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Gravitational radiation from the magnetic field of a strongly
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Abstract. We consider the electromagnetic (e.m.) field of a compact strongly magnetized star. The star is idealized as a perfect
conducting sphere, rigidly rotating in a vacuum, with a magnetic moment not aligned with its rotation axis. Then we use the
exterior e.m. solution, obtained by Deutsch (1955) in his classic paper, to calculate the gravitational waves emitted by the e.m.
field when its wavelength is much longer than the radius of the star. In some astrophysical situations, this gravitational radiation
can overcome the quadrupole one emitted by the matter of the star, and, for some magnetars, would be detectable in the near
future, once the present detectors, planned or under construction, become operative.
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1. Introduction mass, or even grater. However, this is no longer true for the list
of distorted magnetized white dwarfs considered by Heyl in the

Large magnetic fields are supposed to be present in many C%'E?ve cited paper. We also find that a hypothetical magnetar in

pact stars. These fields can induce a distortion in the shape0 galaxy, with~10% G, would be within the expected limit
the star, breaking the axial symmetry around the rotation aﬂ?detectm’n for continuo’us gravitational radiation.

if this axis is not aligned with the magnetic moment (Bocquet It should be noted that the e.m. field of the star, as a source

E;aé' 22315)' tizstii Orr];h.'tsa’t.iggﬁzzams g‘mgoqg?]ogggog.(%ggg? gravitational waves, is not a bounded source, which means
v by gravitatl wav Issl IS dat to calculate the distant gravitational wave emitted by this

”e”tTO” Star when the magnetic ”f'°me“t IS not allgned_ with t 8urce, we cannot use the standard quadrupole approximation.
rotation axis of the star. They claim that the deformation may

be large enough to lead to a detectable signal by VIRGO. In a _ o _

similar line, Heyl (2000) has considered the case of magnetizédCalculation of the gravitational waves emitted

white dwarfs. He concludes that LISA may be able to detect the by the e.m. field of a magnetized star

gravitational waves from the two fastest rotating stars out of A1 i , .

: . . .. If T,z is the energy-momentum tensor of an e.m. fiélg;, in

given sample of potential white dwarf sources of gravitationgl . . . . : : :
- . vaauum, the linearized Einstein equations can be written, using

radiation. On the other hand, Palomba (2001) has conS|dereh : .

o o . armonic coordinate system as follows

the gravitational radiation emitted from young magnetars. He

concludes that the corresponding signals may be detected;#6,;h,; = ~167GT,s, (1)

the advanced interferometers of LIGO-II and LIGO-IlI for a ) ) )

magnetic fieldd > 105 G and moderate values of the distorVhere hs is the metric perturbations,; denotes the

tion parametes. Minkowski metric and

In this paper we calculate the continuous gravitational 1 1

iati ield | = —(7°FayFps = ZF°Fon 2)
radiation due to the e.m. field itself, of a compact strongly mag® ~ 4 "B yolap |-

netized star. We compare this result with the quadrupole grav- . deali ith field i .
itational radiation of the distorted mass of the star, whate\EI re, since we are dealing with an e.m. field in vacuum, 1.e.,

the origin of this distortion may be: due to the action of thi' Electric four—current is zero, the corresﬁponding energy-
magnetic field of the star or not. It is shown that for some ma lomentum tensor_ls conserved, that @,‘I’ = 0. 0On
¢ other handT? is traceless. Therh®, is also traceless

netars, the gravitational radiation due to the e.m. field can be 49.h — 0
the same order of the quadrupole gravitational radiation of {84 = 0.

The star is idealized as a perfect conducting sphere, rigidly
Send gprint requests toR. Lapiedra, rotating in a vacuum, with a magnetic moment that is not
e-mail: ramon.lapiedra@uv.es aligned with its rotation axis. For the e.m. field we will use the
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exterior solution obtained by Deutsch (1955) in the Minkowskiere, it means that we take the real part of the complex expres-
space-tim& Recently, Rezzolla et al. (2000) have consideresibns, and the components of the electric and magnetic fields
general relativistic #ects on the solution and have obtainedre related to the spherical coordinatesd,(@), of the inertial
the e.m. field solution for a background metric of a slowly rasystem of reference which is located at the center of the star.
tating star. However, in the present paper we are working in @e taked as the angle between the rotation axis of the star and
idealized scenario in order to outline the general features of the direction we are considering. Finalky= ¢+ w(r —t), andu
gravitational radiation due to the e.m. field of the star, therefasethe magnetic dipole moment of the star. All the components
the original Deutsch solution will stice, without any general above are calculated up to ord@fwR).
relativistic correction. It can be seen that this correction for the In order to calculateh,s, we use the retarded solution
gravitational waveh is of the order of Rscn/R)h, whereRse,  of Eq. (1), which can be written for Cartesian coordinates as
is the Schwarzschild radius of the star. So, given that in ofallows
caseRsqn/R ~ 1/3, we see that the calculations presented here By
are only a crude estimation of the gravitational radiation emhtzs = 4G f ———Tup(t = X' = x|, X). (9)
ted by the e.m. field of the star. X=X

Let R be the radius of the compact rotating star, which /e emphasize again that, since the domainTgf is not
~10 km in the case of a pulsar, and letbe its angular ve- bounded, we cannot apply the standard quadrupole approxima-
locity. Now, even in the less favorable case of a millisecorithn and so we must calculate this integral directly.
pulsar, we will haveuR < 1. So, we can expand the exterior To calculate the integral in Eq. (9) first we have to obtain
e.m. solution of Deutsch in powers @R, and truncate it at the the Cartesian components of fieldsand E. For the Cartesian
lowest order inwR. To begin with, we consider the particulacomponents of the magnetic field we have
case wherg, the angle between the magnetic moment and tlée

rotation axis of the star, is abomf2. This value ofr/2 is one = sinf cos¢B; + cosh cospBy — singBy, (10)
of the.peaks of the. histogram gfvalues for dfferent pulsars B, = Sin@singB, + cosd singBy + CospBy, (11)
(Rankin 1990). Using values gf nearn/2 allows us to ne-

glect those terms proportional to gp$or the moment. Later B; = cos§B; — sindBy, (12)

on, we will consider the general case, i.e., wheig arbitrary.
The approximate magnetic and electric fields components,and a similar expression for the electric field components.

the Gaussian system of units, are the following, Since we will calculatén,s to the lowest significant order
in wR, i.e., order zero, we see from Egs. (3)—(8) that, leaving
B = %(1+ wr)e¥ singsiny, (3) aside the terms which go agr? and Yr, the components of
r

the electric fieldE, are at leasbR times lower than the compo-
nents of the magnetic field. Next we will see that the contri-
bution to the gravitational waves of those term&iandE go-
) ing as ¥r? and ¥r are negligible when compared to the main
By = 'ﬂg (_1_ ioF + wzrz) gk siny, (5) contribution du<=T to the other terms in _thg e.m. field given in
r Egs. (3)—(8). This means that the electric field can be neglected
R in the calculation of the integral (9) and only the Cartesian com-

E = (_3 —iwr + w2r2) ¥ sin Ysiny, (6) ponents o have to be considered.

2 Taking into account Egs. (3)—(5), after an elementary
calculation, we find

By = ;‘—3 (—1 —iwr + wzrz) e cosdsiny, (4)

R ( 6 6i 3 i . . . .
_ L 3,0¢ - K _ _
Ep = w ,u[ 5 (a)4r4 e J) Bi = 3 |(3sirf 6 — 1) cose cosk - sing sink| siny
i 1] +0(1/r2,1/r), 13
XCOSD + — — —— [€¥siny, @ (/ /) (13)
ol w?r?
B, = :1—3 |(35sirf 6 — 1) sing cos« + cosg sink| siny
_ lwp R ; 2,2 i 3.3 ; 2
Ey = — [@(G—GWr =302 +i0°r%) - 1+ iwr +O(1/r2,1/r), (14)
i i 3u . .
xe cossiny. ®) B, = 1 sin2cosksiny + O(1/r%,1/r), (15)
! There is a misprint in the equation for theomponent of the elec- ) L .
tric field in Deutsch’s paper. The correct expression is whereO(1/r<, 1/r) stands for the remaining terms which go
as Yr2and Yr.
Ey, = ‘”_‘2‘ {—E‘; sin 29 cosy + €Y siny This magnetic field produces an energy-momentum tensor,
R Tos, Which depends ohonly through sirk and co. But to
[( I4 ) phy +hy o ]} achieve our proposal of calculating the gravitational radiation
N+ Jp-ur h(wR) of the e.m. of the star, we have to obtain the time derivative

of h,, and therefore we only need the time dependent part
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of h,z, which is denoted by(h.z). So, in a similar notation, Let us substitute Eqg. (22) in the integrand of Eq. (21). Here,
what we need is simpl(T.z). Then, from Egs. (13)—(15), af- when integrating on the radial variabfe we will have to cal-

ter some elementary algebra, we can see ®(ai;z) depends culate the following integrals

ont exclusively through cos So, let us write

© jLwr)hPwr. )
I Ef dr’.
(16) R

= (23)

P(Top) = Sup B[],
Now, we are going to see that theffdrent integrald, go
like (wR)-, and so, to zero order iwR), the only integral, to
be retained i$o. To demonstrate this, notice that we can write

whereR[- - ] stands for “real part” an&,; stands for the cor-
responding real factor which does not depend.dfhen, the
time retarded value d?(T ) will take the expression,

o I = hYQwn)lg + jL(2wr)] L2, 24
P(Tap (t = X = X1, X)) = Sgp R [Pre? ] ww -t (Coniu +J(2wnl2 (24)
where
To begin with the calculation oP(h,z), let us consider first . Neor
the componenP(hy2). According to Eqg. (2), and bearing inj , zf &dr’ (25)
mind that we can neglect the electric field, we have R rr
B1B> o hD(2ur)eder
T = - . 1 = Li ’
12 o ( 8) ||_2 ‘fr 7 dr’. (26)
Then, from Egs. (13) and (14), we easily obtain Here,r means the radial coordinate of the observation point.
2 ) On the other hand, it can be seen that
BB, = %[(33"‘?0— 1)” sin 2p coS k — sin 2 sir? Zor
hP2wr > 1) ~ (—i)<L+1>2—wr, (27)

+(3sirf 6 — 1) cos 2 sin 2K]sin2 Y+0@/rm, (19
cos[Zwr - @]

jL(2 1)~
j|_( wl > ) ot

whereO(1/r™) stands for the remaining terms which go @g"1 (28)

with n any positive integer number less than 6. ) ) L
Now, from Eq. (19), let us calculate the time dependeHt Appendix A we show thatli; goes like a(wR)~ +

partP(T12). After some elementary algebra we get B(wR)*In(wR). So, when considering theftérent integrals, s,
the dominant integral ik;. Looking at any convenient table of

2 _ _ o
P(T1) = 1 i ot ge“"" sinf g — 9sin46 definite integrals one gets
87Tr6 4 4 1

! lo1= =—= + O(wR) (29)
+O(1/r" = S R[], (20) 3R

Now let us come to the integralg,. Using Eq. (27) and
Here, as in Eq. (19), we do not specify the tex@{&/r"), since, integrating by parts it is easy to conclude that
as reported above and as it will be made clear at the end of the gdior
present calculation olP(h;2), the contribution of these termsl2 «
to P(hy») are negligible when compared with the main contri- _ o
bution due to terms explicitly present in Eq. (20), which goe?!ﬂgi we see thalt; is completely negligible as compared to

+3sirf o - 1)sinZX

(30)

2¢5°

as ],/I’G. 1%,
So, according to Egs. (9) and (17), we haveR¢in,,), Therefore, to zero order imR, the only significant inte-
grall is lo. According to Egs. (23)—(30), its value is
eziw\x'—x\ ! ]
P(hy) = 4G f d®x 9&[ slzeZ'K]. (21) - gler
X' =X ~—
I | lo I6er3 + O(wR). (31)

Then, let us expand the eXPfeSSiMXéX'/lx’ — x| in spherical - All this means that, when substituting Eq. (22) in Eq. (21), the
harmonicsY," (6, ), according to the well known formula  only values ofL and M which must be retained aie = 0,
andM = 0. So, for the integral in Eq. (21), we have the simpler

iw| X' —X| 0o |
Tj(' X S”i‘“z jLwr)hP(2wr.) expression
. i (1)
L P(h12) = —R|4Gwy?® sir? ye 2! f jo(Rwr)hy”(2wrs)
x 3 WEONE. ), @2) "
» <PV (0.0 610X | (32)

where j,, andh{") are the spherical Bessel functions of first

class, and the spherical Hankel functions, respectively, and This result becomes apparent from Eq. (23) if we take the observer
wherer_ (r5) is the smaller (larger) gk| and|x’|. at an infinite distance from the very beginning.
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wheref (') = —% sin*¢ + 3sirf g — 1, and we have used theshow that, to order zero iR, these expressions are also valid
fact that the integration overr2of €*¢ is zero. Finally, since for any value ofy, since the energy-momentum tensor verifies
Y0 = 1/ V4r, and using Egs. (23) and (31), we obtain

P(Tup) = P(Tap) (SIN? x) + P(Top) (Sin 2¢), (38)
2Gu?sirf y . i i i ibuti
P(hy) ~ f5R3r X sin 2u(r — t) + O(Ruw). (33) S)nshglﬁ]fggroa?gft%;n (();)the right hand side gives no contribution

Now, we will argue why the above result is correct in spite of Then, Egs. (33) and (37), together whth = hy,, andhy; =
the fact that, in its calculation, we have considered only thdli1, give us the nonzero components of the gravitational wave
terms inB which go as 1r3, neglecting the ones going agrd, Produced by the exterior e.m. field of our star, for any value
and ¥r. To begin with, one could easily think that these omi©f x, to zero order inuR. _ _
ted terms inB would contribute tdh,; through some integrals ~ Notice that we have mentioned not just the e.m. of the star,
such asl,, in Eq. (23), with the denominatet* now substi- but its “exterior” e.m. field. So, what about the contribution of
tuted byr’3, r’2, 1’, or 1. Then, following the same strategy tdhe interior e.m. field of the star tiy,5s? To answer this ques-
calculate these new integrals as the one we followed abovdif, one must consider the fact that this interior field is coupled
calculatel,, one can see that the new integrals are, at leal§t the electric currents present inside the star, or at least on its
wR times smaller tharg. So, to order zero iwR, Eq. (33) Surface. So, as opposed to the exterior of the star, now, in the
gives the correct expression fBth;,), assuming, as we haveinterior, the divergence of the e.m. energy-momentum tensor
done, thay ~ 7/2. will not be zero. Therefore we need to incorporate the contri-
Once we have calculatd,, let us calculatén; always bution of the currents to the overall interior energy-momentum
assuming thag ~ /2. To begin with, according to Eq. (2), wetensor of the e.m. field plus matter. But this overall energy-
write for Ty (bear in mind that, in our approximation inR, Momentum tensor is, in any case, a bounded source of gravi-

we can take the electric field as zero) tational waves, and a bounded source whose dimenBida,
much smaller than the wavelength;?, of the emitted grav-
Ty = 1 (B§ + B§ — Bi) (34) itational waves. Then, to calculate the contribution of this in-
8 terior overall energy-momentum tensortg, we can use the

From Egs. (13)—(15), we find after some trivial calculation ~well known quadrupole approximation (see any text on General
Relativity: for example, Landau & Lifshitz 1971):

2
2 -ty o
P(T11) = —€?“( I sir? 2G 2
( 11) 8nré X ij ~ Tﬁ fToo(t -, X/)Xi/X,deX/, (39)
9 dig [ ci 3 .4 9 .4 :
X|5€ sinf 6 - > SIn o) — 2 sin 6 + 3sifg-1f. (35) whereToo refers to this overall interior tensor e.m. ahgl to
] the corresponding contribution to the total gravitational wave.
So, we must do the integral A rough estimation of this integral is trivially
G ARl : Gw2u2
P(hyy) = — [ xR | ———S1,62%|, 36) h~——2H 40
(h11) 27rf [|X’—X| 11 ] (36) T (40)

whereh stands for the amplitude of any of the space compo-
nents ofh;j above, and: for the internal magnetic dipole mo-
Jnent of the star. This value &f must be compared with the
corresponding estimation from Egs. (33) and (37), i.e.,

where, according to Eq. (16)S11 is implicitly defined
by P(T]_]_) = S]_]_‘F\ [GZIK].

From here on, we must do the same kind of approxim
calculation that we have done in the preceding cash; gf

again only retaining the values bf= 0 andM = 0. The corre- R Gu? (41)
sponding final result is R3r
2Gu2 sirf y If in Egs. (40) and (41) we consider a similar value forwe
P(hyy) = e cos 2u(r —t) + O(wR), (37) see that the interion is (wR)? times smaller than the external
L1oR°r one. This means that, in our approximation, the contribution of
which can be compared with expression (33)Hor the interior magnetic field of the star to the gravitational waves,

A similar calculation gives zero for the double time comemitted by the overall e.m. field of the star, can be neglected.
ponenthoo, and also for the remaining space componénts Then, definitely, the gravitational wave emitted by the e.m. of
to order zero inwR, except forhy,, and, of coursehz1. As  our star to zero order iR is given by Egs. (33) and (37),
long as the three mixed componehts are considered, they which can be written, after bringing back the speed of light,
are zero, sincé&y; is also zero, attending that it is a linear comas follows,
bination of the components of the electric field, which has been

i P : 2GuPsirf y .
taken as equal to zero in the present approximation. Then, silgh; ;) = —————= sin 2w(r —t),
h.s is traceless, we will havly = —h;1. So we have com- 15042Rg_r
pleted the calculation of the component$igf, for x ~ 7/2,in p(p, )y = — 2G12 sirf x c0S 20(r —1). 42)
aTT gauge. 15c*R3r

Although the above expressions for the gravitationd@lll the other components are zero, except, of couPgly;) =
waveh,s have been obtained by assuming /2, itis easy to P(hi2), andP(hy2) = —P(hy1).
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3. Discussion values ofw, all other parameters being equBlwould dom-

. L inate Py largely for any reasonable value ef On the other
In the last section we have calculated the gravitational wave q 'argely y

emitted by the e.m. field of a compact strongly magnetized S";;a;nd, for the above parameteseouild induce an eccentric-

in a very simplified scenario using the e.m. solution of Deutscly.” = of that ordere ~ 10°%, or perhaps more, depending on
| VEry Simp X 9 T . the value of a certain “distortion parametes’ See Bonazzola
mainly because we have ignored the distortions that the i

ized atmosphere of the star can introduce in the e.m. ﬁegGourgoulhon (1996), Bocquet et al. (1995), and Palomba

: . : 001), specially Eq. (3) in the last reference.
Nevertheless, our calculation has made it clear that in suc aTo finish this discussion, let us put the amplitude of the

star, a significant amount of gravitational radiation could be _ ... ; .
. - : ravitational wave given by Eq. (42) as a function Bf ~
present even when the equatorial eccentricity of the star is co%n- :

- . L o ~211/R®. We obtain
pletely negligible. If this eccentricity is not negligible, and in
order to compare both types of gravitational radiation, i.e., that GB2R3sir?
due to the matter of the star and the other due to its e.m. fighdy 30 (50)
let us consider the energy-momentum pseudo-tetisarf the ) )
gravitational field, as found in Landau & Lifshitz (1971) forAS We have reported before (Rankin 1990),~ 7/2 is one
example. Then, let us calculaf® for our gravitational wave. Of the poles of the histogram of the observational values. of
Bearing in mind Eq. (42), and after a straightforward calcul&0: et us place ourselves in this most favorable case and put

tion we find: siny ~ 1in the above expressionbfThen for an hypothetical
. magnetar oR ~ 10 km,B ~ 10'° G, at a distance 0f3 kpc, we
{0 = C—ﬁthab(?thabni, (43) findh~2x 10-2%. Now, the future Euro-third generation grav-
327G itational wave antenna (Ségtp://www.astro.cf.ac.uk/
where indesa andb take values 1, 2, ar stands for the 3-unit 9¢0/euro) will attain a level of detection oh ~ 10°%, op-
vector in the observation direction. More explicitly: erating at a frequency of 20 Hz. But, according to Palomba

(2001), the spin-down time of a magnetar to a final frequency
of 10 Hz, is about five days, f@ = 10'° G. So, considering an
integrating observation time efone day, the above amplitude
of h = 2 x 10725, corresponding to a hypothetical magnetar in
our galaxy, could be detected. Sintén Eq. (50) goes ag?,
the observational situation could be better for new born magne-
tars, whereB would be larger, although, in this case, the inte-
grating observational times would be shorter. Also, the frequen-
cies of the gravitational wave emitted by the magnetar would
4Gw? sin' y be higher than the above 10 Hz at the end of the spin down
T oomERe (46) time. So, gravitational wave detectors, such VIRGO and LIGO
could be used in this case.
If, in agreement with Egs. (13)—(15), we pBt~ 2u/R®, the As far as we know, the most prominent candidate for this
above expression fd? becomes detection is the soft gamma ray repeater SGR $3d0in the
2B4R6 s’ Galactic plane, recently considered by loka (2001). This au-
CwBRsin x| (47) thor suggests a value slightly greater thad*i® for the mag-
(30pc® netic field at the surface of the object, while Palomba (2001)

Let us compare this power with the pow®%, radiated for a ro- "€POrs value of (3-8.6) x 10'* G. These values are slightly
tating star of mase, radiusR, pulsationw, and equatorial ec- smaller than the 10 G considered in the above estimation.

centricitye, in the quadrupole approximation. From Weinberffnfortunately, this object is at a distance of 14 kpc (Hurley

C3
" 167G
that is to say

t* | Bth12)? + (@chan)?| i, (44)

) 3, 2
© = S [P(n? + P(hso?]n. (45)

So, we find for the radiated powet,

P = 4ar’nt® ~

P~

(1972), for example et al. 1996), which is greater than the distance of 3 kpc used
’ ’ in the estimation, that again reduces the possibility of attaining
b 32GwinPRe? 48 the level of detection.
a~ 5¢c5 ' (48) Concerning the strongly magnetized white dwarfs given by
So, assuming ~ /2, we have Heyl (2000), using Eq. (SQ) fq/f ~ n/2,.0r_1e sees _that, in this
case, the quadrupole gravitational radiation dominates over the
Pq WP one calculated in the present paper.
B~ 5x 105 e (49)

This relation says that, gives the lowerw is and the higheR  Appendix A
is, the better the ratio in favor of the gravitational radiation d
rectly generated by the e.m. field of the star.

Forw ~ 27 x 10?st, m ~ 2x 10* g, R ~ 10 km, " iLwr)eer
B ~ 10" G, we getPy/P ~ 3 x 10° That is to say: for L1 =f T a—
e < 1075, P is higher tharPq, but, as it is seen from Eq. (49), R
the relationPy/P depends dramatically an. Then, for lower is ordera(wR)" + S(wR)® In(wR).

Let us prove that the integral

(A1)



424

R. Lapiedra and J. A. Miralles: Gravitational radiation from the magnetic field of stars

One can find in any handbook on Bessel functions that that is to say

. L > (_1)k K
@ =2 ; LT 2k DIE” (A2)
Then, since
7 © (iZ)'
&=, T (A.3)

1=0
we will have
i@e =2 i i COT (A.4)

L4 £ 2421 + 2k + 1)
On the other hand, we can write
2wr 3 iz
IL1 = (2a))3f & dz (A5)
wrR 2
Then, substituting Eq. (A.4) in this integral, we get
I = (2w)?
= _1y\Kil 2k+l+L-3
% Z, . (-1)4'Z
£ 2K@2L + 2k + DUk + 1 + L - 3)
(_1)ki| 2wr
' %: 2KI(2L + 2k + )1 '”2}2 R- (A.6)

Where” (3.”) denotes the summation for valueskpfandl|
verifying2k + |+ L-3# 0 (Zk+1+L-3=0).

I_1
L= "0

o 8(—1)k||(wR 2k+l
L ’
X {(‘“R) k;o 2U(2L + 2k + D)2k + 1 + L 3)

7" 8(_1)ki|
+(@R)’In(wR) ; 2L + 2k + DI } (A-8)

which shows that,; goes asr(wR)" + B(wR)? In(wR), as we
wanted to prove.
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