of the models depends strongly on the
choice of the radial boundary conditions. If the entropy at the
inner and outer boundary is allowed to change (i.e., using reflec-
tive boundaries), a flat entropy profile develops after a short time.
To reduce the influence of boundary effects, one could employ a
technique widely used in simulations of convective layers: add
a cooling layer on top of and an overshoot layer below the con-
vection zone. However, exploring this approach was beyond the
scope of the present work.

For models having a negative entropy gradient the growth
of the MRI is not influenced by 3D effects, if the fastest grow-
ing mode is resolved. Thus, their behavior is similar to that of
models with no entropy gradient. The Maxwell stress at MRI
termination also does not differ significantly from that of the
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Fig. 25. Volume-averaged Maxwell stress component Mterm
�φ at MRI ter-

mination as a function of the initial magnetic field strength, b0, for ax-
isymmetric models with uniform initial magnetic field in z-direction, a
rotational profile Ω = 1900 s−1�−1.25, and a vanishing entropy gradi-
ent for a set of 3D models computed with (asterisks) and without (dia-
monds) velocity damping at the radial boundaries. Models computed in
a box with a radial size of 1 km and 0.5 km are shown with green and
blue symbols, respectively. The colored bands are the same as in Fig. 8.

corresponding axisymmetric models, and due to the boundary
conditions applied in the models (velocity damping) its value is
set by recombination of field lines close to the inner and outer
radial boundary.

Contrary to axisymmetric models, the saturated state of the
3D models does not show any sign of a late exponential growth
phase characterized by the re-appearance of channel modes, and
the saturated MRI stresses are smaller in magnitude than Mterm

�φ ,
i.e., the maximum Maxwell stress is reached at MRI termina-
tion (see Fig. 26 and compare with Fig. 4). The evolution of the
average radial entropy profile profile, computed as the average
of S (�, φ, z) at constant �, is shown in Fig. 27. Until the satu-
ration of the instability (at t ≈ 11 ms), the initial linear profile
S (�) is basically unchanged. However, afterward the entropy
profile flattens, S becoming nearly constant for 15.2 km ≤ � ≤
15.8 km. Close to both radial boundaries, the entropy profile de-
velops extrema, which are most likely an artifact of our boundary
conditions. The flat entropy profile is stable and does not vary
strongly with time. The Ω profile flattens after the initial growth
phase, too. The velocity field in the saturated state is dominated
by a rich small-scale structure, while the magnetic field is orga-
nized in a multitude of flux tubes.

MBI regime: next we consider a few models that, in axisym-
metry, belong to the MBI regime. Initially, the models rotate
rigidly with Ω = 1900 s−1 and possess an entropy gradient
∂�S = −0.10 km−1 (i.e., C = −3.6). We computed models for
bz

0 = 10 G, 1010 G, and 2 × 1013 G, respectively. All models are
simulated in a box of size L� × Lφ × Lz = 1 × 2 × ×1 km−3 and
on a a grid of 50 × 100 × 50 zones.

Contrary to their axisymmetric counterparts (see Sect. 4.2),
these models develop convective modes even when no mag-
netic field is present. As described, e.g., by Tassoul (1978), ro-
tation can stabilize axisymmetric modes in a convectively sta-
ble environment, but non-axisymmetric modes can nevertheless
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Fig. 26. Evolution of the mean magnetic energy density emag (solid
black line), the mean energy densities corresponding to the � (dot-
ted red), φ (dashed brown), and z (dash-dotted green) component of
the magnetic field, and the absolute value of the mean Maxwell stress
component M�,φ (dashed blue line) for a 3D model belonging to the
mixed regime. The model rotates differentially with Ω0 = 1900 s−1 and
αΩ = −1.25. The initial entropy gradient is ∂�S = −0.038 km−1, and
the initial magnetic field strength is bz

0 = 2 × 1013 G. The model was
simulated in a box of size L� × Lφ × Lz = 1 × 2 × 1 km−3 and on a grid
of 50 × 100 × 50 zones.
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Fig. 27. Average radial entropy profile as a function of time for the
model shown in Fig. 26.

grow in that situation. The model with the weakest initial field
(bz

0 = 10 G) shows a growth of non-axisymmetric MBI modes,
but these modes cannot be resolved due to the extremely weak
initial field. Thus, the model behaves essentially similar to an un-
magnetized one, but can serve as a reference model for initially
more strongly magnetized models where we can resolve λMRI.
The growing convective modes eventually extend over the en-
tire domain in radial and z-direction, while having a small wave-
length in φ direction (see Fig. 28, upper panel). The exponen-
tial growth of the convective instability saturates at t ≈ 7 ms.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811323&pdf_id=25
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811323&pdf_id=26
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811323&pdf_id=27
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Fig. 28. Flow structure of a MBI model with bz
0 = 10 G at t = 4.86 ms

(upper panel), and t = 14.4 ms (lower panel), respectively. The solid
black lines are stream lines of the velocity field computed in a frame
co-rotating with the mean angular velocity, and regions of positive and
negative radial velocity are colored in red and green, respectively. The
colored arrows point into the same coordinate directions as in Fig. 19.

During this growth phase the mean magnetic energy increases at
the same rate as does the kinetic energy. After MRI termination
the structure of the model is characterized by two large, roughly
cubic convective cells with a size of about 1 km3 instead of a
multitude of elongated structures (see (Fig. 28, lower panel), and
an essentially flat entropy profile. The magnetic field is subject
to kinematic amplification at a smaller growth rate than before
MRI termination due to stretching in the convective vortices. At
much later epochs the typical size of structures in the velocity
field decreases again, leading to more turbulent fields. The mag-
netic field, which is too weak to affect the dynamics, is passively
advected with the flow.

For the model having the strongest initial magnetic field
bz

0 = 2 × 1013 G we can resolve λMRI. The axisymmetric ver-
sion of this model showed a MBI growth a rate close to the
theoretical one (σMRI ∼ 1.7 ms−1). For the 3D model we find
σconv ∼ 2.6 ms−1), i.e., its evolution is dominated by convection
(although we are able to resolve the MBI), and the MBI growth
rate is similar to that of a weakly magnetized model (see previ-
ous paragraph). MBI growth is mediated by non-axisymmetric
modes having the same elongated geometry as those in the es-
sentially unmagnetized model. After saturation, a few large vor-
tices of approximately cubic shape form, which later decay into
small-scale structures again. An intermediate stage of this de-
cay process is displayed in Fig. 29, when one large vortex is still
present in the right half of the box, while its left half is dom-
inated by spatially less coherent fields. At even later times the
vortex disappears and the structure of the whole model is simi-
lar to that shown in the left half of the box. The mean magnetic
energy and Maxwell stress are small compared to typical MSI
or mixed models. Compared to a differentially rotating model

Fig. 29. Structure of a rigidly rotating model with bz
0 = 2 × 1013 G at

t = 19.3 ms. The figure shows a volume rendering of the magnetic field
strength (blue – green), the value of the angular velocity, Ω, at three
slices parallel to the coordinate axes (red – yellow), and stream lines of
the velocity field in a co-rotating frame (black lines). In the right half
of the figure, one can identify one large convective cell, whereas the
features of, e.g., the velocity field in the left half are of considerably
smaller scale. The magnetic field is comparably weak inside the con-
vective cell, and strongest in the flux tubes both at the boundaries of the
convective cell and in the left part. The colored arrows point into the
same coordinate directions as in Fig. 19.

(Ω0 = 1900 s−1, αΩ = −1.25) with a vanishing entropy gradient,
the maximum magnetic fields are reduced by a factor of �2, and
the mean magnetic energies and Maxwell stresses by a factor of
∼10, but we still find a slow growth at the end of the simulation.

Finally, we add a few comments on a model where we cannot
resolve λMRI (bz

0 = 1010 G), but where the magnetic field satu-
rates within ∼60 ms after the onset of convection. The model
evolves similarly to the essentially unmagnetized one, but at
t ≈ 60 ms the energy of the kinematically amplified magnetic
field becomes almost as high as the convective kinetic energy.
The amplification process ceases, and the magnetic energy lev-
els off. Close to the end of the simulation convective transport
gives rise to a rotation law Ω ≈ const..

4.4.3. Magnetic fields with zero net flux

Many results discussed above also apply analogously to models
where the initial magnetic field has a vanishing net flux through
the surface of the computational box. We simulated models with
Ω = 1900 s−1 and αΩ = −1.25, and find a basically axisymmetric
growth of channel flows, which decay due to resistive instabili-
ties at a level consistent with axisymmetric models. The late evo-
lution of the models is dominated by turbulent fields. Contrary
to uniform-field models, there is no second phase of channel ac-
tivity. Hence, the mean magnetic energies and Maxwell stresses
do not fluctuate violently in the saturated state, and - even when
no velocity damping is applied - the maximum values of, e.g.,∣∣∣M�φ∣∣∣, are reached at MRI termination. Later on

∣∣∣M�φ∣∣∣ decreases
by a factor of a few, and stays roughly constant subsequently.

Performing similar simulations Lesur & Ogilvie (2008) pro-
posed a non-linear dynamo that balances the dissipation of the
magnetic energy in MRI models with zero net flux. In the tur-
bulent saturated state, they identified large-scale spatially (over
a sizable fraction of the box) and temporally (over several rota-
tional periods) coherent patterns of the toroidal magnetic field.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811323&pdf_id=28
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811323&pdf_id=29
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Fig. 30. Evolution of large-scale coherent patterns exhibited by the
mean (i.e., averaged over a plane at constant z-coordinate) toroidal field
component of a 3D model having an initial magnetic field of zero flux
and strength bz

0 = 2 × 1013 G. The model was simulated in a box of
1 km3 covered by 503 zones with no velocity damping applied. This
figure is similar to Fig. 1 of Lesur & Ogilvie (2008).

To study this process, we looked for similar patterns in our
models.

An example is shown in Fig. 30 for a model with bz
0 =

2×1013 G simulated in a box of 1 km3 on a grid of 503 zones ap-
plying no velocity damping. The figure shows the mean value of
the toroidal field component bφav (i.e. bφ averaged over� and φ)
as a function of z and time. For t <∼ 14 ms the early channels
flows can be identified in which the magnetic field grows. At
t ≈ 14 ms, the channels are disrupted, and the growth of the field
seizes. In the saturated state that follows, the mean (vertical) size
of the structures is larger: at any time, we find only a few (typi-
cally two) regions of opposite field polarity (blue and red), which
remain stable for a few rotational periods (Ω−1 ≈ 0.53 ms). Thus,
we make similar observations as Lesur & Ogilvie (2008) do for
their models.

We also simulated a few 3D models with zero-flux fields in
the mixed regime. The results are analogous to those obtained if
the initial fields are uniform(see, e.g., Fig. 31). The MRI growth
rates are similar to those of the corresponding 2D models, and
the mean Maxwell stress in the saturated state is somewhat
smaller. In the saturated state, both the entropy (upper panel)
and the angular velocity profiles become flat rapidly. The spa-
tially and temporally coherent large-scale structures in the mag-
netic field are even more pronounced than in MSI models (com-
pare the lower panel of Fig. 31 with Fig. 30). They consist of
two large regions characterized by an opposite sign of bφ, which
persist for the entire simulation of the saturated state (≈140 ms),
subject only to a slow drift in vertical direction. The implications
of this behavior for the presence and properties of a nonlinear
dynamo of the type proposed by Lesur & Ogilvie (2008) remain
to be explored.

5. Summary and conclusions

We have studied the possible amplification of seed perturbations
in supernova cores by the magneto-rotational instability. If the
MRI grows on dynamically relevant time scales (a few tens of
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Fig. 31. Evolution of a mixed-regime 3D model with zero net flux (bz

0 =

2 × 1013 G), an entropy gradient ∂�S = −0.038 km−1, and a rotation
law given by Ω = 1900 s−1 and αΩ = −1.25. The upper panel shows the
entropy of the model averaged over planes of constant� as a function of
radius and time. The lower panel shows, similarly to Fig. 30, the average
of bφ over planes of constant z as a function of z and time.

milliseconds), it can lead to MHD turbulence and efficient trans-
port of angular momentum. Because the growth of the magnetic
field and the associated Maxwell stresses is exponential in time,
the MRI is one of the most promising mechanisms to amplify the
– most likely weak – magnetic field of the supernova progenitor
up to dynamically relevant strengths.

As pointed out by Akiyama et al. (2003), the conditions
for the instability are fulfilled in typical post-collapse super-
nova cores. Under the assumption that the MRI converts most
of the energy contained in differential rotation into magnetic en-
ergy, these authors predicted saturation fields of approximately
1015 G. This prediction derived from a semi-analytic analysis
and 1D simulations can only be confirmed by detailed multi-
dimensional numerical simulations. The reliability of global
simulations of the entire core, however, is limited due to the ne-
cessity to resolve accurately small length scales (a few meters,
at most) leading to impracticable computational costs.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811323&pdf_id=30
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Traditionally, the MRI is studied in great detail in accretion
discs, i.e., in systems dominated by Keplerian rotation. Because
typical post-collapse supernova cores differ from these systems
in many respects, e.g., by the importance of the thermal strati-
fication and the sub-Keplerian rotation, we investigated the in-
stability under more general physical conditions. Analyzing the
MRI dispersion relation of Balbus (1995); Urpin (1996), we
identified the regimes of the instability relevant to supernova
cores.

We distinguish between Alfvén and buoyant modes of the
MRI. The former ones are generalizations of the standard
MRI modes, and the latter ones resemble standard convective
modes. Buoyant modes are unstable only in systems dominated
by a negative entropy gradient, whereas Alfvén modes prevail if
differential rotation is the main agent of the instability. Whereas
Alfvén modes are rapidly amplified only for a small range of
wave numbers, buoyant modes grow at essentially the same rate
for a wide range of wave numbers, k ≤ kmax.

We have identified six regimes of the MRI depending on
the ratio of the entropy and angular velocity gradient. These
MRI regimes and their properties can be summarized as follows:

1. Sufficiently large positive gradients of the angular velocity or
of the entropy define the stable regime with oscillatory rather
than growing modes.

2. For sufficiently strong differential rotation and small entropy
gradients (or small buoyancy frequencies), we find the shear
regime, corresponding to the hydrodynamic shear instability.

3. If negative entropy gradients dominate the system, it is lo-
cated in the convective regime, which resembles ordinary
hydrodynamic convection potentially modified in the non-
linear phase by the presence of a magnetic field.

4. A small degree of differential rotation (e.g., Keplerian) and a
small entropy gradient (if present at all) are the conditions for
the magneto-shear (MSI) regime, well studied for accretion
discs.

5. When fast (nearly) rigid rotation suppresses convection, its
stabilizing effect can be overridden by a weak magnetic field,
giving rise to magneto-buoyant (MBI) modes. This regime is
only encountered in axisymmetric flows as rotation can sta-
bilize only axisymmetric modes of convection, i.e., in three
dimensions convection may grow faster than the MBI.

6. Finally, a mixed regime exists which shares properties of all
unstable regimes listed above.

To substantiate our stability analysis, we performed a set of more
than 200 models of semi-global high-resolution simulations of
the MRI in simplified models of post-bounce cores. Our novel
semi-global simulations combine elements of both global and
local simulations by taking into account the presence of global
background gradients and by providing high local spatial resolu-
tion. In particular, we employed the shearing-disc boundary con-
ditions proposed by Klahr & Bodenheimer (2003), which allow
for the treatment of global gradients of, e.g., density or entropy,
and studied the influence of a thermal stratification on the MRI
assuming various (radial) entropy profiles. The presence of gra-
dients constitutes an important difference of our setting from that
of accretion discs. We used a newly developed Eulerian high-
resolution MHD code to evolve the flow in a computational box
having an edge length of a few kilometers. The box was located
in the equatorial plane of the core at a distance of 15 km. The
initial data were computed assuming hydrostatic equilibrium of
differentially rotating matter described by a simplified equation
of state. The gas in the box was endowed with a weak initial
magnetic field of different topology and strength. In most of the

simulations, the magnetic field of the progenitor had a strength
of approximately 1010 G. We neglected the effects of neutrino
radiation and assumed an ideal MHD flow.

Computed under the assumption of rotational equilibrium,
our background models differ from realistic supernova cores
in many respects. One of the most important shortcomings is
the neglect of the large-scale accretion flow through the post-
shock region onto the proto-neutron star. From a physical point
of view, such flows, whose influence on the MRI has not been
studied previously, add to the already considerable complexity
of the problem considered here, possibly allowing for additional
regimes and modifying growth and saturation of the instability.
Technically, the proper treatment of the boundary conditions re-
quired for a correct modeling of such flows in non-global simu-
lations is rather involved. Thus, we have decided to postpone the
study of the MRI in the presence of a large-scale accretion flow
and focus on systems without overall radial motions.

The main results of our simulations are agree well with both
our mode analysis and with local simulations of the MRI in ac-
cretion discs. They also confirm the estimates of Akiyama et al.
(2003), and they are consistent with the results of global MHD
simulations of core collapse (e.g., Obergaulinger et al. 2006b,a).
We summarize our results as follows:

1. Under the physical conditions considered in this study, i.e.,
in a background rotating in hydrostatic equilibrium, the MRI
can act in supernova cores amplifying an initial magnetic
field strongly. The growth times are approximately equal to
the rotational period of the core, which for rapidly rotating
cores is sufficiently fast to influence the dynamics.

2. Due to our relatively fine numerical grids, we were able
to resolve the fastest growing MRI modes for initial field
strengths higher than a few 1012 G. This threshold is con-
siderably lower than the one of previous global simulations
(e.g., Obergaulinger et al. 2006b,a), enabling us to probe the
MRI in a parameter range inaccessible to global simulations.

3. The growth of the instability is accompanied by the devel-
opment of channel flows, predominantly radial flows of al-
ternating direction stacked up in the z-direction. This flow
pattern is characteristic of both axisymmetric and three-
dimensional simulations. The width of the channels is set
by the wave length of the fastest growing MRI modes.

4. At MRI termination (i.e., at the end of the first exponential
growth phase of the instability) the channels dissolve into
a turbulent flow having a complex magnetic field topology.
During the subsequent evolution secondary generations of
channel flows can (re-) appear which characterize secondary
phases of exponential growth.

5. We identified the mechanism responsible for the breakup of
the channel flows and MRI termination in our simulations.
Despite the absence of a physical resistivity in our model
equations, we find that resistive MRI instabilities of the
tearing-mode type develop due to the finite numerical resis-
tivity of our MHD code. A main characteristic of the channel
flows is the presence of prominent current sheets immersed
between layers of opposite magnetic polarity, which are un-
stable against current-driven instabilities. Using a simplified
model of this kind of flows, we investigated the growth rates,
σr, of the resistive instabilities, and derived an approximate
law for the scaling of σr with the magnetic field strength
present in the channels, the channel width, and the grid res-
olution. Comparing these growth rates with the MRI ones,
we find that the MRI ceases to grow once the tearing modes
grow faster than the MRI. Using this criterion, we are able to
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explain the dependence of the conditions (i.e., field strength,
Maxwell stresses) at MRI termination on, e.g., the initial
field strength, the grid resolution, and the initial rotation
profile.
Strictly speaking, there should be no reconnection without
physical resistivity, and the behavior of a magnetized ideal
fluid subject to numerical resistivity may be quite differ-
ent from that of a fluid having a large but finite conductiv-
ity. Consequently, our results and their implications cannot
replace a rigorous treatment of MRI growth in supernova
cores with a non-ideal MHD model. In particular, we have
to be careful when drawing conclusions for the MRI in non-
ideal plasmas. Nevertheless, our results provide some qual-
itative insight into the basic processes of MRI saturation,
highlighting the importance of tearing-mode-like instabili-
ties. Quantitative conclusions, as e.g., the scaling laws for the
field strengths and the Maxwell stresses at MRI termination
as a function of the initial magnetic field strength, should
be taken with a grain of salt. These depend on the dissipa-
tive properties of the numerical scheme employed, which are
likely to change when physical resistivity is considered.

6. The saturation phase of the MRI differs considerably be-
tween axisymmetric and unrestricted 3D models, and be-
tween models having a different initial field configuration.
In 2D the flow does not break down into small-scale turbu-
lence, instead the channel flows merge until they form one
pair of large-scale coherent up- and down-flows. When the
strength of the magnetic field exceeds 1015 G, the rotational
profile is modified within a few tens of milliseconds.

7. Axisymmetric models having an initial magnetic field with
a vanishing net flux through the computational box become
turbulent after a growth phase dominated by channel flows.
The saturation fields are considerably smaller than 1015 G.

8. The previous finding also holds for 3D models. Turbulence
develops, but a spontaneous reorganization of the flow may
lead to a re-appearance of channel modes, resulting in
Maxwell stresses comparable to those found for axisym-
metric models. In models which do not develop late-stage
channel flows, field strengths up to several 1014 G are en-
countered. The field is predominantly toroidal. The extent of
the late-time channel activity depends on the development
of secondary (parasitic) instabilities, both flow-driven (e.g.,
Kelvin-Helmholtz) and current-driven (e.g., tearing modes),
which feed off the channel flows. The presence of these insta-
bilities is determined to a large degree by the the aspect ratio
of the computational box, i.e., we observe a strong depen-
dence of the saturated state on the aspect ratio. For magneto-
rotational core collapse, our results suggest that secondary
instabilities are fairly efficient in suppressing coherent chan-
nel flows during saturation.

9. For models having an initial entropy gradient, we find an im-
portant influence of convective stabilization or destabiliza-
tion on the evolution of the MRI. We confirm the instabil-
ity regimes predicted by our linear analysis with numerical
simulations, the numerical growth rates being in accordance
with the theoretical ones. The MRI is suppressed in con-
vectively stable regions, the growth rates are reduced, and
the geometry of the flow changes favoring radially less ex-
tended patterns. In the mixed regime, convectively unstable
regions with comparably large entropy gradients are domi-
nated by flows similar to volume-filling hydrodynamic con-
vection. The magnetic field is expelled from convective cells
and accumulates near the box boundaries. We note that the
entropy gradients required for these effects are fairly shallow

∼0.1 km−1. We confirm the existence of the MBI regime for
axisymmetric models, whereas the same models, computed
in 3D, experience the growth of non-axisymmetric modes.

10. In 3D models having a zero net magnetic flux we observe
the development of large-scale coherent field patterns similar
those seen by Lesur & Ogilvie (2008), despite the turbulent
nature of the velocity and magnetic fields. We also find dif-
ferences in the flow patterns between MSI and mixed regime
models. The tentative connection to a non-linear dynamo op-
erating in the models remains to investigated further.

These results allow us to draw a few conclusions. Firstly, the
MRI has the potential to play an important role for the dynam-
ics of supernova explosions, at least for relatively fast rotating
progenitors. The details of the evolution of the MRI depend cru-
cially on the properties of the core, in particular its thermal strat-
ification. This makes the study of the MRI in supernovae a sub-
ject of its own, related to the MRI in accretion discs but also quite
different from it. Hence, there is a need for more investigations
focusing on MRI properties specific to core collapse supernovae.

While local (or semi-global) simulations can yield interest-
ing results regarding the physics of the MRI, several important
aspects can only be addressed by global modeling. The detailed
dependence of the geometry of the magnetic field at saturation,
e.g., may depend strongly on the global dynamics and on the po-
sition of the box inside the core. Our simulations did not account
for any of these factors: the background was in hydrostatic equi-
librium, and we simulated models only in the equatorial region.
Since the field geometry is of crucial importance for the global
dynamics, e.g., for the generation of jet-like outflows in collap-
sars, conclusions on the dynamic influence of the MRI based on
local simulations cannot be drawn easily. They require global
models.

Additional investigations are also required to study the inter-
play of large-scale flows, e.g., the accretion of matter onto the
proto-neutron star and the influence of neutrino radiation. Apart
from modifying the regimes of the instability discussed here, the
former process may allow for new instability regimes; in particu-
lar the combination of the MRI and the standing accretion shock
instability may have interesting consequences for the dynamics
of the explosion. While neutrino heating and cooling may, due
to a net transport of entropy, lead to a stratification qualitatively
similar to that of some models in this study with non-vanishing
entropy gradients, it is too early to speculate on how neutrino
radiation affects the MRI.

The inclusion of the MRI and its effects in global simula-
tions requires a considerably careful treatment. The currently
used approach of artificially enhancing the initial field strength
by a constant factor is questionable. On the other hand, finding
a better prescription relies on unraveling the dependence of sat-
urated MRI driven turbulence on the different parameters of the
system, as e.g., the rotation law, the thermodynamic conditions,
and probably also the neutrino transport.

With our current simulations we are unfortunately not yet
able to go beyond the stage of a qualitative proof of principle and
to address important open questions of the MRI in core collapse
supernovae. This would require additional 3D high-resolution
non-ideal MHD simulations covering a large parameter space of
possible rotation profiles, thermal stratifications, and magnetic
field geometries. We are planning to address these issues in fu-
ture work.
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Fig. A.1. Evolution of the magnetic energy density of a current-sheet
model simulated on a square computational grid (edge length 0.25 km;
200×200 zones). The model has an initial density ρ0 = 2.5×1013 g cm−3,
and an initial field strength bx

0 = 1.6 × 1015 G. The wavelength of the
initially sinusoidally varying magnetic field is a = 31.25m. The black
solid line and the green dashed line show the magnetic energy den-
sity corresponding to the x and the y component of the magnetic field,
respectively.
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Appendix A: Growth rates of resistive instabilities

Our simulations of the MRI indicate that the termination of the
growth of the instability is determined, at least partially, by resis-
tive instabilities of the tearing-mode type. Although there exist
detailed investigations of this kind of resistive instabilities (see,
e.g., Biskamp 2000), the application of the results to our study
is hampered by the completely different type of dissipative ef-
fects we are facing here: all previous results hold for instabilities
due to physical resistivity, whereas our ideal MHD simulations
are affected by numerical resistivity, only. Hence, we had to de-
termine the growth rates of resistive instabilities from numerical
experiments without referring to analytic results – although, as
we will see, there exist certain similarities.

We simulated the evolution of two-dimensional current-sheet
models on a Cartesian grid [x0, x1]× [y0, y1] with mx ×my zones
imposing periodic boundary conditions. The fluid is described
by an ideal-gas equation of state with an adiabatic index Γ = 4/3.
We used initial data mimicking MRI-generated channel flows:
the initial magnetic field varies sinusoidally in a gas of constant
density ρ0 and pressure P0,

bx = bx
0 sin

2π(y − y0)
a

, (A.1)

bz = −bx
0, (A.2)

Table A.1. Parameters of the 2D current sheets simulated to determine
the growth rates of resistive instabilities. The columns give from left
to right the edge length of the square simulation box, the number of
grid zones per dimension, the initial density (in units of 1013 g/cm−3),
the sound speed (in units of 109 cm/s), the magnetic field (in units
of 1014 G), the wavelength of the initial field, and the growth rate,
respectively.

L mx ρ0;13 cS;9 bx
0;14 a σ

[km]
[
g cm−3

] [
cm s−1

]
[G] [m]

[
ms−1

]
0.25 50 2.5 3.1 8 125 0.45
0.25 50 2.5 3.1 16 125 1.6
0.25 50 2.5 3.1 32 125 6.0
0.25 50 2.5 3.1 64 125 32
0.25 50 2.5 3.1 16 62.5 10
0.25 50 2.5 3.1 32 62.5 23
0.25 100 2.5 3.1 16 125 0.60
0.25 100 2.5 3.1 32 125 3.1
0.25 100 2.5 3.1 64 125 12
0.25 100 2.5 3.1 128 125 43
0.25 100 2.5 3.1 16 62.5 3.7
0.25 100 2.5 3.1 32 62.5 14
0.25 100 2.5 3.1 64 62.5 50
0.25 100 2.5 3.1 128 62.5 110
0.25 100 0.025 1.4 3.2 62.5 25
0.25 100 0.025 3.1 3.2 62.5 15
0.25 100 0.025 6.1 3.2 62.5 8.0
0.25 100 2.5 1.4 32 62.5 25
0.25 100 2.5 3.1 32 62.5 14
0.25 100 2.5 1.4 6.1 62.5 7.8
0.25 100 250 6.6 320 62.5 7.4
0.25 100 250 3.1 320 62.5 15
0.25 100 2.5 12.4 64 62.5 16
0.25 100 2.5 3.1 4 31.25 1.2
0.25 100 2.5 3.1 8 31.25 5.9
0.25 100 2.5 3.1 16 31.25 20
0.25 100 2.5 3.1 32 31.25 53
0.25 100 2.5 3.1 64 31.25 110
0.25 200 2.5 3.1 32 125 0.9
0.25 200 2.5 3.1 64 125 4.6
0.25 200 2.5 3.1 128 125 19
0.25 200 2.5 3.1 32 62.5 5.4
0.25 200 2.5 3.1 64 62.5 24
0.25 200 2.5 3.1 128 62.5 76
0.25 200 2.5 3.1 16 31.25 7.9
0.25 200 2.5 3.1 32 31.25 28
0.25 200 2.5 3.1 64 31.25 95
0.25 200 2.5 3.1 128 31.25 250
0.25 200 2.5 3.1 4 15.625 2.5
0.25 200 2.5 3.1 16 15.625 40
0.25 200 2.5 3.1 64 15.625 260
0.5 100 2.5 3.1 32 250 1.2
0.5 100 2.5 3.1 64 250 5.6
0.5 100 2.5 3.1 128 250 20
0.5 100 2.5 3.1 16 125 1.9
0.5 100 2.5 3.1 32 125 7.5
0.5 100 2.5 3.1 64 125 26
0.5 100 2.5 3.1 8 62.5 3.0
0.5 100 2.5 3.1 16 62.5 10
0.5 100 2.5 3.1 32 62.5 24
0.5 100 2.5 3.1 64 62.5 61

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811323&pdf_id=32


M. Obergaulinger et al.: MRI in core collapse supernovae 267

1 10
cA

x  [108 cm s−1]

−1

0

1

lo
g 

f c
A
 (

σ)

100
a [m]

3

4

5

lo
g 

f a
 (

σ)

1
δ x [m]

3

4

5

lo
g 

f a
 (

σ)

Fig. A.2. Dependence of the growth rate of resistive instabilities, σ, on various parameters of 2D current sheet models. The panels show fcA as
a function of the initial Alfvén velocity (cx

A; left panel), and fa as a function of the width of the current sheet (a; middle panel) and of the grid
resolution (δx; right panel). The left panel shows groups of models with different a: 250 m (pink plus sign), 125 m (blue diamond), 62.5 m (green
triangle), 32.25 m (orange square), and 15.625 m (red cross). The other two panels show groups of models with different Alfvén velocity (in
units of 108 cm s−1): 0.8 (black asterisk), 1.6 (pink plus sign), 3.2 (blue diamond), 6.4 (green triangle), 12.8 (orange square), and 25.6 (red cross)
respectively.

and having a velocity in x-direction given by

vx = vx0 sin
2π(y − y0) − π/2

a
· (A.3)

Here, a denotes the initial width of the flux sheet, and vx0 is equal
to one half of the Alfvén velocity cx

A corresponding to bx
0. The

presence of the (shear-free!) initial x-velocity is not essential, as
it changes the growth rates of the instability only little. However,
as we observe this kind of a velocity in channel flows, we have
included it in our simulations.

We perturbed the sheet by a small random y-velocity (10−2×
cx

A). The parameters of the model are chosen to mimic the situa-
tions encountered in MRI simulations (see Table A.1). To isolate
the dependence of the growth rates on the physical and numeri-
cal parameters, we varied the initial magnetic field strength, bx

0,
the initial density, ρ0, the width of the current sheet, a, and the
grid resolution, δx = (x1 − x0)/mx. We chose the grid resolution
such that the current sheet is covered by 12 to 100 zones. The
initial pressure is P0 = κρ

Γ
0 .

We show one typical result for the evolution of our models
in Fig. A.1. After a short initial phase, the transverse magnetic
energy density (green line) grows roughly exponentially as tear-
ing modes develop. Initially the growth rate is approximately
constant, but it increases by a factor of ∼4 towards saturation.
Simultaneously, the x-component of the magnetic field decreases
strongly until it is of similar strength as the y-component. At this
point, the coherent current sheets are completely disrupted by the
resistive instability.

We determined estimates of the growth rates of the resistive
instability using the time derivative of the transverse magnetic
energy density, i.e., the time derivative of the magnetic energy
density corresponding to the y-component of the magnetic field.
To find a scaling relation of the form

σ ∝
(
cx

A

)γA
(cS)γS (δx)γδ (a)γa (A.4)

we define the following functions of the growth rate σ,

fcA = σ
(
cx

A

)−γA
(cS)−γS (δx)−γδ , (A.5)

fa = σ (cS)−γS (a)−γa (δx)−γδ , (A.6)

and adjust the exponents γA, γS, γa, and γδ to determine the scal-
ing of σ with the respective parameters. Our preferred set of
scaling exponents is

γA = 1.75, (A.7)

γS = −0.75, (A.8)

γa = −2, (A.9)

γδ = 1, (A.10)

which implies the following scaling law:

σ ∝
(
cA

cS

)0.75 (cAδx
a2

)
· (A.11)

We demonstrate the quality of the fit parameters in Fig. A.2
showing fcA as a function of the initial Alfvén velocity (left
panel), and fa as a function of the width of the current sheet
(middle panel) and of the grid resolution (right panel). None of
the groups of models representing the variation of one parameter
(distinguished by a different color and symbol in the figure) ex-
hibits a strong trend with cA, a or δx, i.e., our scaling exponents
provide an adequate fit to the data.

Due to a relatively large scatter in the growth rates, the scal-
ing relation, Eq. (A.4), should not be taken too literally. We note,
however, that our computed rates are compatible with those of
the resistive instabilities (for fields of similar strength) in MRI
models, i.e., approximately one millisecond for bx

0 ∼ 1015 G.
An additional dependence of σ on the domain size, L, cannot
be excluded, but we did not examine this possibility any further.
For small a and coarse grids our scaling formula tends to over-
estimate the growth rate for large initial Alfvén velocities, and

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811323&pdf_id=33
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Table B.1. List of 2D models having a positive entropy gradient and an initial rotation profile given by Ω0 = 1900 s−1 and αΩ = −1.25. The
columns give (from left to right) the number of grid zones m� × mz (the box has an edge length L� = Lz = 1 km), the type of boundary condition
which was applied (d: velocity damping; p: periodic), the adiabatic index of the gas, Γ (models computed with an ideal-gas equation of state
instead of the hybrid one are marked “id”), the initial entropy, S 0, and the radial entropy gradient, ∂�S . The next three columns give the parameter
C determining the instability regime (see Eq. (24)), the theoretical growth rate, σth, and the strength of the initially uniform magnetic field, bz

0. The
last two columns list the numerical growth rate, σ, and the value of the Maxwell stress component Mterm

�φ at MRI termination.

m� × mz BC Γ S 0 ∂�S C σth bz
0 σ Mterm

�φ

[km−1]
[
ms−1

] [
1012 G

] [
ms−1

] [
1028 G2 cm−3

]
100 × 100 d 1.31 0.20 0.020 –1.7 0.73 10 0.72 1.1
100 × 100 d 1.31 0.20 0.020 –1.7 0.73 20 0.71 1.3
100 × 100 d 1.31 0.20 0.020 –1.7 0.73 40 0.70 1.6
100 × 100 d 1.31 0.20 0.020 –1.7 0.73 80 0.60 1.8
200 × 200 d 1.31 0.20 0.020 –1.7 0.73 10 0.71 1.3
400 × 400 d 1.31 0.20 0.020 –1.7 0.73 10 0.67 1.2
400 × 400 d 1.31 0.20 0.020 –1.7 0.73 20 0.69 1.5
50 × 50 d 5/3 0.20 0.040 –1.1 0.49 10 0.46 0.97
50 × 50 d 5/3 0.20 0.040 –1.1 0.49 20 0.61 1.7
50 × 50 d 5/3 0.20 0.040 –1.1 0.49 40 0.48 0.87
50 × 50 d 5/3 0.20 0.040 –1.1 0.49 80 0.39 0.93
50 × 50 d 1.31, id 0.20 0.040 –0.69 0.32 20 0.50 0.53
50 × 50 d 1.31, id 0.20 0.040 –0.69 0.32 40 0.30 0.27
50 × 50 d 1.31, id 0.20 0.040 –0.69 0.32 80 0.28 0.22
50 × 50 d 1.31 0.20 0.040 –0.69 0.32 4 0.25 0.21
50 × 50 d 1.31 0.20 0.040 –0.69 0.32 20 0.49 0.50
50 × 50 d 1.31 0.20 0.040 –0.69 0.32 40 0.28 0.24
50 × 50 d 1.31 0.20 0.040 –0.69 0.32 80 0.28 0.22

100 × 100 d 1.31 0.20 0.040 –0.69 0.32 10 0.49 0.55
100 × 100 d 1.31 0.20 0.040 –0.69 0.32 20 0.30 0.29
100 × 100 d 1.31 0.20 0.040 –0.69 0.32 40 0.30 0.29
100 × 100 d 1.31 0.20 0.040 –0.69 0.32 80 0.28 0.22
200 × 200 d 1.31 0.20 0.040 –0.69 0.32 4 0.53 0.40
200 × 200 d 1.31 0.20 0.040 –0.69 0.32 10 0.30 0.20
200 × 200 d 1.31 0.20 0.040 –0.69 0.32 20 0.30 0.22
200 × 200 d 1.31 0.20 0.040 –0.69 0.32 40 0.30 0.30
200 × 200 d 1.31 0.20 0.040 –0.69 0.32 80 0.26 0.18
100 × 100 d 1.31 0.20 0.080 1.1 0 20 <0.01
200 × 200 d 1.31 0.20 0.080 1.1 0 10 <0.05
100 × 100 p 5/3 0.20 0.020 –1.8 0.82 20 0.79 4.9
100 × 100 p 1.31 0.20 0.020 –1.7 0.73 10 0.73 1.9
100 × 100 p 1.31 0.20 0.020 –1.7 0.73 20 0.71 33
100 × 100 p 1.31 0.20 0.020 –1.7 0.73 40 0.72 202
100 × 100 p 1.31 0.20 0.020 –1.7 0.73 80 0.62 411
50 × 50 p 1.31 0.20 0.040 –0.69 0.32 20 0.51 1.7
50 × 50 p 1.31 0.20 0.040 –0.69 0.32 40 0.31 90
50 × 50 p 1.31 0.20 0.040 –0.69 0.32 80 0.32 159

100 × 100 p 1.31 0.20 0.040 –0.69 0.32 10 0.53 0.64
100 × 100 p 1.31 0.20 0.040 –0.69 0.32 20 0.30 6.8
100 × 100 p 1.31 0.20 0.040 –0.69 0.32 40 0.30 98
100 × 100 p 1.31 0.20 0.040 –0.69 0.32 80 0.31 201
50 × 50 p 5/3 0.20 0.040 –1.1 0.49 10 0.45 0.55
50 × 50 p 5/3 0.20 0.040 –1.1 0.49 20 0.59 3.1
50 × 50 p 5/3 0.20 0.040 –1.1 0.49 40 0.47 201
50 × 50 p 5/3 0.20 0.040 –1.1 0.49 80 0.38 139

100 × 100 p 5/3 0.20 0.040 –1.1 0.49 4 0.40 0.43
100 × 100 p 5/3 0.20 0.040 –1.1 0.49 10 0.63 0.83
100 × 100 p 5/3 0.20 0.040 –1.1 0.49 20 0.49 5.0
100 × 100 p 5/3 0.20 0.040 –1.1 0.49 40 0.47 262
100 × 100 p 5/3 0.20 0.040 –1.1 0.49 80 0.45 978

for sound speeds much larger than the Alfvén velocity the rates
depend more strongly on the sound speed than predicted by our
formula. Because both situations do not apply to our MRI mod-
els, we did not pursue these issues any further. Our scaling law
loses its validity, if the Alfvén velocity exceeds the sound speed.
Thus, we excluded two respective models in the derivation of
our scaling relation.

Bearing in mind the uncertainties regarding the physical
meaning of a purely numerical resistivity and the precise values
of the scaling we may try to interpret our result summarized
in Eq. (A.11). As the product of the Alfvén velocity and the
grid spacing, cAδx, defines an effective resistivity, we may
conclude that the growth time of the instability is set by the time
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Table B.2. List of 2D models having a negative initial entropy gradient. The columns give (from left to right) the number of grid zones m�×mz (the
box has an edge length L� = Lz = 1 km), the type of boundary condition which was applied (d: velocity damping; p: periodic), the rotation law
(“d”: differential rotation with Ω0 = 1900 s−1 and αΩ = −1.25; “rΩ” rigid rotation with an angular velocity of Ω), the adiabatic index of the gas,
Γ, the initial entropy, S 0, the radial entropy gradient, ∂�S , and the strength of the initially uniform magnetic field, bz

0. The next columns give the
three quantities R�/Ω2

0, N2/Ω2
0 and C determining the instability regime (see Eq. (24)), followed by the theoretical growth rate, σth, and the type

of the instability. The last two columns list the numerical growth rate, σ, and the value of the Maxwell stress component Mterm
�φ at MRI termination.

m� × mz BC Rot Γ S 0 ∂�S bz
0 R�/Ω2

0 N2/Ω2
0 C σth regime σ Mterm

�φ

[km−1]
[
1012 G

] [
ms−1

] [
ms−1

] [
1028 G2 cm−3

]
100 × 100 d d 1.31 0.20 –0.019 0 –2.5 –0.90 –3.4 1.6 mix 0 0
100 × 100 d d 1.31 0.20 –0.019 10 –2.5 –0.90 –3.4 1.6 mix 1.2 2.6
100 × 100 d d 1.31 0.20 –0.019 20 –2.5 –0.90 –3.4 1.6 mix 1.3 3.4
100 × 100 d d 1.31 0.20 –0.019 40 –2.5 –0.90 –3.4 1.6 mix 1.4 5.7
100 × 100 d d 1.31 0.20 –0.019 80 –2.5 –0.90 –3.4 1.6 mix 1.3 6.0

50 × 50 d d 1.31 0.20 –0.038 20 –2.5 –1.8 –4.3 2.0 mix 1.6 4.2
100 × 100 d d 1.31 0.20 –0.038 0 –2.5 –1.8 –4.3 2.0 mix 0 0
100 × 100 d d 1.31 0.20 –0.038 10 –2.5 –1.8 –4.3 2.0 mix 1.5 3.3
100 × 100 d d 1.31 0.20 –0.038 20 –2.5 –1.8 –4.3 2.0 mix 1.7 5.3
100 × 100 d d 1.31 0.20 –0.038 40 –2.5 –1.8 –4.3 2.0 mix 1.7 7.8
100 × 100 d d 1.31 0.20 –0.038 80 –2.5 –1.8 –4.3 2.0 mix 1.7 9.5
100 × 100 d d 1.31 0.20 –0.075 0 –2.5 –3.6 –6.1 2.8 mix 0 0
100 × 100 d d 1.31 0.20 –0.075 10 –2.5 –3.6 –6.1 2.8 mix 2.4 1.3
100 × 100 d d 1.31 0.20 –0.075 20 –2.5 –3.6 –6.1 2.8 mix 2.6 4.8
100 × 100 d d 1.31 0.20 –0.075 40 –2.5 –3.6 –6.1 2.8 mix 2.5 9.7
100 × 100 d d 1.31 0.20 –0.15 0 –2.5 –7.2 –9.7 4.4 conv 3.0 0
100 × 100 d d 1.31 0.20 –0.15 20 –2.5 –7.2 –9.7 4.4 conv 4.0 1.2
100 × 100 d d 1.31 0.20 –0.15 40 –2.5 –7.2 –9.7 4.4 conv 3.8 3.7
100 × 100 p d 5/3 0.20 –0.019 20 –2.5 –0.70 –3.2 1.5 mix 1.3 6.0
100 × 100 p d 5/3 0.20 –0.019 40 –2.5 –0.70 –3.2 1.5 mix 1.4 50

50 × 50 p d 1.31 0.20 –0.038 20 –2.5 –1.8 –4.3 2.0 mix 1.6 12
50 × 50 p d 1.31 0.20 –0.038 40 –2.5 –1.8 –4.3 2.0 mix 1.7 19.5

100 × 100 p d 1.31 0.20 –0.038 20 –2.5 –1.8 –4.3 2.0 mix 1.7 27
100 × 100 p d 1.31 0.20 –0.038 40 –2.5 –1.8 –4.3 2.0 mix 1.7 22
100 × 100 d r1000 1.31 0.20 –0.075 0 0 –14 –14 3.4 conv 2.7
100 × 100 d r1500 1.31 0.20 –0.075 0 0 –5.7 –5.7 2.1 conv 1.6
100 × 100 d r1900 1.31 0.20 –0.075 0 0 –3.2 –3.2 1.5 MBI 0
100 × 100 d r1500 1.31 0.20 –0.075 10−8 0 –5.7 –5.7 2.1 conv 1.5 1.4 × 10−18

100 × 100 d r1500 1.31 0.20 –0.075 1 0 –5.7 –5.7 2.1 conv 1.5 0.013
100 × 100 d r1500 1.31 0.20 –0.075 10 0 –5.7 –5.7 2.1 conv 1.8 1.7
100 × 100 d r1900 1.31 0.40 -0.10 4 0 –3.6 –3.6 1.7 MBI 1.1 0.22
100 × 100 d r1900 1.31 0.40 –0.10 8 0 –3.6 –3.6 1.7 MBI 1.2 1.6
100 × 100 d r1900 1.31 0.40 –0.10 10 0 –3.6 –3.6 1.7 MBI 1.1 1.6
100 × 100 d r1900 1.31 0.40 –0.10 20 0 –3.6 –3.6 1.7 MBI 1.4 5.2
100 × 100 d r1900 1.31 0.40 –0.10 40 0 –3.6 –3.6 1.7 MBI
200 × 200 d r1900 1.31 0.40 –0.10 0 0 –3.6 –3.6 1.7 MBI 0 0
200 × 200 d r1900 1.31 0.40 –0.10 0.01 0 –3.6 –3.6 1.7 MBI �0.006
200 × 200 d r1900 1.31 0.40 –0.10 4 0 –3.6 –3.6 1.7 MBI 1.0 0.99
200 × 200 d r1900 1.31 0.40 –0.10 8 0 –3.6 –3.6 1.7 MBI 1.4 1.4
200 × 200 d r1900 1.31 0.40 –0.10 10 0 –3.6 –3.6 1.7 MBI 1.4 2.1
200 × 200 d r1900 1.31 0.40 –0.10 20 0 –3.6 –3.6 1.7 MBI 1.5 5.6

scale for resistive diffusion across the width of a current sheet,
τr = a2/(cAδx), modified by the ratio of the sound speed and the
Alfvén velocity. This interpretation has the nice property that it
is consistent with the fact that the magnetic Reynolds number is
proportional to the grid resolution.

Appendix B: List of models

In this appendix we provide a list of the models:

– Table B.1: this table contains a list of 2D models having a pos-
itive entropy gradient. Their initial rotation profile is given by

Ω0 = 1900 s−1 and αΩ = −1.25, and their initial magnetic
field is uniform.

– Table B.2: this table contains a list of 2D models having a neg-
ative entropy gradient. The models rotate initially rigidly or
differentially. The initial magnetic field is uniform.

– Table B.3 and Table B.4: this table contains a list of 3D models
having different initial magnetic field strengths, entropy gra-
dients, initial rotation laws, and simulated in computational
boxes of various size with both types (with and without ve-
locity damping) of radial boundary conditions.
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Table B.3. List of 3D models. The first column (from left to right) gives the geometry of the initial field (“U”: uniform; “V” zero-flux). The next
two columns show the box size (L� × Lφ × Lz) and the number of grid zones (m� × mφ × mz). The next four columns list the rotation law (“d”:
differential rotation withΩ0 = 1900 s−1 and αΩ = −1.25; “rΩ” rigid rotation with an angular velocity of Ω), the entropy gradient, ∂� (s0 = 0.2), the
strength of the initial magnetic field, bz

0, and the type of boundary condition which was applied (d: velocity damping; p: periodic). The remaining
four columns give the growth rate of the MRI, σ, and the Maxwell stress component Mterm

�φ at MRI termination, its maximum value, and its time
averaged value, respectively.

Field Grid size Resolution Rot ∂�S bz
0 BC σ Mterm

�φ Mmax
�φ

〈
M�φ

〉
[km3]

[
km−1

] [
1012 G

] [
ms−1

] [
1028 G2 cm−3

] [
1028 G2 cm−3

] [
1028 G2 cm−3

]
U3 0.5 × 0.25 × 0.5 26 × 12 × 26 d 0 40 d 0.98 0.47 298 47

0.5 × 0.5 × 0.5 26 × 26 × 26 d 0 40 d 0.96 0.45 211 36
0.5 × 1 × 0.5 26 × 50 × 26 d 0 40 d 0.96 0.45 16 2.9
0.5 × 2 × 0.5 26 × 100 × 26 d 0 40 d 0.92 0.44 5.0 1.5
1 × 0.5 × 1 50 × 26 × 50 d 0 20 d 1.05 3.1 924 69
1 × 0.5 × 1 50 × 26 × 50 d 0 40 d 1.10 3.7 553 68
1 × 1 × 1 50 × 50 × 50 d 0 10 d 0.76 1.5 2.7 1.1
1 × 1 × 1 50 × 50 × 50 d 0 20 d 1.03 3.1 347 44
1 × 1 × 1 50 × 50 × 50 d 0 40 d 1.09 3.1 482 63
1 × 2 × 1 50 × 50 × 50 d 0 10 d 0.75 1.3 1.3 0.47
1 × 2 × 1 50 × 50 × 50 d 0 20 d 1.03 3.0 6.5 2.9
1 × 2 × 1 50 × 50 × 50 d 0 40 d 1.09 2.9 22 5.8
1 × 2 × 1 50 × 100 × 50 d 0 20 d 1.02 3.1 9.5 3.4
1 × 2 × 1 50 × 100 × 50 d 0 40 d 1.09 2.8 60 9.2
1 × 4 × 1 50 × 200 × 50 d 0 20 d 1.03 2.9 4.4 2.3
1 × 4 × 1 50 × 200 × 50 d 0 40 d 1.08 3.0 10.5 3.4
1 × 4 × 1 50 × 200 × 50 d 0 80 d 1.01 2.7 45 9.0
1 × 4 × 1 100 × 400 × 100 d 0 20 d 1.05 3.5 6.5 2.5
1 × 4 × 1 100 × 400 × 100 d 0 40 d 1.09 3.5 28 8.2

0.5 × 0.25 × 1 26 × 12 × 50 d 0 40 d 1.04 0.44 325 64
0.5 × 0.5 × 1 26 × 26 × 50 d 0 40 d 1.03 0.52 227 40
0.5 × 1 × 1 26 × 50 × 50 d 0 40 d 1.00 0.42 298 33
0.5 × 2 × 1 26 × 100 × 50 d 0 40 d 0.96 0.50 289 38

1 × 0.25 × 0.5 50 × 12 × 26 d 0 40 d 1.08 2.9 310 59
1 × 0.38 × 0.5 50 × 18 × 26 d 0 40 d 1.08 3.0 234 45
1 × 0.5 × 0.5 50 × 26 × 26 d 0 40 d 1.07 2.9 16 6.2
1 × 1 × 0.5 50 × 50 × 26 d 0 40 d 1.07 3.1 9.0 2.3
1 × 2 × 0.5 50 × 100 × 26 d 0 40 d 1.06 3.0 3.4 1.8

0.5 × 0.25 × 0.5 26 × 12 × 26 d 0 20 p 1.07 97 2940 145
0.5 × 0.5 × 0.5 26 × 26 × 26 d 0 20 p 0.99 64 4196 335
0.5 × 1 × 0.5 26 × 50 × 26 d 0 20 p 1.06 60 535 19
0.5 × 2 × 0.5 26 × 100 × 26 d 0 20 p 1.08 66 66 8.7
1 × 0.25 × 1 50 × 12 × 50 d 0 20 p 1.02 13 1316 110
1 × 0.5 × 1 50 × 26 × 50 d 0 20 p 1.02 8.8 1424 60
1 × 1 × 1 50 × 50 × 50 d 0 20 p 0.98 42 2570 128
1 × 2 × 1 50 × 100 × 50 d 0 20 p 1.04 16.5 736 79
1 × 4 × 1 50 × 200 × 50 d 0 20 p 1.05 22.5 59 6.5
1 × 4 × 1 50 × 200 × 50 d 0 40 p 1.09 40.4 361 18
1 × 4 × 1 50 × 200 × 50 d 0 80 p 1.09 254 254 5.5
1 × 4 × 1 100 × 400 × 100 d 0 20 p 1.08 14.9 27.6 6.4
1 × 4 × 1 100 × 400 × 100 d 0 40 p 1.11 88 88 11

0.5 × 0.25 × 1 26 × 12 × 50 d 0 20 p 1.04 64 2182 146
0.5 × 0.25 × 1 26 × 26 × 50 d 0 20 p 1.03 31 1540 170

0.5 × 1 × 1 26 × 50 × 50 d 0 20 p 1.01 8.9 1735 102
0.5 × 2 × 1 26 × 100 × 50 d 0 20 p 1.05 30 825 72
0.5 × 4 × 1 26 × 200 × 50 d 0 20 p 1.04 27 103 15

1 × 0.25 × 0.5 50 × 12 × 26 d 0 20 p 1.07 32 1654 171
1 × 0.5 × 0.5 50 × 26 × 26 d 0 20 p 1.06 8.5 2902 170
1 × 1 × 0.5 50 × 50 × 26 d 0 20 p 1.05 14 682 13
1 × 2 × 0.5 50 × 100 × 26 d 0 20 p 1.06 14 14 4.0



M. Obergaulinger et al.: MRI in core collapse supernovae 271

Table B.4. Continuation of Table B.3. For the MBI model with bz
0 = 10 G, we do not provide values for the Maxwell stress, because the magnetic

field behaves similar to a purely passive field.

Field Grid size Resolution Rot ∂�S bz
0 BC σ Mterm

�φ Mmax
�φ

〈
M�φ

〉
[km3]

[
km−1

] [
1012 G

] [
ms−1

] [
1028 G2 cm−3

] [
1028 G2 cm−3

] [
1028 G2 cm−3

]
V3 1 × 1 × 1 50 × 50 × 50 d 0 10 d 0.66 0.13 0.24 0.16

1 × 1 × 1 50 × 50 × 50 d 0 20 d 0.96 0.53 0.53 0.21
1 × 1 × 1 50 × 50 × 50 d 0 40 d 1.03 1.5 1.5 0.27
1 × 4 × 1 50 × 200 × 50 d 0 10 d 0.66 0.13 0.52 0.24
1 × 4 × 1 50 × 200 × 50 d 0 20 d 0.90 0.36 0.80 0.43
1 × 4 × 1 100 × 400 × 100 d 0 20 d 1.08 1.1 1.1 0.20
1 × 4 × 1 100 × 400 × 100 d 0 20 p 1.08 1.5 1.5 0.21

U3 1 × 2 × 1 26 × 50 × 26 d −0.038 20 d 1.5 1.9 5.3 0.83
1 × 2 × 1 26 × 50 × 26 d −0.038 40 d 1.7 4.1 7.2 1.1
1 × 2 × 1 50 × 100 × 50 d −0.038 20 d 1.7 3.1 3.1 0.16
1 × 2 × 1 50 × 100 × 50 d −0.038 40 d 1.9 4.4 4.4 0.23
1 × 2 × 1 50 × 100 × 50 r1900 −0.10 10−11 d 2.6
1 × 2 × 1 50 × 100 × 50 r1900 −0.10 0.01 d 2.6 2.3 × 10−8 0.11 0.040
1 × 2 × 1 50 × 100 × 50 r1900 −0.10 20 d 2.6 0.060 0.87 0.30

V3 1 × 2 × 1 50 × 100 × 50 d −0.038 20 d 1.6 0.54 0.54 0.011
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