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Abstract. We consider the electromagnetic (e.m.) field of a compact strongly magnetized star. The star is idealized as a perfect
conducting sphere, rigidly rotating in a vacuum, with a magnetic moment not aligned with its rotation axis. Then we use the
exterior e.m. solution, obtained by Deutsch (1955) in his classic paper, to calculate the gravitational waves emitted by the e.m.
field when its wavelength is much longer than the radius of the star. In some astrophysical situations, this gravitational radiation
can overcome the quadrupole one emitted by the matter of the star, and, for some magnetars, would be detectable in the near
future, once the present detectors, planned or under construction, become operative.
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1. Introduction

Large magnetic fields are supposed to be present in many com-
pact stars. These fields can induce a distortion in the shape of
the star, breaking the axial symmetry around the rotation axis
if this axis is not aligned with the magnetic moment (Bocquet
et al. 1995). Based on this, Bonazzola & Gourgoulhon (1996)
have computed the gravitational wave emission of a distorted
neutron star when the magnetic moment is not aligned with the
rotation axis of the star. They claim that the deformation may
be large enough to lead to a detectable signal by VIRGO. In a
similar line, Heyl (2000) has considered the case of magnetized
white dwarfs. He concludes that LISA may be able to detect the
gravitational waves from the two fastest rotating stars out of a
given sample of potential white dwarf sources of gravitational
radiation. On the other hand, Palomba (2001) has considered
the gravitational radiation emitted from young magnetars. He
concludes that the corresponding signals may be detected by
the advanced interferometers of LIGO-II and LIGO-III for a
magnetic fieldB > 1015 G and moderate values of the distor-
tion parameter,β.

In this paper we calculate the continuous gravitational
radiation due to the e.m. field itself, of a compact strongly mag-
netized star. We compare this result with the quadrupole grav-
itational radiation of the distorted mass of the star, whatever
the origin of this distortion may be: due to the action of the
magnetic field of the star or not. It is shown that for some mag-
netars, the gravitational radiation due to the e.m. field can be of
the same order of the quadrupole gravitational radiation of the
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mass, or even grater. However, this is no longer true for the list
of distorted magnetized white dwarfs considered by Heyl in the
above cited paper. We also find that a hypothetical magnetar in
our galaxy, with∼1015 G, would be within the expected limit
of detection for continuous gravitational radiation.

It should be noted that the e.m. field of the star, as a source
of gravitational waves, is not a bounded source, which means
that to calculate the distant gravitational wave emitted by this
source, we cannot use the standard quadrupole approximation.

2. Calculation of the gravitational waves emitted
by the e.m. field of a magnetized star

If Tαβ is the energy-momentum tensor of an e.m. field,Fαβ, in
vacuum, the linearized Einstein equations can be written, using
a harmonic coordinate system as follows

ηαβ∂α∂βhγδ = −16πGTγδ, (1)

where hαβ is the metric perturbation,ηαβ denotes the
Minkowski metric and

Tαβ =
1
4π

(
ηγδFαγFβδ − 1

4
FγδFγδηαβ

)
. (2)

Here, since we are dealing with an e.m. field in vacuum, i.e.,
the electric four–current is zero, the corresponding energy-
momentum tensor is conserved, that is,∂αTαβ = 0. On
the other hand,Tαβ is traceless. Then,hαβ, is also traceless
and∂αhαβ = 0.

The star is idealized as a perfect conducting sphere, rigidly
rotating in a vacuum, with a magnetic moment that is not
aligned with its rotation axis. For the e.m. field we will use the
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exterior solution obtained by Deutsch (1955) in the Minkowski
space–time1. Recently, Rezzolla et al. (2000) have considered
general relativistic effects on the solution and have obtained
the e.m. field solution for a background metric of a slowly ro-
tating star. However, in the present paper we are working in an
idealized scenario in order to outline the general features of the
gravitational radiation due to the e.m. field of the star, therefore
the original Deutsch solution will suffice, without any general
relativistic correction. It can be seen that this correction for the
gravitational waveh is of the order of (RSch/R)h, whereRSch

is the Schwarzschild radius of the star. So, given that in our
caseRSch/R ∼ 1/3, we see that the calculations presented here
are only a crude estimation of the gravitational radiation emit-
ted by the e.m. field of the star.

Let R be the radius of the compact rotating star, which is
∼10 km in the case of a pulsar, and letω be its angular ve-
locity. Now, even in the less favorable case of a millisecond
pulsar, we will haveωR � 1. So, we can expand the exterior
e.m. solution of Deutsch in powers ofωR, and truncate it at the
lowest order inωR. To begin with, we consider the particular
case whereχ, the angle between the magnetic moment and the
rotation axis of the star, is aboutπ/2. This value ofπ/2 is one
of the peaks of the histogram ofχ values for different pulsars
(Rankin 1990). Using values ofχ nearπ/2 allows us to ne-
glect those terms proportional to cosχ for the moment. Later
on, we will consider the general case, i.e., whereχ is arbitrary.
The approximate magnetic and electric fields components, in
the Gaussian system of units, are the following,

Br =
2µ
r3

(1+ ωr)eiκ sinθ sinχ, (3)

Bθ =
µ

r3

(
−1− iωr + ω2r2

)
eiκ cosθ sinχ, (4)

Bφ =
iµ
r3

(
−1− iωr + ω2r2

)
eiκ sinχ, (5)

Er =
ωµR2

2r4

(
−3− iωr + ω2r2

)
eiκ sin 2θ sinχ, (6)

Eθ = ω
3µ

[
ω2R2

6

(
6
ω4r4

− 6i

ω3r3
− 3
ω2r2

+
i
ωr

)

× cos 2θ +
i
ωr
− 1
ω2r2

]
eiκ sinχ, (7)

Eφ =
iωµ
r2

[
R2

6r2

(
6− 6iωr − 3ω2r2 + iω3r3

)
− 1+ iωr

]

×eiκ cosθ sinχ. (8)

1 There is a misprint in the equation for theθ component of the elec-
tric field in Deutsch’s paper. The correct expression is

Eθ =
ωµ

R2

{
−R4

r4
sin 2θ cosχ + ei(φ−ωt) sinχ

×
[(

ρ

ρh′2 + h2

)
ρ=ωR

ρh′2 + h2

ρ
cos 2θ − h1

h1(ωR)

]}
·

Here, it means that we take the real part of the complex expres-
sions, and the components of the electric and magnetic fields
are related to the spherical coordinates, (r, θ, φ), of the inertial
system of reference which is located at the center of the star.
We takeθ as the angle between the rotation axis of the star and
the direction we are considering. Finally,κ ≡ φ+ω(r− t), andµ
is the magnetic dipole moment of the star. All the components
above are calculated up to orderO(ωR).

In order to calculatehαβ, we use the retarded solution
of Eq. (1), which can be written for Cartesian coordinates as
follows

hαβ = 4G
∫

d3x′

|x′ − x|Tαβ(t − |x
′ − x|, x′). (9)

We emphasize again that, since the domain ofTαβ is not
bounded, we cannot apply the standard quadrupole approxima-
tion and so we must calculate this integral directly.

To calculate the integral in Eq. (9) first we have to obtain
the Cartesian components of fieldsB andE. For the Cartesian
components of the magnetic field we have

B1 = sinθ cosφBr + cosθ cosφBθ − sinφBφ, (10)

B2 = sinθ sinφBr + cosθ sinφBθ + cosφBφ, (11)

B3 = cosθBr − sinθBθ, (12)

and a similar expression for the electric field components.
Since we will calculatehαβ to the lowest significant order

in ωR, i.e., order zero, we see from Eqs. (3)–(8) that, leaving
aside the terms which go as 1/r2 and 1/r, the components of
the electric field,E, are at leastωR times lower than the compo-
nents of the magnetic field,B. Next we will see that the contri-
bution to the gravitational waves of those terms inB andE go-
ing as 1/r2 and 1/r are negligible when compared to the main
contribution due to the other terms in the e.m. field given in
Eqs. (3)–(8). This means that the electric field can be neglected
in the calculation of the integral (9) and only the Cartesian com-
ponents ofB have to be considered.

Taking into account Eqs. (3)–(5), after an elementary
calculation, we find

B1 =
µ

r3

[(
3 sin2 θ − 1

)
cosφ cosκ − sinφ sinκ

]
sinχ

+O
(
1/r2, 1/r

)
, (13)

B2 =
µ

r3

[(
3 sin2 θ − 1

)
sinφ cosκ + cosφ sinκ

]
sinχ

+O
(
1/r2, 1/r

)
, (14)

B3 =
3µ
2r3

sin 2θ cosκ sinχ +O
(
1/r2, 1/r

)
, (15)

whereO(1/r2, 1/r) stands for the remaining terms which go
as 1/r2 and 1/r.

This magnetic field produces an energy-momentum tensor,
Tαβ, which depends ont only through sinκ and cosκ. But to
achieve our proposal of calculating the gravitational radiation
of the e.m. of the star, we have to obtain the time derivative
of hαβ, and therefore we only need the time dependent part
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of hαβ, which is denoted byP(hαβ). So, in a similar notation,
what we need is simplyP(Tαβ). Then, from Eqs. (13)–(15), af-
ter some elementary algebra, we can see thatP(Tαβ) depends
on t exclusively through cos 2κ. So, let us write

P(Tαβ) ≡ Sαβ <
[
e2iκ

]
, (16)

where<[· · ·] stands for “real part” andSαβ stands for the cor-
responding real factor which does not depend ont. Then, the
time retarded value ofP(Tαβ) will take the expression,

P
(
Tαβ

(
t − |x′ − x|, x′)) = Sαβ <

[
e2iκe2iω|x′−x|] . (17)

To begin with the calculation ofP(hαβ), let us consider first
the componentP(h12). According to Eq. (2), and bearing in
mind that we can neglect the electric field, we have

T12 = −B1B2

4π
. (18)

Then, from Eqs. (13) and (14), we easily obtain

B1B2 =
µ2

2r6

[(
3 sin2 θ − 1

)2
sin 2φ cos2 κ − sin 2φ sin2 κ

+
(
3 sin2 θ − 1

)
cos 2φ sin 2κ

]
sin2 χ +O(1/rn), (19)

whereO(1/rn) stands for the remaining terms which go as 1/rn,
with n any positive integer number less than 6.

Now, from Eq. (19), let us calculate the time dependent
partP(T12). After some elementary algebra we get

P(T12) =
µ2

8πr6

[
ie2iω(r−t)

(
9
4

e4iφ sin4 θ − 9
4

sin4 θ

+3 sin2 θ − 1

)
sin2 χ

]
+O(1/rn) ≡ S12<

[
e2iκ

]
. (20)

Here, as in Eq. (19), we do not specify the termsO(1/rn), since,
as reported above and as it will be made clear at the end of the
present calculation ofP(h12), the contribution of these terms
to P(h12) are negligible when compared with the main contri-
bution due to terms explicitly present in Eq. (20), which goes
as 1/r6.

So, according to Eqs. (9) and (17), we have forP(h12),

P(h12) = 4G
∫

d3x′ <
[
e2iω|x′−x|

|x′ − x| S12e
2iκ

]
. (21)

Then, let us expand the expression eiω|x′−x|/|x′ − x| in spherical
harmonics,YM

L (θ, φ), according to the well known formula

e2iω|x′−x|

|x′ − x| = 8πiω
∞∑

L=0

jL(2ωr<)h
(1)
L (2ωr>)

×
L∑

M=−L

YM∗
L (θ, φ)YM

L (θ′, φ′), (22)

where jL, andh(1)
L are the spherical Bessel functions of first

class, and the spherical Hankel functions, respectively, and
wherer< (r>) is the smaller (larger) of|x| and|x′|.

Let us substitute Eq. (22) in the integrand of Eq. (21). Here,
when integrating on the radial variabler ′, we will have to cal-
culate the following integrals

IL ≡
∫ ∞

R

jL(2ωr<)h
(1)
L (2ωr>)e2iωr ′

r ′4
dr ′. (23)

Now, we are going to see that the different integralsIL go
like (ωR)L, and so, to zero order in (ωR), the only integralIL to
be retained isI0. To demonstrate this, notice that we can write

IL = h(1)
L (2ωr)IL1 + jL(2ωr)IL2, (24)

where

IL1 =

∫ r

R

jL(2ωr ′)e2iωr ′

r ′4
dr ′ (25)

IL2 =

∫ ∞

r

h(1)
L (2ωr ′)e2iωr ′

r ′4
dr ′. (26)

Here,r means the radial coordinate of the observation point.
On the other hand, it can be seen that

h(1)
L (2ωr � 1) ≈ (−i)(L+1) e

2iωr

2ωr
, (27)

jL(2ωr � 1) ≈
cos

[
2ωr − (L+1)π

2

]
2ωr

. (28)

In Appendix A we show thatIL1 goes like α(ωR)L +

β(ωR)3 ln(ωR). So, when considering the different integralsIL1,
the dominant integral isI01. Looking at any convenient table of
definite integrals one gets

I01 =
1

3R3
+O(ωR). (29)

Now let us come to the integralsIL2. Using Eq. (27) and
integrating by parts it is easy to conclude that

IL2 ∝ e4iωr

ω2r5
, (30)

and we see thatIL2 is completely negligible as compared to
IL1

2.
Therefore, to zero order inωR, the only significant inte-

gral IL is I0. According to Eqs. (23)–(30), its value is

I0 ≈ −i
e2iωr

6ωrR3
+O(ωR). (31)

All this means that, when substituting Eq. (22) in Eq. (21), the
only values ofL and M which must be retained areL = 0,
andM = 0. So, for the integral in Eq. (21), we have the simpler
expression

P(h12) = −<
[
4Gωµ2 sin2 χe−2iωt

∫
j0(2ωr<)h

(1)
0 (2ωr>)

r ′6

×e2iωr ′Y0
0
∗
(θ, φ)Y0

0(θ′, φ′) f (θ′)d3x′
]
, (32)

2 This result becomes apparent from Eq. (23) if we take the observer
at an infinite distance from the very beginning.
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where f (θ′) ≡ − 9
4 sin4 θ′ + 3 sin2 θ′ − 1, and we have used the

fact that the integration over 2π of e4iφ is zero. Finally, since
Y0

0 = 1/
√

4π, and using Eqs. (23) and (31), we obtain

P(h12) ' 2Gµ2 sin2 χ

15R3r
sin 2ω(r − t) +O(Rω). (33)

Now, we will argue why the above result is correct in spite of
the fact that, in its calculation, we have considered only the
terms inB which go as 1/r3, neglecting the ones going as 1/r2,
and 1/r. To begin with, one could easily think that these omit-
ted terms inB would contribute tohαβ through some integrals
such asIL, in Eq. (23), with the denominatorr ′4 now substi-
tuted byr ′3, r ′2, r ′, or 1. Then, following the same strategy to
calculate these new integrals as the one we followed above to
calculateIL, one can see that the new integrals are, at least,
ωR times smaller thanI0. So, to order zero inωR, Eq. (33)
gives the correct expression forP(h12), assuming, as we have
done, thatχ ∼ π/2.

Once we have calculatedh12, let us calculateh11 always
assuming thatχ ∼ π/2. To begin with, according to Eq. (2), we
write for T11 (bear in mind that, in our approximation inωR,
we can take the electric field as zero)

T11 =
1
8π

(
B2

3 + B2
2 − B2

1

)
. (34)

From Eqs. (13)–(15), we find after some trivial calculation

P(T11) =
µ2

8πr6
e2iω(r−t) sin2 χ

×
[
9
2

e4iφ

(
sin2 θ − 3

2
sin4 θ

)
− 9

4
sin4 θ + 3 sin2 θ − 1

]
. (35)

So, we must do the integral

P(h11) =
G
2π

∫
d3x′<

[
e2iω(|x′−x|)

|x′ − x| S11e2iκ

]
, (36)

where, according to Eq. (16),S11 is implicitly defined
by P(T11) ≡ S11<

[
e2iκ

]
.

From here on, we must do the same kind of approximate
calculation that we have done in the preceding case ofh12,
again only retaining the values ofL = 0 andM = 0. The corre-
sponding final result is

P(h11) ' −2Gµ2 sin2 χ

15R3r
cos 2ω(r − t) +O(ωR), (37)

which can be compared with expression (33) forh12.
A similar calculation gives zero for the double time com-

ponent,h00, and also for the remaining space componentshi j ,
to order zero inωR, except forh22, and, of course,h21. As
long as the three mixed componentsh0i are considered, they
are zero, sinceT0i is also zero, attending that it is a linear com-
bination of the components of the electric field, which has been
taken as equal to zero in the present approximation. Then, since
hαβ is traceless, we will haveh22 = −h11. So we have com-
pleted the calculation of the components ofhαβ, for χ ≈ π/2, in
a TT gauge.

Although the above expressions for the gravitational
wavehαβ have been obtained by assumingχ ≈ π/2, it is easy to

show that, to order zero inωR, these expressions are also valid
for any value ofχ, since the energy-momentum tensor verifies

P(Tαβ) = P(Tαβ)
(
sin2 χ

)
+ P(Tαβ) (sin 2χ) , (38)

and the second term on the right hand side gives no contribution
to the integral of Eq. (9).

Then, Eqs. (33) and (37), together withh21 = h12, andh22 =

−h11, give us the nonzero components of the gravitational wave
produced by the exterior e.m. field of our star, for any value
of χ, to zero order inωR.

Notice that we have mentioned not just the e.m. of the star,
but its “exterior” e.m. field. So, what about the contribution of
the interior e.m. field of the star tohαβ? To answer this ques-
tion, one must consider the fact that this interior field is coupled
to the electric currents present inside the star, or at least on its
surface. So, as opposed to the exterior of the star, now, in the
interior, the divergence of the e.m. energy-momentum tensor
will not be zero. Therefore we need to incorporate the contri-
bution of the currents to the overall interior energy-momentum
tensor of the e.m. field plus matter. But this overall energy-
momentum tensor is, in any case, a bounded source of gravi-
tational waves, and a bounded source whose dimension,R, is
much smaller than the wavelength,ω−1, of the emitted grav-
itational waves. Then, to calculate the contribution of this in-
terior overall energy-momentum tensor tohαβ, we can use the
well known quadrupole approximation (see any text on General
Relativity: for example, Landau & Lifshitz 1971):

hi j ≈ 2G
r
∂2

∂t2

∫
T00(t − r, x′)x′i x

′
jd

3x′, (39)

whereT00 refers to this overall interior tensor e.m. andhi j to
the corresponding contribution to the total gravitational wave.

A rough estimation of this integral is trivially

h ∼ Gω2µ2

Rr
, (40)

whereh stands for the amplitude of any of the space compo-
nents ofhi j above, andµ for the internal magnetic dipole mo-
ment of the star. This value ofh must be compared with the
corresponding estimation from Eqs. (33) and (37), i.e.,

h ∼ Gµ2

R3r
· (41)

If in Eqs. (40) and (41) we consider a similar value forµ, we
see that the interiorh is (ωR)2 times smaller than the external
one. This means that, in our approximation, the contribution of
the interior magnetic field of the star to the gravitational waves,
emitted by the overall e.m. field of the star, can be neglected.
Then, definitely, the gravitational wave emitted by the e.m. of
our star to zero order inωR is given by Eqs. (33) and (37),
which can be written, after bringing back the speed of light,c,
as follows,

P(h12) =
2Gµ2 sin2 χ

15c4R3r
sin 2ω(r − t),

P(h11) = −2Gµ2 sin2 χ

15c4R3r
cos 2ω(r − t). (42)

All the other components are zero, except, of course,P(h21) =
P(h12), andP(h22) = −P(h11).
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3. Discussion

In the last section we have calculated the gravitational waves
emitted by the e.m. field of a compact strongly magnetized star
in a very simplified scenario using the e.m. solution of Deutsch,
mainly because we have ignored the distortions that the ion-
ized atmosphere of the star can introduce in the e.m. field.
Nevertheless, our calculation has made it clear that in such a
star, a significant amount of gravitational radiation could be
present even when the equatorial eccentricity of the star is com-
pletely negligible. If this eccentricity is not negligible, and in
order to compare both types of gravitational radiation, i.e., that
due to the matter of the star and the other due to its e.m. field,
let us consider the energy-momentum pseudo-tensor,ti j , of the
gravitational field, as found in Landau & Lifshitz (1971) for
example. Then, let us calculatet0i for our gravitational wave.
Bearing in mind Eq. (42), and after a straightforward calcula-
tion we find:

t0i =
c3

32πG
∂thab∂thabni , (43)

where indexa andb take values 1, 2, andni stands for the 3-unit
vector in the observation direction. More explicitly:

t0i =
c3

16πG

[
(∂th12)

2 + (∂th11)
2
]
ni , (44)

that is to say

t0i =
c3ω2

4πG

[
P (h12)2 + P (h11)2

]
ni . (45)

So, we find for the radiated power,P,

P = 4πr2nit
0i ∼ 4Gω2µ4 sin4 χ

225c5R6
· (46)

If, in agreement with Eqs. (13)–(15), we putB ∼ 2µ/R3, the
above expression forP becomes

P ∼ Gω2B4R6 sin4 χ

(30)2c5
· (47)

Let us compare this power with the power,Pq, radiated for a ro-
tating star of massm, radiusR, pulsationω, and equatorial ec-
centricitye, in the quadrupole approximation. From Weinberg
(1972), for example,

Pq ∼ 32Gω6m2R4e2

5c5
· (48)

So, assumingχ ≈ π/2, we have

Pq

P
∼ 5× 103ω

4m2

R2B4
e2· (49)

This relation says that, givene, the lowerω is and the higherR
is, the better the ratio in favor of the gravitational radiation di-
rectly generated by the e.m. field of the star.

For ω ∼ 2π × 102 s−1, m ∼ 2 × 1033 g, R ∼ 10 km,
B ∼ 1015 G, we getPq/P ∼ 3 × 109e2. That is to say: for
e < 10−5, P is higher thanPq, but, as it is seen from Eq. (49),
the relationPq/P depends dramatically onω. Then, for lower

values ofω, all other parameters being equal,P would dom-
inate Pq largely for any reasonable value ofe. On the other
hand, for the above parameters,B could induce an eccentric-
ity, e, of that order,e ∼ 10−5, or perhaps more, depending on
the value of a certain “distortion parameter”,β. See Bonazzola
& Gourgoulhon (1996), Bocquet et al. (1995), and Palomba
(2001), specially Eq. (3) in the last reference.

To finish this discussion, let us put the amplitude of the
gravitational wave given by Eq. (42) as a function ofB ∼
2µ/R3. We obtain

h ∼ GB2R3 sin2 χ

30c4r
· (50)

As we have reported before (Rankin 1990),χ ∼ π/2 is one
of the poles of the histogram of the observational values ofχ.
So, let us place ourselves in this most favorable case and put
sinχ ∼ 1 in the above expression ofh. Then for an hypothetical
magnetar ofR∼ 10 km,B ∼ 1015 G, at a distance of∼3 kpc, we
find h ∼ 2× 10−25. Now, the future Euro-third generation grav-
itational wave antenna (seehttp://www.astro.cf.ac.uk/
geo/euro) will attain a level of detection ofh ∼ 10−23, op-
erating at a frequency of 20 Hz. But, according to Palomba
(2001), the spin-down time of a magnetar to a final frequency
of 10 Hz, is about five days, forB = 1015 G. So, considering an
integrating observation time of∼one day, the above amplitude
of h = 2× 10−25, corresponding to a hypothetical magnetar in
our galaxy, could be detected. Sinceh in Eq. (50) goes asB2,
the observational situation could be better for new born magne-
tars, whereB would be larger, although, in this case, the inte-
grating observational times would be shorter. Also, the frequen-
cies of the gravitational wave emitted by the magnetar would
be higher than the above 10 Hz at the end of the spin down
time. So, gravitational wave detectors, such VIRGO and LIGO
could be used in this case.

As far as we know, the most prominent candidate for this
detection is the soft gamma ray repeater SGR 1900+14, in the
Galactic plane, recently considered by Ioka (2001). This au-
thor suggests a value slightly greater than 1014 G for the mag-
netic field at the surface of the object, while Palomba (2001)
reports a value of (5.1−8.6)× 1014 G. These values are slightly
smaller than the 1015 G considered in the above estimation.
Unfortunately, this object is at a distance of 14 kpc (Hurley
et al. 1996), which is greater than the distance of 3 kpc used
in the estimation, that again reduces the possibility of attaining
the level of detection.

Concerning the strongly magnetized white dwarfs given by
Heyl (2000), using Eq. (50) forχ ∼ π/2, one sees that, in this
case, the quadrupole gravitational radiation dominates over the
one calculated in the present paper.

Appendix A

Let us prove that the integral

IL1 =

∫ r

R

jL(2ωr ′)e2iωr ′

r ′4
dr ′ (A.1)

is orderα(ωR)L + β(ωR)3 ln(ωR).
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One can find in any handbook on Bessel functions that

jL(z) = zL
∞∑

k=0

(−1)k

k!(2L + 2k+ 1)!!2k
z2k· (A.2)

Then, since

eiz =

∞∑
l=0

(iz)l

l!
, (A.3)

we will have

jL(z)eiz = zL
∞∑

k=0

∞∑
l=0

(−1)kil

2kk!(2L + 2k+ 1)!!l!
z2k+l . (A.4)

On the other hand, we can write

IL1 = (2ω)3
∫ 2ωr

2ωR

jL(z)eiz

z4
dz. (A.5)

Then, substituting Eq. (A.4) in this integral, we get

IL1 = (2ω)3

×

∞∑

k,l=0

′ (−1)kilz2k+l+L−3

2kk!(2L + 2k+ 1)!!l!(2k+ l + L − 3)

+
∑
k,l

′′ (−1)kil

2kk!(2L + 2k+ 1)!!l!
ln z


2ωr

2ωR

. (A.6)

Where
∑′ (

∑′′) denotes the summation for values ofk, andl
verifying 2k+ l + L − 3 , 0 (2k+ l + L − 3 = 0).

But the integrand in Eq. (A.5) goes, for high values ofz,
as 1/z5. This means that, sinceωr is extremely high, the
contribution to the integral from the upper limit, in a very
good approximation, is negligible, and, according to Eq. (A.6),
becomes

IL1 = −(2ω)3

×

∞∑

k,l=0

′ (−1)kilz2k+l+L−3

2kk!(2L + 2k+ 1)!!l!(2k+ l + L − 3)

×
∑
k,l

′′ (−1)kil

2kk!(2L + 2k+ 1)!!l!
ln z

 (A.7)

that is to say

IL1 = − 1
R3

×
(ωR)L

∞∑
k,l=0

′ 8(−1)kil(ωR)2k+l

2kk!(2L + 2k+ 1)!!l!(2k+ l + L − 3)

+(ωR)3 ln(ωR)
∑
k,l

′′ 8(−1)kil

2kk!(2L + 2k+ 1)!!l!

 , (A.8)

which shows thatIL1 goes asα(ωR)L + β(ωR)3 ln(ωR), as we
wanted to prove.
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