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ABSTRACT

Context. The role of magnetic fields in gamma-ray burst (GRB) flows remains debated. If of sufficient strength, they can leave their
signature on the initial phases of the afterglow by substantially changing the backreaction of the flow as a consequence of its interac-

tion with the external medium.

Aims. We attempt to understand quantitatively the dynamical effect and observational signatures of GRB ejecta magnetization on the

onset of the afterglow.

Methods. We perform ultrahigh-resolution, one-dimensional, relativistic MHD simulations of the interaction between a radially ex-
panding, magnetized ejecta with the interstellar medium. We require ultrahigh numerical resolution because of the extreme jump
conditions in the region of interaction between the ejecta and the circumburst medium. We study the complete evolution of an ultra-

relativistic shell to the self-similar asymptotic phase.

Results. Our simulations demonstrate that the complete evolution can be characterized in terms of two parameters, the & parameter
introduced by Sari and Piran and the magnetization 0. We use this fact in producing numerical models in which the shell Lorentz
factor vy, is between 10 and 20 and rescaling the results to arbitrarily large values of y,. We find that the reverse shock is typically
weak or absent for ejecta characterized by oy ® 1. The onset of the forward shock emission is strongly dependent on the magneti-
zation. On the other hand, the magnetic energy of the shell is transferred into the external medium on a short timescale (of several
times the duration of the burst). The later forward shock emission contains no information about the initial magnetization of the flow.
The asymptotic evolution of strongly magnetized shells, after experiencing significant deceleration, resembles that of hydrodynamic
shells, i.e. they enter fully into the Blandford-McKee self-similar regime.
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1. Introduction

Gamma ray bursts (GRBs) are understood to be produced by the
energy release in an ultrarelativistic outflow. The mechanisms
responsible for launching, accelerating the flow and powering
the GRB emission are still not well understood. Two alterna-
tive sources of the energy content of the flow have been con-
sidered. The GRB flow may be dominated initially by thermal
energy density creating a fireball (Goodman 1986; Paczynski
1986) or by the energy stored in magnetic fields giving rise to
a Poynting-flux dominated flow (PDF, Usov 1992; Thompson
1994; Meszaros & Rees 1997).

In fireball models, magnetic fields are not dynamically im-
portant at any stage of the flow evolution. On the other hand,
models of MHD jet acceleration indicate that the conversion of
Poynting flux to kinetic energy is partial (Michel 1969; Li et al.
1992; Beskin et al. 1998; Vlahakis & Konigl 2003; Giannios &
Spruit 2006). As a result, the flow remains rather strongly mag-
netized at large distances where it interacts with the circumburst
medium.

The interaction of the fast flow with the external medium is
probably responsible the afterglow emission. The initial phases
of this interaction depend, to a large extent, on the magnetization
of the flow. Strong magnetic fields affect the shock conditions
and the internal dynamics of the ejecta. Rees & Gunn (1974)
and Kennel & Coroniti (1984) presented the first attempts to un-
derstand the effect of the magnetization on the shock conditions.

In the ideal MHD limit, they showed that shocks in magnetically
dominated flows cannot dissipate energy efficiently. This partic-
ular effect was studied recently by examining the shock condi-
tions of the (reverse) shock that propagates into the GRB flow
and the resulting emission (Fan et al. 2004; Zhang & Kobayashi
2005). By accounting for the internal evolution of the magne-
tized shell, Giannios et al. (2008) argued that even moderately
strong magnetic fields can suppress the reverse shock completely
and explain the observed paucity of reverse-shock signature in
the early afterglow.

We continue previous (semi-)analytical studies of the after-
glow phase of magnetized ejecta with relativistic MHD simula-
tions. We follow the deceleration of magnetized ejecta from the
initial phases of interaction to the self similar regime in which
all energy is transferred to the shocked, external medium. These
simulations clarify the dynamical effects of GRB ejecta mag-
netization and their observational implications for the forward
and reverse shock emission. We present a new set of scaling
laws that enable us to extrapolate the results of numerical models
with moderate values of the initial bulk Lorentz factor (~15) of
the ejecta to equivalent models with much larger Lorentz factors
2100.

2. Ejecta-medium interaction

At large distances from the central engine, there is significant in-
teraction between the relativistic ejecta and the external medium.
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This interaction is believed to produce afterglow emission. An
important difference between fireballs and PDFs is related to the
magnetization of the ejecta at the onset of the afterglow phase.
In fireball models, the energy of the flow is dominated by the
kinetic energy of baryons at large distances from the central en-
gine. If the flow is launched being Poynting-flux dominated, it
is expected to retain a significant fraction of its energy in the
form of magnetic energy, the remainder being in kinetic form
(Michel 1969; Li et al. 1992; Beskin et al. 1998; Drenkhahn &
Spruit 2002; Lyutikov & Blandford 2003). Since at least the ini-
tial phases of the ejecta-external medium interaction depend on
the magnetization of the ejecta (Kennel & Coroniti 1984; Fan
et al. 2004; Zhang & Kobayashi 2005; Genet et al. 2007), it is
possible to differentiate between fireballs and PDF models from
afterglow observations. As we show in this work, early afterglow
observations are particularly promising in this respect.

2.1. Previous studies

The deceleration of non-magnetized ejecta has been studied with
both analytical (Rees & Meszaros 1992; Sari & Piran 1995) and
numerical approaches in one dimension (1D) (Kobayashi et al.
1999) and two dimensions (2D) (Granot et al. 2001; Meliani
et al. 2007). The 2D studies are important to follow the late-
time lateral spreading of collimated ejecta (Rhoads 1999). On
the other hand, the initial phases of ejecta deceleration, in which
we are interested, are unaffected by 2D effects and can be studied
by assuming a spherically symmetric flow.

Sari & Piran (1995) considered the case of non-magnetized
ejecta assuming a cold shell with (isotropic equivalent) kinetic
energy E, Lorentz factor yp, and width Ay, which moves against
an external medium of density p.. This interaction leads to a pair
of shocks: one that propagates in the external medium (forward
shock) and one that decelerates the ejecta (reverse shock). The
strength of the reverse shock depends on the ratio of the density
of the shell to the external medium and on the bulk Lorentz factor
of the flow. It can be shown that the strength of the reverse shock
can be conveniently parametrized by

[ 1
&= ‘,A_OW’ (1)

where [ = (3E /4nnemyc?)'3 is the Sedov length, ne is the num-
ber density of electrons in the external medium, 1, is the pro-
ton mass, and E is the total energy (kinetic in this case) of the
ejecta. In the limit where & > 1, the reverse shock is Newtonian
and the shell is said to be “thin”. The ejecta do not decelerate
much by the time the reverse shock has crossed. If & <« 1, we
find ourselves in the “thick shell” case, and the reverse shock is
relativistic and decelerates the ejecta appreciably (Sari & Piran
1995). For typical parameters of GRB flows, ¢ is of the order of
unity.

The dynamics of the deceleration of strongly magnetized
ejecta have not been studied in similar detail. In addition to
the & parameter, the ejecta are characterized by the magnetiza-
tion o defined to be the ratio of magnetic to kinetic energy in
the flow. Kennel & Coroniti (1984) considered ideal MHD shock
conditions in arbitrarily magnetized ejecta with a dominant
toroidal field, and showed that the dissipation by the shock
becomes weaker as o increases (e.g. Lyutikov & Blandford
2003). They applied their analysis to the standing shock of pul-
sar winds. Zhang & Kobayashi (2005) focused on the effect of
magnetization in the context of GRB afterglows. They ignored
the internal evolution of the shell prior to interaction with the
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external medium and studied the reverse-shock-crossing phase
(provided that a reverse shock formed). They found distinct fea-
tures in the early time light curves because of the magnetiza-
tion. The shocks from the interaction of the GRB ejecta with the
external medium propagate forwards and the shock conditions
depend on the distance from the central engine. The Zhang &
Kobayashi (2005) analysis was criticized by Lyutikov (2005) for
the assumption about the distance where the ejecta decelerate.
Giannios et al. (2008) accounted for the internal evolution of the
ejecta and derived an analytic condition for the existence of a re-
verse shock depending on ¢ and o in a parameter space relevant
to GRB flows'.

After the reverse shock (if there is one) reaches the back
part of the ejecta, there is a transient phase of interaction during
which rarefaction waves cross the shocked ejecta and shocked
external medium. Gradually most of the energy is transferred
into the shocked external medium and the entire structure relaxes
to the self-similar blast wave described in Blandford & McKee
(1976). The evolution of the blast wave then depends only on
the total energy E and density of the external medium n, and not
on 0. After the self-similar evolution has been reached, nothing
can be inferred about the initial magnetization of the flow.

However, none of these studies have addressed two impor-
tant questions. First, there is the question of which stage of the
interaction a reverse shock forms (if it forms at all). At a short
distance from the central engine, the magnetic pressure of the
shell is sufficiently high for the shell to rarefy upon interacting
with the external medium. This rarefaction may develop into a
(reverse) shock at larger distance where the magnetic pressure
in the shell drops. Second, although it is clear ignoring radia-
tive losses that the total energy initially in the shell is passed
onto the external medium at a distance approximately similar
to the Sedov length, which is independent of the magnetization
of the flow (Lyutikov 2005), the details of how exactly this oc-
curs depend on the magnetization. These two aspects are closely
connected to the energy dissipated in the (forward and reverse)
shocks as a function of distance, and consequently, to the after-
glow emission from particles accelerated in these shocks. We
address this issue by studying the full dynamical interaction
from the initial stages to the establishment of the self-similar
evolution. To this end, we perform ultra-high-resolution, one-
dimensional relativistic MHD simulations of shell-medium in-
teraction.

3. The model for the ejecta

We focus on the GRB flow at a distance at which there is sub-
stantial interaction with the external medium. This interaction
probably occurs a considerable time after the acceleration, colli-
mation, and prompt emission phases are completed. After the
internal dissipation phase (believed to power the y-ray emis-
sion) ends, the flow expands radially and cools down. The ex-
pansion also produces a dominant toroidal component of the
magnetic field. At the so-called Alfvén point, the poloidal B,
and toroidal B, field components are expected to be of similar

! While this work was being refereed, Mizuno et al. (2009) published
a work addressing the problem of the deceleration of arbitrary mag-
netized ejecta into an unmagnetized medium, and discussed its impli-
cations for GRBs and active galactic nuclei. However, in spite of the
undoubtable importance of their studies, the conditions set by these au-
thors (particularly, the use of planar symmetry, and the low density con-
trast between the magnetized shell and the external medium ~100) are
far from those typical of GRB afterglows, especially during the early
afterglow propagation.
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magnitude. At larger distances, the flux freezing condition corre-
sponds to By oc 1/ 7> while the induction equation predicts slower
decline for By o 1/r. The same scalings would hold if the ini-
tial B-field was random with By > B, at large distance from the
central engine.

We consider radially moving, cold shell of ejecta of width
Ay, total (kinetic and magnetic) energy E that coasts with a
bulk Lorentz factor yy. The magnetic content of the flow is
parametrized with the magnetization parameter o7, which repre-
sents the magnetic-to-kinetic energy ratio in the shell. The flow
is assumed to move with super-fast magnetosonic speeds (i.e.
yé > 1 + o0; for studies of the opposite limit, see Lyutikov 2006;
and Genet et al. 2007). For the simulations presented below, the
shell is located at an initial distance ry from the central engine.
The choice of ry is important, since ry should be sufficiently
small not to affect the subsequent interaction of the ejecta with
the external medium. We must set ry to be smaller than any of
the characteristic radii that appear when considering the deceler-
ation of magnetized ejecta. These radii are the “contact” radius
and the “reverse-shock crossing” radius to be defined in the next
section.

3.1. Characteristic distances

In the super-fast magnetosonic flow under consideration, the var-
ious parts along the radial direction drop out of MHD contact
during the acceleration phase. It can be shown that for a cold
flow that coasts with constant speed with dominant toroidal field
the magnetization remains constant. The time it takes for a fast
MHD wave to cross the width of the shell is therefore fixed. The
expansion timescale fexp = 7/yoc is initially much shorter than
that of MHD waves but increases linearly with distance from the
central engine. At the so-called “contact” radius r., MHD waves
cross the width of the shell on a timescale comparable to the
expansion timescale (Giannios et al. 2008)

1+ o
re = Ao)’é(\/ 0 1). )
oo

After contact is established, the shell is no longer in pure bal-
listic motion and internal evolution because MHD forces can no
longer be ignored. On the other hand, in non-magnetized ejecta
the sound speed declines sharply with distance due to adiabatic
expansion, and the motion is unaffected by the pressure of the
shell.

A second important radius is that at which the reverse shock
reaches the rear part of the ejecta. This radius can be identi-
fied using the formulation of Zhang & Kobayashi (2005) by
solving the ideal MHD shock conditions for arbitrarily mag-
netized ejecta (see also Fan et al. 2004, for the case of mildly
magnetized ejecta). Their analysis describes the reverse-shock
crossing-phase provided that there is a reverse-shock forming.
The reverse-shock crossing radius can be expressed approxi-
mately as (Giannios et al. 2008)

rs = PPN AT+ 0. 3)

The Zhang & Kobayashi (2005) analysis does not take into ac-
count the internal evolution of the shell. It is thus accurate when
such evolution insignificant, i.e. when ;s < rc.

The initial distance ry where the shell is set up up must be
ro < min[r, ;5] so that the simulation begins sufficiently early
to follow both any rarefaction waves within the shell, and shocks
caused by the interaction with the external medium.
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3.2. Characteristic quantities

In this paper, we frequently use the following definition of the
normalized time of observation for a model with parameters vy,
Ao, and ry:

fobs := Ay [ct — 1], 4)

where fqps 1S the time for observation of a signal transmitted
from radius r at time ¢ in the GRB frame or laboratory frame,
normalized to the light-crossing time of the initial width of the
shell Ag/c. As we show in Sect. 4.4.3, this definition of f.,s en-
ables us to compare properties (in the observer frame) of shells
with the same value of &, independent of their initial Lorentz
factor.

We also often base our arguments on the relative Lorentz
factor . between two parts of the fluid separated by the shock
front. For ultrarelativistic flows, we use

1 (.
Veel 1= = (ﬁ + ﬁ), (5)
2 Yb Ya

where vy, and 7y are the Lorentz factors of the fluid ahead and
behind of the shock, respectively. We point out that y,.; depends
only on the ratio y,/yy.

3.3. Numerical models

Although the problem is characterized by several parameters E,
ne, Ao, Y0, and o, to complete a systematic study of the shell-
medium interaction, we need to focus on the combination of the
first four parameters that are given by

& o (E/ne) [y (©)

and 0. We demonstrate and quantify this statement in the next
Section. To simplify the analysis, we restrict ourselves to the
case in which the external medium density is uniform (p. = 3 X
10~*00(1 + 00); po being the initial shell density, and leave the
study of stratified external media to future work.

As in the case of unmagnetized ejecta, we use the Sari-Piran
parameter ¢ to characterize partly the strength of the reverse
shock. In the magnetized case, the shock strength is certainly not
uniquely constrained by . An additional parameter, oy, must be
introduced to describe fully the reverse-shock strength of arbi-
trarily magnetized flows. Thus, one deals with a & — o7 plane in
exploring different cases for the initial phases of shell-external
medium interaction. Here, we explore the & ~ 1 regime that is
relevant to typical GRB parameters. Numerical reasons limit us
to the 0 < 0y < 3 range of the magnetization parameter.

Our different models are summarized in Table 1. The & =
1.1 models (thin shells) are characterized by E = 3.33x 103 erg,
Ay = 105 cm, vo = 15, ne = 10 cm™>. The ¢ = 0.5 models
(thick shells) have a factor of ten higher total energy E and the
shell width Ay, while vy and n. remain fixed. The “continuous
flow” model (to be discussed in more detail in Sect. 4.3) de-
scribes a flow of constant total (kinetic + Poynting) luminosity
of L = 10% erg/s that moves with yy = 15 and collides with an
external medium of number density n. = 10 cm™3. In all models,
ro =5x 10" cm.

One may notice that the models are characterized by an unre-
alistically low Lorentz factor yy = 15 and wide shells Ay ~ 101
cm with respect to that expected for a GRB flow (i.e. yy 2 100,
Ao < 3 x 10'2 cm). These parameters were chosen so that the
problem was resolved reliably with our RMHD code. While
models with y9 * 100 in combination with extreme density and
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Table 1. Parameters of the numerical models.

oo 0 1 3
Thinshell (¢ = 1.1) v
Thick shell (¢ =0.5) «
Continuous flow Vv v

magnetic field jumps at the edge of the ejecta shell are not fea-
sible at this stage, we propose a method to extrapolate the re-
sults of the yo = 15 simulation by rescaling appropriately the
initial conditions. Furthermore, we completed simulations with
vo = 10, 20, where we demonstrate the accuracy of the rescaling
procedure (see Sect. 4.4).

4. Results

To derive the results presented in this Section, we solve the equa-
tions of RMHD in 1D spherical geometry with a magnetic field
perpendicular to the direction of propagation of the fluid, i.e.,
with a purely toroidal magnetic field. The system of RMHD
equations, and the numerical tests we have completed to identify
the appropriate numerical resolution for our experiments (be-
tween 10* and 6 x 10* cells to resolve the initial radial width
of the ejecta) are shown in Appendix A. Finally, all our models
have were executed until the bulk Lorentz factor behind the for-
ward shock had declined to y ~ 2—3. By that time, the shell had
experienced a substantial deceleration and fully entered into the
Blandford-MacKee self-similar regime.

4.1. Non-magnetized shells

The 0y = 0 models exhibit the well known features expected
from analytical results (Sari & Piran 1995) and simulations
(Kobayashi et al. 1999). The thin shell (¢ = 1.1) model is charac-
terized by a Newtonian-to-mildly-relativistic reverse shock. The
reverse shock crosses the shell at a distance rs = 3 x 107 cm,
which agrees to within ~10% with the analytical estimate from
Eq. (3). At this distance, the relative Lorentz factor of the
shocked ejecta with respect to the unshocked shell is y;e; =~ 1.18.
The thick shell (¢ = 0.5) model finds itself closer to the “rela-
tivistic reverse shock” regime with 75 = 9.5 x 10!7 cm (to within
~10% of the initial estimate) and vy, =~ 1.60. In both runs, af-
ter the reverse shock crosses the shell, a rarefaction begins at
the rear part of the shell and propagates forwards (a similar rar-
efaction happens in the magnetized case, which we label R; in
Fig. 1). The rarefaction crosses the contact discontinuity, gen-
erated in the leading radial edge of the shell (an equivalent
contact-discontinuity arises in the magnetized case: see “CD”
in Fig. 1), and reaches the forward shock as the shell approaches
r~ 16rs ~5x107 cmand r ~ 1.6rs ~ 1.6 x 10'8 cm,
in the thin- and in the thick-shell case, respectively. At this
stage, ~90% of the energy of the shell has been transferred into
the shocked external medium. Within a factor of ~2 in radius,
the blastwave fully relaxes to the Blandford-McKee self-similar
solution.

The different components of the total energy (see e.g.,
Mimica et al. 2007) as function of radius of the front shock (FS)
are shown in Fig. 2. For the thin-shell model, the peak of the
thermal energy of the shell (approximately 9% of the total en-
ergy contained in the ejecta) identifies the position of the reverse
shock (RS) crossing of the shell. Beyond 5 x 10'7 ¢cm, most of
the energy that was initially in the shell is transferred into the
shocked external medium. The apparent “disappearance” of the
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Fig. 1. Snapshot of the thin magnetized shell evolution taken after the
RS has formed and before it has crossed the shell. Full and dashed black
lines show the logarithms of the rest-mass density (normalized to the
initial shell density po) and of the pressure (normalized to poc?). The
red line shows the logarithm of the magnetization o, while the blue line
shows the fluid Lorentz factor y in the linear scale. All quantities are
shown as a function of radius r. Positions of the forward shock (FS),
contact discontinuity (CD), reverse shock (RS), and left- (R,) and right-
going (R,) rarefactions have been indicated. Another rarefaction exists
(moving backwards in the external medium) and another contact dis-
continuity that forms at the rear edge of the shell, which are not shown
here. Both structures are located to the right of R,. The unshocked exter-
nal medium is located in front of the FS and its density p, ~ 6x10™*py is
lower than the minimum density shown in the plot. The rarefaction R,
the CD and the FS display a qualitatively similar profile in the non-
magnetized case. The rarefaction R; and the late steepening of the con-
ditions at its tail, resulting into the formation of RS, are specific of mag-
netized ejecta.

'
=

log (E/Etot)

'
%)

=

1
==

log (E/Etot)

'
(2]

r [cm]

Fig. 2. Energy in different components (normalized to the initial total
energy in the shell) as a function of the radius of the FS. Upper and
lower panels show the thin (¢ = 1.1) and thick (¢ = 0.5) shell mod-
els, respectively. Black and blue lines correspond to un-magnetized
(o = 0) and magnetized (o0 = 1) models, respectively. Thick full,
dashed, and dotted lines indicate the kinetic, thermal, and magnetic en-
ergy of the shell, respectively. The thin full line shows the total energy
in the shocked external medium. Thick vertical lines denote the radius
of the FS at the moment when the RS has crossed the shell.
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Fig.3. Relative Lorentz factor at the FS (upper panel) and RS
(lower panel) as a function of the normalized observer time fops
(Eq. (4)). Full and dashed lines correspond to the thin and thick shell
models, respectively. Black and blue colors denote non-magnetized and
magnetized models, respectively. The vertical lines in the lower panels
denote the time of observation when the RS crosses the shell. In the
upper panel, the vertical lines denote the time of observation when the
rarefaction R,, which originates in the rear edge of the shell and inter-
acts with the RS, catches up with the FS.

shell at r ~ 5.4 x 10" cm is a numerical artifact of the grid
remapping”. However, this effect is irrelevant to the discussion
of the features in which we are interested, since all occur before
the shell “disappears”, both in non-magnetized and magnetized
models. For the unmagnetized thick-shell runs, we see that the
reverse shock dissipates more energy from the shell, reaching ap-
proximately 18% of the total shell energy by the time it crosses
the shell.

In Fig. 3, we show the relative Lorentz factor at the FS and
the RS as a function of observer time. Both shocks form imme-
diately after allowing the initial shell to evolve. The RS becomes
stronger with distance, as evident in the increase of e wWith fops.
This strengthening continues until it reaches the rear part of the
shell, where it encounters a far less dense medium, resulting in a
kink in the RS curves (marked with vertical black lines in Fig. 3).
The peak of the emission associated with the RS is expected to
occur at the moment the RS breaks out of the shell, since after-
wards the density, pressure, and velocity of the shocked medium
decrease abruptly, and precisely there it reaches its maximum
strength. For the thin-shell case, this happens slightly after the
burst, i.e. at observer time f,,s ~ 1.6. For the thick shell, the
peak of the RS emission appears at the end of the burst, at a time
tons ~ 1.2.

The Lorentz factor of the external medium just behind the
FS declines as a function of radius. An interesting feature is the
change in the slope of ¥ (f4ps) at time 7ops = 2.5 for the thin shell
(at time f,,s = 1.84 for the thick shell), which is a result of the
rarefaction R, (Fig. 1) reaching the forward shock. For a short
transient period, the FS reduces its strength because the density
behind it is reduced by the action of the rarefaction R,. The de-

cay of yrFe Sl (tobs) 1s more rapid for a time interval Afops ~ 0.5 after

2 As described by Mimica et al. (2007), grid remapping enables us to
follow the evolution of a localized shell over large distance by repeated
remapping of the numerical grid. In this work the grid always follows
the front shock, so that, once the shell has been slowed down by the
reverse shock, it is eventually “lost” from the grid.
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the rarefaction R, catches up with the FS. Thus, we expect the
early afterglow emission to weaken transiently more rapidly with
time. Later, the time dependence of ™ o 7/® expected from

1 bs
the self-similar solution, is gradually established.

4.2. Magnetized shells

The initial phases of deceleration of strongly magnetized ejecta
distinctly differ from those that are unmagnetized in a way re-
lated to the magnetic pressure of the ejecta. As discussed in
Giannios et al. (2008), the discontinuity in the physical con-
ditions between the shell and the external medium results in
the development of two Riemann structures, each every radial
(rear and forward) edge of the shell. The waves into which
each of these Riemann structures decompose are combinations
of shocks and/or rarefactions separated by contact discontinu-
ities. If the magnetic pressure is sufficiently high, instead of a
typical double-shock structure, a right-going shock (FS) and a
left-going rarefaction (R;) develop from the forward edge of the
shell (Fig. 1). Similarly, at the backward edge of the shell, a rar-
efaction (not shown in Fig. 1) moving backwards (in the shell
comoving-frame) into the external medium develops, as well as
a rarefaction that penetrates the shell.

The expansion of the shell produces a decrease in the mag-
netic pressure and the Lorentz factor of contact until the “transi-
tion” radius, ry, is reached, where ycp = 7yo. This distance can
be estimated by balancing between the pressure of the shocked
external medium P = 4y2n,m,c*/3 and the magnetic pressure of
the shell Pg = B2/y§8ﬂ = E0'0/87Tr2ySA0(1 + 09), and solving
for the radius

1/2
)" (M)

From this distance onwards, the shell decelerates with respect
to its initial yp. Some time after the rarefaction R; has prop-
agated backwards into the shell, a new shock develops inside
the rarefaction fan due to the radial expansion of the shell (RS
in Fig. 1). This shock sweeps backwards through the shell and,
therefore, is effectively a reverse shock. Remarkably, this shock
does not immediately originate in the initial discontinuity at the
leading radial edge of the shell. It develops at the more rapidly
moving parts of the rarefaction fan and not directly at the contact
discontinuity separating the FS and R, (see Fig. 1). The reason
is that o oc r%p in the cold, magnetized shell (see Appendix A),
and therefore it decreases in the rarefaction fan. The formation
of this shock can only occur when the initial shell expands spher-
ically, and not if the shell is assumed to evolve under conditions
of planar (Cartesian) symmetry (as assumed by Mizuno et al.
2009). The fact that o decreases in the rarefaction and the rar-
efaction profile steepens due to the spherical geometry, leads to
a decrease of the fast magnetosonic speed across the entire rar-
efaction fan. The decrease is larger right at the head of the rar-
efaction where, eventually, a shock forms>. We therefore realize
that the structure of the flow is far more complex than in the
non-magnetized case, since it has developed a RS inside the rar-
efaction fan of R;.

The shock is initially weak (yfels ~ 1) and remains so during
the period in which it sweeps up the entire (thin) shell (Fig. 3).
When it reaches the back edge of the shell, y.; =~ 1.03, i.e.,
it remains Newtonian. The reverse shock dissipates a negligi-
ble amount of energy (~0.1% of the total energy in the shell).

( 3E0y
¥ =
T \32mnemyc2yA Ao (1 + o)

3 We thank the referee for pointing out that, without this decrease of
the fast speed, a shock would form either immediately or never at all.
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It becomes stronger when a thick shell is considered, reaching
vrel = 1.2 by the time it reaches the rear radial edge of the shell
(Fig. 3, lower panel). Thus, this RS sweeping a thick shell leads
to a higher dissipation of energy (~1% of the total). However,
the dissipated energy is still a factor of ~20 lower than in the
non-magnetized thick-shell model. In the thin-shell case, the lo-
cal maximum of the thermal energy at 1.7x10'7 cm (Fig. 2 upper
panel) corresponds to the RS crossing. Afterwards, most of the
energy concentrates into the shocked external medium at dis-
tance r > 4 x 10'7 cm, when the evolution becomes similar to
that of the unmagnetized shell.

At early times, the Lorentz factor of the medium just behind
the forward shock is higher than that of the shell, due to the
initial rarefaction. This initially leads to y;, > 15 until the “tran-
sition” radius is reached (Fig. 3). The fact that initially y,; > Yo
is a unique feature of magnetized ejecta (in unmagnetized ejecta
vy < yo always). This initial phase also appears in the early after-
glow of the electromagnetic model (Lyutikov 2006; Genet et al.
2007).

The magnetization affects the (reverse) shock conditions
and, as a result, the reverse shock crosses a magnetized shell
more rapidly than an unmagnetized one (the vertical blue lines
appear to the left of the vertical black lines in the lower panel
of Fig. 3). This feature was revealed in the study of Fan et al.
(2004). Our simulations demonstrate that the rarefaction R, also
crosses (in observer time) a magnetized more rapidly shell than
a unmagnetized one.

On a timescale of a few (thick shell) or several (thin shell)
times that of the duration of the burst, the o = 0 and o = 1 mod-
els exhibit similar evolution. At this stage, almost all the shell
energy has been transferred to the shocked external medium
(Fig. 2). The two models have the same total energy and relax
to identical asymptotic self-similar solutions (note the similarity
between the rising parts of the solid thin blue and black lines
in Fig. 2). The forward shock emission beyond this time reveals
nothing about the initial magnetization. We note, however, that
there is a prolonged RS crossing phase at the tail of the mag-
netized ejecta, and some residual energy remains in the form of
Poynting flux at later times that may power some (energetically
weak) afterglow features.

4.3. Dissipation by the reverse shock

Our simulations can quantitatively answer the question of how
much energy is dissipated when the reverse shock propagates
into ejecta of different magnetization oy and parameter &. For
practical reasons, the simulations were limited to a few models*.
On the other hand, they can be used in evaluating the accuracy
and limitations of previous (semi-)analytical studies (Fan et al.
2004; Zhang & Kobayashi 2005; Giannios et al. 2008) and ex-
ploring a larger parameter space of £ and 0.

The “continuous flow” models with o = 1 and 09 = 3
describe spherical flows of constant (as functions of radius) lu-
minosity L, magnetization o7, and Lorentz factor y that collide
with a uniform external medium of number density #.. Initially,
the interface between the two media is set to be at some distance

4 Each simulation takes between 50 and 200 thousand hours of
computer time using between 32 and 320 processors (depending
whether we compute thin, thick, or continuous flow models) on Mare
Nostrum (http://www.bsc.es/plantillaA.php?cat_id=5). The
typical external storage requirements of one model vary between 10
(thin) and 100 (thick models) gigabytes, since relatively frequent out-
put of the fluid state is needed to obtain a satisfactory coverage of the
fluid evolution needed for the post-processing calculations.
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Fig. 4. Energy dissipation in the reverse shock in é -0 parameter space.
The circles, diamonds, and asterisks indicate the equivalent ¢ of the
shell for which the relative Lorentz factor y,, of the shocked ejecta
with respect to the unshocked ejecta becomes 1.04, 1.1, and 1.25 re-
spectively. The dotted curves show the region probed by the oy = 1 and
0 = 3 simulations. The solid line marks the “no-reverse-shock bound-
ary” as estimated by Giannios et al. (2008). In the “weak/no-reverse-
shock dissipation” region, the shock converts less than ~0.3% of the
total energy of the shell into heat.

ro (see Sect. 3 for the choice of () and the system is allowed
to evolve. With these models, we can focus on the interface of
interaction between the shell and external medium and, there-
fore, track in significant detail the formation and strengthening
of the reverse shock with time (or equivalently radius). This con-
figuration allows us to follow the strength of the reverse shock
for different “equivalent thickness” of shells in a single simula-
tion.The idea behind the equivalent thickness is to measure the
penetration distance from the contact discontinuity to the reverse
shock, and assume a shell whose initial thickness Ay is equal to
this distance. We can then use Eq. (1) to obtain the equivalent &
of the assumed shell. The consequence of this is that the more
the reverse shock penetrates the flow, the thicker equivalent shell
it probes for the fixed magnetization 0. We define equivalent &
(taking into account that E ~ LAy/c)

3L 16 1
=——| A% 8
&eq (47mempc3) o Yo (®)

for which it is evident that a thicker equivalent shell corresponds
to a lower £. A continuous flow model probes a line of con-
stant o in the & — 0 plane, as shown in Fig. 4.

A convenient measure of the strength of the reverse shock
is the relative Lorentz factor y;. of the unshocked ejecta with
respect to the shocked ejecta (Eq. (5)). In Fig. 4, we mark the
locations where the 7y, becomes 1.04, 1.1, and 1.25. We have
argued in (Giannios et al. 2008) that for ry < ., the magne-
tization of the flow cannot prevent the formation of a shock in
the ejecta and vice versa. The curve defined by setting s = 7
(thick black line in Fig. 4) can thus be used as a proxy to mark
the region where a reverse shock forms.

As one can see in Fig. 4, the region in which a reverse shock
exists is larger than that estimated by (Giannios et al. 2008).
This is due to the late RS formation that has been revealed
by the numerical simulations. This effect was unaccounted for
in our previous analytic estimates. However, the analytic pre-
diction that the reverse shock emission from models whose
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parameters are in the region s ~ r. would not be observed is
still qualitatively valid, since the dissipation from the shock is
weak. On the solid line, y;; ~ 1.1 and becomes higher only for
lower values of &. For vy, ~ 1.1, the shock converts only a frac-
tion of ~fy(yre1 — 1)/(1 + 09) < 0.1 of the energy of the shell
into heat. Here f;, ~ 0.3 for oy ~ 1 (see e.g., Zhang & Kobayashi
2005). Integrating the thermal energy in the shocked shell for the
snapshot for which . = 1.1, we find that it accounts only for
~0.3% and ~0.1% of the total energy of the shocked shell in
the o0p = 1 and 09 = 3 models respectively. This reveals that
a shock, though there, still dissipates weakly “above” the solid
line of Fig. 4.

4.4. Rescaling of the results to arbitrarily high y,

Our simulations correspond to an ultrarelativistic shell of mate-
rial interacting with the external medium that has the qualitative
characteristics expected at the onset of the afterglow phase of
the GRB ejecta. Nevertheless, they have two parameters that are
unrealistic with respect to that expected in a GRB, namely the
initial bulk Lorentz factor yy and the thickness of the shell Ag.
GRBs are believed to originate from flows with vy 2 100, while
the flow thickness is probably connected to the observed dura-
tion of the burst by Ag ~ ctgrg S 103 cm. However, numer-
ical reasons compel us to simulate shells which have yy ~ 15
and Ag ~ 10-10'¢ cm. In this section we present a method
in which our results can reliably be rescaled to GRB-relevant
parameters.

4.4.1. Motivation for the proposed rescaling

We first focus on unmagnetized GRB ejecta and then extend our
discussion to include magnetization. For oy = 0, the problem
of the interaction between an ultrarelativistic and thin cold shell
with an external medium is defined by four parameters E, Ao,
0, and ne. The evolution of this configuration does not depend
on the individual parameters but a specific combination of them

can be expressed by & oc (E/ne)lm/Aé/zygB. The parameter &
determines, for example, the relative Lorentz factor vy, of the
reverse shock (Sari & Piran 1995). For the ultrarelativistic flow
under consideration, yy; =~ F(ys/y0) (see Eq. (5)), where yq,
represents the Lorentz factor of the shocked ejecta when the
shock reaches their rear part. For fixed &, this means that yg,
is a fixed fraction of yq independently of the value of yy. For
example, since in our (0p,¢&) = (0,0.5) model we found that
vsh = 0.35y9 =~ 5.2, one can predict that a non-magnetized
shell with ¢ = 0.5 and arbitrary yy > 1 is characterized by
vsh = 0.35y at the moment of the RS crossing.

The idea behind rescaling is to solve (numerically) the evo-
lution of a shell with yo; and Ag;, and then predict (without
simulating) the evolution of a second shell with ¥, (usually
higher than ')/0,1) and Ao’z = A()’]()/0’2/’)/(11)_8/3 which has the
same & . The distance from the central engine at which the re-
verse shock crosses the second shell is 7150 = 715.1(¥0.1/702)*>
(see Eq. (3)). The same relation connects the distances given by
ry = lyy”" (see Sari & Piran 1995) where the shells “1” and “2”
enter the deceleration phase after accumulating a fraction My /yo
of their own initial mass Mj. This indicates that the character-
istic distances of the shell-medium interaction for the shell “2”
are shifted by a factor (yo1/ ’)/0,2)2/ 3 with respect to those of the

5 For the simplicity of the discussion, we fix E and n. for the two
shells. We generalize our expressions to arbitrary values of E and n. in
the Appendix B.
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shell “1”. We postulate that the same is true throughout the evo-
lution of the system. More precisely, we claim that by rescaling
the Lorentz factor from g ; to yo» one can predict the evolution
of a shell “2” by using that of the shell “1” providing that one
also rescales the distance to ' — r(y}/v0)*>.

We further extend the previous postulate by adding up the
possibility that the shell was magnetized, i.e., we extend the pre-
vious claim to the case oy > 0. The evolution of a thin, ultrarel-
ativistic shell of thickness

Aoz = No1(yo2/yo) ™ 9)

is self-similar to that of a shell with the same & and o, and
width Ao’].

4.4.2. Mathematical description of the rescaling

Here, we provide the expressions for transformation of the so-
lutions for models with the same total energy E and density of
the external medium n.. On more mathematical terms, the postu-
lated recipe for transforming from one solution to another is the
following. Suppose the bulk Lorentz factor y;(ry, #;) of the shell
“1” atis known (¢ is the time in the rest frame of the GRB engine
or laboratory frame), and we define the quantity f := yo2/70.1-
We further assume that the bulk Lorentz factors of both shells at
any time other than the initial one are linked by

Y2(r2,02) = fri(r, 1), (10)
where

_ 23
B = f75°1 (11

resa ()73 + (r = res () 785,

Here rgs1(t1) (rpsa(t2)) represents the radius of the forward
shock of the shell “1” (“2”) as function of time. The other phys-
ical quantities in shell “2” can be derived from 7, by using
standard expressions for the forward-shock conditions. The (gas
or magnetic) pressure P in both the shell and shocked external
medium, and the density in both the shell pge; and shocked ex-
ternal medium pey, are given by

I =

Py(r,) = fPPi(r, 1)
Psheni2(r2, 1) = f2pshen1 (r1, 11) (12)
Pext2(r2, 1) = fpexi,1(r1, ).

There are several interesting properties of the proposed recipe.
First, the magnetizations of both ejecta are the same (o) =
002), not only at the initial time (which holds from our pos-
tulate), but also throughout their evolution, since (72, %) o«
Ppa/pshen2 o« Ppi/pshen o o1(ry,t1). Secondly, ¥l and its
time evolution are identical for all models (Fig. 6, upper panel),
and thirdly, the time evolution of ys is just shifted linearly with
vo (Fig. 6, lower panel).

4.4.3. Invariance of the time of observation

An important byproduct of the transformations provided by
Egs. (10) and (11) is that the time of observation defined by
Eq. (4) is invariant. The only assumption that we make is that
the motions of both shells “1” and ‘“2” are ultrarelativistic, so
that the position of the FS can, generally, be written as

res(f) = ¢ fo dr Brs(7) = ct = (c/2) fo drygs (7). (13)
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We first demonstrate the invariance of zqps for the FS. By insert-
ing Egs. (13) into (4), we derive for the shell “2”

15}
o2 = (¢/2AT f dr2y72 5(12). (14)
0

We transform the integral as

15 1|
f drayidy() = £95 [ dryid (o,
0 0

and insert it into Eq. (14). After transforming Ag, = f -8/ 3Ao,1,
we finally obtain the desired result

1]
fobs.ps2 = (c/2)f* o1 78 f dT155,1(T1) = tobsps.t. (15)
0

For a point inside the shell “2”, that differs from the FS, we have

15}
fom = (¢/ AT} f dr27i25(12) — cAGb(ra — rsa(t)). (16)
0

We can see that the second term on the right hand side is also
invariant to the scaling, since (7, — rgs2(f2)) and Ag both scale
with f~3/3. This completes our proof of the invariance of 7oy,
under the scaling relations of Eqgs. (10) and (11).

4.4.4. Verification by test simulations

We tested numerically the postulate stated in the previous sec-
tion for both unmagnetized and magnetized flows, and found
that it is correct to within a few percent accuracy. In the fol-
lowing, we present three numerical models that share a com-
mon magnetization g = 1 and & = 1.1. The remainder of the
parameters are: 1) yo; = 10 and Ag; = 2.95 x 10" cm; 2)
Y02 = 15and Agp, = 1 X 10" cm; and iii) 3) Y03 = 20 and
Aoz = 2.64 x 10" cm. We use the scaling relations given in
Egs. (10)—(12) to conform models 1 and 3 to the model 2. In
Fig. 5, we show the density, magnetization, and Lorentz fac-
tor after applying the scaling laws Eqs. (10)—(12) to the models.
We show the scaling after the forward shock of the model 2 has
reached a distance ~1.75 x 107 ¢cm. As we can see, the Lorentz
factor and magnetization o~ scale as expected. The rest-mass den-
sity within the shell, and the pressure (not shown here) are also
given by Egs. (12). In Fig. 5, we note that there is a factor of
2 difference between the rescaled results close the RS. The rea-
son for this discrepancy arises from the finite time resolution of
our models. To rescale the models we have to use the closest
time we have available from the simulation to that requested by
the transformation given in Eqs. (11).

4.5. Extrapolation to yo 2 100 and “bolometric” light curves

The MHD calculations presented here do not suffice to calcu-
late the expected emission in detail. Such a calculation of the
afterglow emission in different observed bands needs additional
assumptions related to the, poorly known, shock microphysics.
These include, for example, the energy distribution of the ac-
celerated electrons and the generation of magnetic fields in the
shock front. Furthermore, one needs to include radiative mech-
anisms such as synchrotron and inverse Compton and allow for
adiabatic losses. This detailed calculation falls beyond the scope
of this work. Instead, we apply a simple method to obtain a rough
estimate of the bolometric emission expected from the different
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Fig. 5. Results of a test of the rescaling with y,. Red, black and blue
lines show the results for models with yy = 10, 15, and 20, respec-
tively. Full, dashed, and dot-dashed lines show the rest-mass density, o,
and the fluid Lorentz factor, respectively. Models with yy = 10 and 20
have been rescaled using Eqs. (10)—(12). After rescaling the results, the
profiles of all models almost overlap. Only close to RS are there large
discrepancies. The reason for them is that we have a finite time reso-
lution and, therefore, we have to rescale our models using the closest
time available from the simulation to that requested by the transforma-
tion expressed in Eq. (11).
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Fig. 6. Similar to Fig. 3, but for the models used in the test of the rescal-
ing hypothesis. Black, blue, and red lines in the upper (lower) panel
show the relative Lorentz factor of the fluid at the FS (RS) as a func-
tion of the normalized time of observation for models with y, = 10, 15,
and 20, respectively. As expected, the relative Lorentz factor at the front
shock scales with y,, while at the reverse shock they coincide. The
dashed line in the upper panel shows the results of a model obtained
by rescaling the model with y, = 15 to y, = 100.

models. To make predictions about the properties of the after-
glow light curves associated with our numerical models, we ex-
trapolate them to the conventionally accepted parameter regime
where GRBs occur. To achieve this, we apply the rescaling de-
scribed in the previous section.

We assume that in both reverse and forward shocks a fraction
€& ~ 0.1 of the dissipated energy ins transferred to high-energy
electrons, and that the electrons are in the fast-cooling regime
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(as is usually the case during the initial afterglow phases). The
resulting total emission then is given by the rate at which the
shocks heat the external medium and the shell.

From the shock conditions at the FS (Sari & Piran 1995), we
derive the thermal energy (in the laboratory frame) dissipated by
the FS when it moves from r to r + Ar to be

AEw(r, 1) = 16ar* Ary*nem,c?, (17)

where we assume that Ar < r, and that y is approximately con-
stant between r and r + Ar. We assume the luminosity of the
FS to be a fraction of the thermal energy dissipated due to the
heating of the external medium by the shell in a time interval
At = AtgpsAo/c, where Aty is the difference in normalized ob-
servational time (Eq. (4)) between the moments in which the FS
moves from r to r + Ar. According to this definition, the bolo-
metric luminosity for the front shock reads
Lgs = 167mempczee)/2r2£.
At

For the reverse shock, we estimate its luminosity by assuming
that a fraction €, of the increase in thermal energy inside the
shocked shell, as it moves from r to r+ Ar, is radiated by the RS.
Thus, we define

Lgs = (AD)~! max[O,ee f 4y*p - f 472p], (19)
shell r+Ar shell r

where f denotes the integral over the shell volume when FS
shell r

(18)

is at 7. The integrand 4y?p can easily be derived from the equa-
tions of RMHD, assuming an adiabatic index 4/3 (see e.g.,
Mimica et al. 2007).

The luminosities Lgs and Lgrs can be normalized to the initial
shell luminosity defined by

Lo := 475y pshen€’ - (20)

In this way, we obtain the dimensionless luminosities lps :=
Lps/L() and le = LRS/L0~

We have checked that the normalized and conveniently
scaled light curves for the test models from Sect. 4.4.4 agree to
within a few percent of each other. This means that we can use
this normalized light curves to predict the bolometric luminosity
observed from a shell with, e.g., yo = 100, and the same value
¢ = 1.1 and 0.5 as our thin and thick shell models, respectively.
The light curves computed for the reference models with yy = 15
and scaled to ejecta of Lorentz factors yy = 100 (thin shell;
Fig. 7) and o = 300 (thick model shell; Fig. 8) differ fundamen-
tally between thin and thick magnetized shells. The luminosity
of the RS of magnetized thin shells is much smaller than the lu-
minosity of the corresponding RS in the hydrodynamic case (we
note that in Fig. 7 the light curve of the magnetized RS is not
evident on the scale we are considering). For thick shells, the lu-
minosity of the RS shock is about 10 times smaller than that of
the corresponding thick shell with oy = 0. Hence, the detection
of the RS will, in general, be far more difficult if the shell ejecta
is magnetized than if it is unmagnetized. Indeed, if the magne-
tized ejecta is thin, it is likely that the RS will not be detected at
all.

5. Discussion and comparison with previous work

GRB outflows may be launched by strong fields resulting in
a Poynting-flux-dominated wind. In this case, the flow can re-
main strongly magnetized throughout the acceleration, collima-
tion, and GRB emission phases, all the way to the onset of the
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Fig.7. Light curves for non-magnetized (black) and magnetized
(blue line) thin shell models after scaling the y, = 15 model to
vo = 100. The luminosity of the FS is shown in thick lines, while the
black dashed line shows the luminosity of the reverse shock of the un-
magnetized shell. The RS of the magnetized shell has a very weak dissi-
pation and its light curve is not shown on the scale of the plot. Left and
bottom axes show the dimensionless luminosity (lgs and /rs) and the
time of observation, respectively. The displayed luminosity profile can
be applied to any other shell with a different y, provided that ¢ = 1.1
(see text). Right and top axes show respectively the luminosity and the
normalized time of observation for the particular case y, = 100.
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Fig. 8. Same as Fig. 7, but for a thick shell model (¢ = 0.5) at y, = 300.
The reverse shock emission from the magnetized thick shell (dashed
blue line) is much stronger than in the magnetized thin shell.

afterglow. This is in sharp contrast to expectations for a flow ini-
tially dominated by thermal energy (fireball) in which magnetic
fields are dynamically unimportant. Magnetization is expected
to affect the initial phase of interaction between the GRB ejecta
and the external medium. Since early afterglow observations are
now possible for many bursts, it has become topical to study the
effect of the ejecta magnetization in the early afterglow in more
detail.

Here we perform ultra-high resolution 1D RMHD simula-
tions of the interaction between a radially expanding magnetized
ejecta and the interstellar medium. We study the complete evolu-
tion of an ultrarelativistic, initially-uniform, ejecta shell, all the


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810756&pdf_id=7
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810756&pdf_id=8

888

way to a self-similar, asymptotic phase. We explicitly show the
resolution of numerical simulations required to resolve appropri-
ately all the discontinuities in the flow, and to be free of numeri-
cal artifacts. The main findings of the work are the following:

1. the complete evolution can be characterized in terms of two
parameters, namely, the Sari-Piran parameter ¢ and the mag-
netization o7. Since both parameters are defined from com-
binations of basic physical properties of the ejecta (e.g., o,
E, and Ay), a single point in the {£, og}-plane can be used
to probe a variety of equivalent combinations of basic physi-
cal parameters. A useful byproduct of this degeneracy is that
one can produce numerical models where the shell Lorentz
factor is yy is of the order of 10, and rescale the results to ar-
bitrarily high values yy. Certainly, the numerical difficulty of
simulations with moderate Lorentz factor (namely, yo < 30)
is smaller than those with a large one (see Appendix A.1).
The later type of simulations are prone to a number of nu-
merical artifacts that hinder an appropriate comprehension
of the physics we are dealing with. The method of rescaling
our reference numerical models to the conditions expected
to occur in GRB afterglows is described in Sect. 4.4;

2. the amounts of energy dissipated in the reverse shock depend
strongly on the magnetization of the flow. The reverse shock
is weak or absent for ejecta characterized by & 2 0.5 (thin
shells) and o9 ® 1. The emission from the reverse shock is
suppressed strongly for oy * 1, except for high yy = 1000
flows (or, equivalently, low & flows). More moderate values
of the magnetization o ~ 0.1 can lead to powerful emis-
sion, in excess of that expected for oy = 0 ejecta, since there
is both a strong shock and strong magnetic field for efficient
synchrotron emission. The last statement assumes that is par-
ticle acceleration occurs in magnetized shocks with an effi-
ciency similar to that of unmagnetized shocks;

3. magnetically dominated (o9 ® 1) ejecta are characterized
by an initial rarefaction that originates in the leading radial
edge of the shell and results in a Lorentz factor of the front
shock vy > . The energy dissipated by the forward shock
and the expected emission at the onset of the afterglow are
much higher for oy 2 1 ejecta than for the weakly mag-
netized ones. “Bolometric” light curves were presented in
Sect. 4.5;

4. the magnetic energy of the shell is increased by shock com-
pression during the reverse-shock crossing in agreement
with the findings of Zhang & Kobayashi (2005). We have
found that the bulk of the magnetic energy is transferred
into the shocked external medium on a short timescale (a
few to several times the burst duration) for the & = 1.1
and ¢ = 0.5 models that we have simulated. Several light-
crossing times of the initial ejecta width suffice for the evo-
lution of ejecta of o ~ 1 to become similar to that of the
oo = 0 simulation. At this stage almost, all the energy has
been transferred into the shocked external medium and the
forward-shock emission is practically independent of the ini-
tial magnetization of the flow. One should observe the onset
of the afterglow to identify effects connected to the magneti-
zation.

In comparisson with previous work, Zhang & Kobayashi (2005)
significantly overestimated the reverse-shock emission for oy ~
1, mainly because of the assumed higher value of the rela-
tive Lorentz factor y,. (and consequently dissipation) in the re-
verse shock. The Giannios et al. (2008) analytical curve on the
{£, oo}-plane provided a good approximation of when significant
reverse-shock dissipation occurs, concluding that the observed
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paucity of optical flashes (signatures of reverse-shock emission
predicted by the fireball model) may be understood as being due
to o 2 1 ejecta is verified by our simulations.

Modelling of the emission associated with the forward and
reverse shock can be used to compare the magnetization of the
shocked external medium with that of the shocked ejecta (e.g,
Zhang et al. 2003). This method was applied to a number of
bursts (Fan et al. 2002; Kumar & Panaitescu 2003; Mundell
et al. 2007b; Gomboc et al. 2008). We caution here that such
an approach considers hydrodynamical shock conditions and is
therefore unreliable when the magnetization of the ejecta is suf-
ficiently high to alter the dynamics of the deceleration. In that a
full MHD calculation (such as that presented here) is needed for
accurate comparison to observations.

There are aspects of the problem of interaction between mag-
netized ejecta and the external medium that have not been set-
tled by this work. Although we solved the dynamical evolu-
tion of the ejecta, and the strength of the shocks as a function
of time, and computed approximate “bolometric” light curves,
we did not calculate detailed light curves for different observed
bands. For this calculation, additional assumptions would have
been required related to the shock microphysics and inclusion
of radiative processes such as synchrotron and inverse Compton
emission.

Furthermore, we have not explored the high & (or Newtonian
reverse shock) regime. In this regime, shell-spreading due to the
presence of both slower and faster parts within the shell has to
be considered. For ¢ 2 1, the onset of the afterglow occurs at a
later observer time and can be used to infer physical quantities
such as the Lorentz factor of the flow yy (Sari & Piran 1999;
Mundell et al. 2007a). The slope of the initial rising part and the
peak of the curve depend on the external medium density profile
and probably the magnetization of the ejecta. These features are
worth investigation in more detail. Finally, since the initial inter-
action (as seen by the observer) lasts longer, substantial magnetic
energy remains in the shell. It is possible that dissipation of this
magnetic energy in localized active regions produces late-time
flares as proposed by Giannios (2006).
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Appendix A: Numerical method

We solve equations of RMHD in 1D spherical geometry assum-
ing that the fluid moves only in the radial direction. The mag-
netic field is purely toroidal magnetic, i.e., the magnetic field is
perpendicular to the direction of fluid propagation. The system
of RMHD equations is (with the speed of light set to be ¢ = 1)

oU 19

(r2F ) =S,
where the vector of unknown or conserved variables is given by

U= (p% ph*y?v, ph*y* = p* = py, B). (A.2)
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The fluxes in Eq. (A.1) are

F = (pyo.ph*y*0” + p".[ph'y* = py| 0.0B), (A3)
and the source terms read
2 B
S:(o,—p,o,”—)- (A.4)
r r

Here p, p, v, and B are the fluid rest mass density, pressure,
Lorentz factor, and magnetic field in the frame of the central
engine or laboratory frame. The magnetic field B is measured
in Gaussian units. The total pressure is p* := p + B%/2y?, and,
the specific enthalpy is 4* := 1 + $p/(# — 1)p + B?>/py*. In our
models, the fluid is assumed to be an ideal gas with the adiabatic
index ¥ = 4/3. We note that we express the components of all
three-vectors in the physical, i.e., orthonormal basis.

Romero et al. (2005) discussed the solution to the Riemann
problem in for when the magnetic field is perpendicular to the
fluid velocity and a Cartesian geometry. They showed that the ra-
tio B/(yp) is constant everywhere except across contact discon-
tinuity. An analogous expression in spherical geometry, o o r2p
can be derived by assuming a cold magnetized fluid. In this case,
the system of equations given by Eq. (A.1) reduces to three equa-
tions. From the continuity and induction equations one can easily
derive the desired relation.

We wuse the relativistic magnetohydrodynamic code
MRGENESIS (Mimica et al. 2005, 2007), a high-resolution
shock capturing scheme based on GENESIS (Aloy et al. 1999;
Leismann et al. 2005). In our code, the fluid is discretized in
spherical shells (zones). We use the PPM (Colella & Woodward
1984) scheme for the spatial interpolation of variables within
numerical zones, and a HLLC (Mignone & Bodo 2006) ap-
proximate Riemann solver to compute numerical fluxes across
zone boundaries. The time integration is performed using a
third-order Runge-Kutta method.

A.1. Numerical resolution

For the simulation results to be as free as possible of numeri-
cal artifacts a sufficiently high resolution is needed. Of partic-
ular concern is the minimum number of iterations necessary to
resolve the initial evolution of the discontinuity separating the
shell from the external medium (that forms a Riemann problem).
This information is required since almost all RMHD codes based
on approximate Riemann solvers develop initial transient spuri-
ous behaviors at the location of the original discontinuity. These
spurious behaviors relax with time to the correct physical so-
lution. Therefore, since the problem is self-similar in Cartesian
coordinates, almost independently of the initial resolution, our
numerical code recovers correctly (i.e., within the accuracy of
our method) the physical solution. However, in spherical sym-
metry the problem is not strictly self-similar. Thus, the break
up of an initial discontinuity may lead to the formation of addi-
tional discontinuities (inside of the Riemann fan but not directly
emerging from the contact discontinuity) at later times. This is
precisely what happens in the rarefaction R; in our magnetized
models (see Sect. 4.2), where the RS forms. If the formation of
the shock happens close to the location of the contact disconti-
nuity, the initial transient artifacts in numerical simulations may
pollute the formation of the RS and produce an incorrect nu-
merical solution, where, e.g., the RS does not form. The way to
diminish the effect of these initial transients is to increase the
numerical resolution around the initial discontinuity.
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Fig. A.1. Time 7 (upper panel) and the number of iterations Nje,
(lower panel) needed to resolve the Riemann problem in planar coordi-
nates as a function of the spatial discretization Ax.

To eliminate the effects of the spherical geometry on the so-
lution of the Riemann problem, and in view of the fact that our
initial shells start at distances of Ry > 10'®cm, where the lo-
cal effects of the spherical geometry are practically negligible,
we study both exact and numerical solutions of the following
Riemann problem in planar coordinates:

— leftstate:p=1,p =102y, = 15and B = 15,
— right state: p =107, p =107,y = 1and B = 0.

The solution to this Riemann problem is self-similar, and con-
sists of a rightward-moving shock separated by a contact discon-
tinuity from a left-moving rarefaction wave. We are interested in
the time 7 and number of iterations Ny a numerical code re-
quires to obtain a correct Lorentz factor (to an accuracy of less
than a percent) of the contact discontinuity (ycp = 25.56 for this
particular problem).

Figure A.1 shows the results of the test for seven differ-
ent simulations whose zone sizes have values Ax = 1073, 5 x
1074, 2.5 x 1074, 1.25 x 1074,6.25 x 1073, 3.125 x 107, and
1.5625 x 1073, By fitting to the data points in the plot, we find
7 o Ax'003£0002 This linear dependence can be seen in the
lower panel of Fig. A.1, where we see that Ny, is roughly in-
dependent of the resolution (Fig. A.1 lower panel). We find that
T oc Ax Niger.

Of equal importance is the dependence of 7 and Njer on
the initial Lorentz factor. We modify the Riemann problem by
changing yo of the left state and the magnetic field, such that
the ratio B/yy = const. For this test, we use the finest resolu-
tion Ax = 1.5625 x 107> for all models. Results are shown in
Fig. A.2. We find 7 oy, %92 Due to the constant Ax, this
means that Nj,, also depends almost linearly on yy. Combining
results shown in Fig. A.1 with those of Fig. A.2 and assum-
ing linear dependences of 7 on Ax and yy, we conclude that the
required spatial discretization for Riemann problems similar to
those discussed in this paper follows the relation

Ax oc Tyal. (A.5)

We emphasize that the constants implicit to Eq. (A.5) depend
on the initial density and pressure ratio, as well as the magne-
tization of the fluid. The result expressed by Eq. (A.5) can also
be interpreted in the following way: at a fixed numerical resolu-
tion, if the Lorentz factor of the problem to be solved increases,
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Fig.A.2. Time needed to resolve the Riemann problem in pla-
nar coordinates as a function of the initial Lorentz factor I'y for
Ax = 1.5625 x 107>,

the time needed to relax any initial numerical pathology also in-
creases.

We use Eq. (A.5) to determine the maximum Ax (or, con-
versely, the minimum resolution) needed to complete our sim-
ulations such that 7 is far shorter than any of the characteristic
hydrodynamic timescales in our models. In articular, we require
that 7 is shorter than the time needed to form the RS in the rar-
efaction fan R;.

A reduced density jump between the shell py, and the external
medium pg reduces drastically the numerical complexity of the
break up of the Riemann problem. Our choice of the density
jump pr /pr 2 10* attempts to reach the large density contrast
expected in the conditions found in GRB afterglows (although it
is still lower than what an optimal modeling demands). We point
out that a much reduced value of p; /pg ~ 10 (as considered by
Mizuno et al. 2009) could be too low for the conditions in this
astrophysical context.
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