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Heptanuclear hydroxo-bridged copper cluster of the dicubane-like
type: structural and magnetic characterisations of
[Cu7(OH)6Cl2(pn)6(H2O)2](C(CN)3)4Cl2 (pn = 1,3-diaminopropane)†
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A new polynuclear copper(II) complex [Cu7(OH)6Cl2-
(pn)6(H2O)2](C(CN)3)4Cl2 with hydroxo-bridging ligands
has been prepared; the centrosymmetric cluster cation can
be described as two Cu4O3Cl distorted cubane units sharing
one copper cation.

Various multinuclear copper(II) complexes have been reported
in the last decade with a great number of simple and
sophisticated bridging ligands;1–5 however, some nuclearities
remain comparatively scarce. In the case of tetranuclear
complexes with Cu4O4 cubane-like clusters some examples
have been thoroughly described,2 but to date little is known
about clusters involving more than four metal centres.3,4

Concerning the heptanuclear copper(II) clusters, as far as we are
aware, only one example of the dicubane-like type has been
described.5 Here we report the structure and preliminary
magnetic studies of a novel vertex sharing dicubane-like
heptanuclear copper(II) cluster [Cu7(OH)6Cl2(pn)6(H2O)2]-
(tcm)4Cl2 (1) [pn = 1,3-diaminopropane; tcm2 = C(CN)3

2 =
tricyanomethanide] with chloro- and hydroxo-bridging li-
gands.

1.00 mL (12 mmol) of 1,3-diaminopropane (pn) was slowly
added to a warm aqueous solution of CuCl2·2H2O (12 mmol)
and then an aqueous solution of sodium hydroxide (12 mmol)
was added. To the resulting clear solution were immediately and
consecutively added concentrated aqueous solutions of
CuCl2·2H2O (2 mmol) and potassium tricyanomethanide
(8 mmol). Slow evaporation gave prismatic blue crystals of
[Cu7(OH)6Cl2(pn)6(H2O)2](tcm)4Cl2 (yield 1.28 g, 42%) suita-
ble for crystallography.‡ The structure of 1 is unique and
consists of a centrosymmetric hydroxo-bridged heptanuclear
copper(II) cation (Fig. 1) which can be described as two
Cu4O3Cl distorted cubanes which share one copper cation
(Cu1) (Fig. 1 and 2). The four crystallographically independent
Cu(II) centres differ markedly in their co-ordination geometry.

The central atom (Cu1) presents a strongly elongated octahedral
coordination which involves a CuO4 equatorial plane with
essentially equivalent Cu–O bonds [see Fig. 2(a)] and two semi-
coordinated Cl anions in axial positions (Cu…Cl = 3.029(2)
Å). The Cu2 and Cu3 cations have distorted square pyramidal
CuO2N2Cl environments. In both cases, the basal planes are
occupied by two hydroxo bridging ligands (O1 and O3 for Cu2;
O2 and O3 for Cu3) and two nitrogen atoms of the chelating pn
ligand (Cu–O range 1.977–2.016 Å and Cu–N range
1.975–2.021 Å). Both pyramids share a strongly elongated axial
position filled by the bridging Cl1 atom (Cu2–Cl1 = 2.654(2)
Å and Cu3–Cl1 = 2.679(2) Å) (Fig. 1). The co-ordination

† Electronic supplementary information (ESI) available: detailed synthesis
and X-ray crystallography of 1. See http://www.rsc.org/suppdata/cc/b1/
b105231b/

Fig. 2 (a) Schematic projection of the copper cluster including pertinent bond lengths and bond angles; (b) schematic representation of the magnetic coupling
model in 1. Code of equivalent positions: (*) 1⁄2 2 x, 1⁄2 2 y, 1 2 z.

Fig. 1 ORTEP of the heptanuclear cation in 1 showing atomic labelling
scheme (30% probability ellipsoids). Shortest Cu…Cu distances (Å) and
selected bond angles (°): Cu1–Cu2 3.3796(5), Cu1–Cu3 3.3719(5), Cu1–
Cu4 3.1873(5), Cu2–Cu3 3.2829(8), Cu2–Cu4 3.1607(8), Cu3–Cu4
2.9610(8); O1–Cu1–O2 83.9(1), O1–Cu2–O3 84.5(1), O2–Cu3–O3
80.1(1), O1–Cu4–O2 72.0(1), O1–Cu4–O3 73.7(1), O2–Cu4–O3 79.5(1).
Code of equivalent positions: (*) 1⁄2 2 x, 1⁄2 2 y, 1 2 z.
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polyhedron of the Cu4 cation can be described as a
Cu(N2O2)(O2) pseudo-octahedron generated by a CuN2O2
plane arising from two nitrogen atoms of the chelating pn ligand
and the two m3-hydroxo ligands (O2 and O3), and two axial
positions filled by the O1 hydroxo ligand and a water molecule
(O4) (Cu…O4 = 2.524(4) Å). Note that the O1 hydroxo ligand
may be viewed as a m2-bridging group since it involves two
short and one long Cu–O distances as clearly shown on Fig.
2(a). Further examination of the structure shows that the tcm
units, which usually act as m2- or m3-bridging ligands, are here
uncoordinated; however, there are significant hydrogen bonds
formed between their nitrogen atoms and the hydroxo-bridging
ligands [N7(tcm)…O2 = 2.826(6) Å, O1–H…N7 = 167.3(3)°
and N8(tcm)…O1 = 2.961(6) Å, O1–H…N7 = 160.6(2)°].
Such intermolecular hydrogen bonds may contribute to the
stabilisation of the cluster conformation.

Magnetic susceptibility data for 1 were collected in the
temperature range 2–300 K, the cm and cmT product vs. T plots
are depicted in Fig. 3. From room temperature down to 25 K the
cmT product decreases continuously and then reaches a plateau
close to 0.43 emu K mol21, which corresponds to an S = 1/2
ground state. This behaviour is indicative of an overall
antiferromagnetic coupling between the Cu(II) centres; this is in
agreement with the strongly reduced magnetic moment at room
temperature (cmT = 2.01 emu K mol21). Taking into account
the cluster topology and connectivity (Fig. 2), it is possible to
distinguish up to six different exchange pathways. However, in
order to avoid an overparameterization and in view of the Cu–
O–Cu angles and connectivity of the OH bridges (m2-OH or m3-
OH), these six exchange pathways have been grouped into three
averaged different exchange parameters. The magnetic data
have been analysed with the following spin Hamiltonian:
Ĥ = 22J1(Ŝ1Ŝ2 + Ŝ1Ŝ5) 2 2J2(Ŝ3Ŝ4 + Ŝ6Ŝ7)
22J3(Ŝ1Ŝ3 + Ŝ1Ŝ4 + Ŝ2Ŝ3 + Ŝ2Ŝ4 + Ŝ1Ŝ6 + Ŝ1Ŝ7 + Ŝ5Ŝ6 + Ŝ5Ŝ7)

Calculations have been performed with the magnetism package
MAGPACK.6 The best fit obtained from a least-squares

analysis of the cmT is J1 = 2188.4 cm21, J2 = 252.6 cm21,
J3 = 210.8 cm21 and g = 2.15 (R = S [((cmT)obs

2 2

(cmT)calc
2)/(cmT)obs

2] = 7.8 3 1023). Attempts to fit with only
one or two averaged exchange parameters failed. As expected
from the structural parameters depicted in Fig. 2(a) (Cu–O
distances and Cu–O–Cu angles), the results show the presence
of two weak antiferromagnetic interactions (J2 and J3) asso-
ciated to the interactions by m3-OH as have been observed in
previous cubane-type systems2,3 and a strong one (J1) corre-
sponding to the exchange interaction between the two Cu
connected by O1 that has a main component of m2-OH and a
large Cu–O–Cu angle (117.6°).
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Notes and references
‡ Anal. Calc. for C34H70Cl4Cu7N24O8: C, 26.7; H, 4.6; Cl, 9.3; Cu, 29.1; N,
22.0. Found: C, 26.9; H, 4.6; Cl, 9.2; Cu, 29.2; N, 21.9%. IR data: n/cm21:
3293m, 3247m, 2175s, 2168s, 1588m, 1195m, 1037w, 1023w, 900m,
561m, 494m.

Crystal data for 1. C34H70N24O8Cl4Cu7, M = 1529.68, monoclinic,
space group C2/c (no. 15), a = 24.8994(3), b = 11.9801(2), c = 21.4298(3)
Å, b = 112.14(6)°, U = 5920(2) Å3, Z = 4, Dc = 1.72 g cm23, m(Mo-Ka)
= 2.72 mm21, T = 288 K, final R = 0.044, wR = 0.065 for 3924 observed
reflections [I > 4s(I)] and 351 variables.

CCDC reference number 165568. See http://www.rsc.org/suppdata/cc/
b1/b105231b/ for crystallographic data in CIF or other electronic format.
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Fig. 3 Plots of molar susceptibility cm vs. T (the inset shows the cmT product
vs. T) for 1 measured in a field of 1 T. The solid line was calculated using
the magnetic coupling model (see text).
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