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Índice general

1. Introducción 1
1.1. Introducción general al problema . . . . . . . . . . . . . . . . . . . . 1
1.2. La F́ısica del τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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Caṕıtulo 1

Introducción

1.1. Introducción general al problema

Esta Tesis Doctoral estudia las desintegraciones del leptón τ que incluyen
algún mesón entre las part́ıculas finales, llamadas por ello desintegraciones hadróni-
cas o semileptónicas. Al contrario de lo que sucede con el resto de leptones (electrón,
e− y muón, µ−) su masa (Mτ ∼ 1,8 GeV) es suficientemente elevada como para per-
mitir este tipo de desintegraciones incluyendo mesones ligeros (piones -π-, kaones
-K- y etas -η, η′-). Estos procesos incluyen además el correspondiente neutrino del
tau, ντ , y pueden incluir (en los llamados procesos radiativos) múltiples fotones, γ.
Si bien es cinemáticamente posible producir otros mesones ligeros cuyas masas sean
menores que la del tau, el tiempo de vida caracteŕıstico de estas part́ıculas (reso-
nancias) es excesivamente corto como para que sean detectadas. No obstante, como
veremos, el efecto de su intercambio es importante para entender estas desintegra-
ciones. Aunque Mτ ∼ 2Mp, donde Mp es la masa del protón, debido a que es algo
inferior en realidad (Mτ = 1, 777 GeV y 2Mp = 1, 876 GeV) y a la conservación del
número bariónico (que exigiŕıa producirlos en pares barión-antibarión, siendo el más
ligero protón-antiprotón) las desintegraciones del τ a bariones están prohibidas.

Las desintegraciones puramente leptónicas del τ son procesos debidos a la interac-
ción electrodébil, que a d́ıa de hoy quedan adecuadamente descritos en el marco del
Modelo Estándar de F́ısica de Part́ıculas (SM) [1]. En las desintegraciones hadróni-
cas del tau interviene, adicionalmente, la interacción fuerte. Aunque es bien conocido
que la Cromodinámica Cuántica (Quantum Chromodynamics, QCD) es la teoŕıa [2]
que la describe, no somos capaces todav́ıa de resolver el problema que nos ocupa
utilizando el Lagrangiano de QCD únicamente, como explicaremos.

Las dos dificultades señaladas anteriormente -que las resonancias no sean estados
asintóticos en el sentido de que sea posible su detección y que no seamos capaces
de resolver QCD para hallar una solución al problema- nos dan la clave del interés
de las desintegraciones semileptónicas del tau: proporcionan por un lado un entorno
limpio en el que estudiar la interacción fuerte a enerǵıas bajas e intermedias, ya
que la mitad electrodébil del proceso es limpia y está bajo control desde el punto
de vista teórico; por otra parte, dado el intervalo de enerǵıas del sistema hadrónico
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que cubren estas desintegraciones (esencialmente desde el umbral de producción de
π ∼ 0,14 GeV hastaMτ ), las resonancias más ligeras se pueden intercambiar en capa
másica (on-shell), de modo que sus efectos son notables y se puede aśı proceder al
estudio de sus propiedades.

La interacción nuclear fuerte fue descubierta en el experimento clásico de Ruther-
ford, que probó la existencia del núcleo atómico: era una fuerza de gran intensidad
y muy corto alcance. Pronto dicha fuerza comenzó a estudiarse en procesos de dis-
persión entre hadrones -las part́ıculas que experimentan la interacción fuerte- (que
se créıan elementales) en lugar de núcleos atómicos. El gran número de hadrones
descubierto en los años 50 y 60 con el advenimiento de los primeros aceleradores
de part́ıculas sugeŕıa que dichas part́ıculas no fuesen fundamentales, a imagen de lo
sucedido con los elementos qúımicos, al fin constituidos por protones y neutrones
en sus núcleos. Para completar la analoǵıa, la sistematización de las propiedades de
los hadrones (en este contexto ı́ntimamente ligadas a sus números cuánticos y en
concreto a las simetŕıas aproximadas de sabor) ayudó a entender su subestructura y
Gell-Mann comprendió que los hadrones deb́ıan estar constituidos por los llamados
quarks, con un número cuántico adicional -de color- que resolv́ıa los problemas de
adecuación del esṕın de las part́ıculas observadas a la estad́ıstica cuántica que obe-
dećıan.

Ahora bien, mientras que es posible desligar protones o neutrones de un núcleo
-bien sea a través de radiactividad natural o artificialmente- no se ha conseguido
hasta la fecha extraer quark constituyente alguno del hadrón en que se halle. Es-
ta propiedad se conoce como confinamiento y, aunque existen razones teóricas que
apuntan a dicho fenómeno no existe una explicación del mismo. Este hecho im-
pone una dificultad a la hora de entender los procesos mediados por interacción
fuerte: mientras que se produce entre quarks y gluones (los bosones intermediarios
de la QCD, que también tienen autointeracciones), nuestros detectores registran
únicamente hadrones, pues los quarks, antiquarks y gluones producidos forman in-
mediatamente objetos con carga de color total nula: hadronizan. Al contrario del
resto de fuerzas conocidas (electromagnética, débil y gravitatoria), en la QCD la
fuerza no disminuye con la distancia sino que aumenta -aunque sea muy corto su
alcance-.

Aunque después se abundará en esta cuestión, baste decir por el momento que
aunque QCD es la teoŕıa de la interacción fuerte, no sabemos cómo manejarla en su
régimen no perturbativo y, por ello, a efectos computacionales, su Lagrangiano sólo
permite abordar anaĺıticamente procesos inclusivos y a enerǵıas elevadas (E > 2
GeV t́ıpicamente) donde un tratamiento en términos de quarks, antiquarks y gluo-
nes tiene sentido. A las enerǵıas menores en que sucede nuestro problema deberemos
buscar un camino alternativo. Como sucede siempre en F́ısica, una elección adecua-
da de los grados de libertad simplifica (o incluso permite) la resolución. En nuestro
estudio exclusivo de determinados canales de desintegración del tau es evidente que
serán los mesones y resonancias más ligeras los grados de libertad adecuados para
abordar el problema. El método más conveniente y riguroso de hacerlo es el uso de
las Teoŕıas de Campo Efectivas (EFTs), que preservan las simetŕıas de la teoŕıa
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fundamental y están escritas en términos de los grados de libertad relevantes en una
región de enerǵıas dada. Como las desintegraciones del τ suceden alrededor de una
escala t́ıpica de enerǵıas densamente poblada por resonancias, no será suficiente em-
plear Teoŕıa de Perturbaciones Quiral (χPT ) [3, 4, 5] que incluye sólo los mesones
pseudoescalares más ligeros (π, K, η), sino que será necesario, además, incorporar a
las resonancias como grados de libertad activos para extender a enerǵıas superiores
la teoŕıa: la Teoŕıa Quiral de Resonancias (RχT ) [6, 7] es una herramienta que per-
mite este desarrollo.

En lo que resta de Introducción elaboraremos con mayor detalle sobre aspectos
relevantes de la f́ısica de taus no abordados en caṕıtulos posteriores y sobre QCD
y nuestras limitaciones a la hora de implementar sus soluciones en f́ısica hadrónica
a enerǵıas bajas e intermedias. Después avanzaremos algunas de las ideas capitales
subyacentes a nuestro marco teórico en referencia a las teorias efectivas, la teoŕıa
quiral de perturbaciones, el ĺımite de gran número de colores de QCD y la propia
teoŕıa quiral de resonancias. Finalizaremos con una enumeración de los distintos
caṕıtulos de la Tesis.

1.2. La F́ısica del τ

Comenzamos con una introducción somera a la f́ısica del tau que permi-
tirá contextualizar adecuadamente este trabajo: El leptón τ es un miembro de la
tercera generación que se desintegra a part́ıculas que incluyen los sabores ligeros per-
tenecientes a las dos primeras, junto al ντ . Por ello, la f́ısica de taus podŕıa darnos
pistas que permitieran entender por qué existe una serie de (al menos tres) copias
de leptones y quarks que sólo se diferencian por su masa [8] (Tabla 1.1):

Parece lógico que sean los fermiones más pesados los más sensibles a la generación
de masa fermiónica. Al ser el quark top demasiado pesado como para hadronizar
antes de desintegrarse, la f́ısica de quarks b y leptones τ es prometedora en este sen-
tido. Aunque el valor deMτ no permite desintegraciones a mesones encantados (con
quark c), es el τ el único leptón suficientemente pesado como para desintegrarse en
hadrones y aśı, relacionar de algún modo los sectores de quarks (ligeros) y leptones.

El grupo liderado por M. L. Perl [10] descubrió el τ en 1975, lo que constituyó el
primer indicio experimental a favor de la existencia de la tercera generación de
part́ıculas y, consiguientemente, también la primera indicación de que era inteligible
dentro del SM la violación de CP [11] ya observada [12] en el sistema de kaones
neutros, a través de la matriz de mezcla de Cabibbo, Kobayashi y Maskawa [11, 13].
De todos modos, esta explicación no es suficiente como para entender la enorme pre-
ponderancia observada en nuestro Universo de materia sobre antimateria [9, 14, 15],
lo que representa una de las claras indicaciones de la existencia de algún tipo de
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Generación quarks mq leptones ml

1 d 3,5↔ 6,0 MeV e− ∼ 0,5110 MeV

u 1,5↔ 3,3 MeV νe < 2 eV

2 s 70↔ 130 MeV µ− ∼ 105,7 MeV

c 1,16↔ 1,34 GeV νµ < 0,19 MeV

3 b 4,13↔ 4,37 GeV τ− ∼ 1,777 GeV

t 169↔ 175 GeV ντ < 18,2 MeV

Cuadro 1.1: Contenido de materia del SM . Las masas de quarks corresponden al esquema
MS con la escala de renormalización µ = mq para los quarks pesados (c, b) y µ = 2 GeV
para los ligeros. Para estos últimos el valor de mq dado es una estimación de la masa
corriente (current quark mass). En el caso del quark t se emplea un promedio de las
medidas en Tevatron pero no el reciente ajuste global del TEV EWWG, véase [8]. Las

masas de los neutrinos son las masas “efectivas“: m2 eff
νk =

∑
i |Uki|2m2

νi . Sin embargo, a
partir de datos cosmológicos es posible determinar [9]

∑
k(mνk) < 0,67 eV.

nueva f́ısica más allá del SM 1. Los números cuánticos del τ quedaron establecidos
[20] de modo casi simultáneo al descubrimiento de la siguiente part́ıcula de su ge-
neración, el quark b [21]. La part́ıcula más pesada conocida hasta la fecha, el quark
top, no fue detectado hasta 1995 [22, 23].

Resumiré a continuación brevemente la F́ısica que podemos aprender de las de-
sintegraciones del τ [24, 25, 26, 27, 28, 29].

En primer lugar, estas desintegraciones permiten verificar la universalidad de las
corrientes electrodébiles, tanto cargadas como neutras. Dentro del SM , las desin-
tegraciones leptónicas más sencillas del τ vienen descritas por la correspondiente
anchura parcial, cuya expresión es [30, 31, 32]:

Γ(τ− → ντ l
− νl) =

G2
F M

5
τ

192 π3
f

(
m2

l

M2
τ

)
rEW , (1.1)

donde f(x) = 1−8x+8x3−x4−12x2logx y rEW incluye las correcciones radiativas
electrodébiles no incorporadas en la constante de Fermi, GF , y la estructura no local
del propagador del W , rEW ∼ 0,9960. Por tanto, el cociente

B(τ → e)

B(τ → µ)
=

f
(

m2
e

M2
τ

)

f
(

m2
µ

M2
τ

) (1.2)

está fijado y permite verificar la universalidad de las corrientes cargadas electrodébi-
les. Las restricciones resultantes son bastante fuertes: ∼ 0,20% para el cociente e/µ

1Los recientes resultados experimentales relativos a la razón entre flujos extragalácticos de
materia y antimateria [16, 17, 18, 19] no tienen -por el momento- una explicación unánimemente
aceptada.
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y ∼ 0,22% para las razones que incluyen al τ . Los errores asociados provienen de
la indeterminación actual de ∼ 0,3 MeV en Mτ . Esta incertidumbre es todav́ıa ma-
yor [33, 34] en la relación entre la tasa de desintegración (branching ratio, BR) a
leptones y la vida media del tau -fijada utilizando el valor de la constante de Fermi
proviniente de la desintegración del µ- (aparece elevada a la quinta potencia en la
ec. (1.1)), que se mejorará notablemente en BES − III y KEDR próximamente
[35]. KEDR prevé alcanzar un error total de 0,15 MeV y BES − III de sólo 0,10
MeV. No trataremos aqúı otra cuestión interesante, como es la determinación de la
masa del τ cerca de su umbral de producción [35].

En el SM , todos los leptones con la misma carga eléctrica tienen acoplos idénticos
al bosón Z, tal y como se ha venido comprobando en LEP y SLC durante años. La
precisión alcanzada para los acoplamientos axial-vectores de corriente neutra (ai) es
aún mayor que para los vectoriales (vi) [36]:

aµ
ae

= 1,0001(14),
vµ
ve

= 0,981(82);
aτ
ae

= 1,0019(15),
vτ
ve

= 0,964(32).

(1.3)
A partir de τ− → ντ l

− ν l se ha obtenido también un ĺımite superior para los
acoplos estándar y no estándar [37, 38, 39, 40, 41, 42] entre corrientes fermiónicas
levógiras/dextrógiras (left/right-handed: L/R) : RR, LR , RL, LL; escalares, vec-
toriales y tensoriales (S, V , T ). Es destacable que los ĺımites actuales no permitan
concluir que la transición es del tipo predicho: V −A [43]. Tanto estas cotas como las
de los ’Michel parameters ’ [37] 2 mejorarán ostensiblemente en BES − III [35, 44].

En el SM mı́nimo con neutrinos sin masa, existe un número leptónico aditivo
que se conserva separadamente para cada generación (el llamado número leptónico
de sabor, lepton flavour number). Sin embargo, y tras la evidencia de la oscila-
ción de neutrinos νµ → νe anunciada por LSND [45, 46], la confirmación a través
de las medidas de oscilaciones publicada por SNO [47, 48] y Super-Kamiokande
[49, 50] descarta la anterior hipótesis del SM mı́nimo. Está claro por tanto que
dicho número cuántico de familia se viola en procesos que involucran neutrinos.
Aunque seŕıa lo más natural que esto sucediera también en procesos con e, µ, τ , to-
dos los datos actuales son consistentes con tal ley de conservación es ese subsector
leptónico. A pesar de que los ĺımites en violación de número cuántico leptónico de
sabor a través de desintegraciones de τ están mejorando d́ıa a d́ıa (BR ≤ 10−7)
[51, 52, 53, 54, 55, 56, 57, 59, 58, 60, 61, 62, 63, 64, 65, 66] , están lejos todav́ıa de
los ĺımites existentes en las desintegraciones de µ con análoga violación [25].

El laboratorio de FERMILAB en Chicago ha resultado una herramienta fun-
damental para el descubrimiento de los otros miembros de la tercera generación.
Alĺı -como ya se comentó- el quark b fue descubierto en 1977, el top en 1994-5 (con
la ayuda inestimable de la profećıa de LEP, tal y como comentaré) y, finalmente,
el experimento DONUT [67] consiguió detectar la part́ıcula restante, el neutrino
tauónico, en 2000. De hecho, los mejores ĺımites directos sobre la masa del neutrino,
mντ , vienen de las desintegraciones hadrónicas del τ [68]: τ− → ντ X

−, donde

2Estos parámetros describen la distribución del espacio fásico en las desintegraciones leptónicas
de µ, τ .
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X− = (π π π)−, (2K π)−, (5π)−. Aunque -según ya se indicó- quedan ampliamen-
te rebasados por las cotas provenientes de estudios cosmológicos, nuestro estudio
podŕıa mejorar los ĺımites directos.

Además, las desintegraciones semileptónicas del τ son el marco ideal para estu-
diar efectos de interacción fuerte en condiciones realmente muy limpias, ya que la
mitad electrodébil de la desintegración está por completo bajo control y no se ve
afectada por la hadronización que ensucia sobremanera el proceso. Estas desintegra-
ciones sondean el elemento de matriz de la corriente cargada levógira entre el vaćıo
de QCD y el estado final hadrónico, tal y como se representa en la Figura 1.1. Se
dedicará más atención a este tema -central en la Tesis- a lo largo del trabajo.

Una comprobación directa de QCD [69] se puede realizar a partir del cociente

· · ·

QCDEW

h1

hn

q̄

q

τ−

ντ

W−

·
·

·

Figura 1.1: Diagrama de Feynman para la contribución al orden dominante a una
desintegración hadrónica genérica del leptón τ .

Rτ ≡
Γ(τ− → ντ hadrones (γ))

Γ(τ− → ντ e− νe (γ))
= Rτ,V + Rτ,A + Rτ,S , (1.4)

que separa las contribuciones de las corrientes vectorial (V ) y axial-vector (A) que
corresponden a un número par/impar de piones en estado final de aquellas con un
número impar de kaones (S es una abreviatura de procesos con cambio de extrañeza).
Determinados canales (como KKπ) no pueden ser asociados a priori a corriente V
o A. En este caso, es especialmente importante un estudio como el que realizamos
para saber cuánto contribuye cada una a la anchura parcial de dicho canal.

La predicción teórica requiere las funciones de correlación de dos puntos de las
corrientes levógiras de quarks: Lµ

ij = ψ̄jγ
µ(1− γ5)ψi , (i, j = u, d, s):

Πµν
ij (q) ≡ i

∫
d4x eiqx 〈0|T (Lµ

ij(x)L
ν
ij(0)

†)|0〉 =
(
−gµνq2 + qµqν

)
Π

(1)
ij (q

2) + qµqν Π
(0)
ij (q2) .

(1.5)
Utilizando la propiedad de analiticidad, Rτ se puede escribir como una integral de
contorno en el plano de s compleja, donde el circuito se recorre en sentido antihorario
alrededor del ćırculo de radio |s| =M2

τ centrado en el origen:

Rτ = 6πi

∮

|s|=M2
τ

ds

M2
τ

(
1− s

M2
τ

)2 [(
1 + 2

s

M2
τ

)
Π(0+1)(s)− 2

s

M2
τ

Π(0)(s)

]
, (1.6)
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donde Π(J)(s) ≡ |Vud|2Π(J)
ud (s) + |Vus|2Π

(J)
us (s). En (1.6) sólo hace falta conocer

los correladores para s complejo ∼ M2
τ , que es notablemente mayor que la escala

asociada con efectos no perturbativos. Utilizando la expansión en producto de ope-
radores (Operator Product Expansion, OPE [70, 71, 72]) para evaluar la integral de
contorno, Rτ se puede escribir como una expansión en potencias de 1/M2

τ .
Aśı, la predicción teórica de Rτ,V+A se puede expresar como sigue [73]:

Rτ,V+A = NC |Vud|2 SEW (1 + δ′EW + δP + δNP ) , (1.7)

donde NC = 3 es el número de colores posibles de cada quark. SEW y δ′EW contienen
las correcciones electrodébiles conocidas a los órdenes dominante y subdominante en
la aproximación logaŕıtmica. Las correcciones no perturbativas puede demostrarse (y
comprobarse) que son pequeñas [73] . La corrección dominante ( ∼ 20% ) proviene
de la contribución de QCD puramente perturbativa, δP , que ya se conoce hasta
O (α4

S) [73, 74] e incluye una resumación de los efectos más relevantes a órdenes
superiores [30, 31, 32, 74, 75, 76, 77]. El resultado final [29, 78, 79, 80] resulta ser
extremadamente sensible al valor de αs(M

2
τ ) , y permite una determinación muy

fina del acoplamiento de QCD que -en el esquema MS- es [81] 3:

αs(M
2
τ ) = 0,342± 0,012 . (1.8)

Al usar las ecuaciones del grupo de renormalización (Renormalization Group
Equations, RGE) para hacer evolucionar este valor hasta la escala del Z [82] uno
encuentra que:

αs(M
2
Z) = 0,1213± 0,0014 , (1.9)

mientras que el valor obtenido en desintegraciones hadrónicas del bosón Z [8] es

αs(M
2
Z) = 0,1176± 0,0020 , (1.10)

por lo que hay acuerdo entre el valor extráıdo de desintegraciones hadrónicas de
taus y la medida directa realizada en el pico del Z, con mejor precisión incluso en el
primer caso. Esto proporciona una bella comprobación del cambio con la escala del
valor del acoplamiento de QCD, esto es, una comprobación experimental realmente
significativa de libertad asintótica.

Es pertinente un comentario respecto a la fiabilidad de los errores en el resultado
(1.8). Dicho estudio asume que se da la dualidad quark-hadrón [83]. Las violaciones
de ésta [84] y el error inducido en análisis que la utilizan -como la determinación
anterior de αS- ha sido un tema de investigación reactivado [85, 86, 87, 88, 89]
recientemente, después de que durante muchos años se ignorara sistemáticamente.
Aunque los últimos análisis abogan porque esta violación se haya subestimado, de
modo que los errores seŕıan mayores, lo cierto es que la cuestión no está clara todav́ıa
y se necesitará por un lado modelos más realistas (esencialmente se usa un único
modelo basado en resonancias y con menos frecuencia otro basado en instantones;

3Véase en esta referencia los trabajos utilizados en la determinación.
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ambos debidos a Shifman [84]) para parametrizar tales violaciones, y por otro datos
experimentales de mayor calidad para poder cuantificar este efecto con precisión.

La medida separada de las anchuras de desintegración de procesos con |∆S| = 0
y con |∆S| = 1 nos brinda la oportunidad de ser sensibles al efecto de ruptura de la
simetŕıa SU(3) de sabor inducida por la masa del quark extraño. Concretamente,
esto sucede a través de las diferencias

δRkl
τ =

Rkl
τ,V+A

|Vud|2
− Rkl

τ,S

|Vus|2
≈ 24

m2
s(M

2
τ )

M2
τ

∆kl(αS)− 48π2 δO4

M4
τ

Qkl(αS) , (1.11)

donde se ha introducido los momentos espectrales Rkl
τ :

Rkl
τ =

∫ M2
τ

0

ds

(
1− s

M2
τ

)k (
s

M2
τ

)l
dRτ

ds
. (1.12)

Las correcciones perturbativas ∆kl(αS) y Qkl(αS) se conocen a O(α3
S) y O(α2

S),
respectivamente [90, 91, 92] y δO4, proporcional a la ruptura de simetŕıa SU(3) -ya
que lo es a la diferencia entre el condensados de quarks s y u- está bien determinado
[93]. Aunque en un futuro, con datos de excepcional calidad, seŕıa posible determinar
tanto ms(Mτ ) como |Vus| simultáneamente analizando el conjunto de momentos
espectrales, en la determinación más reciente [94] se fija:

ms(2GeV) = 94± 6MeV , (1.13)

-obtenida con las últimas determinaciones de simulaciones en el ret́ıculo (lattice) y
utilizando reglas de suma de QCD- de modo que el momento con mayor sensibilidad
a |Vus|, con kl = 00, permite extraer [95]:

|Vus| = 0,2208± 0,0033exp ± 0,0009th = 0,2208± 0,0034 , (1.14)

que puede competir en precisión con la extracción estándar de |Vus| de desintegra-
ciones Ke3 [96] y con las nuevas propuestas realizadas para tal determinación. Más
aún, el error asociado a esta determinación de |Vus| se puede reducir en el futuro ya
que está dominado por la incertidumbre experimental que disminuirá notablemente
en años venideros gracias a los datos de factoŕıas de mesones B. Como se sugirió,
otra mejora realizable consistirá en el ajuste simultáneo de |Vus| y ms a un conjunto
de momentos de la distribución de masa invariante de las desintegraciones hadróni-
cas del tau, que proporcionará todav́ıa más precisión en la determinación de ambos
parámetros.

Hoy por hoy, todos los resultados experimentales sobre el leptón τ son consisten-
tes con el SM . Sin embargo, el análisis de datos ya recogidos en fábricas de mesones
B como BaBar y Belle -y futuros experimentos en esta última- o instalaciones de-
dicadas a la producción de τ − c como BES resultan prometedores para obtener
verificaciones cada vez más exigentes del SM y explorar la F́ısica más allá del mismo
4.

4En el caṕıtulo 5 se explica la importancia de las desintegraciones de taus para conocer el sector
escalar y para determinar la masa de un Higgs ligero.
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1.3. QCD: la teoŕıa de la interacción fuerte

A continuación introducimos brevemente QCD con el fin de explicar por qué es
a d́ıa de hoy imposible resolver problemas como los que nos planteamos de modo
anaĺıtico y completo.

Los experimentos de dispersión profundamente inelástica en SLAC [97, 98] per-
mitieron concluir que los protones no eran part́ıculas puntuales, sino que teńıan una
subestructura en términos de part́ıculas de carga eléctrica fraccionaria (quarks). A
pesar de que estos quarks hab́ıan sido predichos teóricamente al intentar encontrar
un esquema de clasificación de la gran cantidad de mesones observados durante los
’60 -primero [99, 100]- y al tratar de entender cómo se aplicaban las estad́ısticas
cuánticas a todas estas part́ıculas y en especial a los bariones de esṕın 3/2 -después
[101]-, no estaba clara su existencia más allá del ente matemático y todos los ex-
perimentos subsiguientes fallaron en su intento de aislar estos constituyentes como
part́ıculas libres. Las dos caracteŕısticas principales de la interacción fuerte se hab́ıan
manifestado: libertad asintótica a altas enerǵıas y confinamiento de los quarks en
hadrones a bajas enerǵıas.

Diversos estudios teóricos de teoŕıas gauge no abelianas [102, 103] demostraron
que el distinto comportamiento UV e IR de esta teoŕıa pod́ıa explicarse en base a
un álgebra no conmutativa. Más tarde, la evidencia de que el barión ∆++ exist́ıa
llevó a concluir que deb́ıa haber un número cuántico adicional -llamado de color- a
través de la conservación del teorema de Conexión Esṕın-Estad́ıstica, y motivó un
trabajo de la comunidad teórica que acabaŕıa dando como resultado la explicación
simultánea de todos estos fenómenos a través del cuadro presentado por Fritzsch,
Gell-Mann y Leutwyler [2], quienes identificaron SU(3) -donde 3 es el número de
colores diferentes que un quark puede tener- como el grupo de gauge base para la
construcción de la QCD. Es decir, la teoŕıa permanece invariante bajo transforma-
ciones locales del grupo SU(3) de color. Existe toda una serie de evidencias teóricas
y experimentales de que esto es aśı [104].

La simetŕıa gauge no-abeliana local SU(NC) para nf (número de sabores) campos
de materia de quarks 5 determina el Lagrangiano de QCD que directamente incorpo-
ra la interacción de éstos con los campos de gauge gluónicos y las autointeracciones
de estos gluones. El Lagrangiano de QCD es:

LQCD = q (iD/ −M) q − 1

4
Ga

µνG
µν
a + LGF+FP ,

Dµ = ∂µ − igsG
a
µ

λa
2
,

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν , (1.15)

donde a = 1, . . . , 8, Ga
µ son los campos de gluones y gs es la constante de acopla-

miento fuerte. El campo de quark q es un vector columna con nf componentes en

5El grupo de gauge fija el contenido en bosones -part́ıculas mediadoras- de la teoŕıa, pero no
aśı los campos de materia: su representación y número de copias es algo que debe inferirse de los
datos experimentales.
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espacio de sabor,M representa la matriz de masas de los quarks es espacio de sa-
bor y viene dada porM = diag

(
m1, . . . , mnf

)
, donde mi son las diferentes masas

de los quarks: mu, md, mc, ms, mt, mb para nf = 6 dentro del SM , parámetros
a cuyo valor la simetŕıa no impone ninguna restricción. Como vemos, la simetŕıa
gauge proh́ıbe que los gluones tengan masa y sus acoplos son iguales para todos los
sabores de quark. Las matrices λa

2
son los generadores de SU(3) en la representa-

ción fundamental y quedan normalizadas mediante Tr
(

λa

2
λb

2

)
= 1

2
δab y f

abc son las

constantes de estructura del grupo de gauge, SU(NC). Finalmente, el término de
Fadeev-Popov [105], LGF+FP , incluye el Lagrangiano anti-hermı́tico que introduce
los campos de fantasmas y el término que fija el gauge:

LGF = − 1

2ξ
(∂µGa

µ)(∂νG
ν
a) ,

LFP = −∂µφaD
µφa , Dµφa ≡ ∂µφa − gsf

abcφbG
µ
c , (1.16)

donde ξ es el llamado parámetro de gauge, y φ
a
(a = 1, . . . , N2

C-1) es un conjunto
de campos escalares, hermı́ticos, sin masa y que anticonmutan entre śı. La derivada
covariante, Dµφa, contiene el acoplamiento necesario entre campos de fantasmas y
gluónicos y LFP es obligatoriamente anti-hermı́tico para introducir una violación
expĺıcita de unitariedad que cancele las probabilidades no-f́ısicas correspondientes
a las polarizaciones longitudinales de los gluones y devolver aśı la propiedad fun-
damental de unitariedad a los observables f́ısicos que se obtiene finalmente. Una
explicación muy pedagógica sobre estos términos se puede encontrar en Ref. [104].
No discutimos aqúı el llamado término θ [106], invariante bajo SU(NC) y que viola
CP si no hay ningún quark sin masa. A d́ıa de hoy los experimentos más precisos
no indican ninguna violación de CP en procesos fuertes. Esta presunta violación se
manifestaŕıa, por ejemplo, en un momento dipolar eléctrico no nulo del neutrón. La
cota experimental [8] es nueve órdenes de magnitud inferior al valor natural teórico.

La evolución de la constante de acoplo con la enerǵıa está detrás de la propie-
dad de libertad asintótica y parece apuntar al confinamiento como una consecuencia
natural. El acoplamiento gs que aparece en el Lagrangiano de QCD (1.15) recibe
correcciones cuánticas [104] que, a primer orden en la expansión en el número de
lazos (loops), vienen dadas por los diagramas de la Figura 1.2.

gluons quarks

Figura 1.2: Diagramas de Feynman para la contribución a un lazo a la función βQCD.

La función βQCD se define a través del uso de las ecuaciones del grupo de renor-
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malización, (Renormalization Group Equations, RGE 6). A un lazo viene dada por
[113, 114, 115, 116, 117]:

βQCD = µ
∂gs
∂µ

= −
(
11− 2nf

3

)
g3s

16π2
, (1.17)

por consiguiente -a este orden en la expansión-, es negativo para nf ≤ 16. Las
RGE implican que el acoplamiento renormalizado vaŕıe con la escala de enerǵıas, el
llamado running coupling. Al ser βQCD ≤ 0, si resolvemos (1.17), esta desigualdad
comportará que el acoplamiento renormalizado, gRs , decrezca al aumentar la enerǵıa;
en otras palabras, llevará a la libertad asintótica de la interacción.

Hemos supuesto impĺıcitamente que el cálculo a un lazo nos da una aproximación
razonablemente buena, al menos cualitativamente. Cabe decir que, al hablar de
libertad asintótica es este el caso, valga recordar (1.8), (1.10). De hecho, los cálculos
a los órdenes subdominantes, NNNLO, [118, 119] apoyan este razonamiento.

Al integrar la ecuación (1.17) obtenemos que:

αs(q
2) =

12π

(33− 2nf ) log(q2/Λ2
QCD)

, (1.18)

donde se ha definido αs ≡ g2s/4π. Esta ecuación ilustra cómo el acoplamiento (re-
normalizado) fuerte depende únicamente de la escala caracteŕıstica de QCD, ΛQCD,
definida en función del valor acoplo renormalizado a una determinada escala de
renormalización, µ, y de µ mismo mediante:

log(Λ2
QCD) = logµ2 − 12π

αs(µ2)(33− 2nf )
. (1.19)

Las RGE y sus verificaciones experimentales -como por ejemplo el par de ecuacio-
nes (1.8), (1.10)- parecen estar en perfecto acuerdo con una interacción cuya carga
es el grado de libertad de color muy intensa a bajas enerǵıas (i.e. largas distan-
cias), lo que provocaŕıa el confinamiento. Una imagen intuitiva de este fenómeno es
sencilla: al separar dos cargas eléctricas, la intensidad de la interacción entre ellas
queda reducida (apantallada) por la creación de dipolos entre ambas. Este efecto
corresponde al término con −2nf en la ecuación (1.18). En el caso de las cargas de
color, el diferente comportamiento es debido al término con el 33 en dicha ecua-
ción. Las autointeracciones de gluones hacen que haya antiapantallamiento y llega
un momento en que no es posible seguir separando el par quark-antiquark ya que
es energéticamente más favorable crear un nuevo par. Salvando las diferencias y pa-
ra completar una analoǵıa intuitiva, se puede decir que seŕıa como sucede con los

6Las RGE [107, 108, 109, 110, 111, 112] se deducen al requerir que un observable no pueda
depender de la escala de renormalización escogida arbitrariamente y que la f́ısica sea invariante de
escala. Esto último conlleva que las funciones de Green tengan un comportamiento bien definido
bajo reescalado de los momentos que aparecen en ellas. Esto permite relacionar los valores de
las cantidades renormalizadas a enerǵıas distintas y también calcular las dimensiones anómalas,
que modifican la evolución con la enerǵıa deducida sólo con análisis dimensional debido a efectos
cuánticos.
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imanes. Al romper uno, siempre nos encontramos con un nuevo imán, con dos polos
opuestos. Es imposible aislar el monopolo magnético como lo es aislar una carga de
color.

De un modo algo más técnico, la fase confinante se define en términos del com-
portamiento de la acción del llamado lazo de Wilson (Wilson loop) [120], que corres-
ponde al camino descrito en cuatro dimensiones por un par quark-antiquark entre
sus puntos de creación y aniquilación. En una teoŕıa no confinante, la acción de
este lazo seŕıa proporcional a su peŕımetro. Sin embargo, en una teoŕıa confinante,
la acción del lazo iŕıa como el área. Como el peŕımetro de dos ĺıneas abiertas es
igual a la suma, mientras que el área se hace infinita, en la teoŕıa no confinante
seŕıa posible separar el par; mientras que en la confinante no lo seŕıa. Aunque los
lazos de Wilson fueron introducidos para tener una formulación no perturbativa de
la QCD y resolver el problema de confinamiento, esto no ha sido posible todav́ıa. Su
influencia -como la de tantas ideas surgidas intentando entender QCD- ha sido no
obstante muy grande, ya que condujeron a Polyakov [121] a la formulación moderna
de las teoŕıas de cuerdas (string theories).

A pesar de lo que se ha dicho existe un modo de acercarse experimentalmente
al confinamiento. Hasta ahora se ha considerado siempre teoŕıa de campos a tem-
peratura y densidad finitas. En el origen del Universo ambas fueron tan elevadas
que la simetŕıa quiral estaŕıa rota y los quarks y gluones no tendŕıan tiempo de ha-
dronizar debido a sus interacciones constantes. En experimentos con iones pesados
se está investigando este marco para intentar arrojar más luz sobre el problema de
confinamiento.

En resumen, las correcciones cuánticas provocan que la intensidad de la interac-
ción cambie con la enerǵıa. En el caso de QCD es muy intensa a bajas enerǵıas,
por lo que no podremos hacer una expansión perturbativa en potencias de la cons-
tante de acoplo y realizar cálculos útiles aśı, ya que no convergerán al no cumplirse
αS ≪ 1. Adicionalmente, y debido al confinamiento, habrá que encontrar el modo de
relacionar la teoŕıa fundamental con grados de libertad quark, antiquark y gluón con
los mesones producidos en las desintegraciones de taus. Veremos en los siguientes
apartados y caṕıtulos que la solución a ambos problemas viene de la mano, pues el
encontrar los grados de libertad adecuados nos permitirá entender cómo construir
un cálculo fiable.

1.4. Las Teoŕıas Cuánticas de Campos Efectivas

La Historia de la F́ısica es una historia de entendimiento de fenómenos cada
vez más numerosos y diversos. En muchos casos, la comprensión de los nuevos no
invalida la descripción de los antiguos, que se obtiene como un caso particular de
las nuevas teoŕıas, de mayor alcance. En ocasiones, la vieja teoŕıa puede verse como
una teoŕıa efectiva de la nueva en un determinado rango de aplicación de ésta.

Algunos ejemplos pueden resultar ilustrativos: a principios del S. XIX se teńıa
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una descripción correcta de la electrostática. Diversos experimentos debidos a Ørs-
ted, Ampère, Ohm y Faraday -entre otros- aumentaron el conjunto de fenómenos a
describir simultáneamente incluyendo la electrodinámica y el magnetismo con flujos
variables con el tiempo. El conjunto de todos ellos se pod́ıa explicar coherentemente
a través de las ecuaciones de Maxwell. En ellas se describ́ıa la naturaleza ondulatoria
de la luz, mostrándola como una onda electromagnética que se propagaba a una ve-
locidad, c, constante universal de la teoŕıa. En el ĺımite c→∞, se pierde la corriente
de desplazamiento de Maxwell. Por tanto, la teoŕıa antigua (ley de Ampère) se pod́ıa
ver como caso ĺımite de la moderna (ecuaciones de Maxwell) cuando se consideraba
un determinado parámetro pequeño (1/c). La ley de Ampère puede considerarse el
primer orden en la expansión en 1/c de la llamada ley de Ampère generalizada que se
obtiene de las ecuaciones de Maxwell. Es pues una teoŕıa efectiva de la primera. En
fenómenos estáticos, un tratamiento basado en las ecuaciones completas de Maxwell
es innecesario y bastan las ecuaciones de Coulomb o Ampère, obviamente.

La Mecánica Newtoniana es válida en gran número de sucesos de nuestra vida
diaria. Sin embargo no lo es en el mundo de lo extraordinariamente pequeño o de
lo enormemente veloz. La Mecánica Cuántica la generaliza en el primer caso y la
Relatividad Especial en el segundo. Una de las hipótesis fundamentales de la teoŕıa
cuántica es que la acción está cuantizada en múltiplos enteros de la constante de
Planck (~), lo que permite explicar el espectro de emisión de los cuerpos negros, por
ejemplo. El valor de esta constante es tan pequeño que en los sucesos macroscópicos
es irrelevante. Es por ello lógico que el ĺımite ~ → 0 de la teoŕıa cuántica nos de-
vuelva a la teoŕıa clásica que es aśı una teoŕıa efectiva de aquélla. Nadie recurriŕıa a
la Mecánica Cuántica para resolver un problema macroscópico salvo que fuera para
ilustrar una lección de introducción a la Cuántica.

Puede verse también que la electrodinámica clásica de Maxwell es la teoŕıa efec-
tiva de la electrodinámica cuántica en el ĺımite ~ → 0. La que desde un punto de
vista era antes teoŕıa fundamental, desde otro es efectiva de la siguiente fundamen-
tal. De nuevo parece innecesario resolver el problema de la trayectoria de un cuerpo
macroscópico cargado sometido a un campo electromagnético utilizando la teoŕıa
cuántica. Queda claro que las teoŕıas efectivas son más útiles (de ah́ı su otra posible
traducción como eficaces) que las fundamentales en los subsectores en que se apli-
can.

Salvo que trabajemos con una teoŕıa del todo nuestra teoŕıa será siempre efectiva,
y además mejor que lo sea. El adjetivo debe verse como algo positivo, ya que evi-
tamos complicar el problema innecesariamente y escogemos las variables adecuadas
para describirlo. Queda justificar que sea una teoŕıa cuántica de campos (Quantum
Field Theory, QFT ).

El método habitual de estudio de las QFTs se basa en el empleo de teoŕıa de
perturbaciones en potencias de la constante de acoplo, que debe ser pequeña para
que cada término contribuya menos que el anterior y podamos cortar nuestra ex-
pansión a un orden dado, debido a que la serie de perturbaciones no es sumable
exactamente. Tal expansión no tiene sentido en nuestro caso de las desintegraciones
hadrónicas del τ , por el valor de αS ∼ O(1) por lo que debemos buscar una v́ıa
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alternativa.
De todas formas, es conveniente no renunciar a las QFTs, ya que su formalismo

nos garantiza que los observables cumplan todos los requisitos de una teoŕıa cuántica
relativista (como debe ser la que describa nuestra f́ısica de part́ıculas): microcausa-
lidad (si dos puntos espacio-temporales están separados espacialmente cualesquiera
operadores definidos en ellos tienen relaciones de conmutación o anticonmutación
-según su estad́ıstica- triviales), unitariedad (la suma de probabilidades de todos los
sucesos posibles es la unidad), analiticidad (las funciones de los campos deben ser
complejo-diferenciables en el entorno de cada punto de su dominio), invariancia Poin-
caré (el grupo de simetŕıa de la Relatividad), teorema de conexión esṕın-estad́ıstica
(estad́ıstica de Fermi-Dirac para part́ıculas de esṕın semientero y de Bose-Einstein
para part́ıculas de esṕın entero) y descomposición en núcleos, clusters (asegura la
localidad de la teoŕıa, ya que regiones suficientemente separadas se comportan in-
dependientemente).

Convencidos ya de que las técnicas de las QFTs son altamente deseables hay
que reconocer que no son, por śı mismas, suficientes, ya que si uno se restringe a
estos principios tan generales necesitaŕıa much́ısima información experimental para
poder caracterizar una teoŕıa y aśı hacer predicciones. Según hemos visto antes, es
conveniente utilizar las EFTs. Aśı pues, será natural y adecuado emplear las teoŕıas
cuánticas de campos efectivas en nuestro problema.

Para formularlas necesitamos identificar los grados de libertad relevantes y el
parámetro de la expansión, lo que en general sucederá simultáneamente, como vere-
mos en las secciones siguientes. Habrá una escala t́ıpica, Λ, que separará los grados
de libertad activos de los pasivos. Se considerará en la acción las part́ıculas con
m ≪ Λ, mientras que se procederá a la integración funcional de la acción de las
variables pesadas con M ≫ Λ. Consideraremos las interacciones entre los estados
ligeros que organizaremos en serie de potencias en 1/Λ. Como m/Λ≪ 1 el efecto de
cada término sucesivo será menor que el del anterior y podremos cortar la expansión
a un orden dado. Además, tendremos control sobre el error cometido estimando la
contribución del primer término omitido a partir del parámetro de expansión y los
términos conocidos.

Finalizaremos esta sección con la formulación de las EFTs cuánticas à la Wein-
berg [3]: si -para unos grados de libertad dados- aplicamos teoŕıa de perturbaciones
con el Lagrangiano más general posible consistente con las simetŕıas asumidas de
la teoŕıa obtendremos los elementos de matriz S -y por tanto los observables que
de ella se derivan- más generales posibles consistentes con analiticidad, unitariedad
perturbativa, descomposición en núcleos y las simetŕıas asumidas.

Obsérvese que respecto a la formulación más general que antes se introdujo aqúı se
añade el comprometerse con una elección de grados de libertad y suponer unas si-
metŕıas de la teoŕıa subyacente, pero nada más. Esta aproximación se revisará más
tarde, pues quizá pueda ser deseable una aproximación más elaborada en la que se
incluya más contenido dinámico de la teoŕıa subyacente.
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1.5. Teoŕıa Quiral de Perturbaciones

Se acaba de poner de relieve el concepto de simetŕıa. Las simetŕıas han sido
siempre la clave para la comprensión de los fenómenos f́ısicos. Por un lado se expre-
san en términos del mayor rigor matemático y por otro permiten -en ciertos casos-
las aproximaciones, base de prácticamente cualquier cálculo realista.

Cuál será la simetŕıa que podremos emplear para construir nuestra teoŕıa efec-
tiva? La respuesta no es sencilla ni inmediata. Uno pensaŕıa en alguna propiedad
relacionada directamente con el grupo de gauge de la teoŕıa, con la propiedad de
color. Debido a la hadronización, las estructuras posibles con carga total de color
nula quedan inmediatamente fijadas por las reglas para el producto de representa-
ciones de la teoŕıa de grupos, ya que conocemos las representaciones de los campos
de gauge (adjunta) y hemos fijado las de materia (triplete y antitriplete para quarks
y antiquarks, respectivamente). En lo que nos ocupa comprobamos que los mesones
cumplen esta condición, pero no obtenemos nada útil para desarrollar nuestra teoŕıa
efectiva. De hecho, asumiendo confinamiento, observamos que dejar libre NC es la
única posibilidad que nos queda, la trataremos en el siguiente apartado.

No será pues una simetŕıa gauge local la que nos permita construir la teoŕıa efec-
tiva. Veamos qué simetŕıas globales tiene la interacción fuerte. Pensemos en primer
lugar que en los procesos examinados en esta Tesis vamos a producir los mesones
más ligeros: piones, kaones y etas. Es intuitivo que los quarks más pesados no serán
activos. Examinemos por tanto el Lagrangiano de QCD únicamente para los sabores
ligeros: u, d, s, nf = 3 en (1.15). Si en primera aproximación despreciamos las masas
de estos quarks mu ∼ md ∼ ms ∼ 0, el Lagrangiano de QCD es invariante bajo
transformaciones separadas de las componentes dextrógira y levógira de los quarks,
transformaciones globales del grupo G ≡ SU(nf )L ⊗ SU(nf )R, el llamado grupo de
simetŕıa quiral.

Sabemos que las simetŕıas locales determinan la interacción -como en (1.15)-.
Para las simetŕıas globales hay dos posibilidades: Si tanto el Lagrangiano como el
vaćıo son invariantes bajo el grupo de transformaciones G entonces la simetŕıa se
manifiesta en el espectro de part́ıculas. Sin embargo, si aunque el Lagrangiano sea
invariante bajo transformaciones pertenecientes a G el vaćıo de la teoŕıa no lo es,
entonces el espectro reflejará las simetŕıas de un cierto subgrupo H del grupo G,
donde tanto el Lagrangiano como el vaćıo serán simétricos bajo transformaciones
de H , pero sólo el Lagrangiano será invariante bajo todo el grupo G. Se habla en
este caso de que ha habido ruptura espontánea de la simetŕıa G → H . Sabemos
además que tendremos tantas part́ıculas de masa nula (bosones de Goldstone [122])
como generadores rotos. Es decir, el número de bosones de Goldstone será igual a
la diferencia entre el número de generadores de G y de H .

Si recurrimos a la fenomenoloǵıa observamos que los mesones más ligeros se pue-
den clasificar en multipletes (nf = 3) de igual esṕın (J) y paridad intŕınseca (P ),
lo que corresponde a las representaciones de SU(3)V . También vemos que los mul-
tipletes con paridad opuesta no tienen la misma masa: el multiplete de vectores
(JP = 1−) es más ligero que el de axial-vectores (1+). Y el de mesones pseudoes-
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calares (0−) es mucho más ligero que el de escalares (0+) o que las part́ıculas de
esṕın 1 7. En el caṕıtulo 3 se muestra cómo estas observaciones conducen a concluir
que el patrón de ruptura espontánea de simetŕıa es SU(3)L⊗SU(3)R → SU(3)V . El
número de generadores rotos es n2

f−1 = 8, que seŕıa el número de bosones de Golds-
tone que debeŕıamos observar. En realidad, como las masas de los quarks ligeros son
pequeñas comparadas con el parámetro t́ıpico de hadronización, ΛχSB ∼ 1GeV, pero
no nulas, se tiene junto a la ruptura espontánea de la simetŕıa quiral una ruptura
expĺıcita de la misma por ser ml 6= 0, ml = mu, md, ms. Por este motivo observamos
8 part́ıculas con masa pequeña pero no nula a las que llamamos pseudo-bosones de
Goldstone (en razón a su origen en la ruptura espontánea de la simetŕıa y a su masa
en la ruptura expĺıcita de la misma). Éstos son los piones, kaones y etas detectados
en nuestras desintegraciones de taus: π±, π0, η,K±, K0, K̄0.

Ahora que ya tenemos la simetŕıa y los grados de libertad debemos preocuparnos
de construir el Lagrangiano efectivo que los incluya adecuadamente. El teorema de
Weinberg nos asegura que una vez hecho esto, el tratamiento perturbativo del mismo
nos conducirá a los elementos de matriz S más generales posibles en un tratamiento
consistente. El formalismo que permite construir Lagrangianos efectivos en base a
grupos de simetŕıa con ruptura espontánea de la misma se debe a Callan, Coleman,
Wess y Zumino [123, 124]. Su aplicación a QCD a bajas enerǵıas nos permitirá es-
cribir una EFT que describa la interacción de estos pseudo-bosones de Goldstone.
Además, como hay un intervalo de enerǵıa razonable entre estas part́ıculas y las
siguientes más pesadas, el efectos de estos modos pesados será pequeño y permi-
tirá construir una teoŕıa efectiva que contenga sólo estos modos, la Teoŕıa Quiral de
Perturbaciones, χPT [4, 5].
Veremos más adelante que esta teoŕıa presenta un parámetro de expansión natural
en el cociente entre las masas o momentos de los pseudo-bosones de Golstones sobre
la escala ΛχSB, que será bastante menor que la unidad. Hemos resuelto por tanto to-
dos los problemas que nos planteábamos: χPT es una EFT construida en base a las
simetŕıas de QCD en cierto subsector de la misma (el de sabores ligeros en procesos
a baja enerǵıa donde sólo se producen pseudo-bosones de Goldstone y la simetŕıa
quiral de QCD es una buena aproximación) y con un parámetro de expansión que
permite desarrollar teoŕıa de perturbaciones. Ahora bien, debido al valor de la masa
del tau, entorno a 1,8 GeV, las resonancias podrán ser grados de libertad activos
en algunas regiones del espectro de desintegración, por lo que deberemos extender
χPT a enerǵıas superiores e incluir nuevos grados de libertad. Desafortunadamente,
en este caso será mucho más complicado cumplimentar los pasos anteriores de cara
a la construcción de la teoŕıa, como ahora veremos.

7Llamaremos genéricamente resonancias a todas estas part́ıculas que contienen sabores ligeros
más pesadas que el multiplete más ligero de part́ıculas 0−.
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1.6. El ĺımite de gran número de colores de QCD

Al incorporar part́ıculas más pesadas se rompe el contaje de la teoŕıa, ya que
las masas y momentos de estos nuevos grados de libertad son del mismo orden o
superior a ΛχSB, de modo que su cociente ya no es un buen parámetro de expansión
de la teoŕıa. Se añade otra dificultad: ya no existe un intervalo grande y bien definido
de enerǵıas que separe las part́ıculas que serán grados de libertad activos de nuestra
teoŕıa de las que serán integradas de la acción por no serlo. Veremos que una solución
a ambos problemas puede venir de considerar el ĺımite de gran número de colores de
QCD [125, 126, 127]. En cualquier caso, hay que destacar que contrariamente a lo
que sucede en el sector de muy bajas enerǵıas con χPT no se conoce cómo construir
una EFT dual a QCD en el régimen de enerǵıas intermedias. El ĺımite NC → ∞
es una herramienta que permitirá entender qué contribuciones son más importantes
-de todas las permitidas por las simetŕıas- en nuestro Lagrangiano.

’t Hooft sugirió considerar el ĺımite de QCD cuando el número de colores posibles
del grupo de gauge tend́ıa a infinito [125]. Su motivación era conseguir una teoŕıa
más simple que guardara semejanza con la original y de la que se pudiera deducir
propiedades cualitativas -y con suerte cuantitativas- de la subyacente. En el ĺımite
de gran NC QCD es exactamente soluble en dos dimensiones [126], pero no en las
cuatro habituales. Sin embargo, si asumimos que la teoŕıa es confinante se pueden
derivar toda una serie de caracteŕısticas experimentales de QCD, lo que sugiere que
esta construcción es una buena aproximación a la naturaleza. Entre ellas adelanta-
mos por el momento que:
- En el ĺımite estricto NC →∞ los mesones son libres, estables (no se desintegran)
y no interaccionan entre ellos. Las masas de los mesones tienen ĺımites suaves y
hay infinidad de ellos: toda una torre de excitaciones por cada conjunto de números
cuánticos.
- A primer orden en la expansión en 1/NC la dinámica de los mesones queda descri-
ta por diagramas a orden árbol obtenidos con un Lagrangiano efectivo local cuyos
grados de libertad son mesones, tal y como se ha considerado antes en el enfoque de
las EFTs à la Weinberg de χPT .

Llegados a este punto uno observa que hay una cierta contradicción interna en-
tre la construcción de EFTs à la Weinberg y la expansión en 1/NC de QCD que
habrá que resolver de algún modo: por un lado el enfoque à la Weinberg nos di-
ce que definamos el contenido de part́ıculas y las simetŕıas y luego construyamos
el Lagrangiano más general posible consistente con las simetŕıas asumidas de la
teoŕıa garantizando que obtendremos a través de una aproximación perturbativa los
resultados más generales compatibles con propiedades generales de la QFT y las
simetŕıas de partida. El problema es que al introducir resonancias el parámetro de
expansión que nos funcionaba en χPT deja de hacerlo.

Por otra parte, cuando pensamos que el ĺımite de gran número de colores de QCD
puede servirnos para organizar una expansión en 1/NC que nos saque del atolladero
observamos que contradice las ideas enunciadas en el anterior párrafo, ya que una
de sus conclusiones a primer orden es que no podemos fijar a priori el contenido
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de part́ıculas de la EFT , por consistencia de la expansión habrá infinitas copias de
cada tipo de resonancia.

Es por ello que tenemos dos posibilidades:
- O bien olvidamos el requisito de la formulación à la Weinberg de hacer una elección
de grados de libertad adecuada al rango de enerǵıas en que sucede nuestro proceso
y por tanto a los grados de libertad activos e incluimos el espectro necesario que
pide el ĺımite NC →∞.
- O bien incluimos el espectro fenomenológico y nos desviamos del contaje en 1/NC.

Se podŕıa pensar que incorporando los efectos subdominantes en 1/NC podremos
llegar al espectro medido. Esta idea no se puede concretar por el momento debido
a la naturaleza de la expansión en 1/NC de QCD. Si bien a un orden en αS hay un
número determinado de diagramas, y éstos se pueden calcular y sus efectos resumar,
no sucede lo mismo en 1/NC: en cada orden intervienen infinitos diagramas, y na-
die ha sido todav́ıa capaz de idear algún mecanismo que nos permita estudiar esta
cuestión. En el marco de las teoŕıas efectivas basadas en esta expansión śı existen
estudios a orden subdominante en 1/NC, como veremos.

Adicionalmente, cabe recordar que el enfoque à la Weinberg no incluye ningún
tipo de información dinámica sobre la teoŕıa subyacente: es el precio a pagar por
su generalidad. En nuestro caso veremos que una teoŕıa con grados de libertad
pseudo-bosones de Goldstone y resonancias, que respeta la simetŕıas de QCD a ba-
jas enerǵıas, y por tanto reproduce χPT a bajos momentos, y basada en el ĺımite
NC → ∞ no es compatible con el comportamiento conocido de QCD a altas ener-
ǵıas. Como nuestra teoŕıa debe funcionar hasta E ∼ 2 GeV y a esas enerǵıas la QCD
perturbativa ya es fiable, esto no debe suceder. Aśı pues la teoŕıa que necesitamos
precisará de la adición de información dinámica de QCD -lo que permitirá que en-
lace los reǵımenes quiral y perturbativo en el sector mesónico de sabores ligeros-
y de, o bien renunciar a la elección de estados f́ısicos como grados de libertad, o
bien modelizar la expansión en 1/NC . Éstas son las cuestiones que se discute en el
siguiente apartado.

1.7. La Teoŕıa Quiral de Resonancias

La Teoŕıa Quiral de Resonancias, RχT [6, 7], incluye los pseudo-bosones de
Goldstone y las resonancias como grados de libertad activos de la teoŕıa y requiere
las propiedades generales de las QFTs y la invariancia bajo C y P de QCD. Sus
caracteŕısticas fundamentales se tratan a continuación.

El ĺımite a bajas enerǵıas de RχT debe ser χPT . Esta propiedad se ha utilizado
para predecir sistemáticamente las LECs de χPT en términos de las masas y aco-
plamientos de las resonancias al integrar éstas de la acción, a los órdenes quirales
O (p4) [6] y O (p6) [128] en el sector de paridad intŕınseca positiva, con NC →∞ y
exigiendo el comportamiento dictado por QCD a altas enerǵıas.

El Lagrangiano de χPT incluye el octete de pseudo-bosones de Goldstone. En
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su extensión, el de RχT incorpora a las resonancias como grados de libertad, que
se incluyen en nonetes debido a que octetes y singletes de un grupo SU(NC = 3)
se funden en un nonete para NC → ∞. El Lagrangiano de χPT se construye en
base a la simetŕıa quiral aproximada de QCD sin masas. Después se incorporan
las rupturas espontánea y expĺıcita de la simetŕıa del mismo modo que sucede en
QCD. Los nonetes de resonancias se añaden exigiendo las propiedades generales e
invariancias bajo C y P y la estructura de los operadores viene dada por simetŕıa
quiral. A primer orden en la expansión en 1/NC los términos con más de una traza y
los lazos están suprimidos. La primera propiedad permite postergar ciertos términos
permitidos por las simetŕıas del Lagrangiano y la segunda justifica su uso a nivel
árbol como se explicó antes.

Según ya se dijo la teoŕıa determinada por las simetŕıas no posee algunas propie-
dades conocidas de QCD a altas enerǵıas. Por ello se debe proceder al empalme con
QCD asintótica a nivel de funciones de Green y/o factores de forma. La aplicación
de estas propiedades determina una serie de relaciones entre los acoplamientos de la
teoŕıa que permiten que con un menor número de datos experimentales de partida
la teoŕıa sea capaz de predecir otras. En concreto en esta Tesis obtenemos relaciones
de este tipo sobre los factores de forma en dos tipos de procesos que confrontare-
mos a las halladas en funciones de Green de dos y tres puntos donde intervienen
los mismos acoplamientos 8. El buen comportamiento ultravioleta proh́ıbe términos
con muchas derivadas, lo que nos ayuda a delimitar el número de operadores que
intervienen en el Lagrangiano ya que el contaje que a tal efecto serv́ıa en χPT ahora
está roto. La situación no es tan sencilla, como se comentará después, pues condi-
ciones de consistencia pueden requerir introducir operadores con más derivadas y
con alguna relación no trivial entre sus acoplos. En general, no se incluye términos
con un número excesivo de derivadas ya que se precisaŕıan relaciones ajustadas muy
finamente (fine tuning) para asegurar las cancelaciones necesarias a altos momen-
tos. En muchos casos no es sino el éxito fenomenológico la comprobación de que la
construcción seguida es adecuada.

Respecto a la inconsistencia entre la aproximación à la Weinberg y el ĺımite es-
tricto NC → ∞ debemos decir que no se conoce ningún modo de implementar la
torre infinita de resonancias sin modelización. Por tanto, parece razonable comenzar
estudiando procesos sencillos con el menor número de grados de libertad posible in-
volucrados. A medida que se tenga mayor control de la teoŕıa en esta aproximación
será posible ir incluyendo más estados del espectro de resonancias. Esta aproxima-
ción no es sólo práctica desde el punto de vista de ir estimando progresivamente
los distintos coeficientes de la teoŕıa, sino que es la base de la buena descripción
f́ısica, siempre en términos del menor número posible de parámetros compatible con
la información experimental. El mayor grado de precisión progresivo de ésta aca-
bará exigiéndonos una descripción más elaborada, pero mientras no sea preciso no
será deseable tampoco.

Finalmente, nuestro estudio fenomenológico no puede evitar introducir algunas

8No existen cálculos en RχT de funciones de Green de cuatro puntos, cuyas relaciones de
comportamiento asintótico pudiéramos confrontar a las de las desintegraciones hadrónicas del tau.
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propiedades que resultan ser efectos al orden siguiente en el desarrollo en 1/NC . En
el intervalo de enerǵıas en que se desintegran los taus las resonancias alcanzan su
capa másica y además tienen un comportamiento resonante debido a su anchura
t́ıpicamente menor que su masa. Las anchuras son un efecto a orden subdominante
que incluiremos de modo consistente en RχT , como veremos.

1.8. Organización de la Tesis

Como se ha dicho, nuestro estudio adopta el enfoque de las EFTs. Se realiza
por tanto una introducción a sus fundamentos en el Caṕıtulo 3. Tres son los pila-
res teóricos de nuestro trabajo: por un lado el asegurar el ĺımite correcto a bajas
enerǵıas, dictado por χPT . Por otro, el ĺımite de gran número de colores (NC) de
QCD aplicado a teoŕıas efectivas con grados de libertad hadrónicos, en nuestro caso
RχT . Y finalmente, el garantizar un comportamiento acorde al dictado por QCD
a altas enerǵıas para los distintos factores de forma. La primera y la segunda cues-
tión son abordadas en los Caṕıtulos 3 y 4, respectivamente, mientras que la tercera
se introduce en la Sección 4.5 y se pone en práctica en cada aplicación particu-
lar de la teoŕıa en los siguientes caṕıtulos, a los que precede un breve resumen de
los estudios teóricos más significativos y un repaso de las caracteŕısticas esenciales
de las desintegraciones hadrónicas exclusivas del tau (caṕıtulo 5). Las aplicaciones
consideradas son: las desintegraciones hadrónicas con tres piones (caṕıtulo 6) y con
dos kaones y un pión (Caṕıtulo 7). También se incluyen las desintegraciones con
mesones η (caṕıtulo 8) y las desintegraciones radiativas del tau con un único mesón
τ → P− γ ντ , donde P = π, K, en el Caṕıtulo 9 . Con todas ellas mejoramos ex-
cepcionalmente el control de los parámetros del Lagrangiano de resonancias que
participa en los procesos señalados, tanto en la corriente vectorial como en la axial-
vector y, por tanto, conocemos mejor cómo describir de un modo teóricamente sólido
basado en las EFTs y las simetŕıas de QCD estas desintegraciones del τ . Podremos
explotar estas adquisiciones en un futuro, aplicándolas a procesos más complejos.
La Tesis acaba con las conclusiones generales del trabajo realizado.



Caṕıtulo 2

Introduction

2.1. General introduction to the problem

This Thesis studies those decays of the τ lepton including mesons among the
final state particles, that are called, for this reason, hadron or semileptonic decays.
Contrary to what happens to the other leptons (electron, e− and muon, µ−) its
mass (Mτ ∼ 1,8 GeV) is large enough to allow this kind of decays including light
mesons (pions -π-, kaons -K- and etas -η, η′-). These processes include, in addition,
the corresponding tau neutrino, ντ , and may include (in the so-called radiative pro-
cesses) multiple photons, γ. Although it is kinematically possible to produce other
light mesons whose masses are lighter than Mτ , the characteristic lifetime of these
particles (resonances) is way too short to allow their detection. Notwithstanding, as
we will see, the effect of their exchange is important in order to understand these
decays. Although Mτ ∼ 2Mp, where Mp is the proton mass, since it is a bit sma-
ller actually (Mτ = 1, 777 GeV and 2Mp = 1, 876 GeV) and to the conservation of
baryon number (that would require producing them in baryon-antibaryon pairs, the
lighter being proton-antiproton) τ decays into baryons are forbidden.

Purely leptonic decays of the τ are processes mediated by the electroweak interac-
tion, that today is adequately described in the framework of the Standard Model of
Particle Physics (SM) [1]. In hadron decays of the tau, the strong interactions acts,
additionally. Although it is common lore that Quantum Chromodynamics, QCD is
the theory [2] that describes it, we are not yet able to solve the problem at hand
using only the QCD Lagrangian, as we will explain.

Both difficulties mentioned above -the fact that the resonances are not asym-
ptotic states, so that it is not possible to detect them, and our current inability
to solve QCD to find a solution to the problem- are telling us how interesting can
the semileptonic tau decays be: the provide a clean environment where to study the
strong interaction at low and intermediate energies, because the electroweak part
of the process is clean and under theoretical control; on the other side, given the
range of energies the hadron system can span (essentially from the threshold for
pion production, π ∼ 0,14 GeV, to Mτ ), the lightest resonances can be exchanged
on-mass-shell (or simply on-shell, in what follows), in such a way that their effects
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are sizable and one can thus study their properties.
The strong interaction was discovered in the classic Rutherford’s experiment, pro-

ving the existence of the atomic nucleus: it was a force of amazing strength and very
short range. Soon after, this force started to be studied in scattering experiments
between hadrons -as the particles experiencing strong interactions are called- (they
were believed to be elementary then) instead of atomic nuclei. The large number of
hadrons that was discovered in the ’50s and ’60s with the advent of the first par-
ticle accelerators suggested that these particles were not fundamental, analogously
to what happened with the chemical elements, in the end constituted by protons
and neutrons tighten in their nuclei. In order to complete the analogy, the syste-
matics attached to the hadron properties (in this context intimately related to the
quantum numbers and specifically to the approximate flavour symmetries) helped
to understand their substructure and Gell-Mann comprehended that hadrons had
to be constituted by the so-called quarks, possessing an additional quantum number
-christened as color- that solved all problems of adequacy of the observed spin and
the quantum statistics obeyed by the particles.

However, whereas it is possible to unbind protons or neutrons from the nucleus
-either through natural radioactivity or artificially- it has been impossible so far to
free any constituent quark from the hadron to which it belongs. This property is
known as confinement and, though there are theoretical reasons pointing to this phe-
nomenon there is not yet any explanation of it. This fact imposes a difficulty when
understanding the processes mediated by strong interaction: while it is produced
between quarks and gluons (the intermediary QCD bosons, that also autointeract),
our detectors are recording only (in this context) hadron events, since quarks, an-
tiquarks and gluons cluster immediately after they are produced into objects with
vanishing total color charge: they hadronize. Contrary to the remaining known for-
ces (electromagnetic, weak and gravitational), in QCD the force does not diminish
as the distance increases, but just the opposite -even though its range is very short-.

Although we will dwell into this later on, let it be enough for the moment saying
that even though QCD is the theory of strong interactions, we can not handle it
in its non-perturbative regime and, therefore, computationally, its Lagrangian only
allows to tackle analytically inclusive processes at high energies (E > 2 GeV typi-
cally) where a treatment in terms of quarks, antiquarks and gluons is meaningful.
At the lower energies where our problem occurs we must search an alternative way.
As it uses to happen in Physics, an appropriate choice of the degrees of freedom
simplifies (or even allows) the solution. In our study of several exclusive tau decay
channels it is evident that they will be the lighter mesons and resonances. The most
convenient and rigorous way to do it is the use of Effective Field Theories (EFTs),
that preserve the symmetries of the fundamental theory and are written in terms
of the relevant degrees of freedom in a given energy range. As τ decays typically
happen in an energy scale densely populated by resonances, it would not be enough
to employ Chiral Perturbation Theory (χPT ) [3, 4, 5] that includes only the ligh-
test pseudoescalar mesons (π, K, η). Instead, it will be necessary to incorporate
the resonances as active degrees of freedom to extend the theory to higher energies:
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Resonance Chiral Theory (RχT ) [6, 7] is the tool allowing these developments.
In the remainder of the Introduction we will elaborate in greater detail on the

relevant aspects of tau Physics that are not treated in later chapters and on QCD
and our limitations when implementing its solutions in Hadron Physics at low and
intermediate energies. After that, we will summarize some of the capital ideas un-
derlying our theoretical framework concerning EFTs, Chiral Perturbation Theory,
the large number of colours limit of QCD and Resonance Chiral Theory itself. We
will finish by enumerating the different chapters of this Thesis.

2.2. τ Physics

We begin with a short introduction to tau physics that will allow us to con-
textualize adequately this work: The τ lepton is a member of the third generation
which decays into particles belonging to the first two and including light flavours, in
addition to its neutrino, ντ . This is the reason why tau physics could give us useful
hints in order to understand why there are (at least three) lepton and quark copies
that only differ by their masses [8] (Table 2.1):

Generation quarks mq leptons ml

1 d 3,5↔ 6,0 MeV e− ∼ 0,5110 MeV

u 1,5↔ 3,3 MeV νe < 2 eV

2 s 70↔ 130 MeV µ− ∼ 105,7 MeV

c 1,16↔ 1,34 GeV νµ < 0,19 MeV

3 b 4,13↔ 4,37 GeV τ− ∼ 1,777 GeV

t 169↔ 175 GeV ντ < 18,2 MeV

Cuadro 2.1: Matter content of the SM . Quark masses correspond to the MS scheme with
renormalization scale µ = mq for heavy quarks (c, b) and µ = 2 GeV for light quarks. For
the latter the given value of mq is an estimate for the so-called current quark mass. In the
case of the t quark it comes from averaging Tevatron measurement but it does not include
the recent global fit by TEV EWWG, see [8]. Neutrino masses are the so-called “effective

masses“: m2 eff
νk =

∑
i |Uki|2m2

νi . However, cosmological data allows to set a much lower
bound [9]

∑
k(mνk) < 0,67 eV.

It seems reasonable that the heavier fermions will be more sensitive to the genera-
tion of fermion masses. Being the top quark too heavy to hadronize before decaying,
b quark and τ lepton physics seems promising in this respect. Although the value of
Mτ does not allow for decays into charmed mesons (containing a c quark), the τ is
the only lepton massive enough to decay into hadrons and thus relate somehow the
(light) quark and lepton sectors.
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The group led by M. L. Perl [10] discovered the τ in 1975. This constituted the
first experimental evidence in favor of the existence of third generation particles and,
consequently, the first indication that it was possible to accommodate CP violation
within the SM [11], that had already been observed [12] in the neutral kaon system,
through the Cabibbo, Kobayashi and Maskawa [11, 13] mixing matrix. Anyhow,
this explanation is not enough to understand the enormous observed abundance of
matter over antimatter in our Universe [9, 14, 15], which represents one of the indi-
cations for the existence of some type of new physics beyond the SM 1. τ quantum
numbers were established [20] almost simultaneously to the discovery of the next
particle of its generation, the b quark [21]. The heaviest particle known so far, the
top quark, was not detected until 1995 [22, 23].

In the following, I will summarize briefly the Physics one can learn from τ decays
[24, 25, 26, 27, 28, 29].

First of all, these decays allow to verify the universality of electroweak currents,
both neutral and charged. Within the SM , the easiest lepton τ decays are described
by the following partial width [30, 31, 32]:

Γ(τ− → ντ l
− νl) =

G2
F M

5
τ

192 π3
f

(
m2

l

M2
τ

)
rEW , (2.1)

where f(x) = 1−8x+8x3−x4−12x2logx and rEW includes the electroweak radiative
corrections not incorporated in the Fermi constant, GF , and the non-local structure
of the W propagator, rEW ∼ 0,9960. Therefore, the ratio

B(τ → e)

B(τ → µ)
=

f
(

m2
e

M2
τ

)

f
(

m2
µ

M2
τ

) (2.2)

is fixed and allows to verify the universality of the charged electroweak currents. The
resulting restrictions are rather strong: ∼ 0,20% for the e/µ ratio and ∼ 0,22% for
the ratios including the τ . The associated errors come from the current indetermina-
tion of ∼ 0,3 MeV in Mτ . This uncertainty is even larger [33, 34] in the ratio among
the branching ratio, BR, to leptons and the tau lifetime -that is fixed using the value
for the Fermi constant extracted from the µ decay- (it appeared to the fifth power
in Eq. (2.1)), that will be improved substantially in BES − III and KEDR soon
[35]. KEDR foresees to reach a total error of 0,15 MeV and BES−III of only 0,10
MeV. We will not discuss here another interesting issue as it is the determination of
the τ mass close to its production threshold [35].

In the SM , all leptons with the same electric charge have identical couplings
to the Z boson. This has been verified at LEP and SLC for years. The precision
reached for the neutral current axial-vector couplings (ai) is even better than for the

1The recent experimental results concerning the ratio of matter and antimatter galactic and
extragalactic fluxes [16, 17, 18, 19] do not have -for the moment- an explanation universally accep-
ted.



2.2 τ Physics 25

vectors (vi) [36]:

aµ
ae

= 1,0001(14),
vµ
ve

= 0,981(82);
aτ
ae

= 1,0019(15),
vτ
ve

= 0,964(32).

(2.3)
From τ− → ντ l

− νl it was also obtained an upper limit for the standard and non-
standard couplings [37, 38, 39, 40, 41, 42] between left/right-handed (L/R) fermion
currents: RR, LR , RL, LL; scalars, vectors and tensors (S, V , T ). It is remarkable
that the current limits do not allow to conclude that the transition is of the predic-
ted type: V − A [43]. Both these bounds and those on the ’Michel parameters ’ [37]
2 will improve sizably in BES − III [35, 44].

In the minimal SM with massless neutrinos, there is an additive lepton number
that is conserved separately for each generation (the so-called lepton flavour num-
ber). Notwithstanding, and after the evidence of the neutrino oscillation νµ → νe
announced by LSND [45, 46], the confirmation through the oscillation measure-
ments published by SNO [47, 48] and Super-Kamiokande [49, 50] discards the for-
mer hypothesis of the minimal SM . There is therefore no doubt that this generation
quantum number conservation is violated in processes involving neutrinos. Though
the most natural thing would be that this also happens in processes with e, µ, τ ,
all current data are consistent with that conservation law in this lepton subsector.
Despite the limits on lepton flavour violation coming from τ decays are improving
every day (br ≤ 10−7) [51, 52, 53, 54, 55, 56, 57, 59, 58, 60, 61, 62, 63, 64, 65, 66] ,
they are still far than the existing limits in µ decays with analogous violation [25].
FERMILAB in Chicago became a fundamental tool in the discovery of the ot-

her members of the third generation. There, the b quark was discovered in 1977,
the top quark in 1994-5 (with the help of the valuable LEP prophecy, as I will
explain) and, finally, the DONUT experiment [67] succeeded in the discovery of
the remaining particle, the tau neutrino, in 2000. In fact, the best direct limits
on the neutrino mass, mντ , come from hadron τ decays [68]: τ− → ντ X

−, where
X− = (π π π)−, (2K π)−, (5π)−. Although -as it was already written- they are clearly
superseded by the bounds coming from cosmological observations, our study might
be able to improve the direct limits.

Besides, semileptonic τ decays are the ideal benchmark to study strong interaction
effects in very clean conditions, since the electroweak part of the decay is controlled
theoretically -to much more precision than the hadron uncertainties even taking the
LO contribution- and it does not get polluted by the hadronization that the process
involves. These decays probe the hadron matrix element of the left-handed charged
current between the QCD vacuum and the final state hadrons, as it is represented
in Figure 1.1. We will devote more attention to this topic, central in the Thesis,
throughout the work.

A direct test of QCD [69] can be made through the ratio

Rτ ≡
Γ(τ− → ντ hadrones (γ))

Γ(τ− → ντ e− νe (γ))
= Rτ,V + Rτ,A + Rτ,S , (2.4)

2These parameters describe the phase-space distribution in the µ and τ lepton decays.
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that splits the contributions from vector (V ) and axial-vector (A) currents corres-
ponding to an even/odd number of final-state pions from those with an odd number
of kaons (S is short for strangeness changing processes). Given channels (like KKπ)
can not be associated a priori to V or A current. In this case, it is specially impor-
tant to consider a study as ours in order to know the relative contributions of each
one to the partial width of that channel.

The theoretical prediction requires the appropriate two-point correlation fun-
ctions of left-handed (LH) quark currents: Lµ

ij = ψ̄jγ
µ(1− γ5)ψi , (i, j = u, d, s):

Πµν
ij (q) ≡ i

∫
d4x eiqx 〈0|T (Lµ

ij(x)L
ν
ij(0)

†)|0〉 =
(
−gµνq2 + qµqν

)
Π

(1)
ij (q

2) + qµqν Π
(0)
ij (q2) .

(2.5)
Using the property of analyticity, Rτ can be written as a contour integral in the
complex s-plane, where the circuit is followed counterclockwise around a circle of
radius |s| =M2

τ centered at the origin:

Rτ = 6πi

∮

|s|=M2
τ

ds

M2
τ

(
1− s

M2
τ

)2 [(
1 + 2

s

M2
τ

)
Π(0+1)(s)− 2

s

M2
τ

Π(0)(s)

]
, (2.6)

where Π(J)(s) ≡ |Vud|2Π(J)
ud (s) + |Vus|2Π

(J)
us (s). In (2.6) one needs to know the

correlators for complex s ∼ M2
τ only, that is larger than the scale associated to

non-perturbative effects. Using the Operator Product Expansion, OPE [70, 71, 72])
to evaluate the contour integral, Rτ can be written as an expansion in powers of
1/M2

τ .
Therefore, the theoretical prediction of Rτ,V+A can be written as follows [73]:

Rτ,V+A = NC |Vud|2 SEW (1 + δ′EW + δP + δNP ) , (2.7)

where NC = 3 is the number of colours. SEW and δ′EW contain the known electro-
weak corrections to leading and subleading orders in the logarithmic approximation.
One can show and check that the non-perturbative corrections are small [73]. The
leading correction (∼ 20%) comes from the purely perturbative QCD correction, δP ,
that is known up to O (α4

S) [73, 74] and includes a resummation of the most relevant
effects at higher orders [30, 31, 32, 74, 75, 76, 77]. The final result [29, 78, 79, 80]
turns out to be extremely sensitive to the αs(M

2
τ ) value, allowing to determine very

precisely the QCD coupling that - in the MS scheme- is [81] 3:

αs(M
2
τ ) = 0,342± 0,012 . (2.8)

When one uses the Renormalization Group Equations, RGE, to run this value
up to the Z scale [82] one gets:

αs(M
2
Z) = 0,1213± 0,0014 , (2.9)

3See in this reference all works employed in this determination.
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while the value obtained in hadronic Z-boson decays [8] is

αs(M
2
Z) = 0,1176± 0,0020 . (2.10)

Therefore, there is agreement between the extraction from hadron tau decays and
the direct measurement at the Z peak, even with better precision in the first case.
This provides a beautiful test of the change of the QCD coupling with the scale,
that is, a significant experimental test of asymptotic freedom.

A comment with respect to the reliability of the errors in the result (2.8) is in or-
der. This study assumes that the quark-hadron duality [83] is realized. Its violations
[84] and the error induced in the analysis that rely on it -like the determination of
αS- is being an active area of research [85, 86, 87, 88, 89] recently, after being igno-
red systematically for years. Although the last works point to an understimation of
the error induced, this issue is not clear yet and one would need on one hand more
realistic theoretical models to estimate these violations (essentially only one is used
that is based on resonances and less frequently, another one that is instanton based;
both developed by Shifman [84]) , and on the other hand more quality experimental
data to quantify precisely this effect.

The separate measurement of the decay widths of |∆S| = 0 and |∆S| = 1 proces-
ses gives us the opportunity to be sensitive to the effect of SU(3) flavour symmetry
breaking induced by the strange quark mass. Specifically, this happens through the
differences

δRkl
τ =

Rkl
τ,V+A

|Vud|2
− Rkl

τ,S

|Vus|2
≈ 24

m2
s(M

2
τ )

M2
τ

∆kl(αS)− 48π2δO4

M4
τ

Qkl(αS) , (2.11)

where the spectral moments Rkl
τ were introduced:

Rkl
τ =

∫ M2
τ

0

ds

(
1− s

M2
τ

)k (
s

M2
τ

)l
dRτ

ds
. (2.12)

The perturbative corrections ∆kl(αS) and Qkl(αS) are known to O(α3
S) and

O(α2
S), respectively [90, 91, 92] and δO4, proportional to the SU(3) breaking- since

it is to the difference of the s and u quark condensates- are well determined [93].
Although in the future, with exceptional quality data, it would be possible to de-
termine both ms(Mτ ) and |Vus| simultaneously analizing the whole set of spectral
moments, in the most recent determination [94] one fixes:

ms(2GeV) = 94± 6MeV , (2.13)

-obtained with the latest lattice determinations and using QCD sum rules- in such
a way that the most sensitive moment to |Vus|, with kl = 00, allows to extract [95]:

|Vus| = 0,2208± 0,0033exp ± 0,0009th = 0,2208± 0,0034 , (2.14)

that can be competitive with the standard extraction of |Vus| from Ke3 decays [96]
and with the new proposals made for this determination. Moreover, the error asso-
ciated to this determination of |Vus| can be reduced in the future since it is domina-
ted by the experimental uncertainty that would be reduced notably in forthcoming
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years thanks to B-factory data. As suggested, another improvement that one could
make would consist in fitting simultaneously |Vus| and ms to a set of moments of
the invariant mass distribution in hadron tau decays, that would provide even more
precision in the extraction of both parameters.

Up to now, all experimental results on the τ are consistent with the SM . Howe-
ver, the analysis of B-factories data from BaBar and Belle -and future experiments
in the latter- or facilities dedicated to τ − c production, as BES are promising in
order to obtain more and more stringent verifications of the SM and explore the
physics beyond it 4.

2.3. QCD: The theory of strong interaction

Next we will introduce briefly QCD in order to explain why it is not possible
to solve the problems we are dealing with analytically and completely.

Deep inelastic scattering experiments at SLAC [97, 98] allowed to conclude that
the protons were not punctual particles. Instead, they have substructure made up of
particles with fractional electric charge (quarks). Although these quarks had been
predicted theoretically while trying to find a scheme to clasify the large amount
of mesons observed during the ’60s -first [99, 100]- and when trying to understand
how to apply the quantum statistics to all of them, and especially to the spin 3/2
baryons -later on [101]-, it was not clear that their existence went beyond a mat-
hematical concept and all subsequent experiments failed in their attempt to isolate
them as free particles. The two main features of strong interaction had manifested:
asymptotic freedom at high energies and confinement of quarks in hadrons at low
energies.

Different formal studies of non-abelian gauge theories [102, 103] showed the dif-
ferent UV and IR behaviours of this theory could be explained in terms of a non-
conmuting algebra. Later on, the evidence that the baryon ∆++ existed led to the
conclusion that there had to exist an additional quantum number -called colour-
through the conservation of the Spin-Statistics theorem, and motivated the effort of
the Scientific community that finally brought as a result the simultaneous explana-
tion of all abovementioned phenomena through the picture presented by Fritzsch,
Gell-Mann and Leutwyler [2], who identified SU(3) - 3 being the number of different
colours a quark can have- as the gauge group, basis for the construction of QCD.
The theory remains thus invariant under local transformations of the SU(3) colour
group. There are a number of theoretical and experimental evidences supporting
this picture [104].

The local non-abelian gauge symmetry SU(NC) for nf (number of flavours) quark
matter fields 5 determines the QCD Lagrangian, directly incorporating the interac-

4In the Chapter 5 we explain the importance of hadron τ decays in order to find out what the
scalar sector of the SM is and eventually to determine the mass of a light Higgs.

5The gauge group fixes the bosons content -mediators of the theory- but it does not for the
matter fields: its representation and number of copies is something that must be inferred from
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tion of these with the gluon gauge fields and the selfinteractions among these gluons.
The QCD Lagrangian is:

LQCD = q (iD/ −M) q − 1

4
Ga

µνG
µν
a + LGF+FP ,

Dµ = ∂µ − igsG
a
µ

λa
2
,

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν , (2.15)

where a = 1, . . . , 8, Ga
µ are the gluon fields and gs is the strong coupling cons-

tant. The quark field q is a column vector with nf components in flavour space,
M represents the quark mass matrix in flavour space and it is given by M =
diag

(
m1, . . . , mnf

)
, wheremi are the different quark masses:mu, md, mc, ms, mt, mb

for nf = 6 within the SM , parameters whose value is not restricted by symmetry.
As we see, the gauge symmetry forbides a non-vanishing mass for the gluons and
their couplings are universal, irrespective of flavour. The matrices λa

2
are the SU(3)

generators in the fundamental representation, normalized as Tr
(

λa

2
λb

2

)
= 1

2
δab and

fabc are the structure constants of the gauge group, SU(NC). Finally, the Fadeev-
Popov term [105], LGF+FP , includes the anti-hermitian Lagrangian introducing the
ghost fields and the gauge-fixing term:

LGF = − 1

2ξ
(∂µGa

µ)(∂νG
ν
a) ,

LFP = −∂µφaDµφa , Dµφa ≡ ∂µφa − gsf
abcφbG

µ
c , (2.16)

where ξ is the gauge parameter, and φ
a
(a = 1, . . . , N2

C-1) is a set of scalar, her-
mitian, massless and anticonmuting fields. The covariant derivative, Dµφa, contains
the needed coupling between ghost and gluon fields and LFP is antihermitian, as it
must, in order to introduce a explicit unitarity violation cancelling the non-physical
probabilities corresponding to the longitudinal polarizations of gluons and restore
the fundamental property of unitarity to the physical observables that are finally ob-
tained. A very pedagogical explanation of this can be found in Ref. [104]. We do not
discuss here the so-called θ term [106], invariant under SU(NC) and CP violating if
there is not any massless quark. The most precise experiments do not indicate any
CP violation in strong interaction processes. This allegged violation would manifest,
for instance, in a non-vanishing neutron dipole electric moment. The experimental
bound [8] is nine orders of magnitude smaller than a natural theoretical value.

The running of the coupling constant with the energy is behind the property of
asymptotic freedom and seems to point to confinement as a natural consequence.
The coupling gs that appears in the QCD Lagrangian (2.15) receives quantum co-
rrections [104] that, at one loop, are given by the diagrams in Fig. 1.2.

The βQCD function is defined through the use of the Renormalization Group

experimental data.
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Equations, RGE 6). At one loop they are given by [113, 114, 115, 116, 117]:

βQCD = µ
∂gs
∂µ

= −
(
11− 2nf

3

)
g3s

16π2
, (2.17)

so that -at this order in the expansion-, is negative for nf ≤ 16. RGE imply that
the renormalized coupling varies with the energy, so-called running coupling. Being
βQCD ≤ 0, this will result in the decreasing of the renormalized coupling, gRs , when
increasing the energy; that is, in asymptotic freedom.

We have implicitly assumed that the one-loop computation gives a reliable ap-
proach. When speaking about asymptotic behaviour this is the case, just remember
(2.8), (2.10). In fact, the computations at (N)NNLO [118, 119] support this reaso-
ning.

Integrating the equation (2.17) we find:

αs(q
2) =

12π

(33− 2nf) log(q2/Λ2
QCD)

, (2.18)

where αs ≡ gs/4π has been defined. This equation depicts how the strong (renor-
malized) coupling running depends just on the QCD-scale, ΛQCD, defined in terms
of the renormalized coupling value at some renormalization scale, µ, and µ itself by:

log(Λ2
QCD) = log µ2 − 12π

αs(µ2)(33− 2nf)
. (2.19)

RGE and the experimental tests of them seem -Eqs. (2.8), (2.10)- to be in agree-
ment with a very strong color interaction at low energies that can cause confinement.
There is an easy intuitive picture of this phenomenon: when splitting two electric
charges, the strength of the mutual interaction decreases (is screened) by the crea-
tion of dipoles between them. This effect corresponds to the term with −2nf in
Eq. (2.17). In the case of colour charges, the different behaviour comes from the
term including the 33 in that equation. Gluon selfinteractions cause anti-screening
and finally, it is not possible to keep on separating the quark-antiquark pair since
it is energetically favoured to create a new pair. In order to complete the intuitive
analogy, one could compare this with magnets. When breaking one, there will al-
ways appear new ones, with oposed poles. It is impossible to isolate the magnetic
monopole as it is isolating a colour charge.

More technically, the confining phase is defined in terms of the behaviour of the
action of the Wilson loop [120], that corresponds to the path followed by a quark-
antiquark pair in four dimensions between its creation and annihilation points. In a

6RGE [107, 108, 109, 110, 111, 112] are derived from the requirement that an observable can not
depend on the arbitrary chosen renormalization scale and that the physics must be scale invariant.
The last property implies that the Green functions have a well-defined behaviour under rescaling
of the momenta appearing in them. This allows to relate the values of the renormalized quantities
at different energies and also to calculate the anomalous dimensions, that modify the evolution
with energy derived on dimensional grounds because of quantum effects.
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non-confining theory, the action of this loop would be proportional to its perimeter.
However, in a confining theory, the loop action would grow with the area. Since the
perimeter of two open lines is equal to its sum, while the area goes to infinity, in
a non-confining theory it would be possible to split the pair; while in the confining
it would not be so. Although Wilson loops were introduced in order to have a non-
perturbative formulation of QCD and solve confinement, this has not been possible
so far. Its influence -like many ideas that emerged trying to understand QCD- has
been great, since it lead Polyakov [121] to formulate string theories in a modern way.

Despite of what has been said, there could be an experimental way to come close
to confinement. So far we have always considered field theories at finite temperature
and density. At the begining of the Universe both were so high that chiral symmetry
would be broken there and quarks and gluons would not have the time to hadroni-
ze because of their incessant interactions. This framework is being investigated in
heavy ion experiments to try shed some light on the problem of confinement.

In summary, quantum corrections make the strength of the interaction to change
with the energy. In the case of QCD, it is very strong at low energies, so we will not
be able to make a perturbative expansion in powers of the coupling constant and
make useful computations in this way, because they will not converge since αS ∼ 1.
Aditionally, and due to confinement, one should find a way to relate the funda-
mental theory with quark, antiquark and gluon degrees of freedom with the mesons
produced in hadron tau decays. In the next sections and chapters we will see that
the solution to both problems comes together: when one finds the appropriate de-
grees of freedom, we will understand how to build a reliable and useful computation.

2.4. Quantum Effective Field Theories

The history of Physics is a history of the understanding of more and more
numerous and diverse phenomena. In many cases, the understanding of the new
does not invalidate the description of the already-known, that is obtained as a par-
ticular limiting case of the new theories, whose range is larger. Sometimes, the old
theory can be regarded as en effective theory of the new one in a determined range
of application of it.

Some examples can illustrate this: at the beginning of the XIX century a co-
rrect description of electrostatics was already achieved. Diverse experiments due to
Ørsted, Ampère, Ohm and Faraday -among others- increased the number of phe-
nomena to describe simultaneously including electrodynamics and magnetism with
time-dependent fluxes. The whole set could be explained coherently through Max-
well equations. In them, the wave nature of light was described, showing it as an
electromagnetic wave propagating at a given speed, c, that was a universal constant
of the theory. In the limit c→∞, one loses the Maxwell’s displacement current. As
a consequence, the old theory (Ampère’s law) could be seen as a limiting case of the
new one (Maxwell equations) when the appropriate parameter (1/c) was considered
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to be small. Ampère’s law can be considered as the first order in the expansion
in 1/c of the so-called generalized Ampère’s law that could be obtained from the
Maxwell equations. It is thus an EFT of the former. In static phenomena a similar
treatment, based on the complete Maxwell equations is unnecessary and Coulomb
or Ampère’s laws are enough, obviously.

Newtonian mechanics is valid for a large number of situations in our everyday
life. Notwithstanding this is not the case in the world of the infinitely small or
enormously fast. Quantum Mechanics generalizes it in the first case and Especial
Relativity does it in the second. One of the fundamental hypothesis of the quantum
theory is that the action is quantized in integer multiples of the Planck’s constant
(~), which allows to explain the emission blackbody spectra, for instance. The value
of this constant in IS units is so small that it becomes macroscopically irrelevant.
For this reason it makes sense that the limit ~→ 0 of the quantum theory will bring
us back to the classical theory that is this way and EFT of the former. Nobody
would resort to Quantum Mechanics to solve a macroscopic problem unless it is to
illustrate an introductory lesson to the topic.

It can also be seen that classical Maxwell’s electrodynamics is an EFT of Quan-
tum Electrodynamics, QED, appropriate in the limit ~ → 0. The theory that we
have seen before as fundamental, it is from this point of view an EFT of the next
more fundamental theory. Again it is not necessary to solve the equation of motion
of a macroscopic charged body in presence of an EM field using the quantum theory.
From the practical point of view, EFTs are more useful than the fundamental in
its subsectors of applicability.

But for the case that we work for a theory of everything our theory will always be
effective, and it will be better this way since one avoids complicating the problem
without any need and the choice of variables is suitable to its description. We still
need to justify that this effective theory would be a quantum field theory, (QFT ).

The most common method of study of QFTs is based in the use of perturbation
theory in powers of the coupling constant, that must be small for every term in the
expansion to be smaller than the previous one so that we can cut our expansion at
a given order, because the perturbative series is not exactly summable. Such an ex-
pansion does not make sense in our case of hadron τ decays, for the value αS ∼ O(1).
Then, one has to find an alternative way to proceed.

In any case, it is convenient not to abandon QFTs, since their formalism guarran-
ties that the observables will fulfill all requirements of a relativistic quantum theory
(as it must be the theory describing the Physics of our elementary particles): mi-
crocausality (if two space-time points are separated spatially, whatsoever operators
defined in them satisfy trivial commutation or anticommutation rules -depending
on their statistics-), unitarity (the sum of the probabilities of all possible events is
unity), analyticity (the functions of the fields must be complex-differentiable in the
vicinity of every point of its domain) , Poincaré invariance (the symmetry group of
Relativity), spin-statistics connexion theorem (Fermi-Dirac statistics for half-integer
spin and Bose-Einstein for particles with integer spin) and cluster decomposition
(ensuring the locality of the theory, since sufficiently far away regions behave inde-
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pendently).
Although we have seen that the techniques of QFTs are highly desirable we must

admit that they are not enough on their own, because if one incorporates these very
general principles into the theory one would need a lot of experimental information
to characterize a theory and therefore make predictions. As we have seen before it
is convenient to use EFTs. Therefore, it will be natural and adequate to employ
quantum EFTs in our problem.

In order to formulate them we need to identify the relevant degrees of freedom
and the expansion parameter. Both things will happen generally at the same time,
as we will see. There will be a typical scale, Λ, separating active and passive degrees
of freedom. Particles with m ≪ Λ will be kept in the action while the heavy fields
with M ≫ Λ will be functionally integrated out. We will consider the interactions
among the lightest states that will be organized in a power series in 1/Λ. Since
m/Λ≪ 1 the effect of every consecutive term will be less than the previous one and
we will be able to cut the expansion at a given order. Besides, we will be able to
control the error introduced estimating the contribution of the first omitted term
from the expansion parameter and the known terms.

We will close the section stating Weinberg’s definition of EFTs [3]: if -for a given
set of degrees of freedom- we apply perturbation theory with the most general La-
grangian consistent with the assumed symmetries we will obtain the most general S
matrix elements -and therefore the observables that are obtained from them- that
are consistent with analyticity, perturbative unitarity, cluster decomposition and the
assumed symmetries.

We note that with respect to the most general formulation introduced before we
are adding here the compromise with a choice of degrees of freedom and the assum-
ption of the symmetries of the underlying theory. This approach will be reviewed
later on, because it may be desirable to make a more elaborated approach including
dynamical content of the underlying theory.

2.5. Chiral Perturbation Theory

We have highlighted the concept of symmetry. Symmetries have always been
the key to understand physical phenomena. On one hand they are expressed with
the greatest mathematical rigour, on the other end they allow -in some cases- ap-
proximations, that are at the core of almost any realistic computation.

Which is the symmetry that we can employ to build our effective theory? The
answer is neither easy nor immediate. One could think in some property directly
related to the gauge group of the theory, with the property of colour. Due to hadro-
nization, the possible structures with vanishing total colour charge are immediately
fixed by the product of representations in group theory, since we know the represen-
tations of the gauge group (adjoint) and we have fixed that of matter (triplet and
antitriplet for quarks and antiquarks, respectively). We can check that the mesons
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fulfill this condition, but we do not obtain anything useful in order to develop our
EFT . Indeed, assuming confinement, we observe that letting NC free is the only
remaining possibility that we will consider next.

It will not be then a local gauge symmetry the one allowing us to built the EFT .
Let us see which global symmetries has the strong interaction. We think first that in
this Thesis we study processes that produce the lightest mesons: pions, kaons and
etas. It is intuitive that the heavier quarks will not be active. Therefore, we consider
the QCD Lagrangian for light flavours: u, d, s, nf = 3 in (2.15). If we neglect in first
approximation the masses of these quarks mu ∼ md ∼ ms ∼ 0, the QCD Lagran-
gian is invariant under separate transformations of the RH and LH components of
the quark fields, global transformations of the group G ≡ SU(nf )L ⊗ SU(nf )R, the
so-called chiral symmetry group.

Local symmetries determine the interaction -as in (2.15)-. There are two possibi-
lities for globals symmetries: If both the Lagrangian and the vacuum are invariant
under the group of transformations G then the symmetry is manifest in the parti-
cles spectrum. However, even if the Lagrangian is invariant under transformations
belonging to G, the vacuum is not, then the spectra will reflect the symmetries of a
certain subgroup H of G, where both the Lagrangian and the vacuum will be sym-
metric under transformations of H , but only the Lagrangian will be invariant under
all the group G. One speaks in this case of spontaneous symmetry breakdown of the
symmetry G→ H . We also know that we will have as many massless scalar particles
(Goldstone bosons [122]) as broken generators. That is, the number of Goldstone
bosons equals the difference between the number of generators in G and H .

If we restore to phenomenology we observe that the lightest mesons can be clas-
sified in multiplets (nf = 3) of equal spin (J) and intrinsic parity (P ), which co-
rresponds to the representations of the group SU(3)V . We also see that multiplets
with opposite parity do not share mass: the vector multiplet (JP = 1−) is lighter
than that of axial-vectors (1+). and that of pseudoscalar mesons (0−) is much lighter
than the scalars (0+) or than the spin 1 particles 7. In Chapter 3 it is explained how
these observations lead to the pattern of spontaneous breaking of the symmetry is
SU(3)L ⊗ SU(3)R → SU(3)V . There are n2

f − 1 = 8 broken generators, that would
be the number of Goldstone bosons that we should observe. In fact, since the mas-
ses of the light quarks are small compared to the typical hadronization parameter,
ΛχSB ∼ 1GeV, but not zero, we have in addition to the spontaneous breaking of
the symmetry a explicit breaking of it because ml 6= 0, ml = mu, md, ms. That is
why we observe 8 particles with small but nonvanishing mass that we call pseudo-
Goldstone bosons, pGbs, (for his origin in the spontaneous breaking of the symmetry
and his mass in the explicit breaking of it). These are the pions, kaons and etas de-
tected in our semileptonic tau decays: π±, π0, η,K±, K0, K̄0.

Now that we have the symmetry and our choice of degrees of freedom we have to
worry about building the EFT Lagrangian that contains them conveniently. Wein-
berg’s theorem ensures that having done that, the perturbative treatment of it will

7We will call resonances all light-flavoured particles heavier than those belonging to the lightest
multiplet 0−.
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lead to the most general S-matrix elements in a consistent way. The formalism that
allows to build effective Lagrangians for symmetry groups that have been broken
spontaneously is due to Callan, Coleman, Wess and Zumino [123, 124]. Its applica-
tion to low-energy QCD will allow us to write an EFT describing the interaction
among pseudo-Goldstone bosons. Moreover, since there is an energy gap between
these particles and the next heavier ones, the effect of these heavier modes will be
small and will allow to build an EFT containing only these modes, Chiral Pertur-
bation Theory, χPT [4, 5].

This theory has a natural expansion parameter in the ratio between masses or
momenta of the pseudo-Goldstone bosons over the scale ΛχSB, that will be much
less than unity. All the initial problems are thus solved: χPT is an EFT built upon
symmetries of QCD in a specific subset of it (light flavours in low-energy processes
where the only products are pGbs and chiral symmetry is a good approximation) and
with a expansion parameter that permits to do perturbation theory. Since,Mτ ∼ 1,8
GeV, the resonances could be active degrees of freedom, so that we will have to en-
large χPT to higher energies and include new degrees of freedom. Unfortunately, in
this case it will be more complicated to proceed through the previous steps to build
the theory, as we will see.

2.6. QCD in the limit of a large number of coulours

When we incorporate heavier particles the counting is broken, since the mas-
ses and momenta of these new degrees of freedom are of the same or higher order
than ΛχSB, in such a way that its ratio is no longer a good expansion parameter of
the theory. We have another difficulty: there is no longer a large and well-defined
energy gap separating the particles that are active degrees of freedom of the theory
from those who will be integrated out because they are not. We will see that a
solution to both problems can arrive from considering the large number of colours
limit of QCD [125, 126, 127]. Anyhow, we should point out that as opposed to the
low-energy sector with χPT , it is not known how to build an EFT dual to QCD
in the intermediate energy range. The limit NC → ∞ is a tool that will allow to
understand which are the dominant contributions and which are not important -
among all allowed by symmetries- in our Lagrangian.

’t Hooft suggested considering QCD in the limit when the number of colours
of the gauge group goes to infinity [125]. His motivation was achieving a simpler
theory that still kept some resemblance with the original one and from which one
could derive qualitative properties -hopefully also quantitative- of the underlying
one. In this limit QCD is exactly soluble in two dimensions [126], but not in four.
Still, if we assume that the theory is confining, a number of experimental features of
QCD can be derived, which suggests that this construction is a good approximation
to nature. Among them we will highlight for the moment that:
- In the NC → ∞ limit mesons are free, stable (they do not decay) and do not in-
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teract among themselves. Meson masses have a smooth limit and there are infinite:
a tower of excitations per each set of quantum numbers.
- At first order in the expansion in 1/NC meson dynamics described by tree level
diagrams obtained with an effective local Lagrangian whose degrees of freedom are
mesons, as it was discussed in the Weinberg’s view of χPT .

At this point one can observe that there is a certain internal contradiction bet-
ween the construction of EFTs à la Weinberg and the expansion in 1/NC for QCD
that should be solved in some way: on the one hand Weinberg’s view is to define the
particle content and the symmetries and then to build the most general Lagrangian
consistent with the assumed symmetries and it guarantees that we will obtain the
most general results through a perturbative approach. The problem is that the in-
troduction of the resonances invalidates the former expansion parameter, that was
successful for χPT .

On the other side, the large number of colours limit of QCD can help us to or-
ganize an expansion in 1/NC, but it contradicts the ideas in the previous paragraph
since one of its conclusions at lowest order is that we can not fix a priori the particle
content of the EFT , for the consistency of the expansion we have to have infinite
copies of every type of resonance.

Because of that we have two possibilities:
- Either we forget the requirement for the Weinberg’s formulation of making a sui-
table choice of degrees of freedom for the energy range we are considering and we
include the spectra demanded by the limit NC →∞.
- Or we include the phenomenological spectra and depart from the 1/NC counting.

One could think that incorporating subleading effects in 1/NC we may be able
to get the measured spectra. This idea can not become a reality for the moment
because of the nature of the 1/NC expansion in QCD. It is true that a given order
in αS there is a definite number of diagrams, and that they can be computed and
their effects resummed, but this is not at all the case in 1/NC : at every order there
are infinite diagrams, and nobody has been able to think of a mechanism able to
study this question. In the framework of EFTs based on this expansion there are
studies investigating the NLO in 1/NC.

Additionally, one can recall that the Weinberg’s approach does not include any
type of dynamical information on the underlying theory: this is the price to pay for
its generality. In our case we will see that a theory with pseudo-Goldstone degrees
of freedom and resonances, that respects the symmetries of low-energy QCD, and
therefore reproduces χPT at low momenta, based in the limit NC → ∞, is not
compatible with the known asymptotic behaviour of QCD at high-energies. Since
we want our theory to work up to some E ∼ 2 GeV and at these energies perturba-
tive QCD is already reliable, this must not happen. Then, the theory we need will
require dynamical information from QCD -this will allow it lo link the chiral and
perturbative regimes in the sector of light-flavoured mesons- and, either renounce
to the choice of the physical final states as degrees of freedom or to model the ex-
pansion in 1/NC. This is discussed in the next section.
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2.7. Resonance Chiral Theory

Resonance Chiral Theory, RχT [6, 7], includes the pseudo-Goldstone bosons
and the resonances as active degrees of freedom of the theory and requires general
properties of QFTs and the invariance under C and P QCD has. Their fundamental
features are sketched in the following.

The low-energy limit of RχT must be χPT . This property has been used to
predict systematically the LECs of χPT in terms of masses and couplings of the
resonances when integrating these ones out of the action, at the chiral orders O (p4)
[6] and O (p6) [128] in the even-intrinsic parity sector, with NC →∞ and requiring
the QCD high-energy behaviour.

The χPT Lagrangian includes the octet of pseudo-Goldstone bosons. When ex-
tending χPT , RχT incorporates the resonances as active degrees of freedom that
are included in nonets, since octet and singlet of a SU(NC = 3) group merge into
a nonet for NC → ∞. The χPT Lagrangian is built using the approximate chiral
symmetry of massless QCD. After that, the spontaneous and explicit symmetry
breaking is incorporated in exactly the same way as it happens in QCD. The nonets
of resonances are added requiring the general properties and invariance under C
and P and the structure of the operators is determined by chiral symmetry. At first
order in the expansion in 1/NC the terms with more than a trace and the loops
are suppressed. The first property permits to postpone some terms allowed by the
symmetries of the Lagrangian and the second one its use at tree level, as it was
already explained.

We remark that the theory determined by symmetries does not share yet some
of the known properties of QCD at high energies yet. Therefore, one must match
the theory with asymptotic QCD at the level of Green functions and/or form fac-
tors. The application of these properties determines a series of relations between
the couplings of the theory that allows it to be predictive with less experimental
information than otherwise. In this Thesis we obtain relations of this type on the
form factors in two different type of processes that we will confront to those found
in two- and three-point Green functions where the same couplings appear 8. The
nice UV behaviour forbids terms with a lot of derivatives, what helps us to limit
the number of operators in the Lagrangian, since the counting that worked in χPT
is now broken. The situation is not that easy, as we will comment later on, because
consistency conditions may require the introduction of operators with more deriva-
tives and some non-trivial relations among their couplings. Generally speaking, we
do not include terms with a lot of derivatives because this would require fine-tuned
relations to ensure the required cancellations needed at large momenta. In many
cases the phenomenological success is the support of our approach.

There is an inconsistency between Weinberg’s approach and the strict limit NC →
∞, but to our knowledge, there is no known way of implementing the infinite tower
of resonances in a model independent way. Then, it seems reasonable to start stud-

8There are not computations within RχT of four-point Green functions, whose short-distance
relations we could confront to ours.
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ying easy processes with the minimum number of degrees of freedom involved. As
we get more and more control in this approximation (or the data get more and more
precise) we will be able to include more states if needed. This approach is practical
in order to estimate the different coefficients of the theory and it also respects the
goal of a good physical description, trying to do it in terms of the least number of
variables.

Finally, our phenomenological study can not avoid introducing some properties
that are higher orders in the 1/NC expansion. In the energy range where the taus
decay, resonances reach their on-shell condition and do indeed resonate due to their
width, typically lower than its mass. Widths are a subleading effect. We will include
them consistently within RχT , as we will see.

2.8. Organization of the Thesis

As it has been said, our study adopts the approach of EFTs. For this reason
we introduce its basics in Chapter 3. Three are the cornerstones of our work on the
theory side: on the one hand ensuring the right limit at low energies, ruled by χPT .
On the other, the large number of colours (NC) limit of QCD applied to EFT with
hadron degrees of freedom, in our case RχT . And finally, to warrant a behaviour
at high energies in agreement with QCD for the different form factors. The first
and second question are considered in Chapters 3 and 4, respectively, whereas the
third one is introduced in Section 4.5 and discussed in any particular application
of the theory considered in later chapters, that are preceded by a brief summary of
the theoretical studies undertaken and an overview on the essentials of exclusive ha-
dron tau decays (Chapter 5). The applications that we consider are: hadron decays
into three pions (Chapter 6) and with two kaons and a pion (Chapter 7). We also
include the decays including η mesons (Chapter 8) and the radiative decays of the
tau with a single meson τ → P− γ ντ , where P = π, K, in Chapter 9. With all of
them we will improve exceptionally the control on the parameters of the resonance
Lagrangian participating in the considered processes, both in the vector and in the
axial-vector current and, therefore we know better how to describe, in a theoretically
sound way based on EFTs and the symmetries of QCD, these τ decays. We will
be able to take advantage of all these findings in the future, applying them to mo-
re complex processes. The thesis ends with the general conclusions on the work done.
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Effective Field Theories: Chiral
Perturbation Theory

3.1. Introduction

Effective Field Theories are built upon two seemingly contradictory deep
roots: the idea of symmetry and the usefulness of making justified approximations.
That is because symmetry is linked to the mathematical structure behind and ap-
pears to be fundamental, while an approximation implicitly seems to assume some
deviations from Nature. We will clarify in which context -that of EFTs- both con-
cepts join together in a rigorous approximation.

It is not true that if one had the exact solution to the complete theory, no one
would use the EFT instead. The EFT is more convenient in its domain of applica-
bility because it uses the right variables and exploits the hierarchy of the problem.
We will be more specific about this point later on.

Although the precise formulation of EFTs has been reached in the last thirty
years, the two main ideas named above are, in a sense, living within Physics for long.
It is common lore that the choice of variables can make the problem easier. If not
exactly realized in Nature symmetries are sometimes given at a quite approximate
level and allow for a parameterization of the problem that exploits that and renders
the computation doable (it is advisable to use cylindrical coordinates to solve the
Laplace Equation in a tube-shaped cavity, for instance). At the same time, either
analytically or numerically, one can work corrections to this exact solution by inclu-
ding the symmetry breaking as it happens in reality, or faithfully modeling it. We
will see quite generally how these ideas of symmetry and approximation apply.

One of the longstanding motivations in Physics has been that of pursuing the so-
called theory of everything. This theory would be almost useless because the energy
scales involved would be orders of magnitude higher than the ones we can probe
experimentally. That would be the situation for any theory that unifies Gravity
with other forces, since its characteristic energy scale, the so-called Planck Mass
(MP l = (8πG)−1/2 ∼ 1018 GeV), is outside our reach. Thus, this unification would
be useless but from the point of view of the likely mathematical beauty. An EFT
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description using just the active degrees of freedom in any specific setting is in order.
On the other hand, if we leave gravity aside, the situation changes: If there was

exact unification of the SM gauge groups [129] -with maybe some others [130], ad-
ding extra particles [131], using small additional dimensions to reduce E ∼ MP l

[132, 133, 134], etc.- at some energy scale ever accessible to experiments, then we
would reaffirm our understanding on SM , gain more insight on some kind of Physics
beyond it (BSM) discovered by that time and get a number of predictions testable
in experiments.

Let us use the very well-known example of the hydrogen atom to explain how
the relevant degrees of freedom arise naturally. A first description of the system is
achieved by using the Schrödinger equation for the electron bounded to a proton by
Coulomb’s law. The only properties that count at this stage are the electron mass
and charge (or, equivalently, the fine structure constant, α ≡ e2/(4π) ∼ 1/137). It
does not essentially matter that the proton mass is not infinite, because it is much
heavier than the electron one. The spin 1/2 of the electron does not affect yet either.
If one counts the mass scales that appear in the problem, one sees they are me and
MP , being me/MP ∼ 5 · 10−4. Any effect of me/MP 6= 0 will be a ∼ 10−3 correction,
at most. One can see that the leading interaction involving spin (between the elec-
tron spin and the electrons’ orbital angular momentum) are also suppressed with
respect to the leading Coulombic interaction. The general feature we may extract is
that the characteristic energy scale of the problem (Λ) is set by the electron mass
and the strength of the interaction: Λ ∼ meα, the typical momentum (or inverse
of length scale, the familiar Bohr radius) of the system. Therefore, the relevant de-
grees of freedom will correspond to particles with energies much lower than this one
(m,E ≪ Λ): ultrasoft photons with energy of the order of meα

2, that sets the scale
of energy splittings between levels, the Rydberg (or inverse of characteristic times).
On the other hand, particles with much higher energies (M ≫ Λ) will influence
tinily the spectrum and thus can be integrated out from the action. This will be the
case of the proton or soft and hard photons. But also of the W -boson, what justifies
that electroweak corrections to this QED bound state are marginal.

One has then the possibility of constructing the most general Lagrangian consis-
tent with QED symmetries including interactions among the lightest states and one
will be able to organize them efficiently as an expansion in powers of E/Λ. We have
found through this example the general rules for building EFTs: identifying the re-
levant energy scale of the problem, integrating out the heavier modes and building
the most general Lagrangian consistent with symmetries involving the light modes:
a tower of interactions that one will conveniently organize in powers of E/Λ. The
procedure rests on Weinberg’s Theorem, that will be discussed in Section 3.2.

The fact that the heavier states can be integrated out (as explained in Section
3.3) does not mean that they do not leave any mark in the low-energy Physics. The
effect of these states on the EFT is double: on the one side they pose symmetry
requirements on the EFT 1, on the other hand they correct the values of the cons-

1For instance, in the non-relativistic EFTs the relativistic invariance of the fundamental theory
implies relations between the LECs in the EFT that are valid to all orders in the coupling constant.
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tants specifying the dynamics of the low-Energy theory (LECs), that are different
in the full and in the effective theory in case they enter in both 2, see Section 3.4.

If the underlying theory is weakly coupled at the scale Λ one is able to compute
explicitly the values of the LECs. Otherwise, one must rely in lattice evaluations or
fix them phenomenologically as discussed in Section 3.6. In the first case, the same
coupling constant will serve as an expansion parameter to apply the perturbative
techniques, while in the second one it may be difficult to find such a parameter.

One important feature of EFTs is that there is an infinite number of interac-
ting terms in the EFT , which makes the theory non-renormalizable in the classical
sense. However, this is not a problem once we understand that EFTs add to the
general characteristics of renormalizable theories the need of having a rule in or-
der to estimate the size of these non-renormalizable terms. This will allow us to
stop the expansion once we reach some desired maximum error associated to our
computation. We will classify the terms in the Lagrangian according to some coun-
ting scheme that makes explicit the organization of all allowed interaction terms in
powers of the expansion parameter. Then, at a given order, one will have infinites
that will be renormalized by redefining the LECs appearing at the next order in
the expansion. If one regularizes using Dimensional Regularization (that preserves
all symmetries of the theory in the renormalization procedure), renormalizability is
assured since every infinite will be the coefficient of an operator respecting the sym-
metries and therefore already present in the effective Lagrangian at a higher order,
determining an order-by-order renormalization. At the practical level, EFTs are as
renormalizable as those classically called that way. For a given asked accuracy we
have to take into account terms in the expansion up to some order, that includes a
finite number of terms, as in any renormalizable theory.

A general remark before closing this introductory section: It seems that EFTs
are the tool that solves everything and that is not true. The Hydrogen atom is a
system with a well-defined hierarchy of scales and a non-relativistic nature. Then,
the ratios E/Λ and v/c are two small magnitudes that work extremely well in the
setting described above. Moreover, most of Particle Physics systems fulfill the non-
trivial characteristic that there is a small number of quantities playing a role in
the problem with some scaling among them. This allows (and suggests) an EFT
approach. Even in the cases where the scaling is not so well defined or the expansion
parameter is not that small it is an advisable tool. However, in Chemistry (or even
more in Biology) there appear an enormous amount of unrelated energy scales of
comparable magnitude. Then even the extremely simple approach applied to the
Hydrogen atom as first step will lead in an EFT study to too cumbersome expres-
sions to make any sense out of them. We are lucky that these techniques can be
applied in Physics.

In the remainder of the chapter we will be more precise on the ideas sketched
above. We have made extensive use of Refs. [135, 136, 137, 138, 139, 140, 141, 142]
in order to prepare this part.

2This does not happen when the degrees of freedom are different in the fundamental and effective
theory.
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3.2. Validity of EFTs: Weinberg’s Theorem

We will precise now the formulation of EFTs à la Weinberg. It can be stated
as a theorem [3]:

For a given set of asymptotic states, perturbation theory with the most general
Lagrangian containing all terms allowed by the assumed symmetries will yield the
most general S matrix elements consistent with analyticity, perturbative unitarity,
cluster decomposition and the assumed symmetries.
EFTs describe the physics at low energies, this defined with respect to some

energy scale, Λ, characteristic of higher energy processes. Heavier states withM & Λ
are integrated out from the action and the relevant degrees of freedom are those with
masses m << Λ. There is a well defined ordering in powers of E/Λ for the infinite
interactions among the light states one gets.

The view on renormalizability of QFTs has changed through the years. For much
time, it was claimed that for a QFT to be renormalizable one needed that the
Lagrangian contained only terms with dimension less or equal than that of the
space-time, D. If operators of any dimension were allowed, one would need an infi-
nite number of counterterms to absorb all the infinites and consequently an infinite
number of unknown parameters condemning the theory to have no predictive power.
Since the EFT has an infinite number of terms (Leff = L≤D + LD+1 + ..., where
only the first one is renormalizable in the classical sense) the conclusion seems de-
vastating.

We have explained at the end of the previous section that the infinite number of
terms in the EFT will not cause any problem with respect to the renormalization of
the theory. For a definite number of powers in the (E/Λ) expansion, the symmetries
of the EFT allow only a finite number of operators in the Lagrangian. Consequently,
there will be a finite number of counterterms that renormalize the theory at this
order.

In addition to the problem of no predictivity, one could think that as the energy
of the process increases this tower of classically non-renormalizable interactions will
give rise to a wild violation of unitarity at high energies. To clarify that this is not
the case, we will classify the Quantum Field Theories according to their sensitivity
to high energy [143]:

1. Asymptotically free theories: Nothing in them signals a limiting energy beyond
which they can no longer be employed.

2. Ultraviolet unstable theories: The theories themselves report about a limit
energy range of applicability. This statement will be illustrated with several
examples in section 3.5.

EFTs belong to the second group. The main difference with respect to the first
ones comes from the appearance of new LECs at every order in the perturbative
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expansion -that is not simply an expansion in the number of loops, as we will see-.
It makes no sense to go further and further in this expansion indefinitely. Every new
order in the series in (E/Λ) is intended to achieve a more detailed description. The

accuracy reached with every new term goes as ǫ .
(
E
Λ

)Dmax
i −4

, where Dmax
i is the

highest dimension of all operators included 3. Once we demand a limited precision,
we know at which order in the expansion we can stop. Moreover, if we desire to
enlarge the applicability of the EFT to higher energy physics the way out is not
to include operators of higher and higher dimension, because as soon as E ∼ M1

-being M1 the mass of the lightest initially integrated out particle- the Weinberg’s
theorem tells that the right procedure is to include it in the Lagrangian as an active
field. This happens usually, and there is a formal way to deal with this successive
incorporation of particles, that we will describe in the next section.

In QCD, confinement forbids quarks and gluons to be asymptotic states. Wein-
berg’s theorem guarantees that writing out the most general Lagrangian in terms
of hadrons -that can be thought as active degrees of freedom in a given subset of
energies- consistent with the needed symmetries and respecting all the other stated
conditions will bring us the most general observables consistent with the assumed
symmetries and general properties of QFTs.

3.3. Integrating out the heavy modes

We will explain here more formally the integration of heavy modes from the
action that has been anticipated in the previous sections. We will use the path inte-
gral formalism and assume that the theory at high energies is known. The effective
action Γeff , will be written only in terms of the light modes and encodes all the
information at low energies, where it yields the same S matrix elements than the
fundamental theory by construction. Seff reads

ei Seff [Φl] =

∫
[dΦh] e

iS[Φl,Φh] , (3.1)

where Φl and Φh refer to the light and heavy fields respectively and S[Φl,Φh] is
the action of the underlying theory where both modes are dynamical. The effective
Lagrangian gets defined through

Seff [Φl] =

∫
d4x Leff [Φl] . (3.2)

The effective action Seff [Φl] can be computed using the saddle point technique. The
heavy field Φh is expanded around some field configuration Φh as follows (∆Φh(x) ≡

3There will be quantum corrections to this estimate, that most of the time will be irrelevant.
Anyway, the moral is that the error is essentially under control, as one would ask any theory for.
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Φh(x)− Φh)

S[Φl,Φh] = S[Φl,Φh] +

∫
d4x

δS

δΦh(x)

∣∣∣∣
Φh=Φh

∆Φh(x)

+
1

2

∫
d4x d4y

δ2S

δΦh(x)δΦh(y)

∣∣∣∣
Φh=Φh

∆Φh(x)∆Φh(y) + . . . . (3.3)

Φh is chosen so that the second term in the RHS of Eq. (3.3) vanishes to allow a
(formal) Gaussian integration

δS[Φl,Φh]

δΦh(x)

∣∣∣∣
Φh=Φh

= 0 . (3.4)

With this choice Eq. (3.1) is

ei Seff [Φl] = ei S[Φl,Φh]

∫
[dΦh] e

i
∫
d4xd4y{ 1

2
∆Φh(x)A(x,y)∆Φh(y)+...} , (3.5)

where

A (x, y) ≡ δ2S

δΦh(x)δΦh(y)

∣∣∣∣
Φh=Φh

. (3.6)

We see from Eq. (3.5) that the first term corresponds to a tree level integration of
the heavy field Φh. The power counting of the EFT will determine how the expan-
sion is realized, as we will see in the case of χPT in Chapter 2.

Two comments are in order: The procedure is iterative; one can have a pair of
{EFT -fundamental theory} valid up to some energy scale Λ. Then, for E > Λ,
some other mode may become active and the fundamental theory in the previous
step will become the EFT in the next one. The other remark concerns the actual
use of that integration. The general procedure outlined above can involve complica-
ted or unfeasible calculations. This may happen because the degrees of freedom are
different in both theories and there is no unambiguous way of relating both, or be-
cause a perturbative treatment is not applicable. In these situations one may restore
to phenomenology or lattice evaluations to do the computations. In any case, it is
always possible to obtain some information on ei Seff [Φl] from symmetry constraints
stemming from the fundamental theory.

3.4. Effect of heavy modes on low-energy Physics

We have stated in Section 3.1 that although the heavy modes are non-dynamical
at low energies they have an impact in the LECs of the theory when integrating
them out following the method in Sect. 3.3 in going from the the fundamental theory
to the effective one. We will see this general property at work in the case of χPT .
There is again a theorem expressing this notion precisely, due to Appelquist and
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Carazzone [144]:
For a given renormalizable theory whose particles belong to different energy scales,

that does not suffer Spontaneous Symmetry Breaking and does not have chiral fer-
mions; the only effects of the heavy particles of characteristic mass M in the physics
of the light particles of masses around m at low energies either appear suppressed by
inverse powers of M or through renormalization.

The question is immediate: Does it apply in general? Does it to QCD?
QCD is renormalizable [145, 146, 147, 148] and we have discussed in the introduc-

tion that there are six quarks with masses spanning four orders of magnitude. This
suggests that one could very likely have hadrons belonging to different energy sca-
les, and also dynamical gluons with very different energy-momentum. In principle,
the first condition of the theorem does not seem impossible to meet, although one
should revise this assumption in any particular scenario. Moreover there is no spon-
taneous symmetry breaking associated to the QCD vacuum. Finally its fermions are
not chiral: left-handed and right-handed fermions do not couple differently to the
gauge color group. All conditions of the Appelquist-Carazzone theorem are a priori
fulfilled.

3.5. Example

We will introduce an example of EFTs in order to help us illustrate some
general characteristics of EFTs that have already been discussed and will be of use
in the next sections. We will see how:

An EFT indicates its border of applicability by itself.

EFTs help to understand the physics involved giving us some hints that point
to the more fundamental theory to be scrutinized in future experiments.

Inspired by the coupling of the electromagnetic current to photons, Fermi
[149] proposed as the basis of a theory of weak interactions a local current × current
interaction among fermions that we can write -just for the lightest species- now as:

L = −4GF√
2

[
VusV

∗
ud (uγµPLs)

(
dγµPLu

)
+ (eγµPLνe) (νµγµPLµ)

]
+ O

(
1

M4
W

)
,

(3.7)
where PL is the projector over left-handed states.

Eq. (3.7) and dimensional analysis imply that σ (νµ e
− → µ− νe) must diverge in

the ultraviolet as G2
F s, which signals again a more general theory, the SM .

Is this the end of the story? Coming back to the hierarchy problem, see Table
1, there is a dimension five operator (thus, suppressed at low energies by the high-
energy scale) that respects all gauge symmetries of the SM and that will give mass
to Majorana neutrinos [150]:

− 1

2Λ

(
ℓ̃L ϕ

)
F
(
ϕ̃† ℓL

)
+ h.c. (3.8)
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through diagonalization of the mass-term 4. Thus, MMajorana ≡ v2

Λ
F , where v2 is

related to the electroweak scale and Λ to the new Physics scale. The important les-
son we learn from this particular example is that regarding the SM as an EFT we
can go on learning about a more fundamental theory. To mention a recent example,
let us note that these ideas have also been applied under the hypothesis of minimal
flavor violation [151].

The same physical predictions in the full and effective theories should be
expected around the heavy-threshold region. Thus, both descriptions are related th-
rough a so-called matching condition: the two theories (with and without the heavy
field) should give the same S matrix elements for processes involving light particles.

Until the matching conditions have not been taken into account, one is not dealing
with the effective field theory, that is, the matching procedure is a fundamental step
to develop effective approaches. We will illustrate how this works with the Fermi
theory, see Eq. (3.7).

When the W -boson momentum is small compared to its mass, its propagator
can be Taylor-expanded to give:

1

p2 − M2
W

= − 1

M2
W

(
1 +

p2

M2
W

+
p4

M4
W

+ . . .

)
, (3.9)

and the lowest order in this expansion can be applied to the SM tree-level result
for u s → d u in the unitary gauge:

A =

(
i g√
2

)2

VusV
∗
ud (uγµPLs)

(
dγνPLu

) ( −i gµν
p2 −M2

W

)
, (3.10)

to give:

A =

(
i

M2
W

) (
i g√
2

)2

VusV
∗
ud (uγµPLs)

(
dγµPLu

)
+ O

(
1

M4
W

)
. (3.11)

Comparing this to the amplitude obtained with Eq. (3.7) we can match both

theories up to O
(

1
M4

W

)
corrections by relating the corresponding coupling constants

through the W mass:
GF√
2

=
g2

8M2
W

. (3.12)

Going further in the expansion of Eq. (3.9) will require to include additional
higher-dimension operators in Eq. (3.7).

4Left-handed leptons are collected in the ℓs, ϕs include the Higgs field and F is, in general ,
non-diagonal in flavour space.
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W
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u d
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Figura 3.1: Feynman diagrams for the flavour changing charged current process us→
du at lowest order: within the fundamental electroweak theory through W -exchange
(left) and using Fermi’s EFT (right). The effective local vertex is represented by
the thick dot.

In this particular example the tree level matching is not trivial because the
|∆S| = 1 processes are allowed without loops. For |∆S| = 2, the LO non-trivial
contribution comes from the loop box diagram.

In the Fermi theory it has been possible to compute the LECs in the EFT from
the fundamental theory. In our case, when studying low and intermediate energy
QCD, it will not be possible to derive from QCD the couplings of RχT , the mat-
ching conditions in this case will apply when demanding asymptotic QCD behaviour
to the Green functions and form factors obtained within RχT . That will impose so-
me restrictions on the effective couplings of the theory, as we will see.

3.6. Weakly and strongly coupled theories

A weakly coupled theory is one in which perturbation theory applies in a given
energy range, whereas it is strongly coupled in some energy interval if the couplings
are there comparable to (or even greater than) unity and any ordering for the per-
turbation series makes no sense. One might try to understand why asymptotic states
differ from interacting states for these strongly coupled theories as a consequence of
this property. In practice, and apart from very few realistic exceptions (like, for ins-
tance, Bethe-Salpeter equation [152, 153, 154] for bound states in QFT ) we are only
able to get rid of physical problems in QFT by using perturbative methods: Either
belonging to the original theory or to an EFT (in fact, the naming non- perturbative
methods has been generalized for this last case); so, it is clear that our inability for
dealing with such kind of mathematical problems makes EFTs even more necessary.

Finally, another consequence for weakly/strongly coupled theories is that in
them the näıf dimensional analysis is not/is modified by anomalous dimensions 5.
Anomalous dimensions (together with a non-abelian gauge group) can explain how
a theory can share ultraviolet freedom and infrared confinement, as it is the case for

5The anomalous dimensions are quantum corrections to the classical operator dimensions. Their
importance at different energy scales can be evaluated by using the so-called Renormalization
Group Equations.
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QCD. Ref. [155] gives an easy and illustrative example of this. We recall its main
features in the following: Let us consider the two-dimensional Thirring model [156]
for a fermionic field whose Lagrangian is

L = ψ (i∂/ −m)ψ − 1

2
g
(
ψγµψ

)2
. (3.13)

It can be shown that it is dual to the sine-Gordon model for a fundamental scalar
field, with the Lagrangian:

L =
1

2
∂µφ∂

µφ +
α

β2
cos βφ , (3.14)

where the couplings g and β are related by means of:

β2

4π
=

1

1 + g/π
, (3.15)

that indeed shows us that sine-Gordon strongly coupled model with β2 ≈ 4π can be
studied with the weakly coupled Thirring model (g ≈ 0). Then, we have two -equally
valid and quite different- alternatives for describing the same theory (this happens
because of the big anomalous dimensions that appear within strongly coupled theo-
ries at some scale. They can change drastically the behaviour of the different ope-
rators entering the EFT when considering them at different energies). At a given
energy scale, we can choose between a strongly coupled theory involving bosons that
has big anomalous dimensions and a weakly coupled theory whose degrees of free-
dom are fermions with little anomalous dimensions. From the purely formal point
of view, there is no reason to prefer one alternative to the other one, but in or-
der to compute it is clear that the second option -that has a smooth perturbative
behaviour- is more comfortable.

This example emphasizes again the importance of making a right selection of de-
grees of freedom. A theory that can be really involved at some energies (sine-Gordon
model, that is strongly coupled) can be studied by means of another one, which is
easier (Thirring model).

The parallelism with QCD is tempting. The strongly coupled low-energy QCD
can be treated by means of a weakly coupled theory written in terms of bosons, and
this will be much easier than if we would have tried to solve it using quarks and
gluons as the relevant fields.

3.7. Precise low-energy Physics as a probe for

New Physics

Under the conditions of the Appelquist-Carazzone Theorem one sees that the
effect of integrating out the heavy particles is to modify the values of the LECs and
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impose symmetry restrictions. We enumerated how all conditions of the theorem (but
for maybe the energy gap between particles in some regions of the spectrum) were
accomplished for the theory of strong interactions. However one can have EFTs
applicable to sectors of the rest of the SM that may not fulfill the theorem and
bring valuable information about the Physics at higher energies by analyzing with
precision the low-energy experiments because in this case the effect of heavy modes in
low-energy Physics will not be that mild. This is indeed the case for the electroweak
(EW ) sector of the SM , where spontaneous symmetry breaking affects the EW
vacuum and fermions are chiral in the sense defined above.

Thus, we understand that when extremely precise LEP data were analyzed and
compared to theoretical computations including many quantum corrections, the Z
width [157], and its decay into a b-b pair [158, 159], were shown to be so sensitive
to the yet-undiscovered top quark, through mt, that it indicated where to find it
at FERMILAB, as we told in the introduction. This is a clear and historically
interesting example of how immensely precise low-energy experiments can give us
clues about where physics beyond our model waits hidden.

We will add two related examples of current interest: an electroweak precision
test (measurement of the weak mixing angle) and the anomalous magnetic moment
of the muon. We will be very schematic here just in order to highlight the point we
wish to make, for a detailed analysis one can consult recent reviews on the topic
[160, 161], or Ref. [162].

Precision tests of the SM are promising places to look for physics BSM . An
accurate measurement must be supplemented by very precise input parameters and
higher order radiative corrections. At first sight it is striking that the measurement
with finest precision is the main source of uncertainty in the end. That highest
precision number is that of the fine structure constant, α, determined from the
measurement of the anomalous magnetic moment of the electron [163], with amazing
accuracy: ge/2 = 1.00115965218073(28) ⇒ α−1 = 137.035999084(51), relying on
perturbative QED as summarized in Ref.[164]. However, physics at higher energies
is not described by this α measured at zero momentum transfer but for the one
incorporating the quantum running. The shift of the fine structure constant from
the Thompson limit to high energies involves necessarily a low-energy region in
which non-perturbative hadron effects spoil that astonishing precision. In particular,
the effective fine structure constant at the Z pole plays an important role in EW
precision tests, like the weak mixing angle, θW , related to α, the Fermi constant,
GF , and MZ through [165, 166, 167]:

sin2θW cos2θW =
πα√

2GFM2
Z(1−∆r)

, (3.16)

where ∆r incorporates the universal correction ∆α(MZ), the quadratic dependence
onmt and all remaining quantum effects. In the SM , ∆r depends on various physical
parameters including the mass of the Higgs Boson, MH , still unknown. This way,
the measurements of sin2θW can help to put indirect bounds on MH [168, 169, 170].
The error on ∆α(MZ) dominates the theoretical prediction. Here and in the case of
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the muon magnetic moment anomaly the source of the uncertainty is similar, and
it depends on R(s), defined as follows:

R(s) =
σ (e+e− → had(γ))

σ (e+e− → µ+µ−(γ))
. (3.17)

Specifically, the hadron contribution ∆α
(5)
had(MZ) of the five quarks lighter than

the Z boson can be related to Eq. (3.17) via [171]:

∆α
(5)
had(MZ) = −

(
αM2

Z

3π

)
ℜe
∫ ∞

m2
π

ds
R(s)

s(s−M2
Z − iǫ)

, (3.18)

where

R(s) =
σ0
had(s)

4πα2/(3s)
, (3.19)

and σ0
had(s) is the total cross section for the annihilation into any hadron with va-

cuum polarization and initial state QED corrections subtracted off. As discussed
extensively in the introduction, we are lacking a way of using the QCD Lagrangian
that allows to compute Eq. (3.19) with enough accuracy to discriminate if there is
new physics associated to the measurement of sin2θ. The strategy is to use experi-
mental data on the e+e− annihilation into any hadron state from threshold up to
some energy (∼ 2 GeV) where we can already rely on perturbative QCD supplemen-
ted by a motivated description of the lineshape of the many resonances appearing
as sharp peaks in the hadron cross section. Therefore, the theoretical prediction of
R(s) -and of the observables that depend on it- includes experimental information.

The current accuracy of this dispersion integral is at the level of 1% and it is
dominated by the measurements in the region below a few GeV [172, 173, 174, 175,
176, 177, 178, 179, 180, 181, 182, 183].

As in the case of the fine-structure constant at the Z scale we have just consi-
dered, the theoretical (in the sense commented above) prediction of the anomalous
magnetic moment of the muon is dominated by the error on the hadron vacuum
polarization effects at non-perturbative energies. Using analyticity and unitarity it
was shown [184] that it could be computed from the dispersion integral:

ahad,LOµ =
1

4π3

∫ ∞

4m2
π

dsK(s)σ0(s) =
α2

3π2

∫ ∞

4m2
π

ds

s
K(s)R(s) , (3.20)

where the kernel K(s) ∼ 1/s is further enhancing the low-energy contributions. In
particular, the dominant part is given by the two-pion vector form-factor (F ππ

V (s)):

ahad,ππµ =
(αmµ

6π

)2 ∫ Λ

4m2
π

ds

s
σ3
π|F ππ

V (s)|2K(s) , (3.21)

where σπ is defined immediately above Eq. (C.7) and Λ is the scale up to which we
consider experimental data instead of the theoretical perturbative QCD prediction.
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A recent compilation of e+e− BaBar data gives [185] ahad,LOµ = (695,5± 4,1) ·
10−10, with similar results obtained by other groups [160, 161, 183, 186]. The current
prediction is [185, 187] aSMµ = 116591834(49) · 10−11, to be compared to the experi-
mental average aexpµ = 116592080(63) ·10−11, that yields for the difference exp−SM
∆aµ = 246(80) · 10−11, 3.1 standard deviations. This would seem an indication for
new physics [188]. However, given the facts that:

There have been discrepancies [189, 190] in the shape of R(s) (not that much in
the integrated value) in the region of interest between the different experiments
KLOE, CMD2, SND and BaBar that seemed to hint to underestimated
systematical errors in the unfolding of the data. An increase of precision in
the experimental measurement and a revision of the estimated uncertainties
in the treatment of radiative corrections could help settle this issue.

One should have an independent way of extracting ahad,LOµ using Rτ -Eq. (2.4)-
after an isospin rotation. This way one would have a theory prediction using τ
data instead of e+e− data. The results obtained with τ data seem to be closer
to the SM ones (1.9 σ away, [191]).

A common treatment of radiative correction (including maybe more than one
Monte Carlo generator) by the different collaborations would be desirable.

One should conclude that it is still early to claim for this BSM physics.
The purpose of this section has been to show a few selected physical observables

that allow for precision measurements at low energies that were sensitive to new
physics at higher energies. The SM would be the EFT of the one describing all
phenomena at this higher scale. In all cases that was possible because the EW sec-
tor of the SM did not fulfill the conditions of the Appelquist-Carazzone theorem,
and thus the effect of heavier modes was not only in modifying the values of the
LECs and imposing additional symmetry properties. It is also instructive to see
how in the cases of both sinθW and aµ this probe of BSM physics is polluted by
the hadron uncertainty imposed by low-energy QCD, some aspects of which we are
discussing through this Thesis.

3.8. Summary of EFTs

We conclude the first block of the chapter with a recapitulation on the main
features of EFTs. They are the following ones:

Dynamics at low energies does not depend on details of physics at high ener-
gies.

One includes in the action only the relevant degrees of freedom according to
the physics scale considered and to the particle masses. If there are large energy
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gaps, we can decouple the different energy scales, that is:

0 ← m ≪ E ≪ M → ∞ .

There is a well-defined perturbative way of incorporating finite corrections
induced by these scales.

Exchanges mediated by heavy particles have been replaced by a set of local
(non-renormalizable) operators involving only the light modes.

The EFT -Lagrangian is a sum of operators, L =
∑

i ciOi, whose coefficients
scale as ci → Edi−γi ci. Here, di comes from dimensional analysis and γi is the
anomalous dimension. Provided we have chosen the right degrees of freedom,
anomalous dimensions are small and the leading behaviour at low energies is
given by the lowest dimension operators. Then, going further in the expansion
we improve our accuracy: to include all corrections up to order 1/Ep, one
should include all operators with dimension ≤ di− γi + p, i.e., all terms with
coefficients of dimension ≥ −p. The number of operators to be considered at
each order is finite.

Although EFTs are not renormalizable in the classical sense -they are ul-
traviolet unstable-, they are order-by-order renormalizable for a given asked
accuracy.

EFTs have the same infrared behaviour than the underlying theory. On the
contrary, EFTs do not possess the same ultraviolet behaviour than the funda-
mental one, so we need to perform a matching procedure to ensure that they
are equivalent at a given intermediate (matching) scale.

Whenever we respect symmetry principles for building the EFT , we will get
the right theory written in terms of the variables we have chosen (Weinberg’s
theorem).

Under some conditions, Sect. 3.4, the only remnants of the high-energy dyna-
mics are in the LECs and in the symmetries of the EFT (Decoupling theorem).

3.9. Introduction to Chiral Perturbation Theory

In this section we will introduce a paradigm of EFTs, χPT . We will need it
to build the RχT Lagrangian. The remainder of the chapter will be devoted to it.

We have seen in the Introduction, Eq. (1.17), how the strong coupling evolves to
smaller values with increasing energy and the converse in the other end of energies:
it increases its value as the energy gets smaller and smaller. A look to Figure 3.2
could be instructive.
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Figura 3.2: Summary of the values of αS(µ) at the values of µ where they are
measured. The lines show the central values and the ±1σ limits of the PDG [8]
average. The figure clearly shows the decrease in αS when increasing µ. The data
correspond to -as µ increases- τ width, Υ decays, deep inelastic scattering, e+e−

event shapes at 22 GeV from the JADE data, shapes at TRISTAN at 58 GeV, Z
width, and e+e− event shapes at 135 and 189 GeV.

One sees that at µ ∼ 2 GeV the value of αS(µ) is not yet that big to prevent a
meaningful perturbative expansion in terms of it. Following the RGE to extrapola-
te to lower values of µ it is found that at a typical hadron scale µ ∼ Mρ,MP one
can have αS(µ) ≥ 0.5 that jeopardizes that approach. Since hadron decays of the τ
span the range 0.14− 1.78 GeV, one should find a way out that starts from QCD.
One rigorous alternative is to simulate on the lattice the QCD action. We will not
report about this option here. Although it has proved to be very successful in many
non-perturbative strong-interaction problems, the processes we study here have not
been addressed by the lattice community yet. One can also construct models that
keep this or that feature of QCD, but we do not find this alternative satisfactory.
Finally, one can build an EFT of QCD for this subset of energies using as variables
the active degrees of freedom as we will describe next.

In order to discuss the global symmetries of the QCD Lagrangian, Eq. (1.15), we
will restrict ourselves to the so-called light sector of QCD, with nf light flavours.
In our case, nf = 3: u, d, s, that are much lighter than the so-called heavy quarks
c, b, t. The characteristic hadron scale lies in between both regimes. Therefore, in-
tegrating out these three heavy quarks we go from 6 QCDnf=6 to QCDnf=3. The
Lagrangian of QCDnf=3 in the limit of massless light quarks (so-called chiral limit)

6The effective strong coupling in the two theories are related by a matching condition, introduced
in Sect. 3.5. This is discussed in Ref. [192], for instance.
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is:

L0
QCD = i qLD/ qL + i qRD/ qR −

1

4
Ga

µνG
µν
a , (3.22)

where the upper-index zero reminds us the limit taken, and we have employed the
usual notation for the left(right)-handed spinors qL(qR) and projectors: qL ≡ PLq
(qR ≡ PRq).

The Lagrangian, Eq. (3.22), is invariant under global transformations belonging to
SU(nf )L⊗SU(nf )R⊗U(1)V ⊗U(1)A. U(1)V is trivially realized in the meson sector
but it gives rise to baryon number conservation, U(1)A gets broken by anomalies
and explains why the η′ is heavier than the η or the kaons. Finally, it remains
SU(nf )L ⊗ SU(nf )R, the so-called chiral group of transformations in flavour space,
that acts on the chiral projections of the quark fields in the following way:

qL −→ qL
′ = gLqL ,

qR −→ qR
′ = gRqR , (3.23)

where gL,R ∈ SU(nf )L,R.
This chiral symmetry, which should be approximately valid in the light quark

sector (u, d, s), is however not seen in the meson spectrum (Table 3.1):

JP Particle m (MeV) JP Particle m (MeV)

0− π0 ∼ 135.0 0+ a0 ∼ 985

π± ∼ 139.6 a±0 ∼ 985

η, η′ ∼ 547.9, (957.8) f0 ∼ 980

K± ∼ 493.7 K∗± ∼ 800

K0, K
0 ∼ 497.7 K∗0, K

∗0 ∼ 800

1− ρ0 ∼ 775.8 1+ a01 ∼ 1230

ρ± ∼ 775.5 a±1 ∼ 1230

ω, φ ∼ 782.7, (1019.5) h1, f1 ∼ 1170, (1281.8)

K∗± ∼ 892.0 K∗±
1 ∼ 1273

K∗0, K
∗0 ∼ 891.7 K∗0

1 , K
∗0
1 ∼ 1273

Cuadro 3.1: Spectrum of the lightest mesons [8]. The f0(600) or σ [193, 194] is not included
in the Table.

The conclusions we draw are the following ones:

Mesons are nicely classified into SU(3)V representations.

Reversing intrinsic parity changes drastically the spectrum (just compare the
masses of the octet of JP = 0− versus that with JP = 0+, or JP = 1−

vs. JP = 1+). Thus, a transformation involving γ5 is not a symmetry of the
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spectrum. Chiral transformations seem not to be a symmetry of low-energy
QCD.

The octet of JP = 0− stands out being its members much lighter than the
ones in other octets.

Although chiral symmetry changes the parity of a given multiplet, the previous
spectrum is not contradictory with it. We shall recall that there exist two ways of
realizing a global symmetry: In the Wigner-Weyl way all the symmetries of the La-
grangian are shared by the vacuum of the theory and then they are manifest in the
spectrum. In the Nambu-Goldstone way, there is a so-called spontaneous breakdown
of the symmetry that makes compatible the observed spectrum with the underlying
approximate symmetry.

There are two fundamental theorems concerning spontaneous symmetry breaking:
Goldstone theorem [122, 195], which is devoted to global continuous symmetries and
Higgs-Kibble theorem [196, 197, 198, 199, 200], that worries about local gauge sym-
metries.

Chiral symmetry is a global symmetry, then Goldstone theorem is the one applied
here. We can state it in the following way: Given a global continuous symmetry of
the Lagrangian: either the vacuum shares the symmetry of the Hamiltonian; or there
appear spin zero massless particles as a display of Spontaneous Symmetry Breaking.
In the last case, for every spontaneously broken generator, the theory must contain
a massless particle, the so-called Goldstone boson.

Vafa and Witten showed [201] that the ground state of the theory must be inva-
riant under vector transformations, so that Spontaneous Symmetry Breaking cannot
affect the vector part of the chiral subgroup (V a

µ ≡ Ra
µ + La

µ), but the axial one
(Aa

µ ≡ Ra
µ − La

µ).
Let us consider [202, 203] a Noether charge Q, and assume the existence of an

operator O that satisfies
〈 0|[Q,O]|0 〉 6= 0 ; (3.24)

the only possibility for this to be valid is that Q|0 〉 6= 0. Goldstone theorem states
there exists a massless state |G 〉 such that

〈 0|J0|G 〉〈G|O|0 〉 6= 0 . (3.25)

It is important to notice that the quantum numbers of the Goldstone boson are
dictated by those of J0 and O. The quantity in the left-hand side of Eq. (3.24) is
called the order parameter of SSB.

Considering that U(1)A is affected by anomalies, only SU(nf )A can be concerned
with the Goldstone theorem. Then, for nf = 3 and for the lightest quark flavours
(u, d, s) we end up with eight broken axial generators of the chiral group and,
correspondingly, eight pseudoscalar Goldstone states |Ga 〉, which can be identified
with the eight lightest hadrons (three πs, four Ks and the η, see Table 3.1), their
(relatively) small masses being generated by the explicit breaking of chiral symmetry
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induced by the quark mass matrix entering the QCD Lagrangian. The corresponding
operators,Oa, must be pseudoscalars. The simplest possibility isOa = qγ5λ

aq, which
satisfies

〈 0|[Qa
A, qγ5λ

bq]|0 〉 = −1
2
〈 0|q

{
λa, λb

}
q|0 〉 = −2

3
δab 〈 0|qq|0 〉 . (3.26)

The quark condensates

〈 0|uu|0 〉 = 〈 0|dd|0 〉 = 〈 0|ss|0 〉 6= 0 (3.27)

are then the natural order parameters of Spontaneous Chiral Symmetry Breaking
(SχSB).

3.10. Different representations for the Goldstone

fields

Based on the previous reasoning, our basic assumption is the pattern of SχSB:

G ≡ SU(3)L ⊗ SU(3)R
−−−−→
SχSB H ≡ SU(3)V . (3.28)

Since there is a mass gap between the lightest multiplet of pseudoscalar particles
and the rest of the spectrum, we can easily apply the Weinberg’s approach and for-
mulate an EFT dealing only with these modes.

The general formalism for EFT -Lagrangians with SSB was worked out by Ca-
llan, Coleman, Wess and Zumino (CCWZ) [123, 124]. A very clear explanation can
be found in Ref. [136].

Consider a theory in which a global symmetry group G is spontaneously broken
down to one of its subgroups, H . The vacuum manifold is the coset space G/H .

The set of coordinates we choose has to be able to describe the local orientation
of the vacuum for small fluctuations around the standard vacuum configuration. Let
Ξ(x) ∈ G be the rotation matrix that transforms the standard vacuum configuration
to the local field one. Due to the invariance of the vacuum under H transformations,
Ξ happens to be not unique; namely, Ξ(x) h(x) -where h ∈ H- gives the same con-
figuration. In the present case, Ξ(x) ∈ O(N) and we can parameterize any vector φ
by means of the suitable Ξ matrix:

φ(x) = Ξ(x)




0
0
.
.
.
0
v




. (3.29)
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The same configuration φ(x) can also be described by Ξ(x) h(x). In our example,
h(x) is a matrix of the form:

h(x) =

(
h′(x) 0
0 1

)
, (3.30)

with h′(x) is an arbitrary O(N − 1) matrix, since:

(
h′(x) 0
0 1

)




0
0
.
.
.
0
v




=




0
0
.
.
.
0
v




. (3.31)

The CCWZ prescription is to pick a set of broken generators X , and choose

Ξ(x) = eiX·π(x) , (3.32)

where π(x) describes the Goldstone modes.
Under a global transformation g, the matrix Ξ(x) changes to a new matrix g

Ξ(x) for φ(x) → gφ(x), that it is not in the standard form of Eq. (3.32), but can
be written as

g Ξ = Ξ′ h , (3.33)

that is usually turned into

Ξ(x) −→ g Ξ(x) h−1(g, Ξ(x)) . (3.34)

CCWZ formalism is characterized by equations (3.32) and (3.34) for the pseudo-
Goldstone boson (pG) fields and their transformation law. The transformation h
appearing there is non-trivial because the Goldstone boson manifold is curved. Any
other choice gives the same results as CCWZ formalism for all observables, such as
the S matrix, but does not give the same off-shell Green functions.

The CCWZ prescription in Eq. (3.32) says nothing about which set of broken
generators we would better choose. Depending on our choice, we will have a different
base. There are two that have become standard in order to write the QCD chiral
Lagrangian, the so-called ξ-basis and the Σ-basis [136]. Each of them brings us a
different equivalent parameterization (commonly called U and u, respectively).

There are many simplifications that occur for QCD because the coset space G/H
is isomorphic to a Lie group.

Let Xa = T a
L + T a

R be our choice of broken generators.
An element g ∈ G can be written as:

g =

(
L 0
0 R

)
, (3.35)
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where L(R) ∈ SU(3)L(R). The unbroken transformations are of the form (3.35),
with L = R = U ,

g =

(
U 0
0 U

)
. (3.36)

Now, using the CCWZ recipe, Eq. (3.32):

Ξ(x) = e iX·π(x) = exp

(
i T · π 0

0 −i T · π

)
=

(
ξ(x) 0
0 ξ†(x)

)
, (3.37)

where
ξ = e iX·π (3.38)

stands for the upper block of Ξ(x). The transformation rule Eq. (3.34) gives

(
ξ(x) 0
0 ξ†(x)

)
→
(
L 0
0 R

)(
ξ(x) 0
0 ξ†(x)

)(
U−1(x) 0

0 U−1(x)

)
, (3.39)

and, consequently, the transformation rule for ξ,

ξ(x) −→ L ξ(x)U−1(x) = U(x) ξ(x)R† , (3.40)

which defines U in terms of L (R) and ξ. Instead, if we choose Xa = T a
L as the basis

for broken generators, we will have U = R, and

Σ(x) −→ LΣ(x)R† . (3.41)

Finally, comparing Eqs. (3.40) and (3.41), one concludes that Σ and ξ are related
by

Σ(x) = ξ2(x) . (3.42)

In the context of χPT , everybody writes U(x) instead of Σ(x) and u(x) substitu-
tes ξ(x). It is also more common to employ Φ(x) for the coordinates of the Goldstone
fields. We will follow this notation from now on.

The Goldstone boson nature restricts these fields to be angular variables, thus
dimensionless. It is convenient to work with boson fields of mass dimension one,
which motivates the standard choice:

u = ei T ·Φ/F , U = u2 (3.43)

where F ∼ 92.4 MeV is the pion decay constant.

Φ(x) =
√
2 TaΦ

a(x) =
1√
2

8∑

a=1

λaΦ
a =




1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K
0 − 2√

6
η8


 ,

(3.44)
where the Gell-Mann matrices in flavour space, λa, -which are the fundamental re-
presentation of SU(3)- have been introduced with the same normalization as for
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SU(NC) generators of QCD.
Notice that U(Φ) transforms linearly under the chiral group, but the induced

transformation on the pG fields is highly non-linear.
There is abundant good literature available on this topic and its specific applica-

tion to χPT [143, 202, 203, 204, 205, 206].

3.11. Lowest order Lagrangian. Method of exter-

nal currents

In order to obtain an EFT realization of QCD at low energies for the light
quark sector, we should write the most general Lagrangian involving the matrix
U(Φ) (or u(Φ)), which respects chiral symmetry. The Lagrangian can be organized
in terms of increasing powers of momentum or, equivalently, of derivatives (the
subindex 2n refers to that):

LχPT =

∞∑

n=1

L2n , (3.45)

being the dominant behaviour at low energies given by the terms with the least
number of derivatives. Unitarity of U obliges two derivatives to be present for having
a non-trivial interaction. At lowest order, the effective chiral Lagrangian in the U -
formalism is uniquely given by the term:

L2 =
F 2

4
〈 ∂µU †∂µU 〉 . (3.46)

where 〈A 〉 is short for trace in flavour space of the matrix A.
Expanding the matrix that exponentiates the pG fields in a power series in Φ,

we get the Goldstone kinetic terms plus a tower of interactions increasing in the
number of pseudoscalars. It is a capital fact that all interactions among the Golds-
tones can be predicted in terms of a single coupling, F . The non-linearity of the
EFT -Lagrangian relates the amplitudes of processes involving a different number
of pGs, allowing for absolute predictions in terms of F . This sector was thoroughly
studied by Weinberg [3, 207, 208, 209].

But the lightest mesons do not interact solely due to elastic scattering among
themselves. In addition to the strong interaction, they also experience electromagne-
tic and (semileptonic) electroweak interactions and this has to be taken into account.
In order to compute the associated Green functions, we will follow the procedure
employed by Gasser and Leutwyler, who developed χPT consistently to one loop
([4, 5, 210]). We extend the chiral invariant QCD massless Lagrangian, Eq. (3.22),
by coupling the quarks to external Hermitian matrix fields vµ, aµ, s, p

7:

LQCD = L0
QCD + qγµ (vµ + γ5aµ) q − q (s− iγ5p) q . (3.47)

7We do not include the tensor source [211].
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External photons andW boson fields are among the gauge fields and (pseudo)sca-
lar fields provide a very convenient way of incorporating explicit χSB through the
quark masses (see Eq. (3.56), whereM is defined.):

rµ → rµ + eQAµ ,

ℓµ → ℓµ + eQAµ +
2 e√

2sinθW

(
W †T+ + h.c.

)
,

s → s + M , (3.48)

being

Q =




2
3

0 0
0 −1

3
0

0 0 −1
3


 , T+ =




0 Vud Vus
0 0 0
0 0 0


 . (3.49)

Inclusion of external fields promotes the global chiral symmetry to a local one:

q → gR qR + gL qL ,

s + ip → gR (s + ip) g†L ,

ℓµ → gL ℓµ g
†
L + igL ∂µ g

†
L ,

rµ → gR rµ g
†
R + igR ∂µ g

†
R . (3.50)

where we have introduced the definitions rµ ≡ vµ+aµ and ℓµ ≡ vµ−aµ; and requires
the introduction of a covariant derivative, DµU , and associated non-Abelian field-
strength tensors, F µν

L,R:

DµU = ∂µU − irµU + iUℓµ , DµU → gRDµ U g
−1
L ,

F µν
x = ∂µ xν − ∂ν xµ − i [xµ, xν ] , x = r, ℓ. (3.51)

The transformations of the external sources under the discrete symmetries P//C
are as follows:

s + ip → s − ip // (s − ip)⊤,

ℓµ → rµ // − r⊤µ ,
rµ → ℓµ // − ℓ⊤µ .

The power of the external field technique is exhibited when computing chiral
Noether currents. Green functions are obtained as functional derivatives of the ge-
nerating functional, Z [vµ, aµ, s, p], defined via the path-integral formula

exp {iZ} =

∫
DqDqDGµ exp

{
i

∫
d4xLQCD

}
=

∫
DUexp

{
i

∫
d4xLeff

}
.

(3.52)
At lowest order in momenta, Z reduces to the classical action, S2 =

∫
d4xL2, and

the currents can be trivially computed by taking suitable derivatives with respect
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to the external fields. In particular, one realizes the physical meaning of the pion
decay constant, F , defined as

〈 0|(Jµ
A)

12|π+(p) 〉 ≡ i
√
2F pµ . (3.53)

The locally chiral invariant Lagrangian of lowest order describing the strong,
electromagnetic and semileptonic weak interactions of mesons was given by Gasser
and Leutwyler [4, 5]:

L2 =
F 2

4
〈DµUD

µU † + χU † + χ†U 〉 , χ = 2B(s + ip). (3.54)

The two LECs that characterize completely the O(p2)-chiral Lagrangian are
related to the pion decay constant and to the quark condensate in the chiral limit:

Fπ = F [1 + O(mq)] = 92.4MeV ,

〈 0|uu|0 〉 = −F 2B [1 + O(mq)] . (3.55)

A consistent chiral counting must be developed to organize the infinite allowed
terms in the Lagrangian. Depending on the actual relation of these two LECs one
could have different EFTs for low-energy QCD. This illustrates the fact that the
Weinberg’s approach to EFTs does only rely on symmetries but does not have dy-
namical content incorporated. This issue is studied in the next section.

3.12. Weinberg’s power counting rule

Chiral Lagrangians were originally organized in a derivative expansion based
on the following chiral counting rules (see Table 3.2).

Using Eqs. (3.43), (3.44) and setting the external scalar field equal to the quark

Operator O
U p0

DµU , vµ, aµ p

F µν
L,R p2

s, p p2

Cuadro 3.2: Chiral counting in Standard χPT .

mass matrix -that is, explicitly breaking chiral symmetry in the same way it happens
in QCD-,

s = Mq =




mu 0 0
0 md 0
0 0 ms


 , (3.56)
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one can straightforwardly read off from Eq. (3.54) the pseudoscalar meson masses
to leading order in mq:

m2
π± = 2m̂B ,

m2
π0 = 2m̂B − ε + O(ε2),

m2
K± = (mu + ms)B ,

m2

K
0
,K0

= (md + ms)B ,

m2
η8 =

2

3
(m̂ + 2ms)B + ε + O(ε2), (3.57)

where [202]

m̂ =
1

2
(mu + md) , ε =

B

4

(mu −md)
2

(ms − m̂)
. (3.58)

With the quark condensate assumed to be non-vanishing in the chiral limit
(B 6= 0), these relations explain the chiral counting rule in Table 3.2.

Up to this point, χPT is a very elegant way of understanding the phenomenolo-
gical successes obtained in the pre-QCD era. The well-known relations already got
with current algebra techniques are recovered using Eqs. (3.54) and (3.56):

F 2m2
π = −2m̂ 〈 0|q q|0 〉 [212] (3.59)

B =
m2

π

2m̂
=

m2
K+

ms + mu

=
m2

K0

ms + md

[212] , [213], (3.60)

3m2
η8 = 4m2

K − m2
π [214] , [215], (3.61)

but the real power of χPT -as an EFT - lies in the fact that it gives a perfectly
defined way of taking into account the next orders in the chiral expansion and the
quantum corrections.
χPT is based on a two-fold expansion: as a low-energy effective theory, it is an

expansion in small momenta. On the other hand, it is also an expansion in the quark
masses, mq, around the chiral limit. In full generality, the Lagrangian is:

LχPT =
∑

i,j

Lij , Lij = O(pimj
q) . (3.62)

The two expansions become related by Eq. (3.57). If the quark condensate is non-
vanishing in the chiral limit, meson masses squared start out linear in mq. Assuming
the linear terms to give the dominant behaviour there, we end up with the standard
chiral counting with mq ∼ O(p2) and

Leff =
∑

d

Ld , Ld =
∑

i+2j= d

Lij . (3.63)

In short, Eq. (3.54) has two LECs: F and B. χPT assumes B to be big compared
to F and organizes the chiral counting according to that assumption. Generalized
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χPT [216, 217, 218] was developed as a scheme adapted for much smaller values of
B, a picture that is not supported by lattice evaluations of the condensate [219, 220,
221, 222, 223, 224, 225, 226] or estimations based on sum rules [227, 228, 229, 230,
231, 232, 233]. Another issue that is still unsolved concerns the possible instabilities
due to vacuum fluctuations of sea q − q̄ pairs, as the number nf of light fermions
increases [234, 235, 236, 237, 238, 239, 240].

In order to build higher orders in the chiral expansion it is better to use the chiral
tensor formalism that uses u instead of U as the exponential non-linear realization
of the pGs. This is so because the building blocks in the U -formalism (U , F µ,ν

L,R, χ) do
not transform in the same way under the chiral group. While this is not an issue for
dealing with the lowest order Lagrangians, in can make very difficult to determine
the minimal set of independent operators at higher chiral orders.

The Lagrangian must be chiral symmetric, hermitian, and Lorentz, parity (P )
and charge conjugation (C) invariant. In the u-formulation one uses traces of chiral
tensors either transforming as

X → h(g, Φ)X h(g, Φ)† , (3.64)

or being chiral invariant.
With this purpose, we define the chiral tensors:

uµ = i
{
u† (∂µ − irµ)u− u (∂µ − ilµ)u†

}
,

χ± = u† χu† ± u χ† u , (3.65)

The lowest order chiral Lagrangian that can be written respecting also all other
symmetries is then

L2 =
F 2

4
〈 uµ uµ + χ+ 〉 . (3.66)

Explicit χSB is incorporated through χ+, where χ is given by Eq. (3.54). Then,
in the isospin limit,

χ = 2B s =




m2
π 0 0
0 m2

π 0
0 0 2m2

K −m2
π


 . (3.67)

The content of Eqs. (3.54) and (3.66) is exactly the same.

Now we will explain why the expansion in an EFT may not be simply an
expansion in the number of loops. This is indeed what happens in χPT .

Consider an arbitrary complex Feynman diagram involving just pGs. We recall
the expansion in χPT , Eq. (3.45). The LO Lagrangian supplies O(p2) vertices, the
NLO one O(p4) couplings, and so on and so forth. Using Nd to denote the number
of vertices obtained employing the Lagrangian of order O(pd), remembering that pG
fields have mass dimension one and that any momentum running inside a loop is to
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be integrated over four dimensions -after proper renormalization-, one may conclude
that for this generic diagram all powers of momentum will fulfill the relation:

D = 4L − 2BI +
∑

d

Nd d , (3.68)

being L the number of loops and BI the number of internal boson lines, respectively.
Moreover, there is a topological relation for any connected Feynman diagram

L = BI −
(
∑

d

Nd − 1

)
(3.69)

that one can use to erase BI from Eq. (3.68) to end up with Weinberg′s power
counting rule [3]:

D = 2L + 2 +
∑

d

Nd(d− 2) . (3.70)

It is straightforward to read off from (3.70) the exact ordering of the chiral ex-
pansion:

D = 2 corresponds to L = 0 and N2 = 1, i.e., tree level contributions obtained
using Eq. (3.54) -or (3.66)-. This makes sense: we recover the predictions of
old current algebra as the dominant very low-energy behaviour in χPT .

D = 4 is obtained either with L = 0 and N4 = 1, or with L = 1 and arbitrary
insertions of N2. Tree level contributions coming from L4 are to be balanced
with one-loop diagrams formed with L2. And so on. This is in agreement with
the order-by-order renormalization of χPT : the divergences generated at a
given chiral order are renormalized by the appropriate counterterms appearing
at the next order.

However, this is not the whole story. For χPT to be dual to QCD at low ener-
gies it must satisfy classical symmetries slightly modified by quantum properties.
Classical symmetries can be swapped away by anomalies, which are long-distance
non-perturbative effects. And this is what happens with U(1)A for the massless QCD
Lagrangian, Eq. (3.22). To ensure the duality, every aspect of low-energy QCD must
be realized in the same way in χPT and, particularly, one must add a term that
reproduces this anomaly, as it is discussed in the next section. Moreover, it is not
possible to write a generating functional for massless QCD that is simultaneously
invariant under the subsets of V and A transformations of the chiral group. It is
mandatory to include a term that mimics this behaviour whose degrees of freedom
are pGs. This task was carried out by Wess, Zumino and Witten [241, 242], who
wrote such a kind of functional, WZWf . It happens to start contributing at O(p4).
Therefore, three contributions shape NLO chiral expansion that are, schematically:
L = 0 with N4 = 1, L = 1 ∀ N2, and WZWf .
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3.13. NLO in the chiral expansion

The lowest order Lagrangian is O (p2) (Eq. (3.66)) for even intrinsic parity
and O (p4) (the WZWf) in the odd-intrinsic parity sector.

There is a new operator that enters the O(p4) Lagrangian in the u-formalism:

fµν
± = uF µν

L u† ± u† F µν
R u , (3.71)

that collects the left(right)-handed field-strength tensors presented in Eq. (3.51).
The covariant derivative in this formalism reads:

∇µX = ∂µX + [Γµ, X ] , (3.72)

defined in terms of the chiral connection

Γµ =
1

2

{
u† (∂µ − irµ) u + u (∂µ − ilµ)u

†} , (3.73)

for the covariant derivative to be transformed in the same way as X does, Eq. (3.64).
It easy to check that (∇µX)† = ∇µ(X

†). The connection does not transform co-
variantly as X . It will be useful when introducing the chiral multiplets of resonances
in RχT , which transform in the same fashion. With Γµ one may also build the
covariant tensor

Γµν = ∂µΓν − ∂νΓµ + [Γµ,Γν ] . (3.74)

The other O(p2) operators transforming covariantly, Eq. (3.64) are:

uµuν ,

hµν = ∇µuν + ∇νuµ , (3.75)

where it has been used that uµ can be written as

uµ = i u†DµUu
† = −i uDµU

† = u†µ, (3.76)

and is traceless.
The relevant transformation properties of chiral tensors in this formalism are

shown in Table 3.3. Taking these into account, we achieve the most general O(p4)
chiral Lagrangian written in terms of them:

L4 = L1〈 uµuµ 〉2 + L2〈 uµuν 〉〈 uµuν 〉 + L3〈 uµuµuνuν 〉 + L4〈 uµuµ 〉〈χ+ 〉
+L5〈 uµuµχ+ 〉 + L6〈χ+ 〉2 + L7〈χ− 〉2 + L8/2 〈χ2

+ + χ2
− 〉

− i L9〈 fµν
+ uµuν 〉 + L10/4 〈 f+µνf

µν
+ − f−µνf

µν
− 〉

+ i L11〈χ−(∇µu
µ + i/2χ−) 〉 − L12〈 (∇µu

µ + i/2χ−)
2 〉

+H1/2 〈 f+µνf
µν
+ + f−µνf

µν
− 〉 + H2/4 〈χ2

+ − χ2
− 〉 , (3.77)

where the terms whose coefficients are L11 and L12 do vanish considering the equa-
tions of motion (EOM) of O(p2). The EOM for L2 is:

OEOM
2 (u) = ∇µu

µ − i

2

(
χ− −

1

nf
〈χ− 〉

)
= 0; (3.78)
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L11 and L12 can now be skipped at O(p4) using that:

Loff−shell
4 = L11〈χ−OEOM

2 (u) 〉 − L12〈OEOM
2 (u)OEOM

2 (u)† 〉. (3.79)

The terms with coefficients H1 and H2 are contact terms relevant for the renor-
malization of χPT .

The renormalization of χPT needed to work at O(p4) was accomplished in Refs.

Operador P C h.c. χ order

uµ −uµ uTµ uµ p

χ± ±χ± χT
± ±χ± p2

fµν± ±fµν
± ∓fT

µν ± fµν± p2

Φ -Φ ΦT Φ 1

u u† uT u† 1

Γµ Γµ -ΓµT -Γµ p

uµν −uµν † uTµν u†µν p2

∇µuν -∇µuν (∇µuν)
T ∇µuν p2

Cuadro 3.3: Transformation properties under C, P and hermitian conjugation of the
chiral tensors and other useful structures in the u-formalism. T means transposed.

[4, 5]. The divergences that arise using L2 at one-loop, divergences are of order O(p4)
and are renormalized with the LECs of L4:

Li = Lr
i (µ) + Γi

µD−4

32π2

{
2

D − 4
+ C

}
,

Hi = Hr
i (µ) + Γ̃i

µD−4

32π2

{
2

D − 4
+ C

}
, (3.80)

where D is the space-time dimension and C is a constant defining the renormaliza-
tion scheme.

The renormalized couplings, Lr
i (µ) do depend on the arbitrary renormalization

scale µ. This dependence cannot survive in any physical observable. As it had to
happen, it is canceled out with that coming from the loop in any physically mea-
ningful quantity.

As we said, the odd-intrinsic parity sector starts at O (p4). Its appearance is due
to one of the anomalies affecting the chiral group U(3)L ⊗ U(3)R. On the one hand
there is the anomaly which makes that the classical symmetry U(1)A is lost at the
quantum level. Apart from group color factor, it is identical to the case of the axial
anomaly of QED, discovered perturbatively in one-loop computations [243, 244] by
Adler, Bell and Jackiw. Later on, the proof that this result does not receive radiative
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corrections [245] by Adler and Bardeen insinuated that anomalies could have a non-
perturbative nature, as it was shown by Fujikawa, using the path-integral formalism
[246, 247].

On the other hand, there is an anomaly that affects the whole U(3)L ⊗ U(3)R ∼
U(3)V ⊗ U(3)A symmetry group that originates in the fact that it is not possible
to preserve the simultaneous invariance of the generating functional under vector
and axial-vector transformations. Wess and Zumino [241] were the first to obtain
a functional generating this anomaly that affects chiral transformations written in
terms of pGs. Operatively, it is more useful the one derived later by Witten [242],
that I will present here following the discussion in Ref. [248].

The fermionic determinant does not allow for a chiral invariant regularization.
Given the transformations

gR = 1 + i(α(x) + β(x)) , gL = 1 + i(α(x)− β(x)), (3.81)

the conventions in the definition of the fermionic determinant may be chosen to pre-
serve the invariance of the generating functional, Z, either under V transformations,
or under the A ones; but not both simultaneously. Choosing to preserve invariance
under the transformations generated by the vector current, the change in Z only
involves the difference β(x) between gR and gL.

δZ = −
∫

dx〈 β(x)Ω(x) 〉 , (3.82)

Ω(x) =
NC

16π2
εαβµν

[
vαβ vµν +

4

3
Dα aβ Dµaν +

2i

3
{ vαβ, aµ aν}

+
8i

3
aµ vαβ aν +

4

3
aαaβ aµ aν

]
, (3.83)

vαβ = ∂α vβ − ∂βvα − i [vα, vβ ] , (3.84)

Dα aβ = ∂α aβ − i [vα, aβ ] . (3.85)

Notice that Ω only depends on the external fields, vµ and aµ, and that the quark
masses do not occur.

The explicit form for the functional Z [U, ℓ, r] that reproduces the chiral anomaly
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given by Witten [242] is:

Z [U, ℓ, r]WZW = − i NC

240π2

∫

M5

d5xεijklm〈ΣL
i Σ

L
j Σ

L
k Σ

L
l Σ

L
m 〉 (3.86)

− iNC

48π2

∫
d4xεµναβ

(
W (U, ℓ, r)µναβ − W (1, ℓ, r)µναβ

)

W (U, ℓ, r)µναβ = 〈U ℓµ ℓν ℓα U † rβ +
1

4
U ℓµ U

† rν U ℓα U
† rβ + i U ∂µ ℓν ℓα U

† rβ

+ i ∂µ rν U ℓα U
† rβ − iΣL

µ ℓν U
† rα U ℓβ + ΣL

µ U
† ∂ν rα U ℓβ

−ΣL
µ Σ

L
ν U

† rα U lβ + ΣL
µ lν ∂α lβ + ΣL

µ ∂ν lα lβ

− iΣL
µ ℓν ℓα ℓβ +

1

2
ΣL

µ ℓν Σ
L
α ℓβ − iΣL

µ Σ
L
ν Σ

L
α ℓβ 〉

− (L ←→ R) , NC = 3 ,

ΣL
µ = U † ∂µ U , ΣR

µ = U ∂µ U
† , (3.87)

where (L ←→ R) stands for the exchange

U ←→ U † , ℓµ ←→ rµ , ΣL
µ ←→ ΣR

µ . (3.88)

The first term in Eq. (3.86) bears the mark of the anomaly: It is a local action
in five dimensions that can not be written as a finite polynomial in U and DµU
in four dimensions. This term involves at least five pseudoscalar fields and will not
contribute either to the hadron three meson decays of the τ or to its radiative decays
with one meson in the final state. Eqs. (3.86) and (3.87) contain all the anomalous
contributions to electromagnetic and semileptonic weak meson decays: π0 → γγ,
π → eνeγ, etc. For further discussions on this topic see also Ref. [249].

3.14. NNLO overview and scale over which the

chiral expansion is defined

χPT is an expansion in powers of momentum over a typical hadronic scale
that we can understand in two equivalent ways:

pGs stand out due to SχSB. This generates -through quantum effects-, the
SχSB-scale, Λχ, as a natural parameter over which the chiral expansion is
defined.

Decoupling theorem told us that one of the effects of heavy integrated-out
particles in the physics of light modes appears in inverse powers of these lar-
ger masses. Then, we expect typical masses of the lowest-lying resonances to
provide this scale, as well.
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I will start considering the appearance of that scale through loops. For this, let
us consider scattering among pGs at O(p4). Apart from the tree level contribution
of L4, there will be that given by L2 at one-loop, whose amplitude is of order

I ∼
∫

d4p

(2π)4
p2

F 2

p2

F 2

1

p4
, (3.89)

where 1/p4 comes from the internal boson propagators and each interacting vertex
of L2 gives -after expanding the LO Lagrangian up to terms with four powers of Φ,
that is, four pGs- a factor (p/F )2 8. One can estimate this integral as

I ∼ q4

16π2

1

F 4
log µ , (3.90)

where µ is the renormalization scale. On the other hand, the tree level interaction
given by L4 has the shape L

r
i (q/F )

4. We know the total amplitude is scale indepen-
dent which implies that a shift in the scale µ has to be balanced by that of the tree
level L4 contribution. The loop-related factor 1/16 π2 must be also in L4.

We can write the Leff as:

L =
F 2

4

[
L̃2 +

L̃4

Λ2
χ

+
L̃6

Λ4
χ

. . .

]
, (3.91)

where 1/Λχ gives the expansion of the EFT -Lagrangian in powers of q/Λχ. It is
straightforward to check that this also happens as the chiral order in the expansion
is increased. Taking into account the loop-related factor, we estimate

Λχ ∼ 4πF ∼ 1GeV . (3.92)

This dimensional analysis suggests that the n− pGs vertex will receive a contri-
bution from the O(pm) Lagrangian that will go as

F 2Λ2
χ

(
Φ

F

)n(
∂

Λχ

)m

, (3.93)

and, consequently, the LECs in the Lagrangian will be of order

F 2

Λm−2
χ

∼ F 4−m

(4π)m−2
. (3.94)

On should be aware that Λχ ∼ 1 GeV does not mean χPT can be applied up
to this energy. The complementary point of view explained at the beginning helps
to understand this. Mρ ∼ 0,8 GeV sentences all χPT attempts to explain physics
from this region on to failure unless one explicitly incorporates resonances as active

8All vertices will have some momentum p, but other external ones too. The q below intends to
represent these ones.
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degrees of freedom, as RχT does.
Mρ ∼ 0.8 GeV is to be regarded as a clear upper bound for the validity of χPT

and corresponds to the typical size of the counterterm corrections. On the other
hand, 4πF ≃ 1.2 GeV is the scale associated to quantum effects through loop co-
rrections.

There is still one more reason for using RχT when we go over 0.5 GeV, or so.
The lowest order contributions in the chiral expansion lose importance continuously
and we are forced to go further and further in the expansion to reach the same
accuracy. Two LECs specify the O(p2) Lagrangian , 10 appear at O(p4) but 90
are challenging us and the number of different experimental data we can collect to
fix them at O(p6). Although not all of them enter a given process, the description
becomes pretty much easier when resonances become active variables, as we will see.
The O (p6) χPT Lagrangian was developed and the renormalization program was
accomplished in Refs. [250, 251, 252, 253].



Caṕıtulo 4

The Large NC limit and
Resonance Chiral Theory

4.1. Introduction

We finished the last Chapter by recalling some of the motivations for enlar-
ging χPT and extend it to higher energies. The problem is that as soon as we try
to do it the chiral counting gets broken because the momentum of the pGs can
get comparable to Λχ or Mρ. Thus, there is no immediate parameter to build the
expansion upon.

In many other instances in QCD, this difficulty does not occur. QCD is pertur-
bative at high energies, so the same strong coupling is a useful expansion parameter
in that energy region. There can be a double expansion (in αS and 1/MQ) because
pole masses are good parameters for a quick convergence of the perturbative series
when studying heavy quarks: Heavy Quark Effective Theory (HQET ) -for just one
heavy quark- [254, 255, 256, 257, 258, 259] , or (potential) Non-Relativistic QCD
((p)NRQCD) -if both quarks are heavy- [260, 261, 262, 263, 264, 265, 266, 267, 268].

In addition to the lack of a natural expansion parameter in the region where the
light-flavoured resonances pop up, there is some thinking in χPT , that might gui-
de the strategy to follow. While in the EFTs listed in the previous paragraph the
expansion parameters are quantities appearing in the QCD Lagrangian, this is not
the case for χPT : the expansion involves the momenta and masses of the pGs and
Λχ (not the quarks and gluons and ΛQCD).

The proposed expansion parameter, 1/NC, will indeed be useful to describe the
physics of light-flavoured mesons. Moreover, it can be used to understand qualitati-
vely some results in χPT in terms of a quantity that defines the gauge group of the
strong interactions in QCD.
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4.2. 1/NC expansion for QCD

’t Hooft [125] had the seminal idea of generalizing QCD from a theory of
three colours to the case with NC colours. Though a priori this can be regarded as
an unnecessary artifact that will make things even more difficult, this is not -at all-
the case, and QCD gets simplified in the large-NC limit becoming even solvable in
one spatial plus one time dimension [126].

Later on, many papers appeared guided by ’t Hooft’s idea, Ref. [127] is the capital
one, but see also Refs. [269, 270, 271]. This part of the chapter is mainly based on
them and on Refs. [272, 273, 274, 275].

As we will see, there are many phenomenological facts that find their only expla-
nation on large-NC arguments. This is, at the end of the day, the strongest support
the 1/NC expansion for QCD has.

Recall the QCD Lagrangian, (1.15). From it, we can read off the Feynman rules
obtained for all QCD vertices and see how the coupling of a fermionic line to a gluon
is O(gs), exactly as the three gluon vertex. The four gluon interaction is O(g2s), each
quark loop runs over three colours and each gluon loop over eight possibilities, co-
rresponding to the number of generators of SU(3)C . Eight is not so much greater
than three, but in the large-NC limit, the number of gluon states (N2

C − 1) is really
huge compared to that of quarks (NC). It is also reasonable to approximate N2

C − 1
by N2

C , that is, to consider U(NC) instead of SU(NC). The first ingredient of the
large-NC limit of QCD is to take into account that gluon states are more important
than quark states. The second one comes from asking a finite behaviour in this limit
for the quantum corrections and happens to modify the usual counting in powers of
gs for the vertices reminded before.

Prior to that, it is useful to introduce in this context the double line notation
for the gluon lines. This way we represent each gluon as a quark-antiquark pair, an
approximation that becomes exact in the large-NC limit. For the gluon selfenergy,
we will have the diagrams displayed in Fig. 4.1.

Within the new notation, each line represents a given colour propagating. After
fixing external colour indices, there is no remaining freedom in the quark-loop con-
tribution, but there is still an inner loop in the purely gluon contribution over which
NC colours can run.

If we now use the Feynman rules obtained from Eq. (1.15), we perceive that the
second diagram in Figure 4.1 behaves, in the large-NC limit, as g2s , while the first
one diverges: it goes as g2s NC . As we want gluon self-energy (and the β-function)
to be finite in the limit NC → ∞, we are led to redefine gs as g̃s ≡ gs√

NC
. This also

modifies the Feynman rules. Now, gluon coupling to a fermionic current or three

gluon vertex will be of O
(

1√
NC

)
; and four gluon local interaction of O

(
1

NC

)
. This

way, the beta function reads:

µ
dg̃s
dµ

= −
(
11− 2

nf

NC

)
g̃2s

48π2
, (4.1)
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≡

≡

Figura 4.1: Feynman diagrams for the LO contribution to the gluon self-energy:
using the usual notation (left), and with the double line one (right).

and we keep the hadronization scale ΛQCD independent of the number colours when
it is taken to be large. One can see from Eq.(4.1) that quark loops are suppresed
with respect to gluon loops in the large-NC limit.

Let us consider now the diagrams of Figure 4.2.

≡

≡

Figura 4.2: Comparison between planar and non-planar diagrams for gluon self-
energy. The four-gluon vertex is depicted by a thick dot. Other superpositions of
two gluon lines correspond to crossings and not to intersections.

The upper diagram in Figure 4.2 is planar -all superposition of lines correspond
to intersections- , while the lower one is not -some of them are just crossings-. For

the first one, the counting is
(

1√
NC

)6
1

NC
N4

C = 1, of the same order than the purely
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gluon contribution in Figure 4.1.

For the lower one, we have
(

1√
NC

)6
NC = 1

N2
C
. This is because the diagram is

non-planar and the number of colour loops has decreased from four to one and the
central vertex has disappeared.

We have seen explicitly how, in the easiest examples, two selection rules arise:

Non-planar diagrams are suppressed by the factor 1
N2

C
.

Internal quark loops are suppressed by the factor 1
NC

.

Planar diagrams, with arbitrary exchanged gluons do dominate (and the obliged
external quark loop to be a meson).

To see that all this is always true it is convenient to rescale fermion and gluon
fields:

G̃a
µ =

g̃S√
NC

Ga
µ , (4.2)

q̃ =
1√
NC

q , (4.3)

whence

LQCD = NC

[
q̃
(
iD̃/ −M

)
q̃ − 1

4g̃2S
G̃a

µνG̃
µν
a

]
, (4.4)

and all the counting is simply in powers of 1
NC

. It can be seen [273] that the order
in this expansion for any connected vacuum diagram is related to a topological in-
variant, the Euler-Poincaré characteristics, which allows to demonstrate the above
properties in full generality independently of the number of exchanged gluons. The
conclusion we draw is clear: In the large-NC limit, Feynman diagrams are planar
and without internal quark loops.

It is worth to stress that 1
NC

-expansion for QCD has to be regarded in a dif-
ferent way than usual expansions in perturbation theory. Expanding in powers of
the coupling constant gives us Feynman diagrams and, at any given order, there
are a finite number of them contributing to a process. Looking at the commented
equivalence among diagrams belonging to Figure 4.1, which is clearly the LO Feyn-
man diagram, and to Figure 4.2; a general fact is enlightened: In order to obtain a
given order in 1

NC
, we need an infinite number of Feynman diagrams. The diagrams

collected in Figure 4.3 are both of LO in 1/NC and one could think of much more
complicated ones.

4.3. NC counting rules for correlation functions

Two related basic assumptions are made for studying meson dynamics in the
large-NC limit:
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Figura 4.3: Two LO contributions in 1/NC to gluon self-energy. Gluon vertices are
highlighted by a thick dot.

QCD remains to be a confining theory for NC →∞.

Therefore, the sum of the dominant planar diagrams is responsible of confine-
ment in this limit.

We will consider quark and gluon composite operators whose quantum numbers
are able to create a meson 1 (they must be color-singlet thus). The aim is to unders-
tand some salient features of meson phenomenology by looking to gauge invariant
operators that cannot be splitted into separate gauge invariant pieces. For the quark
operators, 2 the suitable bilinears are named according to the same spin-parity as-
signments used for mesons: scalars (q q), pseudoscalars (q γ5 q), vectors (q γµ q), or
axial-vectors (qγµ γ5q). We will represent them generically as Õi(x). We will use
again the method of external sources (or currents, Ji(x)) coupled to them. In order
to be consistent with the counting for the rescaled fields introduced in Eq. (4.2), the
right expression to add will be [273] NC Ji(x) Õi(x) that will keep all the selection
rules told before. Correlations functions are obtained functionally differentiating the
generating functional W (J) with respect to the sources:

〈 Õ1 Õ2 . . . Õz 〉C =
1

iNC

∂

∂J1

1

iNC

∂

∂J2
. . .

1

iNC

∂

∂Jz
W (J)|J=0 , (4.5)

and each additional functional differentiation (i.e. each source insertion) is weighted
by a factor ∼ 1

NC
. It can be shown that O(N2

C) contributions stem from planar
vacuum-like diagrams only with gluon lines. They can contribute to correlation
functions of purely gluon operators. n-point Green function of purely gluon operators
will be of O(N2−n

C ). An r-meson vertex is of order N
1−r/2
C . Quark bilinear operators

start contributing at O(NC) -which corresponds to a quark loop in the outermost
border-, being O(N1−n

C ) the corresponding n-point Green function.
Considering that with NC = 3 the symmetric wave-function in colour space of a

meson is written as

M =
1√
3

3∑

i=1

qi qi , (4.6)

1The large-NC limit is also useful to understand some properties of baryons. For a review on
this topic, see Refs. [273, 276, 277, 278].

2Symmetries also allow mixed operators composed by quarks and gluons and glueballs made
up of gluons only.
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in the large-NC limit this will be

M =
1√
NC

NC∑

i=1

qi qi , (4.7)

providing an amplitude for creating a meson that is -as it should be- independent
of NC . This property applies also for glueballs.

For any arbitrary number of currents, the dominant contribution will be

〈 T (J1 . . . Jn) 〉 ∼ O(NC) , (4.8)

given by diagrams with one external quark loop and arbitrary insertions of gluon
lines that do not spoil the planarity of the diagram.

= 1

NC

〈JJ〉 1

NC

=
∑

n

fn fn

∼ O(1/NC)

Figura 4.4: Basic diagram for the 2-point correlator and representation as a sum of
tree-level diagrams with meson exchange.

In Ref. [273], it is shown that the action of J(x) over the vacuum will create only
one-meson states in the large-NC limit. Taking this into account, the two-current
correlator is of the form:

〈 J(k) J(−k) 〉 =
∑

n

f 2
n

k2 −m2
n

, (4.9)

where the sum extends over infinite meson states of mass mn and decay constant
fn defined through fn = 〈 0|J |n 〉. This is a capital result from which we can derive
most of meson phenomenology in this limit:

Being 〈 JJ 〉 ∼ O(NC), fn ∼ O(
√
NC) because k

2 has nothing to do with the
NC-counting. Meson decay constants are O(√NC).

Moreover, the whole denominator must be O(1), whence mn ∼ O(1), too.
Meson masses are said to have smooth large-NC limit.

〈 J(k) J(−k) 〉 is known to have a logarithmic behaviour at large momentum
[279, 280, 281, 282], k. Therefore, if we are to obtain these logarithms adding
terms going as 1/k2, we will need an infinite number of them. Despite seeming
quite surprising at first, the conclusion is clear: There are infinite mesons in
the large-NC limit.
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The poles of (4.9) are all in the real axis. Because the instability of a particle
is translated into an imaginary part in its propagator that has to do with its
decay width, we deduce that mesons are stable for NC →∞.

To sum up, the two-point correlator is reduced in the large-NC limit to the addi-
tion of tree-level diagrams in which J(−k) creates a meson with amplitude fn that
propagates according to 1

k2−m2
n
being annihilated by J(k) with the same amplitude.

It is straightforward to generalize this result for an arbitrary number of currents.
It can be shown that, in the large-NC limit [274]:

n-point Green functions are given by sums of tree level diagrams obtained by
using a phenomenological Lagrangian written in terms of freely propagating
mesons that accounts for local effective interactions among m ≤ n of them.

Mesons do not interact, because both the m-meson vertex and the matrix
element creating m mesons from the vacuum are O(N1−m/2

C ), suppressed in
this limit.

The same can be applied for gluon states by considering gluon currents, JG =
〈Gµν aGµν a 〉. The n-point Green function is O(N2

C) and a g-gluon operator
vertex is O(N2−g

C ); so gluon states are also free, stable and non-interacting in
the strict limit.

The mixed correlator with m quark-bilinears and g gluon operators is O(NC),

but the local vertex among all them is O(N1−g−m/2
C ), that is suppressed, too.

Gluon and meson states do decouple in the large-NC limit, being their ensemble
suppressed by 1/

√
NC .

The discussion for 3− and 4−point correlators given by meson exchange is por-
trayed by Figure 4.5 where the counting in 1/NC is given.

When considering the different Green functions, one wants to guarantee that
all the poles are originated by the tree-level diagrams obtained from an EFT -
Lagrangian. To show this, one needs to restore to unitarity and crossing symme-
try. Crossing means that every pole appearing in a given channel will manifest in
all others related to the previous one by crossing. Unitarity guarantees that every
pole in a given diagram will reappear each time this particular topology occurs as a
subdiagram in a higher-order Green function. All amplitudes are thus produced by
tree level exchanges with vertices given in an EFT -Lagrangian.

Some might raise an objection about the convergence of a series in 1/NC that ends
up being 1/3 in the real world. QED is known to have a well-behaved perturbative
expansion in powers of αem

4π
= e2

(4π)2
∼ 5 · 10−4, but the electric charge unit is not

that small, e ∼ 1/3 ∼ 1/NC. In any case, in QCD the expansion is not in powers
of 1/N2

C , although many times the LO in the 1/NC expansion happens to be of this
order. In spite of this, 1/NC is a good expansion parameter for QCD, attending
to the phenomenological successes in meson dynamics and also to the corroborated
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∼ O
(

1

N2

C

)

∼ O
(

1

N3

C

)

∼ O
(

1

N3

C

)

∼ O
(

1

N3

C

)

∼ O
(

1

N3

C

)

∼ O
(

1

N3

C

)

∼ O
(

1

N4

C

)

∼ O
(

1

N4

C

)

∼ O
(

1

N2

C

)

∼ O
(

1

N3

C

)

Figura 4.5: 3 and 4-point correlators given by meson exchanges: Tree-level diagrams
are dominant and every quark loop is suppressed by one power of 1/NC. The counting
in 1/NC is given for all of them taking into account that every source brings in a

1/NC factor and that r-meson vertices introduce the factor N
1−r/2
C .

predictions large-NC limit gives both for χPT and for RχT . All these reasons seem
to suggest that some factor comes to complement 1/NC for the expansion parameter
to be lowered. Unfortunately, we cannot check this explicitly. As it was told in the
introduction to this chapter, an infinite number of Feynman diagrams contribute to
each order in 1/NC and nobody has achieved the formidable task of computing them
by some clever resummation. For the moment, it is impossible to be more precise
defining the expansion parameter of the large-NC limit of QCD, but the reason lies
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in the different nature this expansion has compared to usual perturbative expansions
in powers of the coupling constant.

4.4. Resonance Chiral Theory

Our methodology stands on the construction of an action, with the relevant
degrees of freedom (Weinberg’s approach), led by the chiral symmetry and the known
asymptotic behaviour of form factors and Green functions driven by large-NC QCD.
The large-NC expansion of SU(NC) QCD implies that, in the NC → ∞ limit, the
study of Green functions of QCD currents can be carried out through the tree
level diagrams of a Lagrangian theory that includes an infinite spectrum of non-
decaying states. Hence the study of the resonance energy region can be performed
by constructing such a Lagrangian theory. The problem is that we do not know how
to implement an infinite spectrum in a model independent way. However, it is well
known from the phenomenology that the main role is always played by the lightest
resonances. Accordingly it was suggested in Refs. [6, 7] that one can construct a
suitable Lagrangian involving the lightest nonets of resonances and the octet of
Goldstone bosons states (π, K and η). This is indeed an appropriate tool to handle
the hadron decays of the tau lepton. The guiding principle in the construction of
such a Lagrangian is chiral symmetry. When resonances are integrated out from the
theory, i.e. one tries to describe the energy region below such states (E ≪Mρ), the
remaining setting is that of χPT , that was described in Chapter one and in the
previous section in the context of the large-NC limit. Then, RχT is a link between
the chiral and asymptotic regimes of QCD and a very useful tool to understand
intermediate-energy QCD dynamics.

The path-integral formalism is adequate to explain what we are doing. Starting
from the generating functional, Z, of QCD, one obtains the different Green functions
taking the suitable functional derivatives of Z. Depending on up to which energy
we consider the interesting physics scale to be, the heavier integrated-out degrees of
freedom will be all meson resonances (χPT ), or just the charmed -and even heavier-
mesons (RχT ). That is,

e i Z =

∫
DqDqDGµ e

i
∫
d4xLQCD

=

∫
Du

∞∏

i=1

DVi
∞∏

j=1

DAj

∞∏

k=1

DSk

∞∏

m=1

DPm e
i
∫
d4xLRχT (u,Vi,Aj ,Sk,Pm)

=

∫
Du e i

∫
d4xLχPT (u) , (4.10)

where V , A, S, P designates the type of resonance: vector (1−−), axial-vector (1++),
scalar (0++) and pseudoscalar (0−+). Integrating the resonances out of the action
reproduces χPT -pGs interaction simply modifying the χPT -LECs. In Eq. (4.10)
an infinite number of resonances have been considered per each set of quantum
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numbers, as NC → ∞ tells. There are two approaches to this: the single resonance
approximation (sra) considers that the lowest-lying multiplets are able to collect the
bulk of the dynamical information and these are the only resonant degrees of free-
dom kept active in the action. Since there is an infinite number of Green functions,
it is obviously impossible to satisfy all matching conditions with asymptotic QCD
with these few resonances. The minimal hadronic approximation (mha) generalizes
the sra by including into the action the minimal number of resonances that allows
fulfilling the QCD short-distance constraints in the considered amplitude.
RχT includes explicitly the χPT at O(p2) but, instead of adding to it the next

order in the chiral expansion, that piece is supplemented with a Lagrangian des-
cribing interactions among pGs and resonances. The more convenient chiral tensor
formalism in terms of u(x) and all the other structures introduced in (3.71) for the
external sources and the pGs (3.43), (3.44), (3.65) whose transformation properties
under C, P and Hermitian conjugation were collected in Table 3.3 are employed to
write:

LRχT (u, V, A, S, P ) = L(2)
χPT (u) + LR(u, V, A, S, P ) . (4.11)

For the resonance fields, the observed multiplets tell us that only octets and
singlets in flavour space occur; so reffering to them as R and R1, respectively, the
non-linear realization of the chiral group G, will be given by 3

R → h(g, Φ)Rh(g, Φ)† , R1 → R1 . (4.12)

For the first vector nonet 4, we will have:

Vµν =
1√
2

8∑

a=0

λaV
a
µν (4.13)

=




1√
2
ρ0 + 1√

6
ω8 +

1√
3
ω1 ρ+ K∗+

ρ− − 1√
2
ρ0 + 1√

6
ω8 +

1√
3
ω1 K∗ 0

K∗− K
∗ 0 − 2√

6
ω8 +

1√
3
ω1




µν

,

where it has been introduced the antisymmetric tensor formulation for vector fields
instead of that due to Proca, that may be more familiar 5. With this description
one is able to collect, upon integration of resonances, the bulk of the low-energy
couplings at O(p4) in χPT without the inclusion of additional local terms [7]. In

fact it is necessary to use this representation if one does not include the L(4)
χPT in the

Lagrangian theory. Though analogous studies at higher chiral orders have not been
carried out, we will assume that no L(n)

χPT with n = 4, 6, ... in the even-intrinsic-parity

3There are many possible ways to transform the resonance fields that lead to the same trans-
formation under the vector group and it can be shown that they are all equivalent after a field
redefinition. Since we are working in the u-basis the most convenient choice is the one in Eq. (4.12).

4In the NC →∞ limit octet and singlet converge to a nonet.
5The appendix E is specially devoted to this topic.
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Operador P C h.c.

Vµν V µν −V T
µν Vµν

Aµν −Aµν AT
µν Aµν

S S ST S

P −P P T P

Cuadro 4.1: Transformation properties of resonances under P , C and Hermitian conju-
gation.

and n = 6, 8, ... in the odd-intrinsic-parity sectors need to be included in the theory.
I write the axial-vector octet since it is also of major importance in the processes
considered in this Thesis:

Aµν =
1√
2

8∑

a=0

λaA
a
µν (4.14)

=




1√
2
a01 +

1√
6
h1 +

1√
3
f1 a+1 K∗+

1A

a−1 − 1√
2
a01 +

1√
6
h1 +

1√
3
f1 K∗ 0

1A

K∗−
1A K

∗ 0
1A − 2√

6
h1 +

1√
3
f1




µν

.

One can proceed analogously for S and P -multiplets [6] and for the particles with
JPC = 1+− [283].

The formulation of a Lagrangian theory that includes both the octet of Goldstone
mesons and U(3) nonets of resonances is carried out through the construction of
a phenomenological Lagrangian [123, 124] where chiral symmetry determines the
structure of the operators. In order to construct the relevant Lagrangians, we
need to introduce the covariant derivative (3.72), dictated by the local nature of the
non-linear realization of G in R (4.12), in such a way that

∇µR→ h(g, Φ)∇µRh(g, Φ)
† . (4.15)

The transformation properties of resonance fields under P , C and Hermitian
conjugation that are needed to write the Effective Lagrangian are collected in Table
4.1. For other structures appearing in the later extensions of the original Lagrangian
and their transformation properties, see Section 4.6.

We have to build the most general Lagrangian involving all the pieces that respect
the assumed symmetries. This means considering O(p2)-pG tensors together with
one resonance field. If we think about π π-scattering again, this amounts to consider
as the first correction to the tree level amplitude not only the one-loop diagrams
obtained with arbitrary insertions of L2 vertices, but also meson-resonance exchange
amid both pairs of pions.

For the kinetic terms, bilinears in the meson fields are considered including the
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covariant derivative 6 and incorporating by hand the corresponding mass of the octet
or singlet. The pattern of preserved SU(3)V justifies the same mass for all members
of the representation of the symmetry group and it cannot be determined from first
principles, but fitted to the experiment. The discrepancy among resonance masses
within the same multiplet has two sources: on the one hand it corresponds to SU(3)V
breaking operators and on the other hand to NLO corrections in 1/NC.

The construction of the interaction terms involving resonance and Goldstone fields
is driven by chiral and discrete symmetries with a generic structure given by

Oi ∼
〈
R1R2...Rjχ

(n)(φ)
〉
, (4.16)

where χ(n)(φ) is a chiral tensor that includes only Goldstone and auxiliary fields.
It transforms like R in Eq. (4.12) and has chiral counting n in the frame of χPT .
This counting is relevant in the setting of the theory because, though the resonance
theory itself has no perturbative expansion, higher values of n may originate viola-
tions of the proper asymptotic behaviour of form factors or Green functions. As a
guide we will include at least those operators that, contributing to our processes, are
leading when integrating out the resonances. In addition we do not include operators
with higher-order chiral tensors, χ(n)(φ), that would violate the QCD asymptotic
behaviour unless their couplings are severely fine tuned to ensure the needed cance-
llations of large momenta.

Guided by these principles and considering only one resonance field, the Lagran-
gian that was obtained in Ref. [6] is

LR =
∑

R=V,A, S, P

{L kin(R) + L2(R)} , (4.17)

where the kinetic term 7 is

L kin(R) = −1
2
〈∇λRλµ∇νR

νµ − 1

2
M2

RRµνR
µν 〉 , R = V,A ,

L kin(R) =
1

2
〈∇µR∇µR − M2

RR
2 〉 , R = S, P , (4.18)

and MR stands for the nonet mass in the chiral limit. The purely interacting term,
L2(R), is given by

L2[V (1
−−)] =

FV

2
√
2
〈 Vµνfµν

+ 〉 +
i GV

2
√
2
〈 Vµν[uµ, uν ] 〉 ,

L2[A(1
++)] =

FA

2
√
2
〈Aµνf

µν
− 〉 ,

L2[S(0
++)] = cd〈S uµuµ 〉 + cm〈S χ+ 〉 + c̃d S1〈 uµuµ 〉 + c̃m S1〈χ+ 〉 ,

L2[P (0
−+)] = i dm〈Pχ− 〉 + id̃m P1〈χ− 〉 , (4.19)

6It reduces to the ordinary one in the case of singlets.
7This naming can be a little bit confusing because this term also includes interactions hidden

in the covariant derivative part.
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where all couplings are real and it has been considered only the octet for V and A,
because 〈 fµν

± 〉 = 〈 [uµ, uν ] 〉 = 0 forbides couplings for V and A singlets at this
chiral order.

We also assume exact SU(3) symmetry in the construction of the interacting
terms, i.e. at level of couplings. Deviations from exact symmetry in hadron tau
decays have been considered in [284]. However we do not include SU(3) brea-
king couplings because we are neither considering next-to-leading corrections in
the 1/NC expansion. These corrections have already been considered within RχT in
Refs. [192, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294].

4.5. Matching RχT with QCD asymptotic beha-

viour

The long distance features of QCD [295, 296] have to be inherited by RχT
as made precise by the matching conditions. At high energies, RχT must match the
OPE, and this will impose some relations among its couplings. These relations will
depend upon the Lagrangian we choose. Due to historical reasons we will explain here
the results obtained with the kinetic pieces and the interactions terms in Eq. (4.19)
restricting our attention to those that can be relevant in the processes we examine,
namely the spin-one resonances.The number of relations that we obtain will influence
decisively in the predictability of the theory. Working in the sra, we find [274]

Vector Form Factor.
At LO in 1/NC, the form factor of the pion is given within RχT by

F(q2) = 1 +
FV GV

F 2

q2

M2
V − q2

. (4.20)

and QCD short-distance behaviour [297] dictates ℑm ΠV (q
2) → const. as

q2 →∞, which results 8 in a relation for the resonance couplings

FV GV = F 2 . (4.21)

Axial Form Factor.
We consider the axial form factor GA(t) governing the matrix element

〈γ|Aµ|π〉 [4]. Extracting GA(t) from the 〈V AP 〉 Green function by setting
the pion massless, one finds

GA(t) =
F 2

M2
V

b1 + b3t

M2
A − t

. (4.22)

Demanding that the form factor GA(t) vanishes for large t [7, 281, 282, 298],
we obtain

b3 = 0 . (4.23)

8The imaginary part of the Vector-Vector correlator is given by the Vector form factor.
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Using the RχT Lagrangian, Eq. (4.19), under the hypothesis of single reso-
nance exchange, one finds [7, 299]

GA(t) =
2FVGV − F 2

V

M2
V

+
F 2
A

M2
A − t

. (4.24)

Requiring GA(t) to vanish for t → ∞ implies the relation FV = 2GV , one
version of the so-called KSFR relation [300, 301]. The inclusion of bilinear
resonance couplings modifies the form factor as given in Eq. (4.22) [299] with
b1 =M2

A −M2
V , b3 = 0, and it induces a correction to the KSFR relation:

2FVGV − F 2
V

2F 2
= 1− F 2

V

2F 2
=

M2
A − 2M2

V

2(M2
A −M2

V )
. (4.25)

Weinberg’s sum rules.
The two-point function of a vector correlator between left-handed and right-

handed quarks defines the mixed correlator

ΠLR(q
2) =

F 2

q2
+

F 2
V

M2
V − q2

− F 2
A

M2
A − q2

. (4.26)

Gluon interactions safeguard chirality, so ΠLR must fulfill a non-subtracted
dispersion relation. Moreover, it must vanish in the chiral limit faster than
1/(q2)2 as q2 →∞. This implies [302] the relation for the couplings:

F 2
V − F 2

A = F 2 , M2
V F

2
V − M2

A F
2
A = 0 . (4.27)

Considering the above restrictions (4.21), (4.25)and (4.27), we are able to write
all decay constants in terms of F and the resonance masses:

F 2
V = F 2 M2

A

M2
A −M2

V

, F 2
A = F 2 M2

V

M2
A −M2

V

, G2
V = F 2

(
1 − M2

V

M2
A

)
.

(4.28)

Finally, we will see that applying the QCD-ruled short-distance behaviour to the
decays τ− → P−γντ computed using RχT [303] allows to relate V and A masses

2M2
A = 3M2

V , (4.29)

a result that reproduces the one obtained in Ref. [304] for the form-factor Fπγ∗γ.
These relations guarantee the matching among QCD and its EFT , RχT , for

the considered Green functions. Here it comes a caveat about phenomenology and
QCD.

There are infinite Green functions both in QCD and also in its EFTs. In per-
turbative QCD, all of them are described in terms of a single coupling, αs. In
non-perturbative QCD this is clearly not the case. Then, the situation changes and,
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unless we bear this in mind, we can arrive -or seem to arrive, to be precise-, to
inconsistencies.

There is no difference between considering one set or another of Green functions
in high-energy QCD. The situation is opposite in its low and intermediate-energy
regime. For instance, we have seen that for a set consisting of vector, and axial-
vector form factors of pGs and LR two-point correlators the relations (4.21), (4.25)
and (4.27) ensure QCD asymptotic behaviour for the EFT working in the sra.

But, once we go further and study three-point correlators and form factors invol-
ving three particles in the final state it is likely that either the previous relations get
modified in some cases, or -what it is preferable- we admit that the sra is a valid
approach if we do not intend to describe all QCD Green functions at the same time
9. Otherwise, we are forced to incorporate a second multiplet of resonances in the
(axial-)vector case.

These discrepancies among QCD-asymptotic restrictions for the parameters en-
tering LR has already been found and discussed [299]. However, the understanding
of this issue is evolving as more works are concluded. Our position towards this
problem will get defined in later chapters concerning the practical applications of
the theory. We will see that we will arrive to consistent relations for the radiative
decays of the tau with one meson and for the three meson decays. However, it is
very likely that they will not coincide with the relations one could find studying
four-point Green functions. In any case, the study of the latter is a too involved task
that we do not consider for the time being.

4.6. Extensions of the original Lagrangian

4.6.1. Even-intrinsic parity sector

We recall the purpose of the original paper were RχT was borned [6], it was
to build a sound theory including resonances within the chiral framework that res-
pected all principles and symmetries governing light-flavoured QCD and that was
able to reproduce the O(p4) even-intrinsic parity chiral Lagrangian upon integration
of the resonances.

In order to construct (4.17), (4.18), (4.19), O(p2)-pG tensors together with one
resonance field were enough to accomplish that purpose.

One may wonder why we intend to extend the original Lagrangian in RχT , while
for χPT the decision consists in going one order further in the chiral expansion. The
nature of pGs is completely different to that of resonances. Whereas the first ones
transform non-linearly under the vector subgroup, the second ones do it linearly.
This results in a huge, fundamental difference. Processes involving different number
of pGs are related. For instance, all 2n-pGs→ 2n-pGs scattering processes are con-
nected at a given order. As the easiest example, all of them are written in terms of

9The validity of these assumptions within large-NC QCD is studied in Refs. [305, 306, 307, 308].
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the pion decay constant at LO; but the divergence structure -before renormalizing-
of say 12 π → 12 π is given by that of the simplest process 2 π → 2 π, as well.

On the contrary, resonances are not free excitations (even in absence of χSB);
so that any time we want to consider physics involving one more multiplet of reso-
nances, we have to extend our Lagrangian to include it relying again on the same
symmetry principles that guided the construction of the already existing pieces.

The analysis of τ− → (π π π)− ντ within RχT [309] could not ignore the rele-
vance of the axial-vector a1-resonance exchange within this decay. The contribution
given by the chain a1 → ρ π → π π π driven by vector exchange was accounted for
by going one step beyond the work in Ref. [6] including bilinear terms in the reso-
nance fields that lead to a coupling a1 ρ π, hence only the generalization including
one pseudoscalar was considered in the quoted paper.

The most general Lagrangian respecting all the assumed symmetries and inclu-
ding one O(p2) chiral tensor, one vector and one axial-vector resonance fields can
be written [309]

LV AP
2 =

5∑

i=1

λiOi
V AP , (4.30)

where λi are new unknown real adimensional couplings, and the operators Oi
V AP

constitute the complete set of operators for building vertices with only one pseudos-
calar 10 are given by

O1
V AP = 〈 [V µν , Aµν ]χ− 〉 ,
O2

V AP = i〈 [V µν , Aνα] h
α
µ 〉 ,

O3
V AP = i〈 [∇µVµν , A

να ]uα 〉 ,
O4

V AP = i〈 [∇αVµν , A
ν

α ] uµ 〉 ,
O5

V AP = i〈 [∇αVµν , A
µν ] uα 〉 , (4.31)

where it has been used hµν defined in Eq. (3.75). As we are only interested in tree
level diagrams, the O(p2) χPT EOM , (3.78), has been used in LV AP

2 in order to
eliminate one of the possible operators.

Explicit computation of the Feynman diagrams involved in this process -and in
all applications studied in this Thesis- show that all the contributions coming from
LV AP

2 can be written in terms of only three combinations of their couplings

λ0 = − 1√
2

[
4λ1 + λ2 +

λ4
2

+ λ5

]
,

λ′ =
1√
2

[
λ2 − λ3 +

λ4
2

+ λ5

]
,

λ′′ =
1√
2

[
λ2 −

λ4
2
− λ5

]
. (4.32)

10For a larger number of pGs, additional operators may emerge.
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4.6.2. Odd-intrinsic parity sector

Now we turn to theWZW anomalous term, we recall that it is the LO contri-
bution in the odd-intrinsic parity sector -O(p4) in the chiral counting-. In Ref. [310],
that is the fundamental reference for this section, a suitable Lagrangian was built
and odd-intrinsic parity processes were examined within RχT . It is a common prac-
tice to assume that upon integrating the resonances in this Lagrangian one could
saturate the values of the O(p6) LECs of χPT in the anomalous sector, analogously
as it happens in the even parity sector.

This work has an added interest, because it gave rise to a set of works studying
the behaviour of 3-point Green functions in RχT [128, 299, 311].

Several authors [312, 313, 314, 315, 316] started to analyze systematically a set of
QCD three-point functions that were free of perturbative contributions from QCD
at short distances 11, a fact that made more reliable a smooth matching of the OPE
result went down to low energies and the EFT description by a theory including
resonances.

It was shown in Ref. [315] that while the ansatz derived from the lowest meson
dominance approach to the large-NC limit of QCD incorporates by construction the
right short-distance behaviour ruled by QCD, the same Green functions as calcula-
ted with a resonance Lagrangian, in the vector field representation, are incompatible
with the OPE outcome. The authors pointed out that these discrepancies cannot
be repaired just by introducing the chiral Lagrangian of O(p6) 12, 13. New terms
including resonance fields and higher-order derivatives are needed in this case in the
vector-field representation, but the general procedure remains unknown.

This can be a serious drawback for any EFT involving resonances as active
fields. Ref. [310] studies one class of Green functions analyzed in Ref. [315] in the
odd-intrinsic parity sector with antisymmetric tensor formalism for the resonances.
This required the introduction of an odd-intrinsic parity Lagrangian in the formula-
tion of Ref. [6] containing all allowed interactions between two vector objects (either
currents or resonances) and one pseudoscalar meson. I will introduce this extension
of the original Lagrangian of RχT in the following.

In principle, taking into account Weinberg’s power counting rule and resonance
exchange among vertices with pseudoscalar legs; at O(p4) in the even-intrinsic pa-
rity sector one needs to treat on the same footing L2 at one loop, L4 at tree-level
and L2(R). In Ref. [7] it was shown that at this order in the chiral counting, the

11They vanish in absence of SχSB for massless quarks.
12 When one considers the pion form factor calculated within the Resonance Theory both in the

vector and in the antisymmetric tensor formalisms [6], compatilibity with high-energy QCD cons-

traints is found in the latter case without introducing L(4), evenχPT . In the former case, the asymptotic

behaviour is not good but upon introducing the L(4), evenχPT the required falloff is recovered. This
possibility of including the Lagrangian at the next order in the chiral expansion does not yet yield
the proper ultraviolet behaviour in the odd-intrinsic parity sector when working with the vector
field formalism.

13We are not referring to the chiral counting in the framework of RχT , where this is known to
be lost. We recall the remark in the paragraph including Eq. (4.16).
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Effective Lagrangian LRχT ≡ L2 + LR is enough to satisfy the high-energy QCD
constraints.

Analogously, for the odd-intrinsic parity sector, three different sources might be
considered:

The WZW action [241, 242], which is O(p4) and fulfills the chiral anomaly,

Chiral invariant εµνρσ terms involving vector mesons which, upon integration,
will start to contribute at O(p6) in the antisymmetric tensor formalism, and

The relevant operators in the O(p6) χPT Lagrangian.

The odd-intrinsic parity Lagrangians with resonances have already been studied
in order to consider the equivalence for reproducing the one-loop divergencies of the
WZW action among different representations for the resonance fields [312]. This
procedure has also been thought to estimate the couplings appearing the O(p6) chi-
ral Lagrangian [317].

Within the antisymmetric tensor formalism, all the needed building blocks ha-
ve already been introduced. Chiral invariance of the generating functional, toget-
her with Lorentz, Parity and Charge conjugation invariance and Hermiticity of the
Lagrangian determine an independent set of operators for V V P and V JP Green
functions to be 14

• V JP terms:

O1
V JP = εµνρσ 〈 {V µν , f ρα

+ }∇αu
σ 〉 ,

O2
V JP = εµνρσ 〈 {V µα, f ρσ

+ }∇αu
ν 〉 ,

O3
V JP = i εµνρσ 〈 {V µν , f ρσ

+ }χ− 〉 ,
O4

V JP = i εµνρσ 〈 V µν [f ρσ
− , χ+] 〉 ,

O5
V JP = εµνρσ 〈 {∇αV

µν , f ρα
+ }uσ 〉 ,

O6
V JP = εµνρσ 〈 {∇αV

µα, f ρσ
+ }uν 〉 ,

O7
V JP = εµνρσ 〈 {∇σV µν , f ρα

+ } uα 〉 . (4.33)

• V V P terms:

O1
V V P = εµνρσ 〈 {V µν , V ρα}∇αu

σ 〉 ,
O2

V V P = i εµνρσ 〈 {V µν , V ρσ}χ− 〉 ,
O3

V V P = εµνρσ 〈 {∇αV
µν , V ρα}uσ 〉 ,

O4
V V P = εµνρσ 〈 {∇σV µν , V ρα} uα 〉 . (4.34)

The Schouten identity,

gρσεαβµν + gραεβµνσ + gρβεµνσα + gρµενσαβ + gρνεσαβµ = 0 , (4.35)

14The convention for the Levi-Civita density is ε0123 = +1 and J is short for external vector
current.
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has been employed to reduce the number of independent operators.
The authors of Ref. [312] also built V V P operators in the antisymmetric tensor

formalism but applying the LO EOM to reduce the number of operators to three.
This is a valid procedure provided one is only interested in on-shell degrees of free-
dom; but particles inside Green functions are not on their mass-shell. The resonance
Lagrangian for the odd-intrinsic parity sector will thus be defined as

Lodd
V = LV JP + LV V P ,

LV JP =

7∑

a=1

ca
MV
Oa

V JP , LV V P =

4∑

a=1

daOa
V V P ; (4.36)

where the octet mass, MV , has been introduced in LV JP , in order to define dimen-
sionless ca couplings. The set defined above is a complete basis for constructing
vertices with only one-pseudoscalar; for a larger number of pseudoscalars additional
operators may emerge.

As discussed, the O(p6) χPT Lagrangian in the odd-intrinsic parity sector has to
be considered, as well. Two operators may contribute at LO in 1/NC to the 〈 V V P 〉
Green function:

L(6), odd
χPT = i εµναβ

{
t1〈χ−f

µν
+ fαβ

+ 〉 − i t2〈∇λf
λµ
+

{
fαβ
+ , uν

}
〉
}
, (4.37)

where the ti LECs are not fixed by symmetry requirements. The operators in Eq.
(4.37) belong both to the EFT where resonances are still active fields and to that
one where they have been integrated out. Hence in the latter case, we can split the
couplings as ti = tRi + t̂i, where t

R
i is generated by the integration of the resonances

and t̂i stands for the surviving O(p6) χPT contribution when the resonances are still
active. We will assume, as in the even-intrinsic parity sector, that t̂i are negligible
compared to the resonance contributions, the ti are generated completely through
interaction of vectors. Accordingly, we should not include L(6), odd

χPT in our study to
avoid double counting of degrees of freedom. Then, the relevant effective resonance
theory will be given by:

ZRχT[v, a, s, p] = ZWZW [v, a] + Zodd
V χ [v, a, s, p] , (4.38)

where Zodd
V χ is generated by L2

χ in (3.66), LV in (4.17), (4.18), (4.19) and Lodd
V in

(4.36).

The V V P Green function is

(ΠV V P )
(abc)
(µν) (p, q) =

∫
d4x

∫
d4y ei(p·x+ q·y) 〈 0|T

[
V a
µ (x) V

b
ν (y)P

c(0)
]
|0 〉 . (4.39)

Provided a Green function is related to an order parameter of QCD, it vanishes
in the chiral limit to all orders in perturbation theory, so that there is no term in
the OPE expansion that goes with the identity. This is specially nice regarding
the matching with the RχT result, that will never include such a kind of term
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including the identity. This is the case for 〈 V V P 〉 Green functions, and also for
〈 V PPP 〉 Green functions like those related to τ decays into three mesons but, for
instance, it is no longer so in 〈 V V V V 〉 Green functions (like, for example, light-by-
light scattering processes). It is conventionally written that we can rely on matching
RχT with the OPE at such low energies as 2 GeV when there are order parameters
involved. Otherwise, the matching becomes much more involved.

The 〈 V V P 〉 Green function is built within RχT in [310]. When the limit of two
momenta becoming large at the same time is taken, one finds compatibility with the
QCD short-distance constraints, provided the following conditions among the Lodd

V

couplings hold

4c3 + c1 = 0 ,

c1 − c2 + c5 = 0 ,

c5 − c6 =
NC

64π2

MV√
2FV

,

d1 + 8d2 = −
NC

64π2

M2
V

F 2
V

+
F 2

4F 2
V

,

d3 = − NC

64π2

M2
V

F 2
V

+
F 2

8F 2
V

. (4.40)

Being the couplings in the (odd-intrinsic parity) Effective Lagrangian independent
of pG masses the result turns out to be general.

Now it comes the crucial point. The obtained 〈 V V P 〉 Green function reproduces
the lowest meson dominance ansatz in [313]:

ΠV V P (p
2, q2, (p+ q)2) = −〈ψψ 〉0

2
· (p

2 + q2 + r2)− NC

4π2

M4
V

F 2

(p2 −M2
V )(q

2 −M2
V )r

2
. (4.41)

The previous ansatz (4.41) recovers the lowest meson dominance estimates for
the LECs derived in Ref. [315]. Their authors found impossible to reproduce them
working with the vector representation for the resonances, not even paying the price
of introducing local contributions from the O(p6) chiral Lagrangian. They suggested
that the problem could be due to the Effective Lagrangian approach and unlikely
to be cured by using other representations for the resonance fields. The work under-
taken in Ref. [310] contradicts this assertion for the 〈 V V P 〉 Green function in the
odd-intrinsic parity sector.

The derived Lagrangian, Eq. (4.36), was tested through the computation of the
decay width for the process ω → π γ that was completely predicted thanks to the
relations (4.40). This calculation pop up the question about the validity of Vector
meson dominance-assumption [318, 319]. It was found that the direct vertex was
larger than expected, even comparable to the ρ-mediated process. Anyway, these
results agree with the large-NC limit of RχT , in which both contributions are of the
same order in the expansion. This feature was confirmed through the computation
of other channels: In particular, ω → 3π showed that Vector meson dominance
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hypothesis was at variance with the experimental value for the decay width. This
confirmed what was suggested before: that local V PPP vertices in the odd-intrinsic
parity sector are relevant.

We present here the last extension [320, 321] of the original Lagrangian that
was first applied to study the KKπ decay modes of the τ lepton. We have found
that the most general V PPP Lagrangian in the odd-intrinsic parity sector is

LV PPP =

5∑

i=1

gi
MV
Oi

V PPP , (4.42)

where, in the chiral limit and using the Schouten identity, three new operators arise

O1
V PPP = i εµναβ

〈
V µν

(
hαγuγu

β − uβuγhαγ
)〉
,

O2
V PPP = i εµναβ

〈
V µν

(
hαγuβuγ − uγuβhαγ

)〉
,

O3
V PPP = i εµναβ

〈
V µν

(
uγh

αγuβ − uβhαγuγ
)〉
. (4.43)

Apart from these ones, when the chiral limit is not taken, two new operators have
to be taken into account

O4
V PPP = εµναβ

〈{
V µν , uα uβ

}
χ−
〉
,

O5
V PPP = εµναβ

〈
uα V µν uβ χ−

〉
. (4.44)

From the previous distinction, we can guess that matching at high energies will
give us some information on the three couplings that survive in the chiral limit, but
for the others it is likely that only phenomenological information will shed light on
them.

Notice that we do not include analogous pieces to Eqs. (4.33) and (4.42) with an
axial-vector resonance, that would contribute to the hadronization of the axial-vector
current. This has been thoroughly studied in Ref. [309] (see also [322], this picture
is supported by the conclusions in Chapter 6) in the description of the τ → πππντ
process and it is shown that no 〈Aχ(4)(ϕ)〉 operators are needed to describe its ha-
dronization. Therefore those operators are not included in our minimal description
of the relevant form factors appearing in later chapters.

4.6.3. Concluding remarks

There are other extensions of the Lagrangian which will not be used in this
Thesis. For the even-intrinsic parity sector, the reader can find in Ref. [128] the
minimal set of operators corresponding to the coupling of a resonance and an O(p4)
chiral tensor, and trilinear resonance terms without any chiral tensor. For the odd-
intrinsic parity part, in Ref. [323] there were written new pieces for the couplings
among the two vector objects and a pG or a vector source: OV1V2P and OV1V2J .
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All the introduced extensions of the original Lagrangian will play a rôle in the
three meson decays and one meson radiative decays of the τ examined in this Thesis.
As we will see, the contribution of V PPP vertices in the odd-intrinsic parity sector
turns out to be fundamental for the decay ω → 3π (see Appendix D). Therefore,
apart from its own interest, we can take advantage of it to get additional restrictions
on the new couplings introduced throughout this section. One of the targets of our
work is to gain more control over the new couplings of the resonance Lagrangian
which we have just introduced and thus improve our quantitative understanding of
intermediate-energy meson dynamics.
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Hadron decays of the τ lepton

5.1. Introduction

In this chapter we want to set the model independent description of the hadron
decays of the τ which we study. Using Lorentz invariance and general properties of
QCD one can decompose any amplitude participating in a given process in terms of
a set of scalar quantities that only depend on kinematical invariants, the so-called
form factors. As explained in Appendix A, this description is equivalent to that in
terms of structure functions.

Moreover, we also desire to explain the three different approaches to describe the
the involved form factors and to illustrate others than ours. This will let appreciate
better the improvements introduced by our study compared to previous approaches.

As we have discussed in previous chapters we still do not know a way to derive
the form factors related to the hadronization of QCD currents in the intermediate
energy region. In view of this, three major approaches have been developed to tackle
these problems [324]:

The first approach is the one motivated by the discussion in the previous
chapters and followed in this Thesis. It consists in exploiting the power of the
EFT framework à la Weinberg -Section 3.2- supplemented by some dynamical
content of the problem at hand, namely the known short-distance behaviour
of QCD -Section 4.5- and the large-NC limit of QCD -Chapter 4-.

The second approach is that of modeling phenomenological Lagrangians. Their
actions are written in terms of hadron fields but employing ad-hoc assumptions
whose link with QCD is not clear and which are introduced in order to get
a simpler theory. As an example, we have the suggested Hidden Symmetry or
Gauge Symmetry Lagrangians mentioned briefly in appendix F.

Finally, we have another -more comfortable though less satisfactory- way of fa-
cing the problem. It is to propose dynamically driven parametrizations. They
provide an amplitude suggested by the assumed dynamics: resonance domi-
nance, polology, etc. The expressions one obtains are much easier than those
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given by more based approaches, as we will see giving some examples later on.
Numerical fit to data is quicker and the accordance between the theoretical
expressions and the experiments are, often, remarkable. Notwithstanding, the
connection between their ad-hoc parameters and QCD is missing. According
to our understanding, the point is not just to get an impressive fit to the ex-
perimental points but to understand the hadronization of the QCD currents
in these particular processes.

5.1.1. Breit-Wigner approach

As we want to compare our results to those obtained within the Breit-Wigner
models, we describe their main features in this section.

Since long time ago, it is well-known that any hadronization process occurring in
the resonance energy region will be dominated by the contribution of these resonance
states. The application of this resonance dominance to hadron tau decays has a long
history [325, 326, 327, 328]. A model based on these ideas that became very popular
is due to Kühn and Santamaŕıa [329].

In any of these cases the parametrization is accomplished by combining Breit-
Wigner factors (BWR(Q

2)) according to the expected resonance dominance in each
channel 1, that is,

F (Q2) = N f
(
αi, BWRi

(Q2)
)
, (5.1)

where N is a normalization and the former expression is not linear, in general, in
the Breit-Wigner terms. Data are analyzed by fitting the αi parameters and the
masses and on-shell widths entering the Breit-Wigner factors. Two main models of
parametrizations have been employed:

a) Kühn-Santamaŕıa Model (KS)
The BW form factors are given by [325, 326, 327, 328, 329]

BWKS
Ri
(Q2) =

M2
Ri

M2
Ri
−Q2 − i

√
Q2ΓRi

(Q2)
, (5.2)

that vanishes in the high-Q2 region, as demanded by short-distance QCD.

b) Gounaris-Sakurai Model (GS)
It was originally developed to study the rôle of the ρ(770) resonance in the vector

form factor of the pion [330] still in the current algebra era. It has been applied over
the years to other hadron resonances [331, 332, 333] by the experimental collabora-
tions. The BW function now reads

1Consequently, they do not depend only on Q2, the total hadron momenta, but also on other
Lorentz invariants depending on the considered channel. The Q2 in parenthesis intends to be a
shorthand notation we will keep in the following.
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BWGS
Ri
(Q2) =

M2
Ri

+ fRi
(0)

M2
Ri
−Q2 + fRi

(Q2)− i
√
Q2ΓRi

(Q2)
, (5.3)

where fRi
(Q2) encodes information of the off-shell behaviour of the considered reso-

nance. For the particular case of the ρ(770), it can be read off from Ref. [330].
In both models the normalization is fixed in order to reproduce the χPT O(p2)

behaviour at Q2 << M2
ρ . The experimental groups use to believe that the difference

among the predictions of these two models gives an estimate of the theoretical error
2. As we will see, the simplicity of these models is irrelevant if they fail to verify
properties coming from QCD itself, as it happens to be the case, both in the three
meson modes and the radiative decays with one meson. It is true that we learn
things about the resonance structure using these models to fit the data, but it is not
-as argued many times- that the (occasionally) little discrepancy among themselves
in the observables (values of masses, on-shell widths and branching ratios and shape
of the spectra and Dalitz plots) can be regarded as a proof of the rightness of both
models.

5.1.2. Model independent description. General case

Within the Standard Model 3 the matrix amplitude for the exclusive hadron
decays of the τ , τ− → H−ντ , is generically given by

M =
GF√
2
V ij
CKM uντ γ

µ (1− γ5) uτ Hµ , (5.4)

where GF is the Fermi constant, V ij
CKM the corresponding element of the CKM

matrix, and
Hµ = 〈H|(Vµ − Aµ) e

iLQCD|0 〉 , (5.5)

is the matrix element of the left-handed current that has to be evaluated in the
presence of the strong QCD interactions.

Symmetries help us to decompose Hµ in terms of the allowed Lorentz structures
of implied momenta and a set of scalar functions of kinematical invariants, the ha-
dron form factors, Fi, of QCD currents,

Hµ =
∑

i

(. . . )iµ︸ ︷︷ ︸
Lorentz structure

Fi(Q
2, . . . ) ; (5.6)

that are universal in the sense of being independent on the initial state, describing
therefore the hadronization of QCD currents.

This decomposition is studied in detail in Appendix A, where it is also derived
the equivalence among using form factors or structure functions to describe these

2In fact, Ref. [329] already used it with this purpose.
3A nice and short introductory description can be found in Refs. [334, 335].
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hadron decays. We just recall for the moment that the decay width for a given
channel is obtained by integrating over the n hadrons plus one neutrino differential
phase space, the hadron and lepton tensors are defined from the following 4

∑
s,s′
MM† ≡

(
1

2× 1
2
+ 1

)2
G2

F

2
|VCKM |2Hµν Lµν , (5.7)

where Hµ is the hadron current defined in Eq. (5.5), Lµν carries information on the
lepton sector and dPS stands for the differential element for phase space integration:

Hµν ≡ HµHν , Lµν =
∑

s,s′

uτ (ℓ, s)γ
µ(1− γ5)uντ (ℓ′, s′)γν(1− γ5)uτ(ℓ, s) . (5.8)

Then, one has

dΓ =
G2

F

4Mτ
|V ij

CKM |2 Lµν HµHν† dPS , (5.9)

with

Lµν HµHν† =
∑

X

LX WX , (5.10)

where WX are the structure functions defined in the hadron rest frame.
The hadron structure functions, WX , can be written in terms of the form factors

and kinematical components and the study of spectral functions or angular distri-
butions of data allow us to reconstruct them. Their number depends on the final
state, being 4 in the case of two mesons and 16 for three. Either form factors or,
equivalently, structure functions, are the target to achieve.

5.2. One meson radiative decays of the τ

5.2.1. Model independent description

For the decay modes with lowest multiplicity, τ → P−ν : τ , P = π,K, the
relevant matrix elements are already known from the measured decays π− → µ−νµ
and K− → µ−νµ. The corresponding τ decay widths can then be predicted rather
accurately. These predictions are in good agreement with the measured values, and
provide a quite precise test of charged current universality.

When one considers the emission of a photon things change and they provide dy-
namical information [336] about the hadron matrix elements of the Lµ = (Vµ − Aµ)
current.

The process is τ−(pτ )→ ντ (q)P
−(p)γ(k) . The kinematics of this decay is equiva-

lent to that of the radiative pion decay [337]. We will use t := (pτ−q)2 = (k+p)2. In

4
∑

s,s′ corresponds to the averaged sum over polarizations.
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complete analogy to the case of the radiative pion decay [338], the matrix element
for the decay τ− → P−γντ can be written as the sum of four contributions:

M
[
τ−(pτ )→ ντ (q)P

−(p)γ(k)
]
=MIBτ +MIBP

+MV +MA , (5.11)

with 5

iMIBτ = GF V
ij
CKM e FP pµ ǫν(k)L

µν ,

iMIBP
= GF V

ij
CKM e FP ǫν(k)

(
2 pν (k + p)µ
m2

P − t
+ gµν

)
Lµ ,

iMV = i GF V
ij
CKM e FV (t) ǫµνρσǫ

ν(k) kρ pσ Lµ ,

iMA = GF V
ij
CKM e FA(t) ǫ

ν(k)
[
(t − 2m2

P ) gµν − 2 pνkµ
]
Lµ , (5.12)

where e is the electric charge and ǫν is the polarization vector of the photon. FV (t)
and FA(t) are the so called structure dependent form factors. Finally Lµ and Lµν

are lepton currents defined by

Lµ = ūντ (q)γ
µ(1− γ5)uτ (pτ ) ,

Lµν = ūντ (q)γ
µ(1− γ5)

k/− p/τ −Mτ

(k − pτ )2 −M2
τ

γνuτ (pτ ) . (5.13)

The notation introduced for the independent amplitudes describes the four kinds
of contributions:MIBτ is the bremsstrahlung off the tau, (Figure 5.1(a)),MIBP

is
the sum of the pG bremsstrahlung (Figure 5.1(b)), and the seagull diagram (Figure
5.1(c)),MV is the structure dependent vector (Figure 5.1(d)) andMA the structure
dependent axial-vector contribution (Figure 5.1(e)). Our ignorance of the exact me-
chanism of hadronization is parametrized in terms of the two form factors FA(t) and
FV (t). In fact, these form factors are the same functions of the momentum transfer
t as those in the radiative pion decay, the only difference being that t now varies
from 0 up to M2

τ rather than just up to m2
π.

The two matrix elements MIBτ and MIBP
are not separately gauge invariant,

but their sum, ie. the (total) matrix element for internal bremsstrahlung IB

MIB =MIBτ +MIBP
, (5.14)

is indeed gauge invariant, asMV andMA are. We also define the (total) structure
dependent radiation SD by

MSD =MV +MA . (5.15)

5Notice that i and minus factors differ with respect to Ref. [336] (DF ). Moreover, our form
factors have dimension of inverse mass while theirs are dimensionless. In their work, this factor of
(
√
2mπ)

−1 in the form factors is compensated by defining the sum over polarizations of the matrix
element squared with an extra 2m2

π factor. This should be taken into account to compare formulae
in both works using that FV (t)

DF =
√
2mπFV (t)

Our , FA(t)
DF = 2

√
2mπFA(t)

Our .
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τ− τ−

γ ντ

W−
P−

(a) (b)

τ−

ντ

W−
P− P−

γ (c)

τ−

ντ γ

W−
P−

(d)

τ− W−

ντ γ

P−

(e)

τ− W−

ντ γ

P−

Figura 5.1: Feynman diagrams for the different kinds of contributions to the radiative
decays of the tau including one meson, as explained in the main text. The dot
indicates the hadronization of the QCD currents. The solid square represents the
SD contribution mediated by the axial-vector current and the solid triangle the SD
contribution via the vector current.

The spinor structure can be rearranged to give

iMIB = GF V
CKM
ij e FP Mτ ūντ (q)(1 + γ5)

[
pτ · ǫ
pτ · k

− p · ǫ
p · k −

k/ǫ/

2pτ · k

]
uτ (pτ ) , (5.16)

iMSD = GF V
CKM
ij e

{
iǫµνρσL

µǫνkρpσFV (t) + ūντ (q)(1 + γ5)
[
(t − m2

P )ǫ/ − 2(ǫ · p)k/
]
u(pτ)FA(t)

}
.

The square of the matrix element is then given by

|M|2 = |MIB|2 + 2ℜe(MIBM⋆
SD) + |MSD|2 , (5.17)

where the bar denotes summing over the photon polarization and neutrino spin and
averaging over the tau spin.

We follow Ref. [336] and divide the decay rate as follows: the internal bremss-
trahlung part ΓIB arising from |MIB|2, the structure dependent part ΓSD coming
from |MSD|2, and the interference part ΓINT stemming from 2ℜe(MIBM⋆

SD). Furt-
hermore ΓSD is subdivided into the vector-vector (ΓV V ), the axial-vector—axial-
vector (ΓAA) and the vector—axial-vector interference term ΓV A. Similarly ΓINT

gets splitted into the internal bremsstrahlung-vector interference ΓIB−V and the
internal bremsstrahlung–axial-vector interference ΓIB−A parts. Thus, one has

Γtotal = ΓIB + ΓSD + ΓINT ,

ΓSD = ΓV V + ΓV A + ΓAA ,

ΓINT = ΓIB−V + ΓIB−A . (5.18)

It is convenient to introduce the dimensionless variables x and y:

x :=
2pτ · k
M2

τ

, y :=
2pτ · p
M2

τ

. (5.19)

In the tau rest frame x and y are the energies Eγ and Eπ of the photon and the
pion, respectively, expressed in units of Mτ/2:

Eγ =
Mτ

2
x , Eπ =

Mτ

2
y . (5.20)
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Eq. (5.20) sets the scale for the photons to be considered as ”hard” or ”soft”. This
means that the formulae for internal bremsstrahlung should be similar for radiative
tau and pion decay, once they are expressed in terms of x and y, as it is the case,
albeit photons of comparable softness will have very different energies in both cases.

The kinematical boundaries for x and y are given by

0 ≤ x ≤ 1− r2P , 1− x+ r2P
1−x
≤ y ≤ 1 + r2P , (5.21)

where

r2P :=

(
mP

Mτ

)2

∼0.006
0.077≪ 1 , (5.22)

where the upper figure corresponds to P = π and the lower one to P = K. It is also
useful to note that

p · k =
M2

τ

2
(x+ y− 1− r2P ) , t := (pτ − q)2 = (k+ p)2 =M2

τ (x+ y− 1) . (5.23)

The differential decay rate is given by [339]

dΓ(τ− → ντP
−γ) =

1

512π5Eτ

δ(4)(k + p + q − pτ )|M|2
d3~kd3~pd3~q

EγEπEν

, (5.24)

where the bar over the matrix element denotes summing over the photon polari-
zation and neutrino spin and averaging over the tau spin. Choice of the tau rest
frame, integration over the neutrino momentum, ~p, and the remaining angles and
introduction of x and y yields

d2Γ

dx dy
=

mτ

256π3
|M|2 . (5.25)

The integration over y gives the photon spectrum

dΓ

dx
=

∫ 1+r2P

1−x+
r2
P

1−x

dy
d2Γ

dx dy
. (5.26)

Because of the infrared divergence of the internal bremsstrahlung a low-energy cut
must be introduced for the photon energy, by requiring x ≥ x0 one obtaines the
integrated decay rate

Γ(x0) = Γ(E0) =

∫ 1−r2P

x0

dx
dΓ

dx
, (5.27)

that does depend on the photon energy cut-off (E0 =
Mτ

2
x0). Instead of x and y one

can use x and z, where z is the scaled momentum transfer squared:

z =
t

M2
τ

= x+ y − 1 , (5.28)
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whose kinematical boundaries are

z − r2P ≤ x ≤ 1− r2P
z
, r2P ≤ z ≤ 1 . (5.29)

Integration of d2Γ
dx dy

over x yields the spectrum in z, i. e. the spectrum in the invariant
mass of the P -photon system:

dΓ

dz
(z) =

dΓ

dz

(√
t
)
=

∫ 1−r2P /z

z−r2P

dx
d2Γ

dx dy
(x, y = z − x+ 1) . (5.30)

The integrated rate for events with t ≥ t0 is then given by

Γ(z0) = Γ
(√

t0
)
=

∫ 1

z0

dz
dΓ

dz
(z) . (5.31)

We note that z0 is both an infrared and a collinear cut-off.
In terms of the quantities defined in Eq. (5.18) the differential decay rate is

d2ΓIB

dx dy
=

α

2π
fIB

(
x, y, r2P

) Γτ−→ντP−

(1− r2P )
2 , (5.32)

d2ΓSD

dx dy
=

α

8π

M4
τ

F 2
P

[
|FV (t)|2fV V

(
x, y, r2P

)
+ 4ℜe(FV (t)F

⋆
A(t))fV A

(
x, y, r2P

)
+

4|FA(t)|2fAA(x, y, r
2
P )
] Γτ−→ντP−

(1− r2P )2
,

d2ΓINT

dx dy
=

α

2π

M2
τ

FP

[
fIB−V

(
x, y, r2P

)
ℜe(FV (t)) + 2fIB−A

(
x, y, r2P

)
ℜe(FA(t))

] Γτ−→ντP−

(1− r2P )
2 ,

where

fIB
(
x, y, r2P

)
=

[r4P (x+ 2)− 2r2P (x+ y) + (x+ y − 1) (2− 3x+ x2 + xy)] (r2P − y + 1)

(r2P − x− y + 1)
2
x2

,

fV V

(
x, y, r2P

)
= −[r4P (x+ y) + 2r2P (1− y)(x+ y) + (x+ y − 1)

(
−x+ x2 − y + y2

)
] ,

fAA

(
x, y, r2P

)
= fV V

(
x, y, r2P

)
,

fV A

(
x, y, r2P

)
= −[r2P (x+ y) + (1− x− y)(y − x)]

(
r2P − x− y + 1

)
,

fIB−V

(
x, y, r2P

)
= −(r

2
P − x− y + 1) (r2P − y + 1)

x
,

fIB−A

(
x, y, r2P

)
= − [r

4
P − 2r2P (x+ y) + (1− x+ y)(x+ y − 1)] (r2P − y + 1)

(r2P − x− y + 1)x
. (5.33)
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In the approximation r2P ≈ 0 (vanishing pion mass) these formulae simplify to

fIB(x, y, 0) =
[1 + (1− x)2 − x(1− y)](1− y)

(x+ y − 1)x2
,

fV V (x, y, 0) =
(
x− x2 + y − y2

)
(x+ y − 1) ,

fV A(x, y, 0) = (x+ y − 1)2(x− y) ,

fIB−V (x, y, 0) =
(x+ y − 1)(1− y)

x
,

fIB−A(x, y, 0) =
(x− y − 1)(1− y)

x
. (5.34)

We note that the radiative decay rate has been expressed in terms of the rate of the
non-radiative decay (τ− → ντP

−):

Γτ−→ντP− =
G2

F |V ij
CKM |2F 2

P

8π
M3

τ (1− r2P )2 . (5.35)

We finish this section by presenting the analytical expressions for the invariant
mass spectrum:

dΓIB

dz
=

α

2π

[
r4P (1− z) + 2r2P

(
z − z2

)
− 4z + 5z2 − z3+

+
(
r4P z + 2r2P z − 2z − 2z2 + z3

)
lnz
] 1

z2 − r2P z
Γτ−→ντP−

(1− r2P )
2 ,

dΓV V

dz
=

α

24π

M4
τ

F 2
P

(z − 1)2 (z − r2P )
3
(1 + 2z)

z2
|FV (t)|2

Γτ−→ντP−

(1− r2P )2
,

dΓV A

dz
= 0 ,

dΓAA

dz
=

α

6π

M4
τ

F 2
P

(z − 1)2 (z − r2P )
3
(1 + 2z)

z2
|FA(t)|2

Γτ−→ντP−

(1− r2P )
2 ,

dΓIB−V

dz
=

α

2π

M2
τ

FP

(z − r2P )2(1− z + z ln z)

z
ℜe(FV (t))

Γτ−→ντP−

(1− r2P )2
,

dΓIB−A

dz
= −α

π

M2
τ

FP

[
r2P (1− z)− 1− z + 2z2+

+
(
r2P z − 2z − z2

)
ln z
] z − r2P

z
ℜe(FA(t))

Γτ−→ντP−

(1− r2P )
2 . (5.36)

The interference terms IB−V and IB−A are now finite in the limit z → r2P , which
proves that their infrared divergencies are integrable.

Although the above formulae have been noted in Ref.[336], we independently cal-
culate them 6 and explicitly give them here for completeness. Moreover we would

6Typoes in Refs. [336, 340, 341] have been detected through our calculation. The minus sign
difference in the definition of the IB part has been taken into account.
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like to point out that due to the fact that our definitions of the form-factors FV (t)
and FA(t) differ from the ones given in Ref. [336], as we have mentioned before,
there are some subtle differences in the above formulae between ours and theirs.

5.2.2. Breit-Wigner models

These processes were studied by Decker and Finkemeier in a series of papers
[336, 342, 343, 344]. Their parametrization respected the chiral limit (t = 0) for the
vector form factor, as given by the Wess-Zumino term. However, for the axial-vector
form factor it was fixed to the value of FA(t = 0) in the radiative decay of the pion.
This way, not only the value at threshold but also the low-t-dependence of the am-
plitude deviates from the QCD prediction, which is not satisfactory. Moreover, the
off-shell widths employed for the vector resonances were just phase-space motivated,
while the one for the axial-vector resonance a1 employed the ad-hoc expression in
the KS model. High-energy QCD behaviour of the form factors was properly im-
plemented. Finally, the addendum to Ref. [336] change the relative sign between the
IB and SD contributions, and this has not been confirmed by any later independent
study, so this is another motivation for our work.

Our study, included in the next chapter intends to go beyond these approxima-
tions and provide a more based description of these decays. They are still undetected,
a feature that makes them more interesting, as it is strange according to the estima-
tions of the decay width of these processes. For reference, the decay modes reported
by the PDG [8] are reviewed in Table 5.1.

5.3. Two meson decays of the τ

5.3.1. Model independent description

The vector form factor of the pion, F π
V (s) is defined through:

〈
π+(p′)π−(p)

∣∣∣ 1√
2
(uγµu− dγµd)

∣∣∣0
〉

= (p′ − p)µF π
V (s) , (5.37)

where s = (p+ p′)2 (s will be defined analogously throughout this section), and the
participating current is the third component of the vector one of the SU(3) flavor
symmetry of QCD. The matrix element of Eq. (5.37) is related by chiral symmetry
to the one appearing in τ decays

〈 π−(pπ−)π0(pπ0)|dγµu|0 〉 =
√
2(pπ− − pπ0)µF π

V (s) . (5.38)
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n Decay mode BR(%) n Decay mode BR(%)

0 e−νe 17.85(5) ηK
0
π− 2.2(7) · 10−2

µ−νµ 17.36(5) ηK−π0 1.8(9) · 10−2

e−e−e+νe 2.8(1.5) · 10−3 π−2η < 1.1 · 10−2 a

µ−e−e+νµ < 3.6 · 10−3 b K+2K− 1.58(18) · 10−3 c

1 π− 10.91(7) η′π−π0 < 8.0 · 10−3 b

K− 6.95(23) · 10−1 4 π+2π−π0 4.59(7)

2 π−π0 25.52(10) π−3π0 1.04(7)

π−K
0

8.4(0.4) · 10−1 K−π+π−π0 1.35(14) · 10−1

K−π0 4.28(15) · 10−1 K−K02π0 < 1.6 · 10−2 a

K−K0 1.58(16) · 10−1 K−3π0 4.7(2.1) · 10−2

K−η 2.7(6) · 10−2 π−π0K0K
0

3.1(2.3) · 10−2

π−η < 1.4 · 10−2 a π−2π0K
0

2.6(2.4) · 10−2

η′π− < 7.4 · 10−3 b η2π−π+ 2.3(5) · 10−2

3 2π−π+ 9.32(7) η2π0π− 1.5(5) · 10−2

π−2π0 9.27(12) 2K−K+π0 < 4.8 · 10−4 b

π−π+K− 3.41(16) · 10−1 2ηπ−π0 < 2.0 · 10−2

π−π0K
0

3.9(4) · 10−1 5 2π−π+2π0 7.6(5) · 10−1

π−π0η 1.81(24) · 10−1 π−4π0 7.6(5) · 10−1

π−K0K
0

1.7(4) · 10−1 K−4π0 −
K−K0π0 1.58(20) · 10−1 6 2π−π+3π0 −
π−K+K− 1.40(5) · 10−1 3π−2π+π0 −
K−2π0 6.3(2.3) · 10−2

Cuadro 5.1: Decays of the τ according to the number of mesons, n, and the BR [8]. For
the decay τ− → ντ X

−, X− is displayed in the table. a: with 95 % CL. b: with 90 %
CL. c: However one should take into account the very recent measurement by the Belle
collaboration [345] giving a BR of (3,29 ± 0,17+0,19

−0,20) · 10−5. −: The PDG does not give a
bound for these channels.

The associated vector and scalar form factors entering the decay τ− → K−π0ντ
are defined through:

〈K−(pK)π
0(pπ)|sγµu|0 〉 =

1√
2

[(
pK − pπ −

∆Kπ

s
q

)µ

FK−π0

V (s) +
∆Kπ

s
qµFK−π0

S (s)

]
.

(5.39)
The different kaon and pion masses imply the appearance of the scalar form

factor, FK−π0

S (s), that accounts for the non-conserving vector current part of the
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decay, qµ = (pK + pπ)
µ , s = q2 and

∆Kπ = m2
K −m2

π . (5.40)

Chiral symmetry dictates then the structure of the process τ → K̄0π−ντ : with
the changes:

K−π0 → K̄0π− , sγµu→ uγµs , FK−π0

V, S (s)→
√
2F K̄0π−

V, S (s) . (5.41)

An equivalent description is given in terms of the pseudoscalar (FKπ
0 (s) = −FKπ

S (s))
and vector (FKπ

+ (s) = −FKπ
+ (s)) form factors. The vector form factor into two

kaons is probed through τ− → K−K0ντ :

〈K0(p0)K
−(p−)|dγµu|0 〉 =

1

2
FK
V (s)(p0 − p−)µ , (5.42)

where, as in the case of the pion form factor, the vector current is conserved in the
isospin limit.

The decay τ− → ηπ−ντ can only be produced in the SM as an isospin violating
effect [327], since it has opposite G-parity to the participating vector current. The
coupling to the vector current occurs via an η − π0 mixing. The related matrix
element will exhibit the structure

〈 η(pη)π−(pπ)|dγµu|0 〉 =
√

2

3
F πη
V (s)

md −mu

md +mu

m2
π

m2
η −m2

π

(pπ − pη)µ . (5.43)

Finally, the K−η decay mode can be parametrized as follows

〈K−(pK)η(pη)|sγµu|0 〉 =
√

3

2
FKη
V (s)(pK − pη)µ , (5.44)

and the τ → K−η′ντ decay mode vanishes in the limit of ideal mixing for the
η system, so that corrections to this approach will yield a suppressed branching
fraction.

The differential decay rate for the process τ → ντh1(p1)h2(p2) is obtained from

dΓ(τ → ντh1h2) =
1

2Mτ

G2
F

2
|V ij

CKM |2 {LµνH
µν} dPS(3) . (5.45)

In order to disentangle the angular dependence it is useful to introduce suitable
linear combinations of density matrix elements of the hadron system 7

LµνH
µν = 2(M2

τ − s) ( L̄BWB + L̄SAWSA + L̄SFWSF + L̄SGWSG ) , (5.46)

We note that the most general decomposition of LµνH
µν (for two body decays) in

terms of density matrix elements (or structure functions) WX of the hadron system

7The general procedure is studied in Ref. [346], where it is shown that the angular dependencies
can be isolated by introducing 16 combinations of defined symmetry.
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has two additional terms L̄AWA + L̄EWE [346]. However, WA and WE vanish in the
case of tau decays into two pseudoscalar mesons. Nonvanishing WA and WE arise
for example in decay modes with a vector and a pseudoscalar [347].

The hadron structure functions are related to the vector and scalar form factors
as follows:

WB(s) = 4(~p1)
2 |FV (s)|2 , WSA(s) = s |FS(s)|2 , (5.47)

WSF (s) = 4
√
s|~p1| ℜe [FV (s)F

∗
S(s)] ,

WSG(s) = −4√s|~p1| ℑm [FV (s)F
∗
S(s)] ,

where |~p1| = pz1 is the momentum of h1 in the rest frame of the hadron system:

pz1 =
1

2
√
s

√
[s−m2

1 −m2
2]

2 − 4m2
1m

2
2 , E2

1 = (pz1)
2 +m2

1 . (5.48)

The hadron structure functions WB, SA, SF, SG are linearly related to the density ma-
trix elements of the hadron system:

WB = H33 , WSA = H00 , WSF = H03 +H30 , WSG = −i(H03 −H30) . (5.49)

Finally, the differential decay rate dΓ/ds yields

dΓ

ds
=

G2
F |V ij

CKM |2
28π3

(M2
τ − s)2

M2
τ s

3/2
|pz1|

2s+M2
τ

3M2
τ

{
WB(s) +

3M2
τ

2s+M2
τ

WSA(s)

}
.

(5.50)

5.3.2. Theoretical descriptions of the form factors

There is a great amount of data available on F π
V (s), Eq. (5.37), because it

appears in the hadron matrix element entering the process e+e− → π+π− where
there are many precise measurements [348, 349, 350, 351, 352, 353, 354] and, in
the isospin limit, of the decay: τ− → π−π0ντ , where the latest data was published
by the Belle Collaboration [355]. F π

V (s) has been studied within χPT up to O(p6)
[210, 356, 357, 358], so the very-low energy description is really accurate.

The energies going from Mρ to ∼ 1.2 GeV are dominated by the ρ (770) so that
this resonance can be characterized through the study of this form factor very well.
Ref. [359] attempted to improve the O(p4) χPT result by matching it at higher
energies with an Omnès solution [360] of the dispersion relation satisfied by the
vector form factor of the pion. This way, the description keeps its validity up to 1
GeV, approximately. Some years later, the unitarization approach was used [361]
to obtain a good description of data in this region, as well. The KS-model [329]
also parametrized this decay. We will discuss this model in more detail along its
description of the 3π channel in Section 5.4.3.

A model independent parametrization of this form factor built upon an Omnès
solution for the dispersion relation has also been considered [362, 363, 364]. Com-
bining this procedure with RχT [362] improves the previous approach (it extends
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now to ∼ 1.3 GeV) if one includes information on the ρ′ (1450) through ππ elastic
phase-shift input in the Omnès solution.

It is clear that ρ′ (1450) and ρ′′ (1700) will play the main rôle in the energy region
up to 2 GeV. However, the proposed parametrizations including both resonances
only allow to quantify the relative strength of each one and the likely interference
amid these resonances, the possible presence of a continuum component, etc. are
completely lost with the most simple approaches. Within RχT , the ρ′ (1450) was
incorporated through a Dyson-Schwinger-like resummation [365], and the ideas of
the NC → ∞ limit and vector meson dominance were used in Ref. [366], including
a pattern of radial excitations expected from dual resonance models. They included
the three lightest ρ resonances plus a tower of infinite number of zero-width higher-
excited states in the spirit of large-NC [367]. Using the hidden gauge formalism,
Ref. [368] has emphasized the rôle of the ρ−ω−φ mixing in this form factor. Using
Padé approximants Refs. [369, 370] have studied all available space-like data on this
form factor up to Q2 = 12 GeV2.

The last years have witnessed the discrepancy between e+e− → π+π− and τ− →
π−π0ντ predictions [348, 349, 350, 351, 352, 353, 355] for F π

V (s). There have been
some theoretical studies [191, 371, 372] of radiative corrections in the τ decay mode,
but the difference is not fully accounted for yet.

There is also a large amount of good quality data on the Kπ form factors. In
addition to the e+e− data from E865 [373], CLEO data appeared on τ decays [374],
and two high-precision studies of the related τ decays were recently published by
BaBar [375] -for the charge channel τ− → K−π0ντ - and Belle [376]-τ

− → KSπ
−ντ -.

A comparison of the newest experiments with the Monte Carlo expectations for the
π−π0 and (Kπ)− meson modes is presented in Ref. [162].

The form factor FKπ
V (s) was computed at O(p4) in χPT in Ref. [210]. In Ref. [358]

the χPT analysis is performed within the three flavour framework at next-to-next-
to-leading order. This provides a good description of the very-low energy spectrum.
In order to extend it to higher energies, in Ref. [377] the Linear sigma model, a
quark-triangle model and Vector meson dominance have been used. The comparison
to data [373] favours the last one. Simple Breit-Wigner models supplemented with
vector meson dominance have also been used [378, 379]. They suffered the same
problems explained in Section 5.2.2.

Both the vector and the scalar form factor have been reviewed recently. In
Ref. [380], the distribution function for this decay has been obtained with the
relevant vector and scalar form factors presented above computed within RχT
and taking into account additional constraints from dispersion relations and short-
distances. The dynamically generated K∗

0 (800) should be the resonance starring at
the scalar form factor, whether K∗ (1410) will modify a bit the more prominent
contribution of K∗ (892) to FKπ

V (s), as the results confirm [381] when confronting it
to Ref. [376]. In Ref. [382], the knowledge of O(p6) chiral LECs and of light quark
masses has been improved studying FKπ

0 (s). These form factors have been studied
using analyticity constraints and taking into account isospin violating corrections
by Moussallam [284]. This strategy was also followed in Ref. [383] but sticking to
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the exact SU(2) limit. The scalar form factor has also been studied [384, 385] mat-
ching χPT to a dispersive representation. Lately, it has been realized that there is
anticorrelation in the parameters describing the vector form factor in FKπ

V (s) from
tau decays and Kℓ3 decays [383, 386], which has allowed to reach smaller errors in
the slope and curvature of this form factor.
The work [387] analyzed the two-kaon vector form factor, FK

V (s), in much the same
way as done for two pions [359]. By that time, the experimental data [331, 388] were
not in enough agreement with each other to check the proposed expression. New
finer results have been published since then [389, 390], so a dedicated study of these
modes within RχT employing all present knowledge of EFTs, short-distance QCD,
the large-NC expansion, analyticity and unitarity would be desirable specially in
light of forthcoming data from BaBar and Belle.

We turn to the τ decays into η modes: the π−η(
′) channel has been observed

recently for the first time [391], while for the K−η meson system there are recent
measurements already published [392]. The smaller BR for the first one is consistent
with the findings of Ref. [327] summarized before. A first description of this decay
was attempted at the beginning of the eighties [393] and revisited recently [394] and
the main features were already established few years later [327, 395]. The χPT re-
sult at O(p4) [210] was extended to higher invariant masses of the hadron system in
Ref. [396]. Even the isospin breaking corrections have been computed for this mode
[397]. Again a study along the lines proposed in this Thesis would be interesting.
The decay τ− → K−ηντ has not been improved further than the χPT computation
at O(p4) [210] to our knowledge.

5.4. Three meson decays of the τ

5.4.1. Model independent description

The hadron matrix element for the considered decays may be written as [346,
398]

〈 (PPP )−|(V − A)µ|0 〉 = V µ
1 F

A
1 (Q2, s1, s2) + V µ

2 F
A
2 (Q

2, s1, s2) (5.51)

+ Qµ FA
3 (Q

2, s1, s2) + i V µ
3 F

V
4 (Q2, s1, s2) ,

where

V µ
1 =

(
gµν − QµQν

Q2

)
(p1 − p3)ν , V µ

2 =

(
gµν − QµQν

Q2

)
(p2 − p3)ν ,

V µ
3 = εµαβγ p1α p2β p3γ , Qµ = (p1 + p2 + p3)

µ , si = (Q − pi)
2 ,(5.52)

the upper indices on the form factors stand for the participating current, either the
axial-vector (A), or the vector one (V ) and not for the quantum numbers carried by
them; notice that FA

3 (Q
2, s1, s2) is the pseudoscalar form factor that accounts for
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a JP = 0− transition. FA
1 (Q2, s1, s2) and F

A
2 (Q2, s1, s2) are the axial-vector form

factors that carry JP = 1+ degrees of freedom. Finally, F V
4 (Q2, s1, s2) is the vector

form factor, that has JP = 1−.
There are other properties that one can derive in full generality. For instance, due

to the chiral Ward identity relating axial-vector and pseudoscalar currents, conser-
vation of the first one in the chiral limit imposes that FA

3 (Q2, s1, s2) must vanish
with the square of a pG mass and hence, its contribution may be suppressed. There
are, of course, other constraints coming from SU(2) or SU(3) flavour symmetries for
a given mode, like those stating that the form factors for the decays τ− → π0π0π−ντ
and τ− → π−π−π+ντ are identical in the SU(2) limit, as it happens for the form
factors in the decays τ− → K0K̄0π−ντ and τ− → K+K−π−ντ . There are other
symmetry requirements: in τ− → (3π)−ντ , Bose-Einstein symmetry implies that
FA
2 (Q2, s1, s2) = FA

1 (Q2, s2, s1) and G-parity forbids axial-vector current contri-
butions to the decays of the τ into ηπ−π0 and ηηπ−[327]. This kind of relations will
be discussed and used in the following chapters.

We consider a general three meson decay of the τ : τ−(ℓ, s) −→ ντ (ℓ
′, s′) +

h1(p1, z1) + h2(p2, z2) + h3(p3, z3). The polarizations (s, s′, z1, z2, z3) will play no
role in the following since we will assume the tau to be unpolarized. Then, the
differential phase space for a generic channel is given by

dΓ(τ− −→ (3h)−ντ ) =
1

2Mτ

G2
F

2
|V CKM

ij |2LµνH
µνdPS (4) , (5.53)

where the phase space-integration involves the three mesons and one neutrino in the
final state:

dPS(4) = (2π)4δ4(ℓ−ℓ′−p1−p2−p3)
d3
−→
ℓ′

(2π)32Eν

d3−→p1
(2π)32E1

d3−→p2
(2π)32E2

d3−→p3
(2π)32E3

. (5.54)

In order to obtain the differential width as a function of Q2 (the so-called spectral
function), the integration over

∫
dPS(4) is carried out in two steps:

dΓ =

3∏

i=1

∫
d3
−→
ℓ′

(2π)32Eν

d3−→pi
(2π)32Ei

(2π)4δ

(
ℓ− ℓ′ −

3∑

i=1

pi

)
∑
|M|2 , (5.55)

provided we use the Källen’s trick to split the integrations by introducing a Dirac
delta as follows:

dΓτ−→(h1h2h3)−ντ

dQ2
=

∫
d3−→pν

(2π)32Eν
δ
(
Q2 − (pτ − pν)2

)
×

∫ 3∏

i=1

d3−→pi
(2π)32Ei

(2π)4δ

(
Q−

3∑

i=1

pi

)
∑
|M|2 . (5.56)
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We have:
∫

d3−→pν
(2π)32Eν

δ
(
Q2 − (pτ − pν)2

)
=

∫
d3−→pν

(2π)32Eν
δ
(
Q2 −M2

τ −m2
ν + 2pτpν

)
=

=
1

(2π)2

∫
d|−→pν ||−→pν |2

Eν

δ
(
Q2 −M2

τ −m2
ν + 2MτEν

)
=

=
1

(2π)2

∫
d|−→pν ||−→pν |2

Eν

δ
(
|−→pν | − |−̃→pν |

)

2Mτ
|−→pν |
Eν

=

=
1

(2π)2
1

(2Mτ )2
|−̃→pν | =

1

(2π)2
λ1/2(Q2,M2

τ , m
2
ν)

4M2
τ

. (5.57)

where it has been taken into account that decay widths are defined in the rest frame

of the decaying particle, and |−̃→pν | = λ1/2(Q2,M2
τ ,m

2
ν)

2Mτ
.

The integration over
∫
dΠ3 is left involving the momenta pi. It yields [339] (notice

that a factor (2π)−9 is not included in the definition of dΠ3 immediately below):

∫
dΠ3 :=

∫
ds dt δ

(
s− (Q− p3)2

)
δ
(
t− (Q− p2)2

) dPS(3)

(2π)4
=

π2

4Q2

∫
ds dt ,

(5.58)
where s ≡ (p1 + p2)

2 ≡ s12, t ≡ (p1 + p3)
2 ≡ s13, and u ≡ (p2 + p3)

2 ≡ s23 =
Q2 − s− t +m2

1 +m2
2 +m2

3. Using Eq. (5.58), one has:

dΓτ−→(h1h2h3)−ντ

dQ2
=

G2
F |V CKM

ij |2
128(2π)5Mτ

λ1/2(Q2,M2
τ , m

2
ν)

M2
τ

1

Q2
×

{
ωSA(Q

2, s, t)

(
Στν −

∆2
τν

Q2

)
− 1

3

ω(Q2,M2
τ , m

2
ν)

Q2

(
ωA(Q

2, s, t) + ωB(Q
2, s, t)

)}
,

(5.59)

where there the integrated structure functions have been defined as follows:

ωSA,A,B(Q
2) =

∫
ds dtWSA,A,B(Q

2, s, t) . (5.60)

The other definitions employed include the so-called weak matrix element:
ω(Q2,M2

τ , m
2
ν) ≡ (M2

τ − Q2)(M2
τ + 2Q2) −m2

ν(2M
2
τ − Q2 −m2

ν), and Στν ≡ M2
τ +

m2
ν , ∆τν ≡ M2

τ − m2
ν . WSA,A,B(Q

2, s, t) correspond to the structure functions in
Ref. [346]. In terms of the form factors and set of independent vectors in Eqs. (5.51),
(5.52) they are

WSA =
[
Qµ FA

3 (Q
2, s1, s2)

] [
Qµ F

A
3 (Q2, s1, s2)

]∗
= Q2 |FA

3 (Q2, s1, s2)|2 ,
WA = −

[
V µ
1 F

A
1 (Q2, s1, s2) + V µ

2 F
A
2 (Q2, s1, s2)

]
×[

V1µ F
A
1 (Q2, s1, s2) + V2µ F

A
2 (Q2, s1, s2)

]
,

WB =
[
V3µ F

V
4 (Q2, s1, s2)

] [
V µ
3 F

V
4 (Q2, s1, s2)

]∗
. (5.61)
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In the excellent limit of vanishing neutrino mass, the Q2-spectrum is simply given
by:

dΓ

dQ2
=

G2
F |V CKM

ij |2
128 (2π)5Mτ

(
M2

τ

Q2
− 1

)2 ∫
ds dt

[
WSA +

1

3

(
1 + 2

Q2

M2
τ

)
(WA +WB)

]
.

(5.62)
The limits of integration when obtaining the full width are the following ones:

∫ Q2max

Q2
min

dQ2

∫ smax

smin

ds

∫ tmax

tmin

dt , (5.63)

tmax
min (Q

2, s) =
1

4s

{(
Q2 +m2

1 −m2
2 −m2

3

)2 −
[
λ1/2

(
Q2, s,m2

3

)
∓ λ1/2

(
m2

1, m
2
2, s
)]2}

,

(5.64)

smin = (m1 +m2)
2 , smax = (

√
Q2 −m3)

2 ;

Q2
min = (m1 +m2 +m3)

2 , Q2max = (Mτ −mν)
2 . (5.65)

5.4.2. Recent experimental data

The BaBar [399] and Belle [345] collaborations have recently reported the
measurement of the branching fractions of various particle combinations (any combi-
nation of pions and kaons) in the decay to three charged hadrons. The mass spectra
have not been analysed yet. Previous studies of the mass spectra were done by
the CLEO group [400], and the ALEPH [78], DELPHI [401] and OPAL [402]
collaborations on the 3π mode. CLEO studied with detail also the KKπ modes
[403, 404, 405]. The 3K modes have been observed by Babar [399] and Belle [406].
Recently, the Belle Collaboration performed a detailed study of various decays with
the η meson in the final state [392].

5.4.3. Theoretical description of the form factors

Even before the discovery of the tau lepton, its mesonic decays and the rela-
tion between these ones and the hadron states produced in e+e− annihilation were
studied [407, 408]. The late seventies witnessed the pioneering work of Fischer, Wess
and Wagner [325], that employed the method of phenomenological Lagrangians to
derive relations between different n-pion modes in terms of the pion decay cons-
tant, F . Ref. [409] used isospin invariance and measurements on e+e− annihilation
to relate several channels. Ref. [410] attempted a Lagrangian description of the 3π
decays including resonances and, explicitly, the a1-π-ρ vertex 8. However, the mo-
del was not consistent with χPT at O(p4) and, moreover made the severe mistake

8The a1 dominance in heavy lepton decays was proposed in 1971 [407], 4 years before the tau
lepton was actually discovered.
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of not including energy-dependent widths for these spin-one resonances. The mo-
del by Isgur, Morningstar and Reader [411] violated chiral symmetry. Braaten et. al.
[412, 413] used an EFT approach, based on U(3)L⊗U(3)R for the vector resonances
and respecting chiral symmetry up to O(p2) for the pGs. However, it left aside the
axial-vector mesons that happened to dominate these decays and assumed hidden
local symmetry. Ref. [414] used the isobar model that violates 3-particle unitarity.
In addition, the model did not respect chiral symmetry constraints. The works by
B. A. Li [415, 416, 417, 418, 419] covered in a unified framework the most interes-
ting decay channels. His theory was based on chiral symmetry for the pGs and the
resonances were incorporated following U(3)L ⊗ U(3)R. The author introduced an
unjustified energy-dependent ρ-π-π vertex. Studies using old current algebra tech-
niques were also undertaken by that time [420, 421].

The KS model [329] was a step forward, because in the zero-momentum limit
it recovered the χPT results and, additionally, it provided more realistic off-shell
widths for the involved resonances accounting both for vector and axial-vector sta-
tes. However, as it was shown later, it was inconsistent with chiral symmetry 9 at
O(p4) [309, 422] 10. Moreover, the proposed widths are only phase-space motiva-
ted. Although they work quite well, there is no dynamics in them, a feature that
should not be satisfactory. The KS model was a major achievement in LEP times
to understand τ data. Nowadays, the much more precise data samples and the finer
understanding of the Lagrangian approach to the intermediate-energy meson dy-
namics demands the latter to be applied by the experimental community. We will
report about its application to the three-meson decays modes of the tau in Chapters
6, 7 and 8. The recent study in Ref. [424] includes also the sigma contribution to
this channel and reports that the a′1 effect is needed to improve significantly the
agreement with the data. However, it violates chiral symmetry already at LO since
it does not include the diagrams with pions in χPT at O(p2).

Other three meson channels were studied following the KS model [378, 425, 426,
427]. In addition to the comments we made to the original work, several other issues
enter in these cases [428, 429, 430, 431]: Some of the intermediate exchanged reso-
nances in a given channel that are allowed by quantum numbers are not included in
the model and, moreover, the treatment of spin-one resonances is inconsistent: the ρ
(1450) has noticeable different mass and width in the axial-vector and vector current
form factors and there are two multiplets of vector resonances in the axial-vector
current while three in the vector current, a very unnatural phenomenon. It seems
difficult to explain why the ρ(1700) happens to be so important in the vector form
factor, given its high mass. The KS model and its generalizations were implemented

9One could think that it is not that important to fulfill the NLO results in χPT while one is
attempting a description in the GeV region. This is not true. The spectra are very sensitive to the
normalization and low-energy dependence of the form factors that is carried on to the rest of the
spectrum.

10The χPT result at O(p4) [356] checked that χPT could only describe this decay in a tiny
window of phase space. This low-energy part motivated also the study [423] aimed to find hints on
the mechanism of dynamical chiral symmetry breaking.
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in the famous TAUOLA library for tau decays [432, 433, 434, 435]. Later on, this
parametrization of the hadron matrix elements was complemented by others based
on experimental data by the CLEO 11 and Novosibirsk groups [437]. Currently, we
are improving some of the proposed currents [438] using the results in this Thesis.

We end the section by quoting early studies that constructed the form factors
using the chiral symmetry results at low energies and experimental information to
extend it to the GeV-scale, on the KKπ [439] and ηππ modes [440, 441].

5.5. Decays of the τ including more mesons

5.5.1. Model independent description

As far as we know, there is no model independent description of the many-
meson decay modes, for instance Ref. [442] builds the amplitude for the 4π decay
assuming some decay chains and that the vertex functions are given by their on-
shell structure and are transverse. This work was consequence of a previous study of
τ → ωπ−ντ [347]. In Refs. [443, 444] isospin symmetry is used in order to determine
that all decay channels τ− → (4π)−ντ can be parametrized in terms of form fac-
tors that depend just on one quantity once the symmetries associated to relabeling
the different 4π momenta have been used. Moreover, the form factors appearing in
e+e− → (4π)0 can be obtained with the same single function. Isospin symmetry was
systematically used for the first time in multimeson tau decays in Refs. [445, 446],
where the meson channels KK̄+nπ, nπ, (2n+1)π, 2nπ, and K+nπ were examined.

The decays with five mesons have been addressed in Ref. [447], but the proposed
hadron matrix elements rely on the assumed substructure of the process.

5.5.2. Experimental data

Tau decays into four-meson modes have been measured very recently in the
B-factories, and more data was collected from ALEPH [448] and CLEO [449, 450].
BaBar measured the BR for the mode (Kπ)0K−π0 through K∗0K−π0 [451] and
Belle for the mode 2π−π+η [452]. The five charged meson modes have been measu-
red by BaBar [453] with much larger statistics than CLEO [454] achieved. Finally,
the six-pion final state was studied also by the CLEO Collaboration [455].

5.5.3. Theoretical description of the form factors

In Ref. [456] comparisons of five- and six-pion τ decay data with the isospin
relations indicates that the final states in these decays tend to involve an ω reso-

11The CLEO parametrization was private, reserved for the use of the collaboration until publis-
hed in [502] .
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nance. If the decay dynamics of the seven-pion τ decays are similar to the five- and
six-pion decays, then isospin relations could explain a low branching ratio limit on
the τ → 4π−3π+ντ decay.

5.6. Hadron τ decays in Higgs physics at the LHC

In this section we will report briefly on the importance of mastering hadron
decays of the tau in Higgs physics at the LHC. One of the main goals of the ATLAS
[457] and CMS [458] experiments at LHC is the search for the Higgs boson and the
source of electroweak symmetry breaking. Both detectors are capable of doing that
for any possible range of masses: 114.4 GeV -direct exclusion limit at 95% confidence
level obtained by LEP [459] to 1 TeV 12 -there are many reasons to believe that the
TeV scale is an upper limit for the Higgs mass, see for instance [461] and references
therein-. In the low-mass region (mH < 130 GeV) the decays of the Higgs boson
into two photons or into two taus are the most promising for discovery. Irrespective
of the value of mH its decays into taus will be important to measure its couplings,
spin and CP properties [462, 463, 464]. The production and decay of the τ leptons
are well separated in space and time providing potential for unbiased measurements
of the polarization, spin correlations, and the parity of the resonances decaying into
τ leptons. The excellent knowledge of τ decay modes from low-energy experiments
indeed makes this an ideal signature for observations of new physics. In the context
of the Minimal Supersymmetric Standard Model (MSSM), the branching ratio of a
H → γγ decay is generally suppressed which makes the search for the decay H → ττ
very important. This section is mainly based in Refs. [457, 458, 465, 466].

In Figure 5.2 the branching fractions of the SM Higgs boson are shown as a
function of mH . Immediately after they are opened, the WW and ZZ decay modes
dominate over all others (tt̄ can barely reach 20%, as we can see from the curve
appearing for mH & 300 GeV). All other fermionic modes are only relevant for the
Higgs boson masses below 2(MW −ΓW ). These modes show peculiar structures with
a peak corresponding to both weak bosons being on-shell. We see also a valley in the
WW corresponding to the peak in ZZ, since one is plotting the branching ratio. The
decay H → bb̄ is dominating below 140 GeV. However, even though it was included
as a possible channel that could help the Higgs discovery in the low-mass case up
to 2005 [467], a re-evaluation of the QCD backgrounds swapped it away in later
reports [457, 458]. Thus, the decays H → ττ (with br ∼ 8% for 120 < mH < 140
GeV) and H → γγ (br ∼ 2 · 10−3) would be the way to discover the Higgs boson
in the low-mass case. In particular, the design of the detectors in the ATLAS and
CMS experiments makes –always attaching to this low-mass case– the H → ττ

12One should also note that the mass range 160 < mH < 170 GeV has also been excluded recently
by a statistical combination of the direct searches performed by the Tevatron experiments, CDF
and D0 [460]. Neither of these experiments has been able to reach any exclusion limit using only
their own data yet.
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decay the most promising signature in the former and the H → γγ in the latter.
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Figura 5.2: Branching ratio for the relevant decay modes of the SM Higgs boson as a
function of its mass.

Although the reconstruction of τ leptons is usually understood as a reconstruction
of the hadron decay modes, since it would be difficult to distinguish lepton modes
from the primary electrons and muons, a dedicated effort has been devoted to elec-
tron and muon vetoing to reduce their background, so that all possible decays of a
τ+τ− pair: hadron-hadron (hh), lepton-lepton (ℓℓ) or mixed (ℓh) can be detected.
The following nomenclature for τ decays is used from the detection point of view:
single-prong means that exactly one charged meson (most frequently a π) is detected
in the reconstructed decay, while three-prong means that there are three charged
mesons detected. It is understood that one can generally tell a charged lepton from
a charged meson and the small fraction (0.1%) of five-prong decays is usually too
hard to detect in a jet environment. The transverse momentum range of interest at
LHC spans from below 10 GeV to 500 GeV which makes necessary that at least
two detection strategies are developed, as we will comment later on. As one can read
from Table 5.1, τ leptons decay hadronically in 64.8% of the cases, while in 17.8%
(17.4%) of the cases they decay to an electron (muon). It is interesting to note that
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the τ → π±ντ decay represents only the 22.4% of single-prong hadron decays, so
the detection of π0 particles in τ → nπ0π±ντ is fundamental. For the three-prong τ
decays, the τ → 3π±ντ decay contributes 61.6% and the τ → nπ03π±ντ only about
one third. Although the decays containing only pions dominate, there is a small
percentage of decays containing K± that can be identified as for states with π±

from the detector point of view. A small fraction of states with K0
S cannot be easily

classified as one- or three- prong decays since the K0
S decays significantly both to

two charged and two neutral pions. In any study performed so far other multi-prong
hadron modes have been neglected.

Three-prong decays of the τ (essentially τ → nπ03π±ντ ) have the additional
interest of allowing for the reconstruction of the τ decay vertex. This is possible
because cττ ∼ 87µm that one can separate with the inner silicon detector tracking
system. The transverse impact parameter of the 3π± can be used to distinguish
them from objects originated at the production vertex. As we stated before, this
allows for a full treatment of spin effects. This has been done within the framework
of the ATLAS Monte Carlo simulation and events were generated using PY THIA
6.4 [468] interfaced with TAUOLA [469, 503] 13. Full spin correlations in production
and decay of τ leptons were implemented. The associated spin properties in gauge
boson, Higgs boson or SUSY cascade decays carry information on the polarization
of the decaying resonance: τ leptons from W → τντ and H± → τντ will be com-
pletely longitudinally polarized, with Pτ = +1 and Pτ = −1, respectively. As a
result, the charged to total visible energy distributions for one-prong decays will be
different in these cases, permitting their differentiation unambiguously. At the LHC
this effect can be used to suppress the background from the former and enhance ob-
servability of the latter [471]. The τ polarization could also be used to discriminate
between MSSM versus extra dimension scenarios [472]. On the contrary, τ leptons
from neutral Higgs boson decays are effectively not polarized and those coming from
Z decays obey a complicated function of the center-of-mass energy of the system
and the angle of the decay products [473]. In the cleaner environment of a lepton
collider, like the ILC, building variables sensitive to the longitudinal and transverse
spin correlations may lead to a CP measurement of the Higgs boson [474, 475].

Two complementary algorithms for τ -identification and reconstruction have been
studied:

A track-based algorithm [476], which relies on tracks reconstructed in the
inner detector and adopts an energy-flow approach based only on tracks and
the energy in the hadronic calorimeter. It starts from seeds built from few
(low multiplicity) high-quality tracks collimated around the leading one. It
has been optimized for visible transverse energies in the range 10 − 80 GeV,
that corresponds to τ -decays from W → τντ and Z → ττ processes.

A calorimeter-based algorithm [477], which relies on clusters reconstructed in
the hadronic and electromagnetic calorimeters and builds the identification

13See also Sect. 7.1.
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variables based on information from the tracker and the calorimeters. It has
been optimized for visible transverse energies above 30 GeV, which corresponds
to hadron τ -decays from heavy Higgs-boson production and decay.

Whereas the track-based algorithm has been tuned to preserve similar perfor-
mance for single- and three-prong decays, the calorimeter-based algorithm has been
tuned to provide the best possible rejection at medium-to-high energies and it is
therefore more performant for single-prong decays than the track-based algorithm.
Depending on the specific process and scenario under study, the trigger requirements
are different, a complete description can be found in Ref. [457].

The Higgs-boson can be produced via four different mechanisms at hadron colli-
ders. Although the largest production cross-section for mH . 1 TeV is always that
of gluon fusion, gg → H , which is mediated at lowest order by a t-loop, the cleanest
signal in the H → ττ channel is due to the so-called Vector Boson Fusion (V BF )
channel [478, 479], that is represented in Figure 5.3.

q q

q q

τ−

τ+

H0

W, Z

W, Z

Figura 5.3: Feynman diagram for the lowest order Higgs production via V BF and sub-
sequent decay H0 → τ+τ−.

The expected performance in the ATLAS experiment will be adequate to extract
τ signals in early LHC data from W → τντ and Z → ττ decays. These signals are
important to establish and calibrate the τ identification performance with early da-
ta. The study of dijet events from QCD processes will allow a determination of τ
fake rates. It is expected that such rates can be measured with a statistical preci-
sion at the percent level or better already with data corresponding to an integrated
luminosity of 100 pb−1 14. In any case, despite the advances in theoretical tools
and extraordinarily detailed simulation of the ATLAS detector, it is preferable to

14We give some numbers to make easier this and subsequent figures: although the design lumi-
nosity of the LHC is 1034cm−2s−1, it is still a bit optimistic to count on 1032cm−2s−1 for the first
year of operation. In this case, one could expect ∼ 30fb−1 at the end of the first year. In fact the
nominal luminosity is 66.2fb−1/year, so 100 pb−1 = 0.1fb−1 would be achieved very early because
the instantaneous luminosity for the very first measurements was expected to be at the level of
1031cm−2s−1.
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estimate backgrounds from data rather than relying entirely on Monte Carlo simu-
lations. All estimates can thus get sizable corrections as a result.

Once this first stage is completed, one would be ready to search for the qqH →
qqττ decays via a Higgs boson produced in association with two jets. This analysis
requires excellent performance from every ATLAS detector subsystem; τ decays im-
plies the presence of electrons, muons, pions and a few kaons, and missing transverse
momentum, while the V BF process introduces jets that tend to be quite forward
in the detector. Due to the small rate of signal production and large backgrounds,
particle identification must be excellent and optimized specifically for this channel.
Furthermore, triggering relies on the lowest energy lepton triggers or exceptiona-
lly challenging tau trigger signatures. The ATLAS collaboration has estimated the
sensitivity based on ℓℓ and ℓh modes [457]. The hh channel has also been investi-
gated and gives similar results for signal and non-QCD backgrounds as the other
channels. However, due to the challenge of predicting the QCD background the es-
timated sensitivity for this mode was not reported.

The signal events are produced with significant transverse momenta, so the τ from
the decay are boosted which causes their decay products being almost collinear in
the lab frame. The di-tau invariant mass can be therefore reconstructed in the co-
llinear approximation 15. The mass resolution is ∼ 10 GeV, leading to a ∼ 3.5%
precision on the mass measurement with 30fb−1 of data (one year of data taking).
In the more recent analysis particular emphasis is put on data-driven background
estimation strategies. Expected signal significance for several masses based on fit-
ting the mττ spectrum is shown in Figure 5.4. The results obtained neglecting pileup
effects indicate that a ∼ 5σ significance can be achieved for the Higgs boson mass
in the range of special interest: 115 − 125 GeV after collecting 30fb−1 of data and
combining the ℓℓ and ℓh channels. The effects induced by the event pile-up has not
been fully addressed yet. As it is intuitive, the hadron decay gives more constraints,
since there is only one neutrino that escapes detection, while two are unobserved in
the lepton case. Unfortunately the QCD background prevents the usage of the hh
mode for the moment, that could further improve the discovery potential in these
decays. One can check in Figure 5.5 -note that this corresponds to one third of the
luminosity taken as reference previously- that this is the gold-plated mode in the
ATLAS experiment for mH . 135 GeV 16.

We will not cover in detail the relevance of hadron decays of the tau in Higgs
searches in the context of the MSSM . We will just recall the most prominent fea-
tures. The topic is studied in depth in Refs. [457, 458, 465, 466, 480, 481, 482]. The

15i.e., one assumes that the τ direction is given by their visible decay products: leptons or
hadrons.

16In the CMS experiment the H → γγ decay mode has a significance of one sigma more than
H → ττ in the energy range of interest [458]. Remarkably, the two photon mode at CMS and the
two tau mode at ATLAS have a similar significance at the discovery level in the mass range 115
GeV↔ 120 GeV with 30fb−1 of data.
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Figura 5.4: Expected signal significance for several masses based on fitting the mττ spec-
trum in H0 → τ+τ− with 30fb−1 of data (one year of data taking). From Ref. [457]. In
the TAU10 Conference (13-19.09.2010), R.Goncalo reported on behalf of the ATLAS Coll.
that the hh mode was at an advanced stage for being incorporated in these plots soon.
However, figures were not available yet.

LHC has a large potential in the investigation of the MSSM Higgs sector. The
Higgs couplings in the MSSM are different to those in the SM . In particular, for
large Higgs masses (mH > 160 GeV) its decays into weak gauge bosons are either
suppressed or absent in the case of the pseudoscalar Higgs, A. On the other hand,
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Figura 5.5: The median discovery significance for the SM Higs boson for the various
channels as well as the combination for the integrated luminosity of 10fb−1 for the lower
mass range. From Ref. [457].

the coupling to third generation fermions is strongly enhanced for large regions of
the parameter space which makes the decays into τ leptons even more interesting.
The search for light neutral Higgs boson is based on the same channels as for the
SM case, with more relevance of H → ττ for larger masses in some subsets of the
parameter space, due to enhanced couplings. In addition to this, A → ττ is also
relevant for large values of tanβ 17. In both decay channels, the ℓh detection mo-
de would provide again the highest sensitivity. A final promising decay channel is
H± → τ±ντ , that would unambiguously proof the existence of physics beyond the
SM . For a high SUSY mass scale this charged Higgs boson could be the first signal

17The ratio of the values of the two Higgs condensates.
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of new physics (and indication for SUSY ) discovered.



Caṕıtulo 6

τ− → (πππ)−ντ decays

6.1. Introduction

In this chapter we will discuss the hadron form factors and related observa-
bles appearing in τ− → (πππ)−ντ decays. These processes are a very clean scenario
to learn about the axial-vector current, because the vector current contribution is
forbidden by G-parity in the isospin limit. Moreover, the starring rôle of the lightest
vector and axial-vector resonances will allow to study in detail the properties of the
latter, since the first one is extremely well known from e+e− → ππ and τ → ππντ
decays. At the same time, this will be a stringent test of the joint consistency of the
proposed width for a given definition of mass [383].

The τ → πππντ decay is thus driven by the hadronization of the axial-vector
current. Within the resonance chiral theory, and considering the large-NC expan-
sion, this process has been studied in Ref. [309]. In the light of later developments
we revise here [322] this previous work by including a new off-shell width for the
a1(1260) resonance that provides a good description of the τ → πππντ spectrum
and branching ratio. We also consider the rôle of the ρ(1450) resonance in these
observables. Thus we bring in an overall description of the τ → πππντ process in
excellent agreement with our present experimental knowledge.

The significant amount of experimental data on τ decays, in particular, τ →
πππντ branching ratios and spectra [78], encourages an effort to carry out a theore-
tical analysis within a model-independent framework capable to provide information
on the hadronization of the involved QCD currents. A step in this direction has been
done in Ref. [309], where the τ → πππντ decays have been analyzed within the re-
sonance chiral theory (RχT) [6, 7]. As explained in detail in earlier chapters, this
procedure amounts to build an effective Lagrangian in which resonance states are
treated as active degrees of freedom. Though the analysis in Ref. [309] allows to
reproduce the experimental data on τ → πππντ by fitting a few free parameters
in this effective Lagrangian, it soon would be seen that the results of this fit are
not compatible with theoretical expectations from short-distance QCD constraints
[299]. We believe that the inconsistency can be attributed to the usage of an ansatz
for the off-shell width of the a1(1260) resonance, which was introduced ad-hoc in
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Ref. [309]. The aim of our work was to reanalyse τ → πππντ processes within the
same general scheme, now considering the energy-dependent width of the a1(1260)
state within a proper RχT framework. The last issue, that is one of the major de-
velopments of our work is considered in detail in Section 6.3.1.

Although this chapter is based in Ref.[322], the material covered in Sects. 6.4.2,
6.4.3 and 6.4.4 is presented in this Thesis for the first time.

6.2. The axial-vector current in τ− → (πππ)−ντ de-
cays

Our effective Lagrangian will include the pieces given in Eqs. (3.66), (4.19)
and (4.31) 1. These decays are worked out considering exact isospin symmetry, so
the corresponding hadron matrix elements will be

T±µ(p1, p2, p3) = 〈π1(p1)π2(p2)π±(p3)|Aµ e
iLQCD |0〉 . (6.1)

Outgoing states π1,2 correspond here to π− and π0 for upper and lower signs in T±µ,
respectively. The hadron tensor is written in terms of three form factors following
Eq. (5.51), with F V

4 (Q2, s1, s2) = 0 because we have no vector current contri-
bution. Since the contribution of FA

3 (Q2, s1, s2) -carrying pseudoscalar degrees of
freedom- to the spectral function of τ → πππντ goes like m4

π/Q
4 and, accordingly,

it is very much suppressed with respect to those coming from FA
1 (Q2, s1, s2) and

FA
2 (Q2, s1, s2), we will not consider it in the following.
The evaluation of the form factors F1 and F2 within in the context of RχT has

been carried out in Ref. [309]. One has :

F±i = ±
(
F χ
i + FR

i + FRR
i

)
, i = 1, 2 , (6.2)

where the different contributions correspond to the diagrams in Figure 6.1. In terms
of the Lorentz invariants Q2, s = (p1+p3)

2, t = (p2+p3)
2 and u = (p1+p2)

2 (notice

1Notice that we only consider the effect of spin-one resonances. Given the vector character of
the SM couplings of the hadron matrix elements in τ decays, form factors for these processes are
ruled by vector and axial-vector resonances. Notwithstanding those form factors are given, in the
τ → PPPντ decays, by a four-point Green function where other quantum numbers might play
a role, namely scalar and pseudoscalar resonances [94, 483, 484, 485]. Among these, in the three
pion tau decay modes, the lightest state -that one could expect to give the dominant contribution-
is the σ or f0(600). As we assume the NC → ∞ limit, the nonet of scalars corresponding to the
f0(600) is not considered. This multiplet is generated by rescattering of the ligthest pseudoscalars
and then subleading in the 1/NC expansion [486].
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Figura 6.1: Diagrams contributing to the hadron axial-vector form factors Fi : (a) and
(b) contribute to Fχ

1 , (c) and (d) to FR
1 and (e) to FRR

1 .

that u = Q2 − s− t + 3m2
π) these contributions are given by [309]

F χ
1 (Q

2, s, t) = −2
√
2

3F

FR
1 (Q

2, s, t) =

√
2FV GV

3F 3

[
3 s

s−M2
V

−
(
2GV

FV
− 1

) (
2Q2 − 2s− u
s−M2

V

+
u− s
t−M2

V

)]

FRR
1 (Q2, s, t) =

4FAGV

3F 3

Q2

Q2 −M2
A

[
− (λ′ + λ′′)

3 s

s−M2
V

(6.3)

+ H(Q2, s)
2Q2 + s− u
s−M2

V

+ H(Q2, t)
u− s
t−M2

V

]
,

where

H(Q2, x) = −λ0
m2

π

Q2
+ λ′

x

Q2
+ λ′′ , (6.4)

λ0, λ
′ and λ′′ being linear combinations of the λi couplings that can be read in

Eq. (4.30). Bose symmetry under the exchange of the two identical pions in the final
state implies that the form factors F1 and F2 are related by F2(Q

2, s, t) = F1(Q
2, t, s).

The resonance exchange approximately saturates the phenomenological values of
the O(p4) couplings in the standard χPT Lagrangian. This allows to relate both
schemes in the low energy region, and provides a check of our results in the limit
Q2 ≪ M2

V . This check has been performed [309], verifying the agreement between
our expression Eq. (6.3) —two-resonance exchange terms do not contribute at this
order— and the result obtained within χPT in Refs. [356, 427] coming from satu-
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ration by vector meson resonances of the O(p4) couplings :

T χPT
±µ

∣∣∣
1+

= ∓ 2
√
2

3F

[(
1 +

3 s

2M2
V

)
V1µ +

(
1 +

3 t

2M2
V

)
V2µ

]
+ chiral loops +O(p6) .

(6.5)
As an aside, it is worth to point out that this low–energy behaviour is not fulfilled

by all phenomenological models proposed in the literature. In particular, in the
widely used KS model [329] the hadron amplitude satisfies

T
(KS)
±µ

s,t≪M2
V−−→ ∓ 2

√
2

3F

[(
1 +

s

M2
V

)
V1µ +

(
1 +

t

M2
V

)
V2µ

]
. (6.6)

Thus, while the lowest order behaviour is correct (it was constructed to be so), it is
seen that the KS model fails to reproduce the χPT result at the next–to–leading
order. Accordingly this model is not consistent with the chiral symmetry of QCD.

6.3. Short-distance constraints ruled by QCD

Besides the pion decay constant F , the above results for the form factors
Fi depend on six combinations of the coupling constants in the Lagrangian LRχT,
namely FV , FA, GV , λ0, λ

′ and λ′′ and the masses MV , MA of the vector and axial-
vector nonets. All of them are in principle unknown parameters. However, it is clear
that LRχT does not represent an effective theory of QCD for arbitrary values of
the couplings. Though the determination of the effective parameters from the un-
derlying theory is still an open problem, one can get information on the couplings
by assuming that the resonance region —even when one does not include the full
phenomenological spectrum— provides a bridge between the chiral and perturbative
regimes [7]. This is implemented by matching the high energy behaviour of Green
functions (or related form factors) evaluated within the resonance theory with asym-
ptotic results obtained in perturbative QCD [7, 299, 310, 311, 314, 315, 323, 487].
In the NC → ∞ limit, and within the approximation of only one nonet of vector
and axial-vector resonances, the analysis of the two-point Green functions ΠV,A(q

2)
and the three-point Green function V AP of QCD currents with only one multiplet
of vector and axial-vector resonances lead to the following constraints [274] :

i) By demanding that the two-pion vector form factor vanishes at high momen-
tum transfer one obtains the condition FV GV = F 2 [7].

ii) The first Weinberg sum rule [302] leads to F 2
V − F 2

A = F 2, and the second
Weinberg sum rule gives F 2

V M
2
V = F 2

AM
2
A [6].
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iii) The analysis of the VAP Green function [299] gives for the coupling combina-
tions λ0, λ

′ and λ′′ entering the form factors in Eq. (6.3) the following results :

λ′ =
F 2

2
√
2FAGV

=
MA

2
√
2MV

, (6.7)

λ′′ =
2GV − FV

2
√
2FA

=
M2

A − 2M2
V

2
√
2MV MA

, (6.8)

4 λ0 = λ′ + λ′′ =
M2

A −M2
V√

2MV MA

, (6.9)

where the second equalities in Eqs. (6.7) and (6.8) are obtained using the above
relations i) and ii).

As mentioned above,MV andMA stand for the masses of the vector and axial-vector
resonance nonets, in the chiral and large-NC limits. A phenomenological analysis
carried out in this limit [323] shows that MV is well approximated by the ρ(770)

mass, where as for the axial-vector mass one gets M
1/NC
a1 ≡ MA = 998(49) MeV

(which differs appreciably from the presently accepted value ofMa1(1260)= 1230±40
MeV).

In addition, one can require that the J = 1 axial-vector spectral function in
τ → πππντ vanishes for large momentum transfer. We consider the axial two–
point function Πµν

A (Q2), which plays in τ → πππντ processes the same role than
the vector–vector current correlator does in the τ → ππντ decays, driven by the
vector form factor. The goal will be to obtain QCD–ruled constraints on the new
couplings of the resonance Lagrangian. As these couplings do not depend on the
Goldstone masses we will work in the chiral limit but our results will apply for
non–zero Goldstone masses too. In the chiral limit the Πµν

A (Q2) correlator becomes
transverse, hence we can write

Πµν
A (Q2) = (QµQν − gµνQ2) ΠA(Q

2) . (6.10)

As in the case of the pion and axial form factors, the function ΠA(Q
2) is expected to

satisfy a one-subtracted dispersion relation. This implies a constraint for the J = 1
spectral function ImΠA(Q

2) in the asymptotic region, namely[297]

ImΠA(Q
2)

Q2→∞
−−→ NC

12 π
. (6.11)

Now, taking into account that each intermediate state carrying the appropriate
quantum numbers yields a positive contribution to ImΠA(Q

2), we have

ImΠA(Q
2) ≥ − 1

3Q2

∫
dΦ (T µ|1+) (Tµ|1+)∗ , (6.12)

dΦ being the differential phase space for the three–pion state. The constraint in Eq.
(6.11) then implies

ĺım
Q2→∞

∫ Q2

0

ds

∫ Q2−s

0

dt
WA

(Q2)2
= 0 , (6.13)
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where WA is the structure function defined in Eq. (5.61) 2. It can be seen that the
condition in Eq. (6.13) is not satisfied in general for arbitrary values of the coupling
constants in the chiral interaction Lagrangian. In fact, it is found that this cons-
traint leads to the relations in Eqs. (6.7) and (6.8), showing the consistency of the
procedure 3.

The above constraints allow in principle to fix all six free parameters entering the
form factors Fi in terms of the vector and axial-vector masses MV ,MA. However the
form factors in Eq. (6.3) include zero–width ρ(770) and a1(1260) propagator poles,
which lead to divergent phase–space integrals in the calculation of τ → πππντ decay
widths. As stated above, in order to regularize the integrals one should take into
account the inclusion of resonance widths, which means to go beyond the leading or-
der in the 1/NC expansion. In order to account for the inclusion of NLO corrections
we perform the substitutions :

1

M2
Rj
− q2 −→

1

M2
j − q2 − iMj Γj(q2)

, (6.14)

Here Rj = V,A, while the subindex j = ρ, a1 on the right hand side stands for the
corresponding physical state.

The substitution in Eq. (6.14) implies the introduction of additional theoretical
inputs, in particular, the behaviour of resonance widths off the mass shell. This is-
sue is studied in detail in Appendix C and Section 6.3.1. In the following, we will
compare it both to the popular width developed in the KS model [329] and to the
proposal of the earlier study within RχT , where this off-shell width was added by
hand.

6.3.1. Expressions for the off-shell width of the a1 resonance

The definition we have given in Appendix C for the spin-one resonance width
-and applied for the vector case- holds for axial-vector mesons as well, but it would
amount to evaluate the axial-vector-axial-vector current correlator with absorptive
cuts of three pGs (two-loops diagrams) within RχT . This motivated the chiral based
off-shell behaviour proposal in Ref. [309], an oversimplified approach in which the a1
width was written in terms of three parameters, namely the on-shell width Γa1(M

2
a1
),

the mass Ma1 and an exponent α ruling the asymptotic behaviour :

Γa1(q
2) = Γa1(M

2
A)

φ(q2)

φ(M2
A)

(
M2

A

q2

)α

θ
(
q2 − 9m2

π

)
(6.15)

2As expected from partial conservation of the axial-vector current (PCAC), the analogous
relation is automatically fulfilled by WSA.

3These results and those in Sections 7.3 and 8.3 have been obtained using the program
MATHEMATICA [488].
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where

φ(q2) = q2
∫

ds dt
{
V 2
1 |BWρ(s)|2 + V 2

2 |BWρ(t)|2

+2(V1 · V2)ℜe [BWρ(s) BWρ(t)
∗]} , (6.16)

and

BWρ(q
2) =

M2
V

M2
V − q2 − iMV Γρ(q2)

(6.17)

is the usual Breit-Wigner function for the ρ (770) meson resonance shape, the energy-
dependent width Γρ(q

2) is given by Eq. (C.8), and the integral extends over the 3π
phase space. The vectors V1 and V2 and the Mandelstam variables s and t entering
the function φ(x = q2, M2

A) are defined following the general conventions given in
Sect. 5.4.1. One can check them explicitly in Ref. [309].

A fundamental result of this Thesis is the improvement in the description of the
off-shell axial-vector widths. We will follow the paper [322] in our explanation.
We propose here a new parameterization of the a1(1260) width that is compatible
with the RχT framework used throughout our analysis. As stated, to proceed as in
the ρ meson case, one faces the problem of dealing with a resummation of two-loop
diagrams in the two-point correlator of axial-vector currents. However, it is still
possible to obtain a definite result by considering the correlator up to the two-loop
order only. The width can be defined in this way by calculating the imaginary part
of the diagrams through the well-known Cutkosky rules.

Let us focus on the transversal component, ΠT (Q
2), of the two-point Green fun-

ction :

Π33
µν = i

∫
d4x eiQ·x 〈 0| T [A3

µ(x)A
3
ν(0)] |0 〉

= (Q2 gµν − QµQν) ΠT (Q
2) + QµQν ΠL(Q

2) , (6.18)

where Ai
µ = qγµγ5

λi

2
q. We will assume that the transversal contribution is dominated

by the π0 and the neutral component of the a1(1260) triplet : ΠT (Q
2) ≃ Ππ0

(Q2) +
Πa1(Q2). Following an analogous procedure to the one in Ref. [490], we write Πa1(Q2)
as the sum

Πa1(Q2) = Πa1
(0) + Πa1

(1) + Πa1
(2) + . . . , (6.19)

where Πa1
(0) corresponds to the tree level amplitude, Πa1

(1) to a two-loop order contri-
bution, Πa1

(2) to a four-loop order contribution, etc. The diagrams to be included are
those which have an absorptive part in the s channel. The first two terms are repre-
sented by diagrams (a) and (b) in Figure 6.3.1, respectively, where effective vertices
denoted by a square correspond to the sum of the diagrams in Figure 6.1. Solid
lines in the diagram (b) of Figure 6.3.1 correspond to any set of light pseudoscalar
mesons that carry the appropriate quantum numbers to be an intermediate state.

The first term of the expansion in Eq. (6.19) arises from the coupling driven by
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a1

(a) (b)

Figura 6.2: Diagrams contributing to the transverse part of the correlator of axial-vector
currents in Eq. (6.19). Diagram (a) gives Πa1

(0) and diagram (b) provides Πa1
(1). The squared

axial-vector current insertion in (b) corresponds to the sum of the diagrams in Figure 6.1.
The double line in (a) indicates the a1 resonance intermediate state. Solid lines in (b)
indicate any Goldstone bosons that carry the appropriate quantum numbers.

FA in the effective Lagrangian (4.19). We find

Πa1
(0) = − F 2

A

M2
a1
−Q2

. (6.20)

Thus, if the series in Eq. (6.19) can be resummed one should get

Πa1(Q2) = − F 2
A

M2
a1
−Q2 +∆(Q2)

, (6.21)

and the energy dependent width of the a1(1260) resonance can be defined by

Ma1 Γa1(Q
2) = − Im∆(Q2) . (6.22)

Now if we expand Πa1(Q2) in powers of ∆ and compare term by term with the
expansion in Eq. (6.19), from the second term we obtain

∆(Q2) = − (M2
a1 −Q2)

Πa1
(0)

Πa1
(1) . (6.23)

The off-shell width of the a1(1260) resonance will be given then by

Γa1(Q
2) =

(M2
a1
−Q2)

Ma1 Π
a1
(0)

ImΠa1
(1) . (6.24)

As stated, Πa1
(1) receives the contribution of various intermediate states. These con-

tributions can be calculated within our theoretical RχT framework from the effective



6.3 Short-distance constraints ruled by QCD 129

Lagrangian in Eqs. (4.19), (4.31), (4.33), (4.34), (4.43) and (4.44). In particular, for
the intermediate π+π−π0 state one has

Πa1
(1)(Q

2) =
1

6Q2

∫
d4p1
(2π)4

d4p2
(2π)4

T µ
1+ T

∗
1+µ

3∏

i=1

1

p2i −m2
π + iǫ

, (6.25)

where p3 = Q− p1 − p2, and T1+ is the 1+ piece of the hadron tensor in Eq. (6.1),

T µ
1+ = V µ

1 F1 + V µ
2 F2 . (6.26)

When extended to the complex plane, the function Πa1
(1)(z) has a cut in the real axis

for z ≥ 9m2
π, where ImΠa1

(1)(z) shows a discontinuity. The value of this imaginary
part on each side of the cut can be calculated according to the Cutkosky rules as :

ImΠa1
(1)(Q

2± iǫ) = ∓ i
2

1

6Q2

∫
d4p1
(2π)4

d4p2
(2π)4

T µ
1+ T

∗
1+µ

3∏

i=1

(−2iπ) θ(p0i ) δ(p2i −m2
π) ,

(6.27)
with p3 = Q − p1 − p2 and Q2 > 9m2

π. After integration of the delta functions one
finds

ImΠa1
(1)(Q

2 ± iǫ) = ± 1

192Q4

1

(2π)3

∫
ds dt T µ

1+ T
∗
1+µ , (6.28)

where the integrals extend over a three-pion phase space with total momentum
squared Q2. Therefore, the contribution of the π+π−π0 state to the a1(1260) width
will be given by

Γπ
a1
(Q2) =

−1
192(2π)3F 2

AMa1

(
M2

a1

Q2
− 1

)2 ∫
ds dt T µ

1+ T
∗
1+µ . (6.29)

In the same way one can proceed to calculate the contribution of the intermedia-
te states K+K−π0, K0K̄0π0, K−K0π+ and K+K̄0π−. The corresponding hadron
tensors TK

1+ can be obtained from Ref. [304]. Additionally one could consider the
contribution of ηππ and ηηπ intermediate states. However, the first one vanishes in
the isospin limit because of G-parity (see Chapter 8) and the second one is suppres-
sed by a tiny upper bound for the branching ratio [8, 489] and they will not be taken
into account.

In this way we have 4

Γa1(Q
2) = Γπ

a1
(Q2) θ(Q2 − 9m2

π) + ΓK
a1
(Q2) θ(Q2 − (2mK +mπ)

2) , (6.30)

where

Γπ,K
a1

(Q2) =
−S

192(2π)3F 2
AMa1

(
M2

a1

Q2
− 1

)2 ∫
ds dt T π,Kµ

1+ T π,K∗
1+µ . (6.31)

4It is important to stress that we do not intend to carry out the resummation of the series in
Eq. (6.19). In fact, our expression in Eq. (6.24) would correspond to the result of the resummation
if this series happens to be geometric, which in principle is not guaranteed [490].
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Figura 6.3: Plot of our expression for Γa1(Q
2) using the values of the couplings discussed

in Sect. 6.4.

Here Γπ
a1(Q

2) recalls the three pion contributions and ΓK
a1(Q

2) collects the contribu-
tions of the KKπ channels. In Eq. (6.31) the symmetry factor S = 1/n! reminds
the case with n identical particles in the final state. It is also important to point out
that, contrarily to the width we proposed in Ref. [309] [Γa1(Q

2), in Eq. (6.15)], the
on-shell width Γa1(M

2
a1
) is now a prediction and not a free parameter.

With this off-shell width a very accurate description of the related observables
will be given in later sections. In other formalisms, like that of the hidden local sym-
metry chiral models [491] one needs to restore to an extremely unnatural off-shell
width description that reaches the value of 10 GeV for Q2 ∼ 2.5 GeV2. In Figure 6.3
our expression for Γa1 is plotted as a function of the invariant mass squared the
hadron system has.
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6.4. Phenomenology of the τ− → (πππ)−ντ process

6.4.1. The contribution of the ρ(1450)

It turns out that, though some flexibility is allowed around the predicted
values for the parameters, the region between 1.5 − 2.0 GeV2 of the three pion
spectrum is still poorly described by the scheme we have proposed here. This is not
surprising as the ρ(1450), acknowledgeably rather wide, arises in that energy region.
We find that it is necessary to include, effectively, the role of a ρ′ ≡ ρ(1450), in
order to recover good agreement with the experimental data. The ρ′ belongs to a
second, heavier, multiplet of vector resonances that we have not considered in our
procedure. Its inclusion would involve a complete new set of analogous operators to
the ones already present in LRχT , Eqs. (4.19), (4.31), with the corresponding new
couplings. This is beyond the scope of our analysis. However we propose to proceed
by performing the following substitution in the ρ(770) propagator :

1

M2
ρ − q2 − iMρΓρ(q2)

−→ 1

1 + βρ′

[
1

M2
ρ − q2 − iMρΓρ(q2)

+
βρ′

M2
ρ′ − q2 − iMρ′Γρ′(q2)

]
,

(6.32)
where as a first approximation the ρ′ width is given by the decay into two pions :

Γρ′(q
2) = Γρ′(M

2
ρ′)

Mρ′√
q2

(
p(q2)

p(M2
ρ′)

)3

θ(q2 − 4m2
π) , (6.33)

p(x) =
1

2

√
x− 4m2

π .

For the numerics we use the values Mρ′ = 1.465 GeV and Γρ′(M
2
ρ′) = 400 MeV

as given in Ref. [8]. We find that a good agreement with the spectrum, dΓ/dQ2,
measured by ALEPH [78] is reached for the set of values :

FV = 0.180GeV , FA = 0.149GeV , βρ′ = −0.25 ,
MV = 0.775GeV , MK∗ = 0.8953GeV , Ma1 = 1.120GeV , (6.34)

that we call Set 1. The corresponding width is Γ(τ → πππντ ) = 2.09 × 10−13

GeV, in excellent agreement with the experimental figure Γ(τ → πππντ )|exp =
(2.11 ± 0.02) × 10−13 GeV [8]. From FV and FA in Eq. (6.34), and the second
Weinberg sum rule we can also determine the value of MA = FVMV /FA ≃ 0.94
GeV, a result consistent with the one obtained in Ref. [323]. If, instead, we do not
include the ρ′ contribution, the best agreement with experimental data is reached
for the values of Set 2 :

FV = 0.206GeV , FA = 0.145GeV , βρ′ = 0 ,

MV = 0.775GeV , MK∗ = 0.8953GeV , Ma1 = 1.115GeV , (6.35)

though the branching ratio is off by 15%. A comparison between the results for the
τ → πππντ spectra obtained from Sets 1, 2 and the data provided by ALEPH is
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Figura 6.4: Comparison between the theoretical M2
3π-spectra of the τ

− → π+π−π−ντ with
ALEPH data [78]. Set 1 corresponds to the values of the parameters : FV = 0.180GeV,
FA = 0.149GeV, Ma1 = 1.120GeV, βρ′ = −0.25, MA ≃ 0.91GeV. Set 2 corresponds
to the values of the parameters : FV = 0.206GeV, FA = 0.145GeV, Ma1 = 1.150GeV,
βρ′ = 0, i.e. without the inclusion of the ρ′. In the case of Set 2 the overall normalization
of the spectrum has been corrected by a 15% to match the experimental data.

shown in Figure 6.4. Notice that we have corrected the results provided by Set 2
by a normalization factor of 1.15 in order to compare the shapes of the spectra.
Though it is difficult to assign an error to our numerical values, by comparing Set 1
and Set 2 we consider that a 15% should be on the safe side. Notice, however, that
the error appears to be much smaller in the case of Ma1 .

For Set 1 the width of the a1(1260) is Γa1(M
2
a1
) = 0.483 GeV, which, incidentally,

is in agreement with the figure got in Ref. [309] from a fit to the data. The value of
Γa1(M

2
a1
) quoted in the PDG (2008) [8] goes from 250MeV up to 600MeV.

Our preferred set of values in Eq. (6.34) satisfies reasonably well all the short dis-
tance constraints pointed out in Sect. 6.3, with a deviation from Weinberg sum rules
of at most 10%, perfectly compatible with deviations due to the single resonance
approximation.
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6.4.2. Low-energy description

After that, we take a closer look to the low-Q2 region of the spectrum. In fact,
in our approach we have assumed that O(p4) corrections arising from chiral logs are
small, hence the dominant contributions to hadron amplitudes arise from resonance
exchange. In Figure 6.5, we can see that our expression fits the data remarkably well
in the low-Q2 without any need to improve it by adding the effect of the neglected
chiral logs 5. Our working hypothesis is thus confirmed. In this plot we also see that
the form-factors proposed by the KS model induced a systematic departure of the
data points increasing with the energy. It is interesting to note -as we asserted in
Chapter 5- that the wrong description at NLO in the chiral expansion is naturally
carried on to higher energies, once the full expression is included. Indeed, the low-
energy limits of theKS expressions for the form factors and ours 6 already show that
the KS curve is systematically under ours getting farther as the energy increases.

In Figure 6.6 we can see that the shift induced at low-energies in the original
KS-model 7 gets carried on naturally to higher energies. In the current TAUOLA
parameterization the agreement seems to be better by introducing a large on-shell
a1 width (0.6 GeV) that requires to adjust the normalization by a factor of order
40% (1.38 in the curve) that appears to be quite unnatural. Even doing so, the
description between 1,5 and 1.8 GeV2 is not good.

6.4.3. dΓ
dsij

distributions

Next, we will analyse the differential distributions in the invariant masses of
pairs of pions, sij ≡ (pi+ pj)

2 = (Q− pk)2 for i 6= j 6= k and i, j, k = 1, 2, 3. Neit-
her Ref. [78] nor any later publication made a dedicated study of these observables.
Although we cannot compare our predictions to data now, it will be an interesting

5Close to threshold (i.e. for
√
Q2 well below MV ) one is able to explicitly calculate the contri-

butions of O(p4) chiral logs, therefore their impact can be numerically evaluated. In fact, Ref [309]
considered this correction by using the results in Ref. [356] because the description at low-energies
was not as good as the one we have achieved now. As we have already explained, the reason was
that the choice of the off-shell width for the a1 biased the determination of the parameters in
the resonance Lagrangian and, particularly, affected some of the short-distance QCD relations
involving parameters that have an impact close to threshold.

6As described in Eqs.(6.5) and (6.6).
7The original KS model used the following values for the parameters: Ma1 = 1.251 GeV and

Γa1 (Ma1) = 0.475 GeV. With these parameters, the description of the experimental data available
at that time [492] was very good. However, as the experimental errors were reduced ten years later
by CLEO−II [402], OPAL [493] and ALEPH [78], one noticed that there was a need of including
another parameter to keep such a good description. In order to keep the expression for the off-
shell width the solution adopted in TAUOLA was to modify the on-shell a1 width and include a
normalization factor to correct the branching ratio. The new width read Γa1 (Ma1) = 0.599 GeV
and the normalization factor enhances the decay rate by ∼ 1.4.
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Figura 6.5: Comparison between the theoretical low-energy M2
3π-spectra of the τ− →

π+π−π−ντ with ALEPH data [78]. Our results (red solid line) correspond to Set 1,
Eq. (6.34), and its corresponding low-energy limit (orange dashed line) to Eq.(6.5). The
green dotted line corresponds to the KS results [329] and its low-energy limit (green
dashed-dotted line) is given in Eq. 6.6. We observe that the wrong KS description at NLO
in the chiral expansion is naturally carried on to the whole expression for the spectrum.
Moreover, the excellent agreement of our prediction with data shows that our working
hypothesis of neglecting the effect of O(p4) chiral logs is well-based.

check to elucidate if our description is as accurate as Figure 6.4 indicates.
In Figure 6.7 we can see our prediction for dΓ/ds. The distribution starts to rise

when (pπ i + pπ j)
2 reaches M2

ρ and then goes increasing smoothly goberned by the
ρ and a1 widths. The contribution of the configuration in which two of the three
pions carry almost all the energy of the hadron system is negligible as one can see
comparing the tail of the spectra with earlier fall off than the one seen in Figure 6.4.
In this figure and in the next two the small bumps of the curves are due to the error
associated to the integration that is larger in this case than in that of the spectral
function.

Similarly, in Fig 6.8 we plot our prediction for the distribution with respect to u.
Taking into account that s, t and u are related via u = Q2 − s − t + 3m2

π, these
form factors are symmetric under the exchange {1↔ 2, s↔ t} due to the identity
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Figura 6.6: Comparison between the theoretical M2
3π-spectra of the τ− → π+π−π−ντ

with ALEPH data [78]. Our results correspond to Set 1, Eq. (6.34), and they are also
compared to the KS outcome, as they were given originally [329] as indicated in Eq. (6.6).
We observe that the wrong KS description at NLO in the chiral expansion is naturally
carried on as they are in TAUOLA right now. In the original parameterization one sees
that the wrong description of the O(p4) χPT terms is carried naturally to the rest of
the spectrum. This is corrected in the updated parameterization in TAUOLA at the price
of including a noticeably large on-shell a1 width (0.6 GeV) and an unnaturally large
normalization factor of 1.38.

of two pions and one plot would be redundant. Since, moreover, we are working
in the isospin conserved limit in which all pions are equivalent, one of the checks
(sij = s or sij = t) will suffice. We have verified that the s- and t- plots are iden-
tical. The plot in Figure 6.8 is noticeably different because the two pions of equal
electric charge cannot couple to a spin-one resonance. We cannot forget that isospin
symmetry breaking is not only induced by the difference of u and d quark masses
compared to the value of the s quark mass, but also by the different electric charges
of the u− and d−type quarks. When this results in a selection rule, the effects are
sizeable as we have observed.

We end this Section by noting that the dynamics encoded in the KS paramete-
rization and in our study is different. With this purpose we plot in Figure 6.9 the
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Figura 6.7: Our prediction for the s-spectra of the τ− → π+π−π−ντ with the parameters
of Set 1, Eq. (6.34).

distributions for the s-spectra of the τ− → π+π−π−ντ as given by the KS model
in its original version and the one in TAUOLA (the latter coveniently rescaled by
1.38). Similar differences can be observed in the t- and u-spectra.

6.4.4. Description of structure functions

Structure functions provide a full description of the hadron tensor TµT
∗
ν in the

hadron rest frame. There are 16 real valued structure functions in τ− → (P1P2P3)
− ντ

decays (Pi is short for a pseudoscalar meson), most of which can be determined by
studying angular correlations of the hadron system. Four of them carry information
on the JP = 1+ transitions only : wA, wC , wD and wE (we refer to Ref. [346] and
Eq. A.6 and to Appendix A for their precise definitions and discussion). Indeed, for
the τ− → (πππ)−ντ processes, other structure functions either vanish identically, or
involve the pseudoscalar form factor FA

3 , which appears to be strongly suppressed
above the very low–energy region due to its proportionality to the squared pion
mass.
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Figura 6.8: Our prediction for the u-spectra of the τ− → π+π−π−ντ with the parameters
of Set 1, Eq. (6.34).

Unfortunately the ALEPH collaboration data [78] only allows to obtain wA.
However, both CLEO−II [402] and OPAL [493] studied all relevant structure fun-
ctions. As a result, they have measured the four structure functions quoted above
for the τ− → π−π0π0ντ process, while concluding that other functions are consistent
with zero within errors. Hence we can proceed to compare those experimental results
with the description that provides our theoretical approach. In our expressions for
the structure functions we input the values of the parameters of Set 1. This way we
get the theoretical curves shown in Figs. 6.10, 6.11, 6.12 and 6.13. The latter are
compared with the experimental data quoted by CLEO and OPAL [402, 493]. For
wC , wD and wE, it can be seen that we get a good agreement in the low Q2 region,
while for increasing energy the experimental errors become too large to state any
conclusion (moreover, there seems to be a slight disagreement between both expe-
riments at some points). It will be a task for the forthcoming experimental results
from the B- and tau-charm-factories to settle this issue.

On the other hand, in the case of the integrated structure function wA, the quo-
ted experimental errors are smaller, and the theoretical curve fits perfectly well the
ALEPH data -which is clearly the one with smaller error bars- and seems to lie so-
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Figura 6.9: Comparison of our prediction and that of the KS model for the s-spectra of
the τ− → π+π−π−ντ . Our parameters are fixed as indicated in Set 1, Eq. (6.34).

mewhat below the CLEO and OPAL data for Q2 . 1.5 GeV2. However, it happens
that wA contains essentially the same information about the hadron amplitude as
the spectral function dΓ/dQ2, so it should not surprise us the excellent agreement
with ALEPH data, considering the curve obtained with Set 1 in Fig 6.4. This rela-
tion becomes clear by looking at Eq. (5.59) if the scalar structure function WSA is
put to zero (remember that it should be suppressed by a factor O(m4

π/Q
4)). Taking

into account that wA is given by Eq. (5.60)

wA(Q
2) =

∫
ds dt WA(Q

2, s, t) , (6.36)

where WA is the structure function previously introduced in Eq. (5.59), one simply
has

dΓ

dQ2
=

G2
F |Vud|2

384 (2π)5Mτ

(
M2

τ

Q2
− 1

)2(
1 + 2

Q2

M2
τ

)
wA(Q

2) . (6.37)

In this way one can compare the measurements of wA quoted by CLEO−II and
OPAL with the data obtained by ALEPH for the spectral function, conveniently
translated into wA. This is represented in Figure 6.10, where it can be seen that
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some of the data from the different experiments do not agree with each other within
errors. Notice that, due to phase space suppression, the factor of proportionality
between wA(Q

2) and dΓ/dQ2 in Eq. (6.37) goes to zero for Q2 → M2
τ , therefore the

error bars in the ALEPH points become enhanced toward the end of the spectrum.
Notwithstanding, up to Q2 . 2.5 GeV2, it is seen that ALEPH errors are still
smaller than those corresponding to the values quoted by CLEO − II and OPAL.
On this basis, we have chosen to take the data obtained by ALEPH to select the
parameters as indicated in Set 1 to better describe the hadron amplitude. Fina-
lly, notice that a non vanishing contribution of WSA (which is a positive quantity)
cannot help to solve the experimental discrepancies, as it would go in the wrong
direction. Anyway we have estimated that it is orders of magnitude smaller than
the axial-vector contribution.

In the analysis of data carried out by the CLEO Collaboration [400] onto their
τ− → π−π0π0ντ results it was concluded that the data was showing large contri-
butions from intermediate states involving the isoscalar mesons f0(600), f0(1370)
and f2(1270). Their analysis was done in a modelization of the axial–vector form
factors that included Breit–Wigner functions in a Kühn and Santamaŕıa inspired
model. Our results in the Effective Theory framework show that, within the present
experimental errors, there is no evidence of relevant contributions in τ− → (πππ)−ντ
decays beyond those of the ρ(770), ρ(1450) and a1(1260) resonances.

6.5. Conclusions

The data available in τ → πππντ decays provide an excellent benchmark to
study the hadronization of the axial-vector current and, consequently, the proper-
ties of the a1(1260) resonance. In this chapter we give a description of those decays
within the framework of resonance chiral theory and the large-NC limit of QCD
that: 1) Satisfies all constraints of the asymptotic behaviour, ruled by QCD, of the
relevant two and three point Green functions; 2) Provides an excellent description
of the branching ratio and spectrum of the τ → πππντ decays.

Though this work was started in Ref. [309], later achievements showed that a
deeper comprehension of the dynamics was needed in order to enforce the available
QCD constraints. To achieve a complete description we have defined a new off-shell
width for the a1(1260) resonance in Eq. (6.30), which is one of the main results of
this work. Moreover we have seen that the inclusion of the ρ(1450) improves signifi-
cantly the description of the observables. In passing we have also obtained the mass
value Ma1 = 1.120GeV and the on-shell width Γa1(M

2
a1) = 0.483GeV.

With the description of the off-shell width obtained in this work we can now
consider that the hadronization of the axial-vector current within our scheme is
complete and it can be applied in other hadron channels of tau decays.

The a1 resonance, its off-shell width and its coupling to ρ-π, play an important
role [494, 495, 496, 497, 498, 499, 500] in the evaluation of the dilepton and photon



140 τ− → (πππ)−ντ decays

1 2 3

Q
2
 (GeV

2
)

0

1000

2000

3000

4000

5000

w
A

 (
G

eV
4 )

ALEPH
CLEO
OPAL
Our results

Figura 6.10: Comparison between the experimental data for wA, from τ− → π−π0π0ντ ,
quoted by CLEO − II and OPAL [402, 493] and the values arising from ALEPH mea-
surements of τ− → π−π−π+ντ spectral functions [78]. The solid line is obtained using the
values of Set 1, Eq. (6.34).

production rates from a hadronic fireball assumed to be created in the relativistic
heavy ion collisions. This would be important to be able to tell the electromagnetic
radiation of the quark-gluon plasma from the hadronic sources, so that it could be
regarded as an additional possible future application of our findings.
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Figura 6.11: Comparison between the experimental data for wC , from τ− → π−π0π0ντ ,
quoted by CLEO − II and OPAL [402, 493] and our results as obtained by using the
values of Set 1, Eq. (6.34).
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Figura 6.12: Comparison between the experimental data for wD, from τ− → π−π0π0ντ ,
quoted by CLEO − II and OPAL [402, 493] and our results as obtained by using the
values of Set 1, Eq. (6.34).
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Figura 6.13: Comparison between the experimental data for wE , from τ− → π−π0π0ντ ,
quoted by CLEO − II and OPAL [402, 493] and our results as obtained by using the
values of Set 1, Eq. (6.34).
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Caṕıtulo 7

τ− → (KKπ)−ντ decays

7.1. Introduction

In this chapter we will discuss the hadron form factors and related observables
appearing in τ− → (KKπ)−ντ decays. Once the main features of the hadronization
of the axial-vector current in these kind of decays have been fixed in the previous
chapter, we can deal with these channels where both vector and axial-vector current
contribute at, in principle, comparable rates. In fact, one of the purposes of our work
is to analyze what is the relative relevance of each of them.

We thus analyze the hadronization structure of both vector and axial-vector cu-
rrents leading to τ → KKπ ντ decays. At leading order in the 1/NC expansion, and
considering only the contribution of the lightest resonances, we work out, within
the framework of the resonance chiral Lagrangian, the structure of the local vertices
involved in those processes, that is richer that the one presented in the previous
chapter. The couplings in the resonance theory are constrained by imposing the
asymptotic behaviour of vector and axial-vector spectral functions ruled by QCD.
Noteworthy, the short-distance relations coming from QCD constraints are compa-
tible in all with those found in Chapter 6 and to the ones we will find in Chapters
8 and 9 as well, a feature that highlights the consistency of the whole description.
In this way we predict the hadron spectra and conclude that, contrarily to previous
assertions, the vector contribution dominates by far over the axial-vector one in all
KKπ charge channels.

Our study has a twofold significance. First, the study of branching fractions and
spectra of those decays is a major goal of the asymmetric B factories (BaBar,
BELLE). These are supplying an enormous amount of quality data owing to their
large statistics, and the same is planned for the near future at tau-charm factories
such as BES − III. Second, the required hadronization procedures involve QCD
in a non-perturbative energy region (E . Mτ ∼ 1.8 GeV) and, consequently, these
processes are a clean benchmark, not spoiled by an initial hadron state, where we
can learn about the treatment of strong interactions when driven by resonances.

We recall that the analysis of these decays have to rely on a modelization of hadro-
nization, as discussed in Chapter 5. A very popular approach is due to the so-called
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Kühn-Santamaŕıa model (KS) [327, 329] that, essentially, relies on the construction
of form factors in terms of Breit-Wigner functions weighted by unknown parameters
that are extracted from phenomenological analyses of data. This procedure, that has
proven to be successful in the description of the πππ final state, has been employed
in the study of many two- and three-hadron tau decays [366, 378, 425, 426, 427, 439].
The ambiguity related with the choice of Breit-Wigner functions [327, 329, 330] is
currently being exploited to estimate the errors in the determination of the free
parameters. The measurement of the KKπ spectrum by the CLEO Collaboration
[403] has shown that the parameterization described by the KS model does not
recall appropriately the experimental features keeping, at the same time, a consis-
tency with the underlying strong interaction theory [324]. The solution provided
by CLEO based in the introduction of new parameters spoils the normalization
of the Wess-Zumino anomaly, i.e. a specific prediction of QCD. Indeed, arbitrary
parameterizations are of little help in the procedure of obtaining information about
non-perturbative QCD. They may fit the data but do not provide us hints on the
hadronization procedures. The key point in order to uncover the inner structure of
hadronization is to guide the construction of the relevant form factors with the use
of known properties of QCD.

The TAUOLA library has been growing over the years [432, 433, 434, 435, 437,
447, 501, 502, 503] to be a complete library providing final state with full topology
including neutrinos, resonances and lighter mesons and complete spin structure th-
roughout the decay. In these works, the hadronization part of the matrix elements
followed initially only assorted versions of the KS model. At present, the TAUOLA
library has become a key tool that handles analyses of tau decay data and it has been
opened to the introduction of matrix elements obtained with other models. Hence it
has become an excellent tool where theoretical models confront experimental data.
This or analogous libraries [504, 505] are appropriate benchmarks where to apply
the results of our research [428, 429, 430, 431].

We will be assisted in the presented task by the recent analysis of e+e− → KKπ
cross-section by BABAR [506] where a separation between isoscalar and isovec-
tor channels has been performed. Hence we will be able to connect both processes
through CV C. The general framework for these kind of analyses is discussed in
Appendix E and only the concrete application to this channel is included in this
chapter. We have also used the process ω → π+π−π0 to extract a given combination
of Lagrangian couplings that will enter into the analysis. This computation consti-
tutes Appendix E. Although this chapter is based on Ref. [304], the discussion of
our predictions on the shape of the dΓ/dsij and its comparison to the estimates of
other models at the end of Sect. 7.4 are included in this Thesis for the first time.



7.2 Vector and axial-vector current form factors 147

7.2. Vector and axial-vector current form factors

7.2.1. Form factors in τ− →
(
KK

)
π−ντ decays

Our effective Lagrangian will include the pieces given in Eqs. (3.66), (3.86)
-χPT contributions-, (4.19) 1, (4.33), (4.42) -operators with one resonance- (4.34)
and (4.31) -operators with two resonances-.

We write the decay amplitude for the considered processes as

M = − GF√
2
Vud uντ γ

µ (1 − γ5) uτ Tµ , (7.1)

where the model dependent part is the hadron vector

Tµ = 〈K(p1)K(p2) π(p3) | (Vµ − Aµ) e
iLQCD | 0〉 , (7.2)

that can be written in terms of four form factors F1, F2, F3 and F4, see Eq. (5.51).
There are three different charge channels for the KKπ decays of the τ− lepton, na-

mely K+(p+)K
−(p−) π

−(pπ), K
0(p0)K

0
(p0) π

−(pπ) and K
−(p−)K

0(p0) π
0(pπ). The

definitions of Eq. (5.51) correspond to the choice p3 = pπ in all cases, and : (p1, p2) =

(p+, p−) for the K
+K− case, (p1, p2) = (p0, p0) for K

0K
0
and (p1, p2) = (p−, p0) for

K−K0. In general, form factors Fi are functions of the kinematical invariants : Q2,
s = (p1 + p2)

2 and t = (p1 + p3)
2.

The general structure of the form factors, within our model, arises from the diagrams
displayed in Figure 7.1. This provides the following decomposition :

Fi = F χ
i + FR

i + FRR
i , i = 1, 2, 3, 4 ; (7.3)

where F χ
i is given by the χPT Lagrangian [topologies a) and b) in Figure 7.1],

and the rest are the contributions of one [Figure 1c), d) and e)] or two resonances
[Figure 1f)].

In the isospin limit, form factors for the τ− → K+K−π−ντ and τ− → K0K0π−ντ

1Again, the fact that the SM coulings are of the type V − A makes the spin-one resonances
to rule hadron tau decays. The contribution of scalar and pseudoscalar resonances to the relevant
four-point Green function should be minor for τ → KKπντ . Indeed the lightest scalar, namely
f0(980), couples dominantly to two pions, and therefore its role in the KKπ final state should be
negligible. Heavier flavoured or unflavoured scalars and pseudoscalars are at least suppressed by
their masses, being heavier than the axial-vector meson a1(1260) (like K∗

0 (1430) that couples to
Kπ). The lightest pseudoscalar coupling to Kπ is the K∗

0 of κ(800). As we assume the NC → ∞
limit, the nonet of scalars corresponding to the κ(800) is not considered. This multiplet is generated
by rescattering of the ligthest pseudoscalars and then subleading in the 1/NC expansion [486]. In
addition the couplings of unflavoured states to KK (scalars) and KKπ (pseudoscalars) seem to
be very small [8]. Thus in our description we include J = 1 resonances only. Nevertheless, if the
study of these processes requires a more accurate description, additional resonances could also be
included in our scheme.
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a) c)

f)e)d)

b)

Figura 7.1: Topologies contributing to the final hadron state in τ → KKπ ντ decays in
the NC → ∞ limit. A crossed circle indicates the QCD vector or axial-vector current
insertion. A single line represents a pseudoscalar meson (K, π) while a double line stands
for a resonance intermediate state. Topologies b) and e) only contribute to the axial-vector
driven form factors, while diagram d) arises only (as explained in the text) from the vector
current.

decays are identical. The explicit expressions for these are :

F χ
1 = −

√
2

3F
,

FR
1 (s, t) = −

√
2

6

FV GV

F 3

[
AR(Q2, s, u,m2

K, m
2
π, m

2
K)

M2
ρ − s

+
BR(s, u,m2

K, m
2
π)

M2
K∗ − t

]
,

FRR
1 (s, t) =

2

3

FAGV

F 3

Q2

M2
a1 −Q2

[
ARR(Q2, s, u,m2

K, m
2
π, m

2
K)

M2
ρ − s

(7.4)

+
BRR(Q2, s, u, t,m2

K , m
2
π, m

2
K)

M2
K∗ − t

]
,

where the functions AR, BR, ARR and BRR are

AR(Q2, x, y,m2
1, m

2
2, m

2
3) = 3 x +m2

1 −m2
3 +

(
1− 2GV

FV

)[
2Q2 − 2 x− y +m2

3 −m2
2

]
,

BR(x, y,m2
1, m

2
2) = 2

(
m2

2 −m2
1

)
+

(
1− 2GV

FV

)[
y − x+m2

1 −m2
2

]
, (7.5)
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ARR(Q2, x, y,m2
1, m

2
2, m

2
3) = (λ′ + λ′′) (−3 x+m2

3 −m2
1)

+
(
2Q2 + x− y +m2

1 −m2
2

)
F

(
x

Q2
,
m2

2

Q2

)
,

BRR(Q2, x, y, z,m2
1, m

2
2, m

2
3) = 2 (λ′ + λ′′)

(
m2

1 −m2
2

)

+
(
y − x+m2

2 −m2
1

)
F

(
z

Q2
,
m2

3

Q2

)
.

The dependence of the form factors with t follows from the relation u = Q2 −
s− t+2m2

K +m2
π. Moreover resonance masses correspond to the lowest-lying states,

Mρ = Mρ(770), MK∗ = MK∗(892) and Ma1 = Ma1(1260). Resonance masses and widths
within our approach are discussed in Appendix C.

Analogously the F2 form factor is given by :

F χ
2 = F χ

1 , (7.6)

FR
2 (s, t) = −

√
2

6

FV GV

F 3

[
BR(t, u,m2

K , m
2
K)

M2
ρ − s

+
AR(Q2, t, u,m2

K , m
2
K , m

2
π)

M2
K∗ − t

]
,

FRR
2 (s, t) =

2

3

FAGV

F 3

Q2

M2
a1
−Q2

[
BRR(Q2, t, u, s,m2

K, m
2
K , m

2
π)

M2
ρ − s

+
ARR(Q2, t, u,m2

K , m
2
K , m

2
π)

M2
K∗ − t

]
.

The F3 form factor arises from the chiral anomaly and the non-anomalous odd-
intrinsic-parity amplitude. We obtain :

F χ
3 = − NC

√
2

12 π2 F 3
,

FR
3 (s, t) = − 4GV

MV F 3

[
CR(Q2, s,m2

K , m
2
K , m

2
π)

(
sin2 θV

1 +
√
2 cot θV

M2
ω − s

+ cos2 θV
1−
√
2 tan θV

M2
φ − s

)
+
CR(Q2, t,m2

K , m
2
π, m

2
K)

M2
K∗ − t

− 2FV

GV

DR(Q2, s, t)

M2
ρ −Q2

]
, (7.7)

FRR
3 (s, t) = 4

√
2
FV GV

F 3

1

M2
ρ −Q2

[
CRR(Q2, s,m2

π)

(
sin2 θV

1 +
√
2 cot θV

M2
ω − s

+ cos2 θV
1−
√
2 tan θV

M2
φ − s

)
+
CRR(Q2, t,m2

K)

M2
K∗ − t

]
,
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where CR, DR and CRR are defined as

CR(Q2, x,m2
1, m

2
2, m

2
3) = (c1 − c2 + c5)Q

2 − (c1 − c2 − c5 + 2c6) x

+(c1 + c2 + 8c3 − c5)m2
3 + 8 c4 (m

2
1 −m2

2) ,

CRR(Q2, x,m2) = d3 (Q
2 + x) + (d1 + 8 d2 − d3)m2 , (7.8)

DR(Q2, x, y) = (g1 + 2 g2 − g3) (x+ y)− 2 g2 (Q
2 +m2

K)

−(g1 − g3) (3m2
K +m2

π) + 2 g4 (m
2
K +m2

π) + 2 g5m
2
K ,

and θV is the mixing angle between the octet and singlet vector states ω8 and ω0

that defines the mass eigenstates ω(782) and φ(1020) :

(
φ
ω

)
=

(
cos θV − sin θV
sin θV cos θV

) (
ω8

ω0

)
. (7.9)

For numerical evaluations we will assume ideal mixing, i.e. θV = tan−1(1/
√
2). In

this case the contribution of the φ(1020) meson to F3 vanishes.
Finally, though we have not dwelled on specific contributions to the F4 form fac-

tor, we quote for completeness the result obtained from our Lagrangian. Its structure
is driven by the pion pole :

F4 = F χ
4 + FR

4 , (7.10)

F χ
4 (s, t) =

1√
2F

m2
π

m2
π −Q2

(
1 +

m2
K − u
Q2

)
,

FR
4 (s, t) =

G2
V√

2F 3

m2
π

Q2(m2
π −Q2)

[
s(t− u)
M2

ρ − s
+
t(s− u)− (m2

K −m2
π)(Q

2 −m2
K)

M2
K∗ − t

]
.

7.2.2. Form factors in τ− → K−K0 π0 ντ decays

The diagrams contributing to the τ− → K−K0 π0 ντ decay amplitude are
also those in Figure 7.1, hence once again we can write Fi = F χ

i + FR
i + FRR

i +
. . . . However, the structure of the form factors for this process does not show the
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symmetry observed in τ → KKπντ . We find :

F χ
1 = − 1

F
,

FR
1 (s, t) = −1

6

FVGV

F 3

[
BR(s, u,m2

K, m
2
π)

M2
K∗ − t + 2

AR(Q2, s, u,m2
K, m

2
π, m

2
K)

M2
ρ − s

+
AR(Q2, u, s,m2

π, m
2
K , m

2
K)

M2
K∗ − u

]
,

FRR
1 (s, t) =

√
2

3

FAGV

F 3

Q2

M2
a1 −Q2

[
BRR(Q2, s, u, t,m2

K, m
2
π, m

2
K)

M2
K∗ − t

+2
ARR(Q2, s, u,m2

K , m
2
π, m

2
K)

M2
ρ − s

+
ARR(Q2, u, s,m2

π, m
2
K , m

2
K)

M2
K∗ − u

]
, (7.11)

F χ
2 = 0 ,

FR
2 (s, t) = −1

6

FVGV

F 3

[
AR(Q2, t, u,m2

K, m
2
K , m

2
π)

M2
K∗ − t + 2

BR(t, u,m2
K , m

2
K)

M2
ρ − s

− A
R(Q2, u, t,m2

K, m
2
K , m

2
π)

M2
K∗ − u

]
,

FRR
2 (s, t) =

√
2

3

FAGV

F 3

Q2

M2
a1
−Q2

[
ARR(Q2, t, u,m2

K, m
2
K , m

2
π)

M2
K∗ − t

+2
BRR(Q2, t, u, s,m2

K, m
2
K , m

2
π)

M2
ρ − s

− A
RR(Q2, u, t,m2

K, m
2
K , m

2
π)

M2
K∗ − u

]
. (7.12)

The form factor driven by the vector current is given by :

F χ
3 = 0

FR
3 (s, t) =

2
√
2GV

MV F 3

[
CR(Q2, t,m2

K , m
2
π, m

2
K)

M2
K∗ − t − CR(Q2, u,m2

K , m
2
π, m

2
K)

M2
K∗ − u

−2FV

GV

ER(t, u)

M2
ρ −Q2

]
,

FRR
3 (s, t) = −4FVGV

F 3

1

M2
ρ −Q2

[
CRR(Q2, t,m2

K)

M2
K∗ − t − CRR(Q2, u,m2

K)

M2
K∗ − u

]
,(7.13)
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with ER is defined as

ER(x, y) = (g1 + 2 g2 − g3) (x− y) . (7.14)

Finally for the pseudoscalar form factor we have :

F χ
4 (s, t) =

1

2F

m2
π (t− u)

Q2(m2
π −Q2)

,

FR
4 (s, t) =

1

2

G2
V

F 3

m2
π

Q2(m2
π −Q2)

[
t(s− u)− (m2

K −m2
π)(Q

2 −m2
K)

M2
K∗ − t +

2 s(t− u)
M2

ρ − s

−u(s− t)− (m2
K −m2

π)(Q
2 −m2

K)

M2
K∗ − u

]
. (7.15)

7.2.3. Features of the form factors

Several remarks are needed in order to understand our previous results for
the form factors related with the vector and axial-vector QCD currents analysed
above :

1/ Our evaluation corresponds to the tree level diagrams in Figure 7.1 that arise
from the NC → ∞ limit of QCD. Hence the masses of the resonances would
be reduced to MV = Mρ = Mω = MK∗ = Mφ and MA = Ma1 as they appear
in the resonance Lagrangian (4.18), i.e. the masses of the nonet of vector and
axial-vector resonances in the chiral and large -NC limit. However it is easy to
introduce NLO corrections in the 1/NC and chiral expansions to the masses
by including the physical ones: Mρ, MK∗ , Mω, Mφ and Ma1 for the ρ(770),
K∗(892), ω(782), φ(1020) and a1(1260) states, respectively, as we have done
in the expressions of the form factors. In this setting resonances also have zero
width, which represents a drawback if we intend to analyze the phenomenology
of the processes : Due to the high mass of the tau lepton, resonances do
indeed resonate producing divergences if their widths are ignored. Hence we
will include energy-dependent widths for the ρ(770), a1(1260) and K∗(892)
resonances, that are rather wide, and a constant width for the ω(782). This
issue is discussed in the Appendix C.

In summary, to account for the inclusion of NLO corrections we perform
the substitutions :

1

M2
R − q2

−→ 1

M2
phys − q2 − iMphys Γphys(q2)

, (7.16)

where R = V,A, and the subindex phys on the right hand side stands for the
corresponding physical state depending on the relevant Feynman diagram.

2/ If we compare our results with those of Ref. [378], evaluated within the KS
model, we notice that the structure of our form factors is fairly different and
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much more intricate. This is partly due to the fact that the KS model, i.e.
a model resulting from combinations of ad hoc products of Breit-Wigner fun-
ctions, does not meet higher order chiral constraints enforced in our approach.

3/ As commented above the pseudoscalar form factors F4 vanishes in the chiral
limit. Indeed the results of Eqs. (7.10, 7.15) show that they are proportional
to m2

π, which is tiny compared with any other scale in the amplitudes. Hence
the contribution of F4 to the structure of the spectra is actually marginal.

7.3. QCD constraints and determination of reso-

nance couplings

Our results for the form factors Fi depend on several combinations of the
coupling constants in our Lagrangian LRχT , most of which are in principle unknown
parameters. Now, if our theory offers an adequate effective description of QCD at
hadron energies, the underlying theory of the strong interactions should give infor-
mation on those constants. Unfortunately the determination of the effective para-
meters from first principles is still an open problem in hadron physics.

A fruitful procedure when working with resonance Lagrangians has been to assu-
me that the resonance region, even when one does not include the full phenomeno-
logical spectrum, provides a bridge between the chiral and perturbative regimes [7].
The chiral constraints supply information on the structure of the interaction but do
not provide any hint on the coupling constants of the Lagrangian. Indeed, as in any
effective theory [142], the couplings encode information from high energy dynamics.
Our procedure amounts to match the high energy behaviour of Green functions (or
related form factors) evaluated within the resonance theory with the asymptotic
results of perturbative QCD. This strategy has proven to be phenomenologically
sound [7, 299, 310, 311, 314, 315, 323, 487], and it will be applied here in order to
obtain information on the unknown couplings.
Two-point Green functions of vector and axial-vector currents ΠV,A(q

2) were stu-
died within perturbative QCD in Ref. [297], where it was shown that both spectral
functions go to a constant value at infinite transfer of momenta :

ℑmΠV,A(q
2) −−→

q2→∞

NC

12 π
. (7.17)

By local duality interpretation the imaginary part of the quark loop can be un-
derstood as the sum of infinite positive contributions of intermediate hadron states.
Now, if the infinite sum is going to behave like a constant at q2 → ∞, it is heuris-
tically sound to expect that each one of the infinite contributions vanishes in that
limit. This deduction stems from the fact that vector and axial-vector form factors
should behave smoothly at high q2, a result previously put forward from parton
dynamics in Ref. [279, 280, 281, 282]. Accordingly in the NC →∞ limit this result
applies to our form factors evaluated at tree level in our framework.
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Other hints involving short-distance dynamics may also be considered. The analy-
ses of three-point Green functions of QCD currents have become a useful procedure
to determine coupling constants of the intermediate energy (resonance) framework
[314, 315, 310, 299, 311]. The idea is to use those functions (order parameters of
the chiral symmetry breaking), evaluate them within the resonance framework and
match this result with the leading term in the OPE of the Green function.

In the following we collect the information provided by these hints on our coupling
constants, attaching always to the NC →∞ case [274] (approximated with only one
nonet of vector and axial-vector resonances) :

i) By demanding that the two-pion vector form factor vanishes at high q2 one
obtains the condition FV GV = F 2 [7].

ii) The first Weinberg sum rule [302] leads to F 2
V − F 2

A = F 2, and the second
Weinberg sum rule gives F 2

V M
2
V = F 2

AM
2
A[6].

iii) The analysis of the V AP Green function [299] gives for the combinations of
couplings defined in Eq. (4.32) the following results :

λ′ =
F 2

2
√
2FAGV

=
MA

2
√
2MV

,

λ′′ =
2GV − FV

2
√
2FA

=
M2

A − 2M2
V

2
√
2MV MA

,

4 λ0 = λ′ + λ′′ , (7.18)

where, in the two first relations, the second equalities come from using relations
i) and ii) above. Here MV and MA are the masses appearing in the resonance
Lagrangian. Contrarily to what happens in the vector case where MV is well
approximated by the ρ(770) mass, in Ref. [323] it was obtained MA = 998(49)
MeV, henceMA differs appreciably from the presently accepted value ofMa1 . It
is worth to notice that the two first relations in Eq. (7.18) can also be obtained
from the requirement that the J = 1 axial spectral function in τ → 3πντ
vanishes for large momentum transfer [309].

iv) Both vector form factors contributing to the final states KKπ− and K−K0π0

in tau decays, when integrated over the available phase space, should also
vanish at high Q2. Let us consider H3

µν(s, t, Q
2) ≡ T 3

µT
3 ∗
ν , where T 3

µ can be
inferred from Eq. (5.51). Then we define ΠV (Q

2) by :

∫
dΠ3H

3
µν(s, t, Q

2) =
(
Q2gµν − QµQν

)
ΠV (Q

2) , (7.19)
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where 2

∫
dΠ3 =

∫
d3p1
2E1

d3p2
2E2

d3p3
2E3

δ4 (Q− p1 − p2 − p3) δ
(
s− (Q− p3)2

)
δ
(
t− (Q− p2)2

)

=
π2

4Q2

∫
ds dt . (7.20)

Hence we find that

ΠV (Q
2) =

π2

12Q4

∫
ds dt gµν H3

µν(s, t, Q
2) , (7.21)

where the limits of integration can be obtained from Eq. (5.63), should vanish
at Q2 →∞. This constraint determines several relations on the couplings that
appear in the F3 form factor, namely :

c1 − c2 + c5 = 0 , (7.22)

c1 − c2 − c5 + 2c6 = − NC

96 π2

FV MV√
2F 2

, (7.23)

d3 = − NC

192 π2

M2
V

F 2
, (7.24)

g1 + 2g2 − g3 = 0 , (7.25)

g2 =
NC

192
√
2 π2

MV

FV
. (7.26)

If these conditions are satisfied, ΠV (Q
2) vanishes at high transfer of momen-

ta for both KKπ− and K−K0π0 final states. We notice that the result in
Eq. (7.22) is in agreement with the corresponding relation in Ref. [310], while
Eqs. (7.23) and (7.24) do not agree with the results in that work. In this regard
we point out that the relations in Ref. [310], though they satisfy the leading
matching to the OPE expansion of the 〈V V P 〉 Green function with the inclu-
sion of one multiplet of vector mesons, do not reproduce the right asymptotic
behaviour of related form factors. Indeed it has been shown [315, 323] that two
multiplets of vector resonances are needed to satisfy both constraints. Hence
we will attach to our results above, which we consider more reliable 3.

v) An analogous exercise to the one in iv) can be carried out for the axial-vector
form factors F1 and F2. We have performed such an analysis and, using the
relations in i) and ii) above, it gives us back the results provided in Eq. (7.18)
for λ′ and λ′′. Hence both procedures give a consistent set of relations.

2See Section 5.4.1.
3One of the form factors derived from the 〈V V P 〉 Green function is Fπγ∗γ(q

2), that does not
vanish at high q2 with the set of relations in Ref. [310]. With our conditions in Eqs. (7.23,7.24)
the asymptotic constraint on the form factor can be satisfied if the large-NC masses, MA and MV ,
fulfill the relation 2M2

A = 3M2
V , that is again recovered in Chapter 9. It is interesting to notice the

significant agreement with the numerical values for these masses mentioned above.
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After imposing the above constraints, let us analyse which coupling combinations
appearing in our expressions for the form factors are still unknown. We intend to
write all the information on the couplings in terms of F , MV and MA. From the
relations involving FV , FA and GV we obtain :

F 2
V

F 2
=

M2
A

M2
A −M2

V

,

F 2
A

F 2
=

M2
V

M2
A −M2

V

,

G2
V

F 2
= 1 − M2

V

M2
A

. (7.27)

Moreover we know that FV and GV have the same sign, and we will assume that
it is also the sign of FA. Together with the relations in Eq. (7.18) this determines
completely the axial-vector form factors F1,2. Now from Eqs. (7.22-7.26) one can fix
all the dominant pieces in the vector form factor F3, i.e. those pieces that involve
factors of the kinematical variables s, t or Q2. The unknown terms, that carry factors
of m2

π or m2
K , are expected to be less relevant. They are given by the combinations

of couplings : c1+ c2+8 c3− c5, d1+8 d2, c4 , g4 and g5. However small they may be,
we will not neglect these contributions, and we will proceed as follows. Results in
Ref. [310] determine the first and the second coupling combinations. As commented
above the constraints in that reference do not agree with those we have obtained by
requiring that the vector form factor vanishes at high Q2. However, they provide us
an estimate to evaluate terms that, we recall, are suppressed by pseudoscalar masses.
In this way, from a phenomenological analysis of ω → π+π−π0 (see Appendix C.3)
it is possible to determine the combination 2 g4 + g5. Finally in order to evaluate
c4 and g4 we will combine the recent analysis of σ (e+e− → KKπ) by BaBar [506]
with the information from the τ → KKπντ width.

7.3.1. Determination of c4 and g4

The separation of isoscalar and isovector components of the e+e− → KKπ
amplitudes, carried out by BaBar [506], provides us with an additional tool for
the estimation of the coupling constant c4 that appears in the hadronization of
the vector current [507, 508]. Indeed, using SU(2)I symmetry alone one can relate
the isovector contribution to σ (e+e− → K−K0π+) with the vector contribution to
Γ (τ− → K0K−π0ντ ) through the relation :

d

dQ2
Γ
(
τ− → K0K−π0ντ

)
∣∣∣∣∣
F3

= f(Q2) σI=1

(
e+e− → K−K0π+

)
, (7.28)

where f(Q2) and further relations are given in Appendix E. Another relation similar
to Eq. (7.28) which has been widely used in the literature and the assumptions on
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Figura 7.2: Comparison of the experimental data [506] with the theoretical prediction for
the cross-section of the isovector component of e+e− → K∗(892)K → KSK

±π∓ process,
for different values of the c4 coupling. The χ2 values are associated to the first 6 data
points only.

which it relies on are also discussed in this Appendix. In order not to lose the
thread of our discourse, here we will complete the explanation of our methodology
to determine c4 and g4.

Hence we could use the isovector contribution to the cross-section for the process
e+e− → KSK

±π∓ determined by BaBar and Eq. (7.28) to fit the c4 coupling that is
the only still undetermined constant in that process. However we have to take into
account that our description for the hadronization of the vector current in the tau
decay channel does not, necessarily, provide an adequate description of the cross-
section. Indeed the complete different kinematics of both observables suppresses the
high-energy behaviour of the bounded tau decay spectrum, while this suppression
does not occur in the cross-section. Accordingly, our description of the latter away
from the energy threshold can be much poorer. As can be seen in Figure 7.2 there is
a clear structure in the experimental points of the cross-section that is not provided
by our description.

Taking into account the input parameters quoted in Eq. (6.34) we obtain :
c4 = −0.047± 0.002. The fit has been carried out for the first 6 bins (up to Ecm ∼
1,52GeV) using MINUIT [509]. This result corresponds to χ2/dof = 0.3 and the
displayed error comes only from the fit.

We take into consideration now the measured branching ratios for the KKπ
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channels of Table 7.1 in order to extract information both from c4 and g4. We
notice that it is not possible to reconcile a prediction of the branching ratios of
τ → KKπντ and τ → K−K0π0ντ in spite of the noticeable size of the errors shown
in the Table 7.1. Considering that the second process was measured long ago and
that the τ− → K+K−π−ντ decay has been focused by both CLEO−III and BaBar
we intend to fit the branching ratio of the latter. For the parameter values :

c4 = −0.07 ± 0.01 ,

g4 = −0.72 ± 0.20 , (7.29)

we find a good agreement with the measured widths Γ(τ− → K+K−π−ντ ) and
Γ(τ → K−K0π0ντ ) within errors (see Table 7.1). Notice that the value of |c4| is lar-
ger than that obtained from the fit to the e+e− → KSK

±π∓ data explained above. In
Figure 7.2 we show the first 8 bins in the isovector component of e+e− → KSK

±π∓

and the theoretical curves for different values of the c4 coupling. As our preferred
result we choose the larger value of c4 in Eq. (7.29), since it provides a better
agreement with the present measurement of Γ(τ− → K−K0π0ντ ). Actually, one can
expect an incertitude in the splitting of isospin amplitudes in the e+e− → KSK

±π∓

cross-section (as it is discussed in Appendix E). Taking into account this systematic
error, it could be likely that the theoretical curve with c4 = −0.07 falls within the
error bars for the first data points.

Using SU(2)I symmetry, one can derive several relations between exclusive iso-
vector hadron modes produced in e+e− collisions and those related with the vector
current (F3 form factor) in τ decays. One can read them in Appendix E, where other
relations for the three meson decays of interest are also derived.

7.4. Phenomenology of τ → KKπντ : Results and

their analysis

Asymmetric B-factories span an ambitious τ programme that includes the
determination of the hadron structure of semileptonic τ decays such as the KKπ
channel. As commented in the Introduction the latest study of τ− → K+K−π−ντ
by the CLEO − III Collaboration [403] showed a disagreement between the KS
model, included in TAUOLA, and the data. Experiments with higher statistics such
as BABAR and Belle should clarify the theoretical settings.

For the numerics in this section we use the following values

F = 0.0924GeV , FV = 0.180GeV , FA = 0.149GeV ,

MV = 0.775GeV , MK∗ = 0.8953GeV , Ma1 = 1.120GeV . (7.30)

Then we get λ′, λ′′ and λ0 from the first equalities in Eq. (7.18).
At present no spectra for these channels is available and the determinations of
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Source Γ(τ− → K+K−π−ντ ) Γ(τ− → K0K
0
π−ντ ) Γ(τ− → K−K0π0ντ )

PDG [8] 3.103 (136) 3.465 (770) 3.262 (521)

BaBar [399] 3.049 (85)

CLEO − III [403] 3.511 (245)

Belle [345] 3.465 (136)

Our prediction 3,4+0,5
−0,2 3,4+0,5

−0,2 2,5+0,3
−0,2

Cuadro 7.1: Comparison of the measurements of partial widths (in units of 10−15 GeV)
with our predictions for the set of values in Eq. (7.29). For earlier references see [8].

the widths are collected in Table 7.1 4.
We also notice that there is a discrepancy between the BaBar measurement of

Γ(τ− → K+K−π−ντ ) and the results by CLEO and Belle. Within SU(2) isospin

symmetry it is found that Γ(τ− → K+K−π−ντ ) = Γ(τ− → K0K
0
π−ντ ), which

is well reflected by the values in Table 7.1 within errors. Moreover, as commented
above, the PDG data [8] indicate that Γ(τ− → K−K0π0ντ ) should be similar to
Γ(τ− → KKπντ ). It would be important to obtain a more accurate determination
of the τ− → K−K0π0ντ width (the measurements quoted by the PDG are rather
old) in the near future.

In our analyses we include the lightest resonances in both the vector and axial-
vector channels, namely ρ(775), K∗(892) and a1(1260). It is clear that, as it happens
in the τ → πππντ channel (see Chapter 6), a much lesser role, though noticeable,
can be played by higher excitations on the vector channel. As experimentally only
the branching ratios are available for the KKπ channel we think that the refinement
of including higher mass resonances should be taken into account in a later stage,
when the experimental situation improves.

In Figs. 7.3 and 7.4 we show our predictions for the normalized M2
KKπ−spectrum

of the τ− → K+K−π−ντ and τ− → K−K0π0ντ decays, respectively. As discussed
above we have taken c4 = −0.07±0.01 and g4 = −0.72±0.20 (notice that the second
process does not depend on g4). We conclude that the vector current contribution

4The Belle Collaboration has compared recently [511] their spectra [345] with our parametri-
zation [304]. Good agreement is seen at low-energies and a manifest deviation at s ≥ 2GeV 2 is
observed. Their comparison shows our prediction for c4 = −0,04 and g4 = −0,5 , that correspond
to the values presented in Ref. [429]. This points to a lower value of c4, as obtained in the fit to
e+e− data (See Fig. 7.2) and also to a possible destructive interference of the higher-resonance
states ρ’ and K∗’. As soon as we can access definitive Belle data, we will investigate this issue in
detail.
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(ΓV ) dominates over the axial-vector one (ΓA) in both channels :

ΓA

ΓV

∣∣∣
KKπ

= 0.16± 0.05 ,
ΓA

ΓV

∣∣∣
K−K0π

= 0.18± 0.04 ,

Γ(τ− → K+K−π−ντ )

Γ(τ− → K−K0π0ντ )
= 1.4± 0.3 , (7.31)

where the errors estimate the slight variation due to the range in c4 and g4. These ra-
tios translate into a ratio of the vector current to all contributions of fv = 0.86±0.04
for the KKπ− channel and fv = 0.85± 0.03 for K−K0π0 one, to be compared with
the result in Ref. [80], namely fv(KKπ) = 0.20 ± 0.03. Our results for the relative
contributions of vector and axial-vector currents deviate strongly from most of the
previous estimates, as one can see in Table 7.2. Only Ref. [439] pointed already
to vector current dominance in these channels, although enforcing just the leading
chiral constraints and using experimental data at higher energies.

We conclude that for all τ → KKπντ channels the vector component dominates
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Figura 7.3: Normalized M2
KKπ-spectra for τ− → K+K−π−ντ . Notice the dominance of

the axial-vector current at very low values of Q2.

by far over the axial- vector one, though, as can be seen in the spectra in Figs. 7.3,
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7.4, the axial- vector current is the dominant one in the very-low Q2 regime.
Next we contrast our spectrum for τ− → K+K−π−ντ with that one arising

Source ΓV /ΓA

Our result 6± 2

KS model [378] 0.6− 0.7

KS model [510] 0.4− 0.6

Breit-Wigner approach [439] ∼ 9

CV C [80] 0.20± 0.03

Data analysis [403] 1.26± 0.35

Cuadro 7.2: Comparison of the ratio of vector and axial-vector contribution for τ →
KKπντ partial widths. The last two lines correspond to the τ− → K+K−π−ντ process
only. Results in Ref. [510] are an update of Ref. [378]. The result of Ref. [80] is obtained by
connecting the tau decay width with the CV C related e+e− → KSK

±π∓ (see Appendix
C.3). The analysis in [403] was performed with a parameterization that spoiled the chiral
normalization of the form factors.

from the KS model worked out in Refs. [378, 510]. This comparison is by no means
straight because in these references a second and even a third multiplet of resonan-
ces are included in the analysis. As we consider that the spectrum is dominated by
the first multiplet, in principle we could start by switching off heavier resonances.
However we notice that, in the KS model, the ρ(1450) resonance plays a crucial role
in the vector contribution to the spectrum. This feature depends strongly on the
value of the ρ(1450) width, which has been changed from Ref. [378] to Ref. [510] 5.
In Figure 7.5 we compare our results for the vector and axial-vector contributions
with those of the KS model as specified in Ref. [510] (here we have switched off
the seemingly unimportant K∗(1410)). As it can be seen there are large differences
in the structure of both approaches. Noticeably there is a large shift in the peak of
the vector spectrum owing to the inclusion of the ρ(1450) and ρ(1700) states in the
KS model together with its strong interference with the ρ(770) resonance. In our
scheme, including the lightest resonances only, the ρ(1450) and ρ(1700) information
has to be encoded in the values of c4 and g4 couplings (that we have extracted in
Subsection 7.3.1) and such an interference is not feasible. It will be a task for the
experimental data to settle this issue.
In Figure 7.6 we compare the normalized full M2

KKπ spectrum for the τ → KKπντ
channels in the KS model [510] and in our scheme. The most salient feature is the
large effect of the vector contribution in our case compared with the leading role

5Moreover within Ref. [378] the authors use two different set of values for the ρ(1450) mass and
width, one of them in the axial-vector current and the other in the vector one. This appears to be
somewhat misleading.
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of the axial-vector part in the KS model, as can be seen in Figure 7.5. This is the
main reason for the differences between the shapes of M2

KKπ spectra observed in
Figure 7.6. We see in Figures 7.7 and 7.8 that similar patterns are observed in the
K−K0π0 hadron mode.

As we have taken advantage of in Chapter 6, the plot of the differential distri-
bution of the decay rate versus the Mandelstam variables s, t and u is a very useful
tool to learn about the dynamics of the process. In Figure 7.9 we represent dΓ/ds
for τ− → K+K−π−ντ , both for our prediction -there is no experimental data we can
compare to- and the Finkemeier and Mirkes model. The latter has been normalized
to give a branching ratio consistent with PDG by multiplying it by 0.8. Figure 7.9
makes clear how different the dynamics contained in the KS model and in our pa-
rameterization are.

Similarly, we present in Figs. 7.10 and 7.11 the analogous plots for the t- and
u-spectra. Again, we observe that the physics contained in both approaches is pretty
different. This shows up more neatly in Figure 7.10 that is thus another well-suited
observable we have found to discriminate between both parameterizations. The ob-
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KKπ-spectra for the vector and axial-

vector contributions to the τ− → K+K−π−ντ channel in the KS model [510] and in our
approach.

served pattern is analogous to that one shown in the s-, t- and u- spectra in the
decays τ− → K−K0π0ντ . These are very interesting observables in which we expect
data from the dedicated studies of B- and tau-charm-factories in the future.

7.5. Conclusions

Hadron decays of the tau lepton are an all-important tool in the study of the
hadronization process of QCD currents, in a setting where resonances play the lea-
ding role. In particular the final states of three mesons are the simplest ones where
one can test the interplay between different resonance states. At present there are
three parameterizations implemented in the TAUOLA library to describe the ha-
dronization process in tau decays. Two are based on experimental data. The other
alternative, namely the KS model, though successfull in the account of the πππ
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final state, has proven to be unsuitable [403] when applied to the decays into KKπ
hadron states. Our procedure, guided by large NC , chiral symmetry and the asym-
ptotic behaviour of the form factors driven by QCD, was already employed in the
analysis of τ → πππντ in Refs. [309] and [322], which only concern the axial-vector
current. Here we have applied our methodology to the analysis of the τ → KKπντ
channels where the vector current may also play a significant role.

We have constructed the relevant Lagrangian involving the lightest multiplets of
vector and axial-vector resonances. Then we have proceeded to the evaluation of
the vector and axial-vector currents in the large-NC limit of QCD, i.e. at tree level
within our model. Though the widths of resonances are a next-to-leading effect in
the 1/NC counting, they have to be included into the scheme since the resonances
do indeed resonate due to the high mass of the decaying tau lepton. We have been
able to estimate the values of the relevant new parameters appearing in the Lagran-
gian with the exception of two, namely the couplings c4 and g4, which happen to be
important in the description of τ → KKπντ decays. The range of values for these
couplings has been determined from the measured widths Γ(τ− → K+K−π−ντ ) and



7.5 Conclusions 165

1,5 2 2,5 3

M
KKπ

2
 (GeV

2
)

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

(1
/Γ

) 
dΓ

/d
Q

2  (
G

eV
-2

)

Our result: Axial-Vector
Our result: Vector
KS: Axial-Vector
KS: Vector

τ -> K
-
K

0π0ντ

Figura 7.7: Comparison between the normalized M2
KKπ-spectra for the vector and axial-

vector contributions to the τ− → K−K0π0ντ channel in the KS model [510] and in our
approach.

Γ(τ− → K−K0π0ντ ).
In this way we provide a prediction for the —still unmeasured (or at least not

publicly available)— spectra of both processes. We conclude that the vector current
contribution dominates over the axial-vector current, in fair disagreement with the
corresponding conclusions from the KS model [510] with which we have also com-
pared our full spectra. On the other hand, our result is also at variance with the
analysis in Ref. [80]. There are two all-important differences that come out from the
comparison. First, while in the KS model the axial-vector contribution dominates
the partial width and spectra, in our results the vector current is the one that rules
both spectrum and width. Second, the KS model points out a strong interference
between the ρ(770), the ρ(1450) and the ρ(1700) resonances that modifies strongly
the peak and shape of the MKKπ distribution depending crucially on the included
spectra. Not having a second multiplet of vector resonances in our approach, we
cannot provide this feature. It seems strange to us the overwhelming role of the
ρ(1450) and ρ(1700) states but it is up to the experimental measurements to settle
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this issue.
Even if our model provides a good deal of tools for the phenomenological analyses

of observables in tau lepton decays, it may seem that our approach is not able to
carry the large amount of input present in the KS model, as the later includes easily
many multiplets of resonances. In fact, this is not the case, since the Lagrangian can
be systematically extended to include whatever spectra of particles are needed. If
such an extension is carried out the determination of couplings could be cumbersome
or just not feasible, but, on the same footing as the KS model, our approach would
provide a parameterization to be fitted by the experimental data. The present stage,
however, has its advantages. By including only one multiplet of resonances we have
a setting where the procedure of hadronization is controlled from the theory. This is
very satisfactory if our intention is to use these processes to learn about QCD and
not only to fit the data to parameters whose relation with the underlying theory is
unclear when not directly missing.
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Caṕıtulo 8

τ− → η/η′π−π0ντ and
τ− → η/η′ηπ−ντ decays

8.1. Introduction

In this chapter we present the study of the three-meson τ decay modes con-
taining an η. These are the decays τ− → ηπ−π0ντ and τ− → ηηπ−ντ . They are
really interesting: in the first one only the vector current participates allowing for a
very precise study of it and the second one is a rare decay, in which all contributions
from resonance exchange that we should consider within our formalism vanish, only
the χPT part does not.

Although the computation of these modes is much simpler than that of the 2Kπ
decay modes we can extract very precise information from them. As we advanced,
the τ− → ηπ−π0ντ can only be produced via vector current. This mode is measured
with an error ∼ 13% [8] 1, therefore it should be an ideal benchmark to learn about
the hadronization of the vector current in presence of QCD interactions [327] and,
in particular, to test the determination of the couplings in the vector current reso-
nance Lagrangian done in Chapter 7 and to confront it to the results in Chapter
9. However, the branching ratio for this mode in the PDG live disagrees with the
value in the PDG 2008 within errors (the earlier value was (1.81± 0.24) · 10−3 while
the new one is (1.39 ± 0.10) · 10−3), so one should be cautious about the strength
of the conclusions we reach. On the other side, the decay τ− → ηηπ−ντ is privile-
ged. There are no vector current contributions and the axial-vector current carries
only pseudoscalar degrees of freedom in this case, being suppressed as F4 ∼ m2

π/Q
2,

that is, as ∼ m4
π/Q

4 in the spectral function and branching ratios. This observation
makes us to guess 2 a suppression at the level of four or five orders of magnitude
with respect to the same observables in τ− → ηπ−π0ντ . This estimate would yield
a branching ratio of 10−7 or smaller, four orders of magnitude less than the current

1It is reduced to ∼ 7% in the update on PDGlive, http://pdg.lbl.gov/2009/tables/rpp2009-
sum-leptons.pdf.

2We take into account the relative contribution of the pseudoscalar form factor in the 3π and
KKπ τ decay modes, where the relative suppression is identical.
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lowest branching fraction obtained (See Table 5.1). If we are able to give the lowest
order contribution to this decay and bound the value of the higher-order terms, this
will be a very appealing channel to look for new physics.

8.2. Form factors in τ− → ηπ−π0ντ

We consider [513] the process τ− → η(p1) π
−(p2) π

0(p3) ντ . The labeling of
momenta corresponds to Eq. (5.52). The computation is made for η = η8. The rest
of definitions and normalizations are as usual.

Because of G-parity the axial-vector current form factors vanish

T χ
A1,2µ

= T 1R
A1,2µ = T 2R

A1,2µ = 0 . (8.1)

In order to see this [327], one needs to consider the respective G-parities 3 of
pion and eta: Gη = +1, Gπ = −1, and of the (axial-)vector currents GAµ = −1
and GVµ = +1. Notwithstanding, one still has the contribution of the WZW term,
Eq. (3.86) and the resonance exchange contributions in the odd-intrinsic parity sector
in Eqs. (4.33), (4.34) and (4.42) without any suppression factor vanishing in the
isospin limit. Since any isospin-correction to the G-parity forbidden terms would
contribute much less than all others we neglect it, as we did in any application
considered in this Thesis.

For the vector form factor one needs to consider the diagrams analogous to Figures
7.1.a), 7.1.c), 7.1.d) and 7.1.f), where the solid single lines now correspond to π and
η mesons. The vector form factors read

T χ
V µ = iεµν̺σp

ν
1p

̺
2p

σ
3

[
NC

6
√
6π2 F 3

]
, (8.2)

T
1R(1)
V µ = iεµν̺σp

ν
1p

̺
2p

σ
3

8GV√
3F 3MV

1

M2
ρ − u

[
(c1 − c2 + c5)Q

2 × (8.3)

−(c1 − c2 − c5 + 2c6)u+ (c1 + c2 + 8c3 − c5)m2
η + 8c3

(
m2

π −m2
η

)]
,

T
1R(2)
V µ = −iεµν̺σpν1p̺2pσ3

16FV√
3MV F 3

1

M2
V −Q2

[ (g1 + 2g2 − g3) u (8.4)

− g2
(
Q2 + 2m2

π − m2
η

)
− (g1 − g3) 2m

2
π + (2 g4 + g5)m

2
π

]
.

T 2R
V µ = −iεµν̺σpν1p̺2pσ3

{
8
√
2√
3

FVGV

F 3

1

M2
V −Q2

×

1

M2
ρ − u

(
d3(Q

2 + u) + (d1 + 8d2 − d3)m2
η + 8d2(m

2
π −m2

η)
)}

. (8.5)

3G-parity is only exact in the limit of conserved isospin.
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To obtain the η1 contribution one simply has to multiply the above amplitudes by√
2 because we consider the single-angle mixing scheme. Although a detailed study

would need the double-angle mixing framework between the mass eigenstates |η 〉
and |η′ 〉 and the flavour eigenstates |η1 〉 and |η8 〉 [514, 515, 516, 517, 518], for our
study this effect is irrelevant, so that we will simply use |η 〉 = cosθP |η8 〉−sinθP |η1 〉,
|η′ 〉 = sinθP |η8 〉+ cosθP |η1 〉. We have

Tη = cosθPTη8 + sinθPTη1 =
(
cosθP + sinθP

√
2
)
T ∼ 0.600T

Tη′ = −sinθPTη8 + cosθPTη1 =
(
−sinθP + cosθP

√
2
)
T ∼ 1.625T , (8.6)

where T stands for the amplitudes in Eqs. (8.2), (8.3), (8.4) and (8.5), calculated
for η = η8 for a value of θP ∼ −15◦.

8.3. Short-distance constraints on the couplings

Following the same procedure as in Sections 6.3 and 7.3 we have found the
following constraints on the vector form factor:

c125 ≡ c1 − c2 + c5 = 0 ,

c1256 ≡ c1 − c2 − c5 + 2c6 = − NC

96π2

MV FV√
2F 2

,

d3 = − NC

192π2

M2
V

F 2
,

g123 ≡ g1 + 2g2 − g3 = 0 ,

g2 =
NC

192π2

MV√
2FV

, (8.7)

that are consistent with the values found in the 3π and 2Kπ tau decay channels
previously analyzed and also to those to be found in the P−γ decays in the next
Chapter.

8.4. τ− → ηηπ−ντ

This mode is peculiar because in the chiral limit, it is not generated by the
axial-vector current. This [327] can be understood by noticing that the axial-vector
current coupling to three pGs is built up from the structure generating the two-
meson vector coupling that can not give either ηη (because it vanishes due to the
antisymmetric structure in momenta) or ηπ that would have G-parity −1, while
that of the vector current is +1. This feature is preserved when passing from χPT
to RχT because it only depends on the couplings of spin-one currents to pGs and
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selection rules. Moreover, G-parity also forbids all contributions to F4 including the
exchange of a vector or axial-vector resonance.

That is why we only get a contribution in the pseudoscalar form factor F4, that
is nothing more than the χPT result at O(p2). That is

T χPT
A4 µ

= −i m2
π

3
√
2F (Q2 −m2

π)
Qµ . (8.8)

This channel offers us the possibility to evaluate our assumption of neglecting the
effect of the exchange of spin-zero resonances. Since the χPT result at O(p2) will gi-
ve an irrelevantly small branching ratio, we can use this process to study in deep the
relevance of scalar and pseudoscalar resonances in an appropriate environment where
its rôle cannot be masked by any effect induced by vector or axial–vector resonances.

8.5. Phenomenological analyses

Unfortunately there is no available data for the spectra of any of the decays
τ− → η(η′)π−π0ντ and τ− → η(η′)ηπ−ντ . We will be thus guided in our study only
by the figures given by the PDG live, that are: Γ (τ− → ηπ−π0ντ ) = 3.15(23) ·10−15

GeV and Γ (τ− → η′π−π0ντ ) ≤ 1.81 · 10−16 GeV. The first one is dominated by the
recent measurement made by the BELLE collaboration [392], 3.06(07) · 10−15 GeV
with a high statistics 450 million τ -pair data sample. While this reference fixes an
upper limit on the branching ratio for the mode τ− → ηηπ−ντ consistent with the
values given above, it does not provide any figure for the decay τ− → η′π−π0ντ .

We will use the short-distance constraints obtained in Sect. 8.3 and complement
them with information got in Ref. [310] as discussed in Chapters 6 and 7. We will
employ the relevant values of the coupling constants fixed in Eq.(6.34) and also the
determination of 2 g4 + g5 = −0.60 ± 0.02 in Chapter 7. Notice that the determi-
nation of c4 and g4 in Sect. 7.3.1 does not play any rôle here.

This way we are left with only two unknowns: the coupling constants c3 and d2,
so our phenomenological analyses will we aimed to gain some information on them
and on their relevance in the spectra of the considered decays.

First of all we notice that it is not possible to reach the PDG branching frac-
tion for the ηππ mode with these couplings set to zero, since in this case we have
Γ (τ− → ηπ−π0ντ ) ∼ 6.970 · 10−16 GeV.

Then, a detailed study of the allowed region in parameter space for c3 and d2
yields that many possibilities are opened for |c3| . 0.06 and |d2| . 0.5, meaning
that it is possible that one of them is zero while the other not and that it is possible
that both do not vanish. In this last case, all possibilities of signs and relative signs
are opened as we illustrate with the following eight benchmark points:

{c3, d2} = {0, −0.578} , {0, 0.461} , {−0.0643, 0} , {0.0560, 0} , (8.9)

{−0.060, −0.040} , {−0.067, 0.030} , {0.060, −0.038} , {0.055, 0.011} .
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For all of them we reproduce the PDG live value within less than one sigma.
We have checked that for all allowed values of the parameters we obtain a value

for the decay channel Γ (τ− → η′π−π0ντ ) that is above the PDG bound. We believe
that the discovery of this mode will help to understand if that is a failure of our
model or an issue in the detection of this mode. For this purpose, the analyses of the
complete BaBar and Belle data samples will be useful. The values that we obtain
for Γ (τ− → η′π−π0ντ ) in units of 10−16 GeV for the eight benchmark points are:
10.92, 8.035, 16.36, 13.32, 15.90, 16.45, 13.65 and 13.31 (in the same order as given
above).

In Figs. 8.1 and 8.2 we can see that the coupling that has a bigger impact in the
features of the spectrum is c3 while d2 is only relevant when the former is close to
zero. This is the reason why in Figs. 8.1 and 8.2 we are labeling only the curves with
values of c3 that are not close to each other and with d2 only if c3 ∼ 0. Analyzing
a spectrum it should be possible to determine which of the four labeled curves is
preferred. And even lacking of that, a measurement of the branching ratio for the
η′π−π0 mode will serve for this purpose as well.
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Figura 8.1: Spectral function for the decay τ− → ηπ−π0ντ using the values for the
unknown couplings corresponding to the eight benchmark points as we define and explain
in the text.

In Figure 8.3 we show the one-sigma contour for the pdg live branching ratio
for the mode τ− → ηπ−π0ντ in the d2-c3 plane. In Figure 8.4 we check that the
branching ratio that we obtain for the mode τ− → η′π−π0ντ is above the pdg bound
for all allowed values of the parameters (labeled only by the parameter whose impact
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Figura 8.2: Spectral function for the decay τ− → η′π−π0ντ using the values for the
unknown couplings corresponding to the eight benchmark points as we define and explain
in the text.

is bigger, c3).

Next, we have analyzed Belle data on the τ → ηπ−π0ντ decay spectra. In
Figure 8.5 we can see the results of our fit, which yields the values d2 = 0.585±0,006
and c3 = −0,0213±0,0026 that is also the one giving one of the smallest decay widths
for the η′π−π0 mode, that is nevertheless a factor of three larger than the PDG upper
bound (last curve in Fig. 8.2). Then, we conclude that the value of d2 is much larger
(in magnitude) than that of c3 and the positive sign solution for d2 is favoured by
data. This could be confirmed by fitting the low-energy data on σ(e+e− → ηπ+π−)
using the results in Appendix E 4 5. This possibility is illustrated in Figure 8.6, where
we see that four representative benchmark points produce different predictions for
this cross-section, probably enough to choose which scenario suits better if we had
some experimental cross-section data to compare with. In addition, we consider
also the curve obtained using the fit parameters for the spectrum of τ → ηπ−π0ντ .
One observes that the latter curve has a clearly smoother behaviour in the highest-
energy part of the figure, which is limited to E ∼ 1,5 GeV since we cannot expect

4One can proceed conversely and use the data on e+e− annihilation into hadrons to predict the
corresponding semileptonic tau decays [519, 520].

5Although the η′ meson decays to ηπ+π− about 45% of the time, there is no significant con-
tamination from the chain σ(e+e− → η′ → ηπ+π−) since, because of C parity it must occur at
NLO in the α-expansion.
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Figura 8.3: One-sigma contours for the branching ratio of the decay τ− → ηπ−π0ντ in
the c3-d2 plane.

our parameterization to give a sensible description of the hadron e+e− cross-section
much beyond this energy [304]. In Fig. 8.7 we compare our prediction to low-energy
data from several experiments.

We will pursue in the the future a detailed analyses of the contributions from
spin zero resonances to the process τ → ηηπ−ντ in order to exploit the possibility
of searching for new Physics in this decay once it is discovered. This task is neces-
sary since G-parity arguments do not forbid the contributions from the subprocesses
with the axial-vector current coupled to the following hadron currents 6: π∗ → ηηπ,
π∗ → f0π → ηηπ 7 and π∗ → a0η → ηηπ.

6A Lorentz index and the Dirac structure are omitted.
7Here we consider that the σ meson couples dominantly to two pions.
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Figura 8.4: The branching ratio for the mode τ− → η′π−π0ντ is plotted versus the value
of c3 for all values of c3 (and d2, whose value is not plotted) that yield a branching ratio
for the decay τ− → ηπ−π0ντ consistent within one sigma with the pdg live bound. The
horizontal line for a br = 0.8 · 10−4 represents the current pdg bound and the dashed area
to the allowed region that excludes all our curves.

8.6. Conclusions

We have worked out the decays τ− → ηπ−π0ντ , τ
− → η′π−π0ντ and τ− →

ηηπ−ντ within the framework of Resonance Chiral Theory guided by the large-NC

expansion of QCD, the low-energy limit given by χPT and the appropriate asym-
ptotic behaviour of the form factors that helps to fix most of the initially unknown
couplings. Indeed only two remain free after completing this procedure and having
used information acquired in the previous chapter.

We have seen that it is not possible to reproduce the decay width given by the
PDG on the former mode with both couplings vanishing. Then, we have observed
that it is quite easy to do that for natural values of these couplings in such a way
that there is a a whole zone of allowed values in the parameter space for them.
Using isospin symmetry, we provide a prediction for the low-energy behaviour of
σ(e+e− → ηπ+π−). For any allowed value of the two unknowns in the previous
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Figura 8.5: The two free parameters of our description of the τ− → ηπ−π0ντ decays are
fitted to Belle data.

study we can not, however, reconcile our prediction for Γ (τ− → η′π−π0ντ ) with the
PDG upper bound. We conclude that maybe there was not enough statistics yet for
it to be detected and that this can happen soon analyzing the data from BaBar and
Belle. Finally, we find that until we characterize reliably the spin-zero contributions
through resonance exchange to the process τ → ηηπ−ντ we cannot exploit the fact
that the spin-one analogous contributions vanish, making then this channel a very
promising place to search for new physics once it is first detected. We will tackle
this task elsewhere.
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[524] and BaBar [525] data.
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τ− → P−γντ decays (P = π, K)

9.1. Introduction

In this chapter we will consider the structure dependent (SD) description of
the processes τ− → P−γντ decays (P = π, K) within the framework of RχT as
discussed in earlier chapters. Until today these channels have not been observed,
which is strange according to the most nave expectations of their decay rates. To
clarify this question is the main motivation of our study.

The structure independent part of the process has been discussed in Sect. 5.2.1.
We will compute the SD depending part using the Lagrangians in Eqs. (3.66), (3.86),
(4.19) 1, (4.31), (4.33) and (4.34). This chapter is based on Ref. [303].

As we recall in Sect. 5.2.2, the relative sign between the IB and SD dependent
part motivated an addendum to [336]. This confusion was motivated by the fact
that they did not used a Lagrangian approach for the SD part. In any Lagrangian
approach this should not be an issue. In order to facilitate any independent check,
we define the convention we follow as the one used by the PDG [8] in order to relate
the external fields rµ, ℓµ with the physical photon field

rµ = ℓµ = −eQAµ + ..., (9.1)

where e is the positron electric charge. Determining the relative sign between the
model independent and dependent contributions is an added interest of our compu-
tation.

1We refer only to the part involving A and V resonances, as in any application in this Thesis.
Given the vector character of the SM couplings of the hadron matrix elements in τ decays, form
factors for these processes are ruled by vector and axial-vector resonances. In the τ → P−γντ
decays the relevant form factors are given by a three-point Green function where other quantum
numbers play a negligible rôle.
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9.2. Structure dependent form factors in τ− →
π−γντ

The Feynman diagrams, which are relevant to the vector current contributions
to the SD part of the τ− → π−γντ processes are given in Figure 9.1. The analytical
result is found to be

iMSDV
= iGF Vud e uντ (q) γ

µ(1− γ5) uτ(s)εµναβ ǫν(k) kαpβ F π
V (t) , (9.2)

where the vector form-factor F π
V (t) is

F π
V (t) = − NC

24π2Fπ

+
2
√
2FV

3FπMV

[
(c2 − c1 − c5)t + (c5 − c1 − c2 − 8c3)m

2
π

]
×

[
cos2θV
M2

φ

(
1−
√
2tgθV

)
+

sin2θV
M2

ω

(
1 +
√
2cotgθV

)]

+
2
√
2FV

3FπMV
Dρ(t)

[
(c1 − c2 − c5 + 2c6)t+ (c5 − c1 − c2 − 8c3)m

2
π

]

+
4F 2

V

3Fπ
Dρ(t)

[
d3t + (d1 + 8d2 − d3)m2

π

]
×

[
cos2θV
M2

φ

(
1−
√
2tgθV

)
+

sin2θV
M2

ω

(
1 +
√
2cotgθV

)]
.

(9.3)

Here we have defined t = (k + p)2 = (s− q)2 and DR(t) as

DR(t) =
1

M2
R − t− iMRΓR(t)

. (9.4)

ΓR(t) stands for the decay width of the resonance R.
For the vector resonances ω and φ, we will assume the ideal mixing case for them

in any numerical application:

ω1 = cosθV ω − sinθV φ ∼
√

2

3
ω −

√
1

3
φ ,

ω8 = sinθV ω + cosθV φ ∼
√

2

3
φ+

√
1

3
ω . (9.5)

The Feynman diagrams related to the axial-vector current contribution to the
SD part are given in Figure 9.2. The corresponding result is

iMSDA
= GF Vud e uντ (q) γ

µ(1− γ5) uτ(s) ǫν(k)
[
(t−m2

π)gµν − 2kµpν
]
F π
A(t) , (9.6)
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Figura 9.1: Vector current contributions to τ− → π−γντ .

where the axial-vector form-factor F π
A(t) is

F π
A(t) =

F 2
V

2FπM2
ρ

(
1− 2GV

FV

)
− F 2

A

2Fπ

Da1(t) +

√
2FAFV

FπM2
ρ

Da1(t)

(
− λ′′t + λ0m

2
π

)
,

(9.7)

where we have used the notation from Eq. (4.32) for the relevant combinations of
the couplings in LV AP

2 , Eq. (4.30).
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Figura 9.2: Axial-vector current contributions to τ− → π−γντ .

9.3. Structure dependent form factors in τ− →
K−γντ

Although one can read this from Eq.(5.12), let us emphasize that the model
independent part MIBτ+K

is the same as in the pion case by replacing the pion
decay constant Fπ with the kaon decay constant FK . A brief explanation about
this replacement is in order. The difference of Fπ and FK is generated by the low
energy constants and the chiral loops in χPT [5], while in the large NC limit of RχT
this difference is due to the scalar resonances in an implicit way. Due to the scalar
tadpole, one can always attach a scalar resonance to any of the pG field, which will
cause the pG wave function renormalization. A convenient way to count this effect is
to make the scalar field redefinition before the explicit computation to eliminate the
scalar tadpole effects. In the latter method, one can easily get the difference of Fπ

and FK . For details, see Ref. [526] and references therein. For the model dependent
parts, the simple replacements are not applicable and one needs to work out the
corresponding form factors explicitly.

The vector current contributions to the SD part of the τ− → K−γντ process are
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given in Figure 9.3. The analytical result is found to be

iMSDV
= iGF Vus e uντ (q) γ

µ(1− γ5) uτ(s)εµναβ ǫν(k) kαpβ FK
V (t) , (9.8)

where the vector form-factor FK
V (t) is

FK
V (t) = − NC
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. (9.9)
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Figura 9.3: Vector current contributions to τ− → K−γντ .

The axial-vector current contributions to SD part are given in Figure 9.4.
The corresponding analytical result is

iMSDA
= GF Vus e uντ (q) γ

µ(1−γ5) uτ(s) ǫν(k)
[
(t−m2

K)gµν−2kµpν
]
FK
A (t) , (9.10)

where the axial-vector form-factor FK
A (t) is

FK
A (t) =

F 2
V

4FK

(
1− 2GV

FV

)(
1

M2
ρ

+
cos2θ

M2
φ

+
sin2θ

M2
ω

)
− F 2

A

2FK

[
cos2θADK1H

(t) + sin2θADK1L
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]

+
FAFV√
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ω

)(
− λ′′t + λ0m

2
K

)
. (9.11)

We have used the notations of K1H and K1L for the physical states of K1(1400)
and K1(1270) respectively and the mixing angle θA is defined in Eq.(9.12) as we
explain in the following.
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The K1A state appearing in Eq. (4.14) is related to the physical states K1(1270),
K1(1400) through:

K1A = cos θA K1(1400) + sin θA K1(1270) . (9.12)

About the nature of K1(1270) and K1(1400), it has been proposed in Ref. [527]
that they result from the mixing of the states K1A and K1B, where K1A denotes
the strange partner of the axial vector resonance a1 with JPC = 1++ and K1B is
the corresponding strange partner of the axial vector resonance b1 with J

PC = 1+−.
However in this work, we will not include the nonet of axial vector resonances with
JPC = 1+− [283]. As argued in Ref. [527], the contributions from these kind of re-
sonances to tau decays are proportional to the SU(3) symmetry breaking effects.
Moreover, as one can see later, we will assume SU(3) symmetry for both vector
and axial-vector resonances in deriving the T-matrix always. For the pGs, physical
masses will arise through the chiral symmetry breaking mechanism in the same way
as it happens in QCD. For the (axial-)vector resonances, the experimental values
will be taken into account in the kinematics.
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γ
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Figura 9.4: Axial-vector current contributions to τ− → K−γντ .

9.4. Constraints from QCD asymptotic behavior

In this part, we will exploit the asymptotic results of the form factors from
perturbative QCD to constrain the resonance couplings. When discussing the high
energy constraints, we will work both in chiral and SU(3) limits, which indicates we
will not distinguish the form factors with pion and kaon, that are identical in this
case.

For the vector form factor, the asymptotic result of perturbative QCD has been
derived in Ref. [281, 298]

F P
V (t→ −∞) =

F

t
, (9.13)

where F is the pion decay constant in the chiral limit. From the above asymptotic
behavior, we find three constraints on the resonance couplings

c1 − c2 + c5 = 0 , (9.14)

c2 − c1 + c5 − 2c6 =

√
2NCMV

32π2FV

+

√
2FV

MV

d3 , (9.15)
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c2 − c1 + c5 − 2c6 =
3
√
2F 2

4FVMV
+

√
2FV

MV
d3 , (9.16)

where the constraints in Eqs.(9.14), (9.15) and (9.16) are derived from order ofO(t1),
O(t0) and O(t−1), respectively. Combining the above three constraints, we have

c5 − c6 =
NCMV

32
√
2π2FV

+
FV√
2MV

d3 (9.17)

F =
MV

√
NC

2
√
6π

, (9.18)

where the constraint of Eq.(9.18) has already been noticed in [281, 298, 336].
The high energy constraints on the resonance couplings ci and di have been stu-

died in different processes. The OPE analysis of the V V P Green Function gives [310]

c5 − c6 =
NCMV

64
√
2π2FV

, (9.19)

d3 = − NCM
2
V

64π2F 2
V

+
F 2

8F 2
V

. (9.20)

The constraint from τ− → (V P )−ντ study leads to

c5 − c6 = − FV√
2MV

d3 , (9.21)

if one neglects the heavier vector resonance multiplet [528].
The results from the analysis of τ− → (KKπ)−ντ are [321, 507]

c5 − c6 =
NCMV FV

192
√
2π2F 2

,

d3 = − NCM
2
V

192π2F 2
. (9.22)

It is easy to check that the results of Eqs.(9.21) and (9.22) are consistent. Combining
Eqs.(9.17) and (9.21) leads to

c5 − c6 =
NCMV

64
√
2π2FV

,

d3 = − NCM
2
V

64π2F 2
V

, (9.23)

where the constraint of c5 − c6 is consistent with the result from the OPE analysis
of the V V P Green Function [310], while the result of d3 is not 2.

By demanding the consistency of the constraints derived from the processes of

2However, the difference on the numerical value of both predictions is small, ∼ 16% and the
impact of such a difference in any observable in the considered processes is extremely tiny.



9.4 Constraints from QCD asymptotic behavior 187

τ− → P−γντ and τ− → (V P )−ντ given in Eq.(9.23) and the results from τ− →
(KKπ)−ντ given in Eq.(9.22), we get the following constraint

FV =
√
3F . (9.24)

If one combines the high energy constraint from the two pion vector form factor [7]

FVGV = F 2 , (9.25)

and the result of Eq.(9.24) we get here, the modified KSRF will be derived

F =
√
3GV , (9.26)

which is also obtained in the partial wave dispersion relation analysis of ππ scatte-
ring [529] .

Although the branching ratios for the modes τ → Pγντ we are discussing should
be higher than for some modes that have been already detected, they have not been
observed yet. Lacking of experimental data, we will make some theoretically and
phenomenologically based assumptions in order to present our predictions for the
spectra and branching ratios.

Taking into account the previous relations one would have F π
V (t) in terms of

c1 + c2 + 8c3 − c5 and d1 + 8d2 − d3. For the first combination, c1 + c2 + 8c3 − c5 =
c1 + 4c3 (c1 − c2 + c5 = 0 has been used), the prediction for c1 + 4c3 in [310] yields
c1 + c2 + 8c3 − c5 = 0. In Ref. [310] the other relevant combination of couplings is
also restricted: d1 + 8d2 − d3 = F 2

8F 2
V
. In F π

V (t) c4 appears, in addition. There is a

phenomenological determination of this coupling in our work on the KKπ decay
modes of the τ [507]: c4 = −0.07± 0.01.

Turning now to the axial-vector form factor, in both channels it still depends on
four couplings: FA, MA, λ

′′ and λ0. If one invokes the once subtracted dispersion for
the axial vector form factor, as done in Ref. [336], one can not get any constraints
on the resonance couplings from the axial vector form factors given in Eqs.(9.7) and
(9.11). In fact by demanding the form factor to satisfy the unsubtracted disper-
sion relation, which guarantees a better high energy limit, we can get the following
constraint

λ′′ =
2GV − FV

2
√
2FA

, (9.27)

which has been already noted in [299].
In order to constrain the free parameters as much as possible, we decide to exploit

the constraints from the Weinberg sum rules (WSR) [302]: F 2
V − F 2

A = F 2 and
M2

V F
2
V −M2

AF
2
A = 0, yielding

F 2
A = 2F 2 , MA =

6πF√
NC

. (9.28)

For the axial vector resonance coupling λ0, we use the result from Ref. [299, 322]

λ0 =
GV

4
√
2FA

. (9.29)
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To conclude this section, we summarize the previous discussion on the high-energy
constraints

FV =
√
3F , GV =

F√
3
, FA =

√
2F , MV =

2
√
6πF√
NC

, MA =
6πF√
NC

,

λ0 =
1

8
√
3
, λ′′ = − 1

4
√
3
, c5 − c6 =

√
NC

32π
, d3 = −

1

8
. (9.30)

In the above results, we have discarded the constraint in Eq.(9.20), which is the only
inconsistent result with the others.

9.5. Phenomenological discussion

Apart from the parameters we mentioned in the last section, there is still one
free coupling θA, which describes the mixing of the strange axial vector resonances in
Eq.(9.12). The value of θA has already been determined in literature [527, 528, 530].
We recapitulate the main results in the following.

In Ref. [527], it is determined θA ∼ 33◦. In Ref. [528], |θA| ∼ 58,1◦ is determined
through the considered decays τ− → (V P )−ντ . In Ref. [530], the study of τ → K1ντ
gives |θA| =37◦

58◦ as the two possible solutions. The decay D → K1π allows to conclude
that θA must be negative and it is pointed out that the observation of D0 → K−

1 π
+

with a branching ratio ∼ 5 · 10−4 would imply θA ∼ −58◦. However, a later analyses
in Ref. [531] finds that the current measurement of B̄0 → K−

1 (1400)π
+ [8] favors a

mixing angle of −37◦ over −58◦. In this respect, the relation

∣∣∣Γ
(
J/Ψ→ K0

1 (1400)K
0
) ∣∣∣

2

= tgθ2A

∣∣∣Γ
(
J/Ψ→ K0

1 (1270)K
0
) ∣∣∣

2

(9.31)

would be very useful to get θA, once these modes are detected.

9.5.1. Results including only the WZW contribution in the

SD part

As it was stated in Sects. 5.2.2 and 9.1 it is strange that these modes have not
been detected so far. The most naive and completely model independent estimate
would just include the IB part and the WZW contribution to the V V part, as the
latter is completely fixed by QCD. We know that doing this way we are losing the
contribution of vector and axial-vector resonances, that should be important in the
high-x region. However, even doing so one is able to find that the radiative decay
τ− → π−γντ has a decay probability larger than the mode τ− → K+K−K−ντ

3. For
a reasonably low cut on the photon energy this conclusion holds for the τ− → K−γντ

3see Table 5.1, Γ (τ− → K+K−K−ντ ) = 3.579(66) · 10−17 GeV.



9.5 Phenomenological discussion 189

as well.
Before seeing this, we will discuss briefly the meaning of cutting on the photon

energy. A cut on the photon energy was introduced in Sect. 5.2.2. As it is well know
[532, 533] the IR divergences due to the vanishing photon mass cancel when consi-
dering at the same time the non-radiative and the radiative decays. In practice, this
translates into mathematical language the physical notion that the detectors have
a limited angular resolution that defines a threshold detection angle for photons. If
one considers a photon emitted with a smaller angle it should be counted together
with the non-radiative decay as it is effectively measured this way. The sum is of
course an IR safe observable. The splitting depends on the particular characteristics
of the experimental setting. Obviously, the branching fraction for the radiative decay
depends on this cut-off energy. We will consider here the case Eγ thr = 50 MeV, that
corresponds to x = 0.0565. In order to illustrate the dependence on this variable,
we will also show the extremely conservative case of Eγ thr = 400 MeV (x = 0.45).
In Figure 9.5 we see the radiative π decay for a low value of x, while in Figure 9.6 we
plot it for the high-x case. In the first case we obtain Γ (τ− → π−γντ ) = 3.182·10−15

GeV, and in the second one we are still above the bound marked by the 3K decay,
Γ (τ− → π−γντ ) = 3.615 · 10−16 GeV. Proceeding analogously for the decays with
a K−, we find: Γ (τ− → K−γντ ) = 6.002 · 10−17 GeV for Eγ thr = 50 MeV (Fi-
gure 9.8), and Γ (τ− → K−γντ ) = 4.589 · 10−18 GeV for Eγ thr = 400 MeV. For
any reasonable cut on Eγ these modes should have already been detected by the
B-factories.

Already at this level of the phenomenological analysis, the question of the accu-
racy on the detection of soft photons at B-factories [534] arises. An error larger than
expected (here and in some undetected particle interpreted as missing energy, in ad-
dition to a gaussian treatment of systematic errors) could enlarge the uncertainty
claimed on the measurement of B− → τ−ντ [8] when combining the Belle [535] and
BaBar measurements [536, 537] taking it closer to the standard model expectations.

9.5.2. Results including resonance contributions in the π

channel

Next we include also the model-dependent contributions. Since in the Kaon
channel there are uncertainties associated to the strange axial-vector off-shell width
and to the mixing of the corresponding light and heavy states we will present first
the pion channel where there are not any uncertainties of these types and everything
is fixed in an analogous fashion to what discussed in the preceding chapters.

In Figs. 9.9-9.12 the resulting photon spectrum in the process τ− → π−γντ is
displayed. In Figure 9.9, all contributions are shown for a cutoff on the photon energy
of 50 MeV. For ”soft” photons (x0 . 0,3) the internal bremsstrahlung dominates
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Figura 9.5: Differential decay width of the process τ− → π−γντ including only the
model independent contributions for a cut-off on the photon energy of 50 MeV. In
the vector form factor only the WZW term is considered for this estimate. The
interference contribution is negative. It can be appreciated in Fig. 9.6.

completely. One should note that for very soft photons the multi-photon production
rate becomes important, thus making that our O(α) results are not reliable too close
to the IR divergence x = 0. We agree with the results in DF papers, for the same
value of α to the three significant figures shown in Ref. [336].

The spectrum is significantly enhanced by SD contributions for hard photons
(x0 & 0,4), as we can see in the close-up of Figure 9.9, in Figure 9.10. In Figure
9.11 we show that the vector current contribution mediated by vector resonances
dominates the SD part, while in Figure 9.12 we plot the interference term between
bremsstrahlung and SD part. If we compare the predicted curves to those in Ref.
[336] we see that the qualitative behaviour is similar: the IB contribution dominates
up to x ∼ 0,75. For larger photon energies, the SD -that is predominantly due to the
V V contribution- overcomes it. We confirm the peak and shoulder structure shown
at x ∼ 1 in the interference contribution, that is essentially due to IB − V term,
and also in the V A term, that is in any case tiny.

While the integration over the IB needs an IR cut-off, the SD part does not.
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Figura 9.6: Differential decay width of the process τ− → π−γντ including only the
model independent contributions for a cut-off on the photon energy of 400 MeV. In
the vector form factor only the WZW term is considered for this estimate.

We have performed the integration over the complete phase space, yielding (all
contributions to the partial decay width are given in units of the non-radiative
decay, here and in what follows):

ΓV V = 0,99·10−3 , ΓV A = 1,45·10−9 ∼ 0 , ΓAA = 0,15·10−3 ⇒ ΓSD = 1,14·10−3 .
(9.32)

Our number for ΓSD lies between the results for the monopole and tripole parametri-
zations in Ref. [336]. However, they get a smaller(larger) V V (AA) contribution than
we do by ∼ 20%(∼ 200%). This last discrepancy is due to the off-shell a1 width
they use. In fact, if we use the constant width approximation we get a number very
close to theirs for the AA contribution. With our understanding of the a1 width in
the τ → 3πντ observables, we can say that their (relatively) high AA contribution
is an artifact of the ad-hoc off-shell width used. Since the numerical difference in
varied vector off-shell widths is not that high, the numbers for V V are closer.

The numbers in Eq.(9.32) are translated into the following branching ratios

BRV V (τ → πγντ ) = 1,05 · 10−4 , BRAA (τ → πγντ ) = 0,15 · 10−4 . (9.33)
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Figura 9.7: Differential decay width of the process τ− → K−γντ including only the
model independent contributions for a cut-off on the photon energy of 50 MeV. In
the vector form factor only the WZW term (where the axial-vector contribution is
absent) is considered for this estimate. The interference contribution is negative. It
can be appreciated in Fig. 9.8.

We can also compare the V V value with the narrow width estimate: taking into
account the lowest-lying resonance ρ we get

BRV V (τ → πγντ ) ∼ BR(τ → ρντ )×BR(ρ→ πγ) ∼ BR(τ → π−π0ντ )BR(ρ→ πγ)

∼ 25,52%× 4,5 · 10−4 = 1,15 · 10−4 , (9.34)

which is quite a good approximation.
In Table 9.1 we give the display for two values of the photon energy cut-off how the
different parts contribute to the total rate. For a low-energy cut-off the most of the
rate comes from IB while for a higher-energy one the SD parts (and particularly
the V V contribution) gains importance. While the V A contribution is always negli-
gible, the IB − V , IB − A and the SD parts V V and AA have some relevance for
a higher-energy cut-off.

In Figs. 9.13-9.16 we show the pion-photon invariant spectrum. We find a much
better separation between the IB and SD contributions as compared with the pho-
ton spectrum in the previous Figs. 9.9 to 9.12. Then, the pion-photon spectrum is
better suited to study the SD effects. In this case, the V A is identically zero, since
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Figura 9.8: Differential decay width of the process τ− → K−γντ including only the
model independent contributions for a cut-off on the photon energy of 400 MeV. In
the vector form factor only the WZW term (where the axial-vector contribution is
absent) is considered for this estimate.

x0 = 0,0565 x0 = 0,45

IB 13,09 · 10−3 1,48 · 10−3

IB − V 0,02 · 10−3 0,04 · 10−3

IB − A 0,34 · 10−3 0,29 · 10−3

V V 0,99 · 10−3 0,73 · 10−3

V A ∼ 0 0,02 · 10−3

AA 0,15 · 10−3 0,14 · 10−3

ALL 14,59 · 10−3 2,70 · 10−3

Cuadro 9.1: Contribution of the different parts to the total rate, using two different cut-
offs for the photon energy: Eγ = 50 MeV (x0 = 0,0565) and Eγ = 400 MeV (x0 = 0,45).

this interference vanishes in the invariant mass spectrum after integration over the
other kinematic variable. Of course, in the V V spectrum we see the shape of the
ρ contribution neatly, as one can see in Figure 9.15 where, on the contrary, the a1
exchange in AA has a softer and broader effect. The IB − SD radiation near the
a1 is dominated by IB−A, which gives the positive contribution to the decay rate.
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Figura 9.9: Differential decay width of the process τ− → π−γντ including all contri-
butions for a cut-off on the photon energy of 50 MeV.

While near the energy region of the ρ resonance, we find the IB − SD contribution
to be negative as driven by IB − V there. In the whole spectrum only the ρ reso-
nance manifests as a peak and one can barely see the signal of the a1, mainly due
to its broad width and to the counter effect of interferences.

9.5.3. Results including resonance contributions in the K
channel

Next we turn to the τ− → K−γντ channel. In this case, there are several sour-
ces of uncertainty that make our prediction less controlled than in the τ− → π−γντ
case. We comment them in turn.

Concerning the vector form factor contribution, there is no uncertainty associated
to the vector resonances off-shell widths, that are implemented as done in previous
applications and described in Appendix C. It turns out that the SD part is extre-
mely sensitive to c4. We have observed that the V V contribution is much larger
(up to one order of magnitude, even for a low-energy cut-off) than the IB one for
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Figura 9.10: Differential decay width of the process τ− → π−γντ including all con-
tributions for a cut-off on the photon energy of 400 MeV.

c4 ∼ −0,07, a feature that is unexpected. In this case, one would also see a pro-
minent bump in the spectrum, contrary to the typical monotonous fall driven by
the IB term. For smaller values of |c4| (which are suggested by the comparison to
Belle data on τ → KKπντ decays) this bump reduces its magnitude and finally
disappears. One should also not forget that the addition of a second multiplet of
resonances may vary this conclusion.

The uncertainty in the axial-vector form factors is two-folded: on one side the-
re is a broad band of allowed values for θA, as discussed at the beginning of this
section. On the other hand, since we have not performed the analyses of the decay
τ → Kππντ modes yet, we do not have an off-shell width derived from a Lagrangian
for the K1A resonances. In the τ → 3πντ decays, Γa1 has the starring role. Since
the K1A meson widths are much smaller (90 ± 20 MeV and 174 ± 13 MeV, for the
K1(1270) and K1(1400), respectively) and they are hardly close to the on-shell con-
dition, the rigorous description of the width is not an unavoidable ingredient for a
reasonable estimate.

With respect to the two uncertainties just commented, we have checked that the
branching ratio contribution by AA (that is subdominant) is ∼ 20% higher for the
|θA| ∼ 37◦ solution. In this case, the corresponding AA differential distribution peaks
at a slightly larger x, and the curve is lower in the 0,40↔ 0,55 region. In any case,
different choices of |θA| can barely influence the final conclusions, as it is illustrated
in Table 9.2.
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Figura 9.11: Differential decay width of the process τ− → π−γντ including only the
structure dependent contributions for a cut-off on the photon energy of 50 MeV.

x0 = 0,0565 x0 = 0,0565 x0 = 0,45 x0 = 0,45

c4 = −0,07 c4 = 0 c4 = −0,07 c4 = 0

|θA| = 58◦(37◦) |θA| = 58◦(37◦) |θA| = 58◦(37◦) |θA| = 58◦(37◦)

IB 3,64 · 10−3 3,64 · 10−3 0,31 · 10−3 0,31 · 10−3

IB − V 0,69 · 10−3 0,10 · 10−3 0,83 · 10−3 0,12 · 10−3

IB − A 0,22(0,25) · 10−3 0,22(0,25) · 10−3 0,15(0,18) · 10−3 0,15(0,18) · 10−3

V V 58,55 · 10−3 1,30 · 10−3 29,04 · 10−3 0,66 · 10−3

V A ∼ 0(∼ 0) ∼ 0(∼ 0) 0,09(0,09) · 10−3 0,01(0,01) · 10−3

AA 0,13(0,16) · 10−3 0,13(0,16) · 10−3 0,12(0,15) · 10−3 0,12(0,15) · 10−3

ALL 63,23(63,29) · 10−3 5,39(5,45) · 10−3 30,54(30,60) · 10−3 1,37(1,43) · 10−3

Cuadro 9.2: Contribution of the different parts to the total rate in the decay τ− →
K−γντ (in unit of Γτ→Kν), using two different cut-offs for the photon energy: Eγ = 50
MeV (x0 = 0,0565) and Eγ = 400 MeV (x0 = 0,45) and also different values of the
resonance couplings. The numbers inside the parentheses denote the corresponding results
with |θA| = 37◦, while the other numbers are obtained with |θA| = 58◦.
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Figura 9.12: Differential decay width of the process τ− → π−γντ including only the
interference contributions for a cut-off on the photon energy of 50 MeV.

For the K1A off-shell widths we will follow Ref. [528] and use

ΓK1A
(t) = ΓK1A

(M2
K1A

)
M2

K1A

t

σ3
MK∗mπ

(t) + σ3
MρmK

(t)

σ3
MK∗mπ

(M2
K1A

) + σ3
MρmK

(M2
K1A

)
, (9.35)

where

σPQ(x) =
1

x

√
(x− (P +Q)2) (x− (P −Q)2)θ

[
x− (P −Q)2

]
. (9.36)

Considering all the sources of uncertainty commented, we will content ourselves
with giving our predictions for the two limiting cases of c4 = −0,07 and c4 = 0. We
present the analogous plots to those we discussed in the τ− → π−γντ channel for
both c4 values.



198 τ− → P−γντ decays (P = π, K)

0,6 0,8 1 1,2 1,4 1,6 1,8

t
1/2

(GeV)

0

0,005

0,01

0,015

0,02

(d
Γ/

dz
)/

Γ τ−
>π

 ν
τ

ALL contributions
IB contribution
IB-V contribution
IB-A contribution
VV contribution
VA contribution
AA contribution

Figura 9.13: Pion-photon invariant mass spectrum of the process τ− → π−γντ in-
cluding all contributions. The V A contribution vanishes identically as explained in
the main text.

9.6. Conclusions

In this chapter we have studied [303] the radiative one-meson decays of the τ :
τ− → (π/K)−γντ . We have computed the relevant form factors for both channels
and obtained the asymptotic conditions on the couplings imposed by the high-energy
behaviour of these form factors, dictated by QCD. The relations that we have found
here are compatible with those obtained in previous chapters in the other phenome-
nological applications considered in this Thesis.

One of our motivations to examine these processes is that they have not been
detected yet, according to naive estimates or to Breit-Wigner parametrizations. We
have checked the existing computations for the IB part. Adding to it the WZW
contribution, that is the LO contribution in χPT coming from the QCD anomaly,
we have estimated the model independent contribution to both decays, that could
be taken as a lower bound. The values that we obtain for the π channel are at least
one order of magnitude above the already-observed 3K decay channel even for a
high-energy cut-off on the photon energy. In the K channel, the model independent
contribution gives a BR larger than that of the 3K decay channel, as well. Only
imposing a large cut-off on Eγ one could understand that the latter mode has not
been detected so far. We expect, then, that future measurements at B-factories will
bring us the discovery of these tau decay modes in the near future.
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Figura 9.14: Close-up of the pion-photon invariant mass spectrum of the process
τ− → π−γντ including all contributions for

√
t & 1 GeV. The V A contribution

vanishes identically as explained in the main text.

We do not have any free parameter in the τ− → π−γντ decay and that allowed
us to make a complete study. Since the IB contribution dominates, it will require
some statistics to study the SD effects. In this sense, the analysis of the π − γ
spectrum (t-spectrum) is more promising than that of the pure photon spectrum
(x-spectrum), as we have shown. We are eager to see if the discovery of this mode
confirms our findings, since we believe that the uncertainties of our study are small
for this channel.

As expected, the higher mass of the Kaon makes easier the observation of SD
effects. However, there are several sources of uncertainty in the τ− → K−γντ decays
that prevent us from having done any quantitative analysis. The most important
one either rises some doubts about the value of c4, a parameter describing the SU(3)
breaking effect, obtained in Ref. [304] or on the sufficiency of one multiplet of vec-
tor resonances to describe this decay. As we have shown, the value of this coupling
affects drastically the strength of the V V (and thus the whole SD) contribution.
Besides, there is an uncertainty associated to the broad band of allowed values for
θA. However since the AA contribution is anyway subleading, that one is negligible
with respect to that on c4. Even smaller is the error associated to the off-shell width
behaviour of the axial-vector neutral resonance with strangeness, K1H,L. Since we
have not calculated the relevant three meson decay of the tau, we do not have this
expression within RχT yet. We took a simple parametrization including the on-shell
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Figura 9.15: Pion-photon invariant mass spectrum of the process τ− → π−γντ in-
cluding only the SD contributions. The V A contribution vanishes identically as
explained in the main text.

cuts corresponding to the decay chains K1H,L → (ρK/K∗π). Since the effect of c4 is
so large, we expect that once it is discovered we will be able to bound this coupling.

As an application of this work, we are working out [303] the consequences of our
study in lepton universality tests through the ratios Γ (τ− → π−ντγ) /Γ (π− → µ−νµγ)
and Γ (τ− → K−ντγ) /Γ (K− → µ−νµγ) that were also considered by DF [342] and
Marciano and Sirlin [30, 538, 539]. The ratio between the decays in the denominators
within χPT have been studied by Cirigliano and Rosell [540, 541] and the radiative
pion decay within RχT by Mateu and Portolés [323] recently.
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Figura 9.16: Pion-photon invariant mass spectrum of the process τ− → π−γντ in-
cluding only the interference contributions .
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Figura 9.17: Differential decay width of the process τ− → K−γντ including all
contributions for a cut-off on the photon energy of 50 MeV and c4 = 0 (left pane)
and c4 = −0,07 (right pane).
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Figura 9.18: Differential decay width of the process τ− → K−γντ including all
contributions for a cut-off on the photon energy of 400 MeV and c4 = 0 (left pane)
and c4 = −0,07 (right pane).
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Figura 9.19: Differential decay width of the process τ− → K−γντ including only the
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c4 = 0 (left pane) and c4 = −0,07 (right pane).
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Figura 9.20: Differential decay width of the process τ− → K−γντ including only the
interference contributions for a cut-off on the photon energy of 50 MeV and c4 = 0
(left pane) and c4 = −0,07 (right pane).
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Figura 9.21: Kaon-photon invariant mass spectrum of the process τ− → K−γντ
including all contributions for c4 = 0 (left pane) and c4 = −0,07 (right pane). The
V A contribution vanishes identically as explained in the main text.
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τ− → K−γντ including all contributions for
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including only the SD contributions for c4 = 0 (left pane) and c4 = −0,07 (right
pane). The V A contribution vanishes identically as explained in the main text.
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Figura 9.24: Kaon-photon invariant mass spectrum of the process τ− → π−γντ
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Conclusions

In this Thesis we have studied some decays of the τ into hadrons. Besides
their intrinsic interest we were motivated by the possibility of learning about QCD
hadronization in a clean environment provided by the τ − ντ − W coupling that
keeps part of the process unpolluted from QCD. Moreover, since the resonances are
not asymptotic states this kind of processes is an ideal tool to learn about their
properties since its influence through exchange between the Lµ current and the final
state mesons is sizable. Another target of our study was to provide the experimen-
tal community with an adequate theoretical tool to analyze these decays, in a time
where there has been a lot of works from the B-factories BaBar and BELLE and
the upgrade of the latter and the future results from BES − III seem to point to
an even more productive era. Since the description of hadron currents in the Monte
Carlo generator TAUOLA needed an improvement we wanted to work in this direc-
tion, as well. Finally, the low-energy e+e− cross section in the Monte Carlo generator
PHOKHARA [542] did not have all desirable low-energy constraints implemented
for some modes [444, 543, 544, 545]. With the new efforts to measure with great
precision this cross section exclusively in V EPP , DAΦNE and the B-factories the-
re was also a need to improve this low-energy interval of the form factors. We have
worked in all these directions with the results that are summarized in the following.

Our task is rather non-trivial from the theoretical point of view since: first, the
fundamental theory, QCD is written in terms of hadrons, while we measure mesons.
Second, a perturbative expansion in the coupling constant of the QCD Lagrangian
will not converge at the low and intermediate energies we are interested in so that
we need to find an alternative expansion parameter to work in an EFT framework
using the active fields in this range of energies as degrees of freedom and keeping
the symmetries of the fundamental theory. Third, although it is clear how to build
an EFT for low-energy QCD based on the approximate chiral symmetry of this
subsector, it is not so when going to higher energies. Four, a promising parameter,
as it is 1/NC, succeeds in explaining qualitatively the most salient features of meson
phenomenology but it is difficult to apply it quantitatively since its predictions at
lowest order are contradictory to the Weinberg’s approach to EFTs: while LO in
the 1/NC expansion predicts an infinite tower of infinitely narrow resonances, the
EFTs require just the relevant fields. Besides, only a few excited resonances are
known for every set of quantum numbers so there is no model independent way to
satisfy the NC → ∞ requirements, either. As a conclusion on this point we must
admit that it will be necessary to model the 1/NC expansion. One realizes that we
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have traded the problem of not having a suitable expansion parameter by having it,
although lacking an unambiguous way to perform the expansion even cutting it at
lowest order.

From the phenomenological point of view there are also some subtleties that
require a caveat: while for some decay modes there is already a lot of very precise
information that allows to do a precision study (τ → ππντ , τ → Kπντ , τ → πππντ ),
for other modes the situation is not that clear , like for instance the τ → KKπντ
decays that would have helped to fix the vector current sector. Since that was not
possible we turned to the channels τ → ηππντ where there is only vector current
contribution in the isospin conserved limit that proved to be helpful. One should
also bear in mind that the interplay between Monte Carlo generation and signal
extraction is important and since the Monte Carlo relies on a given model for the
signal to background splitting this brings in additional uncertainties, specially in
the case where both currents can in principle contribute sizably to the decay as in
τ → KKπντ , or in rare decays where there can be an important background in
some phase space corners from other modes. All this would suggest the following
approach: The Monte Carlo generators having some variety of reasonable hadron
currents and the fit to all relevant modes being made at a time. Since this is not
possible yet, one should not take all conclusions from partial studies as definitive.

The considerations in the two previous paragraphs do not mean at all that there
is no point in carrying these investigations on. The essential thing will be to re-
cognize which conclusions are firm and which can be affected by any of the errors
commented above. Our approach has as many QCD features as we have been able
to capture and they are more than in other approaches which justifies our labor and
brings in its interest. We will emphasize its virtues next.

Our approach includes the right low-energy behaviour inherited from χPT . This
is essential because a mismatch there is carried on by the rest of the curves. It fo-
llows the ideas of the large-NC limit of QCD and implements them in order to have
a theory of mesons: including the lighter pGbs and the light-flavoured resonances.
Therefore it has the relevant degrees of freedom to describe the problem. The theory
built upon symmetries does not have yet all QCD features we can implement. To
do so, we require a Brodsky-Lepage behaviour to the form factors. This warrants
the right short-distance behaviour and determines some couplings which makes the
theory more predictable. Our approach to the large-NC limit of QCD is guided by
simplicity on the spectrum (we include the least number of degrees of freedom that
allow for a description of the data) and by the off-shell widths that are derived
within RχT . In the remainder of the introduction we highlight the most relevant
contributions we have made during our study.

First of all, we have fixed the axial-vector current sector making theoretical pre-
dictions and the description of observables compatible. There was an inconsistency
between the relations obtained in the Green function < V AP > and the description
of the τ → πππντ observables. We have found the way to understand both at a time
and, remarkably, these relations do not only hold for all tau decays into three mesons
and for the 〈 V AP 〉 Green function but also for the radiative decays τ → (π/K)γντ
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which we take as a confirmation of our picture and of the assumptions we have made
concerning the modelization of the large-NC limit of QCD in a meson theory.

A fundamental result coming from both the τ → πππντ and τ → KKπντ stu-
dies is the off-shell width of the axial-vector meson Γa1 . It incorporates all 3π and
KKπ cuts and it neglects the ηππ cut that vanishes in the isospin limit because of
G-parity and the ηηπ cut whose upper br limit is tiny. Γa1(Q

2) and the τ → πππντ
form factors have been implemented in TAUOLA. The agreement is better than the
error associated to the statistical sampling and at the level of few per thousand.

We provide our prediction for additional observables both for τ → πππντ and
τ → KKπντ that could be confronted to forthcoming data. On the latter channel
there is however some ambiguity because in addition to the short-distance relations
we obtained we borrowed two of them from the study of the < V V P > Green
function and this is an assumption. However lacking of a prediction for the spectra
(we could not even digitize the published plots since they corresponded to raw mass
data without the efficiency corrections implemented) we decided to make them since
we have observed that the departure observed between short-distance relations af-
fecting the vector current couplings in three-point Green functions and three-meson
tau decays was small.

With this approach we have given our prediction for the relevant observables in
the KKπ channels and we showed that, contrary to some previous determinations,
the vector current contribution can not be neglected in these decays. Since we ha-
ve convincing reasons to believe that the description of the axial-vector current is
pretty accurate, we think that this conclusion is firm. On the contrary, there can be
some changes in the shape of the curves due to the assumption commented in the
previous paragraph. This only data will tell. Our parametrization for the hadron
form factors in the τ → KKπντ has been implemented in TAUOLA to a great level
of precision. We have decided to allow for some freedom in the assumptions on the
relations among couplings that we commented before.

The study of the decays τ → ηππντ has brought us information about two pre-
viously undetermined couplings. We have determined an allowed ellipse where they
can be and illustrated with some benchmark points the impact of them on the spec-
tra. The experimental data has allowed us to favour one of the benchmark scenarios
that we considered and refine our determination fitting Belle data. If our descrip-
tion of the former process is correct we believe that the upper bound on the decay
τ → η′ππντ is wrong, and should be detected with some five times more br. Howe-
ver, one should calculate the effect of S resonances on these decays before drawing
any firm conclusion. on these Finally we have worked out isospin constraints and
provided a prediction for the low-energy cross section e+e− → ηπ+π− that compares
well to data in these regime. We have provided with our codes to the PHOKHARA
team. Symmetries make the τ → ηηπντ decay a wonderful scenario to test the do-
minance of the spin-one resonances over those of spin 0. All exchanges of vector
and axial-vector resonances are forbidden and then one only has the contribution
from χPT at O(p2). The discovery of this mode would allow to estimate in a clean
environment the effect of scalar and pseudoscalar resonances in the future.
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Finally, we have studied the radiative decays τ → (π/K)γντ . Since the axial-
vector current is completely controlled we have very firm conclusions. First, we have
confirmed the earlier estimations: this mode has much larger br than some that have
indeed been measured. Second, we have obtained our predictions for the observables.
We obtain a V V contribution similar to earlier works but we obtain a much smaller
AA contribution as corresponds to the well-behaved Γa1 that we used.

If we assume that the IB contribution should dominate up to the hard photon
region, it seems that the channel τ → Kγντ suggests that the value of c4 that was
obtained from τ → KKπντ decays is too large. Since this coupling does not appear
in the τ → η(

′)ππντ decays one should wait to analyze experimental data on the
KKπ mode to understand this issue.

Among the appendixes there is some technical material. For instance the formulae
needed to obtain the distributions dΓ/dsij that were requested by the BELLE colla-
boration for an ongoing study they are doing on the substructure of the τ → KKπντ
decays [546]. There are two other appendixes concerning the relation of theoretical
formulae to the experimental measurements. One can also find the complete set
of isospin relations for three meson modes between σ(e+e−) and τ decays and the
computation of the process ω → π+π−π0 that allowed us to fix another combination
of couplings in the Lagrangian. For this purpose we needed to derive a new piece for
the Resonance Chiral Theory Lagrangian. The other appendixes summarize theore-
tical information that helps to understand better the contents of this Thesis.

As final conclusions we would like to say that we are satisfied for many reasons:
we have fixed the couplings of the axial-vector current sector of the RχT Lagran-
gian and we have provided a precise description of the τ → πππντ observables.
This includes a sound description of the a1 resonance width. We have improved the
knowledge on the odd-intrinsic parity sector of the Resonance Lagrangian and ap-
plied it to some processes of interest. Future experimental data from BaBar, Belle
and BES could help us to proceed further in this direction. We have also worked
in the application of these findings to the Monte Carlo generators for low-energy
Physics. In particular, for TAUOLA in tau decays and PHOKHARA in the e+e−

cross-section. Ideally this will result in a global fit to all relevant channels with an
adequate splitting of signal and background accounting well for the pollution from
other channels. We hope to be able to accomplish this program.



Appendix A: Structure functions
in tau decays

Hadron and lepton tensors are Hermitian and can be expanded in terms of a
set of 16 independent elements:

LµνHµν = L00H00 − Li0Hi0 −L0jH0j + LijHij . (A.1)

In order to isolate the different angular dependencies, it is convenient to introduce
16 combinations of defined symmetry, the so-called lepton (LX) and hadron (WX)
structure functions. This way,

LµνHµν =
∑

X

LXWX = 2(M2
τ −Q2)

∑

X

LXWX , (A.2)

where X stands for A, B, C, D, E, F, G, H and I -the structure functions that
collect (axial-)vector contributions- and also for the ones including information on
the pseudoscalar form factor: SA, SB, SC, SD, SE, SF and SG. All of them are
obtained through [346]:

LA =
L11 + L22

2
, WA = H11 +H22 ,

LB = L33 , WB = H33 ,

LC =
L11 −L22

2
, WC = H11 −H22 ,

LD =
L12 + L21

2
, WD = H12 +H21 ,

LE =
i

2
(L12 −L21) , WE = −i(H12 −H21) ,

LF =
L13 + L31

2
, WF = H13 +H31 ,

LG =
i

2
(L13 − L31) , WG = −i(H13 −H31) ,

LH =
L23 + L32

2
, WH = H23 +H32 ,

LI =
i

2
(L23 − L32) , WI = −i(H23 −H32) ;

LSA = L00 , WSA = H00 ,
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LSB = −L
10 + L01

2
, WSB = H01 +H10 ,

LSC = − i
2
(L01 − L10) , WSC = −i(H01 −H10) ,

LSD = −L
02 + L20

2
, WSD = H02 +H20 ,

LSE = − i
2
(L02 −L20) WSE = −i(H02 −H20) ,

LSF = −L
03 + L30

2
, WSF = H03 +H30 ,

LSG = − i
2
(L03 − L30) , WSG = −i(H03 −H30) . (A.3)

In the hadron rest frame, with axis z and x aligned with the normal to the hadron
plane and q̂3, respectively; one has the relations:

qµ3 = (E3, q
x
3 , 0, 0) , q

µ
2 = (E2, q

x
2 , q

y
2 , 0) , q

µ
1 = (E1, q

x
1 , q

y
1 , 0) with

Ei =
Q2 − si +m2

i

2
√
Q2

, qx3 =
√
E2

3 −m2
3 ,

qx2 =
2E2E3 − s1 +m2

2 +m2
3

2qx3
, qy2 = −

√
E2

2 − (qx2 )
2 −m2

2 ,

qx1 =
2E1E3 − s2 +m2

1 +m2
3

2qx3
, qy1 =

√
E2

1 − (qx1 )
2 −m2

1 = −qy2 .

(A.4)

If we introduce the following variables:

x1 = V x
1 = qx1−qx3 , x2 = V x

2 = qx2−qx3 , x3 = V y
1 = qy1 = −qy2 , x4 = V z

3 =
√
Q2x3q

x
3 ,

(A.5)
it is straightforward to see that both descriptions either in terms of form factors 4

or structure functions are completely equivalent:

WA = (x21 + x23)
2|FA

1 |2 + (x22 + x23)
2|FA

2 |2 + 2(x1x2 − x23)ℜe(FA
1 F

A∗
2 ) ,

WB = x24|F V
4 |2 ,

WC = (x21 − x23)2|FA
1 |2 + (x22 − x23)2|FA

2 |2 + 2(x1x2 + x23)ℜe(FA
1 F

A∗
2 ) ,

WD = 2
[
x1x3|FA

1 |2 − x2x3|FA
2 |2 + x3(x2 − x1)ℜe(FA

1 F
A∗
2 )
]
,

WE = −2x3(x1 + x2)ℑm(FA
1 F

A∗
2 ) ,

WF = 2x4
[
x1ℑm(FA

1 F
V ∗
4 ) + x2ℑm(FA

2 F
V ∗
4 )
]
,

WG = −2x4
[
x1ℜe(FA

1 F
V ∗
4 ) + x2ℜe(FA

2 F
V ∗
4 )
]
,

4As defined in Eq. (5.51).
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WH = 2x3x4
[
ℑm(FA

1 F
4∗
4 )− ℑm(FA

2 F
V ∗
4 )
]
,

WI = −2x3x4
[
ℜe(FA

1 F
V ∗
4 )−ℜe(FA

2 F
V ∗
4 )
]
;

WSA = Q2|FA
3 |2 ,

WSB = 2
√
Q2
[
x1ℜe(FA

1 F
A∗
3 ) + x2ℜe(FA

2 F
A∗
3 )
]
,

WSC = −2
√
Q2
[
x1ℑm(FA

1 F
A∗
3 ) + x2ℑm(FA

2 F
A∗
3 )
]
,

WSD = 2
√
Q2x3

[
ℜe(FA

1 F
A∗
3 )−ℜe(FA

2 F
A∗
3 )
]
,

WSE = −2
√
Q2x3

[
ℑm(FA

1 F
A∗
3 )−ℑm(FA

2 F
A∗
3 )
]
,

WSF = −2
√
Q2x4

[
ℑm(F V

4 F
A∗
3 )
]
,

WSG = −2
√
Q2x4

[
ℜe(F V

4 F
A∗
3 )
]
. (A.6)

The corresponding formulae for the two-meson decays of the tau can be found in
Eq. (5.47) and for the decays into one pG and a spin-one resonance in Ref. [347].
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Appendix B: dΓ
dsij

in three-meson

tau decays

In this appendix we start from the expressions for the structure functions in
three-meson tau decays derived in Sec. 5.4.1 and derive from them the formulae
for the differential decay width with respect to the invariant masses of the different
meson pairs, dΓ

dsij
.

We will obtain expressions allowing to exchange at will the role of the Mandelstam
variables s, t and u, Eqs. (B.10) and (B.11).

Clearly, one cannot exchange the orders of integration for the variables s and Q2

in Eq. (5.63), since smax = smax(Q2).
Therefore, it is useful to perform a change in the integration variables so that any

dependence in them is erased from the integration limits. It is the following:

∫ b

a

dx =

∫ 1

0

(b− a)dy ←→ x ≡ a+ y(b− a) , dx = (b− a)dy . (B.1)

In our case, this would be
(
s ≡ (m1 +m2)

2 + y
[
(
√
Q2 −m3)

2 − (m1 +m2)
2
] )

:

∫ (
√

Q2−m3)2

(m1+m2)2
ds =

∫ 1

0

dy
[
(
√
Q2 −m2

3)
2 − (m1 +m2)

2
]
, (B.2)

so we will have:

Γ =

∫ (Mτ−mν)2

(m1+m2+m3)2
dQ2

∫ 1

0

dy

∫ t+(Q2,y)

t−(Q2,y)

dt
[
(
√
Q2 −m3)

2 − (m1 +m2)
2
]
F (Q2, y, t) ,

(B.3)
and we can exchange the y and Q2 integrations to write:

dΓ =

∫ 1

0

dy

∫ (Mτ−mν)2

(m1+m2+m3)2
dQ2

∫ t+(Q2,y)

t−(Q2,y)

dt (B.4)

whence:

dΓ

dy
=

∫ (Mτ−mν)2

(m1+m2+m3)2
dQ2

∫ t+(Q2,y)

t−(Q2,y)

dt
[
(
√
Q2 −m3)

2 − (m1 +m2)
2
]
F (Q2, y, t) .

(B.5)
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In order to have for y the physical limits s has, we perform a second change of
variable, so that smin = (m1 + m2)

2, but smax = (Mτ − mν − m3)
2, that is: y ≡

s−(m1+m2)2

(Mτ−mν−m3)2−(m1+m2)2
. Explicitly:

∫ (Mτ−mν)2

(m1+m2+m3)2
dQ2

∫ (
√

Q2−m2
3)

2

(m1+m2)2
ds

∫ t+(Q2,s)

t−(Q2,s)

dtF (Q2, s, t) =

=

∫ 1

0

dy

∫ (Mτ−mν)2

(m1+m2+m3)2
dQ2

∫ t+(Q2,y)

t−(Q2,y)

dt
[
(
√
Q2 −m2

3)
2 − (m1 +m2)

2
]
F (Q2, y, t) =

=

∫ (Mτ−mν−m3)2

(m1+m2)2
ds

∫ (Mτ−mν)2

(m1+m2+m3)2
dQ2

∫ t+(Q2,s)

t−(Q2,s)

dtF (Q2, s, t)×
[
(
√
Q2 −m2

3)
2 − (m1 +m2)

2
]

(Mτ −mν −m3)2 − (m1 +m2)2
. (B.6)

If one is interested in obtaining dΓ/ds, for instance, one may use the following
expression:

dΓ

d s
=

G2
F |V CKM

ij |2
128 (2π)5Mτ

∫
dQ2 dt

(
M2

τ

Q2
− 1

)2

J(Q2)

[
WSA(Q

2, s, t) +
1

3

(
1 + 2

Q2

M2
τ

)

(
WA(Q

2, s, t) +WB(Q
2, s, t)

)]
, (B.7)

where s is defined as 5

s(s,Q2) ≡ (m1+m2)
2+

s− (m1 +m2)
2

(Mτ −mν −m3)2 − (m1 +m2)2

[(√
Q2 −m3

)2
− (m1 +m2)

2

]
,

(B.8)
and the factor J(Q2) is:

J(Q2) ≡

(√
Q2 −m3

)2
− (m1 +m2)

2

(Mτ −mν −m3)2 − (m1 +m2)2
. (B.9)

The limits for the Q2 remain unchanged, and tmax
min remain the same, provided one

uses s: tmax
min = tmax

min (Q
2, s). In case one is interested in a projection different from the

s-one, the indices 1,2,3 can be permuted ciclically and one can use the integration
limits:

sij
max
min =

1

4sjk

{(
Q2 −m2

k −m2
i +m2

j

)2 −
[
λ1/2

(
Q2, sjk, m

2
i

)
∓ λ1/2

(
m2

j , m
2
k, sjk

)]2}
,

(B.10)

sjkmin = (mj +mk)
2 , sjk

max = (
√
Q2 −mi)

2 ;

Q2
min = (m1 +m2 +m3)

2 , Q2max = (Mτ −mν)
2 . (B.11)

5From the following Eq. it is evident how to proceed with just one change of variables. However,
I preferred to present it in two steps because of the general usefulness of the change in Eq. (B.1).
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It may be convenient to use
dΓ

d
√
s

= 2
√
s
dΓ

d s
. (B.12)

It is worth to notice that the proposed expression (B.7) is efficient and fast when
computing the integration, even with rather ellaborated structures for the form fac-
tors and realistic off-shell widths for the resonances.
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Appendix C: Off-shell width of
Vector resonances

C.1. Introduction

Resonance widths have a big importance in any process whose energy is able
to reach its on-mass shell, specially if they are rather wide. Any sensible modelization
of the process must take this into account. Masses and widths of particles depend on
the conventions one employs and on the chosen formalism. We will explain in this
appendix the approach we use and show that it is consistent with RχT and general
field theory arguments.

Since our work only includes spin-one resonances, we will not consider the case
of scalar and pseudoscalar resonances. We will start by the easier case of vector
resonances that involves, at lowest order, two-particle intemediate states. Then, we
will consider the case of axial-vector resonances, where the three particle cuts give
the first contribution.

C.2. Definition of a hadron off-shell width for vec-

tor resonances

In the antisymmetric tensor formulation 6 the bare propagator of vector me-
sons is given by

〈 0|T {Vµν(x), Vρσ(y)} |0 〉 =
∫

d4k

(2π)4
e−ik(x−y)

{
2i

M2 − q2 Ω
L
µν,ρσ +

2i

M2
ΩT

µν,ρσ

}
,

(C.1)

with Ω
L(T )
µν,ρσ the projectors over longitudinal (transverse) polarizations.

There is no doubt that physical observables are insensitive to the field represen-
tation. But here we are concerned about the off-shell behaviour of resonances so, in
principle, the issue of independence on field redefinitions should be studied for the
proposed width.

Ref. [490] proposes to define the spin-1 meson width as the imaginary part of
the pole generated by resuming those diagrams, with an absorptive contribution in

6For further details, see Appendix E.2.
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the s channel, that contribute to the two-point function of the corresponding vector
current. That is, the pole of

Πjk
µν = i

∫
d4xeiqx〈 0|T

[
V j
µ (x)V

k
ν (0)

]
|0 〉 , (C.2)

with

V j
µ =

δSRχT

δvµj
, (C.3)

where SRχT is the action that generates the Lagrangian of RχT.
The widths obtained in this way are shown to satisfy the requirements of analy-

ticity, unitarity and chiral symmetry prescribed by QCD.

C.1. ρ off-shell width

In order to construct the dressed propagator of the ρ0 (770) meson, we should
consider -for a definite intermediate state- all the contributions carrying the ap-
propriate quantum numbers. In this case, the first cut corresponds to a two-pGs
absorptive contribution that happens to saturate its width. We will neglect the con-
tribution of higher multiplicity states that is suppressed by phase space and ordinary
chiral counting. The procedure will not reduce to the computation of self-energy dia-
grams. The counting in the EFT will rule what effective vertices are to be used to
obtain the relevant contributions to the off-shell width.

The effective vertices that will contribute to π π scattering and to the pion vector
form factor, are those corresponding to an external vector current coupled to two
pGs, and to a vector transition in the s channel contributing to the four pGs-vertex.
The construction of the effective vertices goes as sketched in Figure C.1 where, at
the lowest chiral order, the local vertices on the RHS of the equivalence are provided
by the O(p2) χPT Lagrangian. The diagrams contributing to the physical observa-
bles will be constructed taking into account all possible combinations of these two
effective vertices.

In Ref. [490], it was proposed to construct a Dyson-Schwinger-like equation th-
rough a perturbative loop expansion. At tree level, one has to take into account the
amplitude provided by Figs.C.2(a) and C.2(b) , that is, the effective vertex in Figure
C.1 . For the one-loop corrections, we are only interested in those contributions with
absorptive parts in the s channel, generated by inserting a pG-loop using the two
effectives vertices in Figure C.1 which leads to the four contributions in Figs. C.2(c),
C.2(d), C.2(e) and C.2(f). In this way the computation is complete up to two loops.
The resulting infinite series happens to be geometric and its resummation gives

FV (q
2) =

M2
V

M2
V

[
1 + 2 q2

F 2ℜeB22

]
− q2 − iMV Γρ(q2)

, (C.4)
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where MV is the common mass for all the multiplet of vector mesons in the chiral
limit,

B22 ≡ B22 (q
2, m2

π, m
2
π) +

1

2
B22(q

2, m2
K , m

2
K) , (C.5)

and B22(q
2, m2

K , m
2
K) is defined through

∫
dDℓ

i(2π)D
ℓµℓν

[ℓ2 − m2
K ] [(ℓ− q)2 − m2

K ]
≡ qµqν B21 + q2gµν B22 , (C.6)

as

B22 (q
2, m2

π, m
2
π) =

1

192π2

[(
1 − 6

m2
π

q2

)[
λ∞ + ln

(
m2

π

µ2

)]

+8
m2

π

q2
− 5

3
+ σ3

πln

(
σπ + 1

σπ − 1

)]
, (C.7)

where σP =
√
1− 4m2

P

q2
and λ∞ =

[
2

D−4

]
µD−4 − [Γ′(1) + ln(4π) + 1].

The q2-dependent width of the ρ0 (770) meson is given by

Γρ(q
2) = −2MV

q2

F 2
ℑmB22

=
MV q

2

96 π F 2

[
σ3
π θ(q

2 − 4m2
π) +

1

2
σ3
K θ(q

2 − 4m2
K)

]
, (C.8)

in complete agreement with the expression in Ref. [359].

≡ +

(s − channel)

Figura C.1: Effective vertices contributing to vector transitions in the s channel that
are relevant for the vector form factor of the pion . The crossed circle stands for an
external vector current insertion. A double line indicates the vector meson and a
single one the pG. Local vertices on the RHS are provided, at LO, by Lχ at O(p2).

The real part of the pole of FV (q
2) in Eq. (C.4) needs still to be regulated through

wave function and mass renormalization of the vector field. The local part of ℜeB22

can be fixed by matching Eq. (C.4) with the O(p4) χPT result.
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(a) (b) (c)

(d) (e) (f)

Figura C.2: Diagrams contributing to the vector form factor of the pion up to one
loop within RχT that have an absorptive part in the s channel.

An analogous procedure can be applied to the study of the vector component
of π π scattering. We will be concerned about the s-channel amplitude of π+ π− →
π+π−, that is dominated by ρ exchange, so that one can construct a Dyson-Schwinger
equation as in the case of the pion form factor. Consequently, analogous diagrams
to those in Figure C.2 are considered, replacing external vector current insertions
by two pion legs, according to all possible contributions in Figure C.1 . Projecting
the p wave, it is found a geometric series, which can be resummed to give

A(π+ π− → π+π−)|J=1 =
−i
2F 2

(u− t) (C.9)

× M2
V

M2
V

[
1 + 2 q2

F 2ℜeB22

]
− q2 − iMV Γρ(q2)

,

where u and t are the usual Mandelstam variables (q2 = s). Remarkably, the pole
of the amplitude coincides with the one obtained for the vector form factor of pion
and, therefore, gives the same width for the ρ0 meson.

When one applies the definition proposed at the beginning of the section for
spin-one meson widths to the case of the ρ0 (770), its quantum numbers correspond
to j = k = 3 for the flavour index. Lorentz covariance and current conservation
allow to define the two-point function of the considered vector current in terms of
an invariant function of q2 through

Π33
µν = (q2 gµν − qµ qν) Π

ρ(q2) ,

(C.10)

Πρ(q2) = Πρ
(0) + Πρ

(1) + Πρ
(2) , . . . ,

where Πρ
(0) corresponds to the tree level contribution of Figure C.3 (a), Πρ

(1) to the
one-loop amplitudes and so forth. Up to one loop, and considering again the two-
particle absorptive contributions only, all the diagrams generated by the effective



Appendix C: Off-shell width of Vector resonances 223

vertices in Figure C.1 are shown in Figure C.3. One finds, in the isospin limit,

Πρ
(0) =

F 2
V

M2
V − q2

, (C.11)

Πρ
(1) = Πρ

(0)

[
−M

2
V

F 2
V

M2
V

M2
V − q2

4B22

]
. (C.12)

(a) (b)

(c) (d) (e)

Figura C.3: Diagrams contributing to the vector-vector correlator Π33
µν up to one

loop within RχT .

(a) (b)

Figura C.4: One- and two-loop diagrams leading to Πρ
(1) (a) and Πρ

(2) (b). The effec-
tive squared vertices are given in Figure C.1.

At this point, one realizes that the resummation procedure cannot consist only
of self-energy diagrams. QCD predicts the two-point spectral function of vector
currents to go to a constant value as q2 → ∞ [297]. The loop diagram in Figure C.3
(b) behaves itself as a constant value in this limit, which is against of expectations
because it corresponds to only one of the infinite number of possible intermediate
states. In order to satisfy the QCD-ruled behaviour, one would foresee that all the
individual (positive) contributions from the intermediate states should vanish in the
infinite q2 limit. Indeed, this is achieved when one adds the diagrams depicted in
Figs.C.3(c), C.3(d) and C.3(e). The requirement of vanishing at q2 → ∞ for the
Πρ

i is also fulfilled for i ≥ 2 provided one considers, at a given order, all possible
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diagrams with absorptive contributions in the s-channel, and not just self-energies.
Iterating in all possible ways the one-loop diagrams in Figure C.3, one obtains all

possible contributions to the two-loop computation, as sketched in Figure C.4. The
result of the calculation was found to be

Πρ
(2) = Πρ

(1)

[
− q2

F 2
V

M2
V

M2
V − q2

4B22

]
. (C.13)

In Ref. [490], it was checked explicitly up to three loops that the invariant two-
point function Πρ(q2), generated by resuming effective loop diagrams with an ab-
sorptive amplitude in the s channel 7 is perturbatively given by

Πρ(q2) = Πρ
(0) + Πρ

(1)

∞∑

n=0

[
− q2

F 2
V

M2
V

M2
V − q2

4B22

]n

= Πρ
(0)

[
1 + ω

∞∑

n=0

(
q2

M2
V

ω

)n
]
, (C.14)

where

ω = −M
2
V

F 2
V

M2
V

M2
V − q2

4B22 . (C.15)

Using that F 2
V = 2F 2, and substituting (C.15) for performing the resummation,

one finally gets

Πρ(q2) =
2F 2

M2
V

[
1 + 2 q2

F 2ℜeB22

]
− q2 − iMV Γρ(q2)

×
[
1 − 2

M2
V

F 2
B22

]
, (C.16)

where the off-shell ρ0 width Γρ(q
2) is given by (C.4). The consistency of the re-

summation procedure shows up neatly because the residue in Πρ(q2) satisfies the
required unitarity condition

ℑmΠρ(q2) =
1

48π

[
σ3
π θ(q

2 − 4m2
π) +

1

2
σ3
K θ(q

2 − 4m2
K)

]

×|FV (q
2)|2 , (C.17)

with FV (q
2) given by (C.4).

The last comment to be made concerns the independence of the definition of the
spin-one meson width on the chosen representation for the fields. To see this, it
is enough to realize that the effective vertices in Figure C.1 are universal. Different
theoretical descriptions of the spin-one mesons lead to resonance-exchange contribu-
tions that differ by local terms. Since the physical amplitudes are required to satisfy

7Note that the procedure employed implies that the only significant result of Πρ(q2) is its
imaginary part.
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the QCD-ruled behaviour at short distances, this difference is necessarily counter-
balanced by explicit local terms [7]. Including these local terms in the local vertices
of Figure C.1 , the resulting effective vertices (which are the building blocks of the
described resummation) are formulation independent and thus, the whole procedure
is.

C.2. K∗ off-shell width

Being the definition of spin-one resonance width completely general, what is
left now is simply to employ it for any resonance we are interested in. In particular,
for the case of the K∗ resonance, we have

ΓK∗(q2) =
MK∗ q2

128πF 2

[
λ3/2

(
1,
m2

K

q2
,
m2

π

q2

)
θ
(
q2 − (mK + mπ)

2
)

+ λ3/2
(
1,
m2

K

q2
,
m2

η

q2

)
θ
(
q2 − (mK + mη)

2
)]

, (C.18)

in agreement with [380].

C.3. ω-φ off-shell width

The full widths PDG [8] reports for the vector resonances we are interested in
are: Γρ = 149.4±1.0 MeV, Γω = 8.49±0.8 MeV, ΓΦ = MeV, and ΓK∗ ∼ 50.5±1.0
MeV. Based on this, we have decided to neglect the off-shell width of the isospin
zero resonances ω (782) and Φ(1020), because it is a tiny effect compared both to
that of the ρ (770) and K∗ (892) widths and to the uncertainties we still have in
the determination of the coupling constants or the error introduced by other appro-
ximations. We have used the values reported as the constant ω (782) and Φ (1020)
widths in our study.



226 Appendix C: Off-shell width of Vector resonances



Appendix D: ω → π+π−π0 within
RχT

The decay of the ω(782) into three pions, ω → π+(k1) π
−(k2) π

0(k3), has been
a useful source of information on the odd-intrinsic parity couplings. Within the
framework of RχT it was first studied in Ref. [310], where the contribution of the
V V P vertices was already found and the need to account for V PPP vertices was
put forward.

We will denote the polarization vector of the ω as εσω and use the kinematic
invariants sij = (ki + kj)

2. In our work we have included for the first time the
contribution of the decay via a direct vertex.

The amplitude associated to the diagram of Figure D.1 -that should be the leading
one according to vector meson dominance- including cyclic permutations among
k1, k2 and k3, reads

iMVMD
ω→3π = i ǫαβρσ k

α
1 k

β
2 k

ρ
3ǫ

σ
ω

8GV

MωF 3

[
m2

π(d1 + 8d2 − d3) + (M2
ω + s12) d3

M2
V − s12

+ {s12 → s13}+ {s12 → s23}
]
. (D.1)

! �0 � �+
�� + 
y
li
 permutations of f�0; �+; ��g

Figura D.1: The ω → π+π−π0 decay amplitude via an intermediate ρ exchange.
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Now, the contribution via a direct vertex V PPP yields

iMV PPP
ω→π+π−π0 = i εαβρσk

α
1 k

β
2k

ρ
3ε

σ
ω

{
8GV

MωF 3

8
√
2

F 3MωMV

[
(g1 − g2 − g3)(M

2
ω − 3m2

π)

+ 3m2
π(2 g4 + g5)

]}
. (D.2)

In the above expression, we have assumed ideal mixing between the states | ω8〉 and
| ω1〉:

| ω〉 =
√

2

3
| ω1〉+

√
1

3
| ω8〉 , (D.3)

and

| φ〉 = −
√

1

3
| ω1〉+

√
2

3
| ω8〉 . (D.4)

The relation between the amplitudes of the singlet and octet states is the following
one:

Mω1→π+π−π0 =
√
2Mω8→π+π−π0 . (D.5)

The decay width is then obtained as

Γ(ω → π+π−π0) =
G2

V

4 π3M5
ω F

6

∫ (Mω−mπ)2

4m2
π

ds13

∫ smax
23

smin
23

ds23P(s13, s23) × (D.6)

×
[
m2

π(d1 + 8d2 − d3) + (M2
ω + s12) d3

M2
V − s12

+ {s12 → s13}+ {s12 → s23}

+
8
√
2

F 3MωMV

[
(g1 − g2 − g3)(M

2
ω − 3m2

π) + 3m2
π(2 g4 + g5)

]
]2
,

where the function P is the polarization average of the tensor structure ofMω→3π,

P(s13, s23) =
1

12

{
−m2

π(m
2
π −M2

ω)
2 − s13s223 + (3m2

π +M2
ω − s13)s13s23

}
. (D.7)

With GV = F/
√
2 and the relations obtained by the short-distance matching. In

the analyses of the V V P Green function all couplings appearing in Eq. (D.1) were
predicted

d1 + 8 d2 = − NC

64π2

M2
V

F 2
V

+
F 2

4F 2
V

,

d3 = − NC

64π2

M2
V

F 2
V

+
F 2

8F 2
V

. (D.8)

Taking just this piece of the amplitude into account, one obtains a decay width
that is only one fifth [310] of the experimental value.
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Additionally, the following relations were obtained studying the decays τ− →
(KKπ)−ντ [304, 321]:

d3 = − NC

192π2

M2
V

FV GV
,

g1 + 2 g2 − g3 = 0 ,

g2 =
NC

192π2

MV√
2FV

. (D.9)

As explained in Chapter 7 we find more reliable the determination of the coupling
d3 in Eq. (D.9), that we will follow. Taking all these information into account we are
able to match the experimental value reported by the PDG [8] Γ(ω → π+π−π0)|exp =
(7.57 ± 0.06)MeV with 2g4 + g5 = −0.60± 0.02 that has been used in the hadron
tau decays studied in this Thesis.
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Appendix E: Isospin relations
between τ− and e+e− decay
channels

E.1. Introduction

In this appendix we provide the derivation of several relations between τ−

and e+e− decay channels that are related by an isospin rotation. Since SU(2) is
a very accurate symmetry whose violations are smaller than the typical errors of
the experimental measurements and our theoretical assumptions, the conclusions
we draw should hold. At the low energies we are interested in, one can safely neglect
the Z contributions to the hadron e+e− cross-section. In this limit, the process
will only be due to vector current via photon exchange. Therefore, the relations
that we obtain will relate σe+e−→hadrons to the vector current contribution in the
corresponding tau decay. Depending on the channel, the importance of the latter
will vary from being the only one to be forbidden by symmetry arguments, like G-
parity. Thus this study will be interesting for some of the channels and irrelevant
for others 8.

In this introduction we will first give the conventions we follow for the relations
between one-particle charge and isospin states and the ladder operators. Then we
will recall the general formula for the tau decay width into a given final state of three
mesons and the tau neutrino and give the derivation of the analogous expression for
the e+e− cross-section into a three-hadron system. We will finish this section with
the projection of the weak and electromagnetic currents into its isospin components.
Charge conjugated relations are understood and most of the times not written.

The triplet of pions is related to the isospin states, |I, I3 〉, in the following way:

π+ ∼ du ∼ −|1,+1 〉 , π0 ∼ uu− dd√
2
∼ |1, 0 〉 , π− ∼ ud ∼ |1,−1 〉 . (E.1)

8As two immediate examples of this we quote the three pion tau decay channel where there is
no vector current contribution because of G-parity and the 3η state that cannot be a decay product
of the τ .
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It is important to understand that the four kaon states group into two doublets
according to its strangeness:

K+ ∼ su ∼
∣∣∣1
2
,+

1

2

〉
, K0 ∼ sd ∼

∣∣∣1
2
,−1

2

〉
, (E.2)

and

K
0 ∼ ds ∼ −

∣∣∣1
2
,+

1

2

〉
, K− ∼ us ∼

∣∣∣1
2
,−1

2

〉
. (E.3)

Defining the isospin operators T± = T1±iT2√
2

, we get the following relations:

[T+, T−] = T3, [T+, u] = −
d√
2
,

[
T+, d

†] =
u†√
2
, (E.4)

T+|I,+I 〉 = T−|I,−I 〉 = 0 , (E.5)

T+du|0 〉 =
[
T+, du

]
|0 〉 = uu− dd√

2
|0 〉 , (E.6)

that will allow to relate the neutral and charged current weak decays.

Before analysing the most interesting channels, we will need Eq. (5.62) for the
tau decay width into a given three meson and a tau-neutrino final state and the
analogous formula for the e+e− cross-section into a three hadron final state. The
latter is obtained in the following.

We consider the decay e+(ℓ1, s1)e
−(ℓ2, s2) → h1(p1)h2(p2)h3(p3). The amplitude

of the process is splitted into its lepton and hadron tensors as in Chapter 5.One has

Lµν =
∑

s1,s2

v(ℓ2, s2)γµu(ℓ1, s1)u(ℓ1, s1)γνv(ℓ2, s2) . (E.7)

Its transverse projection reads (Q = p1 + p2 + p3 = ℓ1 + ℓ2)

(
gµν − QµQν

Q2

)
Lµν = −4 (Q2 + 2m2

e) . (E.8)

On the other hand, the hadron tensor is decomposed as

Hµν = S
(
Q2, s, t

) QµQν

Q2
+

(
gµν − QµQν

Q2

)
V
(
Q2, s, t

)
. (E.9)

Since the process is mediated by vector current only the scalar component vanishes
(S = 0) and we have

V
(
Q2, s, t

)
=
Hµν

3

(
gµν − QµQν

Q2

)
. (E.10)
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Using the expression for
∫
dΠ3 in Eq. (5.58) one immediately has

σe+e−→h1h2h3
(Q2) =

1

22

(
e2

Q2

)2
1

2λ1/2(Q2, m2
e, m

2
e)

1

32π3

1

4Q2

∫
dsdt×

4

3
(Q2 + 2m2

e) |F3|2 (−V3µV µ∗
3 )

∼ α2

48π

1

Q6

∫
dsdt |F3|2 (−V3µV µ∗

3 ) . (E.11)

So that the e+e− cross-section into three hadrons is given by

σe+e−→h1h2h3
(Q2) =

e4

768 π3

1

Q6

∫
dsdt|F3|2 (−V3µV µ∗

3 ) . (E.12)

This way one ends up with the desired relation

dΓ (τ− → (3h)−ντ )

dQ2
= f(Q2) σe+e−→(3h)0(Q

2)|I=1 , (E.13)

where (3h)− and (3h)0 are related via an isospin rotation and

f(Q2) =
G2

F |V CKM
ij |2

384(2π)5Mτ

(
M2

τ

Q2
− 1

)2(
1 + 2

Q2

M2
τ

)(
α2

96π

)−1

Q6 . (E.14)

The W bosons can couple to us, su (that are two components of different multi-
plets with I = 1/2), and to du, ud. Both have I = 1 and differ by a relative global
sign.

The Z boson can couple to the I = 0, 1 combinations that are uu∓dd√
2

where the
upper signs correspond to the neutral component of I = 1.

Now let us consider the electromagnetic current. One can decompose it into its
I = 0 and I = 1 pieces:

Γµ =
1

3

(
2uγµu− dγµd− sγµs

)
= Γµ

(0) + Γµ
(1) , (E.15)

where

Γµ
(0) =

1

6

(
uγµu+ dγµd− 2sγµs

)
, Γµ

(1) =
1

2

(
uγµu− dγµd

)
. (E.16)

As it is well-known, there are no tree level FCNC. Moreover, the electromagnetic
current conserves strangeness. This implies that the strangeness changing channels
Kππ, Kπη, Kηη, KKK can only be reached via W±-mediated loops. Therefore,
they are very much suppressed -even more at the low-energies we are interested in-
and it makes no sense to analyze them in this context 9. This short-hand writing

9A complementary reasoning in terms of isospin can also be made: Neither the Z nor the γ
couple to I = 1/2. This prevents a study of this type for the |ηηK 〉 ∼ |K 〉 state -with I = 1/2-
because there is only one accesible state in τ− decays, in addition, so that no relation can be
established. Similarly, the three kaon state has half-integer I, so it can only be produced in τ
decays. There is only a trivial isospin relation A+−− = A00− in this case. The notation employed
uses as subscripts the electric charges of the particles involved for a given mode. In this case, for
instance, this would correspond to AK+K−K− = AK0K̄0K− .



234 Appendix E: Isospin relations between τ− and e+e− decay channels

will be used in the remainder of the appendix.

E.2. KKπ channels

One must realize that in all charge channels both kaons belong to different
isospin multiplets because they have opposite strangeness. At the practical level this
implies that there is an additional label implying that the ordering when writing
the states is irrelevant. We give an example to illustrate this: |π+π− 〉 and |π−π+ 〉
are different isospin states corresponding to |1,+1 〉⊗ |1,−1 〉 and |1,−1 〉⊗ |1,+1 〉,
respectively. However, K−K0 is |−1, 1

2
,−1

2
〉⊗ |1, 1

2
,−1

2
〉, where the first label is the

strangeness of the state (−1 for s) making manifest that they belong to different
subspaces.

We will consider first the product of the two kaons states. This can give either the
isoscalar channel ’ω’ or the isovector channel ’ρ’. Then we will consider the product
of the produced states with the remaining π. Some signs may vary by considering
first the product of one of the kaons to the pion and then that of the resulting
states with the kaon left. However, the relations we will find are independent of the
procedure we follow.

The pair of kaons can couple as

1√
2

(
K+K− +K0K

0
)

I = 0 ,

−K+K
0

I = 1, I3 = +1 ,
1√
2

(
K+K− −K0K

0
)

I = 1, I3 = 0 ,

K0K− I = 1, I3 = −1 . (E.17)

Now we consider the direct product of the ’ρ’ and ’ω’ states with the appropriate
pion. We will have I = 1 in ’ω’ channel and I = 0, 1, 2 in ’ρ’ channel. One has

1√
2

(
K+K−π+ +K0K

0
π+
)

I = 1, I3 = +1 ,

1√
2

(
K+K−π0 +K0K

0
π0
)

I = 1, I3 = 0 ,

1√
2

(
K+K−π− +K0K

0
π−
)

I = 1, I3 = −1 , (E.18)
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in ω channel, while the states produced in ρ channel are

1√
3

[
K0K−π+ − 1√

2

(
K+K−π0 −K0K

0
π0
)
−K+K

0
π−
]

I = 0, I3 = 0 ,

1√
2

[
−K+K

0
π0 +

1√
2

(
K+K−π+ −K0K

0
π+
)]

I = 1, I3 = +1 ,

1√
2

[
−K+K

0
π− −K0K−π+

]
I = 1, I3 = 0 ,

1√
2

[
1√
2

(
K+K−π− −K0K

0
π−
)
−K0K−π0

]
I = 1, I3 = −1 ,

−K+K
0
π+ I = 2, I3 = +2 ,

1

2

(
−
√
2K+K

0
π0 +K+K−π+ −K0K

0
π+
)

I = 2, I3 = +1 ,

1√
6

(
−K+K

0
π− +

√
2K+K−π0 −

√
2K0K

0
π0 +K0K−π+

)
I = 2, I3 = 0 ,

1

2

(
K+K−π− −K0K

0
π− +

√
2K0K−π0

)
I = 2, I3 = −1 ,

K0K−π− I = 2, I3 = −2 .
(E.19)

Since the operator dΓµ u has I = 1 we have 10

(2,−1)〈KKπ|dΓµu|0 〉 = 0 , (E.20)

for the charged weak current. Thus

〈K+K−π− −K0K
0
π− +

√
2K0K−π0|dΓµ u|0 〉 = 0 . (E.21)

If we denote the correponding hadron amplitudes asA+−−
µ , A00−

µ andA0−0
µ , Eq. (E.21)

implies
A+−−

µ −A00−
µ = −

√
2A0−0

µ . (E.22)

One can proceed analogously for the neutral current weak operator uΓµu−dΓµd√
2

. Since
it carries isospin I = 1, we have the relations

(2,0)〈KKπ|uu− dd|0 〉 = (0,0)〈KKπ|uu− dd|0 〉 = 0 . (E.23)

10Γµ = γµ, γµγ5. Since the spinor structure is unrelated to isospin, one has separate relations
holding for both for the vector ans axial-vector currents. This will be understood in what follows.
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Therefore, writing the isospin states in terms of charge states one has

A0−+
µ −A+0−

µ = − 1√
2

(
A000

µ −A+−0
µ

)
= 0 ,

A0−+
µ − A+0−

µ = −
√
2
(
A+−0

µ −A000
µ

)
= 0 , (E.24)

where the respective amplitudes were denoted using the same convention for the
indices as before.

Finally, the relations (E.4), (E.5), (E.6) allow to write

(1,−1)〈KKπ|dΓµu|0 〉 = −(1,0)

〈
KKπ

∣∣∣uΓµu− dΓµd√
2

∣∣∣0
〉
. (E.25)

This yields relations for the hadron amplitudes in ’ρ’ and ’ω’ channels, between the
charged and neutral current weak processes:

A0−0
µ = A+0−

µ = A0−+
µ =

1√
2

(
A00−

µ − A+−−
µ

)
,

A+−−
µ + A00−

µ = 2A+−0
µ = 2A000

µ . (E.26)

Now we consider also the electromagnetic processes with I = 1. We will factor
out the Lorentz structure in the hadron matrix elements:

A−
µ ≡ 〈 (KKπ)−|dγµu|0 〉 = A−ǫµνρσp

ν
1p

ρ
2p

σ
3 ,

A0
µ ≡

〈
(KKπ)0

∣∣∣uγµu− dγµd√
2

∣∣∣0
〉

= A0ǫµνρσp
ν
1p

ρ
2p

σ
3 . (E.27)

In general we will have

〈 (KKπ)−| = a1√
2
〈K+K−π−+K0K

0
π−|+ a2√

2
〈K+K−π−−K0K

0
π−|+a3〈K0K−π0| ,

(E.28)
in such a way that

A− = a1A
−
1 + a2A

−
2 + a3A

−
3 =

a1 + a2√
2

A+−− +
a1 − a2√

2
A00− + a3A

0−0 . (E.29)

Since
A+−− − A00−

√
2

= −A0−0 ⇒ A−
2 = −A0−0 , (E.30)

we can easily solve for the A−
i :

A−
1 =

A+−− + A00−
√
2

, A−
2 =

A+−− −A00−
√
2

, A−
3 = A0−0 . (E.31)

Following Eq. (E.27) for naming the amplitudes of the different charge channels we
have finally

A+0− = A0−+ = A0−0 , A+−0 = A000 =
1

2

(
A+−− + A00−) =

1√
2
A−

1 . (E.32)
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Summing over all τ− charge channels one has

|A+−−|2 + |A00−|2 + |A0−0|2 = |A−
1 |2 + |A−

2 |2 + |A−
3 |2 = 2|A−

3 |2 + |A−
1 |2 , (E.33)

whereas doing it over the four neutral channels reached in e+e− annihilations with
I = 1 we have

|A+0−|2+|A0−+|2+|A+−0|2+|A000|2 = 2|A0−0|2+2

(
1

2

)2

|A+−−+A00−|2 = 2|A−
3 |2+|A−

1 |2 .
(E.34)

Using the above relations one can obtain the isovector component of the process
e+e− → K0K−π+ using the form factors computed for Γ (τ− → K0K−π0ντ ).

dΓ (τ− → K0K−π0ντ )

dQ2
|Vector = f(Q2) σ|I=1

(
e+e− → K0K−π+

)
, (E.35)

where f(Q2) was defined in Eq. (E.14). One can also establish a similar relation
including linear combinations of decay channels. Namely

dΓ (τ− → K0K−π0ντ )

dQ2
|Vector +

dΓ (τ− → K0K−π0ντ )

dQ2
|Vector =

f(Q2)
[
σ|I=1

(
e+e− → K0K−π+

)
+ 2σ|I=1

(
e+e− → K0K−π+

)]
. (E.36)

Summing all charge channels one finds

3∑

i=1

dΓ (τ− → (KKπ)−ντ )

dQ2
|Vector = f(Q2)

4∑

i=1

σ|I=1

(
e+e− → (KKπ)0

)
. (E.37)

As a byproduct we have obtained the relations

Fi

(
τ− → K+K−π−ντ

)
− Fi

(
τ− → K0K

0
π−ντ

)
= −
√
2Fi

(
τ− → K0K−π0ντ

)
.

(E.38)
We have checked that our form factors in Chapter 7 satisfy this constraint.

We emphasize that isospin symmetry alone is not able to relate the isovector
component of σ (e+e− → KSK

±π∓) with the sum of all KKπ I = 1 contributions
of the e−e+ cross section. For that, the experimental collaborations use to employ
the relation

σ
(
e+e− → KKπ

)
= 3 σ

(
e+e− → KSK

±π∓) . (E.39)

However, even using all available isospin relations it is not possible to express
σ (e+e− → KKπ) in terms of the corresponding cross section for a single charge
channel. However, Eq. (E.39) can be justified following the arguments that we
explain at the end of this section.

For this we will need to take into account not only the I = 1 component of the
electromagnetic current -as before- but also the isoscalar part. The application of
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the corresponding current, Γµ
(0) in Eq. (E.16), on the |2, 0 〉 and |1, 0 〉 states allows to

obtain nontrivial relations between the corresponding isoscalar ((0)) electromagnetic
amplitudes:

A
(0)
+−0 = −A(0)

00̄0
, A

(0)

+0̄− = −A(0)
0−+ ,

√
2(A

(0)
+−0 −A(0)

00̄0
) = A

(0)

+0̄− − A
(0)
0−+ , (E.40)

which yields √
2A

(0)
+−0 = A

(0)

+0̄− = −A(0)
0−+ = −

√
2A

(0)

00̄0
. (E.41)

Adding this information to the relations found previously one is still unable to re-
produce Eq. (E.39).
However, now we proceed in a different way. We do not consider the KKπ state as a
1/2×1/2×1 isospin state in our reasoning. Since theK∗ contribution dominates over
that of the ρ, ω and φ in the hadronic matrix elements of interest, we can consider
the composition K×π and then keep only its I = 1/2 component, corresponding to
the K∗. In addition, the processes with charged and neutral pions can be distinguis-
hed at detection, which makes that the following amplitudes should be considered
independently [506] (we will be writing the Kπ pair making the K∗ as the last two
particles until the end of this section): K+K−π0, K0K̄0π0, K0K−π+ and K+K̄0π−.
In addition, we will consider the C-parity conjugated decays. Proceeding this way
one finds the following amplitudes (we call B0 and B1 the participating isoscalar
and isovector amplitudes):

A
(
K+K−π0

)
= −B0 +B1√

6
, A

(
K0K̄0π0

)
=

B0 −B1√
6

,

A
(
K0K−π+

)
=

B1 − B0√
3

, A
(
K+K̄0π−) = −B0 +B1√

3
, (E.42)

while for the C-conjugated amplitudes one finds (we introduce the amplitudes C0

and C1):

A
(
K−K+π0

)
=

C1 − C0√
6

, A
(
K̄0K0π0

)
=

C0 + C1√
6

,

A
(
K̄0K+π−) = −C1 + C0√

3
, A

(
K−K0π+

)
=

C1 − C0√
3

, (E.43)

Summing up the first, second, third and four relations in Eqs. (E.42) and (E.43) in
pairs one obtains the relations

σ
(
e+e− → K+K̄0π− + e+e− → K−K+π0

)
=

1

6
|A0 −A1|2 ,

σ
(
e+e− → K0K̄0π0 + e+e− → K̄0K0π0

)
=

1

6
|A0 + A1|2 ,

σ
(
e+e− → K0K−π+ + e+e− → K̄0K+π−) =

1

3
|A0 + A1|2 ,

σ
(
e+e− → K̄0K+π− + e+e− → K−K0π+

)
=

1

3
|A0 −A1|2 , (E.44)
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where A0 ≡ B0 +C0 and A1 ≡ B1 +C1 have been introduced. Summing up all Eqs.
in (E.44) gives

σ
(
e+e− → KKπ

)
= |A0|2 + |A1|2 , (E.45)

and adding the last two Eqs. in (E.44) yields

σ
(
e+e− → KKπ±) = 2

3

(
|A0|2 + |A1|2

)
(E.46)

and using that KS =
(
K0 − K̄0

)
/
√
2 one gets finally

3 σ
(
e+e− → KSK

±π∓) = |A0|2 + |A1|2 = σ
(
e+e− → KKπ

)
, (E.47)

which is Eq. (E.39). Since BaBar [506] manages to split the I = 0 and I = 1
components of σ (e+e− → KSK

±π∓), and thus to measure |A0|2/3 and |A1|2/3, it is
straightforward to obtain σ|I=1 (e

+e− → KKπ).
What are the approximations employed in order to get this relation? In addition to
the well supported SU(2) symmetry and K∗ dominance, there is a source of error
given by the definition employed for the K∗. To give an example, and as commented
at the beginning of this section, the states K+K−π0 and K−K+π0 are the same in
a KKπ analysis while this is not the case in a KK∗ study. One could argue that
since the K∗ is quite narrow, this approximation is justified.

E.3. ηππ channels

Since both the η8 and the η1 are SU(2)-singlets, we can compute the isospin
relations between η1,8ππ channels just by taking into account the isospin of the ππ
states. We will use η to denote either state irrespectively. The first study of isospin
relations for this and related modes was carried out in Ref. [489]. Our results are,
to our knowledge, new.

The different states η1,8ππ that can be produced in τ decays and e+e− collisions
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are the following:

|π+π− 〉 = |1,+1 〉 ⊗ |1,−1 〉 = 1√
6
|2, 0 〉+ 1√

2
|1, 0 〉+ 1√

3
|0, 0 〉 ,

|π−π+ 〉 = |1,−1 〉 ⊗ |1,+1 〉 = 1√
6
|2, 0 〉 − 1√

2
|1, 0 〉+ 1√

3
|0, 0 〉,

|π0π0 〉 = |1, 0 〉 ⊗ |1, 0 〉 =
√

2

3
|2, 0 〉 − 1√

3
|0, 0 〉,

|π−π0 〉 = |1,−1 〉 ⊗ |1, 0 〉 = 1√
2
(|2,−1 〉 − |1,−1 〉) ,

|π0π− 〉 = |1, 0 〉 ⊗ |1,−1 〉 = 1√
2
(|2,−1 〉+ |1,−1 〉) ,

|π+π0 〉 = |1,+1 〉 ⊗ |1, 0 〉 = 1√
2
(|2,+1 〉+ |1,+1 〉) ,

|π0π+ 〉 = |1, 0 〉 ⊗ |1,+1 〉 = 1√
2
(|2,+1 〉 − |1,+1 〉) . (E.48)

Solving for the |I, I3 〉 states yields:

|2, 0 〉 =
1√
6

(
|π+π− 〉+ |π−π+ 〉+ 2|π0π0 〉

)
,

|1, 0 〉 =
1√
2

(
|π+π− 〉 − |π−π+ 〉

)
,

|0, 0 〉 =
1√
3

(
|π+π− 〉+ |π−π+ 〉 − |π0π0 〉

)
,

|2,−1 〉 =
1√
2

(
|π−π0 〉+ |π0π− 〉

)
,

|1,−1 〉 =
1√
2

(
|π0π− 〉 − |π−π0 〉

)
,

|2,+1 〉 =
1√
2

(
|π+π0 〉+ |π0π+ 〉

)
,

|1,+1 〉 =
1√
2

(
|π+π0 〉 − |π0π+ 〉

)
. (E.49)

Using Eqs. (E.4), (E.5), (E.6) one has:

(I,−1)〈 ηππ|dΓµ u|0 〉 = −(I,0)

〈
ηππ

∣∣∣uΓµ u − dΓµ d√
2

∣∣∣0
〉
. (E.50)
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Now if we denote by T−0, T0−, T+−, T−+, T00 the amplitudes 〈 ηππ|dΓµu|0 〉 and〈
ηππ

∣∣∣uΓµu−dΓµd√
2

∣∣∣0
〉
for charge ηππ states, we obtain the following relations

1√
2
(T−0 + T0−) = −

1√
6
(T+− + T−+ − 2T00) = 0 ,

1√
2
(T0− − T−0) = −

1√
2
(T−+ − T+−) ,

√
3 (T+− + T−+ − T00) = 0 , (E.51)

which lead to
T00 = 0 , T+− = −T−+ = T0− = −T−0 . (E.52)

Now let us consider the electromagnetic current. One can decompose it into I = 0
and I = 1 pieces:

Γµ =
1

3

(
2uγµu− dγµd− sγµs

)
= Γµ

(0) + Γµ
(1) , (E.53)

where

Γµ
(0) =

1

6

(
uγµu+ dγµd− 2sγµs

)
, Γµ

(1) =
1

2

(
uγµu− dγµd

)
. (E.54)

In general we will have

〈 (ηππ)0| = A+−〈 ηπ+π−|+ A−+〈 ηπ−π+|+ A00〈 ηπ0π0| . (E.55)

Using the decomposition in Eq. (E.48) one can relate the amplitudes 〈 ηππ|Γµ|0 〉
for charge and isospin |ηππ 〉 states as:

A+− =
1√
2
A1 +

1√
3
A0 , A−+ = − 1√

2
A1 +

1√
3
A0 , A00 = −

1√
3
A0 . (E.56)

Moreover the vanishing of the amplitude A2 implies

2A00 + A+− + A−+ = 0 . (E.57)

In this way one obtains the following relations:

A+− + A00 =
1√
2
A1 , A−+ + A00 = −

1√
2
A1 , A1 =

A+− − A−+√
2

,

A0 =
A+− + A−+ − A00√

3
= −
√
3A00 =

√
3

2
(A+− + A−+) , (E.58)

which lead to

|A+− + A−+|2 + |A+− − A−+|2 = 2
(
|A+−|2 + |A−+|2

)
= 4|A00|2 + 2|A1|2 , (E.59)

|A1|2 = |A+−|2 + |A−+|2 − 2|A00|2 . (E.60)
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The corresponding cross sections are related by 11

σ
(
e+e− → ηππ

)
|I=1 = σ

(
e+e− → ηπ+π−)+ σ

(
e+e− → ηπ−π+

)

− 2× 2 σ
(
e+e− → ηπ0π0

)
,

= 2 σ
(
e+e− → ηπ+π−)− 4 σ

(
e+e− → ηπ0π0

)
∼

∼ 2 σ
(
e+e− → ηπ+π−) , (E.61)

where the additional factor of 2 in the above relation comes from the identity of
particles in the final state, introducing a factor of 1/2 in the angular integration.
For the isoscalar part we have

σ
(
e+e− → ηππ

)
|I=0 = 6 σ

(
e+e− → ηπ0π0

)
∼ 0 . (E.62)

Finally, one has

1√
2

(
T 0− − T−0

)
=
√
2T 0− = −〈1, 0| ūu− d̄d√

2
|0〉 = −

√
2A1 . (E.63)

Taking into account Eq. (E.12) the cross-sections for the different modes read

(|A+−|2 = |A1|2
2

= |A−0|2
2

)

σ
(
e+e− → ηπ+π−) =

α2

96π

1

Q6

∫
ds dt |T−0|2

(
V3µV

3µ∗) ,

σ
(
e+e− → ηπ0π0

)
=

α2

48π

1

Q6

∫
ds dt

1

2
|T00|2

(
V3µV

3µ∗) ∼ 0 , (E.64)

where the additional factor of 1/2 in the second line comes from having identical
particles in the final state.

Using the former isospin relations one finally obtains

dΓ(τ → ηπ−π0ντ )

dQ2
= f(Q2) σ(e+e− → ηππ)|I=1

= f(Q2)
[
σ(e+e− → ηπ+π−)− 2 σ(e+e− → ηπ0π0)

]

∼ f(Q2) σ(e+e− → ηπ+π−) (E.65)

where f(Q2) is given in Eq. (E.14).

E.4. Other channels

E.1. ηηπ channels

Since the η1,8 are SU(2) singlets it is as if it was just ηηπ ∼ π, where η will
be referring either to the singlet or the octet state here and in following sections.

11Because of C-parity, σ
(
e+e− → ηπ0π0

)
= 0 to O(α), since Cγ = − and Cπ0,η,η′ = +. Although

it is non-vanishing at higher orders, it can be safely neglected in all the low-energy applications we
are considering.
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Here we are concerned with the processes e+e− → ηηπ0 ∼ |1, 0 〉 and τ− →
ηηπ−ντ ∼ |1,−1 〉. Considering that

(1,−1)〈 ηηπ|dΓµ u|0 〉 = −(1,0)

〈
ηηπ

∣∣∣uΓµ u− dΓµ d√
2

∣∣∣0
〉
, (E.66)

the respective amplitudes (T0 and T−) are the same up to a sign. Using also that
there is only isovector component in the considered e+e− cross section we have

dΓ (τ → ηηπ−ντ )

dQ2
= f(Q2) σ

(
e+e− → ηηπ0

)
. (E.67)

E.2. ηKK channels

Again, the η can be ignored as far as isospin is concerned, so that we have

e+e− → K+K−η ∼ |K+K− 〉, e+e− → K0K
0
η ∼ |K0K

0 〉 and τ → ηK−K0 ∼
|K−K0 〉. Note that both kaons belong to different isospin multiplets, so the order
is not important. Using the results in Eq. (E.17) we see that

|0, 0 〉 =
∣∣∣K

+K− +K0K
0

√
2

〉
, |1, 0 〉 =

∣∣∣K
+K− −K0K

0

√
2

〉
, |1,−1 〉 = |K−K0 〉 .

(E.68)
Using that

(I,−1)〈KKπ|dΓµ u|0 〉 = −(I,0)

〈
KKπ

∣∣∣uΓµ u− dΓµ d√
2

∣∣∣0
〉
, (E.69)

one gets

T−0 =
1√
2
(T00 − T+−) , (E.70)

for the weak amplitudes. Since the quark operators carry I = 1, the amplitude
associated to the production of |0, 0 〉 vanishes, so that T+− + T00 = 0 and we have
the following relations between the weak amplitudes

T−0 = −
√
2T+− =

√
2T00 , (E.71)

that one can use to obtain the low-energy description of e+e− → ηKK using the
vector form factor computed in the CV C-related τ decay, τ → ηK−K0, with am-
plitude T−0.

Now we consider the electromagnetic current. The isospin amplitudes are

A1 =
A+− − A00√

2
, A0 =

A+− + A00√
2

. (E.72)

The isoscalar piece vanishes and we are only left with the isovector one. We have
thus

σ
(
e+e− → KKη

)
= 2σ

(
e+e− → K+K−η

)
. (E.73)
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Appendix F: Antisymmetric
tensor formalism for meson
resonances

The antisymmetric tensor formalism for spin-one fields was already developed
in the sixties [547, 548], although its generalization needed to wait until Gasser and
Leutwyler proposed it to introduce the starring ρ resonance in the chiral Lagrangian
[4] and a few years later, Ecker et al. [6] took adventage of it for including the reso-
nances in RχT . These benefits will be explained throughout this Appendix together
with the main features of the formalism.

A crucial understanding was that -provided consistency with QCD asymptotic
behaviour- the physics given by the EFT does not depend on the chosen formalism
[7], which authorizes us to choose the tensor formalism for convenience.

In Ref. [549, 550] it was proved that for massive antisymmetric tensor fields there
are (up to multiplicative factors and a total divergence) only two possible Lagran-
gians of second order in derivatives, if one assumes the existence of a Klein-Gordon
divisor. They correspond to having either the Lorentz condition or else the Bianchi
identity satisfied by the fields. In the case of spin-1 particles one has the following
two options (Wµν = −Wνµ),

1. The subsidiary condition is the Bianchi identity, i.e. ǫµλρσ∂λWρσ, and Wik are
frozen, so the three dynamical degrees of freedom are Wi0, where i = 1, 2, 3.

2. The subsidiary condition is the Lorentz condition, ∂ρWρν = 0 and Wi0 are
frozen, so the degrees of freedom are Wij.

For historical reasons the first option was chosen, as we will see in the following.
We consider a Lagrangian quadratic in the antisymmetric tensor field Wµν ,

L = a ∂µWµν∂ρW
ρν + b ∂ρWµν∂ρW

µν + cWµνW
µν , (F.1)

where a, b and c are arbitrary constants. The field W µν contains six degrees of
freedom. To describe massive spin-one particle we must reduce them to three co-
rresponding to the physical polarizations these particles have. This can be done with
a clever choice of a and b. Indeed, consider the EOM

a (∂µ∂σW
σν − ∂ν∂σW

σµ) + 2b ∂σ∂σW
µν − 2cW µν = 0 , (F.2)
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that can be splitted up into the time-spatial and spatial-spatial components:

(a + 2b)Ẅ 0i + a∂lẆ
li − a∂i∂lW

l0 − 2(b� + c)W 0i = 0 ,

2bẄ ik + a
[
∂i(Ẇ 0k + ∂lW

lk)
]
− 2(b� + c)W ik = 0 , (F.3)

where the dots denote time derivatives and � stands for the Dalembertian operator.
For a + 2b = 0, the three fields W 0i do not propagate (b = 0 freezes the spatial-
spatial components, on the contrary). TheW µν propagator, defined to be the inverse
of the differential operator in (F.1) contains poles in k2 = −c/b and k2 = −2c/(a+
2b), which disappear for b = 0, or a + 2b = 0, respectively. To maintain only one
pole and reduce the number of degrees of freedom to three, we must choose among
these two options. In [6], it was preferred to fix b = 0, and to choose a and c for the
pole to correspond to the particle mass, that is, a = −1/2, and c = M2/4. Then,
the Lagrangian (F.1) becomes

L = −1
2
∂µWµν∂ρW

ρν +
1

4
M2WµνW

µν , (F.4)

from which the free-case EOM is

∂µ∂σW
σν − ∂ν∂σW

σµ + M2W µν = 0 , (F.5)

where only three degrees of freedom corresponding to a spin-one particle resonance
of mass M are described. Notice that the definition

Wµ =
1

M
∂νWνµ , (F.6)

allows to recover from (F.5) the familiar Proca equation

∂ρ(∂
ρW µ − ∂µW ρ) + M2W µ = 0 . (F.7)

From the Lagrangian (F.4), one can derive the explicit expression for the reso-
nance propagator

〈 0|T {Wµν(x), Wρσ(y)} |0 〉 =
∫

d4k

(2π)4
e−ik(x−y)

{
2i

M2 − q2 Ω
L
µν,ρσ +

2i

M2
ΩT

µν,ρσ

}
,

(F.8)
where the antisymmetric tensors

ΩL
µν,ρσ(q) =

1

2q2
(gµρqνqσ − gρνqµqσ − (ρ↔ σ)) ,

ΩT
µν,ρσ(q) = − 1

2q2
(
gµρqνqσ − gρνqµqσ − q2gµρgνσ − (ρ↔ σ)

)
, (F.9)

have been defined. Upper-indices mean longitudinal or transversal polarizations. In
order to identify the preceding operators with projectors over these polarizations,
one needs to consider as a generalized identity in this space the tensor Iµν,ρσ,

Iµν,ρσ =
1

2
(gµρgνσ − gµσgνρ) , (F.10)
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because any antisymmetric tensor, Aµν = −Aνµ, fulfills

A · I = I · A = A , (F.11)

and therefore the ΩL(T ) indeed verify projector properties

ΩT + ΩL = I , ΩT · ΩL = ΩL · ΩT = 0 ,

ΩT · ΩT = ΩT , ΩL · ΩL = ΩL . (F.12)

The propagator (F.8) corresponds to the normalization

〈 0|Wµν |W, p 〉 =
i

M
[pµǫν(p) − pνǫµ(p)] . (F.13)

Once we have seen the general properties of the antisymmetric tensor formalism
and how it works, let us move to the second important issue: What is the advantage
of using it instead of the more familiar Proca formalism? Working with the antisym-
metric tensor formalism there is no need to consider L4 from χPT to give the EFT
the asymptotic behaviour ruled by QCD.

As an example of that, I will consider the same taken in Ref. [7]: the vector form
factor of the pion.

Tree-level computation with (4.19) -with antisymmetric tensor formalism, then-
gives:

F(q2) = 1 +
FVGV

F 2

q2

M2
V − q2

. (F.14)

Let us consider now the corresponding Lagrangian written in the Proca formalism
that describes meson resonances [551, 552],

LProca = LProca
kin + LProca

2 , (F.15)

where it has been defined

LProca
kin = −1

4
〈 V̂µνV̂ µν − 2M2

V V̂µV̂
µ 〉 ,

∆LProca
2 = − 1

2
√
2

(
fV 〈 V̂ µνf+

µν 〉 + igV 〈 V̂µν[uµ, uν] 〉
)
,

V̂µν = ∇µV̂ν − ∇νV̂µ , (F.16)

and the hat identifies Proca formalism. For simplicity, only that part of the Lagran-
gian contributing to the considered form factor has been written. The result (F.16)
gives for the vector form factor of the pion is

F̃Proca(q2) = 1 +
fV gV
F 2

(q2)2

M2
V − q2

. (F.17)
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QCD short-distance behaviour (q2 → ∞) dictates that the pion form factor
must vanish in this limit 12. For (F.14) this relates three LECs as in Eq. (4.21),
FVGV = F 2, but for (F.17) this behaviour is not possible unless we add to (F.16) a
local term. This one must have the structure of the term whose coefficient is L9 in Eq.
(3.77). One then needs at the same time that LProca

9 = 1
2
fV gV and fV gV = F 2/M2

V

happen

FProca(q2) = 1 +
fV gV
F 2

(q2)2

M2
V − q2

+
2

F 2
LProca
9 q2 ,

LProca
9 =

1

2
fV gV , (F.18)

where the tilde over the form factor has been removed because it has been corrected
by the needed local terms discussed previously to guarantee the right asymptotic
behaviour.

It can be shown [7] that this finding in the case of the pion vector form factor
is a general fact: Working with the tensor formalism there is no need to include the
terms of L4 from χPT ,

Li = 0 i = 1, 2, 3, 9, 10 , (F.19)

whereas for the Proca case we must include them fulfilling

LProca
1 =

1

8
g2V , LProca

2 =
1

4
g2V , LProca

3 = −3
4
g2V ,

LProca
9 =

1

2
fV gV , LProca

10 = −1
4
f 2
V , (F.20)

for vector resonances. Something similar [7] happens for the axial-vectors, the other
resonances that dominate phenomenology whenever they can be involved. Then, it
is clear we can choose the formalism for describing resonances, and justify that it is
more convenient to take the antisymmetric tensor formalism.

For completeness, I mention that there is another way of treating resonances: the
so-called hidden-gauge formalism [553, 554, 555, 556]. This method is based on the
freedom that exists to choose the representative of the coset G/H of the chiral group
G over the vector subgroup. In the Hidden Local Symmetry model, vector mesons
are regarded as authentic gauge bosons of a hidden symmetry of the Lagrangian
that relates the different possible choices of the coset representative. However, it
is not clear at all that vector mesons stand out from axial-vectors (in fact, VMD
involves both), nor the gauge nature of resonances is not an artifact. At the end
of the day, (pseudo)scalar resonances do exist and there is no natural procedure to

12Formally, this comes from the analysis of the spectral function ℑm ΠV (q
2) of the I = 1 vector

current two-point function. In the framework of QCD, one finds [297] ℑmΠV (q
2) → constant as

q2 →∞, from which it follows that F (q2) obeys a dispersion relation with at most one subtraction.
In the narrow-width approximation for the exchanged ρ, all this drives directly to F(q2) = 1 +
const.×q2

M2
V
−q2

, as (F.14).
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include them in this model. The loop corrections in these theories [557, 558] give an
ultraviolet behaviour that is much simpler than the one found in RχT [192].
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Appendix G: Successes of the
large-NC limit of QCD

G.1. Introduction

In this appendix we will review the most important phenomenological succes-
ses of the large-NC limit of QCD. First we will consider the results obtained in the
limit NC → ∞ limit of QCD to understand some characteristic features of meson
phenomenology. After that, we will review the role of the 1/NC expansion in the
effective theories of QCD for low and intermediate energies: χPT and RχT . They
come to complement the most relevant success of the large-NC limit of QCD for
us, namely that it provides us with a framework able to describe exclusive hadron
decays of the τ as we have seen in this Thesis.

G.2. Phenomenological successes of the large-NC

expansion

There is a supression in hadron physics of the sea quark pairs, q q. Therefore,
mesons are pure q q states, thus exotic states such as q q q q are eliminated
in practice. In short, this is due to the fact that there are much more gluon
than quark states. In the large-NC limit sea quarks are negligible. Apart from
that, in this limit, mesons do not interact, so any candidate to an exotic state
must be, in fact, a set of ordinary states. Being exotic requires interaction for
the state to be seen as a composite one; but mesons do not interact in the
NC →∞ limit.

Confinement restricts hadron states to be singlets of colour. From the group
theoretical point of view, it is clear [559] that a quark -antiquark state can be
decomposed into a direct sum in the following way (all representations are in
colour space):

3⊗ 3 = 1⊕ 8 . (G.1)

Of course, the octet 8 cannot live as meson non-singlet of colour state. Still,
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it can combine with a partner to become 1:

8⊗ 8 = 27⊕ 10⊕ 10⊕ 8⊕ 8⊕ 1 . (G.2)

Zweig rule [560] states that this possibility is strongly suppressed, being
greatly exceeded by one-gluon exchange among a meson and a sea quark-
antiquark pair. For instance, this together with the conservation of all internal
quantum numbers explains why the J/Ψ has such a narrow decay width: six
strong vertices are required for its decay. Zweig rule has the consequence that
mesons are better described, in the large-NC limit, as flavour U(3)-nonets,
rather than as singlets plus octets, because this splitting involves annihilation
diagrams among them that are suppressed in this limit 13. To conclude, gluon
states decoupling is a result of all that: because they cannot be produced at
LO in 1/NC as a product of reactions starting from hadrons or electroweak
currents. Therefore, these states are not seen experimentally.

Meson decays are mostly of two-body type, because many final-state particle
processes are less probable than those resonant decays into two intermediate
particles. This is a natural consequence in the 1/NC-expansion. For a particle
decaying into three mesons both processes are globally O(1/NC); the point
is that decaying directly is O(1/NC), while the first vertex in the two-step
process is O(1/√NC), and thus the two-body intermediate decay dominates
over the direct one.

At first sight, it seemed a strange feature that the number of resonances beco-
mes infinite in this limit. The big number of resonances that has been discove-
red and their relatively thin width can be taken as another phenomenological
support of the large-NC arguments.

Last but not least, the success of phenomenology describing strong interaction
in the intermediate-energy region in terms of tree-level Feynman diagrams
with hadrons as degrees of freedom, that is, the success of EFTs -and parti-
cularly of RχT -, based on large−NC arguments; is a recognition of the 1/NC

-expansion. NLO corrections correspond to loop diagrams involving hadrons
and provide the resonances with a finite width.

G.3. 1/NC expansion for χPT

The 1/NC expansion provides a well-defined counting scheme for EFTs of
QCD, exactly what we needed to develop an EFT of the strong interaction in the
intermediate-energy region involving light quarks. Although we do not need 1/NC

13For NC →∞, the axial anomaly disappears and U(nf )L⊗U(nf )R is restored. Moreover, under
very general assumptions, it can be shown that in the large-NC limit, U(nf )L ⊗U(nf )R is broken
down to U(nf)V [561].
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as an expansion parameter at very-low energies, it is justified to apply it to χPT , to
check the consistency of the expansion with a theory known to be successful. After
that, we will have a strong test for any new EFT extending to higher energies. As
we will see, for RχT one gets reasonable results when subjected to this exam.

The main features of the effective theory relevant for the meson sector of QCD in
the large-NC limit were discovered long ago [271, 270, 562, 563, 564]. The systematic
analysis in the framework of χPT was taken up in Ref. [5], where the Green functions
of QCD were studied by means of a simultaneous expansion in powers of momenta,
quark masses and 1/NC (with 1/NC ∼ p2 ∼ mq).

The dominant terms should be O(NC), as they are the corresponding correlation
functions among quark bilinears. A quark loop means a trace in Dirac, colour and
flavour space. The last one supresses these kind of terms with respect to those
without quark loops. One quark loop is needed to provide the quantum numbers of
a meson, but each additional quark loop will be suppressed by a 1/NC factor.

In the large-NC limit of QCD the axial anomaly disappears, so that the spectrum
does not correspond to SU(3)-multiplets anymore (octet and singlet, each one on
its own), but to U(3)-multiplets, that is, nonets.

Therefore, at LO in 1/NC the axial anomaly vanishes and the eta singlet becomes
the ninth pG:

Φ(x) =
1√
2

8∑

a=0

λaΦ
a (G.3)

=




1√
2
π0 + 1√

6
η8 +

1√
3
η1 π+ K+

π− − 1√
2
π0 + 1√

6
η8 +

1√
3
η1 K0

K− K
0 − 2√

6
η8 +

1√
3
η1


 ,

where the set of Gell-Mann matrices that are the generators of SU(3) in the funda-
mental representation, has been enlarged by including the extra-generator of U(3)

proportional to the identity matrix: λ0 =
√

2
3
I3

14.

At LO in the chiral expansion, L2 has only two LECs: F and B. The first one
was defined in (3.53), and it is the analogue of fn in the above discussion, so it is
F ∼ O(√NC). B was defined in (3.55). Both the LHS and the RHS 15 are O(NC),
so B ∼ O(1). With these dependencies, we can check that scattering amplitudes
behave as explained before. For instance, for π π scattering, we have:

T =
s−m2

π

F 2
∼ 1

NC
, (G.4)

s = (pπ,1 + pπ,2)
2, and has the right dependence. We conclude also that L2 has a

global dependence of O(NC) due to the common factor F 2

4
. Each Goldstone field

14One can work however the large-NC limit either for a SU(3) ⊗ SU(3) theory [5] of for a
U(3)⊗U(3) theory [565]. The first approach is taken in what follows. The matching between both
was studied in Refs. [275, 566].

15The matrix element is of order O
(√

NC
2
)
, exactly the same as F 2.
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we add comes from the exponential divided by a factor F , giving thus the expected
suppresion of O(√NC) for every additional pG. m-meson interaction vertices go

with F 2−m, so they are O(N1−n/2
C ). Because of the global NC factor in L2 and the

independence of the exponential on NC , the expansion in 1/NC is equivalent to
a semiclassical expansion for an EFT whose degrees of freedom are hadrons 16.
Quantum corrections computed with this Effective Lagrangian are suppressed by
1/NC for each loop.

The ten phenomenologically relevant LECs at this chiral order are not expected
to be of the same order in this expansion, because there are terms with only one trace
in flavour space, and others with two; as it has been explained, each additional loop
receives a supression of 1/NC. Therefore, L3, L5, L8, L9 and L10 would be O(NC),
whereas L1, L2, L4, L6 and L7 would be O(1) -see Eq. (3.77)-. There is, however,
a relation holding for traces of 3 × 3 matrices that modifies this näıve reasoning
warning us that although L1 and L2 are, separately, O(1); when considering the
relation mentioned before, they get modified by δLi:

2δL1 ∼ δL2 ∼ −
1

2
δL3 ∼ O(NC) . (G.5)

Deciding not to consider the new term, both L1 and L2 become O(NC), but their
combination 2L1−L2 persists to be O(1). Table G.3 displays how the experimental
values obtained for the O(p4) LECs do agree with large-NC predictions [143, 274].

Summing up, all the LECs appearing at LO and NLO in the chiral Lagrangians
obey the following 1/NC counting (the case of L7 will be commented later on):

B0,M, mπ,K,η, 2L1 − L2, L4, L6 ∼ O(1) ,
L1, L2, L3, L5, L8, L9, L10 ∼ O(NC) ,

F ∼ O
(√

NC

)
. (G.6)

The LO chiral Lagrangian in the odd-intrinsic parity sector does not introduce
any new LEC, but it has a global factor of NC generated by the triangular quark
loop over which the different number of colours run.

G.4. 1/NC expansion for RχT

There are three kinds of checks we can perform for RχT . On the one hand,
we can restore to phenomenology to fit the couplings entering its Lagrangian and
predict another observables with the obtained values. This way has been exploited

16At first glance, (4.4) seems to imply -because of the global NC factor- that QCD also reduces
to a semiclassical theory in terms of quark and gluon fields in the large-NC limit, but this is not
true, because the number of them increases as NC and ∼ N2

C , respectively. This is not the case for
χPT . As commented, the exponential including the pGs does not introduce additional factors of
NC as we include more and more of them.
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i Lr
i (Mρ) O(NC) source LNC→∞

i

2L1 − L2 −0.6± 0.6 O(1) Ke4, ππ → ππ 0.0
L2 1.4± 0.3 O(NC) Ke4, ππ → ππ 1.8
L3 −3.5± 1.1 O(NC) Ke4, ππ → ππ −4.3
L4 −0.3± 0.5 O(1) Zweig’s rule 0.0
L5 1.4± 0.5 O(NC) FK : Fπ 2.1
L6 −0.2± 0.3 O(1) Zweig’s rule 0.0
L7 −0.4± 0.2 O(1) GMO, L5, L8 −0.3
L8 0.9± 0.3 O(NC) Mφ, L5 0.8
L9 6.9± 0.7 O(NC) 〈 r2 〉πV 7.1
L10 −5.5± 0.7 O(NC) π → eνγ −5.4

Cuadro G.1: Experimental values of the coupling constants Lr
i (Mρ) from the Lagrangian

L4 in units of 10−3 [274]. The fourth column shows the experimental source employed.
The fifth column shows the predictions that are obtained in the large-NC limit using the
one-resonance approximation.

throughout the Thesis with optimistic results. On the other hand, as we have deri-
ved the 1/NC expansion for QCD, we can apply it to RχT in much the same way
we did it for χPT and verify that large-NC estimates are not at variance with phe-
nomenology. Finally, one can also explicitly check the convergence of the expansion
by comparing the leading and next-to-leading orders in 1/NC , whenever the latter
are available.

First of all, we will see the 1/NC expansion for RχT and the relations that are
derived among RχT couplings in (4.18), (4.19). The theory built upon the symme-
tries of QCDnf=3 that reproduces its low-energy behaviour is still not complete. A
capital step is the matching procedure, as we have explained in Sec. 3.5. We must
enforce the theory to yield the asymptotic behaviour of the underlying theory, as it
has been done repeatedly throughout this Thesis.

We aim to characterize the couplings appearing in LR. One can work with (4.18),
(4.19) written in a way that splits the singlet and the octet terms [6]. The obtained
result is in complete agreement with convergence of octet plus singlet into nonet.

First of all, and according to the fact that meson decay constants are O
(√

NC

)
,

and decay processes are given at LO by tree level amplitudes, it is clear that
couplings creating a resonance from the vacuum will be O

(√
NC

)
: FV , FA, cm,

c̃m, dm and d̃m.
The other kind of processes we need to consider for completing the study are

decays of resonances into pGs. Again, the decay of one vector or scalar resonance
into two pGs is O

(√
NC

)
, so GV , cd and c̃d will be also of this order.

It was shown that masses have smooth limits in the large-NC limit: they are O(1).
In summary, the couplings entering RχT Lagrangian are:

FV , GV , FA, cd, c̃d, cm, c̃m, dm, d̃m ∼ O
(√

NC

)
, Mi ∼ O(1) . (G.7)
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At LO in 1/NC Zweig rule becomes exact, the axial anomaly disappears and
U(3)L ⊗ U(3)R is restored. For hadron spectroscopy this implies that particles fill
nonet representations of U(3) instead of octet plus singlet of SU(3). In the large-NC

limit one has the relations

MS1
= MS , |c̃d| =

|cd|√
3
, |c̃m| =

|cm|√
3
, MP1

= MP , |d̃m| =
|dm|√

3
. (G.8)

Now, I turn to examine how (axial-)vector contributions to O(p4) saturate the
LECs Li when integrated out, reproducing the notion of Vector meson dominance,
proposed long ago [318]. In fact, independent large-NC analyses of χPT and RχT
yielded that most of the Li were O(NC) and those in LR were O(√NC). Because
resonance exchange is then giving an O(NC) contribution coming from the two ver-
tices, it is plausible that in the large-NC limit RχT LECs saturate χPT couplings.

Considering the sra, the obtained contributions are all O(NC)

L1 =
G2

V

8M2
V

− c2d
6M2

S

+
c̃2d

2M2
S1

, L2 =
G2

V

4M2
V

, L3 = − 3G2
V

4M2
V

+
c2d

2M2
S

,

L4 = −cdcm
3M2

S

+
c̃dc̃m
M2

S1

, L5 =
cdcm
M2

S

, L6 = − c2m
6M2

S

+
c̃2m

2M2
S1

,

L7 =
d2m
6M2

P

− d̃2m
2M2

P1

, L8 =
c2m
2M2

S

− d2m
2M2

P

, L9 =
FVGV

2M2
V

,

L10 = − F 2
V

4M2
V

+
F 2
A

4M2
A

, H1 = − F 2
V

8M2
V

− F 2
A

8M2
A

, H2 =
cm
M2

S

+
d2m
M2

P

. (G.9)

Taking into account the large-NC relations (G.8); L4, L6 and L7 contributions
vanish, while for L1 only that coming from vectors survives. The suppresion of these
LECs and the saturation of all Li by (axial-)vector contributions are shown in Table
G.2.

Due to the U(1) anomaly, even in the chiral limit, the η1 has -apart from the
common contribution coming from the trace anomaly [568]- the anomalous extra-
term which motivates that commonly it is also integrated out from the standard
χPT Lagrangian. Using the same notation for this coupling both in χPT and in
its large-NC limit we can say that this provokes a change in L7 due to pseudoscalar
η1-exchange. With the notation introduced before, we can simply write

L7 = − d̃2η1
2M2

η1

, d̃η1 = − F√
24

: (G.10)

being the extra contribution to Mη1 ∼ O(1/NC), L7 -that is O(1) in 1/NC- grows
to reach the value O(N2

C) for what we have written as L7 in the previous equation.
Still, the 1/NC-counting is not so clear at this point [569]: I have explained how out
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i Lr
i (Mρ) V A S η1 Total Totalb Totalc

1 0.4± 0.3 0.6 0.0 0.0 0.0 0.6 0.9 0.9

2 1.4± 0.3 1.2 0.0 0.0 0.0 1.2 1.8 1.8

3 −3.5± 1.1 −3.6 0.0 0.6 0.0 −3.0 −4.9 {−3.2,−4.3,−5.0}
4 −0.3± 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 1.4± 0.5 0.0 0.0 1.4a 0.0 1.4 1.4 2.2

6 −0.2± 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

7 −0.4± 0.2 0.0 0.0 0.0 −0.3 −0.3 −0.3 {−0.2,−0.3,−0.3}
8 0.9± 0.3 0.0 0.0 0.9b 0.0 0.9 0.9 {0.6, 0.8, 1.5}
9 6.9± 0.7 6.9a 0.0 0.0 0.0 6.9 7.3 7.2

10 −5.5± 0.7 −10.0 4.0 0.0 0.0 −6.0 −5.5 −5.4

Cuadro G.2: Comparison between phenomenological values of the coupling constants
Lr
i (Mρ) in units of 10−3 and the contributions given by resonance exchange [135]. For

scalar resonances it is considered a nonet and the contribution of pseudoscalar resonances
is neglected with respect to the η1 contribution. a stands for inputs and b,c means that
short-distance QCD corrections have been taken into account. The last column corres-
ponds to the reanalysis of Ref.[319], where three different values for the parameter dm are
considered. Essentially this is possible because there are less restrictions from high-energy
QCD behaviour in the spin-zero sector than in that with spin-one [274, 567].

of the chiral limit Mη1 receives three comparable contributions: from explicit chiral
symmetry breaking, from the singlet-axial anomaly and from the trace anomaly.
To integrate the η1 out amounts to admit that the axial anomaly contribution is
much greater than the other two and this does not seem to be the case. For further
discussions on η1/η8 and their mixings η/η′, see [514, 515, 516, 517, 570, 571].

In Table G.2 the experimental value of these couplings and the contributions got
from resonance exchange [135] are presented. We see that there is good agreement
between them and that Vector meson dominance emerges as a natural result of the
analyses. There is no reason to include additional multiplets of resonances looking
only at χPT at O(p4). The comparison has been made at a renormalization scale
µ = Mρ -for the χPT loops-, but similar results are found for any value belonging
to the region of interest: 0.5 GeV ≤ µ ≤ 1 GeV.

Finally, we can see how these conclusions change when considering the evaluations
of the Li at NLO in 1/NC within RχT . The most important acquaintance we gain
is that now one keeps full control of the renormalization scale dependence of these
LECs. References [287, 288, 290, 292] constitute the study of this question within
RχT . By imposing QCD short-distance constraints, the chiral couplings can be writ-
ten in terms of the resonance masses and couplings and do not depend explicitly
on the coefficients of the chiral operators in the Goldstone boson sector of RχT .
This is the counterpart formulation of the resonance saturation statement in the
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context of the resonance lagrangian. As an illustration, the values of the couplings
L8 and L10 at NLO in 1/NC evaluated at µ = Mρ are given: Lr

8(Mρ) = 0.6 ± 0,4,
Lr
10(Mρ) = −4.4 ± 0.9 (always in units of 10−3). We see that the corrections of the

NLO term amount to a reasonable (20↔ 30) %.



Appendix H: Comparing theory to
data

We include a brief note on how we have normalized our theoretical spec-
trum in order to compare it with experimental measurements. Let P be the process
τ− → (πππ)−ντ and x (an energy) the variable in which the spectrum is given. The
experiment provides us with the total number of events of process P , NP , and its
spectrum in x, i.e., Events

bin
versus x, where bin = ∆x.

Our theoretical computation yields dΓP

dx
, whose integral over the whole x-spectrum

gives the partial width of process P :
∫ xmin

xmax

dx
dΓP

dx
= ΓP ←→

∫ xmin

xmax

dx
1

ΓP

dΓP

dx
= 1 , (H.1)

and this allow us to compare with the experiment provided
∫ xmin

xmax

dx
Events

∆x
= NP (H.2)

and therefore

NP

∫ xmin

xmax

dx
1

ΓP

dΓP

dx
=

∫ xmin

xmax

dx
Events

∆x
, (H.3)

or in differential form:

NP︸︷︷︸
exp

[
1

ΓP

dΓP

dx

]

th

=

[
Events

∆x

]

exp

, (H.4)

where exp and th are a reminder of the source of each term: either the experiment,
or the theoretical computation.

Usually, x is a dimensionful variable, so we can write ∆x = n [x], where the x
in square brackets stands for the dimensions of ∆x. Thus, the LHS of (H.4) has
dimension x−1 and, finally:

NP n︸ ︷︷ ︸
exp

[
1

ΓP

dΓP

dx

]

th

=

[
Events

∆x

]

exp

, (H.5)

and n is chosen according to the experimental information as we will see next.

Our computation yields
dΓτ−→π+π−π−ντ

dQ2 , so what we have for comparing with the
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experiment is
1

Γτ−→(πππ)−ντ

dΓτ−→(πππ)−ντ

dQ2
=

∑

i=SA,A,

dΓi

dQ2
. (H.6)

One can reason similarly for other three meson modes and for other observables,
like dΓ/dsij.
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[309] D. Gómez Dumm, A. Pich and J. Portolés, “τ → π π π ντ decays in
the resonance effective theory,” Phys. Rev. D 69 (2004) 073002. [arXiv:hep-
ph/0312183].
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A Daniel Gómez Dumm le agradezco su colaboración a lo largo de estos años.
Fue un placer. Especial mención requiere su revisión del apéndice sobre relaciones de
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Cillero y Natxo Rosell. Con todos ellos he tenido la ocasión de seguir debatiendo
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no voy a incluirlos después en el apartado dedicado al Colegio de España, para
evitar double counting), Diogo Boito, Alberto Ramos, Jorge Mondéjar, Xian-Wei
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ma, Ángela, Pons, Virginia, Capi, Luque, Paco, Toni, Primo, Dani, Cubatas (cómo
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