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Resumen

En esta tesis se presentan nuevos modelos y metodoloǵıas para el análisis de proce-

sos dinámicos a partir de imágenes o secuencias de imágenes, en las cuales se produce

solapamiento espacial y temporal de los objetos de análisis. Este solapamiento o co-

existencia espacial y temporal es habitual en muchos fenómenos de la naturaleza. Por

ello, se hace necesario modelizarlo adecuadamente en diversas disciplinas cient́ıficas

tales como Microscoṕıa, Ciencias de los Materiales, Bioloǵıa, Geoestad́ıstica o Redes

de Comunicaciones.

El trabajo realizado se enmarca en la teoŕıa de Procesos Puntuales y Conjuntos

Aleatorios Cerrados (RACS), dentro de la Geometŕıa Estocástica. Los modelos pro-

puestos son una extensión de la teoŕıa de modelos booleanos en R2 incorporando una

componente temporal.

La motivación de este trabajo fue originalmente su aplicación en un proyecto mul-

tidisciplinar que ha abarcado Estad́ıstica, Ciencias de la Computación, Bioloǵıa y

Microscoṕıa, con el objetivo de analizar la exocitosis y la endocitosis celular. Los

modelos y metodoloǵıas presentados en esta tesis responden a la necesidad de consi-

derar adecuadamente el solapamiento espacio-temporal, necesidad que surgió durante

este proyecto. La exocitosis y la endocitosis son dos procesos celulares mediante los

cuales la célula segrega o absorbe sustancias a través de la membrana citoplasmática

respectivamente. El estudio se realizó utilizando imágenes obtenidas por medio de las

técnicas de microscoṕıa electrónica y de reflexión total interna (TIRFM). En dichas

secuencias, se observan las moléculas de protéınas participantes en el proceso de en-

docitosis como agrupaciones fluorescentes que se superponen en un número aleatorio

de imágenes consecutivas. Estas imágenes se pueden modelizar como realizaciones

de un proceso estocástico estacionario e isotrópico. No obstante, la metodoloǵıa de-

sarrollada permite analizar fenómenos reales en otros campos de la Ciencia en los

que se observa superposición espacio-temporal de objetos con formas y duraciones

aleatorias, como Geoloǵıa, Qúımica, Comunicaciones, etc.

En primer lugar, se introduce el modelo booleano temporal y se revisan los

métodos de estimación de los parámetros del modelo. En segundo lugar, se pre-

senta un método para la estimación de la función de distribución de la duración de

los eventos en un modelo booleano temporal univariado basado en la función de co-

varianza espacio-temporal. Se ha realizado un estudio de simulación con diferentes
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funciones de densidad para la duración, con resultados muy satisfactorios, incluso

en imágenes con ruido. La metodoloǵıa se ha aplicado al estudio particular de la

endocitosis celular.

En tercer lugar, se ha desarrollado el modelo booleano temporal bivariado para es-

tudiar la interrelación entre dos procesos espacio-temporales que coexisten en tiempo

y espacio, y caracterizar su grado de solapamiento y dependencia espacial, temporal

y espacio-temporal. Se presenta una generalización de las funciones K de Ripley,

la covarianza espacio-temporal y la función de correlación para conjuntos aletorios

bivariados. Se proponen como descriptores la función K de Ripley, la función L y la

función de correlación. Para contrastar la hipótesis de independencia se realiza un

test de Monte Carlo. La metodoloǵıa desarrollada no es sólo un procedimiento de test

sino que también permite cuantificar el grado y el intervalo espacio-temporal de las

interacciones. Además, no requiere asumir hipótesis paramétricas. Se ha realizado

un estudio de simulación analizando diferentes tipos de dependencia. La metodoloǵıa

desarrollada también ha sido aplicada con éxito al estudio de las interacciones de

diferentes protéınas que participan en la endocitosis celular.

En cuarto lugar, a partir de imágenes de alta resolución de varias células obtenidas

por microscoṕıa electrónica, se ha modelizado la distribución en el citoplasma celular

de veśıculas exoćıticas (gránulos) como una realización de un proceso puntual finito y

los patrones asociados a varios grupos de células como réplicas de diferentes procesos

puntuales. El objetivo es estudiar diferencias entre grupos de tratamientos que pre-

sumiblemente afectan a la localización espacial de los gránulos. Se ha caracterizado

la distribución espacial de los gránulos respecto a la membrana plasmática mediante

varios descriptores funcionales lo que ha permitido establecer diferencias significati-

vas entre ambos grupos de células que hubiera sido imposible detectar mediante un

enfoque convencional basado en la estad́ıstica clásica. Para segmentar las imágenes,

se ha desarrollado una herramienta automática de detección de los gránulos, con

resultados similares a los obtenidos manualmente para las mismas imágenes.

Finalmente, destacamos que hemos desarrollado una herramienta de software para

la simulación y la estimación de análisis de modelos booleanos temporales (disponible

en http : //www.uv.es/tracs/), de manera que es posible para técnicos y cient́ıficos

de cualquier disciplina la aplicación de los métodos desarrollados en esta tesis a otros

problemas en los que exista superposición espacio-temporal de objetos con formas y
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duraciones aleatorias.

En conclusión, el desarrollo de estos nuevos modelos estocásticos espacio-temporales

permitirán el modelado de procesos dinámicos a partir de secuencias de imágenes

donde aparecen part́ıculas con formas, tamaños y duraciones aleatorias que se su-

perponen en el tiempo y el espacio. Hasta donde nosotros cononocemos, ésta es la

primera vez que estas herramientas son aplicadas en el estudio de la exocitosis y en-

docitosis celular. Su aplicación contribuirá a un mejor conocimiento de estos procesos

y facilitará la futura investigación en el campo de la Bioloǵıa Celular, por ejemplo en

el estudio de enfermedades asociadas a disfunciones en la secreción como la diabetes.
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Abstract

In this thesis, new models and methodologies are introduced for the analysis of

dynamic processes characterized by image sequences with spatial temporal overlap-

ping. The spatial temporal overlapping exists in many natural phenomena and it

is necessary to address it properly in several Science disciplines such as Microscopy,

Material Sciences, Biology, Geostatistics and Communication Networks.

This work is related to the Point Process and Random Closed Set theories, within

Stochastic Geometry. The proposed models are an extension of Boolean Models in

R2 by adding a temporal dimension.

The study has been motivated for its application in a multidisciplinary project

that combined Statistics, Computer Sciences, Biology and Microscopy, with the aim

of analysing the cell exocytosis and endocytosis. The methods and models herein

presented addressed the necessity of properly considering the spatial temporal over-

lapping, that arised during the project. Exocytosis is the process by which cells

secrete vesicles outside the plasma membrane and endocytosis is the opposite mech-

anism. Our data were image sequences obtained by Electron Microscopy and Total

Internal Reflection Fluorescence Microscopy (TIRFM). Fluorescent tagged-proteins

are observed as overlapped clusters with random shape, area and duration (number

of consecutive frames). We assume that they can be modelled as realizations of a

stationary and isotropic stochastic process. The methodology herein proposed could

be used to analyze similar phenomena in other Fields of Science such as Geostatistics,

Chemistry, Medicine, Cellular communications, etc.

First, as State of the Art, the temporal Boolean model is introduced and some

estimation methods for the parameters of the model are presented. Second, we pro-

posed a method for the estimation of the event duration distribution function of a

univariate temporal Boolean model based on spatial temporal covariance. A simula-

tion study is performed with several duration probability density functions, with a

very good performance even in noisy images. This methodology has been applied to

the cell endocytosis.

Third, we introduce the bivariate temporal Boolean model to study interactions

between two overlapped spatial temporal processes and to quantify their overlapping

and dependencies. We propose a non-parametric approach based on a generalization

of the Ripley K-function, the spatial-temporal covariance and the pair correlation
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functions for a bivariate temporal random closed set. The Ripley K-function, the L-
function and the pair correlation function are proposed as descriptors. A Monte Carlo

test was performed to test the independence hypothesis. This methodology is not

only a test procedure but also allows us to quantify the degree and spatial temporal

interval of the interaction. No parametric assumption is needed. A simulation study

analysing several types of dependencies has been conducted and an application to the

study of different proteins that mediate in cell endocytosis has been performed.

Fourth, from high spatial resolution EM images, we model the distribution of

exocytic vesicles (granules) within the cell cytoplasm as a realization of a finite point

process (a point pattern), and the point patterns of several cell groups are considered

replicates of different point processes. Our aim was to study differences between two

treatment groups in terms of granule location. We characterize the spatial distribution

of granules with respect to the plasma membrane by means of several functional

descriptors, that allowed us to detect significant differences between the two cell

groups that would not be observed by a classical approach. In order to perform

image segmentation, we developed an automatic granule detection tool with similar

performance to that of the manual one-by-one marking.

Finally, it is important to point out that we have implemented a software tool-

box for the simulation and analysis of temporal Boolean models (available at http :

//www.uv.es/tracs/), so scientists and technicians of any discipline can apply the

proposed methods to any other problems where spatial temporal overlapping exists.

In summary, the new spatial temporal stochastic models herein proposed will

allow modelling of dynamic processes from image sequences where several forms of

random shape, size and duration overlap. To our knowledge, this is the first time

that these tools have been applied to the study of cell exo and endocytosis, and they

should contribute to a better understanding of these two complex processes. Our

methodologies will help future research in Cell Biology, e.g. in the study of diseases

related to secretion dysfunctions, such as diabetes.
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Chapter 1

Introduction

1.1 Motivation of this work

Studying complex dynamic processes in Medicine, Biology or Engineering requires

an innovative and multi-disciplinary approach. For example, recent advances in live

microscopy techniques allow the Biologists to extract new and very valuable informa-

tion about some cellular processes from image sequences with hundreds of frames. A

manual image processing or classical statistical analysis would not capture the ben-

efits that such high-resolution image sequences provide. By contrast, the expertise

in Stochastic Geometry and Computer Science could lead to outstanding results and

solve most of the problems and drawbacks that Biologists find in their statistical

analysis [59, 54, 18, 31, 41, 40] of such complex data.

Automatic image segmentation provides helpful tools that facilitate the image

processing and increase the quality of the data obtained. The development of spatial

temporal stochastic models allows us to model dynamic processes and to estimate

with great accuracy the main parameters that characterize the phenomena.

In this thesis, different problems in Stochastic Geometry are addressed. In spite of

the considerable number and variety of applications of Boolean models, the problem

of analyzing overlapping events in space and time from image sequences remains elu-

sive. More sophisticated mathematical models and statistical methods are needed i.e.

hybrid models that capture both temporal and geometric properties while formaliz-

ing a configuration of independent randomly placed particles with random durations.

First, we have modeled the image sequences of fluorescent-labeled proteins where
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1. INTRODUCTION

random shapes overlap in space and time as a temporal Boolean model, to study the

cell endocytosis.

Second, a bivariate case is also proposed to model the interactions between two

overlapped spatial temporal processes and to quantify their dependencies. Although

the problem of measuring interaction between types of events in bivariate spatial

point processes has been reported and analyzed [17, 24, 80, 87], this is not the case

for random sets. In point processes, the standard summary methods use bivariate

counterparts of the empty space function, the nearest neighbor distance distribution,

the Ripley K-function and derived statistics such as the pair correlation function and

the J-function. However, further extensions which capture dependencies associated

with time and spatial properties of overlapping events are needed. An example of the

problem addressed with a bivariate temporal random closed set is the joint study of

the interactions of different proteins in the cell endocytosis.

Third, from high spatial resolution electron microscope images, we have modeled

the distribution of exocytic vesicles (granules) within the cell cytoplasm as a realiza-

tion of a finite point process (a point pattern), for which the point patterns of several

cell groups associated with different cell treatments are considered as replicates of dif-

ferent point processes. Our aim was study differences between two treatment groups

in terms of granule location. Each experiment implies the analysis of dozens of cells

with hundred of granules each. Therefore, we developed an automatic granule detec-

tion tool for image segmentation with a similar performance to that of the manual

one-by-one marking.

Problems similar to the biological ones herein studied that also involve the ex-

istence of random spatial patterns have been encountered in other fields, such as

Ecology, Epidemiology and Geographical Information Systems. Spatial Statistics has

provided several models to analyze any given set of points or processes which can

generate random point data [24, 17, 66]. In some problems the temporal dimen-

sion should be explicitly considered. Several applications of spatial-temporal point

processes in Biology are [71, 91].
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1.2 Outline of the thesis

In Chapter 2, we introduce some basic concepts of Cell Biology and Microscopy,

which allow the reader a better understanding of the applications of the proposed

methodology. Second, Point Processes and Random Closed Sets are reviewed. We

also present the-state-of-the-art in Temporal Boolean Models applied to the analysis

of image sequences where spatial and temporal overlapping exists. In Chapter 3 the

definition of the cylindrical temporal Boolean model and some theoretical results on

the statistical analysis of isolated events is presented. We propose a semi-parametric

estimator of the distribution function of the duration based on the spatial-temporal

covariance of random sets. In Chapter 4, we model the binary image sequences of two

different event types as a realization of a bivariate temporal random set and propose

a non-parametric approach to quantify spatial and spatial-temporal interrelations

using the pair-correlation, cross-covariance and the Ripley K functions. We propose

a randomization procedure to test independence between event types by applying

random toroidal shifts and a Monte Carlo test. In Chapter 5, we model the locations

of granules of a given cell as a realization of a finite spatial point process and the

point patterns associated with the cell groups as replicated point patterns of different

spatial point processes. An algorithm to segment the granules on electron microscopy

images is proposed. The relative locations of the granules with respect to the plasma

membrane are characterized by two functional descriptors and the descriptors of the

different cells for each group are compared using bootstrap procedures. Chapter 6 is

devoted to the conclusions of this thesis and future extensions.
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Chapter 2

State of the Art

Spatial Statistics has provided several valuable models to analyze sets of points or

processes which can generate point sets following some stochastic law [24, 17, 66].

Problems that involve random spatial patterns have been encountered in various fields

such as Biology, Ecology, Epidemiology, Geology, etc. In some cases the temporal

dimension should be explicitly considered. Several applications of spatial-temporal

point processes in Biology are [71, 91].

Approaches based on random sets have also been considered to study similar

processes with overlapping in these areas of knowledge. In particular, the Boolean

model is a well-known model when we study binary images composed by the union of

several overlapping random shapes located independently in the 2D Euclidean space

[79, 57, 42]. The use of such models allows us to estimate the mean number of objects

per unit area or the mean size (area and perimeter) of the objects from an image.

The Boolean model has been widely used since it was proposed by G. Matheron

in the late 1960s [51, 52, 72], because it can provide a good description for irregular

patterns observed in Microscopy, Material Sciences, Biology, Chemistry, Geostatistics

or Cellular Communication Networks. A complete study of this kind of stochastic

model is detailed in [56], focused on modelling (static) 2D or 3D overlapping objects.

Other interesting studies which to some extent introduce dynamics into the Boolean

model are [27, 86]. In [86], van den Berg et al. let the grains change their positions

and they characterized the properties of this modified Boolean model. In [27] a wire-

less sensor network is modelled by defining a blinking Boolean model in which grains

switch in an uncoordinated way between an on and off mode to save energy, and the
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latency of the network is studied.

In most of the studies that deal with 3D data it is common to analyze each of the

2D sections separately, even with isotropic data. Dougherty et al. ([26]) present an

application for counting illuminated randomly sized spheres in 3D regions by taking

the cross-sections with spheres to form the estimate. A similar approximation is

carried out in [68] to estimate the number of straight cylinders in a random system.

The definition of the temporal Boolean model to study an image sequence as

a whole and quantify spatial-temporal overlapping is developed in [70, 9, 69]. An

interesting result of non-homogenous temporal Boolean model is [36]. Fuzzy bivariate

temporal random closed sets applied to the study of cell endocytosis are developed

in [22].

First, we review the biological processes that have motivated this thesis. Sec-

ond, we introduce basic concepts of point processes, random closed sets (RACS) and

Boolean models. Third, we define the temporal Boolean model (TBM) and we present

some estimation methods previously published, to which the author of this thesis has

contributed.

2.1 Biological background

In eukaryotic cells, the communication with the outside occurs through the plasma

membrane. The cell absorbs nutrients and other necessary substances from outside

in a process called endocytosis. The molecules are progressively surrounded by a

part of the plasma membrane, which finally invaginates to form a vesicle within the

cytoplasm. During the inverse process, called exocytosis, the cell releases secretory

vesicles, which contain the active molecules needed for the generation of some pro-

cesses in other cells. Then, exocytosis is the basis of intercellular communication in

multicellular organisms.

2.1.1 Cell exocytosis

The biological process consisting of the release of a wide array of extracellularly

acting molecules by a cell is called exocytosis. The fusion of secretory vesicles with the

plasma membrane occurs in the form of constitutive exocytosis that is required for the

insertion of new plasma membrane in essentially all cells [2, 13, 74]. Some extracellular
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molecules (e.g., plasma proteins, antibodies, extracellular matrix components, etc.)

are also secreted by a constitutive exocytotic pathway. In many cell types, a second

pathway also exists in which exocytosis can be tightly regulated to allow the controlled

release of vesicle contents or regulated insertion of new membrane components due to

fusion of preformed secretory vesicles only in response to a physiological signal. This

second pathway is known as regulated exocytosis [2, 13]. The two pathways for vesicle

exocytosis are illustrated in Fig. 2.1.

secretory vesicle 
storing secretory 

proteins

signal
transduction

regulated
membrane
fusion

trans

Golgi
network

Golgi apparatus

CYTOSOL

newly
synthesized
soluble proteins
for constitutive
secretion
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membrane lipids

unregulated
membrane
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newly synthesized plasma
membrane protein

plasma membrane

signal such as
hormone or
neurotransmitter

CONSTITUTIVE
SECRETION

REGULATED
SECRETION

Figure 2.1: Constitutive and regulated vesicle exocytosis.

Vesicles are originated in the Golgi apparatus and travel across the cytoplasm to

the plasma membrane. Modulation of regulated exocytosis is central to the regu-

lation of cellular signalling. A variety of disorders (such as epilepsy, hypertension,

diabetes and asthma) are closely associated with pathological modulation of exocyto-

sis. Therefore, regulated exocytosis has been extensively studied in synapses where it

is the mechanism by which neurotransmitters are very rapidly released in a controlled

manner from synaptic vesicles to mediate neurotransmission. Certain neurons also

possess dense-core vesicles, that can be triggered to undergo exocytosis independently

of synaptic vesicles [13, 74].
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A wide range of non-neuronal cell types contain also dense-core vesicles (also

called granules or secretory vesicles), the contents of which serve a diverse range

of physiological functions. These include cells specialized to secrete large amounts

of secretory products. Besides neurons, regulated exocytosis of secretory granules

has been extensively studied in many well-characterized cell types of neuroendocrine,

endocrine and exocrine cells due to their practical advantages [13, 74].

Adrenal chromaffin cells is a certain experimentally favorable cell type to study

regulated exocytosis. Chromaffin cells are neuroendocrine cells of the adrenal medulla

and are widely used for the investigation of synaptic transmission, since they are of

neuronal origin and release catecholamine, similarly to adrenal nerve terminals. The

main advantage of chromaffin cells is that they can be isolated and purified in large

quantities [46, 74].

Therefore, functional and structural studies of granules of adrenal chromaffin cells

have been very important in the development of the current description of the various

stages in regulated exocytosis [41, 43, 46, 47, 61, 62, 90]. Electron microscopy (EM)

techniques provide images with very high spatial resolution and allow the detection

and characterization of secretory granules.

Exocytosis in chromaffin cells undergoes a multistep cycle that includes: i) for-

mation of vesicles; ii) transport to the active zone; iii) vesicle docking at the active

zone; iv) priming (or the transformation of vesicles into fusion-competent vesicles);

v) fusion and, finally, vi) recycling [2, 13, 90]. This process is illustrated in Fig. 2.2.

Before exocytosis, the vesicle first moves from the cytoplasm to the plasma mem-

brane. That is known as the transport phase. Second, the vesicle becomes close to

the plasma membrane, a process often referred to as docking. Third, there is an acti-

vation involving metabolic energy, required to achieve fusion competence and known

as priming. Finally, the vesicle and the plasma membrane merge in the fusion phase,

and the vesicle content is released.

Each of these steps involves a multitude of proteins that operate by complex

protein-protein and protein-phospholipid interaction networks. Transport of vesicles

occurs along microtubular tracks with the aid of kinesin motor proteins. The initial

contact between the vesicle and the plasma membrane is mediated by protein com-

plexes that appear to be essential for ensuring that only appropriate membranes fuse.

Apparently, each fusion step is controlled by a specific family member of proteins
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Figure 2.2: Stages in exocytosis and main proteins involved: (a) transport, (b) dock-
ing, (c) priming at the plasma membrane and (d) fusion.

that resides on the vesicle membrane (such as, synaptotagmin and synaptobrevin)

and appears to play a key role in recruiting docking proteins to the vesicle surface.

Fig. 2.2 shows the main proteins involved in regulated exocytosis. Syntaxin and

SNAP-25 form a complex on the plasma membrane that interacts with synaptobrevin

on the vesicle membrane. The assembly of the resulting ternary complex forces the

opposing membranes into close apposition and may be enough to induce exocytosis.

Vesicle fusion requires Ca2+ ions that enters the cell via voltage-gated calcium chan-

nels. The near universal role of Ca2+ as the trigger for granule fusion predicts the

existence of some proteins capable of activating the fusion machinery upon binding

Ca2+. Several different candidate proteins have been suggested to play this role, al-

though synaptotagmin seems to be the major Ca2+ sensor to induce rapid exocytosis

[12, 13, 88].

Regulated exocytosis could be affected by the over-expression or the inhibition

of the specific proteins involved. In recent years, many of the proteins involved in

the mechanism of secretory vesicle exocytosis have been identified and their in vivo

importance has been established. The interactions between these proteins and the

way in which a Ca2+ signal leads to secretory vesicle exocytosis are known in outline,

although the full details of the processes involved still remain to be resolved [41, 74,

9



2. STATE OF THE ART

78, 81, 88, 90]. Therefore, studying the effect of the over-expression or inhibition of a

given protein in the intracellular distribution of dense-core vesicles in chromaffin cells

is central to the understanding of regulated exocytosis [13, 74].

Studies have traditionally classified vesicles in adrenal chromaffin cells according to

their morphological or structural appearance. Several types of granules are described

and different classification of granules are made in [61, 46, 47, 62].

In [61], two types of vesicles are distinguished: (1) dense vesicles with darker ap-

pearance, most of them spherical and with a mean diameter of 270 nm, and a few ones

with ellipsoidal or elongated appearance; (2) clear vesicles with lighter appearance

(almost white), which do not content functional substance.

A similar classification is given by [62], which distinguishes two types of granules:

(1) “stable” vesicles or stand-alone dense vesicles, which are isolated electron-dense

vesicles with dark appearance, most of them spherical, although some ones have

elongated or irregular shapes. (2) “active” vesicles or dense vesicles with “halos”,

which are electron-dense vesicles with irregular white vacuoles associated. The white

vacuoles or zones seem to be deformations of vesicle membrane which remain empty,

as if the dense vesicles were a dark ball floating in a bigger empty balloon. The

location of the dense vesicle (the ball) is random and erratic. Then, white zones are

absolutely irregular, both in size and shape. These granules are lighter than stand-

alone vesicles and their pH is lower. Vesicles with halos are called active because

the ratio of the number of these vesicles and the number of stable vesicles increased

when cells are stimulated. In fact, when cell stimulation arises, at least half of the

initial population of vesicles are exocytosed. Most of the remainder ones present

halos. Isolated white vacuoles without a electron dense core are also observed, and

they might be empty membranes.

2.1.2 Cell endocytosis

Endocytosis is the process by which cells traffic components from the plasma mem-

brane into various intracellular compartments [53, 31]. This process regulates a wide

range of physiological functions including cell migration, signaling, nutrient uptake,

wound repair and neurotransmission.

Clathrin-mediated endocytosis is one of the best characterized endocytic routes

[53, 44]. Endocytosis happens in discrete events, in which cargo-loaded vesicles detach
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from the plasma membrane and are trafficked inside the cell. The steps of this proc-

cess are the following: (1) Clathrin assembly is initiated by binding cargo molecules

to receptors on the plasma membrane and (2) a molecular lattice of clathrin molecules

covers a portion of the plasma membrane containing the cargo-receptor complex [75].

Upon assembly, (3) the clathrin lattice curves into a basket (vesicle) which encases

the cargo-laden endocytic vesicle [29]. Epsin helps to recruit the clathrin lattice, and

it is thought to contribute to the acquisition of curvature [34]. Subsequently, (4)

the basket pinches off the plasma membrane and the clathrin coat is shed from the

vesicle, which is further trafficked to internal cellular compartments. Hip1R couples

the clathrin lattice to the actin cytoskeleton, which participates in the pinching (5)

and trafficking of the endocytic vesicle [10]. During endocytosis, invagination of the

plasma membrane is used to bring nutrients into the cells and to recycle peripheral

cellular components. The sequential recruitment of adaptor proteins, coat proteins

and mechanoenzymes to sites of endocytosis, which is required for the formation

of a complete endocytic vesicle, has been recently revealed by multi-colour TIRFM

[54, 60, 91]. These steps are shown schematically in Fig. 2.3.

Figure 2.3: Main stages of endocytosis.

Several proteins mediate in this complex process, such as, GTP dynamin. Dy-

namin surrounds the neck of clathrin-coated vesicles, and hydrolyzes GTP, resulting

in the fission of the vesicle. The exact mechanism of this release is still unknown.

Dynamin may directly ”pinch”, or ”pop”, the vesicle from the plasma membrane,
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due to a conformational change resulting from the hydrolysis of GTP. Alternatively,

dynamin may recruit additional factors which, in turn, operate the fission step [73].

It has been reported that a sudden burst of dynamin associated with the coated pit

precedes the budding and disassembly of the vesicle [31, 53]. In any case, the GT-

Pase dynamin has emerged as a crucial mediator of the endocytosis of clathrin-coated

vesicles.

Some of the steps in the endocytosis process has been inferred from structural

and biochemical studies [16]. However, the endocytosis process has been recently ob-

served in live cells, due to fluorescent molecules that are incorporated to proteins such

as clathrin or dynamin. This fluorescence could be measured with specialized micro-

scope techniques such as Total Internal Reflection Fluorescence Microscopy (TIRFM)

[82, 84, 83, 45]. This technique illuminates a thin section near the cell-coverslip in-

terface and gives a very high signal-to-noise ratio, thus facilitating visualization of

cellular processes near the plasma membrane. Viewed by TIRFM, the assembly of

fluorescently-labeled clathrin molecules at a site of ongoing endocytosis results in the

appearance and steady growth of a diffraction-limited spot. The time which elapses

between the appearance and the disappearance of a fluorescent clathrin spot is de-

fined as the duration, or lifetime, of a discrete endocytic event [31, 70, 91]. An image

of a cell expressing clathrin fluorescent protein provided by TIRFM is shown in Fig.

2.4.

Figure 2.4: Several snapshots of a fluorescent-tagged clathrin image sequence.

From a biological point of view, it is key to characterize the areas where endo-

cytic events occur (from now on, endocytic spots) by estimating parameters which

allow knowing more about the underlying phenomenon of endocytosis, such as the

number of endocytic spots per unit area, their mean perimeter or area, or their mean

duration. An endocytic spot is defined as the associated area of the minimum cluster
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of fluorescent clathrin molecules that can be detected. It can vary in size and shape

due to many factors, including: the intrinsic variability in the size of vesicles, the

reversibility of the process, and the instrumental noise.

The different areas of fluorescence overlap with each other and vary in size and

shape, forming relatively large and irregular regions with high fluorescence. From now

on, these regions will be called clumps. Each connected component or clump may

comprise one or an unknown number of very close and overlapped clathrin-coated

vesicles.

Due to overlapping, classical techniques based on segmentation and labelling of

the connected components would lead to an underestimation of the number of vesicles.

It is a common practice in the endocytosis literature to use shape and size criteria

from consecutive frames of a time-lapse movie, in order to select the clumps that are

presumably composed by a single endocytic vesicle and to estimate from them key

parameters such as the mean area, the mean perimeter or the mean duration [31].

This approach could lead to an underestimation since the selected clumps are

biased to events with lesser duration and size. Given a frame, the endocytic spots

corresponding to larger vesicles will have a greater probability of belonging to a non-

isolated endocytic spot, i.e., a greater probability to touch other endocytic spots. If

only the isolated endocytic spots are used to study the phenomenon then a biased

sample is considered (one that includes smaller vesicles with higher probability) pro-

ducing biased estimators, such as the mean number per unit area, the size of a single

endocytic spot (area or perimeter) or the duration of a given event.

2.1.3 Electron Microscopy

Electron Microscopes (EMs) are scientific instruments that use a beam of highly

energetic electrons to examine objects on a very fine scale. EMs were developed due

to the limitations of Light Microscopes which are limited by the physics of light to

500× or 1000× magnification and a resolution of 0.2 micrometers. Seeing the fine

details of the interior structures of organic cells requires at least 10000×magnification,

which was just not possible using Light Microscopes. EMs function exactly as their

optical counterparts except that they use a focused beam of electrons instead of light

to “image” the specimen and gain information as to its structure and composition.

The basic steps involved in all EMs are: (a) a stream of electrons is formed (by the
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Electron Source) and accelerated toward the cell using a positive electrical potential;

(b) this stream is confined and focused using metal apertures and magnetic lenses into

a thin, focused, mono-energetic beam; (c) this beam is focused onto the sample using

a magnetic lens; and, (d) interactions occur inside the irradiated sample, affecting

the electron beam. These interactions and effects are detected and transformed into

an image. The above steps are carried out in all EMs regardless of type. There are

two different types of EM: Transmission Electron Microscopes (TEM) and Scanning

Electron Microscopes (SEM).

A TEM works much like a slide projector. TEMs shine a beam of electrons

through the specimen. Whatever part is transmitted is projected onto a phosphor

screen. The image strikes the phosphor image screen and light is generated, allowing

the user to see the image. The darker areas of the image represent those areas of the

sample that fewer electrons were transmitted through (they are thicker or denser).

The lighter areas of the image represent those areas of the sample that more electrons

were transmitted through (they are thinner or less dense).

2.1.4 Total Internal Reflection Fluorescence Microscopy

Total Internal Reflection Fluorescence Microscopy (TIRFM) is one of the most ad-

vanced technique of microscopy and is based in Snell’s law: if light travelling in a

dense medium strikes a less dense medium beyond a certain ’critical angle’ θc, the

light undergo Total Internal Reflection, TIR.

Cells are grown on glass coverslip or transparent materials of high refractive index,

and a beam of light, usually from a laser, is optically coupled into the cover slip by a

prism or the objective itself. If the light approaches the aqueous medium at greater

angle than θc, it totally reflects into the glass; however, if the light ’rays’ simply

bounced off the interface like a mirror, this would never illuminate the cell. Then, the

laser beam illuminates the sample beyond a critical angle to generate an evanescent

wave. Namely, as the beam of light traveling through a high refractive index medium

(e.g. glass; R.I. 1.51) encounters another media with a lower refractive index (i.e.,

water or cell cytosol; R.I. 1.3-1.4), the beam undergoes total internal reflection. As

a consequence, a small excitation wave called Evanescent Field is generated.

The evanescent field is only 100− 200 nm thick, and it decays exponentially as it

moves away from the coverslip. Therefore, only objects which are within 100−200 nm
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of the bottom plasma membrane of the cell are illuminated, while the nucleus, inner

cytosol and upper plasma membranes are left in the dark. In this way, it is possible to

image membrane-associated events, such as endocytosis and exocytosis, with a very

high signal-to-noise ratio, thus facilitating visualization of cellular processes near the

plasma membrane [3, 45, 82, 84, 83].

Under TIRFM, the assembly of fluorescently-labeled proteins at a site of ongoing

endocytosis results in the appearance and steady growth of a diffraction-limited spot,

in such a way that the areas of fluorescence of endocytic events overlap, forming

random clumps in space and time.

Electronic Microscopy has high spatial resolution, but only gives snapshots of

the process. By contrast TIRFM offers a compromise in that good spatial-temporal

resolution can be achieved. TIRFM microscopes allow the Biologist to observe how

the vesicles fusion with the plasma membrane or how isolated molecules move near

the plasma membrane [84, 83].

2.2 Stochastic models

Now, we briefly introduce basic concepts of the Point Processes and the Random

Closed Sets. We also define the Boolean model.

2.2.1 Point processes

A spatial point process is a stochastic mechanism producing a countable set of points

in the plane. A good reference about statistical analysis of spatial point processes is

[24]. It is usual to assume stationarity and isotropy, i. e., invariance under spatial

shifts and invariance under rotation respectively. Although the models are often

defined as processes on the whole plane, in practice we only apply them to data

from finite planar regions and it will be sufficient for our purposes if stationarity and

isotropy hold to a reasonable approximation within the study region.

Let xi : i = 1, 2, 3, . . . denote the points of a realization in R2, a point pattern.

Let us denote E[X] the expectation of a random variable X, N(C) the number of

events in the planar region C, ν2(C) the area of C, dx an infinitesimal region which

contain the point x, and ∥xi − xj∥ the Euclidean distance between the points xi and

xj.
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We can now define the first-order and second-order properties of a spatial point

process. The first-order intensity function measures the uniformity of the pattern,

i.e., the way in which the expected value (mean or average) of the process varies

across space. It is given by

λ(x) = lim
ν2(dx)→0

E[N(dx)]

ν2(dx)
, (2.1)

where dx is an infinitesimal region at location x with area ν2(dx) and N(dx) denotes

the number of events in the region.

The second-order intensity function is a measure of the dependency structure of

the events in a region C, i.e., the covariance (or correlation) between values of the

process at different regions in space. It is given by,

λ2(xi, xj) = lim
ν2(dxi),ν2(dxj)→0

E[N(dxi)N(dxj)]

ν2(dxi)ν2(dxj)
. (2.2)

For a stationary point process, λ(x) = λ, i.e., the expected number of events at

an arbitrary location x is constant for all x ∈ C; and λ2(xi, xj) = λ2(xi − xj) so that

dependence between events depends only on the difference h = xi−xj between xi and
xj. When the point process is stationary and isotropic, λ2(xi, xj) = λ2(∥xi − xj∥).

An alternative characterization of the second-order properties of a stationary

isotropic process is provided by the function K(s) defined as

K(s) =
1

λ
E[N0(s)] (2.3)

being N0(s) the number of further events within distance s from an arbitrary event.

In practice, this function is estimated by locating the center of a disk of radius

s over each event and counting the number of events (without including the center)

inside the disk. The count is done for every event. If events are regularly spaced,

each one is likely to be surrounded by empty space and therefore, at small distances,

K(s) will be relatively small.

An estimator of the K-function is proposed by Ripley [24] and given by

K̂(s) =
ν2(C)

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

wijI(dij ≤ s), (2.4)
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2.2 Stochastic models

where I(·) denotes the indicator function. A weight wij is included because of the

edge effects.

The K-function and the intensity λ2(s) of a stationary point process are related

to the distribution function and probability density function of the distances between

pairs of events in a point pattern. A useful property of the K-function is that it is

invariant under random thinning. In a random thinning operation, each point of a

given point pattern X is randomly either deleted or retained (i.e. not deleted) with a

retention probability p. The result is another point pattern, consisting of those points

of X that were retained, with intensity pλ and the same K-function.

2.2.2 Random Closed Sets (RACS)

Let us introduce some basic notation. The Lebesgue measure in Rd will be denoted by

νd (ν3 is the volume in R3 and ν2 the area in R2). In particular, for A a Borel subset

of R2, ν2(A) and U(A) will denote the area and perimeter of the set A, respectively.

A⊕ B = {a + b : a ∈ A, b ∈ B} is the Minkowski addition of sets A and B. Finally,

Ǎ = {−a : a ∈ A} is the symmetric of A with respect to the origin.

Random closed sets are mathematical models for irregular random area patterns

whose formal definition was provided by [52].

Let F be the class of closed subsets in the Euclidean space R2 and σf the σ-algebra

generated by the sets FK = {F ∈ F : F ∩K ̸= ∅} where K is a compact subset of

R2. If P denotes a probability measure in (F , σf ), then (F , σf ,P) is a random closed

set. Let Φ be a random closed set, i.e., a random element of this probability space.

Note that the definition is given in such a way that {Φ ∩K ̸= ∅} is a random event,

i.e., a given compact subset K touches the random closed set, and its probability

P (Φ ∩K ̸= ∅) can be computed.

In fact, the following set function characterizes the probability distribution of the

random set Φ

T (K) = P(Φ ∩K ̸= ∅) with K any compact subset. (2.5)

This set function is known as the capacity functional of Φ.

Intuitively, a random closed set Φ is a random mechanism producing random

(closed) subsets in space.
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We model each binary image of the sequence as a realization of a random set in

R2 and the whole image sequence as a random set in R2×R+. Let us denote by Φ(t)

the random set corresponding to the random binary image at the observation time

t, with t ≥ 0. If we stack the observed temporal cross-sections for every time t, we

define the temporal random set in R2 × R+ as

Φ = ∪t≥0Φ(t). (2.6)

This model can be considered as a particular case of a non-isotropic three dimen-

sional random set. The lack of isotropy comes from the temporal dimension, since we

assume that the temporal variation is different from the spatial variation.

2.2.3 The Boolean model

The Boolean model is a type of random closed set. Let Ψ = {y1, y2, . . .} be a stationary
Poisson point process in Rd with intensity λ [17, 79, 24, 80].

Let Ξ1,Ξ2, . . . be a sequence of independent and identically distributed (as Ξ0)

random compact sets in Rd such that they are independent of the Poisson point

process and Eνd(Ξ0 ⊕ Ǩ) < +∞ for every compact set K.

A Boolean model is defined as

Φ = ∪∞
n=1(Ξn + yn). (2.7)

The points yn are called the germs and the sets Ξn are the grains. The random set

Ξ0 is called the primary grain.

The distribution of a random closed set is completely characterized by its capacity

functional defined as T (K) = P (Φ ∩K ̸= ∅) (with K an arbitrary compact subset).

For a Boolean model, this functional is given by

T (K) = 1− exp{−λEνd(Ξ0 ⊕ Ǩ)}. (2.8)

When germs follow a stationary Poisson process, the model is stationary. If pri-

mary grains Ξ0 are isotropic (e.g. discs with random radii), then the model is isotropic,

i.e., its distribution is invariant against random rotations.

In particular, if K = {0}, the value T ({0}) = P (0 ∈ Φ) is known as the area
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fraction, the mean area in R2 (the mean volume in R3) covered by the random set

per unit area (respectively, per unit volume). The area fraction in a d-dimensional

Boolean model is given by

p = 1− exp{−λEνd(Ξ0)}. (2.9)

In general, the area fraction in a d-dimensional Boolean model is defined as the

mean of the area of Ξ in a unitary region B

p = E(νd(Ξ ∩B)), νd(B) = 1. (2.10)

When Ξ is stationary, p doesn’t depends on region B and then

p = P (0 ∈ Ξ). (2.11)

If K = 0, then

P (0 ∈ Ξ) = 1− exp{−λE(νd(Ξ0))}. (2.12)

Intuitively, a Boolean model in R2 could be seen as a set of points randomly

distributed in the plane, where a random shape is located. Given an isotropic and

stationary Boolean model in R2 we are interested in the following three unknown

parameters, which allow us to characterize the process: the intensity λ of the germ

process (number of germs per unit area); and parameters of the distribution of the

primary grain, such as, the mean area of the primary grain, a0 = Eν2(Ξ0), and the

mean perimeter, u0 = EU(Ξ0).

A more in-depth study of this model can be found in [72, 56, 79, 17, 4, 37]. In

[5, 6, 7, 8] some estimation methods are introduced. Some previous applications of

Boolean models within Image Processing are [39, 38, 23, 70, 9].

A robust method to estimate the intensity λ of the process, the mean area a0 and

the mean perimeter of the primary grain u0 is the minimum contrast method. The

minimum contrast method consists of the minimization of the difference between an

estimated aggregate parameter (e.g. the capacity functional) and an approximation

expressed in terms of the intensity, mean area and mean perimeter [72, 56]. An

alternative is the method of moments based on the coverage fraction, mean area,

boundary length and Euler-Poincare characteristic. This method is computationally
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easy but leads to biased estimators. Other methods have been presented to estimate

the intensity, among them one based on Monte Carlo approximations of the likelihood

function, and another on a stochastic version of the EM algorithm [58, 49].

The minimum contrast method has been used successfully with irregular sampling

windows (see [70]). See [56, 79] for a detailed statistical analysis of Boolean models.

See [37, 70] for computational details.

Let K be a convex and compact subset of R2 containing the origin and t a positive

real number. If tK = {tk : k ∈ K} (i.e., the homothetic of K) then let us define the

following function

HK(t) = 1− 1− T (tK)

1− p
, (2.13)

where p = P (0 ∈ Φ) = 1−T ({0}), is the area fraction of Φ (or mean area covered per

unit area by the stationary random set Φ). This function is a probability distribution

function known as the contact distribution function.

It follows that,

HK(t) = 1− exp

{
− λE[ν2(A0 ⊕ tK)− ν2(A)]

}
, (2.14)

where K is the unit disk on the plane and A0 the primary grain.

Let us define

H l
K(t) = − log(1−HK(t)). (2.15)

Then, it is well-known [56, 79] that

H l
K(t) = λE[ν2(A0 ⊕K)− ν2(A0)]. (2.16)

The generalized Steiner Formula establishes ([52]) that

Eν2(A0 ⊕ K̆) = Eν2(A0) +
U(K)EU(A0)

2π
+ ν2(K). (2.17)

In particular, if we consider K = B(0, t), the disk centered at the origin with radius

t then we have

Eν2(A0 ⊕B(0, t)) = Eν2(A0) + EU(A0)t+ πt2. (2.18)
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Thus,
H l

B(0,1)(t)

t
= λπt+ λu0. (2.19)

Similarly, if K is taken equal to a unit square centered at the origin, S(0, 1), then

H l
S(0,1)(t)

t
= λt+

2

π
λu0. (2.20)

The contact distribution function can be estimated from the estimators of the

capacity functional and the area fraction from Eq. 2.13. The capacity functional

T (K) can be estimated from a given realization (i.e. from each binary image of the

sequence) by using the minus-sampling estimator given by

T̂W (K) =
ν2((Φ⊕ K̆) ∩ (W ⊖K))

ν2(W ⊖K)
, (2.21)

where W is the sampling window, K is a disk and A⊖ Ǩ = {x ∈ A : x+K ⊂ A}.
Using the estimator given in (2.21), the left-hand side of (2.19) and (2.20) for

different t values can be estimated. A linear fit using these estimated values provides

us with estimates for λ and u0. If c0 + c1t is the fitted function then the parameters

can be estimated as

λ̂ =
c1
π
, û0 =

c0

λ̂
. (2.22)

2.3 Temporal Boolean Models

Temporal Boolean models are a particular case of a non-isotropic 3D Boolean model.

Now, we briefly introduce some interesting properties of temporal Boolean models

and some parameter estimation methods. Details on proofs, methodology, simulation

studies and results could be found in [9, 70]. The estimation methods proposed in this

section are not used in the following studies presented in this thesis. However, they

have been used in other works previously published, to which the author of this thesis

has contributed, and they form the State-of-the-Art in respect of temporal Boolean

models.

Let Ψ = {x1, x2, . . .} be a stationary Poisson point process in R3 with intensity λ.

Let {Ξi}i≥1 be a sequence of independent and identically distributed (as Ξ0) random
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compact sets in R3 which are independent of the Poisson point process Ψ. Let us

assume that Eν3(Ξ0 ⊕ Ǩ) < +∞ for any K compact subset of R3. The 3D Boolean

model Φ is the random set

Φ = ∪i≥1(Ξi + xi), (2.23)

where the points xi are called germs and the sets Ξi are called grains, with Ξ0 being

the primary grain.

The distribution of Φ is determined by the capacity functional defined as T (K) =

P(Φ ∩K ̸= ∅), with K being any compact subset. For a 3D Boolean model we have

T (K) = 1− exp{−λEν3(Ξ0)⊕ Ǩ)}. (2.24)

Particularly, T (0) = p = 1− exp{−λEν3(Ξ0)} is the probability that a given point is

covered by Φ, also known as the volume fraction. Under the hypothesis of stationarity

(the distribution of the random set is invariant against translation), the intensity of

the germ process corresponds to the mean number of points per unit volume and is

denoted by λ.

Now, let {(xi, ti)} be a realization of a Poisson point process in R2×R+, where xi

denotes the location and ti the birth time of the i-germ. The ith-grain is the rectangle

Ξi = Ai×[0, di], where {Ai}i≥1 is a sequence of independent and identically distributed

(as A0) random compact sets in R2 and {di}i≥1 is a sequence of independent and

identically distributed (as D) positive random variables independent of the Poisson

point process Ψ and independent of the sequence {Ai}i≥1. The temporal Boolean

model Φ is defined as

Φ = ∪i≥1(Ai + xi)× [ti, ti + di]. (2.25)

A shape Ai and a duration di are associated with each point (xi, ti). The set

(Ai + xi)× [ti, ti + di] is a rectangle in R2 × R+, the i-th event.

Fig. 2.5 (a) displays a realization of a temporal Boolean model where A0 is a

disc of random radius. The vertical axis corresponds to time, whereas the horizontal

plane is the image plane. The union of these cylinders is a realization of the temporal

Boolean model. It is important to note that there is temporal and spatial overlapping.

The degree of overlapping depends on both the number of grains per unit area and

time and their durations. Due to the time discretization, a given grain could be born
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between two consecutive temporal cross sections but it would not be observed (if it

was still alive) until the next cross section (frame).

Given a temporal Boolean model Φ, we will denote Φs = Φ ∩ R2 × {s}, i.e. Φs

is a temporal cross-section of Φ at time s. Fig. 2.5 (b) displays some consecutive

temporal cross-sections.

(a) (b)

Figure 2.5: An example of temporal Boolean model and three cross-sections.

Temporal cross-sections are (static) 2D Boolean models ([52, 79]). In fact, we

developed the following proposition in [9].

Proposition 1 If Φ is a temporal Boolean model with intensity λ and primary grain

A0 × [0, D], then the temporal cross-section Φs is a 2D Boolean model with primary

grain A0. The random sets Φ and Φs have the same area fraction. Therefore the

intensity of Φs is γ = λED since

1− exp{−λEν2(A0)ED} = 1− exp{−γEν2(A0)}. (2.26)

2.3.1 Marginal analysis of the temporal dimension

Let Ψ = {tn}n≥1 be a Poisson point process in R with intensity θ and let {dn}n≥1 be

a sequence of independent and identically distributed non-negative random variables.

If the n-th grain is born at time tn and dies at time tn + dn, then this grain will

be alive during the time interval [tn, tn + dn]. Let s0 = −∞ < s1 < s2 < . . . <

sm < sm+1 = +∞ be a set of fixed (previously specified) points in R, the sampling
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times, where m is the length of the image sequence. Let N
(sj−1,sj ]

(si−1,si]
denote the number

of points in Ψ such that tn ∈ (si−1, si] and tn + dn ∈ (sj−1, sj] with j > i. In

short, the random variable N
(sj−1,sj ]

(si−1,si]
counts the number of events in Ψ being born

in (si−1, si] and dying in (sj−1, sj]. Let us consider the point process in R defined

as Ψ
[sj−1,sj)

(−∞,s1]
= {tn ∈ Ψ : tn ≤ s1 < sj−1 ≤ tn + dn < sj}. In particular, we define

Ψs = {tn : tn ≤ s < tn + dn} , i.e. the events alive at time s. Note that the point

process Ψ
[sj−1,sj)

(−∞,s1]
is an inhomogeneous Poisson point process with intensity function

r(tn) = θP (sj−1 ≤ tn + dn < sj) if tn ≤ s1 and 0 if tn > s1, (2.27)

because it is a thinning of the original point process Ψ [79, 17].

Proposition 2 The total number of points in Ψ
[sj−1,sj)

(−∞,s1]
, N

(sj−1,sj)

(−∞,s1]
, is a Poisson vari-

able with mean given by,

EN
[sj−1,sj)

(−∞,s1]
= θ(p(sj−1 − s1)− p(sj − s1)), (2.28)

being

p(s) =

∫ +∞

s

P (D ≥ t)dt. (2.29)

Note that, p(0) =
∫ +∞
0

P (D ≥ t)dt = ED.

As a corollary, we see that the mean number of points born before s and dead

after s is equal to EN
(s,+∞)
(−∞,s] = θp(0) = θED.

In general, the mean number of points, N
(sj−1,sj ]

(si−1,si]
, which were born in the time

interval (si−1, si] and died in the time interval (sj−1, sj], with j > i is a Poisson

variable with mean EN
(sj−1,sj ]

(si−1,si]
= EN

(sj−1,sj ]

(−∞,si]
− EN

(sj−1,sj ]

(−∞,si−1]
= θ(p(sj−1 − si)− p(sj −

si)− p(sj−1 − si−1) + p(sj − si−1)).

2.3.2 Estimation of probability density function by aggregat-

ing temporal cross-sections

The individual parameters of a temporal Boolean model are not observable due to

overlapping. We can only estimate them through estimates of aggregate parameters,

such as the capacity functional, which characterizes the set Φ as a whole and can

be directly observed [56]. The ergodicity property ensures that the corresponding
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aggregate estimators converge with probability of one to the theoretical values if the

sampling window expands to the whole plane.

In [9, 70], a non-parametric approach based on the accumulation of different frames

is proposed to estimate the dynamic key parameters such as the probability density of

durations and the intensity λ of the germ process. By accumulating different frames

of the image sequence, new random sets with higher intensity are obtained. As we

have mentioned, temporal cross-section of Φ, Φs, is also a 2D Boolean model. The

union of Boolean models are also realizations of a Boolean model (see [56]). Then,

we can construct different accumulated sequences and for each we can estimate their

spatial intensity and the mean perimeter for each temporal cross-section by using the

minimum contrast method ([56, 72]).

Let ∪k
i=1Ψsi be the point process obtained by the union of all events alive in some

of the temporal cross-sections s1, ..., sk. We are interested in the spatial intensity of

∪k
i=1Ψsi . The (random) number of points in ∪k

i=1Ψsi is

ψ(s1, s2, . . . , sk) = EN
[s1,+∞)
(−∞,s1]

+
k∑

i=2

EN
(si,+∞)
(si−1,si]

= θ

[
kp(0)−

k∑
i=2

p(si − si−1)

]
. (2.30)

In particular, if the times si are equally spaced, as usual, with si − si−1 = δ, then

Eq. (2.30) becomes

ψ(s1, s1 + δ, . . . , s1 + (k − 1)δ) = θ

[
kp(0)− (k − 1)p(δ)

]
. (2.31)

Given the original sequence {Φsi ∩W}i=1,...,m with si − si−1 = δ, we consider the

accumulated sequence defined as Φ̃si = ∪i+k
j=iΦsj with i = 1, . . . ,m − k + 1 and k an

integer, and will denote its intensity as λs(k, δ).

Note that this intensity only depends on the time between consecutive frames δ

and the number of frames accumulated, k. In particular, if δ = 0 and k = 1, we

see from Eq. (2.31) that the spatial intensity for any temporal cross-section of the

original sequence is λs(0, 1) = λp(0) = λED.

For each frame in an aggregated sequence, we could estimate the intensity λs,

applying the following methodology. Let K be a convex and compact subset of R2

containing the origin. If tK = {tk : k ∈ K} (i.e. the homothetic of K) with t ≥ 0,
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then let us consider the contact distribution function

HK(t) = 1− 1− T (tK)

1− p
= 1− exp{−λs(E[ν2(A0 ⊕ tǨ)]− Eν2(A0))}, (2.32)

with t ≥ 0, p being the area fraction of a temporal cross-section Φs and λs the

intensity of the germ process. The capacity functional T (K) defined in Eq. (2.24)

can be estimated from a given realization (i.e. from each binary image of the sequence)

by using the minus-sampling estimator given by

T̂W (K) = 1− ν2((W ∩ Φc)⊖ Ǩ)

ν2(W ⊖ Ǩ)
, (2.33)

where W is the sampling window.

Note, that due to the minus-sampling edge-correction applied to the denominator

of Eq. (2.33), the estimator ĤK(t) may not be monotone. Them H l
K(t) = − log(1−

HK(t)) should be used, yielding

H l
S(0,1)(t)

t
= λst+

2

π
λsus,0. (2.34)

with K being the unit square centered at the origin, S(0, 1), and us,0 the mean

perimeter of the events in a temporal cross-section. Using this estimator, H l
K(t) can

be calculated for different values of t. A least square fit using these estimated values

provides us with estimates for λs and us,0.

Afterwards, the batch-mean method could be applied over this set of estimates

so as to calculate the mean spatial intensity of the cross-sections, λ̂s(k, δ) ([48, 70]).

This procedure is repeated for different values of k and δ. Then, these estimates could

be used to obtain new estimators which give us information about the dynamics of

the process.

Eq. (2.31) becomes

ψ(s1, s1 + δ, . . . , s1 + (k − 1)δ) = λν2(W )

[
kp(0)− (k − 1)p(δ)

]
. (2.35)
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From the definition of λs(k, δ) it is clear that

λs(k, δ) =
ψ(s1, s1 + δ, . . . , s1 + (k − 1)δ)

ν2(W )
= λ

[
kp(0)− (k − 1)p(δ)

]
. (2.36)

Let us rewrite Eq. (2.36) as

λs(k, δ) = (λp(0)− λp(δ))k + λp(δ). (2.37)

If we consider the right hand side of Eq. (2.37) as a function of the number of frames

k, then the coefficient associated with k and the constant have simple interpretations.

Let us denote

α(δ) = λp(0)− λp(δ), (2.38)

β(δ) = λp(δ). (2.39)

α(δ) represents the mean number of new grains which are born between two frames δ

apart. Note that due to the stationarity of the process, it can also be interpreted as the

mean number of dead grains between these two frames. The function β(δ) represents

the mean number of germs which remain alive between two frames separated by δ

frames. Then Eq. (2.37) can be reformulated as λs(k, δ) = α(δ)k + β(δ).

We can fix δ and calculate the estimates of λ̂s(k, δ) under different k
′s. A weighted

least square fit could be performed where the predictor is k and the dependent variable

is λ̂s(k, δ). That fit is repeated for different δ ∈ {δ1, . . . , δn}.

Finally, estimates of α̂(δi) and β̂(δi) with i = 1, . . . , n will be used, in turn, to

obtain estimates of the spatial temporal intensity λ̂ as follows,

α′(0) = −λp′(0) = λP (D ≥ 0) = λ, (2.40)

where α′(0) denotes the first derivative of the function α(δ) at the origin. Further-

more, since λs(0, 1) = λp(0) can be obtained from the data, p(δ) can be found from

Eq. (2.47), as we will see later. Finally the density of durations f̂D can be estimated
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as,

p′(δ) = −P (D ≥ δ) = −(1− P (D ≤ δ)) = FD(δ)− 1,

p′′(δ) = fD(δ), (2.41)

where p′′(δ) is the second derivative of p(δ).

2.3.3 Estimation of probability density function by combin-

ing temporal cross-sections

Now, we will present another method to estimate the probability density of the event

duration D of a temporal Boolean model, fD. It could be estimated by combining

two discrete temporal cross sections and their negated images. (See [9]). Let us

denote the temporal cross-section at time s as Φs = Φ ∩ (R2 × {s}), for the times

s1 ≤ . . . ≤ sk. Each Φsi is contained in the product space W × [0, T ], where W is the

observation window and [0, T ] is the total time interval observed.

Let us denote Φs also the projection of Φs over R2, i.e., the binary image observed

at time s. It is given by:

Φs = ∪{i:ti≤s≤ti+di}(Ai + xi). (2.42)

For s1 ≤ s2, we will consider the following three random sets:

Φs1,s2 = ∪i:ti≤s1≤s2≤ti+diAi + xi, (2.43)

Φs1,s
−
2

= ∪i:ti≤s1≤ti+di<s2Ai + xi, (2.44)

Φs−1 ,s2
= ∪i:s1<ti≤s2≤ti+diAi + xi. (2.45)

Φs1,s2 corresponds to the union of the grains which are in Φs1 and Φs2 , Φs1,s
−
2
to the

grains in Φs1 but not in Φs2 , and finally Φs−1 ,s2
to the grains in Φs2 but not in Φs1 (see

Fig. 2.6 (b)). This approximation combines two cross-sections of the 3D Boolean

model to obtain new information of the underlying model, in contrast with other

studies in which sections are analyzed separately [68, 26].

In [9], the following theorems and propositions are introduced. Detailed proofs

can be found in [9].
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(a) (b)

Figure 2.6: Three consecutive cross-sections of a Temporal Boolean model and the
three Boolean models derived.

Theorem 1 Let Φ be a temporal Boolean model. The random sets Φs1,s2, Φs1,s
−
2
and

Φs−1 ,s2
are three independent 2D Boolean models. Let us denote β(s2−s1) the intensity

of Φs1,s2 (the mean number of germs that are alive in the time interval [s1, s2]), which

is given by

β(s2 − s1) = λp(s2 − s1), (2.46)

where p(s) =
∫ +∞
s

P (D ≥ v)dv. Moreover, under stationarity, Φs1,s
−
2
and Φs−1 ,s2

have

the same intensity, α(s2−s1) (the mean number of germs that died in the time interval

[s1, s2]) given by

α(s2 − s1) = λED − λp(s2 − s1) = γ − β(s2 − s1). (2.47)

It holds that γ = α(s) + β(s), i.e. the mean number of grains per unit area that

appear and remain through a time interval of length s is constant and is equal to the

mean number of germs per unit area in each frame. The sets Φs1,s2 , Φs1,s
−
2
and Φs−1 ,s2

cannot be observed due to the overlapping between the different events. However,

note that we can observe Φs1 = Φs1,s2 ∪ Φs1,s
−
2
, Φs2 = Φs1,s2 ∪ Φs−1 ,s2

, Φs1 \ Φs2 =

Φc
s1,s2

∩Φs1,s
−
2
∩Φc

s−1 ,s2
and Φs2 \Φs1 = Φc

s1,s2
∩Φs−1 ,s2

∩Φc
s1,s

−
2

, where A \B = A ∩Bc

denotes the set substraction.
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Proposition 3

P (0 ∈ Φs1 |0 /∈ Φs2) = P (0 ∈ Φs2 |0 /∈ Φs1) = 1− exp{−α(s2 − s1)a0}. (2.48)

Then P (0 ∈ Φs1 |0 /∈ Φs2) will be estimated as

P̂ (0 ∈ Φs1 |0 /∈ Φs2) =
P̂ (0 ∈ Φs1 \ Φs2)

P̂ (0 /∈ Φs2)
=
ν2(ϕs1 ∩ ϕc

s2
∩W )

ν2(ϕc
s2
∩W )

, (2.49)

and, by using (2.48) and (2.49), we will estimate δ(s2− s1) = α(s2− s1)a0 solving the

equation

1− exp{−δ̂(s2 − s1)} =
1

2

(
ν2(ϕs1 ∩ ϕc

s2
∩W )

ν2(ϕc
s2
∩W )

+
ν2(ϕs2 ∩ ϕc

s1
∩W )

ν2(ϕc
s1
∩W )

)
. (2.50)

The mean area (a0) and the mean perimeter (u0) of A0 and γ were estimated from

each image in the sequence by using the minimum contrast method [56]. The different

estimates are correlated values of the same parameters since the model is stationary.

The different estimates over the image sequence were then combined by using the

batch-mean method [48].

Let â0 and γ̂ be the estimates. The functions α(s) and β(s) can be estimated as

α̂(s) =
δ̂(s)

â0
and β̂(s) = γ̂ − α̂(s). (2.51)

From 2.47, it follows that α′(s) = λ(1 − FD(s)) and α
′′(s) = −λfD(s) where α′ and

α′′ are the first and second derivatives of α, whereas FD and fD are the cumulative

distribution function and the density function of the random variable D, respectively.

The function α(s) can be estimated at the observation points {s1, . . . , sn}. Its first
and second derivatives at any point could be estimated by making use of functional

data analysis. A functional datum is a set of discrete measured values {(sj, yj)}j=1,...,n.

First, it is necessary to convert these values to a function which is computable for

any value. In [9], an interpolation process was not used because the discretization

might include some observational error. Instead, a smoothing technique was used

to transform the raw data {(sj, yj)}j=1,...,n to a function y(t) =
∑K

k=1 ckΦk(t), being
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2.3 Temporal Boolean Models

{Φk(t)}k=1,...,K a basis functions possessing a certain number of derivatives. A poly-

nomial spline basis was chosen, where each Φk(t) is a piecewise cubic function. The

coefficients ck of the expression y(t) were obtained by minimizing the least squares

criterion SMSSE(y|c) =
∑n

j=1(yj −
∑K

k=1 ckΦk(tj))
2. A detailed presentation of this

method is given in [64]. This procedure has been applied to the estimated values

{(sj, α̂(sj))}j=1,...,n to obtain an estimated function α̂(s) and to calculate the first

and second derivatives of the fitted values. The spatial-temporal intensity λ was

estimated by taking into account that α′(0) = −λp′(0) = λP (D ≥ 0) = λ, yielding

λ̂ = α̂′(0). (2.52)

The probability density of D, fD, was estimated as

f̂D(s) = −1

λ̂
α̂′′(s). (2.53)
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Chapter 3

Estimation of the duration

distribution in temporal Boolean

models using the spatial-temporal

covariance

In order to study the shape-size features and durations of the events, it is a usual

practice to analyze only isolated episodes. However, this sample is biased because

faster and smaller events tend to be isolated. We model the images as a realization of

a cylindrical temporal Boolean model. We evaluate the bias introduced when ruling

out non-isolated episodes. We propose an estimator of the duration distribution

and perform a simulation study to assess its accuracy. The method is applied to

fluorescent-tagged proteins image sequences. Results show that this procedure is

effective for analyzing dynamic processes where spatial and temporal overlapping

occurs.

3.1 Introduction

The problem of estimating shape-size characteristics of overlapping objects from im-

ages is common in many real applications. Boolean models explicitly consider and

assume this overlap, providing a good description for very irregular patterns ob-

served in Microscopy, Material Sciences, Biology, Medicine, Chemistry, Geostatistics,
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Cellular Communications Networks or Image Processing, since they formalize the

configuration of independent and randomly located particles. What it is observed

is a pattern of overlapping random shapes, as shown in Fig. 3.1. More precisely, a

Boolean model is a random closed set consisting of a Poisson point process producing

the germs coupled with an independent random shape process i.e. a sequence of in-

dependent and identically distributed random closed sets, the grains. The connected

components made of overlapping sets are called clumps. Definitions and statistical

analysis of these models can be found in [51, 52, 57, 72, 79]. Previous applications

of Boolean models within Image Processing, in particular for texture analysis and

classification, are [23, 39, 33].

In spite of the considerable number and variety of applications of Boolean models,

the problem of analyzing overlapping events in space and time from image sequences

remains elusive. More sophisticated mathematical models and statistical methods

are needed i.e. hybrid models that capture both time and geometric properties while

formalizing a configuration of independent randomly placed particles with random du-

rations. Fig. 3.1 displays several consecutive frames of a simulated model where discs

are randomly located in space and time with random radii and random durations (see

Video1 in supplementary material). Fig. 3.2 depicts a spatial-temporal reconstruc-

tion of the model. These sophisticated data require specialized methods for effective

analysis, in particular for extracting useful information and for the interpretation of

results.

In applied fields, such as Cell Biology, the estimation of shape-size features and

durations of overlapping events from image sequences is often confined to visual in-

spection or limited statistical analysis typically done manually on a one-by-one basis

of isolated events, those that can be completely observed from the beginning to the

end of their lifetimes (see Fig. 3.1). However, this procedure presents several draw-

backs. First, each experiment involves dozens of sequences with thousands of frames

each, making manual analysis impossible in large image sequences. Second, manual

marking of isolated events is somewhat subjective. Third, the use of only isolated

events leads to a biased sample i.e. one that includes smaller and shorter events with

higher probability. The evaluation of this bias is not possible without the assump-

tion of a stochastic model about the (random) mechanism generating the locations,
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times of occurrence and durations of the events. In this study we define a stochas-

tic model, the cylindrical temporal Boolean model, which will allow us to assess the

bias introduced when excluding non-isolated events. We will propose an estimator

of the cumulative distribution function of the duration of the events based on the

spatial-temporal covariance of random sets.

Figure 3.1: Several consecutive frames of a simulated temporal Boolean model with
cylindrical grains. Arrows point to an isolated episode.

The procedure will be applied to fluorescent-tagged endocytic proteins image se-

quences in order to estimate the duration of cell endocytosis. TIRFM illuminates

a thin section near the cell-coverslip interface and gives a very high signal-to-noise

ratio, thus facilitating visualization of cellular processes near the plasma membrane

([83]). Under TIRFM, the assembly of fluorescently-labeled proteins at a site of on-

going endocytosis results in the appearance and steady growth of a diffraction-limited

spot, in such a way that the areas of fluorescence of endocytic events overlap, forming

random clumps in space and time (see Fig. 3.3 and Video Cell1 in supplementary

material).

Section 3.2 contains the definition of the cylindrical temporal Boolean model and

some theoretical results on the statistical analysis of isolated events. In Section 3.3,

a semi-parametric estimator of the distribution function of the duration based on the

spatial-temporal covariance of random sets is introduced. In Section 3.4 a simulation

study is performed. Section 3.5 shows an application to biological image sequences

of cell endocytosis. Finally, conclusions and further developments are summarized in

Section 3.6.
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Figure 3.2: A spatial-temporal reconstruction of a cylindrical temporal Boolean
model.

Figure 3.3: Several snapshots of a fluorescent-tagged protein image sequence.

3.2 The model

This model is a particular case of the temporal Boolean model ([9, 70]). Graphically,

a temporal Boolean model consists of a set of events with location xi and occurrence

time ti, with random duration di and random shape Ξi, which overlap in space and

time. If the spatial grains are disks of random radii, then the events form cylinders

in R2 × R+. We can observe these kind of random cylinders in a TIRFM image

sequence of a fluorescent-tagged protein, since the snapshots remain alive several

frames. Fig. 3.1 displays some consecutive temporal cross-sections of a simulated
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3.2 The model

model. The union of these cylinders is a realization of the model (see Fig. 3.2). Let

us now introduce some notation and definitions.

Definition 1 (Cylindrical Temporal Boolean Model) Let Ψ = {(xi, ti)}i≥1 be

a stationary Poisson point process in R2×R+ with intensity λ. Let {(Ri, Di)}i≥1 be a

sequence of independent and identically distributed non-negative random vectors (as

(R,D)) with joint density f . We assume that Ψ and {(Ri, Di)}i≥1 are independent

and that Eν3(B(0, R) × [0, D] ⊕ Ǩ) < +∞ for any compact subset K of R2 × R+.

The cylindrical temporal Boolean model is the random set defined as

Φ =
∪
i≥1

B(0, Ri) + xi × [ti, ti +Di], (3.1)

where B(0, Ri)+xi is the translation ofB(0, Ri) at xi. The setB(0, Ri)+xi×[ti, ti+Di]

is a cylinder in R2 × R+, the i-th event.

The probability that a compact subset K of R2 ×R+ is contained in the comple-

ment of Φ is given by

Q(K) = P (K ⊂ Φc) = exp

(
− λEν3

[
(B(0, R)× [0, D])⊕ Ǩ

])
, (3.2)

where Ǩ is the symmetric of K with respect to the origin. If we take K = {0} then,

the volume fraction is given by

p = P (0 ∈ Φ) = 1−Q({0}) = 1− exp{−λπE(R2D)}. (3.3)

This probability p is called the volume fraction of Φ and it corresponds to the mean

volume covered by the random set per unit area and unit time.

3.2.1 The duration distribution of isolated events

Let us assume that the joint distribution of (R,D), the random radius and duration of

a typical grain, has a density f(r, d; θ) where θ are the parameters within a parametric

space Θ. However, due to the overlapping among shapes, we cannot observe all

events. We can only segment the isolated events, i.e those connected components

with a smooth boundary, which are either not overlapped by any other event or are
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hit by another one (or other ones) in such a way that the hitting events lie within it.

Such as isolated events can be completely observed from the beginning to the end of

their lifetimes as a cylindrical shape.

Let us denote by (R∗, D∗) the random vector associated with an arbitrary isolated

event and f ∗ be its corresponding density function. In order to study the bias in the

estimation of the durations using a sample composed of isolated events, it is necessary

to relate the densities f and f ∗. Note that f corresponds to the observable and non-

observable events and f ∗ to the isolated (and therefore observable) events. The case

of the static two-dimensional cylindrical Boolean model was studied in [28].

Theorem 2 Let Φ be a cylindrical temporal Boolean model with intensity λ. Let

(R,D) (respectively (R∗, D∗)) be the random radius and duration of the typical grain

(the typical isolated grain) of Φ. If (R,D) has density f(r, d; θ) then the density

function of (R∗, D∗) verifies

f∗(r, d;λ, θ) ∝ f(r, d; θ)p(r, d;λ, θ), (3.4)

where

p(r, d;λ, θ) = exp

(
− λ

∫ +∞

0

∫ +∞

0

C(u, v; r, d)f(u, v; θ)dudv

)
. (3.5)

The function C is defined as C(u, v; r, d) = ν3
(
B(0, u)× [0, v]⊕ S0(r)× [0, d]

)
, being

S0(r) a disc de radius r. The function C is equal to

C(u, v; r, d) =

π(u+ r)2(v + d) if u ≥ r or v ≥ d,

2π(r − u)2v + 4πur(v + d), if u < r and v < d.
(3.6)

The function p(r, d;λ, θ) gives the probability that a cylinder of radius r and duration

d remains as an isolated event in the observed pattern. This is equal to the probability

that its boundary is not hit by any other grain i.e. it belongs to the complement of

Φ.

Proof. If (R,D) = (r, d), the probability p(r, d;λ, θ) that the boundary of the

cylinder S0(r) × [0, d] is not covered by any other event can be obtained from Eq.

(3.2) as

p(r, d;λ, θ) = exp

{
− λEθ

[
ν3
(
B(0, R)× [0, D]⊕ S0(r)× [0, d]

)]}
. (3.7)
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When considering hits by a cylinder of radius u ≥ r or duration v ≥ d, it holds that

B(0, u)× [0, v]⊕ S0(r)× [0, d] = B(0, u+ r)× [0, v + d].

If u < r and v < d, we have

B(0, u)× [0, v]⊕ S0(r)× [0, d] =

=

[(
B(0, u+ r)\B(0, u− r)

)
× [0, v+ d]

]∪[
B(0, u+ r)× ([0, v+ d]∪ [d− v, d])

]
(3.8)

and the proof is completed.

�

Although we have assumed cylindrical shapes for the grains, the respective expressions

for other kind of random shapes can be likewise derived.

The remaining sample fraction, defined as the ratio of isolated events with respect

to all the grains, is given by

δ(λ, θ) =

∫ +∞

0

∫ +∞

0

p(u, v;λ, θ)f(u, v; θ)dudv. (3.9)

We have no closed expression for the density f ∗(·, ·;λ, θ). However, Theorem 2 opens a

simple way to generate random samples of f∗. First, we generate (R,D) = (r, d) with

density f(·, ·;λ, θ). Second, every generated pair (r, d) is accepted with probability

p(r, d;λ, θ) or rejected with probability 1−p(r, d;λ, θ). The accepted (r, d) pairs have

density function f∗(·, ·;λ, θ). By taking into account that

p(r, d;λ, θ) = exp(−λE[C(R,D; r, d)]),

we can obtain an estimate of p(r, d;λ, θ) by computing E[C(R,D, r, d)].

Let (R1, D1), . . . , (Rm, Dm) be a random sample with density f , then the Monte

Carlo estimator of E[C(R,D, r, d)] is given by

Ê[C(R,D; r, d)] =
m∑
i=1

C(Ri, Di; r, d)

m
.
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In summary, we will consider the estimator

p̂(r, d;λ, θ) = exp

(
− λ

m∑
i=1

C(Ri, Di; r, d)

m

)
. (3.10)

Given a model with parameters λ and θ, we can generate samples of isolated

episodes with durations D∗ for fixed λ and θ, say d∗1, . . . , d
∗
m, and we can compute the

error in the estimation of the distribution function of the duration.

3.2.2 Evaluating the marginal duration distribution of iso-

lated events

In this subsection, the original density of the durations considering all the events f

and the density of the isolated episodes f∗ are compared. Three cylindrical temporal

Boolean models were simulated corresponding to three duration distributions with

mean 6: uniform distribution, U(4, 8); Gamma distribution, Ga(18, 0.3333), and nor-

mal distribution, N(6, 1). The radii of the grains were uniformly distributed in the

interval [4, 8] pixels. The durations and the radii were independently generated.

Fig. 3.4 shows the estimates of f ∗ for the three models. The solid line corresponds

to f , the dashed line represents a remaining sample fraction δ of around 58%, the

dotted line of approximately 20% and the dashed-dotted line of around 10%. Note

how the densities tend to be concentrated in the left side of the interval. The higher

the remaining sample fraction is, the smaller the bias is.

3.2.3 Error in the estimation of the mean duration using

isolated events

The relative error of the mean duration, defined as the difference between the esti-

mated and theoretical values with respect to the theoretical value, was calculated as

a function of the remaining sample fraction, δ. We used the same models as in the

previous subsection. We considered values of the intensity of the germ process ranging

in the interval [0.0001, 0.001] with a step of 0.0001 resulting in 10 values of δ ranging

from 0 to 0.8. A total number of 40 replicates for each value of δ and model were sim-

ulated. Fig. 3.5 displays the 0.05 and 0.95 percentiles (dotted lines) and the median
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Figure 3.4: Estimated densities f ∗ of the random duration D∗ for different remaining
sample fractions. From top to bottom: uniform distribution, U(4, 8); Gamma distri-
bution, Ga(18, 0.3333), and normal distribution, N(6, 1). Durations are in unit time.
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(solid line) of the relative error (in percentage) computed from the 40 realizations.

When the remaining sample fraction is low i.e. there are many grains overlapped,

the relative errors are high. For the uniform distribution the error is lesser than 9%,

for the Gamma distribution is approximately 12% and for the normal distribution is

around 6%. These values could be unacceptable in many real applications. In Section

3.3, we propose an estimator of the cumulative distribution function of the duration

of a cylindrical temporal Boolean model using all the events i.e the observable and

non-observable episodes.

3.3 The covariance of a cylindrical temporal Boolean

model

In this section we present an estimator of the cumulative distribution function of the

duration based on the covariance of a cylindrical temporal Boolean model. We define

the spatial-temporal covariance of a (spatial-temporal) stationary random set as

C(h, t) = P (0 ∈ Φ(0),h ∈ Φ(t)). (3.11)

For a given h ∈ R2 and a given time t ∈ R+, this function gives the probability that

an arbitrary point at an arbitrary time and that point translated by a vector h and

a time t belong to the random set. The spatial origin 0 denotes an arbitrary location

and the temporal origin 0 denotes an arbitrary time. Fig. 3.6 provides a geometrical

interpretation. If the distribution of Φ is invariant against spatial translations then

C only depends on the modulus h, h = ∥h∥.

Proposition 4 Let Φ be a cylindrical temporal Boolean model Φ with intensity λ and

primary grain Φ0 = B(0, R)× [0, D], where the radii and durations are independent.

Let fD be the density of the durations. The spatial-temporal covariance of Φ is

C(h, t) = (2p− 1) + (1− p)2 exp
(
λCB(h)L(t)

)
, (3.12)

where CB(h) = Eν2
(
B(0, R) ∩ B(0, R) + h

)
, L(t) = ED −

∫ t

0
uFD(du) − tP (D ≥ t)

and FD is the cumulative distribution function of the duration.
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Figure 3.5: Relative errors in the estimation of the mean duration as a function
of δ. From top to bottom: uniform distribution, U(4, 8); Gamma distribution,
Ga(18, 0.3333), and normal distribution, N(6, 1).

Proof. A cylindrical temporal Boolean model is a particular case of a non-

isotropic three-dimensional Boolean model. By taking into account the general ex-

pression of the covariance ([51, 72, 79]), we have

C(h, t) = 2p− 1 + (1− p)2 exp{λEν3
(
Φ0 ∩ Φ0 + (h, t)

)
}. (3.13)
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Figure 3.6: The spatial-temporal covariance of a temporal random set.

Let us denote A0 = B(0, R), then Φ0∩Φ0+(h, t) = (A0∩A0+h)× ([0, D]∩ [t, t+D])

if t < D and ∅ otherwise. It holds that

Eν3
(
Φ0 ∩ Φ0 + (h, t)

)
= EA0,D

(
ν2
(
A0 ∩ A0 + h

)
× ν

(
[0, D] ∩ [t,D + t]

))
= EA0ν2

(
A0 ∩ A0 + h

)
EDν

(
[0, D] ∩ [t,D + t]

)
, (3.14)

because A0 and D are independent. Finally,

L(t) = EDν
(
[0, D] ∩ [t,D + t]

)
=∫ +∞

t

(u− t)FD(du) = ED −
∫ t

0

uFD(du)− tP (D ≥ t). (3.15)

�

If we assume that fD, the derivative of FD, exists, then from Eq. (3.15) it follows

that

L′(t) = −tfD(t)− (1− FD(t)) + tfD(t).

Therefore,

FD(t) = 1 + L′(t) (3.16)

and

fD(t) = L′′(t).

We will estimate FD in the next section using Eq.(3.16) ([21]).
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3.3.1 Estimation of the distribution function of the duration

Our data consist of a discrete set of temporal cross-sections corresponding to the

observation times, t ≥ 0 : Φ =
∪

t≥0 Φ(t), as shown in Fig. 3.1.

For a temporal Boolean model it holds that γ = λED ([9]), where γ is the mean

number of germs per unit area in any frame i.e. the intensity of an arbitrary temporal

cross-section. From Eq. (3.13), we have

G(h, t) = log

(
C(h, t)− 2p+ 1

(1− p)2

)
= λCA0(h)L(t), (3.17)

where CA0(h) = EA0ν2
(
A0 ∩ A0 + h

)
. We define

H(t) = G(0, t) = λa0L(t), (3.18)

where a0 = Eν2(A0). Note that L(0) = ED and L′(0) = −1. Therefore, H ′(0) =

−λa0. Then it holds that

L(t) = − H(t)

H ′(0)
, (3.19)

and from Eq. (3.16), we calculated the cumulative distribution function of the dura-

tion as

FD(t) = 1− H ′(t)

H ′(0)
. (3.20)

3.3.2 Estimators

We replace the (unknown) continuous version of the covariance function by the cor-

responding discrete version. In order to simplify notation, we assume that the frames

observed correspond to times t = 0, τ, 2τ, . . . , nτ i.e. n+1 equally spaced frames. Our

sampling information consists of the sequence of sets {Φ(kτ) ∩W}k=0,...,n where τ is

the temporal delay between two consecutive frames and W is the sampling window.
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The spatial-temporal covariance is estimated as

Ĉ(h, rτ) =
1

n− r

n−r∑
k=0

ν2

((
Φ(kτ) ∩W

)
∩
(
Φ((k + r)τ) ∩W

)
− h

)
ν2

(
W ∩W − h

) . (3.21)

The volume fraction p is estimated as the average of the area fractions observed at

each frame and it is given by

p̂ =
1

n+ 1

n∑
k=0

ν2
(
Φ(kτ) ∩W

)
ν2
(
W

) . (3.22)

The function H(t) is estimated at the observation points {t1, . . . , tn}, a discrete set

of values, giving {Ĥ(t1), . . . , Ĥ(tn)}. We have used an approach based on functional

data analysis in order to obtain a precise estimation of the first derivative from this

discrete set. We have chosen a polynomial spline basis {Ψk(t)}k=1,...,K , where each

Ψk(t) is a piecewise cubic function. We computed the coefficients ck of the expression

x(t) =
∑K

k=1 ckΨk(t) by minimizing the least squares criterion

SMSSE(x/c) =
n∑

j=1

(
xj −

K∑
k=1

ckΨk(tj)
)2
.

A detailed presentation of this method can be found in [64].

3.4 A simulation study

Section 3.4.1 contains a simulation study to assess the performance of the proposed

estimator of the distribution function of the duration from the covariance. In Sec-

tion 3.4.2 we apply the method to images with random noise.

Six cylindrical temporal Boolean models were generated ([21]), corresponding to

three distributions for the duration (uniform, Gamma and normal) and two mean

durations (6 and 10 seconds), see Table 3.1. The radii were uniform in the interval

[4, 8] pixels. Durations and radii were independent. For each model, three values

of the intensity λ = {0.0001, 0.0002, 0.0003} were simulated that corresponded to
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low, medium and high volume fractions (see Table 3.2). The volume fractions were

derived using the equation p = 1−exp{−λπE(R2D)}. Image sequences were 256×256

pixels, 100 seconds long and sampled at 4 frames per second. Fifty replica for each

model and value of λ were generated, thereby analyzing a total of 6 × 3 × 50 =

900 sequences. Fig. 3.7 displays the first frame of the six models simulated for the

uniform distribution. In supplementary material, Video1 corresponds to the uniform

distribution with λ = 0.0001, Video2 to the Gamma distribution with λ = 0.0002

and Video3 to the normal distribution with λ = 0.0003 with a mean duration of 6

seconds.

Table 3.1: Description of the models simulated.

Duration Parameters Model

Uniform
[4, 8] Model 1
[8, 12] Model 2

Gamma
[18, 0.3333] Model 3
[50, 0.2] Model 4

Normal
[6, 1] Model 5
[10, 1] Model 6

Table 3.2: Volume fractions simulated.

λ = 0.0001 λ = 0.0002 λ = 0.0003

ED = 6 0.06 0.13 0.18
ED = 10 0.10 0.20 0.29

3.4.1 Estimating the cumulative distribution function

First, we analyzed the absolute error in the estimation of the cumulative distribution

function of the duration, FD, for each model and intensity λ. Fig. 3.8 displays the

maximum and the minimum absolute error (solid lines) and the median (dashed line)

of F̂D for 50 replica. The first row corresponds to ED = 6 and the second row to
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Figure 3.7: The first row corresponds to ED = 6 and the second row to ED = 10.
From left to right, the columns correspond to λ = 0.0001, 0.0002, 0.0003. Uniform
distribution for the durations.

ED = 10. Columns correspond to the uniform, Gamma and normal distributions,

respectively. The intensity λ is 0.0003. Errors are quite small, lesser than 0.06

except for the uniform distribution U(8, 12). The highest values are observed next

to the median of the distribution. Similar results were obtained for λ = 0.0001 and

λ = 0.0002.

Second, we computed the maximum and the minimum deviations of the 50 real-

izations from the theoretical distribution function FD. Fig. 3.9 plots the upper and

lower envelopes (solid lines) as a function of the theoretical distribution function FD.

The theoretical value is within the envelopes even for very small values of FD. The

intensity λ is 0.0003. Similar results were obtained for λ = 0.0001 and λ = 0.0002.

Finally, we have calculated the relative error of the median of the duration as

the difference between the estimated and the theoretical values with respect to the

theoretical value. The minimum, median and maximum values are given in Table 3.3.

The relative errors were very small, even for high volume fractions. They were lesser

than 0.8% -except for the uniform [4, 8], that was 1.33%-. In our opinion, this error

would be small enough in many applications. Note that the error in the case ED = 10

is smaller than in the case ED = 6, because the discretization effect of the acquisition
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Figure 3.8: The median (dashed line), the maximum and the minimum (solid lines)
of the absolute error in the estimation of FD.

rate is lesser in relative terms.

Table 3.4 shows the relative error of the median of the duration using a sam-

ple composed of isolated events. The errors were quite high for the uniform and

Gamma distributions, reaching a maximum value of 10.77% for the Gamma distribu-

tion. Higher intensities lead to a higher degree of overlapping and therefore greater

errors. The minimum and the median of the errors are null for the case of the normal

distribution. This is due to the small variance we have used in the simulation of the

durations (a value of 1). Almost all isolated grains segmented from the images last a

duration equal to the median.
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Figure 3.9: The minimum and maximum deviations of the estimated cumulative
distribution function FD from the theoretical function.

The spatial-temporal covariance was estimated using Eq. (3.21) in the interval

[0, 16] seconds with a step of one frame. To compute the first derivative of H(t), we

used 15 basis functions to transform the raw data into a piece-wise function, which

is appropriate for functions re-sampled at 65 values. The R ([63, 65]) package fda

developed by J.O. Ramsay has been used.

3.4.2 Application to noisy images

In some applications, the image acquisition method introduces random noise resulting

in the appearance of corrupted pixels, edge blurring and other spurious effects. In
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3.4 A simulation study

Table 3.3: Relative errors of the median of the duration (%).

λ = 0.0001 λ = 0.0002 λ = 0.0003
Param. min/median/max min/median/max min/median/max

Uniform
[4, 8] 0.44/1.33/4.00 0.44/0.44/4.00 0.44/0.44/3.11
[8, 12] 0.27/0.80/2.93 0.27/0.27/1.87 0.27/0.27/1.87

Gamma
[18, 0.3333] 0.38/0.52/3.24 0.38/0.52/3.10 0.38/0.52/2.19
[50, 0.2] 0.14/0.67/2.28 0.14/0.67/2.28 0.14/0.54/1.21

Normal
[6, 1] 0.44/0.44/2.22 0.44/0.44/2.22 0.44/0.44/2.22
[10, 1] 0.27/0.27/1.33 0.27/0.27/1.33 0.27/0.27/0.80

Table 3.4: Relative errors of the median of the duration using isolated clumps (%).

λ = 0.0001 λ = 0.0002 λ = 0.0003
Param. min/median/max min/median/max min/median/max

Uniform
[4, 8] 0.00/0.00/4.17 0.00/4.17/8.33 0.00/4.17/8.33
[8, 12] 0.00/1.25/5.00 0.00/2.50/5.00 0.00/2.50/7.50

Gamma
[18, 0.3333] 1.97/2.28/6.53 1.97/2.28/6.53 2.27/5.46/10.77
[50, 0.2] 0.58/1.84/1.84 0.67/1.84/6.87 0.58/1.84/6.88

Normal
[6, 1] 0.00/0.00/4.17 0.00/0.00/4.17 0.00/3.12/4.17
[10, 1] 0.00/0.00/2.5 0.00/0.00/2.5 0.00/1.87/5.00

this subsection, we analyze the performance of the estimator of the median of the

distribution function of the duration in noisy images. We introduced salt-and-pepper

noise in the frames independently. This type of noise corrupts a given percentage

R of pixels in the image. Three ratios of noise were simulated, 0.5%, 1%, 2% (see

Videos Noise1, Noise2 and Noise3 in supplementary material). Table 3.5 shows the

relative errors in the estimation of the median of the duration. For each ratio of

noise, the minimum, maximum and median values of the errors were calculated. The

median of the relative errors was lesser than 2.2% for low and medium noise density.

The maximum error was 4% for the highest ratio of noise. We can conclude that the

proposed estimator performs well in the presence of this kind of noise.
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Table 3.5: Relative errors in the estimation of the median of the duration in noisy
images with a percentage of corrupted pixels R (%).

Without noise R = 0.005 R = 0.01 R = 0.02
Distr. λ min/med/max min/med/max min/med/max min/med/max

N(6, 1)
0.0001 0.44/0.44/2.22 0.44/1.33/2.22 0.44/1.78/3.11 2.22/3.11/4.00
0.0002 0.44/0.44/2.22 0.44/0.89/2.22 0.44/1.78/3.11 2.22/3.11/4.00
0.0003 0.44/0.44/2.22 0.44/1.33/2.22 1.33/2.22/3.11 2.22/3.56/4.00

N(10, 1)
0.0001 0.27/0.27/1.33 0.27/0.53/1.33 0.80/1.33/1.87 1.87/2.67/3.47
0.0002 0.27/0.27/1.33 0.27/0.80/1.33 0.27/1.33/1.87 1.87/2.93/3.47
0.0003 0.27/0.27/0.80 0.27/0.80/1.33 0.80/1.60/2.40 2.40/2.93/4.00

3.5 Application to cell Biology

Endocytosis is the process by which cells traffic components from the plasma mem-

brane into various intracellular compartments. This process regulates a wide range

of physiological functions including cell migration, signaling, nutrient uptake, wound

repair and neurotransmission. Clathrin-mediated endocytosis is one of the main en-

docytic routes.

However, the current knowledge regarding the formation of endocytic protein com-

plexes is relatively limited and largely based on biochemical approaches and genetic

analysis. Despite a growing number of studies of endocytosis in living cells (e.g. using

TIRFM), a formal method to quantify the correlation between two endocytic proteins

in space and time is still lacking.

Figure 3.10: Several consecutive snapshots of a fluorescent-tagged protein image se-
quence. The binary shapes correspond to the segmented areas of fluorescence.
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To obtain the duration distribution of the endocytic events is important in the

analysis of the influence of different cell treatments on this process. Traditionally,

collecting this kind of data has been very time-consuming where much of the work

had to be done manually, making it virtually impossible in large image sequences.

Our biological data comprise three sequences of clathrin protein, described in Ta-

ble 3.6 (see Videos Cell1, Cell2 and Cell3 in supplementary material). RFP stands for

Red Fluorescent Protein. Time-lapse images were acquired by TIRFM at 0.25 frames

per second. In this technique, a laser beam is sent to the sample at a critical angle.

As it encounters the interface between two media with a different refractive index (i.e.

water and glass), the beam undergoes total internal reflection. As a consequence, a

small excitation wave is generated. The evanescent field is only 100− 200 nm thick,

and it decays exponentially as it moves away from the coverslip. Therefore, only ob-

jects which are within 100− 200 nm of the bottom plasma membrane of the cell are

illuminated, while the nucleus, inner cytosol and upper plasma membranes are left in

the dark. In this way, it is possible to image membrane-associated events with supe-

rior signal-to-noise ratio. The setup employed for this study was an objective-based

TIRFM (63X magnification) implemented on an inverted IX70 microscope (Olympus)

and coupled to a 488-nm laser line (Melles Griot). The laser power was between 80

and 100 mW. The image processing to extract the binary images was based on the

application of: a top-hat transform to subtract the background and extract peaks of

fluorescence, a template matching with a gaussian kernel to remove eventual noise,

followed by a region growing technique in order to delineate each marked object.

Table 3.6: Description of biological image sequences.

Seq. Protein # of frames Size Video
1 Clathrin-RFP 300 120× 67 Cell 1
2 Clathrin-RFP 300 77× 60 Cell 2
3 Clathrin-RFP 300 71× 54 Cell 3

We have performed the analysis for the three clathrin sequences. The medians of

the duration were 84, 74 and 86 seconds, respectively. The cumulative distribution

functions of the duration for these three sequences are shown in Fig. 3.11. The esti-

mated median using the sample composed of isolated episodes was 16 seconds for the

53



3. ESTIMATION OF THE DURATION DISTRIBUTION IN
TEMPORAL BOOLEAN MODELS USING THE
SPATIAL-TEMPORAL COVARIANCE

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

C
D

F

Figure 3.11: Estimated cumulative distribution function of the duration of endocytic
events.

three cases. Again, note how the use of a biased sample results in the underestimation

of the median of the duration.

3.6 Conclusions

We have shown that the use of a biased sample composed of isolated events can lead to

a very high bias in the estimation of the mean of the random duration. The higher the

overlapping among grains is the higher the bias is. This can be unacceptable in many

real applications. It is necessary to develop procedures based on stochastic models

where the spatial temporal overlapping is explicitly assumed. We have shown that

the temporal germ-grain models are a good choice and, in particular, the cylindrical

temporal Boolean model.

We have proposed an estimator of the cumulative distribution function of the

duration of spatially and temporally overlapping events based on the covariance of

temporal random closed sets. Results from the simulation study showed that the

54



3.6 Conclusions

absolute errors in the estimation of the distribution function of the duration are

small. Indeed, the relative error in the estimation of the median of the distribution

was lesser than 1% in almost all cases. The estimator also performs quite well in

images with a certain degree of random noise such as salt-and-pepper.

Several points remain open for future research. First, the development of new

temporal germ-grain models with other germ models. In particular, models with

higher aggregation than the Poisson point process which will lead to greater overlap-

ping probability. The estimation will be harder but, possibly, semi-parametric models

could be proposed. Importantly, the experimenters should provide information about

the mechanisms to be modelled in such a way that this information can be incorpo-

rated in the definition of these new semi-parametric models. Second, the estimation

of the size distribution for the grains. Last, the method described depends on the

assumption of stationarity. Potential extensions will include the use of other models,

such as the Cox model.

We have implemented a Matlab toolbox for simulation of temporal Boolean models

and estimation. It is available at http://www.uv.es/tracs/. Simulated videos and

fluorescent-tagged proteins image sequences can also be downloaded, as well as the

R scripts of the functional data analysis applied in this study. These videos and the

source code of the functions are included in the supplementary material.
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Chapter 4

The bivariate case: bivariate

temporal random sets to model

spatial-temporal dependencies

The study of many dynamic processes implies the analysis of inter-dependencies be-

tween different types of events produced by coupling mechanisms. For instance, in

cell biology, the identification and analysis of protein interactions is essential to un-

derstand a given physiological process. In some applications the phenomenon to be

modeled can be described by a configuration of independent and randomly located

particles with different sizes forming random clumps. Examples can be found in

Microscopy, Material Sciences, Biology, Medicine, Chemistry, Geostatistics, Cellu-

lar Communications Networks or Image Processing (in particular for texture analysis

and classification [33]). Random sets have been often applied to model these irregular

patterns [52, 57, 79, 6].

Although the problem of measuring interaction between types of events in bivari-

ate spatial point processes has been reported and analyzed [17, 24, 80, 87], this is

not the case for random sets. In point processes, the standard summary methods

use bivariate counterparts of the empty space function, the nearest neighbor distance

distribution, the Ripley K-function and derived statistics such as the pair correla-

tion function and the J-function. The J-function was extended in [35] to a bivariate

spatial process, one being a point process and the other being a random set. How-

ever, further extensions which capture dependencies associated with time and spatial
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properties of overlapping events are needed.

4.1 Introduction

In this chapter, we define the bivariate temporal random set and use it to model pairs

of time lapse image sequences. We propose a non-parametric approach to quantify

spatial and spatial-temporal interrelations between different types (or categories) of

events using the pair-correlation, cross-covariance and the Ripley K functions. Based

on these summary statistics we propose a randomization procedure to test indepen-

dence between event types by applying random toroidal shifts and Monte Carlo tests.

A testing procedure based on a Monte Carlo test and on bootstrap procedures is

proposed.

A simulation study assessed the performance of the proposed estimators and

showed that these statistics capture the spatial-temporal dependencies accurately.

The estimation of the spatial-temporal interval of interactions was also obtained.

The method has a direct application in the study of many dynamic biological

processes, which require analysis of the spatial and temporal inter-dependencies be-

tween two or more different types of proteins. Being able to analyze cellular protein

complexes dynamics under physiological conditions will provide fundamental insights

of their biological functions, in many processes such as propagation of signaling cas-

cades and internalization of membrane (also known as endocytosis). Essential to

understanding such fundamental processes is to be able to ascertain precisely where

and when a given protein is localized in space in time, especially vis-à-vis to secondary

and even tertiary proteins (e.g. dynamic colocalization analysis).

Current practice relies on simple visual analysis (e.g. of scatterplots or overlapping

RGB merged images) and simple measurements, such as colocalization coefficients.

Some commercial software analysis packages (e.g. from Zeiss and Bitplane) can mea-

sure colocalization between two fluorescence images, display the colocalization as a

two dimensional xy scatterplot and provide some standard quantitative measures such

as colocalization coefficients. However, these tools show major drawbacks.

First, they are unable to simultaneously assess spatial-temporal dependencies from

image sequences. Second, more general measures of dependencies are needed, i.e. two

fluorescent molecules sharing two regions close in space and close in time, but not
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necessarily sharing the same pixel at a given frame. Third, the current procedures

are based on a pixel-by-pixel analysis with no probabilistic modeling. No formal

statistical tests to evaluate the colocalization have been applied. Also, no p-values of

significance have been given.

Therefore, formal tests and associated statistical methods are needed to mine

these complex data. A major aim of the present study is to provide cell biologists

with a computational statistical procedure so as to quantify the spatial and temporal

interactions of subcellular proteins in living cells.

The method is successfully applied to analyze the interdependencies of several

endocytic proteins using image sequences of living cells and validate the procedure as

a new way to automatically quantify dependencies between proteins in a formal and

robust manner [20].

Images were acquired using Total Internal Reflection Fluorescence Microscopy

(TIRFM), a technique that provides extremely high contrast images of events that

occur near the cell surface [83]. This technique has enabled simultaneous and dynamic

visualizations of multiple proteins in living cells. Fig. 4.1 shows a reconstruction of

the area covered by two proteins over 50 frames within a small sub-window of the

cell. The green color corresponds to Epsin-GFP and the red one to Clathrin-RFP.

Figure 4.1: A spatial-temporal plot of the fluorescence areas covered by two
fluorescently-tagged proteins.

In Section 4.2.1, we define the concept of bivariate temporal random set. A gen-

eralization of the Ripley K-function, of the covariance and of the pair correlation
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functions for bivariate random sets are introduced in Section 4.2.2. Section 4.4 con-

tains the testing procedure based on toroidal shift randomizations and on a Monte

Carlo test. A simulation study to assess the performance of the proposed estima-

tors is described in Section 4.5. Section 4.6 is devoted to the biological application.

Conclusions are given in Section 4.7.

4.2 Bivariate Temporal Random set

4.2.1 Notation and basic definitions

Intuitively, a random closed set Φ is a random mechanism producing random (closed)

subsets in space. More formally, let us denote by F the subsets of Rd and FK = {F ∈
F : F ∩K ̸= ∅}, i.e. the family of sets hitting the set K, with K being an arbitrary

compact subset of Rd. Let σf be the σ-algebra generated by FK . Then a random set

is the probability space (F, σf , P ), where P is a probability measure in the measurable

space (F, σf ) [52, 79]. Note that the definition is given in such a way that ∀Φ ∈ F,
{Φ ∩K ̸= ∅} is a random event and its probability P (Φ ∩K ̸= ∅) can be computed.

From now on, we will denote Φ ↑ K = {Φ ∩K ̸= ∅}.
We model each binary image of the sequence as a realization of a random set in

R2 and the whole image sequence as a random set in R2×R+. Let us denote by Φ(t)

the random set corresponding to the random binary image at the observation time

t, with t ≥ 0. If we stack the observed temporal cross-sections for every time t, we

define the temporal random set in R2 × R+ as

Φ = ∪t≥0Φ(t). (4.1)

This model can be considered as a particular case of a non-isotropic three dimensional

random set.

If Φ1 and Φ2 are the temporal random sets associated with the first and second

event types respectively, then the random set defined as Φ = (Φ1,Φ2) is a bivariate

temporal random set, where Φi is the i-th component. The distribution of Φ =

(Φ1,Φ2) is characterized by the probability P (Φ1 ↑ K1,Φ2 ↑ K2), i.e. the probability

that the temporal random set Φ1 hits K1 and the temporal random set Φ2 hits K2

simultaneously, being K1 and K2 compact subsets of R2 × R+. Fig. 4.2 shows three
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(a) (b) (c)

Figure 4.2: A realization of a simulated bivariate temporal random set.

consecutive temporal cross-sections of a realization of a bivariate temporal random

set. The white color corresponds to events of type 1, the light grey to events of type

2, and the dark grey to overlapping regions. Video 2 in the supplementary material

corresponds to a simulated bivariated temporal random set in which spatial-temporal

dependencies were generated.

Fig. 4.3 shows the spatial-temporal reconstruction in 3D of this realization of

a bivariate temporal random set. We can observe the spatial-temporal overlapping

between both proteins.

Figure 4.3: A spatial-temporal reconstruction.

Our data consist of a pair of sequences of binary images which have been simul-

taneously captured, i.e. two discrete sets of equally spaced temporal cross-sections
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observed through a sampling time interval T and within a fixed sampling window

W (a closed and bounded subset of the two dimensional Euclidean space). Let ϕ

denote the corresponding realization of Φ and ϕ(ti), the area covered at time ti . If

t1, t2, . . . , tn are the sampling times, then we will observe ϕ(ti)∩W , where i = 1, . . . , n.

Throughout this study we assume that (Φ1,Φ2) is jointly stationary, i.e. its joint

distribution is invariant against spatial-temporal translations in R2×R+. This implies

that Φ1 and Φ2 are marginally stationary. This assumption is a natural and pragmatic

simplification, which is tenable in many real applications and justifies the use of

relatively simple non-parametric summaries. All the summary descriptors of the

image sequence we propose rely on this assumption. There is a considerable debate on

under which conditions the stationarity assumption can be made (see the introduction

in [67]). In spatial processes, departures from stationarity are trends in intensity from

top to bottom, trends in any other direction, ’banding’ from periodic variation in

intensity in any direction or ’patchiness’ on one of many scales at least. If a large

observation scale is used then a small region of the phenomenon is observed. In this

case the stationarity hypothesis could be assumed. When the scale becomes smaller

then the spatial heterogeneity is even more evident, which implies that this hypothesis

could not be tenable. For a given image data set, the experimenter should (visually)

evaluate the images and decide whether the stationarity assumption can be made. If

this hypothesis was not tenable then this analysis may not be sufficient. In Section

4.7 we discuss some conditions in which the assumption of stationarity could not be

tenable and we comment on different attempts to overcome this problem.

Under stationarity the volume fractions can be considered separately for each

component pi = P (0 ∈ Φi(0)), for i = 1, 2, where the spatial origin 0 denotes an

arbitrary location and the temporal origin 0 denotes an arbitrary time. Note that pi

gives the probability that an arbitrary point at an arbitrary time belongs to the i-th

component of the random set and can be interpreted as the mean volume covered by

the i-th temporal random set per unit area and unit time.

4.2.2 Summary statistics for bivariate temporal random sets

We define a generalized version of the Ripley K-function, the covariance and the pair

correlation functions for a bivariate temporal random set, Φ = (Φ1,Φ2). For a given
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4.2 Bivariate Temporal Random set

h ∈ R2 and a given time t ∈ R+, we define the spatial-temporal covariance function

as

Cij(h, t) = P (0 ∈ Φi(0),h ∈ Φj(t)), (4.2)

where i, j = 1, 2. This is a natural and direct generalization of the covariance of a

random set (details of various theoretical aspects can be found in [57, 72, 79]). The

spatial-temporal covariance funtion gives us the probability that an arbitrary point

observed at an arbitrary time belongs to the i-th component of the temporal random

set and its translation by a vector h and a time t belongs to the j-th component.

This idea is illustrated in Fig. 4.4 (a). The functions C11 and C22 are the covariance

functions of the temporal random sets Φ1 and Φ2 respectively, and the functions C12

and C21, the cross-covariance functions.

(a) (b)

Figure 4.4: Graphical description of the spatial-temporal cross-covariance (a) and
cross K-function (b) for a bivariate temporal random set. The dark grey cylinders
represent the i-th temporal random set and the light grey cylinders the j-th temporal
random set.

Throughout this work we assume that (Φ1,Φ2) are jointly spatial (but not tempo-

ral) isotropic, i.e. their joint distribution is invariant against spatial rotations. Under

spatial stationarity and isotropy, the covariance function Cij only depends on the

modulus of h, s =∥ h ∥, and on t.

The cross K-function of a bivariate temporal random set can be defined as

pjKij(s, t) = E[ volume covered by the j-th component within a cylinder of radius s

and height 2t centered at a randomly chosen point of the i-th component],

where pj is the volume fraction of Φj.
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More formally, it can be expressed as pjKij(s, t) = E[ν3(Φj ∩B(0, s)× [−t, t])|0 ∈
Φi(0)], with s, t ≥ 0, where ν3 stands for the volume and B(0, s) is the disk centered

at an arbitrary location of Φi with radius s. Fig. 4.4 (b) illustrates this concept.

From the covariance function, the cross K-function can be computed as

Kij(s, t) =

∫ t

−t

∫
B(0,s)

Cij(u, v)

pipj
dudv, (4.3)

with i, j = 1, 2. From (4.2) and (4.3), it holds that Kij(s, t) = Kji(s, t).

Finally, we define the pair correlation function of the bivariate temporal random

set as

gij(s, t) =
Cij(s, t)

pipj
. (4.4)

4.3 Estimators

At this point, we propose the estimators for pi, Cij and Kij. Essentially, we replace

the (unknown) continuous versions of these functions with the corresponding (known)

discrete versions. In order to simplify the notation, we assume that the sampling times

are t = 0, δ, 2δ, . . . , nδ; i.e. n+1 equally spaced frames, where δ is the temporal delay

between two consecutive frames. Our sampling information consists of a sequence of

sets {(ϕ1(kδ) ∩W,ϕ2(kδ) ∩W )}k=0,...,n.

A natural estimator for pi is the mean of the area fractions observed at each frame

of the sequence

p̂i =
1

n+ 1

n∑
k=0

ν2[ϕi(kδ) ∩W ]

ν2[W ]
. (4.5)

We will estimate the covariance as

Ĉij(h, vδ) =
1

n− v + 1

n−v∑
k=0

ν2

[(
ϕi(kδ) ∩W

)
∩
(
ϕj((k + v)δ) ∩W

)
− h

]
ν2
[
W ∩W − h

] . (4.6)

We have adopted the minus sampling method [79] to correct edge effects. If the

covariance function does not depend on time, we can estimate it as

Ĉij(h, 0) =
1

n+ 1

n∑
k=0

Ĉij(h, kδ). (4.7)
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Likewise, if there is no spatial dependence, the following estimator can be used

Ĉij(0, kδ) =
1

ν2(W )

∫
W

Ĉij(h, kδ)dh. (4.8)

Finally, Kij(s, t) and gij(s, t) will be estimated by replacing the volume fraction and

the covariance function in (4.3) and (4.4) with their corresponding estimators given

in (4.5) and (4.6).

4.4 Testing spatial and spatial-temporal dependen-

cies

The functions Cij, gij and Kij will be used to describe the joint distribution and to

test different null hypotheses. First, we test whether there are spatial dependencies.

For instance, spatial dependencies would correspond to a pattern in which both events

are associated with an environmental factor in the neighbourhood that makes them

happen at similar locations but at any time. Second, if locations and times are jointly

analyzed, we will test spatial-temporal interactions. In this case, we would observe

that type 1 events occur in the surroundings of type 2 events and both event types

are close in time. Spatial-temporal associations are considered to be a consequence

of environmental factors.

4.4.1 Independent temporal random sets

First, we give the formal definitions of complete, spatial or temporal independence.

Two (temporal) random sets would be completely independent if

P (Φ1 ↑ K1,Φ2 ↑ K2) = P (Φ1 ↑ K1)P (Φ2 ↑ K2),

for any compact subsets K1 and K2 of R2 × R+. This is a direct extension of the

original definition of independent random sets given in [52].

If Φ1 and Φ2 are independent random sets then, for fixed times t1 and t2, the

random sets Φ1(t1) and Φ2(t2) are independent random sets. Let K1 and K2 be two
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compact subsets of R2 then

P (Φ1(t1) ↑ K1,Φ2(t2) ↑ K2) =

P (Φ1 ↑ K1 × {t1},Φ2 ↑ K2 × {t2}) =
P (Φ1 ↑ K1 × {t1})P (Φ2 ↑ K2 × {t2}) =

P (Φ1(t1) ↑ K1)P (Φ2(t2) ↑ K2).

The opposite is not true, i.e. if for any times t1 and t2 the corresponding random

sets Φ1(t1) and Φ2(t2) are independent then it does not follow that the corresponding

three dimensional random sets Φ1 and Φ2 are independent.

In many real processes, it seems reasonable to consider less restrictive types of

independence. From now on, for A, a compact subset of R2, and B, a compact subset

of R+, we consider the generalized cylinder A×B. We say that Φ1 and Φ2 are spatially

independent if

P (Φ1 ↑ A1 ×B,Φ2 ↑ A2 ×B) = P (Φ1 ↑ A1 ×B)P (Φ2 ↑ A2 ×B),

for any A1 and A2 compact subsets of R2 and any B compact subset of R+. Likewise,

we say that Φ1 and Φ2 are temporally independent if

P (Φ1 ↑ A×B1,Φ2 ↑ A×B2) = P (Φ1 ↑ A×B1)P (Φ2 ↑ A×B2).

Under complete independence, the covariance function is

Cij(h, t) = P (0 ∈ Φi(0),h ∈ Φj(t)) = P (0 ∈ Φi(0))P (h ∈ Φj(t)) = pipj. (4.9)

In such a case, from (4.4) it holds that gij(s, t) = 1. Values of gij(s, t) greater than one

represent a positive dependence (attraction) and lesser than one represent a negative

dependence (inhibition). Likewise, from (4.3) we have Kij(s, t) = 2πs2t.

For temporally independent random sets, the covariance function does not depend

on time and the cross K-function can be computed as

Kij(s, t) = 4πt

∫ s

0

rCij(r, 0)

pipj
dr. (4.10)
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If there is temporal dependence but no spatial association, the covariance function

only depends on time and the cross K-function is calculated as

Kij(s, t) = πs2
∫ t

−t

Cij(0, v)

pipj
dv. (4.11)

Let us consider the following marginal functions:

K(1)
ij (s) =

∫
B(0,s)

Cij(u, 0)

pipj
du, (4.12)

and

K(2)
ij (t) =

∫ t

−t

Cij(0, v)

pipj
dv, (4.13)

then, under spatial independence K(1)
ij (s) = πs2 and under temporal independence

K(2)
ij (t) = 2t.

4.4.2 Testing null hypotheses by using toroidal shift random-

izations

Testing null hypotheses can be achieved by means of toroidal shift methods, which

provide a non-parametric way to test complete independence. For convenience, we

assume that the sampling windowW is a rectangle. For a given h ∈ W , we denote by

Th(A) the toroidal shift (with respect to W ) of any subset A of W . A toroidal shift

is a simultaneous, parallel shift of all points in the set by the same randomly chosen

shift vector h. The rectangle W is treated as a torus and the set A is shifted within

this torus. This method can be extended to the temporal dimension as follows. Let

us consider

T(h,dδ)(ϕi(kδ) ∩W ) =Th(ϕi((k + d)δ) if d = 0, . . . , n− k,

Th(ϕi((k + d− n)δ) if d = n− k + 1, . . . , n,
(4.14)

where d = 0, . . . , n−1, being n the total number of frames. Let us consider the random

vector (H, D) such that H (distance) and D (lag) are independent; H is uniform in
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W , H ∼ Unif(W ); and D is uniform in {0, . . . , n − 1}. From the original observed

image sequence {(ϕ1(kδ) ∩W,ϕ2(kδ) ∩W )}k=1,...,n, we generate H = h and D = d

obtaining a randomly modified sequence {(ϕ1(kδ) ∩W,T(h,dδ)(ϕ2(kδ) ∩W )}k=1,...,n in

which the second component has been spatially and temporally shifted over the first

one.

In Fig. 4.5 an example of toroidal shift randomization is shown. Images are

256× 256 pixels in size. Fig. 4.5(a) displays a frame of a bivariate temporal random

set. Fig. 4.5(b) displays a randomization with h = (128, 128) and d = 0. Fig. 4.5

(c) displays a randomization with h = (0, 0) and d = 20. We can observe how the

toroidal shift randomizations breaks the dependence between components.
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Figure 4.5: An example of toroidal shift randomization.

Let us see a short explanation of the testing procedure using the crossKij-function.

First, the crossK-function is calculated for the original pair of binary image sequences,

giving us K̂ij,0. Next, for m randomized pairs in which we keep the original sequence

of type 1 events and randomize type 2 events, we obtain K̂ij,n with n = 1, . . . ,m. A

graphical analysis to test independence can be performed by displaying K̂ij,0 along

with the lower and upper envelopes obtained from the m functions associated with

the randomizations. The region delimited by both envelopes quantifies the variability

when independence between components is assumed. The function K̂ij,0 should be

contained within both envelopes under the null hypothesis of independence between

event types. A similar approach is used to test spatial independence. In this case,

the random variable D is chosen to degenerate at 0.
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4.4.3 Monte Carlo test

Apart from the graphical test given in Section 4.4.2, a p-value corresponding to a

Monte Carlo test can be computed. Independence would imply that the sampling

distribution of K̂ij is invariant to random toroidal shifts. We can conduct a Monte

Carlo test of independence by computing a suitable test statistic and comparing the

value calculated for K̂ij,0 with the values obtained from the randomizations K̂ij,n,

with n = 1, . . . ,m. This methodology was proposed in [24] and applied there to point

processes. Under the hypothesis of independence

P (Kij,0(s, t) > U(s, t)) = P (Kij,0(s, t) < L(s, t)) =
1

m+ 1
,

where the lower envelope is defined as L(s, t) = minn=1,...,m K̂ij,n(s, t) and the upper

envelope is U(s, t) = maxn=1,...,m K̂ij,n(s, t).

An exact test can be performed using the test statistic dn =
∫ +∞
0

(Kij,n(s, t) −
K̄ij,n(s, t))

2dsdt, where K̄ij,n(s, t) =
∑m

r=0,r ̸=n
Kij,r(s,t)

m
. All the rankings of d0 are

equiprobable under the null hypothesis. If d(j) denotes the j-th largest among dn,

with n = 0, . . . ,m, then, P (d0 = d(j)) =
1

m+1
with j = 0, . . . ,m, and rejection of the

null hypothesis on the basis that d0 ranks the k-th largest or higher gives an exact

one-sided test with p-value equal to 1− k
m+1

.

4.4.4 Estimating the spatial-temporal interval of dependen-

cies

We describe now the proposed bootstrap algorithm to estimate the spatial-temporal

interval of interactions.

Let us consider the random events {0 ∈ Φ1(0)} and {h ∈ Φ2(t)} and let us

denote s =∥ h ∥. Supposing that we have rejected the null hypothesis of complete

independence, then from (4.9) it holds that there is a pair of values (s, t) such that

Cij(s, t)− pipj ̸= 0 (or the corresponding expression obtained by replacing the cross-

covariance with the cross K-function or the pair correlation function) and therefore

{0 ∈ Φ1(0)} and {h ∈ Φ2(t)} are not independent. Note that it does not imply that

this statement is true for any pair (s, t). In many real applications there are only

local dependencies in such a way that for large s and t these two events {0 ∈ Φ1(0)}
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and {h ∈ Φ2(t)} will be independent. For a given s it is expected that the events will

be independent for t values larger than a fixed point that depends on s.

Given (s0, t0), let (hn, tn) (with n = 1, . . . ,m) be a random sample uniformly

distributed in
[
B(0, s0 + δ1) \ B(0, s0 − δ1)

]
× [t0 − δ2, t0 + δ2] where δ1, δ2 > 0. For

every translation vector (hn, tn), we perform a toroidal shift of ϕ1 over ϕ2 and estimate

the covariance functions from these new pair of sequences, Ĉij,n(hn, tn). Then, a two-

sided Monte Carlo test applied to the difference Ĉij,n(hn, tn)− p̂ip̂j provides us with a

p-value. By applying this procedure to different values of (s0, t0) we have a function

p(s0, t0), a map of p-values. This procedure serves to study the spatial-temporal

interval of interactions with greater significance at low computational cost, since we

can perform a large number of toroidal randomizations for each (hn, tn). Note that the

covariance function is not calculated for the rectangle [0, s]× [0, t] as in (4.6), but for

a reduced set of values (s0, t0). This map provides us with a graphical representation

of the p-values and tell us at which distances and temporal lags the two components

show significant dependencies.

4.5 A simulation study

Before applying the proposed estimators to examine dependencies in real processes

we designed a simulation study. Models with three different types of dependencies be-

tween components were simulated: spatial interactions, spatial-temporal interactions

and complete independence. In particular, we simulated bivariate temporal Boolean

models. A temporal Boolean model formalizes the configuration of independent ran-

domly placed particles with random durations. A linked-pairs scheme for the germs

[24] was used to generate spatial and spatial-temporal dependencies between the two

types of events. The marginal random sets were temporal Boolean models that have

identical intensity and share the property that event types came in pairs. The spatial

and temporal shifts between germ types used followed a uniform distribution with

the parameters given in Table 4.1. Spatial shifts are expressed in pixels and temporal

lags are given in frames. A proportion of 0.1 of germs of one component were not

associated with any event of the second one. The simulated image sequences were

256 × 256 pixels in size, 100 seconds long and the sampling ratio was 1 frame per
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Table 4.1: Shifts applied to germs of type 1 to generate germs of type 2.

Pair Type of interaction Spatial Shifts Temporal Lags
1 Spatial U(0, 6)
2 U(0, 12)
3 Spatial-temporal U(0, 6) U(−2, 2)
4 U(0, 12) U(−6, 6)
5 None

second. Grains were cylinders with uniform radius in the interval [4, 8] pixels and du-

rations uniformly distributed in [4, 8] seconds. The spatial-temporal intensity of the

germs process was 0.0001. Durations and grain sizes between components were inde-

pendent. Video 1 in the supplementary material corresponds to spatial dependencies,

Video 2 to spatial-temporal interactions and Video 3 to complete independence [20].

Apart from the function Kij and the pair correlation function gij, the function Lij

has been used. This function stabilizes the variance [79, 17]. This, in turn, linearizes

the plot under independence between components. The function L(1)
ij is defined as

L(1)
ij (s) =

√
K(1)

ij (s)

π
. (4.15)

To study the spatial-temporal dependence, we have used

Lij(s, t) =

√
Kij(s)t

2π
. (4.16)

In this way, under spatial independence we have L(1)
ij (s)−s = 0, and under spatial-

temporal independence, it holds that Lij(s, t) − st = 0. Even though these three

descriptors provide similar information, the combination of them leads us to obtain

stronger results. The pair correlation function gij is easy to interpret and can be used

to detect dependencies between components at given values (s, t). The function Kij

and the function Lij are more robust since they are obtained as integrated versions

of gij within a spatial-temporal window. These are the main reasons for their wide

use in other fields, such as the statistical analysis of spatial point patterns [24].

For all the models in Table 4.1, the cross-covariance was estimated by using (4.6)
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Table 4.2: Monte Carlo p-values using K12-, g12- and L12-functions.

Pair K12(s) L12(s) g12(s) K12(s, t) L12(s, t) g12(s, t) Interactions
1 0.05 0.02 0.00 0.72 0.65 0.25 Spatial
2 0.00 0.00 0.00 0.32 0.41 0.30 Spatial
3 0.00 0.00 0.00 0.00 0.00 0.00 Spatial-temporal
4 0.00 0.00 0.00 0.00 0.00 0.00 Spatial-temporal
5 0.57 0.88 0.27 0.72 0.25 0.65 None

at four different angles 0, π
2
, π, 3π

2
, at distances ranging from 0 to 30 (with a step of

2 pixels) and at times from −28 to 28 (with a step of 4 frames). Functions Kij,

gij and Lij were calculated from the cross-covariance. A value of m = 39 toroidal

randomizations were generated in the Monte Carlo test.

Fig. 4.6 plots the empirical function K(1)
12,0 (red line) and the upper and lower

envelopes (blue lines) of the toroidal shift randomizations for simulation 1. The green

line corresponds to the theoretical value under spatial independence of components.

Figs. 4.7 (a) and (b) plots the pair correlation function g12,0(s) and the L(1)
12,0(s)

function with the upper and lower envelopes of the toroidal shift randomizations

for simulation 1. In this model, a positive spatial association between germs was

simulated (see Video 1, supplementary material).

The observed functions clearly deviated from the envelopes, suggesting the exis-

tence of spatial dependencies. A clear excess at small distances was observed, which

is a feature of positive interactions. The empirical functions lie outside the envelopes

within the interval of around [0, 12] pixels. Note that in this simulation, the mean

radius of the cylinders was 6 pixels and the maximum spatial shift generated was 6

pixels. Therefore, no dependence can be expected at distances over 12 pixels. The

first row in Table 4.2 (columns headed K12(s), L12(s) and g12(s)) gives the p-values

provided by the Monte Carlo test. They were very small values and again provided

strong evidence for rejecting spatial independence. The p-values of the analysis of

spatial-temporal interactions are summarized in columns headed K12(s, t), L12(s, t)

and g12(s, t). They are larger than 0.05. Therefore, we can conclude there is no

spatial-temporal association in this model, which is in complete agreement with the

simulated coupling mechanism.
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Figure 4.6: Analysis of spatial dependencies for simulation 1. The empirical function
K(1)

12,0 and its envelopes.
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Figure 4.7: Analysis of spatial dependencies for simulation 1. Plot (a) corresponds

to the pair correlation function, g12,0(s) and (b) to L(1)
12,0(s)− s.
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Figure 4.8: Analysis of spatial-temporal dependencies for simulation 3.

The same comments can be made on simulation 2. In this case, uniformly dis-

tributed spatial shifts within the interval [0, 12] were generated between germ types.

The observed pair correlation function was outside the envelopes throughout the in-

terval of around [0, 18]. The p-values provided by the Monte Carlo test are given in

the second row in Table 4.2.

Figs. 4.8 (a) and (b) show the functions g12,0(s, t) and L12,0(s, t) for simulation 3.

Fig. 4.8 (a) displays the empirical pair correlation function (colored mesh) ĝ12,0(s, t)

along with the upper envelope (grid). Figs. 4.8 (b) corresponds to L̂12(s, t)− st.

Both functions (colored mesh) were clearly larger than the upper envelope (grid)

of the randomizations at small spatial-temporal distances, which suggests rejection

of the null hypothesis of spatial-temporal independence. The mean radius for the

events was 6 pixels, the mean duration was 6 seconds, the maximum spatial shift

was 6 pixels and the maximum temporal lag was 2 seconds; hence, there was only

interactions up to distances smaller than 12 pixels and 8 seconds. The excess of small

spatial-temporal distances is compatible with the simulated underlying interactions

model (see Video 2, supplementary material). The p-values given by the Monte Carlo

test (third row in Table 4.2) support for this conclusion.

Similar comments can be made on simulation 4. In this case, there were spatial-

temporal interactions within the interval of around [0, 18] pixels and [0, 12] seconds.

The p-values provided by the Monte Carlo test were again almost null (fourth row in

Table 4.2).

Figs. 4.9 (a) and (b) display the empirical pair correlation function ĝ12,0(s, t) and

the function L̂12,0(s, t) − st for simulation 5, in which neither spatial nor temporal
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Figure 4.9: Analysis of spatial-temporal dependencies for simulation 5.

dependence was generated. The observed values (colored mesh) lay close to those of

the reference value under independence throughout its range, which suggested that

the null hypothesis of independence cannot be rejected. The same conclusion was

reached from the Monte Carlo test. The p-values obtained were quite large (fifth row

in Table 4.2). These results are in complete agreement with the simulated model.

We also applied the bootstrap algorithm described in Section 4.4.4 to each pair

to estimate the spatial-temporal interval of dependencies. Fig. 4.10 plots the map

of p-values obtained for Simulation 3. A grid corresponding to a p-value= 0.05 is

plotted for visualization purposes. Note that p-values higher than 0.05 are observed

for large values of s and t. Spatial-temporal interactions within the rectangle of

around [0, 12] × [0, 8] are observed. Fig. 4.11 plots the map of p-values obtained for

Simulation 4. Here, dependencies span within a rectangle of around [0, 18]× [0, 12].
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Figure 4.10: Estimating the interval of dependencies for simulation 3.
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Figure 4.11: Estimating the interval of dependencies for simulation 4.

We have implemented a software tool in Matlab to: estimate the cross-covariance

function, perform testing procedures (based on toroidal shifts and Monte Carlo tests),

and simulate bivariate temporal Boolean random models. The implemented toolbox

can run under Windows and Linux operating systems. The computing time depends

on the length of the sequence, on the image size and on the spatial and temporal

intervals of estimation; for the simulated image sequences described, the average cost

was ten minutes per pair of image sequences. Our Matlab toolbox (source code

and user documentation) for the simulation of bivariate temporal random sets, the

estimation of the cross-covariance function and the testing procedures is available at

http : //www.uv.es/tracs/index.html and can be distributed under GNU license.

The simulated videos and the fluorescent-tagged protein image sequences are in-

cluded in the supplementary material and they can also be downloaded from http :

//www.uv.es/tracs/videos/videos.html.

The videos and the source code of the functions are also included in the supple-

mentary material.

4.6 Application to cell Biology

We applied the proposed method for testing the spatial-temporal dependencies of

pairs of proteins involved in clathrin mediated endocytosis. We visualized the endo-

cytic events in real time by imaging cells with green/red fluorescent-tagged proteins

with TIRFM. The fluorescent-tagged proteins are seen as fluorescence areas, scattered

over the plasma membrane [44, 31]. We studied the spatial-temporal interactions of
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Table 4.3: Pairs of image sequences of fluorescently-labelled proteins.

Pairs Protein type 1 Protein type 2 # of frames Size
1 Clathrin-RFP Hip1R-GFP 151 180× 153
2 Clathrin-RFP Epsin-GFP 203 213× 185
3 Clathrin-RFP Caveolin-GFP 78 135× 281
4 Clathrin-RFP Clatrhin-GFP 143 166× 210

Clathrin [11] with other proteins: Hip1R [32, 55], Epsin [15] and Caveolin. Table

4.3 describes the pairs of sequences analyzed. In the supplementary material, Video

4 corresponds to pair 1, Clathrin-RFP is in red and Hip1R-GFP in green. Over-

lapping areas are in blue. Video 5 corresponds to pair 3, Clathrin-RFP in red and

Caveolin-GFP in green.

Pair 1 shows spatial associations between proteins, since the p-values provided by

the Monte Carlo test were almost null (see first row in Table 4.4). The same conclusion

was drawn from the plots of g12,0(s) and L12,0(s). Figs. 4.12 (a) and (b) display g12(s)

and L12(s) for Clathrin-RFP and Hip1R-GFP. The empirical functions (red line) take

much larger values than the envelopes of the randomizations (blue lines), suggesting

spatial dependencies. The same occurs for pair 2, composed by Clathrin-RFP and

Epsin-GFP (see Figs. 4.12 (c) and (d) and the second row in Table 4.4). Note that

the pair correlation function was expected to reach the reference value of 1 for long

distances, since the dependencies between proteins, when they exist, are thought to

occur over small ranges. In both cases, the colocalization disappeared at a distance

of around 5− 10 pixels.

As a negative control, we measured the dependence between Clathrin and Cave-

olin, a protein that is not implicated in clathrin-mediated endocytosis (pair 3). The

observed g12(s) and L12(s) functions (red line) and their envelopes (blue lines) are

displayed in Fig. 4.13 (a) and (b). In this case empirical functions fall inside the

envelopes. Therefore we cannot reject the hypothesis of spatial independence. The

p-values clearly deviated from 0.05 (see the third row in Table 4.4), suggesting that

both proteins are spatially independent. As a positive control, we measured the de-

pendence between two molecules of Clathrin fused with two different fluorochromes

(pair 4, Clathrin-RFP and Clathrin-GFP). A high dependence for this homologous
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Figure 4.12: Plots of g12(s) and L12(s) for pairs of fluorescent-labelled-proteins. Plots
(a) and (b) correspond to pair 1 and plots (c) and (d) to pair 2.

pair of Clathrin was obtained (the p-values are given in the fourth row in Table 4.4).
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Figure 4.13: Plots of g12(s) and L12(s) for pair 3, Clathrin-RFP and Caveolin-GFP.

For the study of the spatial-temporal associations between proteins, we used

Kij(s, t), gij(s, t) and Lij(s, t). Fig. 4.14 summarizes the results obtained for the

function Lij(s, t) for pairs 1 and 2. The observed functions (colored mesh) lay outside
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the upper envelope of the randomizations (grid), suggesting the existence of spatial-

temporal interactions between proteins. Fig. 4.15 displays results for pair 3. In this

case, Lij,0(s, t) is below the upper envelope, suggesting there were no interactions

between Clathrin and Caveolin.
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Figure 4.14: Plots of Lij(s, t) − st for pairs of fluorescent-labelled-proteins. (a) Pair
1, Clathrin-RFP and Hip1R-GFP. (b) Pair 2, Clathrin-RFP and Epsin-GFP.
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Figure 4.15: Plots of Lij(s, t)− st for pair 3, Clathrin-RFP and Caveolin-GFP.

In Table 4.4, the p-values obtained in the Monte Carlo test for Kij(s, t), gij(s, t)

and Lij(s, t) are provided. The three descriptors agree on the existence of spatial-

temporal relationships between proteins for pairs 1 and 2, confirming that Hip1R and

Epsin are integral components of the clathrin coats [89]. Hip1R and Epsin had been

previously observed [32, 55, 91] to colocalize to clathrin-coated pits. However, our

methodology now provides a statistical validation to those observations.

Figs. 4.16 (a) and (b) show the map of p-values obtained for pairs 1 and 2. In

both pairs, proteins colocalized within a distance of around 3 pixels. The temporal
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Table 4.4: p-values of Monte Carlo test applied to biological image sequences.

Pair Proteins K12(s) L12(s) g12(s) K12(s, t) L12(s, t) g12(s, t)
1 Clat.-Hip1R 0.00 0.00 0.00 0.00 0.00 0.00
2 Clat.-Epsin 0.00 0.00 0.00 0.00 0.00 0.00
3 Clat.-Cav. 0.59 0.57 0.76 0.95 0.95 0.62
4 Clat.-Clat. 0.02 0.00 0.00 0.02 0.02 0.00

dependencies were as long as the length of the sequence.

4.7 Conclusions

In this chapter, we have shown a new procedure for analyzing either spatial or spatial-

temporal interactions between two types of events in a bivariate temporal random set.

We have demonstrated its utility both as a summary statistic and as a basis for formal

inference. We successfully applied this method to study associations between proteins

in quantification of endocytic dynamics.

We can draw the following conclusions. Firstly, the proposed methodology is not

only a testing procedure, but it allows us to quantify the degree and the spatial-

temporal interval of the interactions. Moreover, no (unnecessary) parametric as-

sumptions are made. The proposed approach can be easily extended to multivariate

random sets. From the application on simulated dependencies, we conclude that these

summary descriptors accurately capture spatial-temporal interrelations. The results

obtained in the analysis of TIRFM image sequences of fluorescent-tagged proteins are

in complete agreement with those reported by other techniques. In our opinion, these

estimators are sensitive enough to be applied to many other applications.

Secondly, apart from an exploratory analysis, we have proposed a formal testing

procedure. This represents an important departure from simple visual inspection of

the images, which is the normal practice in cell biology literature, although manual

analysis is a very time-consuming task and subject to observer error. In contrast, our

proposed methodology is highly reproducible and fully automatic. Such a procedure

could be used as a screening tool to study protein interdependencies under different

treatments and provides new opportunities for validating cellular models. To our
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Figure 4.16: Estimating the spatial-temporal interval of dependencies. Plots (a) and
(b) correspond to pair 1, Clathrin-RFP and Hip1R-GFP. Plots (c) and (d) to pair 2,
Clathrin-RFP and Epsin-GFP.
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knowledge, this is the first time these TIRFM image sequences are modeled within a

probabilistic context and the hypotheses of independence are tested in a formal way.

In the procedure proposed, we assume stationarity. In many real applications, the

bivariate temporal random set analyzed is obtained of a previous segmentation of the

original grey-level image sequences. In some cases, the segmented image sequences

could not be considered as a realization of a stationary model. How can we circumvent

this kind of difficulties? First, if there is a gradient in the background, we could apply

segmentation procedures that use the local spatial structure of the images, i.e. then

the violation of stationarity becomes a computer vision problem which can often be

solved. Second, if there is periodicity in the image, we could restrict the toroidal

shifts to those values within the periodicity interval. Third, if there is some non-

random structure, we could select an image sub-window and consider a stationary

model within this sub-window.

Several aspects call for further investigation. First, the development of new para-

metric models for the spatial-temporal interactions where biological factors could be

included. Second, when stationarity does not hold, simple non-parametric measures

of association may not be sufficient. The incorporation of covariates and possible

sources of interactions of the events throughout the observation window would lead

to non-homogeneous distributions, i.e. non-homogeneous random sets. Parametric

or semi-parametric modeling of inhomogeneity is in its infancy. Regarding to such

modeling, potential extensions will include the use of other parametric models, such

as a linked Cox model [24].
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Chapter 5

Automatic detection of exocytic

vesicles and statistical analysis of

their intracellular distribution

Spatial Statistics has provided several valuable models to analyze any given set of

points or processes which can generate point data following some stochastic law.

Problems that involve random spatial patterns have been encountered in various

Science fields, such as Biology, Ecology, Epidemiology, Geology, etc. In this chapter,

we present an application of point processes to the study of cell exocytosis among

different cell treatments.

5.1 Introduction

The problem of studying the effect of specific proteins on the spatial distribution

of large dense-core vesicles (LDCV or granules) is central to the understanding of

regulated exocytosis, as well as for synaptic transmission. Vesicles whose destination

is the plasma membrane leave the trans Golgi network in a steady stream. The

membrane proteins and the lipids in these vesicles provide new components for the

plasma membrane, while the soluble proteins inside the vesicles are secreted to the

extracellular space. The fusion of these vesicles with the plasma membrane is the

final step of the exocytosis process.

Exocytosis can be affected by inhibition of critical exocytic molecular machinery,
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resulting in potential perturbation of the spatial distribution of the granules within

the cytoplasm and of the morphological properties and number of vesicles.

Ultrastructural studies have identified LDCV from transmission electron micro-

graphs of cross-sections of cells (see Fig. 5.1 (a)). Three different types of vesicles are

observed: i) stand-alone LDCVs with a dark appearance (granules); ii) dense vesicles

with “halos”, i.e. granules with white vacuoles surrounding them; and iii) isolated

vacuoles, light round objects. In this study we are concerned with cases i) and ii)

corresponding to granules, i.e. small round dark secretory vesicles.

It is usually assumed that white vesicles have some functional relationship with

electron-dense adrenal secretory vesicles, since they also change in number, size and

appearance, when cells are stimulated. However, we do not consider them in the

present work, although this analysis is considered as future work. Regarding other

types of electron-lucent vesicles described in [47], we do not analyze them either, as

they do not have apparently any relationship with secretory vesicles.

Three different cases were observed in our case: (1) stand-alone or isolated dense

granules, with dark appearance; (2) dense vesicles surrounded by irregular white

halos or zones, lighter than stand-alone vesicles and (3) isolated vacuoles, that seem

to be empty granule membranes. We consider as granules all the dense-core or dark

secretory vesicles, independently from the existence or the absence of halos [19].

The granules are formed in the Golgi apparatus and travel across the cytoplasm

towards the plasma membrane, where they ultimately fuse [85]. A necessary and

critical step prior to vesicle fusing is the close morphological apposition of the vesicle

to the plasma membrane (e.g. less than 100 nanometers), a process morphologi-

cally described as vesicle ”tethering” or ”docking” [13]. Comparing the distances

from the granules to the plasma membrane among cell groups is especially important

when studying the factors that influence vesicle docking. This study is founded on

a crucial biological interest in understanding the different vesicle pools (defined by

electrophysiology kinetic measurements) and their distribution in regulated secretion.

Specialized secretory cells include chromaffin cells, mast cells and insulin cells, which

are respectively responsible for the release of adrenalin, insulin and histamine.

The spatial distribution of the granules in the Cell Biology literature is usually

quantified by means of the distances from the granules to the plasma membrane [41,

43, 46, 47, 61, 62]. Each cell provides a sample of granule distances. It is a common
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(a) (b)

Figure 5.1: A section of a wild-type adrenal chromaffin cell and the spatial point
pattern associated.

practice to join all the distances obtained from different cells into a unique sample

per group [90, 61, 43]. The comparison among groups is performed by comparing

these sets under visual inspection combined with simple exploratory data analysis.

In our opinion this is not an appropriate analysis, because it has no into account

the interdependence between the distances observed in a given cell. Granules may

interact among themselves in such a way that their locations are interdependent.

Their distances to the plasma membrane will be (possibly) dependent too. Indeed, in

compound exocytosis of granules, this has been shown to be the case. Alternatively,

the protein fusion machinery may be concentrated in a given site, which could lead to

exocytosis in preferred areas of the cell. In fact, our analysis of constitutive exocytosis

has shown precisely this fact [45, 70].

Our data consist of a spatial point pattern (the locations of the granules) within

a given region (the cytoplasm) for each cell (see Fig. 5.1 (b)). The dots correspond

to the granule centers. The external and internal solid lines delimit the plasma

membrane and the nucleus membrane, respectively. The annular region corresponds

to the cytoplasm.

It is important to note that we have replicated point patterns for each cell group.

We model the locations of granules of a given cell as a realization of a spatial point
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process and we consider the point patterns associated with the different cell groups as

replicated point patterns of possibly different spatial point processes. A set of spatial

locations is known in the statistical literature as spatial point pattern, a realization

of a spatial point process. Good standard references on point process theory are

[17, 24, 80, 79].

In this study, we propose two functional descriptors so as to describe the relative

locations of the granules with respect to the plasma membrane: i) the empirical

cumulative distribution function of the distances from the granules to the plasma

membrane; and ii) the mean number of granules per unit area within a given distance

to the plasma membrane. This second descriptor captures the arbitrary morphology

of the cytoplasm. The comparison among cell groups is performed by using bootstrap

techniques. As a biological application that validates the proposed methodology, we

analyze 77 cells of the adrenal glands of wild-type (38) and treated (39) mice in order

to study whether the granules in the treated group are closer to the plasma membrane

than in the control group (wild-type).

In Section 5.2, the image processing method to segment the granules using electron

microscopy images is outlined. The statistical framework to model and analyze the

data is detailed in Section 5.3. Section 5.4 is devoted to the results. A simulation

study is also included in Section 5.5. Conclusions are summarized in Section 5.6.

5.2 Data and image processing

Images were acquired using Electron Microscopy and they have high spatial resolution.

Since experiments imply the analysis of dozens of cells, each of which contains over

one hundred granules per cell section, the development of an automatic software tool

is needed. The image processing algorithm to automatically detect the granules is

described in Section 5.2.1. Granule descriptors based on shape criteria and on the

grey-levels distribution are proposed in Section 5.2.2. A Linear Discriminant Analysis

is performed in Section 5.2.3 in order to select the relevant descriptors for granule

characterization and classification.
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5.2.1 Detection of granules

We developed a detection algorithm to collect the locations of granules in the cyto-

plasm for dozens of cells. To our knowledge, no procedures have been reported in the

literature using EM images. Here, we present an image processing within the con-

text of mathematical morphology. In [50], an image processing method based on the

Hough Transform is presented in order to segment granules in pancreatic acinar cells

using fluorescence from light microscopy images. However, due to the complexity of

our images, we consider the Hough Transform would lead to worse results because of

its sensitivity to false edges detection.

Step 1: Image pre-processing. The cytoplasm (the region where granules can be

observed) was defined for each cell by delineating the plasma membrane and the

nucleus membrane. We used the negative of the original image. In this way, granules

appeared in the image as bright objects over a darker background (see Fig. 5.2

(b)). Since images often presented a non-uniform illumination, the background was

subtracted. The background image (Fig. 5.2 (c)) was obtained by smoothing the

negated image with a median filter of size 19×19 pixels, since the diameter of granules

in chromaffin cells ranges from 100 to 600 nm [46, 47, 61, 62], equivalent to 6 to 18

pixels respectively in our images.

Step 2: Granule Segmentation. A Top-Hat transformation [72, 76] with a circular

structuring element was applied to the negated image (after background subtraction)

in order to extract the intensity peaks and to eliminate other organelles in the cyto-

plasm associated with larger and less bright objects. The radius of the structuring

element was 9 pixels (260 nm), equal to the radius of the largest granule to be seg-

mented. The resulting image was composed of small bright regions (see Fig. 5.2 (d)).

Afterwards, the Top-Hat image was thresholded with a threshold of 40 (see Fig. 5.2

(e)). This value is a tuning parameter, that depends on the contrast, brightness or

resolution of the images.

Step 3: The Watershed. We used a Watershed transformation [72] in order to

separate overlapping granules. First, a marker image was obtained from the regional

maxima of the distance transformation of the binary image. Second, a Watershed

transformation constrained by the marker image was applied to the negation of the

distance function (see Figs. 5.2 (f) and (g)).

Step 4: Grey-scale morphological reconstruction. The resulting labelled image
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.2: Image processing. (a) Original image. (b) Negated image. (c) Background
of the negated image. (d) Top-Hat image. (e) Binary image after thresholding. (f)
Watershed lines over the binary image. (g) Watershed lines over the negated image.
(h) Segmented granules.

from Step 3 provided us with an initial segmentation containing all possible candi-

date granules. For each object in the candidate granule image (marker), a grey-scale

morphological reconstruction of the original image (conditioning image) was applied.

The result is a full delineation of each marked object in the original grey-level im-

age (see Fig. 5.2 (h)). White dots represent the segmented granule contours. The

reconstruction was restricted to the watershed division lines avoiding objects from

encroaching on other very close granules.

The image processing algorithm for granule segmentation using EM images is
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detailed now. This software was implemented in Matlab and is available on request.

The computational cost was less than 10 seconds per image.

Algorithm 1: Image processing algorithm for granule segmentation using EM
images

begin
Delineate the cytoplasm in the original image Ioriginal
Calculate the negation of Ioriginal, Ineg
Apply a median filter to obtain the background, Ibg
Subtract Ibg from Ineg, giving Iminus

Apply a Top-Hat transform to Iminus to detect intensity peaks, obtaining
ITop−Hat

Threshold of ITop−Hat, resulting in Ibin
Apply a Watershed transform to Ibin, obtaining IWatershed

Separate overlapping granules by image subtraction
Imarkers = IWatershed − Ibin
Grey-level reconstruction of the granules by using Imarkers and Ineg

end

5.2.2 Shape and grey-level descriptors

In order to achieve high sensitivity in the detection algorithm, the threshold level

applied to the Top-Hat image was set to a low value (40). In this way, the number of

false negatives (granules not detected by the algorithm) decreases, whereas the num-

ber of spurious objects detected (false positives) increases. In this subsection, several

numerical descriptors of the shape and the grey-level distribution of the granules are

associated with each candidate granule. We then classify candidates as spurious ob-

jects or true granules by means of a Bayes classifier. Let us introduce the descriptors

used.

Since true granules appear in the images as symmetric and round objects, we used

the following shape descriptors. All these measures range from 0 to 1, being close to

1 if the granule shape is a circle.

• the circularity, defined as 4π ∗ area/perimeter2;

• the eccentricity, defined as the ratio of the foci distance and the major axis

length;
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• the ratio of the minor axis and the major axis of the object; and

• the ratio of the diameter of a circle with the same area as the object (the

equivalent diameter) and its major axis.

We also described each granule by means of its grey-level distribution. Let x0

be the center of a candidate granule, and R a 19 × 19 window centered at x0. Let

x be the two-dimensional coordinates of a pixel of the candidate granule. Let us

consider the grey-level observed as a function of x. For each candidate granule, we

estimated the granule radius by fitting a two dimensional Gaussian to the raw grey-

levels. We followed the procedure described in [14], pp. 504-506. We assumed a

symmetric bell for the shape of the granule. Fig. 5.3 (a) shows the raw image of a

typical, rounded granule, Fig. 5.3 (b) displays a three-dimensional representation of

the grey-level values and Fig. 5.3 (c) plots the Gaussian fit. Let σ̂ be the estimated

marginal standard deviation (radius) of the Gaussian. The area of the candidate

granule was estimated as πσ̂2. For each granule, we calculated the mean energy, the

standard deviation and the coefficient of variation of the grey-levels within a circular

window centered at the granule with radius σ̂. Granules usually have a higher mean

and standard deviation than other cell organelles. Table 5.1 shows the descriptors

proposed to characterize true granules.
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Figure 5.3: Fitting a two-dimensional Gaussian. (a) Raw grey-level image. (b) Three-
dimensional plot of the raw image. (c) Gaussian fit.
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Table 5.1: Shape and grey-level descriptors.

Binary shape Grey-level
Circularity Mean energy
Eccentricity Standard deviation
Minor axis
Major axis

Coefficient of variation
Equivalent diameter

Major axis

5.2.3 Linear Discriminant Analysis

A feature vector x = (x1, . . . , xk) was associated with each granule candidate. We

were concerned with a two-class classification problem: granules (true positives) and

other spurious objects detected in the cytoplasm (false positives). A Linear Dis-

criminant Analysis (LDA) was performed (by using SPSS) in order to evaluate the

descriptors proposed. The performance of the image processing method was assessed

by comparing computer results with granule counts carried out by two experts who

manually marked each granule in six cell images. The percentages of granules cor-

rectly classified for each cell by using all the descriptors were 94.1% in the worst case

and 97.3% in the best case. The median observed was 96.2%. We used 1114 candidate

granules, of which 1027 were true granules and 87 other spurious objects.

When the granules of all the cells were taken together in a unique analysis, the

percentage of correct classification decreased slightly, as expected, due to higher vari-

ability in the sample. The percentage of granules correctly classified by using all

descriptors was 93.8%. The percentage obtained by using only shape descriptors

was 91.7%. Descriptors based on the grey-level distribution led to slightly better

discrimination (93.3%).

For each of the three sets of descriptors considered (shape, grey-level, all), the

robustness of its classification was measured. Table 5.2 shows a summary of the

mean probabilities of correctly classifying true and false positives for each set of

descriptors. The three sets of descriptors had a very high probability of classifying

true granules into the correct group. Interestingly, descriptors based on the grey-level

distribution showed higher performance than the shape descriptors when classifying

false positives. The highest values were obtained when combining all the descriptors.

We measured the sensitivity of the detection method, i.e. the ratio of the number
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Table 5.2: Mean probabilities of belonging to a given class.
Descriptors Shape Grey-level All
Class 1 (FP) 0.404 0.657 0.707
Class 2 (TP) 0.942 0.947 0.952

of correctly detected granules (true positives) and the total number of granules (true

positives plus false negatives). A good reference for the validation of medical image

techniques is [77], pages 569 − 604. The sensitivity was 96.2% in the best case and

91.1% in the worst case. The median was 92.6%. False negatives were granules poorly

contrasted with the background, too small or with a very irregular shape [19].

5.3 Statistical analysis

The experiment was designed in order to test whether there were differences in the

distances from granules to the plasma membrane between two cell groups. Our data

consist of the granule locations and the cytoplasm for each cell. We have different

finite point patterns defined over different regions, i.e. the cytoplasms of the dif-

ferent cells. In order to compare the different treatments we need to formulate the

probabilistic framework.

Let us introduce some notation. For a given cell, let C and Φ be the cytoplasm

and the locations of the different granules, respectively. Both sets C and Φ can be

considered as random sets where Φ ⊂ C (with probability one). The cytoplasm C

would be a realization of a random closed set and Φ would be a realization of a finite

point process. Now, we will describe the distribution of Φ with respect to the plasma

membrane.

We have g groups of cells (in our case g = 2) and ni cells per group, i.e. we have

ni replicates of the finite point process associated with the i-th cell group observed

over different (random) regions, the cytoplasms. Let (Φij, Cij) be the point pattern

and the cytoplasm corresponding to the j-th cell of the i-th group. Let Φ(A) be the

random variable which gives the number of points within A of the point process Φ,

where A denotes an arbitrary (Borel) subset of R2. In particular, Φ(C) is the total

number of points of Φ.

The first hypothesis to be tested is whether the counts are similar for the different
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groups. Let the random variable Y = Φ(C)
ν2(C)

denote the mean number of points of Φ

per unit area of cytoplasm in a given cell, where ν2 stands for the area. Let Yij be

the random variable corresponding to the j-th cell of the i-th group. The random

variables Yi1, . . . , Yini
are a random sample of (let us say) Yi. Let µi = EYi be the

mean number of granules per unit area in a typical cell of the i-th group, then the

null hypothesis to be tested is H0 : µ1 = . . . = µg. In Section 5.4.1, the application

of ANOVA and generalized linear models to our dataset is discussed.

The second hypothesis is concerned with the analysis of differences in the relative

location of granules with respect to the plasma membrane among cell groups. An

usual practice in biological literature is to group the distances of granules measured

in different cells into the same treatment group and compare groups of distances. In

our opinion, this procedure is not appropriate, because distances from the same cell

are dependent and distances from different cells are independent.

To circumvent this problem, we consider the random variable D defined as the

distance from an arbitrary chosen granule to the plasma membrane. If d1, . . . , dn are

these distances observed for a cell, these values are a (not random) sample of the

random variable D, because the different distances are interdependent. We propose

to describe the distances in a given cell by using the empirical distribution function

and then to compare the estimated functions using a bootstrap procedure in order

to test differences among cell groups. The empirical cumulative distribution function

(from now on, ECDF) of the distances is given by

F̂ (t) =
#{di : di ≤ t}

n
, (5.1)

where # stands for the number of, i.e. for each t, F̂ (t) is the proportion of distances

lesser than or equal to t. If F̂ij denotes the estimated function for the j-th cell of

the i-th group and Fi denotes the (unknown) theoretical distribution function of the

distance from an arbitrary granule to the plasma membrane for the i-th group then,

under the null hypothesis of no difference among groups, it holds that F1 = . . . = Fg.

We will test it using a bootstrap procedure. Results are described in Section 5.4.2.

Although this approach is a natural one, it does not take into account the morphol-

ogy of the cytoplasm. The different distances observed in a given cell are dependent,
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among others factors, on the location and size of the nucleus. It seems a valid al-

ternative to consider the mean number of points per unit area of cytoplasm within

a given distance from the plasma membrane. Note that a non-stationary point pro-

cess is assumed and therefore other usual functional pattern descriptors such as the

K-function or the empty space function cannot be used [24].

Let λ(x|C) be the intensity function of Φ given a cytoplasm C. This intensity

function is the one verifying, for a (Borel) subset of R2, A, the equation:

E[Φ(A)|C] =
∫
A

λ(x|C)dx. (5.2)

In particular, λ(x|C) = 0 if x /∈ C. Fig. 5.4 shows the intensity functions of two cells

of different groups. Fig. 5.4 (a) corresponds to a mutant cell and Fig. 5.4 (b) to

a wild-type cell. Both cells have a similar number of granules (105 granules for the

mutant cell and 106 granules for the control cell) and a similar number of granules

per unit area (4.62 · 10−6 granules per unit area of cytoplasm for the mutant cell and

4.60 · 10−6 granules per unit area of cytoplasm for the control cell). However, the

intracellular distributions of their granules are quite different. The mutant cell has

granules close to the plasma membrane and the control cell shows granules scattered

along the cytoplasm. Color is proportional to the intensity function value, from small

values (green) to higher values (yellow, orange and white).

Let N(x, h) denote the number of events of the Cox process within distance h of

the point x and B(x, h) the disk of center x and radius h. The intensity function

λ(x|C) can be estimated as follows (see [24], page 117):

λ̂(x|C) = N(x, h)

|A ∩B(x, h)|
, (5.3)

being A the region where the data are observed.

The estimator λ̂(x|C) can be seen as a kernel estimator which uses the kernel

function k(u) = (πu2)−1 if 0 ≤ u ≤ 1, and 0 if u > 1. The function kernel2d included

in the package Splancs of R has been used [63].

Note that a given point x cannot be compared between different images because

the location and orientation of the cell within the image is completely arbitrary. We

quantify the mean number of points of the point processes within a given distance
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(a) (b)

Figure 5.4: Intensity function λ(x) of the process for two cells. (a) A mutant cell.
(b) A control cell. Color is proportional to the intensity function value, from small
values (green) to higher values (yellow, orange and white).

from the plasma membrane. For a given cytoplasm C, let Cϵ be the set of points of

C within distance ϵ from the outer boundary of C, i.e. from the plasma membrane.

More formally,

Cϵ = {x ∈ C : d(x, ∂oC) ≤ ϵ}, (5.4)

where ∂oC denotes the plasma membrane and d(x, ∂oC) denotes the Euclidean dis-

tance from a point x to the set ∂oC. Let us define the following function

hC(ϵ) =
1

ν2(Cϵ)

∫
Cϵ

λ(x|C)dx. (5.5)

For a given cytoplasm C and a given positive value ϵ, the function hC(ϵ) gives us the

mean number of points per unit area within distance ϵ from the plasma membrane.

The function hC is estimated by replacing the integral with the corresponding count

Φ(Cϵ) in (5.5). Let ĥij be the estimated function corresponding to the j-th cell of

the i-th group. The different ĥi1, . . . , ĥini
are estimators of the unknown hi. Again,
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we will test the null hypothesis Ho : h1 = . . . = hg using a bootstrap procedure.

The results are detailed in Section 5.4.3. It is important to note that this function

depends on C. In some way, C is a co-variable and we do not know how h depends on

it. We will assume that this dependence is negligible. We believe that this previous

(and necessary) hypothesis is tenable at small values of ϵ.

5.4 Results

5.4.1 Comparing counts of granules

We compared the observed mean numbers of points per unit area of cytoplasm among

cell groups. The mean of this random variable was denoted by µi for the i-group. We

tested if a common value for the different µi’s can be assumed.

If a normal distribution is assumed, then a usual analysis of variance (a t-test

in our case because we have two groups) can be applied. The p-value observed was

0.7795, i.e. no statistically significant difference between the means was observed.

Note that the standard analysis based on ANOVA remains as the only choice in Cell

Biology and Neurobiology literature in spite of the fact that it is unsuitable in many

cases (small counts over small areas, for instance).

The random variable Y is a rate between the count and the area of the cytoplasm.

We can consider a random count over a fixed area. The total number of granules

in the cytoplasm C, Φ(C), is a discrete random variable, whereas the area of the

cytoplasm ν2(C) is not random. We performed a Poisson regression for rates, where

a Poisson distribution was assumed for Φ(C). The mean of the random variable

EΦ(C) is related to the dummy variable indicating the group by using the log link

function

log(EΦ(C)) = ν2(C)(β0 + β1s1), (5.6)

where s1 = 1 in the mutant group and 0 otherwise ([1]).

We tested the null hypothesis H0 : β1 = 0 i.e. there was no difference in the means

for the two groups. The observed p-value was 0.6387. Again, there was no evidence

against the null hypothesis. Note that we compared nested models where the simpler

model had the coefficient β1 equal to zero. It is well-known that although we do not

have a very good global fit, the comparison between nested models is still suitable. In
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this case we had large deviance residuals, probably indicating overdispersion. The de-

viance residuals observed ranged from −7.2158 to 8.3725. When a negative binomial

distribution was assumed for the random count, the residuals ranged from −0.79253

to 0.84609. The null hypothesis of a null β1 seems consistent with a p-value observed

of 0.781. Note that this new p-value was very close to the one obtained assuming a

normal distribution for the rates.

In summary, the null hypothesis of a common mean of granules per unit area

of cytoplasm under two different treatments (mutant and control) groups cannot be

rejected. Statistical analysis was performed using the function glm and anova.glm

included in the package MASS of the R language [63].

5.4.2 Comparing distances to the plasma membrane

Each cell provided us with a set of distances. As usual in the literature, we joined

all the distances from different cells into a unique set per group and we performed a

comparison of these two sets by using ANOVA. The p-value obtained for this analysis

was 0.023, i.e. the distances from the granules to the plasma membrane are different

for the two groups at a significance level of 0.05. The main drawback of this approach

concerns the interdependence between the different distances observed in the same

cell. A classic ANOVA assumes random samples taken from each group, in particular

that the distances observed for a given cell should be independent among them. That

does not hold in our case because granules may interact in such a way that their

locations are interdependent and, by definition, are their respective distances to the

plasma membrane.

To circumvent this problem, we described the granule distances by using the

empirical cumulative distribution function and compared the estimated functions by

using a bootstrap procedure. The empirical cumulative distribution functions were

estimated at 100-equally spaced points from 28.88 to 2888 nm (corresponding with 1

pixel and 100 pixels). Let F̂ij(tk) be the empirical cumulative distribution function

of the j-th cell, with j = 1, . . . , ni, in the i-th group, with i = 1, . . . , g, at the point

tk. The functions F̂ij’s for different j’s are independent estimates of the common

unknown theoretical distribution function Fi for the i-th group. The function Fi(t)
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can be estimated as

F̂i(t) =

ni∑
j=1

F̂ij(t)

ni

. (5.7)

In order to estimate the sampling variance of F̂i(t), a bootstrap method is used [30].

We construct a bootstrap sample of F -functions {F̂ ∗
i1, . . . , F̂

∗
ini
}, i.e. the functions F̂ ∗

ij

with j = 1, . . . , ni are sampled at random with replacement from the set of functions

{F̂i1, . . . , F̂ini
}. The resampled F̂ ∗

i (t) is computed as

F̂ ∗
i (t) =

ni∑
j=1

F̂ ∗
ij(t)

ni

. (5.8)

This process is repeated s times (in our analysis s = 1000) and the sample variance

of the corresponding values of F̂ ∗
i (t) is the bootstrap approximation to the sampling

variance of F̂i(t).

Fig. 5.5 (a) displays the F̂2 function (mutant group, solid line) against that of

the control group (dashed line). The larger the difference of F̂2 and the bisecting

line is, the larger the difference between the distribution of the distances of mutant

cells and the wild-type cells is. Cells of the mutant group had granules closer to the

plasma membrane than control cells, since the F̂2 function was clearly higher than

the bisecting line at any point of the empirical cumulative distribution function.

We performed a bootstrap test and obtained the bootstrap regions. Fig. 5.5 (b)

shows the bootstrap regions of F̂2 function (solid line) against those of F̂1 (dashed

line). For each group, the two plus and minus bootstrap standard error limits for

s = 1000 are displayed. We can conclude that there are differences between the

distribution of the distances to the plasma membrane of the mutant group and wild-

type group. Although there is a slight overlapping in the bootstrap regions at very

small distances (from 0 to 57.76 nm), they quickly differentiate and do not overlap

for distances from 57.76 nm to 375.44 nm, which includes docking distances.

Apart from this graphical test, we needed to formally quantify the differences

between groups. A bootstrap approach was again used. A detailed description of this

test can be found in [24, 25] (pages 124-127). Let F̂ij be the j-th function of the i-th

group. As before, F̂ij, with j = 1, . . . , ni, are independent and identically distributed

realizations of the unknown Fi. The null hypothesis to be evaluated is that there is

no difference between these functions, H0 : F1(t) = . . . = Fg(t), for all t. Under this
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Figure 5.5: Comparison of ECDFs: (a) F̂2 function (mutant, solid line) against F̂1

(control, dashed line). (b) Bootstrap regions.

null hypothesis, let us denote the common function by F0(t). This function can be

estimated as

F̂0(t) =

g∑
i=1

ni∑
j=1

F̂ij(t)/

g∑
i=1

ni. (5.9)

The statistic used is a generalization of the between-group sum of squares used in a

typical analysis of variance and it is defined as

T =

g∑
i=1

ni

∫ r0

0

(F̂i(t)− F̂0(t))
2dt, (5.10)

where r0 was the maximum value at which the functions were estimated. Since it

is not possible to know the null distribution of the statistic T given in (5.10), a

bootstrap procedure was used. A bootstrap sample of functions was generated, i.e. a

random sample of size
∑g

i=1 ni drawn with replacement from the population of
∑g

i=1 ni

functions {F̂ij with i = 1, . . . , g, and j = 1, . . . , ni}. We calculated the statistic T for

the original sample and the bootstrap sample. In our case, s − 1 bootstrap samples

were generated and from them the corresponding bootstrap replicates of T . If t1

is the observed T from the original data and tk with tk = 2, . . . , s the bootstrap
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replicates of T , under the null hypothesis any permutation of {t1, t2, . . . , ts} has the

same probability, i.e. they are interchangeable. The null hypothesis is rejected for

large t1 values. The p-value is P (T ≥ t1|H0) and the corresponding bootstrap estimate

is #{ti ≥ t1 with i = 1, . . . , s}/s, where # stands for set cardinality.

The procedure was applied with r0 = 100 pixels (which corresponds to 2888 nm)

and s = 1000. A p-value of 0.029 was obtained. Therefore, we concluded that the

distribution of the distances from the granule to the plasma membrane in the mutant

sample was significantly different from that of the control specimens [19].

5.4.3 Comparing densities within a given distance to the

plasma membrane

A similar procedure was applied to compare the h-functions of the two cell groups.

These functions give the mean number of granules per unit area within a given dis-

tance from the plasma membrane. Fig. 5.6 (a) displays the bootstrap regions corre-

sponding to h1 and h2. Cells of the mutant group (solid line) had a higher density

of granules closer to the plasma membrane than control cells (dashed line). Likewise,

we estimated the bootstrap region for the difference h1 − h2. We resampled from

each sample and considered the difference between the corresponding ĥ∗1 and ĥ
∗
2. The

corresponding mean ± two standard deviation were calculated and displayed in Fig.

5.6 (b) (solid line). Note that the line y = 0 is not contained in the region from

approx. 60 to 200 nm.

The bootstrap test was applied to the h-function with r0 = 2888 nm and s = 1000.

A p-value of 0.099 was obtained. This p-value is not significative. However, from Fig.

5.6 (b), it can be drawn that there were differences between the two groups. Note

that the experiment was designed in order to investigate differences in the number

of docking granules at the plasma membrane, i.e. granules whose distances to the

plasma membrane is less than 300 nm.

5.5 A simulation study

Let us evaluate the performance of the proposed descriptors by performing a simu-

lation study. Let D0 be a fixed disk with unit radius centered at the origin, which
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Figure 5.6: Bootstrap regions: (a) bootstrap regions of h1 (dashed line) and h2 (solid
line); (b) bootstrap regions of the difference h1 − h2.

will represent a cell section. First, we generated D1, a circle with radius 0.5 uni-

formly located within D0, to simulate the cell nucleus. Second, we generated a non-

homogeneous Poisson point process with intensity function

λ(x|C) = β0 exp{−β1d(x, ∂D0)},

if x ∈ D0\D1 and 0 otherwise, where ∂D0 denotes the boundary of the circleD0. Note

that all points generated are contained within D0 \ D1. The greater the parameter

β1 is, the closer the events to the boundary of D0 are. For a given β1 value, the

corresponding β0 was chosen in such a way that the mean number of points was

constant (equal to 50 points in our case).

Three different sets of fifty replicated point patterns each were simulated. Each

set had a different β1 (and the corresponding β0). In particular, β1 = 5 for the first

group, β1 = 5 + δ for the second group and β1 = 5 + 2δ for the third group, with

values of δ ranging from 0 to 1 with a step of 0.025. Note that greater values of δ

correspond to greater differences among the three groups of point patterns. Fig. 5.7

displays different realizations for different δ values.

We estimated the empirical cumulative distribution functions for each group and

applied the bootstrap procedure. Fig. 5.8 (a) displays a short descriptive of the p-

values provided by the test. In particular, for each δ the quantiles 0.05, 0.25, 0.50, 0.75
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and 0.95 are displayed. The observed p-values are almost null for values of δ higher

than 0.6. By visual inspection, the point patterns shown in Fig. 5.7 exhibit very

slight differences in the relative locations of the events with respect to the boundary.

However, these differences are clearly captured by the proposed descriptor and de-

tected by the bootstrap procedure. Fig. 5.8 (b) shows the p-values corresponding to

the h-function. The p-values are now almost null for values of δ higher than one. Note

the better performance of the test based on the cumulative distribution function.

(a) (b)

(c) (d)

Figure 5.7: Several simulated point patterns. Realizations with (a) δ = 0.25; (b)
δ = 0.50; (c) δ = 0.75 and (d) δ = 1.
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Figure 5.8: The p-values provided by the bootstrap test as a function of δ. Plot
(a) displays the cumulative distribution function of the distances from the granules
to the plasma membrane and plot (b) the respective p-values associated with the
h-function. Solid line corresponds to the median, dashed lines represent the lower
and upper quartiles and dotted lines correspond to the 0.05 and 0.95 quantiles.

5.6 Conclusions

In this study, an image processing method to segment granules in EM images has been

proposed and evaluated. Although this software was used in this proof-of-principle

study exclusively for chromaffin cells, the parameters should be easily adaptable to a

wide range of cells with granules that undergo regulated secretion. Importantly, the

performance of the automatic technique matched that of the manual analysis.

We have proposed several robust statistical methods to compare differences in the

intracellular distribution of granules among cell groups with respect to: i) the number

of granules per unit area of cytoplasm; and ii) the spatial distribution of the granules

with respect to the plasma membrane. The empirical cumulative distribution function

and the density of granules within a given distance to the plasma membrane are
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two good functional descriptors, which allow us to discriminate between cell groups.

Moreover, for replicated spatial point patterns, we propose a bootstrap procedure for

obtaining a p-value.

The analysis has been applied to two groups of adrenal gland cells from control and

mutant mice. For the image set analyzed, there were no significant differences in terms

of the number of granules per unit area of cytoplasm. However, there were differences

in the distribution of the distance from the granules to the plasma membrane, i.e.

mutant cells had granules closer to the plasma membrane than control cells.

Several aspects remain open for future research. First, to identify differences in

granule parameters, such as size and grey-level density (related with the catecholamine

content). Second, to study the joint distribution of the bivariate point patterns

composed of stand-alone granules and granules with white vacuoles surrounding them.

We note that the framework chosen is flexible and general enough to incorporate and

directly test biological hypotheses in a direct way.

Finally, the proposed methodologies may be adapted to analyze other cellular

organelles including endosomes, lysosomes, vacuoles, etc. To our knowledge, this is

the first time that these tools are used to study secretion. In summary, we have

presented and applied a powerful set of new tools for the detection, analysis and

hypothesis testing which will facilitate future research of vesicle exocytosis.

104



Chapter 6

Conclusions and Future Work

In this thesis we have proposed different statistical methodologies in the context of

stochastic spatial-temporal processes. Our major aims have been to characterize

dynamic processes producing random shapes with random durations and to analyze

the spatial-temporal dependencies between two processes.

We have proposed the temporal Boolean model, which formalizes the configuration

of independent, randomly placed events with independent durations. Locations of

these events are assumed to be the outcome of a realization of a spatial temporal

Poisson Point Process. We have proposed some methods for parameter estimation.

The methods have been applied to study the biological process of endocytosis.

First, in Chapter 3 we have shown that the use of a biased sample composed of

isolated events, when spatial temporal overlapping exists, can lead to a very high bias

in the estimation of the mean of the random duration. It was necessary to develop

procedures based on stochastic models where the spatial temporal overlapping is

explicitly assumed. We have shown that the temporal germ-grain models are a good

choice and, in particular, the cylindrical temporal Boolean model.

We have proposed an estimator of the cumulative distribution function of the

duration of spatially and temporally overlapping events based on the covariance of

temporal random closed sets. Results from the simulation study showed that the

absolute errors in the estimation of the distribution function of the duration are

small. Indeed, the relative error in the estimation of the median of the distribution

was smaller than 1% in almost all cases. The estimator also performs quite well in

images with a certain degree of random noise such as salt-and-pepper.
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Second, in Chapter 4 we have shown a new procedure for analyzing either spatial

or spatial-temporal interactions between two types of events in a bivariate temporal

random set. We have demonstrated its utility both as a summary statistic and as a

basis for formal inference. We successfully applied this method to study associations

between proteins in quantification of endocytic dynamics. The proposed methodology

is not only a testing procedure, but it allows us to quantify the degree and the

spatial-temporal interval of the interactions. Moreover, no (unnecessary) parametric

assumptions are made. The proposed approach can be easily extended to multivariate

random sets. From the application on simulated dependencies, we conclude that

these summary descriptors accurately capture spatial-temporal interrelations. We

have proposed a formal testing procedure. This represents an important departure

from simple visual inspection of the images, which is the normal practice in cell

biology literature, since manual analysis is a very time-consuming task and subject

to observer error. In contrast, our proposed methodology is highly reproducible and

fully automatic. The results obtained in the analysis of TIRFM image sequences of

fluorescent-tagged proteins are in complete agreement with those reported by other

techniques. In our opinion, these estimators are sensitive enough to be applied to

many other applications. Such a procedure could be used as a screening tool to study

protein interdependencies under different treatments and provides new opportunities

for validating cellular models. Since we assumed stationarity in the images, we have

proposed different solutions to overcome the violation of stationarity if needed.

Third, in Chapter 5 we have proposed several robust statistical methods to com-

pare differences in the intracellular distribution of granules among cell groups with

respect to: i) the number of granules per unit area of cytoplasm; and ii) the spatial

distribution of the granules with respect to the plasma membrane. The empirical

cumulative distribution function and the density of granules within a given distance

to the plasma membrane are two good functional descriptors, which allow us to dis-

criminate between cell groups. Moreover, for replicated spatial point patterns, we

propose a bootstrap procedure for obtaining a p-value.

Also, an image processing method to segment granules in EM images has been

developed and evaluated. The performance of the automatic technique matched that

of the manual analysis. While this software was used in this proof-of-principle study

exclusively for chromaffin cells, the parameters should be easily adaptable to a wide
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range of cells with granules that undergo regulated secretion.

There are several interesting extensions of the methodologies presented, that we

propose in the following paragraphs.

Regarding Chapter 3, extensions for future research are the development of new

temporal germ-grain models with other germ models. In particular, models with

higher aggregation than the Poisson point process which will lead to greater overlap-

ping probability. The estimation will be harder but, possibly, semi-parametric models

could be proposed. Also, another aspect to be developed is the estimation of the size

distribution for the grains. Last, the method described depends on the assumption

of stationarity. Potential extensions will include the use of other models, such as the

Cox model.

Regarding Chapter 4, some aspects require further investigation. First, the de-

velopment of new parametric models for the spatial-temporal interactions where bio-

logical factors could be considered. Second, when stationarity does not hold, simple

non-parametric measures of association may not be sufficient. The incorporation of

covariates and possible sources of interactions of the events throughout the obser-

vation window would lead to non-homogeneous distributions, i.e. non-homogeneous

random sets. As regards such modeling, potential extensions will include the use of

other parametric models, such as a linked Cox model.

Regarding Chapter 5, several aspects remain open for future research. First, to

identify differences in granule parameters, such as size and grey-level density (related

with the catecholamine content). Second, to study the joint distribution of the bivari-

ate point patterns composed of stand-alone granules and granules with white vacuoles

surrounding them. We note that the framework chosen is flexible and general enough

to incorporate and directly test biological hypotheses in a direct way. Finally, the

proposed methodologies may be adapted to analyze other cellular organelles includ-

ing endosomes, lysosomes, vacuoles, etc. To our knowledge, this is the first time that

these tools are used to study secretion. In summary, we have presented and applied a

powerful set of new tools for the detection, analysis and hypothesis testing of secretion

which will greatly facilitate future research of vesicle exocytosis.

All the methodologies and methods described in this thesis have been programmed

in Matlab and R software. A toolbox for Matlab have been developed to simulate

Temporal Boolean Models (univariate and bivariate) and reproduce the proposed
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6. CONCLUSIONS AND FUTURE WORK

method of estimation. It is available in http://www.uv.es/tracs/index.html. More

details can be found in Appendix A and in the supplementary material included.

To sum it up, we have defined and presented a methodology to estimate spa-

tial temporal parameters of stochastic models and test procedures that allow the

researcher test hypothesis in a formal way. The methodologies and models described

herein could bring information of temporal distributions, intensities and size measures

of spatial-temporal point processes. The performance of the proposed estimators have

been tested in simulation studies. Also, these estimators have been successfully ap-

plied on real biological sequences to obtain information of the underlying processes

which can not be obtained manually.
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Appendix A

Software

We have used the Matlab environment to perform the image analysis of the sequences.

Specifically, we have used two libraries designed for image analysis named Images and

Mmorph.

The statistical analysis was performed by using R software [63], an environment

specifically designed for data analysis. That software can be freely downloaded from

http://cran.r-project.org.

A.1 Image segmentation

We have implemented a software tool in Matlab that allows the automatic detection

of large dense core granules. We think that it is a very useful tool that facilitate the

task of the biologist in the study of regulated exocytosis. The implemented toolbox

can run under Windows and under the Linux operating system. It is available on

request and it is offered under the terms of the GNU public license.

We illustrate the use with an example. Fig. A.1 (a) shows a cell and Fig. A.1 (b)

the delineated membranes applied to the cell. Fig. A.2 shows the menu for setting

the parameters of the detection algorithm. The obtained results are displayed in Fig.

A.3. In Figs. A.4 (a) and (b), two zooms of the cell with the membrane granules

delineated in blue are shown.
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(a) (b)

Figure A.1: An electron micrograph of cell and the delineated membranes.

Figure A.2: Parameter setting menu.

The toolbox also allows the elimination of false positives and the manual incorpo-

ration of false negatives, by adding the location of a seed. The algorithm automati-

cally calculates the selected data of the granule and its membrane.
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A.2 Statistical analysis of granules

Figure A.3: The results obtained: granule location and data script.

A.2 Statistical analysis of granules

Statistical analysis to compare counts of granules has been performed using the func-

tion glm from MASS library of the software package R. An example of use is:

nullfit.APO <- glm (Ngranules ~ offset (log (AreaCytoplasm)),

family =poisson)

densfit.AGPO <- glm (Ngranules ~ factor(type) + offset (log(AreaCytoplasm)),

family = poisson)

summary (nullfit.APO)

summary (densfit.AGPO)

anova.glm (nullfit.APO, densfit.AGPO,test="F")

nullfit.ANB <- glm (Ngranules ~ offset (log (AreaCytoplasm)),

family =negative.binomial(theta=1,link="log"))

densfit.AGNB <- glm (Ngranules ~ factor (type) +offset (log (AreaCytoplasm)),

family =negative.binomial(theta=1,link="log"))

summary (nullfit.ANB)

summary (densfit.AGNB)
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(a) (b)

Figure A.4: Two zooms of the granules with the granule membrane delineated.

The bootstrap procedures and the estimation of the cumulative distribution func-

tions are developed in the software package R.

A.3 Functional Data Analysis

A functional datum is a set of discrete measured values {(sj, yj)}j=1,...,n. First, it is

necessary to convert these values to a function which is computable for any value.

We did not use an interpolation process because the discretization might include

some observational error. Instead, a smoothing technique was used to transform the

raw data {(sj, yj)}j=1,...,n to a function y(t) =
∑K

k=1 ckΦk(t), being {Φk(t)}k=1,...,K

a basis functions possessing a certain number of derivatives. A polynomial spline

basis was chosen, where each Φk(t) is a piecewise cubic function. The coefficients

ck of the expression y(t) were obtained by minimizing the least squares criterion

SMSSE(y|c) =
∑n

j=1(yj −
∑K

k=1 ckΦk(tj))
2. A detailed presentation of this method

is given in [64].

To perform the functional data analysis, the R package fda developed by J.O.

Ramsay has been used ([63, 65]). To compute the first derivative of H(t), we used
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15 basis functions to transform the raw data into a piece-wise function, which is

appropriate for functions re-sampled at 65 values. These values should be modified

depending on the kind of data and the sampling frequency.

A.4 Temporal Random Closed Sets (TRACS)

We have implemented a software tool in Matlab devoted to Temporal Random Closed

Sets. In the study of bivariate Temporal Random Closed Sets, it allow us to estimate

the cross-covariance function, perform testing procedures (based on toroidal shifts

and Monte Carlo tests), and simulate bivariate temporal random closed sets. In the

Cylindrical TBM work, we used the tool to simulate temporal boolean models, and

estimate the spatial-temporal covariance and the cumulative distribution function.

Matlab toolbox (source code and user documentation) for the simulation of tem-

poral random sets, parameter estimation and the testing procedures is available at

http : //www.uv.es/tracs/index.html.

The simulated videos and the fluorescent-tagged protein image sequences can be

downloaded from http : //www.uv.es/tracs/videos/videos.html, and they are also

included in the supplementary material.

Now, we comment briefly some of the most important functions of the toolbox.

A.4.1 Temporal Boolean Models

Simulation

Regarding simulation of Temporal Boolean Models, the most important functions are:

• Function tbmsimulation: This function generates a realization of temporal

Boolean model. Possible probability density functions of the grain sizes are:

uniform and Gaussian (truncated Gaussian). Possible probability density func-

tions of the grain durations are: uniform, exponential, Gamma and Gaussian

(truncated Gaussian).

• Function tbmgerms: This function generates the germs, a spatial-temporal

Poisson point process.
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• Function tbmgrains: This function generates the sizes and orientations of the

grains. Possible probability density functions of the grain sizes are: uniform

and Gaussian (truncated Gaussian).

• Function tbmdurations: This function generates the grains durations. Possi-

ble probability density functions of the grain durations are: uniform, exponen-

tial, Gamma and Gaussian (truncated Gaussian).

Estimation

Regarding parameter estimation of Temporal Boolean Models, the most important

functions are:

• Function tbmcontminT: Estimation of the parameters of a two-dimensional

Boolean model by applying the Minimun Contrast Method using the capacity

functional T .

• Function tbmcontminH: Estimation of the parameters of a two-dimensional

Boolean model by applying the Minimun Contrast Method using the contact

distribution function H.

• Function tbmblockcorr: Estimation of the mean and confidence interval using

the batch-mean method.

• Function tbmalphaestimation: Estimation of the α-function of a Temporal

Boolean Model (the mean number of germs that died/were born in a time

interval).

• Function tbmtemporalestimation: Estimation of the temporal parameters

of a Temporal Boolean model.

• Function tracsvolumefraction: Estimation of the spatial-temporal volume

fraction of a realization of a Temporal Random Closed Sets (TRACS).

• Function tracsisolatedclumps: This function segments the isolated circular

clumps, i.e. clumps whose boundary is not covered by any other clump/grain.
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Function tbmcontminT

Estimation of the parameters of a two-dimensional Boolean model by applying

the Minimun Contrast Method using the capacity functional T . It provides a four-

component vector, being gamma: number of germs per unit area; perimeter: mean

perimeter of the primary grain; area: mean area of the primary grain and volfrac:

the volume fraction.

W is assumed to have no holes. The capacity functional TK(t) takes values in the

interval [0, 1] since it represents the cumulative distribution function and, as a conse-

quence, the empirical values of log(1− TK(t)) tend to infinite. Hence, only values of

1−TK(t) in the interval [0, 0.8] are used in the fitting of the second order polynomial

derived from the Steiner formula. The use of a square structuring element is recom-

mended because its digital approximation is more accurate than the corresponding

approximation of the disk.

Function tbmcontminH

Estimation of the parameters of a two-dimensional Boolean model by applying

the Minimun Contrast Method using the contact distribution function H.

This function returns the parameters of the two-dimensional Boolean model: a

three-component vector, being gamma: number of germs per unit area; perimeter:

mean perimeter of the primary grain and volfrac the volume fraction.

W is assumed to have no holes. Only values of 1 − HK(t) in the interval [0, 0.7]

are used in the fitting of the second order polynomial derived from the Steiner formula.

Function tbmblockcorr

Estimation of the mean and confidence interval using the batch-mean method.

This function depends on the autocorr function of the Garch Matlab Toolbox.

Function tbmalphaestimation

Estimation of the α-function of a Temporal Boolean Model (the mean number of

germs that died/were born in a time interval).

Function tbmtemporalestimation
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Estimation of the temporal parameters of a Temporal Boolean model. It returns

a structure with the estimation of the λ, α(s), p(s), β(s), the probability density

function of the durations and the time interval. The value of λ (mean number of

germs per unit area and time) is estimated by fitting a first order polynomial at α(0)

and calculating its slope using the first four points, see [9].

Function tracsvolumefraction

Estimation of the spatial-temporal volume fraction of a realization of a Temporal

Random Closed Sets (TRACS).

Function tracsisolatedclumps

This function segments the isolated circular clumps, i.e. clumps which boundary

is not covered by any other clump/grain. The function returns a structure with two

fields. DATA.POINTS is a structure with the information of each isolated clump:

X,Y is the location of the center, RAD is the radius of the disk, LIFE is a vector

with the frames in which the grain is alive and N is the grain duration (in frames).

DATA.MOV is a movie in which the isolated grains segmented are represented in

light grey.

Visualization

We can plot a Temporal Random Closed Set using:

• Function tracs2dplot: This functions plots a frame (section) of a Temporal

Random Set.

• Function tracs3dplot: This functions plots a three-dimensional reconstruction

of a Temporal Random Set.

A demo

An example of simulation and estimation of the parameters of a TBM.
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(a) (b) (c)

Figure A.5: Several consecutive frames of a simulated TBM with cylindrical grains.
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Figure A.6: Parameter estimation: (a) Estimation of α(t), β(t) and γ. (b) Estimated
density of the duration.

A.4.2 Bivariate TRACS

Regarding analysis of bivariate TRACS, the most important functions are:

• Function tbmbivariatesimulation: Generation of a bivariate temporal Boolean

model. Possible probability density functions of the grain sizes are: uniform

and Gaussian (truncated Gaussian). Possible probability density functions of

the grain durations are: uniform, exponential, Gamma and Gaussian (truncated

Gaussian). Possible models of interaction for the germs are: linked-pairs and

Poisson cluster (Neymann-Scott process).
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Figure A.7: A reconstruction of a TBM using function tracs3dplot.

• Function tracsrandomization: Toroidal shift randomization of a TRACS.

• Function tracscrossC: Cross-covariance of a TRACS. This function returns

the cross-covariance C within disks of radii S and time interval T (in frames)

for movies MOV1, MOV2. C is integrated over the angles [−π : π].

• Function tracscrossCh0: Cross-covariance of a TRACS. This function returns

the cross-covariance C given a vector displacement H for two movies, i.e., the

value of the cross-covariance at (H, 0). C is integrated over the angles [−π : π].

The estimation method depends on the type of dependencies: spatial or spatial-

temporal. We assume there is only spatial dependencies. We assume both

sequences have the same length in frames and size in pixels.

• Function tracscrossCht: Cross-covariance of a TRACS. This function returns

the cross-covariance C given a vector displacement H and time T (frames) for

two movies, i.e., the value of the cross-covariance at (H,T ). We assume that

both sequences have the same length in frames and size in pixels.

• Function tracscrossK1: The K1-function within disks of radii given in S.
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A.4 Temporal Random Closed Sets (TRACS)

• Function tracscrossK: The K-function within disks of radii given in S (pixels)

and time interval given in T (frames).

• Function tracspvalueMC: This function provides the p-value of the Monte

Carlo test for descriptor F.

• Function tracspvaluemapMC: This function calculates and plots the p-values

of the Monte Carlo test by applying a bootstrap procedure to the cross-covariance.

• Function tracsbi3dplot: Plot a three-dimensional reconstruction of a bivariate

TRACS.

Demos

The scripts ScriptSpatial.m and ScriptSpatialTemporal.m show how to calculate the

covariance function, the K-function, L-function and the pair correlation functions.

Calculating the p-value map

An example of p-value map is shown in A.8.
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Figure A.8: An example of p-value map.
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Appendix B

Supplementary Material

Supplementary videos have been generated in order to visually show the kind of data

we are dealing with. In particular, Chapters 3 and 4 which study spatial temporal

data refer to these image sequences.

In Chapter 3, the Video1, Video2 and Video3 correspond with simulated models

where discs are randomly located in space and time with random radii and random

durations. Video1 corresponds to the uniform distribution with λ = 0.0001, Video2

to the Gamma distribution with λ = 0.0002 and Video3 to the Gaussian distribution

with λ = 0.0003 with a mean duration of 6 seconds. Videos Noise1, Noise2 and

Noise3 correspond to noisy images, with salt-and-pepper noise in the random shapes,

independently in each frame, and with ratios of noise 0.5%, 1%, 2% respectively.

Videos Cell1, Cell2 and Cell3 corresponds to the biological data and comprise three

sequences of clathrin protein.

In Chapter 4, Video 1 in the supplementary material corresponds to a simulated

bivariate temporal random set in which spatial dependencies were generated, Video 2

to a one with spatial-temporal dependencies and Video 3 to complete independence.

Video 4 corresponds to pair 1, Clathrin-RFP is in red and Hip1R-GFP in green.

Video 5 corresponds to pair 3, Clathrin-RFP in red and Caveolin-GFP in green.

The source code of the functions of the Temporal Boolean model toolbox and the

automatic granule detection tool is also included in the supplementary material.
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