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ABSTRACT

The linear and non-linear stability of sheared, relativistic planar jets is studied by means of linear stability analysis and numerical hydrodynam-
ical simulations. Our results extend the previous Kelvin-Hemlholtz stability studies for relativistic, planar jets in the vortex sheet approximation
performed by Perucho et al. (2004a, A&A, 427, 415; 2004b, A&A, 427, 431) by including a shear layer between the jet and the external medium
and more general perturbations. The models considered span a wide range of Lorentz factors (2.5-20) and internal energies (0.08 c>~60 c?)
and are classified into three classes according to the main characteristics of their long-term, non-linear evolution. We observe a clear separation
of these three groups in a relativistic Mach-number Lorentz-factor plane. Jets with a low Lorentz factor and small relativistic Mach number
are disrupted after saturation. Those with a large Lorentz factor and large relativistic Mach number are the stablest, due to the appearance of
short wavelength resonant modes which generate local mixing and heating in the shear layer around a fast, unmixed core, giving a plausible
solution for the problem of the long-term stability of relativistic jets. A third group is present between them, including jets with intermediate
values of Lorentz factor and relativistic Mach number, which are disrupted by a slow process of mixing favored by an efficient and continuous
conversion of kinetic into internal energy. In the long term, all the models develop a distinct transversal structure (shear/transition layers) as a
consequence of KH perturbation growth, depending on the class they belong to. The properties of these shear layers are analyzed in connection
with the parameters of the original jet models.
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1. Introduction the inner galactic core and the subsequent formation of turbu-
lent shear layers in FRIs. Recently, Swain et al. (1998) found
evidence of shear layers in FR II radio galaxies (3C 353), and
Attridge et al. (1999) have inferred a two-component struc-
ture in the parsec-scale jet of the source 1055+018. On the
other hand, first simulations of radio emission from three-
dimensional relativistic jets with shear layers (Aloy et al. 2000)
allowed several observational trends in parsec and kiloparsec
jets to be interpreted: inhomogeneous distributions of apparent
speeds within radio knots (Biretta et al. 1995); rails of low po-
larization along jets (as in 3C 353; Swain et al. 1998); top/down
jet emission asymmetries in the blazar 1055+018 (Attridge
et al. 1999). Stawarz & Ostrowski (2002) have studied the con-
tribution to the radiative jet output from turbulent shear layers

Transversal structure in extragalactic jets could be the natu-
ral consequence of current formation mechanisms (see, e.g.,
Sol et al. 1989; Celotti & Blandford 2000), in which an ul-
trarelativistic presumably electron/positron outflow from the
high latitude region close to the spinning black hole (and pow-
ered by, e.g., the extraction of energy from the hole) is sur-
rounded by a mildly relativistic, electron/proton, hydromag-
netic outflow launched from the outer parts of the accretion
disk. Recent numerical simulations of jet formation from black
hole magnetospheres (Koide et al. 1997) also lead to outflows
with two-layered shell structure consisting of inner, fast gas
pressure driven jets surrounded by slower, magnetically domi-

nated winds. On larger scales, shear layers (with distinct kine-
matical properties and magnetic field configurations) have been
invoked in the past by several authors (Komissarov 1990; Laing
1996; Laing & Bridle 2002a,b) in order to account for a num-
ber of the observational characteristics of FR I radio sources.
The model of De Young (1993) to explain the FRI/FRII mor-
phological dichotomy is based on deceleration of the jet flow at

* Appendices A and B are only available in electronic form at
http://www.edpsciences.org

http://www.edpsciences.org/aa

in large-scale jets.

Given all the pieces of theoretical and observational evi-
dence concerning the ubiquity of shear layers in extragalactic
jets, it appears natural to analyze their influence on the dynam-
ics and stability of relativistic jets. An attempt to investigate
the growth of the Kelvin-Helmholtz (KH) instability in some
particular class of sheared, cylindrical relativistic jets was pur-
sued by Birkinshaw (1991). However, this study is limited to
the ordinary and low-order reflection modes, and the domain of
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jet parameters considered involves only marginally relativistic
flows (beam flow velocities <0.1c; ¢ is the speed of light) and
non-relativistic (jet, ambient) sound speeds (<0.01¢). Other ap-
proaches to linear analysis of the stability of relativistic strat-
ified jets (Hanasz & Sol 1996; Hardee & Hughes 2003) and
sheared, ultrarelativistic jets (Urpin 2002) have also been taken.
Several recent works combine linear analysis and hydrodynam-
ical simulations in the context of both relativistic jets (Rosen
et al. 1999; Hardee 2000, 2001) and GRBs (Aloy et al. 2002).

In this paper, we focus on the study of the evolution of
relativistic (planar) flows with shear layers through the linear
and non-linear regimes relying on both linear, analytical sta-
bility analysis and hydrodynamical numerical simulations. The
present work complements the one presented in Perucho et al.
(2004a,b; hereafter, Papers I and II, respectively), in which we
characterized the effects of relativistic dynamics and thermo-
dynamics in the development of KH instabilities in planar, rel-
ativistic jets in the vortex sheet approximation. We used a more
general setup for simulations with the inclusion of a set of sym-
metric (pinching) and antisymmetric (helical) sinusoidal per-
turbations in two dimensional slab jets and a thicker shear layer
(=0.2 R)) than that used to mimic vortex sheet evolution. The
use of slab jets allows for inclusion of helical perturbations,
which are known to be present in extragalactic jets. Moreover,
two dimensional simulations provide the possibility of a much
larger resolution than three dimensional ones. The aim of this
work is to study the stability properties of jets depending on
their initial parameters and the effect of shear layers in those
properties. We used the temporal approach, which allows for
larger resolution, and fixed two different grid sizes, depending
on the thermodynamical properties of jets, which are neither di-
rectly related nor coupled to the wavelength of a specific mode,
as was the case in Papers I and II. Jet parameters are based
on those of previous papers for direct comparison. We general-
ized our results with simulations where only one antisymmetric
mode is perturbed (similar to simulations in Paper I), and sim-
ulations of cylindrical jets, where several modes are perturbed
(as in simulations presented in this paper).

The plan of this paper is as follows. In Sect. 2 we describe
the numerical simulations and present the parameters used in
this paper. In Sect. 3 we describe our results concerning linear
and nonlinear regimes of new simulations; we discuss them in
Sect. 4 and present our conclusions in Sect. 5.

2. Setup for numerical simulations

The equations governing the evolution of a relativistic perfect-
fluid jet (see Paper I) are

2 P\ 1o b op_
Plo+5) o+ Vol+ Vo + 522 <0, M
ap P\|9%
Y(E +v- V,D)+(P + 2) b + V'()’U)]zo» ©
d —r
dwey) _ 3)

dr

In the preceding equations, c is the speed of light, p the particle
rest mass density. p stands for the relativistic density which is
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related to the particle rest mass density and the specific internal
energy &, by p = po(1 + &/c?). The enthalpy is defined as w =
o + p/c?, and the sound speed is given by ¢2 = I'p/w, where I
is the adiabatic index. The relation between pressure and the
specific internal energy is p = (I' — 1)gpg. The velocity of the
fluid is represented by v, and 7y is the corresponding Lorentz
factor. The operator d/dt appearing in Eq. (3) is the standard
Lagrangian time derivative.

The steady initial flow is 2D-planar and symmetric with re-
spect to the x = 0 plane. The flow moves in the positive z direc-
tion. Our simulations were performed in the so-called temporal
approach, as in Papers I and II. In this approach, the evolution
of perturbations in a periodical slice of an infinite jet is fol-
lowed along the time. In order to study the effects of shearing
in the development of the instability, we assumed a continuous
transition between the jet and the ambient (the same as the one
considered by Ferrari et al. 1982). The profiles of the axial ve-
locity and proper rest-mass density across this transition layer,
v,(x) and po(x), respectively, are given by

Uz,j

v(x) = W’ 4)
_ _ _Poa—Poj
Po(X) = Poa = -0 IR, 5)

In the previous expressions, v, ; represents the fluid flow veloc-
ity in the jet axis, whereas po ; and pg , are the proper rest-mass
density at the jet axis and in the ambient, respectively. The ex-
ponent m controls the shear layer steepness; in the limit m — oo
the configuration tends to the vortex-sheet case. In our present
calculations we have used m = 25, corresponding to a shear
layer of thickness 0.17 R;, about twice that used in Papers I
and II, in order to mimic the vortex sheet limit. From now on
all quantities representing the jet will be assigned the “;” sub-
script and the quantities representing the ambient medium will
be assigned the “a”.

Following conclusions given in the Appendices of both
Papers I and 11, the numerical resolution used was 256 cells/R
in the transversal direction times 32 cells/R; in the axial direc-
tion. Note that we reduced the transversal resolution with re-
spect to the simulations in Papers I and II. One reason for that
were computational time limitations, as now our grids are twice
as large in the transversal direction as those used in Paper I,
since we are now combining symmetric and antisymmetric
structures. However, in the present simulations, transversal res-
olution is not as critical as in the previous works, since we are
not interested in mimicking the evolution of instability in the
vortex sheet limit and therefore do not have steep shear layers.
The saving in transversal resolution allowed us to double axial
resolution, which affects the non-linear results (see Appendix
in Paper II). The physical sizes of grids are 8 R; axially times
6 R; transversally for hot jets (models D, see Table 1) and 16 R
axially times 6 R; transversally for cold jets (models A and B
in Table 1). The different axial size is due to hot models having
shorter unstable modes; see Sect. 3.1, where we show linear
problem solutions for one cold and one hot jet.

Previous to these simulations, we performed several repre-
sentative runs (B05, D05, B20, D20) with the aim of studying
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Table 1. Equilibrium parameters of different simulated jet models. The meaning of the symbols is as follows. y: jet flow Lorentz factor; &:
specific internal energy; c: sound speed; p: pressure; v: jet-to-ambient relativistic rest mass density contrast; 7: jet-to-ambient enthalpy contrast;
M;: jet relativistic Mach number; ko 3: excited longitudinal wavenumbers. Labels a and j refer to ambient medium and jet, respectively. All
the quantities in the table are expressed in units of the ambient density po,, the speed of light ¢, and the jet radius R;.

Model| v & &4 Csj  Ca p v n M|k k k k
A2.5 2.5 0.08/0.008 0.18 0.059 0.0027 0.11 0.11 12.5{0.39 0.78 1.18 1.57
B2.5 |2.5 0.42]0.042 0.35 0.133 0.014 0.14 0.15 6.12{0.39 0.78 1.18 1.57
D2.5 |2.5 60.0|6.000 0.57 0.544 2.000 0.87 0.90 3.29(0.78 1.57 2.36 3.14
BO5 | 5 0.42(0.042 0.35 0.133 0.014 0.14 0.15 13.2]10.39 0.78 1.18 1.57
D05 | 5 60.0/6.000 0.57 0.544 2.000 0.87 0.90 7.01|0.78 1.57 2.36 3.14
A10 | 10 0.08]0.008 0.18 0.059 0.0027 0.11 0.11 54.210.39 0.78 1.18 1.57
B10 |10 0.42(0.042 0.35 0.133 0.014 0.14 0.15 26.9|0.39 0.78 1.18 1.57
D10 | 10 60.0]/6.000 0.57 0.544 2.000 0.87 0.90 14.2|0.78 1.57 2.36 3.14
B20 |20 0.42{0.042 0.35 0.133 0.014 0.14 0.15 54.0|0.39 0.78 1.18 1.57
D20 |20 60.0|6.000 0.57 0.544 2.000 0.87 0.90 28.5|0.78 1.57 2.36 3.14

the evolution of models under single eigenmode perturbations
in planar antisymmetric geometry, exciting the first reflection
antisymmetric mode at its peak growth rate. These simulations
were used to check the consistency of the numerical results in
the linear phase with the linear stability analysis for relativis-
tic, sheared flows. Discussion of the evolution of these models
through the non-linear regime can be found in Appendix A.
Tests were also performed in order to assess the difference in
the evolution of linear and non-linear regimes using a general
sinusoidal perturbation (to be used in this paper) and a super-
position of eigenmodes, as done with the first body mode alone
in Paper I. Results showed that structures and qualitative prop-
erties of the resulting flow were basically the same. This fact
confirms that general perturbations excite eigenmodes of the
system.

The parameters used in the simulations are shown in
Table 1. We swept a wide range in Lorentz factors (from 2.5
to 20) and in specific internal jet energies (from 0.08¢? to 60c?)
in order to obtain a global view of the response of different ini-
tial data sets to perturbations. All the models correspond to a
single-component ideal gas with adiabatic exponent I' = 4/3.
These parameters were chosen in order to study the stability
regions found in Paper II: Class I for cold and slow mod-
els, which were deeply mixed and mass loaded; Class II for
hot and fast jets, which were slowly mixed in the nonlinear
regime, progressively losing their axial momentum; Class 11
for hot and slow jets, with properties between Classes I and II,
and Class IV for cold/warm and fast models, which were the
stablest in the nonlinear regime. We performed simulations
for models B05!, B10, B20, D05, D10, and D20 of Paper II,
and added A2.5 (same thermodynamical properties as A0S in
Paper 1), A10, B2.5, and D2.5. Models A2.5, B2.5, and B05
correspond to regions of Class I jets. Models D10 and D20 cor-
respond to Class II, D2.5 and D05 to Class III, and A10, B10
and B20 belong to Class IV.

! Boldface will be used for new simulations in order to differentiate
them from those in Paper II with the same name.

Perturbations we applied adding the following sinusoidal
form to transversal velocity, v,(x, 2):

N-1
V., ) '
Uy = Nl [nZ:(; sin((n+ Dk, z + @) sz((n + 1)7”()%]

M-1
+ ‘]/\’/‘[l [Z Sin((m + 1) kn 2 + @) sin((m + 1)7”5)]’ (6)

m=0

where V,(~107°) is the amplitude given to the perturbation,
ki are the wavenumbers of the grid box (so that (n + 1) k,, and
(m + 1)k, stand for the harmonics of the symmetric (pinch-
ing) and antisymmetric (helical) modes, respectively), and ¢,
and ¢,, are random phases given to each mode. In our simula-
tions, four symmetric (N = 4) plus four antisymmetric modes
(M = 4) were excited, i.e., the fundamental mode of the box
and the first three harmonics.

Numerical simulations were performed using a finite-
difference code based on a high-resolution shock-capturing
scheme which solves the equations of relativistic hydrodynam-
ics written in conservation form (Marti et al. 1997, and refer-
ences therein). Before performing the simulations, several im-
provements were made in the numerical code. In particular, the
relativistic PPM routines (Mart{ & Miiller 1996) were properly
symmetrized. The code was recently parallelized using OMP
directives. Simulations were performed with 4 processors on
SGI 2000 and SGI Altix 3000 machines.

3. Results
3.1. Linear regime
3.1.1. Perturbation theory

We introduced an adiabatic perturbation of the form
ocg(x) exp(i(k.z — wr)) to the flow Egs. (1)-(3), w and k; (k)
being the frequency and wavenumber of the perturbation along
(across) the jet flow. We followed the temporal approach, in
which perturbations grow in time, with real wavenumbers and
complex frequencies, with the imaginary part being the growth
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Fig.1. Solutions for the linear perturbation differential equation.
Left panel: Antisymmetric solution for model BO0S. Right panel:
Symmetric solution for model D20. Vertical lines stand for the per-
turbed wavenumbers in the numerical simulations (from left to right:
ko, k1, k, and k3). Let us note that the fundamental mode does not ap-
pear in the right panel, as its growth rates are lower than the scale of
the plot.

rate. By linearizing the equations and eliminating the pertur-
bations of rest mass density and flow velocity, a second-order
ordinary differential equation for the pressure perturbation Py,
is obtained (Birkinshaw 1991; Aloy et al. 2002)

2y20) (k, — wup;)
P/l/ +( Yo 0z 0. _ (7)

’
pe,O ,
1
w — UOzkz Pe,0 + PO

— vnk)?
+7§ {(wc# - (kz - wUOZ)Z] P =0
5,0

where p.o is the energy-density of the unperturbed model,
Py the pressure, vy, the three-velocity component, yy =
1/ . /1 - v%z the Lorentz factor, and ¢, the relativistic sound
speed. The prime denotes the x-derivative. Unlike the vortex
sheet case, in the case of a continuous velocity profile, a dis-
persion relation cannot be written explicitly. The Eq. (7) is in-
tegrated from the jet axis, where boundary conditions on the
amplitude of pressure perturbation and its first derivative are
imposed

Pi(x=0)=1, Pi{(x=0)=0 (sym. modes),
Pi(x=0)=0, P{(x=0)=1 (antisym. modes).

@)

Solutions satisfying the Sommerfeld radiation conditions (no
incoming waves from infinity and wave amplitudes decay-
ing towards infinity) are found with the aid of the numerical
method, based on the shooting method (Press et al. 1997) pro-
posed in Roy Choudhury & Lovelace (1984).

Linear stability analysis was performed for all models pre-
sented in Sect. 2, in the symmetric and antisymmetric cases.
Figure 1 shows examples of solutions for the linear problem for
sheared jets in models B0S and D20. Top panels in Fig. 1 show
the (real part of) frequency as a function of wavenumber, and
bottom panels show the imaginary part of frequency or growth
rate, defined as the inverse of the time needed by a given mode
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Fig. 2. Specific modes of solutions shown in Fig. 1, symmetric so-
lution for model D20. Dotted line: first body mode; dashed: second
body mode; dash-dot: twentieth body mode; dash-triple dot: twenty-
fifth body mode. Arows point to both the broad maxima and the small
wavenumber peaks present in every single mode. Low wavenumber
peaks of high order body modes show higher growth rates and are
thus defined as (shear layer) resonances.

to e-fold its amplitude, also as a function of wavenumber. Each
mode is defined by its wavelength, frequency and growth rate.

From these results, we note that the individual reflection
mode solutions of the shear problem present lower growth rates
for most wavenumbers, especially in the large wavenumber
limit, than do the corresponding solutions in the vortex sheet
case. This behaviour was noticed for the first time by Ferrari
et al. (1982) for the first and second reflection modes in the
non-relativistic limit. The growth rate curves corresponding to
a single n,th reflection mode consists of a broad maximum at
higher wavenumbers and a local peak which is placed in the
low wavenumber limit, near the marginal stability point of a
chosen reflection mode. Regarding the relativistic case, while
in the vortex-sheet limit the small wavenumber peaks for indi-
vidual modes are relatively unimportant (since the maximum
growth rates at these peaks are lower than those of other unsta-
ble modes), while in the presence of the shear-layer they dis-
play high growth rates for high order body modes. Therefore
we shall call these peaks the shear layer resonances. In Fig. 2
we show the solution for four specific modes of model D20,
from Fig. 1. Low order body modes do not show high peaks
at maximum unstable wavelengths, whereas high order body
modes show peaks (shear layer resonances) at this maximum
wavelength and do not present broad maxima.
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Table 2. Dominant modes in the linear phase of the numerical simulations. w;,: maximum growth rate for the jth overtone wavenumber excited
in the simulation (see Table 1) derived from linear stability analysis. Left columns: symmetric mode; right columns: antisymmetric one. The
dominant mode refers to the mode with the largest amplitude in rest mass density perturbation as derived from Fourier analysis of the box,

written from larger to smaller amplitude when more than one is present.
simulation. Growth rate values are in ¢/R; units. *: models where irregu

w;: fitted pressure perturbation growth rate for the linear regime in the
lar growth affects the evolution (see text).

Model Wik, Wik, Wi , Wik, Dominant w;
Symm. Antis. Symm. Antis. Symm. Antis. Symm. Antis.
A2.5 0.036  0.032 0.038 0.037 0.034  0.036 0.031 0.034 ko 0.030
B2.5 0.042  0.056 0.070  0.052 0.066  0.084 0.073  0.080 ki, ky 0.070
D2.5 0.046  0.160 0.131 0.182 0.210  0.194 0.142  0.256 ka, ky 0.200
BOS 0.037  0.035 0.037 0.044 0.036  0.038 0.034 0.035 ko, ki 0.035
D05 0.068  0.063 0.085 0.063 0.100  0.068 0.068 0.110 ki, ko, ko 0.080
Al10 0.009  0.009 0.006 0.006 0.005  0.006 0.006 0.006 ko* 0.004 (0.005)
B10 0.022  0.018 0.019 0.021 0.018  0.017 0.013  0.013 ko 0.020
D10 0.034  0.038 0.041 0.037 0.044  0.034 0.051 0.035 ki, ko 0.040
B20 0.011  0.010 0.009 0.010 0.007  0.007 0.009 0.010 ko* 0.006 (0.008)
D20 0.018 0.018 0.020 0.017 0.022 0.017 0.027 0.028 ki, ko 0.016

From Eq. (7) we see that radial structure of perturbations
depends on physical parameters of the flow, as well as on the
given frequency and axial wavenumber of a given perturba-
tion. Resonances are determined by this transversal structure,
and therefore we should expect changes in their characteris-
tics depending on the properties of the shear layer and physical
parameters: i) a decrease of the jet Lorentz factor reduces the
dominance of the growth rates of resonant modes with respect
to ordinary and low order reflection modes; ii) a decrease in
the specific internal energy of the jet causes resonances to ap-
pear at longer wavelengths; iii) further widening of the shear
layer reduces the growth rates and the dominance of the shear-
layer resonances, suggesting that there is an optimal width of
the shear layer that maximizes the effect for a given set of jet
parameters; the largest growth rate of resonant modes moves
to smaller wavenumbers and lower order reflection modes;
iv) perturbations with wavenumber higher than some limiting
value (that decreases with the shear layer width) are signifi-
cantly diminished (short-wavelength cut-off), consistent with
previous non-relativistic results (Ferrari et al. 1982). The dis-
covery of the shear layer resonances and their potential role in
the long-term stability of relativistic jets is reported in Perucho
et al. (2005).

3.1.2. Simulations

Table 2 summarizes the properties of the linear phase in our
simulations. The left part of the table (Cols. 2-9) gives the
theoretical growth rates of the perturbed wavelengths, taken at
the vertical lines in Fig. 1. The last column gives the values
of the growth rate corresponding to the dominant wavelength
as deduced from Fourier analysis of the transversal profiles
of the rest mass density distribution in the jet. Note, however,
that Fourier analysis can only give us information about wave-
lengths, but cannot distinguish between symmetric and anti-
symmetric modes. The growths of pressure, axial, and transver-
sal velocity perturbations along the simulations are shown in
Fig. 3.

Comparison of the evolution through the linear phase of
the different models in the numerical simulations and from the
linear stability analysis is summarized as follows:

— A2.5: modes with longer wavelengths are faster growing,
and their Fourier amplitudes are consistently larger than
those for shorter modes in the simulation. Growth rate
found in the simulation is close to the one expected from
linear stability analysis.

B2.5: first (k;) and second (k;) harmonics of the box
have larger amplitudes in the Fourier analysis and, there-
fore, dominate the linear regime. Linear stability analysis
gives k1, kp and k3 as the fastest growing modes, with a sim-
ilar growth rate to that found in the simulation. However, k3
modes have smaller amplitudes.

D2.5: found growth rate for the simulation is close to that
of k; and k, modes, which is confirmed by Fourier analy-
sis. Antisymmetric k3 mode might grow with slower rates
than theory predicts due to numerical viscosity that affects
shorter modes more than longer ones.

B05: Fourier analysis shows competition between funda-
mental and first harmonics of the box (kg and k;, respec-
tively). This, as well as the value of the mean growth rate, is
confirmed by the linear stability analysis. The second har-
monic of the box (k) is damped.

DO0S5: according to Fourier analysis, k; and k, modes domi-
nate evolution in the linear regime. The growth rate is close
to that of the symmetric k; mode, despite the fact that sym-
metric k and antisymmetric k3 present faster growth rates,
so they appear to be damped.

A10: Fourier analysis shows that longer modes dominate,
in agreement with linear stability analysis. However, the
growth rate in the numerical simulation is two times smaller
than predicted. We also observe in Fourier analysis that
very short modes, excited as harmonics of perturbed wave-
lengths, become important by the end of the linear regime.
B10: k) modes dominate, as predicted by linear stability
analysis.

D10: as in models D2.5 and D05, k; and k, have larger
amplitudes in Fourier analysis, but the smaller wavelength
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modes (k3) are damped with respect to the predictions of
linear stability analysis.

— B20: longer modes dominate the linear evolution, in agree-
ment with linear analysis, but the growth rate in the

numerical simulation is 1.5 times smaller than predicted.
After some time, short, fast modes, like those appearing in
model A10, become dominant and lead to a smooth transi-
tion to the non-linear regime.



M. Perucho et al.: Nonlinear stability of relativistic sheared planar jets

(=T I .

LY

0 2 46 810121416

869

0 2 46 8 10121418

0 2 46 8 10121418

Fig. 4. Upper panels: pressure (left) and perpendicular velocity perturbation (right) at late stages of linear phase (model D20). Lower panels:
pressure (left) and perpendicular velocity perturbation (right) corresponding to one resonant mode from linear analysis. The linear, grey scale is
arbitrary. Amplitudes are maxima at the shear layer, hence the name of shear layers resonances given to these modes. Oblique waves in upper
panels are the result of longer wavelength perturbations, not present in the bottom panels.

— D20: long modes present larger amplitudes with predicted
growth rates up to the moment when shorter modes reach
larger amplitudes, the same effect as found in models A10
and B20.

It is observed in several simulations (e.g., B2.5, B0S, D2.5,
D05, D10) that modes with similar or even slightly higher
growth rates than those dominating in simulations present
smaller amplitudes in the linear regime. It happens usually for
shorter modes (typically k», k3), so it may be caused by nu-
merical viscosity, for less cells are involved in one wavelength.
However, the way in which we perturb the jet may also favor
the dominating growth of certain modes starting with a larger
amplitude. We added a general sinusoidal perturbation, so the
input amplitude of the perturbation at a given wavelength is
shared in a random way among all the modes present at that
wavelength. This makes some modes start their growths with
smaller amplitudes, as we could see in the Fourier analysis of
different models. Initial low amplitudes are more probable for
short wavelength modes, as more eigenmodes are present at a
given wavenumber in this range (see Fig. 1). From an initial
lower amplitude, and taking into account that they have similar
growth rates to other modes, they grow with smaller amplitudes
for the rest of the linear phase.

Models A10 and B20, marked with an asterisk in Table 2,
have fitted growth rates in the first part of the linear regime
below the predicted values. Note that these models have the
lower growth rates. After this initial phase, short harmonics
start dominating the linear growth.

We have observed the appearance of fast growing, very
short modes in models A10, B20, and D20, which are clearly
associated to the resonant modes presented above in the pre-
vious section and which could have been excited as harmon-
ics of the initially perturbed wavelengths. The same kind of

resonant mode might have developed in model C20 of Paper 11
and caused the irregular linear growth found with respect to
the rest of models. These modes generate a rich internal struc-
ture in the jet due to their large perpendicular wavenumber
or, equivalently, short perpendicular wavelengths (characteris-
tic of high order body modes). A direct comparison between the
structure generated by these resonant modes in the numerical
simulations and that coming from linear stability analysis can
be seen in Fig. 4. In this figure, we display one snapshot from
model D20 and the theoretical counterpart using one of those
resonant modes. The upper plots correspond to the numerical
simulation in the linear regime, where the signature of the ini-
tial perturbations (ko,k;,k; and k3) are the oblique waves seen
outside the jet. As seen in these plots, resonant modes grow to
amplitudes larger than those of the long waves, as indicated by
the black/white scale saturating precisely on the interface. The
lower plots represent the theoretical structure that we would
find if we had only excited a resonant mode and that is fairly
similar to the one appearing in the shear layer of the simulated
jet. Let us point out, however, that it is difficult to identify the
exact mode in the simulation, as the resonant modes overlap so
much (see Fig. 1) and it may happen that what we see is the
structure resulting from a combination of competing resonant
modes.

According to the linear stability analysis, resonant modes
have the highest growth rates in high Lorentz factor jets and,
among them, in colder jets. This could be the reason why they
only appear in simulations of models A10, B20, and D20.
Table 3 collects the models which present maximum growth
rate for all resonant modes (i.e., at any wavelength), found
in the solutions to the linear problem, above the growth rates
of the perturbed modes. Maximum growth rates for resonant
modes in those models where they have been found, along with
the fitted growth rates in the simulation, are listed. Typically,
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Table 3. Growth of resonant modes. Models which present a global
maximum growth rate (according to the linear analysis) for all reso-
nant modes (i.e., at any wavelength) above the growth rates of the per-
turbed modes are listed. w; m,,: maximum growth rate for all resonant
modes from linear analysis; w ,,,: fitted growth rates of pressure and
perpendicular velocity perturbations for the fast growth linear regime
in the simulation, only for those simulations where it occurs; w;: same
as w; p,, for axial velocity. All values are in ¢/R; units.

Model | Wimax  Wips, Wiy
BO5 | 0.052 - -
D05 0.11 - -
A10 | 0.013 0.017 0.009
B10 | 0.035 - -
D10 | 0.057 - -
B20 | 0.026 0.036 0.036
D20 | 0.035 0.070 0.047

the growth rates from the numerical simulations are about
1.4-2.0 times higher. This difference remains unexplained, but
it could be caused by second-order effects, like interaction be-
tween modes.

Summarizing, two kinds of linear growth are found in these
simulations, one dominated by longer modes typical of slower
jets and another one where short, fast modes appear. This dif-
ference is important, for the transition to the non-linear evolu-
tion depends critically on the dominant modes at the end of the
linear regime.

Table 4 shows the times at which linear phase ends. As the
end of the linear regime we selected the moment when one
of the variables (usually axial velocity) changes its slope (de-
parts from the linear growth, see definitions in Paper I). On the
other hand, we noticed that the longitudinal velocity perturba-
tion grows linearly up to values close to the speed of light and
then beyond the sound speed. This means that shocks should
form at the end of linear phase, as it is the case; see Fig. 3 in
Paper I, where we observe weak shocks starting to appear as
conical structures. We could have selected the end of the linear
regime as the moment when these shocks start to appear. This
would relate the end of the linear regime directly to the internal
sound speed. We see that colder jets have longer linear phases
than hot ones, due to smaller typical growth rates in the former.
tin times are larger than those in Paper I, as growth rates are re-
duced by the presence of the shear layer. Model A10 presents
the longest linear phase.

3.2. Saturation and transition to nonlinear regime

Saturation of perturbations is reached (see Paper I) when per-
pendicular velocity cannot grow further in the jet reference
frame due to the speed of light limit. Saturation times f, for
the different models are listed in Table 4. In this phase, struc-
tures generated by dominating modes become visible in the
deformations of the jet. In Fig. 5 we show snapshots of three
models (B2.5, D05, and D10) at saturation time where mode
competition derived from Fourier analysis is clearly observed.
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Table 4. Times for the different phases in the evolution of the per-
turbed jet models. #;,: end of linear phase (the amplitudes of the dif-
ferent quantities are not constant any longer). f.: end of saturation
phase (the amplitude of the transverse speed perturbation reaches its
maximum). i the tracer starts to spread. feq: the peak in the am-
plitude of the pressure perturbation is reached. #e: the jet has trans-
ferred to the ambient 1% of its initial momentum. Ap.: relative value
of pressure oscillation amplitude at the peak of pressure perturbation
(see Fig. 3).

Model Din  Imex ITmix  Fsat tpcak Apcak
A2.5 225 250 300 340 340 100
B2.5 110 125 140 150 165 20
D25 40 45 50 50 50 2
B05 220 275 300 280 330 70
D05 105 125 110 130 140 2
A0 725 - - - - 3
B10 400 520 500 500 540 100
D10 205 260 220 290 300 4
B20 475 - 520 550 590 4
D20 275 510 300 275 320 2

Asymmetric structures appear as a result of several symmetric
and antisymmetric modes with large amplitudes.

In Paper II we also discussed how at the end of the satu-
ration phase nearly all the simulations lead to a sharp peak in
the pressure oscillation amplitude. These peaks are also seen
in the present simulations (see Fig. 3). The relative values of
pressure oscillation amplitude at the peak Ayeax and the corre-
sponding times #,cak are listed in Table 4. The values of Apeak
were connected with the non-linear evolution of the flow. Those
cases in which Apea > 70 developed a shock in the jet/ambient
interface followed by the sudden disruption of the jet. From
Table 4, we see that peak values in the present simulations are
in general qualitatively the same as the corresponding ones in
Paper 1. Colder and slower jets have larger peaks and hence
suffer stronger shocks after saturation. The main difference be-
tween the values in this paper and those presented in Paper I ap-
pears for models B20 and D20, where shock strength is much
smaller due to the appearance of resonant, stabilizing modes,
as we discuss next.

The parallel and perpendicular wavelengths of the shear-
layer resonant modes, A, and A,, respectively, are both small
(A; £ Rj) with A, < A,. Therefore their wavevectors are al-
most perpendicular to the jet axis so the waves propagate from
the shear layer towards the jet axis. On the other hand, the
resonant modes have high growth rates, exceeding the growth
rate of other modes, so they start to dominate in the evolution.
Subsequently, the resonant modes saturate as soon as the flow
velocity oscillation amplitude approaches the speed of light. As
the maximum amplitude is reached, the sound waves steepen
while travelling towards the jet axis and form shock fronts on
the leading edges of wave profiles Dissipation of the oscilla-
tion energy of resonant modes in shocks changes the back-
ground flow, so that the amplification conditions of the longer
wavelength modes change during the course of time,
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Fig. 5. Snapshots of logarithm of pressure (leff) and Lorentz factor (right) for models B2.5 (upper panels), DOS (center panels) and D10
(bottom panels) at t.,, where irregular structures caused by mode competition are observed.

reducing the value of Ape.x and preventing the formation of a
strong shock.

Finally, as found in Paper II, the generation of the shock
wave at the jet/ambient interface is imprinted in the evolution of
the maxima of the transversal Mach number of the jet with re-
spect to the unperturbed ambient medium. This quantity is de-
finedas M;, = v;.10;1/(Yc,Csa), With y; 1 and y. the Lorentz
factors associated to v;, and cg,, respectively. A value signif-
icantly larger than 1 around #y,x points towards a supersonic
expansion of the jet at the end of the saturation phase. This
magnitude is shown in Fig. 6. We observe a clear inverse ten-
dency of the peak value of this magnitude from colder to hotter
and from slower to faster jets, with the exception of A10 with
respect to B10 and D10, due to the presence of the resonant
stabilizing modes preventing the formation of a strong shock.

It is important to note that models with Apec > 10
(A2.5, B2.5, B0S, and B10) coincide with those developing
larger transversal Mach numbers, see top panels of Fig. 5 for
model B2.5, where pressure maxima are observed at the jet

center and in the interaction of the growing wave with the
ambient.

3.3. Fully non-linear regime

In Paper II, the non-linear evolution of the instability in the
different models was characterized through the processes of
jet/ambient mixing and momentum transfer. In Fig. 7 we show
the width of the mixing layer as a function of time for all the
models. The times at which mixing starts in the different mod-
els fmix appear listed in Table 4. In all cases these times are
around fs. Generally, models developing wider shear layers
are also more mixed; i.e., the amount of mass in zones with
jet mass fraction strictly different from O and 1, is higher. We
observe that those models with larger values of Apeac (lower
Lorentz factor and colder jets) develop wider layers (>5R;)
soon after saturation due to turbulent mixing induced by the
shock, while those models where resonant modes appear do
not show strong mixing with the ambient. Models B10 and D10
undergo a mixing process, though slower than the former.
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Fig.7. Evolution of the mean width of the jet/ambient mixing layer
(for tracer values between 0.05 and 0.95) with time for all simulations.
Lines represent the same models as in Fig. 6. A value of 5 R; for the
width of the mixing layer (horizontal dashed line) serves to classify
the evolution of the different models.
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Fig. 8. Evolution of the normalized total longitudinal momentum in
the jet as a function of time. Lines represent the same models as in
Fig. 6. The long-dashed horizontal line identifies those models trans-
ferring more than 50% of the initial jet momentum to the ambient.

Figure 8 shows the fraction of initial axial momentum kept
by the jet as a function of time. Axial momentum is lost first
through sound waves forming the linear perturbations and sec-
ond, but more important, through shocks themselves and by
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Fig. 9. Evolution of the normalized total transversal momentum in the
jet as a function of time for all the simulations. Lines represent the
same models as in Fig. 6.

subsequent mixing, which implies sharing of momentum with
the ambient medium. Correlation with Fig. 7 is remarkable.
Models developing wide mixing layers coincide with those los-
ing more than 50% of their initial axial momentum just after
saturation; models B10 and D10 share their momentum with
the ambient medium continuously in the non-linear regime;
and models where resonant modes dominate saturation keep
almost all their initial momentum by the end of the simula-
tions. Results derived from Fig. 8 are corroborated by Fig. 9.
In the latter we plot the total transversal momentum in the
jets normalized to the corresponding longitudinal momentum.
Transversal momentum in the jet (initially zero) is generated
through turbulent motions and continuous conversion of kinetic
into internal energy. The value of the normalized transversal
momentum at a given time is an indication of how far from
equilibrium the jet is. We observe that colder and lower Lorentz
factor models present strong peaks at tg, coincident with the
triggering of the shock and the sudden transfer of longitudi-
nal momentum seen in the previous plot: Those models where
resonant modes appear barely generate any transversal momen-
tum, and models B10 and D10 do not present strong peaks at
saturation but display a steady transmission of the transversal
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momentum through the non-linear regime (see Fig. 9), imply-
ing continuous loss of energy.

Panels showing several physical quantities for all models
at the end of simulations are presented in Figs. 10-19. Colder
and slower models (A2.5, B2.5, and B05) show turbulent mix-
ing in a wide region and are barely relativistic by the end of
the simulations. Models D2.5 and D05 have mixed deeply (the
jet mass fraction is less than one everywhere) but keep larger
Lorentz factors. Moreover, these models seem to have stopped
the widening process of the mixing layer as it is deduced from
the flattening of the mixing layer width as a function of time
in Fig. 7. Models B10 and D10 are also undergoing turbulent
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mixing. From Figs. 7 and 8, it is deduced that B10 and D10
are still mixing and transferring momentum by the end of sim-
ulations. These models will eventually lose a large amount of
their initial longitudinal momentum, thereby becoming colder
and denser due to mass entrainment from the ambient medium.
Finally, models A10, B20 and D20 present a fast core ~1 R;
wide with rich internal structure as a consequence of the reso-
nant modes (see subsection on the linear regime), which is sur-
rounded by a hot and slow shear layer that extends up to ~2 R;
in models A10 and B20 or ~4 R; in model D20. Let us point out
that model A10 (Fig. 15) displays a highly asymmetric struc-
ture, resulting from the development of resonant modes only
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on the upper interface. This is a consequence of the combina-
tion of symmetric and antisymmetric modes, and probably of
nonlinear interactions between resonant modes, which result in
destructive interference on one side of the jet and constructive
interference on the other.

4. Discussion
4.1. Non-linear stability

Simulations presented in Papers I and II, performed for the
most unstable first reflection mode of the corresponding mod-
els, confirmed the general trends resulting from the linear sta-
bility analysis: the faster (larger Lorentz factor) and colder jets
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have smaller growth rates in the linear regime. In Paper II, the
non-linear evolution of the instability in the different models
was characterized through the processes of jet/ambient mixing
and momentum transfer. The models were then classified into
four classes (I to IV) according to the particular nature of these
processes in each of the models. Class I models (correspond-
ing to cold and slow jets) were deeply mixed and mass-loaded
by the end of the simulation. Models in Class II (hot and fast
jets) were slowly mixed in the nonlinear regime, progressively
losing their longitudinal momentum. Models in Class III (hot
and slow jets) have properties between Classes I and II. Finally,
Class IV (containing cold/warm and fast models) appeared as
the most stable in the nonlinear regime. Shear layers formed in
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all the models as a result of the non-linear evolution. Models
in Classes I/II developed broad shear layers and appeared to-
tally mixed, cooled, and slowed down. In contrast, models in
Classes III/IV have an inner core surrounded by thinner layers
and keep a larger amount of their initial longitudinal momen-
tum. We performed a number of additional simulations keep-
ing the properties of the ambient medium fixed and changing
the rest-mass density of the jet and the Lorentz factor. Results
confirmed that these models behave like previous simulations,
and are naturally placed in the classification already defined.

The stability classes considered in Paper II were defined
according to the jet response to single modes. In this paper
we revisit this classification scheme in the light of the present
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results based on more general perturbations. From the analy-
sis of Figs. 7-9, we classified jets depending on their nonlinear
behaviour in three different groups:

— Unstable 1 (UST1) models: jets which are disrupted after
a strong shock is formed after the linear regime, enhancing
turbulent mixing with ambient medium. It includes mod-
els A2.5, B2.5, D2.5, B05, and D05, i.e., lower Lorentz
factor jets. The mixing layer width becomes larger than 5 R
(Fig. 7), and they share more than 50% of their initial mo-
mentum with the ambient medium (Fig. 8).

— Unstable 2 (UST2) models: jets which are disrupted in
the non-linear phase by a continuous process of momen-
tum transfer to the external medium, like B10 and D10.
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This is observed in Fig. 9 as a non-decreasing transversal
momentum in the nonlinear regime. These models eventu-
ally end up sharing a large fraction of initial momentum
and developing a wide mixing layer.

— Stable (ST): jets which develop resonant modes and remain
collimated for long time, A10, B20, and D20. These models
have a thin mixing layer and share a very small fraction
of their axial momentum with the ambient medium. They
expand, but remain collimated.

In the course of their evolution, the jets develop a rich
transversal structure in all the physical variables. This struc-
ture is different depending on the non-linear evolution of the
jets. Figure 20 displays the transversal profiles of relevant
physical quantities averaged along the jet at the end of the
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simulations for model A2.5, representative of models in UST1,
D10 of UST?2, and B20 of ST.

Model A2.5 shows a totally mixed, mass-loaded flow with
averaged maximum speed 0.4c, i.e., barely relativistic, as these
jets are efficiently slowed down by mass entrainment after the
disruption. The mass loading is inferred from the low values
in the tracer profile (f < 0.3), which imply a large fraction
of ambient medium material inside the jet. The efficient con-
version of kinetic energy into internal energy enhanced by the
shock triggered in the early post-linear phase causes the jet to
increase its specific internal energy.

UST?2 jets undergo a slower process of mixing, so they still
keep a larger fraction of axial velocity and Lorentz factor by
the end of the simulation, even though they appear to be totally
mixed (f < 0.7 everywhere). However, as we have mentioned
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in the previous section, the mixing and slowing process is still
going on in B10 and D10, so it is clear that if the simulation had
continued, the longitudinal velocity and Lorentz factor values
would be smaller than those found. We also observe that the
more mass-loaded parts of the jet (i.e., the region with —10 R; <
x < 0) are consistently colder.

Finally, the jet in model B20 remains very thin. The veloc-
ity profile of the model has widened by 2—-3 R; by the end of
the simulation, coinciding with the generation of a hot shear
layer. This layer is seen in the figure as an overheated and un-
derdense (p < 0.1) region shielding the unmixed core (f = 1.),
which keeps almost all its initial axial momentum and Lorentz
factor. The core has a rich internal structure (see the pressure
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panel in Fig. 18) that also manifests in the spiky structure of
the shows longitudinal momentum profile.

A comparison of the present non-linear evolution classifi-
cation scheme and that of Paper II (classes I-IV) allows us to
conclude that, in general, models in Classes I and III fall into
UST]1, whereas models in Class II corresponds to UST2 and
those in Class IV to ST. The reason models D2.5 and D05
(belonging formerly to Class III) move to UST1 may be the
inclusion of longer wavelength perturbations, along with the
antisymmetric modes, which are more disruptive than the sym-
metric first reflection mode used in the previous work, and the
lack of axial resolution in the latter, as discussed in the ap-
pendix of Paper II. This can be seen by comparing structures
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Fig. 20. Averaged transversal structure in the final state of the jets corresponding to models A2.5 (upper panels), D10 (middle), and B20 (bot-
tom). Left panel (thermodynamical quantities): solid line, tracer; dotted line, rest mass density; dashed line, specific internal energy. Right panels
(dynamical quantities): solid line, longitudinal velocity; dotted line, lorentz factor normalized to the initial value in the jet; dashed line, longi-
tudinal momentum normalized to the initial value in the jet. Specific internal energy for model D10 was divided by 100 to fit in the scale.

and evolution of model DO0S here and in Paper II, in particular
the evolution of the mixing and momentum transfer.

Regarding UST?2 here compared to former class II, B10 and
D10 undergo a very similar slow process of momentum trans-
fer to the external medium to that observed for D10 and D20 in
Paper 11, although their temperatures are very different and the
shock in B10 is much stronger than in D10 (see Table 4). The
reason for this slow momentum exchange may be the same as
proposed in Paper II for models D10 and D20, i.e., a continuous
conversion of kinetic into internal energy due to the large initial
Lorentz factor, which acts as a source of transversal momentum
favoring the process of mixing and mass-loading. Model B10
changes from Class I in Paper II to UST2 here, meaning that
disruption occurs by slow mixing in the new simulation, com-
pared to sudden disruption in the previous one.

Models in Class IV were characterized by a rich internal-
structure jet preserving a large fraction of initial momentum

and Lorentz factor. ST models share these features, but now we
are able to clearly associate them to with the growth of resonant
modes, which could be the reason for the breaking of the linear
slope in model C20 in Paper I (see Fig. 2 there). Steepening
of short wavelength perturbations at the shear layer generates
small shocks which favor local mixing and an efficient conver-
sion of kinetic into internal energy. As a result of this process,
the shear layer heats up and the jet expands to form a hot and
underdense layer around the jet core (see Fig. 20). It is remark-
able that model A10 is largely asymmetric by the end of the
simulation (see Fig. 15). This is a consequence of the resonant
modes only growing on one side of the jet during the linear
regime, and it is understood on the basis of asymmetry resulting
from mixture of symmetric and antisymmetric modes. This ef-
fect, though much less evident, is also observed in model B20.
Finally, model D20 has moved from class II in Paper II to ST
here, clearly due to the appearance of resonant modes. This fact
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Fig. 21. Relativistic internal jet Mach number (M) versus jet Lorentz
factor (y) of the simulated models here and in Papers I and II. Symbols
represent different non-linear behaviors: crosses stand for UST1 dis-
rupted jets (low relativistic Mach number and low Lorentz factor);
triangles for UST2 jets (moderately fast and supersonic), and squares
for ST jets (highly supersonic and fast jets). Models with two different
symbols are those with a different evolution in simulations presented
here and those from Papers I and II (see text).

allows us to conclude that the fate of ST models would be ex-
actly the same as those in UST2, if it were not for the growth
of resonant modes; hence, their importance in the long term
stability of these jets.

We classified jets depending on their nonlinear behaviour
in three different groups, which are clearly separated in a rel-
ativistic internal jet Mach number vs. jet Lorentz factor plot
(Fig. 21). In this plot, we also include models from Paper II, in
order to show the general character of our results and to note
that this division of the stability properties of jets is more ac-
curate than in Paper II, with the jet-to-ambient enthalpy ratio
instead of the relativistic Mach number. A clear correlation be-
tween the two plotted parameters and the non-linear stability
properties of the jets is observed. Models B10 and D20 are rep-
resented with two different symbols to show the change of non-
linear behaviour from Paper II. These are placed in transition
regions of the plot, either in Lorentz factor (B10) or in relativis-
tic Mach number (D20). This fact could explain differences in
the non-linear behaviour as caused by changes in the initial jet
profiles, what is quite evident in the case of D20, for resonant
modes appear due to the presence of the shear layer. As in the
previous discussion, we have given the same symbols (crosses)
as for UST1 jets here to models in Class III of Paper II, as we
do not consider that they have different non-linear behaviour in
both simulations. Figure 21 can be considered as the relativistic
counterpart of the M — v (Mach number-density ratio) diagram
in Bodo et al. (1994); note that the density ratio, v = p,/pj, is
inverted with respect to ours. In our case the Mach number is
relativistic; and the density ratio, which stands for the inertia of
the flow, is replaced by the Lorentz factor here, as relativistic
momentum is ocyz, so it dominates the inertia of relativistic jets.
Our conclusions are similar to theirs, for denser (higher Lorentz
factor) and highly supersonic jets (high relativistic Mach num-
ber) are the stablest. However, in our case, we found a higher
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degree of stability due to the growth of resonant, stabilizing
modes.

This result agrees with the conclusion of Hardee (2000),
where linear stability arguments show that distortions induced
by instabilities are smaller for higher Lorentz factor flows, al-
though they were not associated to the shear resonances re-
ported by us.

Finally, simulations discussed in Appendices A (single an-
tisymmetric mode in planar geometry) and B (single symmetric
mode in cylindrical geometry) have confirmed general trends of
the present clasification scheme, generalizing our results.

4.2. Astrophysical implications

One of the current open problems in extragalactic jet research is
to understand the morphological dichotomy between FRI and
FRII jets. Several possible explanations have been proposed
which mainly fall in one of these two general possibilities: ei-
ther (i) FRI and FRII sources are intrinsically the same, and
the morphology and jet evolution depend mainly on the ISM
in which they are embedded in the first kiloparsecs, or (ii) they
depend on intrinsic differences stemming from the jet forma-
tion process (black hole rotation, Blandford 1994; accretion
rate, Baum et al. 1995; black hole mass, Ghisellini & Celotti
2001; the so-called magnetic switch, Meier et al. 1998), or (iii)
a combination of both (e.g., Snellen & Best 2003). Of course,
all the mechanisms could come into play with differing effects
and significance depending on the source.

Leaving the basis of the morphological dichotomy aside,
current models (Laing & Bridle 2002a,b and references
therein) interpret FRI morphologies as the result of a smooth
deceleration from relativistic (y < 3, Pearson 1996) to non-
relativistic transonic speeds (~0.1 ¢) on kpc scales. On the con-
trary, flux asymmetries between jets and counter-jets in the
most powerful radio galaxies and quasars indicate that rela-
tivistic motion (y ~ 2-10) extends up to kpc scales in these
sources, although with smaller values of the overall bulk speeds
(y ~ 2—4, Bridle et al. 1994). Current models for high energy
emission from powerful jets at kpc scales (e.g., Celotti et al.
2001) offer additional support to the hypothesis of relativistic
bulk speeds on these scales.

The results concerning the long-term evolution of relativis-
tic jets presented in this paper and summarized in Fig. 20
confirm that slower and smaller Mach number jets (UST1) are
entrained by ambient material and slowed down to v < 0.5 ¢ af-
ter becoming overpressured (due to conversion of kinetic into
internal energy) and being disrupted by nonlinear instabilities
effects which cause flaring and rapid expansion of the mixing
flow. UST?2 jets undergo a smooth slowing down; and though
by the end of the simulation jet velocity is ~0.9 c, this process is
continuous, and eventual loss of velocity to mildly relativistic
values is to be expected. Finally, ST jets keep their initial highly
relativistic velocities, and their steadiness by the end of simu-
lations makes them firm candidates for remaining collimated
over long distances. Hence our results would point to a high
Lorentz factor, highly supersonic jets as forming FRII Class,
whereas FRI jets would be found in the opposite corner of the
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diagram (slow, small Mach number jets). The validity of our
results extends to models with different jet-to-ambient-density
ratios and specific internal energies as seen in Paper II.

Our conclusions point to an important contribution by in-
trinsic properties of the source to the morphological dichotomy.
Nevertheless, the importance of the ambient medium cannot
be ruled out on the basis of our simulations, since we con-
sider an infinite jet in pressure equilibrium flowing in an al-
ready open funnel and surrounded by a homogeneous ambient
medium. Thus our approach does not take into account the con-
sequences of the interaction of the jet with the ambient in order
to penetrate it or the effects of a spatially varying atmosphere.
Simulations following the spatial approach (perturbations grow
with distance) for jets propagating in different ISM profiles and
using a more realistic microphysics (allowing for a local mix-
ture of electron, positron, and proton Boltzmann gases) will be
performed in order to clarify these points.

As dicussed in the introduction of this paper, there are
plenty of arguments indicating the existence of transversal
structure in extragalactic jets at all scales. In the simulations
presented here, the initial states were defined with a continuous
transition layer of thickness ~0.2R ;. As discussed in the previ-
ous paragraphs, this shear layer has played an important role
in the long-term stability of the jet flow. Besides this, thicker
shear layers have been generated in the course of the non-linear
evolution. Relatively thin (=2R;), hot shear layers are found in
present ST models (the physically meaningful counterparts of
the layers found in the three-dimensional, low-resolution sim-
ulations of Aloy et al. 1999, 2000), which could explain sev-
eral observational trends in powerful jets at both parsec and
kiloparsec scales (see Aloy et al. 2000 and references therein).
Conversely and according to our simulations, these transition
layers could be responsible for the stability of fast, highly su-
personic jets, preventing the mass-loading and subsequent dis-
ruption. Finally, the type of shear layers developed by models
UST1/2 could mimic the transition layers invoked in models of
FRIs (Laing & Bridle 2002a,b).

5. Conclusions

We performed a number of simulations spanning a wide range
of parameters, such as Lorentz factor and specific internal en-
ergy, for a general setup where a slab-sheared jet is perturbed
with a set of symmetric and antisymmetric sinusoidal pertur-
bations, in order to characterize the stability properties of rela-
tivistic jets.

The most remarkable feature regarding the linear evolution
of instabilities is the finding of resonant modes in our simu-
lations, which were later confirmed by applying linear stabil-
ity theory to sheared flows. These modes are important for the
long-term stability properties of some jets (ST), for they re-
main collimated and unmixed, thereby keeping a large amount
of initial axial momentum. Jets in which these modes do not
grow fast enough with respect to longer modes are disrupted
either after a shock or by slow momentum transfer and mixing.

We classified jets depending on their nonlinear behaviour
in three different classes, which are clearly separated in a rela-
tivistic internal Mach number vs. Lorentz factor plot (Fig. 21).

M. Perucho et al.: Nonlinear stability of relativistic sheared planar jets

UST1 models are disrupted after a shock forms in the early
post-linear phase, and ambient gas penetrates deep into the jet
stream, decelerating and cooling the initial flow down. UST2
models are slowly decelerated by an efficient conversion of
kinetic energy into internal energy, which causes momentum
transfer and mixing. Finally, ST models present little expan-
sion, but remain collimated and isolated from the ambient by
a hot shear layer. ST models would fall into UST?2, if resonant
modes were not present, as occurs for model D20 in Paper II.

Our simulations admit a clear interpretation in the context
of the morphological dichotomy of radio jets. Results presented
here could point to high Lorentz factor, highly supersonic jets
as forming FRII Class, whereas FRI jets would be related to
slow, small Mach number jets. In the former, the generation of
a hot shear layer surrounding a stable core could be related to
the transversal structure observed in several powerful jets.
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Appendix A: Single antisymmetric mode
simulations

Previous to simulations presented in this paper, we performed
simulations following the same perturbation setup as in Paper I,
but using the first antisymmetric reflection mode, instead, for
models BO5, B20, D05 and D20, representing the four stabil-
ity regions found in Paper II. Numerical setup in these simu-
lations is the same as that used for the corresponding simula-
tion in this paper, excepting the box size, which was adapted
to the wavelength of the least stable first body wavelength
(~7R; for model B0OS, ~1.8 R; for D05, ~9R; for B20 and
~3 R for D20). Results showed the same tendencies found for
the combination of modes presented here (see Fig. A.1) with
slight changes. Model BOS has the same behaviour as those jets
of UST1 (loss of momentum and development of wide mixing
layers and disruption), whereas D05 presents the same features
as UST2 models (slower loss of momentum in the nonlinear
regime). Finally, models B20 and D20 show the development
of resonant modes and undergo the same nonlinear evolution
as ST jets; short modes excited as harmonics of the perturbed
first reflection mode grow fast and change nonlinear evolution,
stabilizing the jet. Model D05 changes from UST1 in the pa-
per to UST2 here, maybe due to the much shorter mode used
(~1.8 R; versus 8 R;) which avoids the development of a strong
shock after saturation. In Figs. A.2—-A.5 we show panels at the
last frame of the simulations, for jet mass fraction and Lorentz
factor.
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Fig. A.1. Left panel: evolution of the mean width of the jet/ambient mixing layer (for tracer values between 0.05 and 0.95) with time.
Right panel: evolution of the normalized total longitudinal momentum in the jet as a function of time. As in Fig. 6, dotted lines stand for
vy =5 and dash-dot lines stand for y = 20, while thin lines are for B models and thick lines for D models.
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Fig. A.2. Snapshot at the last frame of the simulation of jet mass frac-
tion (left panel) and Lorentz factor (right panel) for model BOS5.
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Fig. A.5. Model D20. Same as Fig. A.2.
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Appendix B: Cylindrical jet simulations

Simulations corresponding to models B0OS, D05, B20 and D20
were also performed using cylindrical coordinates. In this case,
resolution was 128 cells/R; axially and 256 cells/R; radially,
shear layer width is the same as in planar coordinates, and
we applied several symmetric (i.e., pinching) sinusoidal per-
turbations. Reflection boundary conditions were applied in the
jet axis. Again, the same evolutionary patterns are found, and
models BO5 and D05 are disrupted in the early post-linear
phase (UST1), whereas models B20 and D20 are stabilized
by short resonant modes. The most remarkable features in this
case include the very low axial momentum kept by the jet in
models BO5 and D05 and the stronger mixing and mass loading
(see Fig. B.1). This may be due to geometric effects, as the sur-
face of the interface grows radially in cylindrical coordinates,
resulting in a more efficient transference of momentum to the
ambient medium. However, results show the generalized char-
acter of conclusions presented in this paper. In Figs. B.2-B.5
we show panels at the last frame of the simulations for jets
mass fraction and Lorentz factor.
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Fig. B.1. Left panel: evolution of the mean width of the jet/ambient mixing layer (for tracer values between 0.05 and 0.95) with time. Right panel:
evolution of the normalized total longitudinal momentum in the jet as a function of time. Lines represent the same models as in Fig. A.1.
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Fig. B.2. Model BOS. Same as Fig. A.2.
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Fig. B.3. Model D0S. Same as Fig. A.2.
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Fig. B.4. Model B20. Same as Fig. A.2.
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Fig. B.5. Model D20. Same as Fig. A.2.



