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In this article, the effective permittivity of two-phase dielectric mixtures is calculated by applying
the transmission line matrix �TLM� method. Two slightly different TLM algorithms are considered:
a hybrid approach, which combines the TLM method with a subgriding technique based on dual
capacitor circuits, to allow a refined description of the material, and a standard or pure TLM
approach, which uses a mesh size smaller than the typical dimension of insertions in order to
appropriately describe details of the geometry. A study of the statistical distribution of permittivity
for insertions in random positions is also presented, showing that the effective permittivity of the
mixture tends to concentrate around the mean value as insertions reduce in size. Both TLM
techniques are applied to dielectric mixtures in two-dimensional situations. When the concentration
of insertions is small, the results are in close agreement with prediction formulae while for higher
concentration values, deviations are observed, although basically the results fall within the range
predicted by theoretical bounds. Numerical results obtained using the two TLM approaches present
a similar qualitative behavior; nevertheless, a clear difference is observed between them. The study
of special periodic situations with coated insertions allows us to identify the pure TLM results as
more accurate than those of the hybrid approach and also explains why homogeneous distributions
provide numerical values close to the theoretical limits. The effects of shape on permittivity are also
modeled and deviations to the Wiener bounds are discussed in detail, using two- and
three-dimensional examples in practical situations. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2779216�

I. INTRODUCTION

The electromagnetic behavior and characterization of di-
electric mixtures is a classical problem already addressed by
Maxwell more than a century ago. This early interest has not
diminished at all; on the contrary, modern artificial materials
have renewed and drastically increased the attention given to
this topic due to the design of challenging and sometimes
previously unthinkable applications not pertinent to natural
substances. High frequency applications,1 such as perfect
lens manufacture, subwavelength microwave devices, en-
hanced radiation by small antennas, etc., have replaced or
further developed the quasistatic initial works.2–7 In addition,
the availability of powerful computers has modified the way
in which these and other related problems are addressed. The
earliest attempts to model dielectric mixtures concentrated
on obtaining theoretical formulas to predict the effective per-
mittivity of composite materials consisting of mixtures with
several homogeneous components. Maxwell Garnett2 �MG�
considered the problem of how to find the effective permit-
tivity �eff of a medium formed with spheres of permittivity �1

embedded in a host medium of permittivity �2, by consider-
ing only one grain of permittivity �1 surrounded by a me-
dium of permittivity �2. The MG formula provides satisfac-

tory permittivity values for low concentrations of insertions
since the interaction with adjacent insertions is neglected. A
better approximation, which solved the problem of asymme-
try and the percolation threshold level, was later derived by
Bruggeman,3 who considered a spherical insertion immersed
in a homogeneous medium of permittivity �eff, which has to
be determined self-consistently by imposing the condition
that the field inside this single grain equals the field distant
from it.

Having recognized the difficulty in predicting exact val-
ues of permittivity, mainly due to the lack of information
regarding the actual geometry for a given volume occupa-
tion, subsequent studies were devoted to the derivation of
theoretical bounds, which limited the range of possible val-
ues. The most direct are the Wiener bounds6 which corre-
spond to a series or parallel connection of planar capacitors
formed with both dielectric materials. Other more restrictive
limits are the Hashin–Shtrikman �HS� bounds7 which are ob-
tained by imposing a minimum or maximum value for an
energy function depending on �eff. It is worth noting that the
lower HS bound corresponds to the MG prediction for the
mixture under study, while the upper limit corresponds to
this same model for the complementary mixture.

Due to the complexity of the problem, especially for
random mixtures, numerical techniques have only been ap-
plied in recent years with the availability of powerful com-
puters at reasonable cost. An important part of these applica-
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tions starts with the derivation of an integral equation which
is later numerically solved by means of different well-known
methods, such as the finite element method or the method of
moments.8–11 Homogenization techniques that take into ac-
count the periodicity of the material on different scales have
also been reported.12 In a certain way, the earlier-mentioned
approaches could be considered semianalytical or of an inte-
gral nature, in the sense that an important theoretical task is
carried out initially to obtain an integral equation, before the
specific numerical treatment is applied. These semianalytical
methods provide good results, but the theoretical part re-
quires an important reformulation if different problems or
new effects are to be dealt with. Let us consider, for example,
a problem devised for a static or quasistatic situation: the
integral equation describing the phenomenon has nothing in
common with the same problem in a high-frequency case. A
different approach is provided by the so-called differential
numerical methods, such as the finite differences in the time
domain �FDTD� method or the transmission line matrix
�TLM� method. In their basic versions, these techniques con-
sider Maxwell equations directly, together with boundary
conditions, to model a particular phenomenon numerically.
Of course, solving the problem using basic equations in their
most fundamental form, i.e., Maxwell and constitutive equa-
tions, may not be considered very elegant because most of
the work is performed by the computer, requiring a negli-
gible amount of prior theoretical work. The main drawback
of differential methods is that the computing burden is rela-
tively high when compared to that of semianalytical meth-
ods. In addition, there may be little modeling of detailed
effects if no initial assumption is made to relieve the com-
puter task. Nevertheless, differential numerical methods can
be easily adapted to new situations merely by adding minor
changes. This feature makes these methods an attractive tool
for modeling dielectric materials, since, especially in random
mixtures, different geometries may be solved without requir-
ing substantial changes, a circumstance which greatly sim-
plifies the task.

The initial applications of FDTD to modeling composite
materials appeared at the end of the last century13–15 to test
the validity of mixing formulas in composite materials con-
sisting of a host material with two-dimensional �2D� or
three-dimensional �3D� spherical inclusions. The effective
permittivity of a dielectric mixture is obtained by means of
the reflection coefficient for a planar dielectric slab, carried
out with the dielectric material surrounded by a vacuum on
both sides. A statistical study comprising a high number of
random distributions of spherical insertions in 2D and 3D
cases provides results in the range predicted by HS bounds,
except in a few cases where results are beyond the HS limits.
With regard to the different prediction formulas, the results
for low concentrations are quite similar because the interac-
tion of one insertion with the remaining insertions is negli-
gible, although a better behavior is observed for the Brugge-
man formula if all concentrations are considered. The main
point of these valuable FDTD works is the way in which the
random geometries are considered to take into account de-
tails below a mesh size, �l, by using dual circuits of parallel
or series capacitors.

Like the FDTD method, TLM is a low-frequency nu-
merical method which has been extensively used for the
modeling of wave propagation problems, mainly of an elec-
tromagnetic nature, but also for problems in acoustics or par-
ticle diffusion.16–20 The method is not only a numerical
model for solving certain phenomena, but also a conceptual
approach that does not consider the analytical equations gov-
erning the phenomenon, but deals directly with the original
phenomenon by means of an equivalent transmission line
circuit.16 This conceptual nature of TLM makes this method
a powerful tool which allows considering challenging prob-
lems from a hybrid numerical-conceptual point of view in an
elegant and suitable way. For example, TLM has been used
to model challenging situations such as radiation by thin con-
ducting wires with a radius much smaller than the mesh size
by simply including a transmission line circuit describing the
inductance and capacitance introduced by the wire to the
medium in which it is placed.21 Another advantage of TLM
over FDTD, especially in modeling media highly dependent
on the interface position between different dielectrics, is that
TLM defines all the field quantities at the same point, the
center of the node, and also all the perpendicular field quan-
tities at the interface between nodes, which simplifies the
imposition of boundary conditions. In contrast, FDTD de-
fines each component of the electromagnetic field at a differ-
ent point, and even at a different time, which complicates the
task of accurately defining the transition between dielectric
phases. Bearing this in mind, it seems that the conceptual
approach of TLM to the problem, together full definition of
all the field components at the same point and time could
make us think of TLM as a useful numerical tool to model
situations with a high number of transitions between differ-
ent phases, such as those occurring in dielectric mixtures.

In this article, the application of the TLM method for the
modeling of composite mixtures is proposed. A study of 2D
and 3D dielectric mixtures with the inclusion of different
shapes will be considered and a comparison with prediction
formulas and bounds, together with a comparison of the re-
sults obtained from combining TLM and the subgriding tech-
nique proposed by Kärkkänien et al.15 will be presented,
along with discussion of these results. The article is orga-
nized as follows: Sec. II is a brief description of the funda-
mentals of TLM; Sec. III contains a study of 2D composite
materials with spherical inclusions. The study includes a
convergence test, an analysis of the geometries leading to the
HS bounds, and finally, the effects of size and shape. Section
IV presents the results for 3D materials. Finally, the main
conclusions are summarized in Sec. V.

II. FUNDAMENTALS OF TLM

The TLM method sets up a temporal and spatial calcu-
lation process which allows the temporal evolution of the
electromagnetic field to be obtained. It is based on the con-
struction of a transmission line mesh where voltage and cur-
rent pulses propagate in the same way as the electric and
magnetic field in the original problem.16 The TLM mesh is
formed by interconnecting unitary circuits, termed nodes.
Different specific nodes can be used depending on the prob-
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lem under study, but independently of the geometry of the
specific node, the basis of the TLM algorithm is quite
simple: at time step n, a set of voltage pulses represented by
the column matrix Vn

i are incident at each node in the TLM
mesh, which after scattering at each node center produce a
set of reflected pulses represented by the column matrix Vn

r .
Both pulse sets are related by the scattering matrix of the
node S by equation

Vn
r = SVn

i . �1�

Reflected pulses propagate through all the lines in the
nodes and become incident pulses at neighbor nodes for the
next time step. Time synchronism must be imposed when
calculating the parameters of the node lines so that all volt-
age pulses reach the centers of the nodes at each discrete
time n�t, where �t is the time spent by any pulse in travel-
ing through any line from one node center to the center of
the adjacent nodes.

Figure 1 shows the generalized symmetrical condensed
node �GSCN� to be used in this article.22 The node length is
�x, �y, and �z, along the three Cartesian directions and
substitutes a cubic portion of medium of these same dimen-
sions with electric permittivity �, magnetic permeability �,
and electric conductivity �. Figure 1 shows only the link
lines, those which connect with the link lines of neighbor
nodes and thus bear the main responsibility for propagation.
In addition, stub lines, not represented in Fig. 1, are addi-
tional capacitive, inductive, or lossy lines connected only at
the node centers to allow independent control of �, �, and �
along each Cartesian direction. The link line termed inj is i
oriented, located on the negative side of the i axis, defining
Ej and Hk. Link line ipj defines identical quantities on the
positive side of the i axis. The capacitive and lossy lines
associated with Ej are described with indexes Cj and Gj,
respectively. Finally, the inductive stub associated with Hk is
line Lk. All the lines are described in this manner by simply
taking all the possible different values of i, j, and k in the set
�x ,y ,z�.

Regarding the line parameters, the characteristic imped-
ance for the inj and ipj link lines is Zij =1/Yij. The total
voltage Vn,inj for line inj at the nth time step consists of an
incident voltage pulse Vn,inj

i and a reflected Vn,inj
r pulse. Simi-

larly, pulses Vn,ipj
i and Vn,ipj

r correspond to the line on the
positive side. The characteristic admittance of the capacitive

stub associated with the j component of the electric field is
YCj, while the conductance of the resistive line is Gj. Finally,
the characteristic impedance of the inductive stub associated
with the k component of the magnetic field is ZLk. Pulses on
these lines are denoted in a similar way to those on the link
lines.

With regard to choosing the characteristic impedance or
admittance of each line and the way the node defines each
field component, the node can be considered as six coupled
circuits: three parallel nodes to define each electric field
component and three series nodes to define each magnetic
field component at the node center. The tangential compo-
nents at the node limits are also defined by the node, which is
an interesting property when imposing boundary conditions.
This circuit separation is analogous to considering the rota-
tional Maxwell equations as six simpler scalar equations.
Figure 2�a� shows the parallel circuit defining the j compo-
nent of the electric field at the nth time step, En,j, while Fig.
2�b� is a plot of the series circuit defining the k component of
the magnetic field at this same time step, Hn,k.

The circuits in Fig. 2 define a capacity and conductance
associated with the j component of the electric field and an
inductance associated with the k component of the magnetic
field. Identifying the medium capacity, inductance, and elec-
tric conductance associated with Ej and Hk with the corre-
sponding node capacities, inductances, and conductances
provides enough equations to choose the characteristic im-
pedance or admittance of all the lines in the node. It is worth
noting that some degree of freedom is still present in this set
of equations, which means that different specific nodes may
be designed. In this article, the characteristic impedance of

FIG. 1. Generalized 3D symmetrical condensed node.

FIG. 2. �a� Parallel circuit for Ej and �b� series node for Hk.
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all the link lines equals the vacuum impedance, which basi-
cally leads to the symmetrical condensed node originally
proposed by Johns.23

Regarding the field definition at the nth time interval, the
common voltage per unit length along the j direction,
Vn,j /�j, at the parallel circuit of Fig. 2�a� and the common
current per unit length along the k direction, In,k /�k, in the
series circuit of Fig. 2�b� are analogous to En,j and Hn,k,
respectively. The use of the equivalent Thevenin circuits16

for each transmission line in the circuits of Fig. 2 is a valu-
able tool for obtaining specific expressions of these fields
exclusively in terms of the incident voltage pulses at the
node. Figure 3 is a plot of the equivalent circuits correspond-
ing to the nodes sketched in Fig. 2.

Finally, the scattering matrix may be obtained by consid-
ering unitary pulses entering the node from each line in the
node. For incidence from a single link line, both a series and
a parallel circuit must be considered and pulses reflected to
all the lines in these circuits generated. Two of these lines
appear simultaneously in both the parallel and the series cir-
cuits; these are the common lines and represent the circuit
version of the coupling that exists in Maxwell equations. The
remaining lines appear only in the parallel or only in the
series circuits mentioned earlier; these are the uncommon
lines and represent uncoupled terms for the unitary excitation
under consideration. Due to this uncoupling, the pulses trans-
mitted to the uncommon lines may be obtained directly
through the transmission coefficient of the circuit. On the
other hand, the partial coupling described by the existence of
two common lines means that the pulse amplitude at these
two lines must be obtained from charge conservation on the
parallel circuit and continuity of potential on the series cir-
cuit. Detailed information concerning the TLM topics out-
lined in the earlier paragraphs can be found in Refs. 16 and
24.

III. EFFECTIVE PERMITTIVITY OF 2D DIELECTRIC
MIXTURES

A. Preliminary topics

The effective permittivity of different two-phase dielec-
tric mixtures consisting of different shape insertions with
permittivity �1 embedded in a host medium of permittivity �2

is obtained numerically in the following sections by using a
TLM mesh of GSCN with identical length �l along the three

Cartesian directions. The procedure is quite similar to that
presented in Refs. 13 and 15 and sketched in Fig. 4. A di-
electric slab is illuminated in the perpendicular by a plane
electromagnetic wave and the TLM method is used to calcu-
late the reflected signal numerically. This numerical reflec-
tion coefficient is compared to the theoretical reflection co-
efficient for a planar dielectric slab of permittivity �eff, from
which this effective value can be obtained. Although the
TLM results are valid for wavelengths below the dispersion
limit,25 �l�0.1�min, where �min is the minimum valid wave-
length in the numerical results obtained, the examples pre-
sented in this article are mostly concerned with the lowest
frequency point, corresponding to a quasistatic solution, the
range within which theoretical formulas and more indepen-
dent information are found in the literature.

The material numerically modeled corresponds to a 2D
planar slab of a dielectric mixture in which 2D spherical
insertions, i.e., cylinders of infinite length, with a radius of 1
mm and relative dielectric permittivity �1=18, are randomly
inserted in a host medium of relative permittivity �2=2. As
swapping between insertions is allowed, the initial spherical
geometry becomes even more complicated. The slab width is
20 mm, its infinite height is also modeled by using 20 mm
together with symmetry conditions along the vertical direc-
tion. Finally, an arbitrary length of one TLM node along the
z direction is considered together with symmetry conditions
to model the 2D properties of the slab. Two vacuum regions
20 mm wide on each side of the slab are also considered.
Absorbing boundary conditions at both limits of the x axis
are imposed by connecting the transmission lines reaching
these limits to a lumped load with the vacuum impedance.26

This impedance matching condition is a remarkably simple
boundary condition of the TLM method that produces accu-
rate results for normally incident waves. Inclusions in the
slab cause nonhomogeneities, which means that this normal
incidence is not met at points near this material. However,
boundaries along the x direction are chosen at sufficient dis-
tance to result in normal propagation being produced by ho-
mogenization in the vacuum region. Therefore, an appropri-
ate abortion of unphysical reflections would be expected.
This point has been tested with vacuum regions of different
lengths.

Two TLM algorithms will be considered: a pure TLM
and a hybrid TLM calculation. The pure TLM model uses a
mesh size �l significantly smaller than the typical dimension

FIG. 3. Field definition of En,j and Hn,k by means of �a� the Thevenin circuit
of the parallel and �b� the series node in Fig. 2.

FIG. 4. Geometry of the problem.
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of the inclusions. The permittivity value of each node, and
therefore the admittance of the capacitive stubs, is assigned
according to the permittivity of the material at the node cen-
ter. In order to compare our results and also to test the va-
lidity of the subgriding technique proposed in Ref. 15 for the
method FDTD, a second hybrid TLM model will also be
considered, in which �l takes much larger values comparable
to the inclusion size. In this second case, details of the sub-
node geometry are taken into account by subdividing the
main node into N parts along each direction, thus generating
secondary cells of side �l /N. This subdivision is not solved
using the TLM method but allows the definition of two dual
circuits of series connected or parallel connected condensers
instead. Simple circuit theory concepts allows obtaining the
equivalent capacity for both circuits, which provide lower
and upper bounds for the capacity of the large TLM node.
Finally, the effective capacity of this main node is assumed
to be the average of these bounds, from which it is easy to
obtain the effective permittivity of an equivalent condenser.
Figure 5 shows both dual circuits in a 2D case for N=2. As
pointed out earlier, these two auxiliary condenser circuits are
not solved in detail by using the TLM method, but taking
into account simple circuit theory concepts to define a global
permittivity for the large node, which is then solved by
means of the TLM method. The idea is to define a hybrid
technique which combines the advantages of using large val-
ues of �l for the main TLM node, i.e., less memory and
computing time required, but at the same time to describe the
geometry in more detail by using simple circuit theory to
support the TLM solution. As already noted in Ref. 15, the
approach is expected to work properly when interfaces be-
tween different materials are vertical or horizontal, while ar-
bitrary geometries, such as those presented by spheres or
ellipses, are only approximately described.

B. Convergence, size effect, and statistical
distribution of results

Let us initially concentrate on the distribution of results
for the different geometries possible for a given concentra-
tion. A total of 1000 different geometries for p1=0.5 were
modeled using both TLM techniques. The node size is 0.1
mm for the pure TLM results and 1 mm for the hybrid solu-
tion with auxiliary subdivisions of 0.025 mm, i.e., with N
=40. Details regarding these lengths are discussed later in
this section. In each case considered, insertions of 1 mm

radius were randomly located in the slab until the desired
volume concentration was obtained. Of course, a variation in
the specific location of the insertions means that the effective
permittivity obtained is also variable. Figure 6 is a plot of the
number of geometries providing each effective permittivity
value in the set of random geometries considered. In effect,
the results show a statistical distribution around a mean value
which resembles a Gaussian distribution with a mean value
of 5.438 and a standard deviation of 0.219. Results are simi-
lar for the hybrid TLM method, even with identical standard
deviation, but with a different mean value of 5.715.

In this situation and to test the effect of insertion size, a
similar test was performed for insertions with a larger radius
of 2 mm. The distribution of effective permittivity is quite
similar, but now with a mean value of 5.231 and a greater
standard deviation, 0.406. The Gaussian shape is slightly dis-
torted, but the most remarkable facts are that the distribution
is wider, even the HS bounds have been surpassed in a non-
negligible number of geometries. This concentration of per-
mittivity for small insertions may be explained by the fact
that a smaller size means that a higher number of insertions
is needed to reach a certain concentration. Therefore, if the
position of a given particle is randomly changed to another
position in another random distribution, the fact that there
are still a high number of small insertions to be allocated
means that it is relatively likely that another particle may
take the position occupied by the earlier-mentioned particle
in the previous geometry. In other words, smaller insertions
increase the similarity between the different geometries and
thus the effective permittivity of the mixture is more concen-
trated around its mean value. It is worth noting that this
concentration effect is of great interest for the design and
practical manufacturing of composite dielectrics since the
natural uncertainty due to possible differences in the internal
structure is minimized.

The convergence test to determine the appropriate �l is
performed for three particular geometries providing �eff close
to the mean, maximum, and minimum values for this con-
centration. The tests use TLM nodes with �x=�y=�z=�l,
together with a reference mesh size of �lref=1 mm. Finer

FIG. 5. Subgriding approach used to determine �eff for a large mesh size.

FIG. 6. Distribution of permittivity values for p1=0.5 and insertion radius of
1 mm for the pure TLM model. Results compare well with a Gaussian
distribution with a mean value of 5.438 and a standard deviation of 0.219.

064101-5 Blanchard et al. J. Appl. Phys. 102, 064101 �2007�

Downloaded 28 Jan 2010 to 147.156.182.23. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



detail is achieved in the pure TLM solution by considering
smaller nodes of length �l=�lref /N. Increasing the subdivi-
sion parameter N produces higher memory requirements due
to an increase in the number of nodes in the mesh, but also
due to a reduction in the maximum allowable time step, �t
=�l / �2c�, where c stands for the vacuum speed of light.
With the hybrid TLM method, the parameter N is only an
auxiliary subdivision parameter, which splits �lref into N
parts along each direction to define two dual circuits, like
those presented in Fig. 5, corresponding to upper and lower
bounds for the permittivity of the node. Nevertheless, it is
worth noting that for any value of N, the TLM mesh size and
the time step are kept at a constant value, �l=�lref and �t
=�lref /2c, respectively. Table I shows the effective permit-
tivity obtained for different values of N in the two cases. It
can be seen that results obtained with the hybrid technique
require a higher value of N, around 80, to reach an accept-
able convergent result, although the numerical burden is not
significantly increased because the mesh size is always main-
tained at 1 mm. With the pure TLM technique, results tend to
reach a convergent value for lower values of N around 20 or
40. Higher values of N provide almost identical results but
the increase in memory storage and computing time required
is considerable and unnecessary.

Once the appropriate N parameter is determined, the ef-
fective permittivity is obtained in the whole range of p1 for a
dielectric mixture with �1=18 and �2=2 using both methods.
Numerical values obtained using the pure TLM method with
N=20 and the hybrid method with N=80 are shown in Fig.
7. The two results are qualitatively similar, always located
within the Wiener bounds and in most cases between the HS
bounds, but a clear difference is observed between the pure
and the hybrid TLM results. With regard to prediction for-
mulas, the Bruggeman model predicts more accurately than
the MG formula �lower HS bound�, but theoretical predic-
tions become poorer as p1 increases. The difference between
the hybrid and the pure TLM results is already observed in
Table I. Figure 8 shows that similar a behavior and deviation
are observed for the inverted mixture with �1=2 and �2

=18 for the hybrid and pure TLM results. A difference be-
tween numerical results and theoretical formulas is to be ex-
pected, but the difference between numerical results for pure
and hybrid TLM is more annoying since the problem is not
one of convergence. The question is which of these numeri-
cal results is more accurate? It would appear that the pure

TLM solution should provide the best results because the
details are considered directly without averaging approaches
of auxiliary circuits, but since an experimental test is impos-
sible, an appropriate numerical test must be carried out.

C. Numerical validation using Hashin–Shtrikman
bounds

So far, we have verified that statistically different geom-
etries present permittivities within the range predicted by the
Wiener bounds, most of them also in the range of the HS
bounds. These latter limits have been claimed to be the most
restrictive ones if only the host and insertion permittivities
and concentration are determined; in other words, most lim-
iting bounds would require additional information such as
the shape, size, and specific spatial distribution of the inser-
tions. At this point, one wonders if these bounds can be
attained by a specific geometry. It can be shown7 that one of
the HS bounds corresponds to a material in which spheres of
one phase are coated with a spherical shell of the other
phase. The ratio between the two phases of the coated sphere
must equal the ratio of the composite volume fractions,

TABLE I. Numerical effective permittivity for three different distributions
obtained by using the hybrid TLM method with �l=1 mm and the pure
TLM method with �l=1 mm/N. Distributions 1, 2, and 3 correspond to
geometries around the low, average, and maximum permittivity values for
p1=0.5.

Distribution modeled/numerical method N=10 N=20 N=40 N=80

Low epsilon distribution/hybrid TLM 5.134 5.133 5.145 5.147
Low epsilon distribution/pure TLM 4.915 4.881 4.865 4.860
Medium epsilon distribution/hybrid TLM 5.524 5.509 5.506 5.504
Medium epsilon distribution/pure TLM 5.289 5.257 5.247 5.243
High epsilon distribution/hybrid TLM 6.416 6.425 6.428 6.429
High epsilon distribution/pure TLM 6.220 6.152 6.143 6.138

FIG. 7. Effective permittivity vs volume fraction of insertions for a random
mixture with �1=18 and �2=2 obtained with the pure and the hybrid TLM
methods.

FIG. 8. Effective permittivity vs volume fraction of a random mixture with
�1=2 and �2=18 obtained with the pure and the hybrid TLM methods.

064101-6 Blanchard et al. J. Appl. Phys. 102, 064101 �2007�

Downloaded 28 Jan 2010 to 147.156.182.23. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



p1 / p2. Once the coated spheres have been arranged in such a
way that they occupy a maximum of the available volume,
i.e., they are in contact with neighbor spheres, identical but
smaller structures must be placed in the remaining free
space. This periodic assemblage is repeated an infinite num-
ber of times until the whole space is filled. Of course, this
process is impossible to model in practice since we cannot
fill the entire slab with circles. However, we can approach
the ideal configuration with three levels of insertions, as is
suggested in Fig. 9. Let us assume that phase 1 is the core of
the insertion and that phase 2 is the coating. It is worth
noting that the case �1��2 represents the lower HS bound,
while the dual case, �2��1, yields the upper HS bound.

Our test consists in calculating the reflection coefficient
for a dielectric slab whose internal geometry is that of Fig. 9
with both TLM methods. The slab width is again 20 mm and
three levels of coated spheres are considered. Unless a very
thin grid is used, the addition of a fourth size of smaller
coated spheres would have only a limited effect. The radius
of the largest spheres is 1 mm, so a total of ten large spheres
are considered along the horizontal direction. As regards the
vertical direction, only one largest sphere is used together
with appropriate symmetry conditions to take into account
infinite height of the slab. The mesh size used for the pure
TLM calculations is �l=0.05 mm, which means that the di-
electric slab size is 400�40 in TLM node units. As regards
the hybrid TLM method, the node size is �l=1 mm, so the
dielectric slab size is 20�2 in TLM node units, but 60
�60 auxiliary subdivisions are used for each node in order
to estimate the permittivity of the node through the capacitor
circuits shown in Fig. 5. Pure and hybrid TLM results for the
two dual mixtures are shown in Fig. 10 in terms of the vol-
ume fraction pmax of the phase with higher individual permit-
tivity. The lower branch in each TLM model corresponds to
�1=18, �2=2, and pmax= p1, while the upper one corresponds
to a dual situation with inverted permittivities in which
pmax= p2. As expected, the pure TLM results are in close
agreement with the theoretical HS bounds, while the hybrid
TLM approach is unable to accurately reproduce the behav-
ior of this challenging geometry. This result enables us to

identify the pure TLM technique as a more accurate solution
than the hybrid one and therefore the following mixtures will
be modeled only with this technique.

D. Effect of inclusion shape on effective permittivity

Let us now consider several types of inclusion with dif-
ferent shapes. The geometries of the inclusions studied are:
circles, squares, and ellipses with different eccentricities. For
simplicity’s sake, inclusions, again with relative permittivity
�1=18, are now periodically placed in a host medium whose
permittivity is �2=2. The number and position of the inclu-
sions is fixed but their section is variable, which permits the
study of effective permittivity in terms of the inclusions vol-
ume fraction. Permittivity results for the pure TLM model
are shown in Fig. 11. The Wiener and HS bounds are also
included, together with the Bruggeman formula. Let us also
note that the lower HS bound corresponds to the MG predic-
tion formula.

FIG. 9. Periodic structure with effective permittivity of a Hashin–Shtrikman
bound. Each sphere core is phase 1 and the coating is phase 2. FIG. 10. Effective permittivity vs volume fraction, pmax, of the phase with

higher permittivity in the geometry of Fig. 9. The lower branches model
�1=18 and �2=2, while the upper branches correspond to the dual mixture.
The radius of the largest spheres is 1 mm, the node length is 0.05 mm for the
pure TLM solution and 1 mm for the hybrid TLM solution.

FIG. 11. Effective permittivity obtained with the pure TLM model vs con-
centration for a homogeneous distribution of 2D inclusions with different
shapes.
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As might be expected for low concentrations and irre-
spective of the type of inclusions, results are in close agree-
ment with the MG, i.e., the lower HS bound and the Brugge-
man prediction formulas, while a deviation is observed in the
case of increased concentration due to interaction between
neighbor insertions. This deviation, which may be more or
less important, depends on the form of the inclusion. It is
worth noting that the shape effect is accentuated at certain
concentrations because a concentration-dependent swapping
exists between inclusions when the concentration is large
enough. In the case of ellipses of high eccentricity, 0.77, this
swapping happens at p1=0.504 and a further increase in con-
centration causes the mixture to approach the vertical or
horizontal planar capacitor geometries. These planar geom-
etries are the ones used to define the Wiener bounds, which
explains the sudden changes toward these limits observed in
�eff for both orientations. For example, an increase in �eff is
observed in Fig. 11 for vertical ellipses around p1=0.5,
which now resembles a vertical and planar distribution of a
two-phase dielectric mixture corresponding to the upper
Wiener limit. This change in �eff perfectly fits the swapping
concentration mentioned earlier. The case of horizontal el-
lipses is similar, but results now approach the lower Wiener
bound because the system now tends to a horizontal and
planar distribution of a two-phase dielectric mixture. This
change in the overlapping region is also observed for cylin-
ders and ellipses with a small eccentricity of 0.22, although
an explanation of the results is less obvious.

A special case, shown in Fig. 11, is that exhibited by
cubic inclusions, which follow the lower HS bound, i.e., the
MG formula, almost exactly. This behavior has already been
detected in other works and has been qualified as
surprising.9,12 Effectively, due to the homogeneous allocation
of insertions, it would be reasonable to expect a dielectric
constant around the mean value for that concentration rather
than a value close to the lower bound. However, maybe this
is not so surprising if we think of this homogeneous distri-
bution in terms of the theory giving rise to the HS bounds. In
effect, as mentioned in Sec. III C, the geometry of Fig. 9,
consisting of spherical coated insertions arranged at intervals
to fill the whole space, leads to a maximum or minimum
value of �eff. The spherical shape means that an infinite num-
ber of progressively smaller coated spheres will be posi-
tioned to fill the whole space not covered by previous larger
spheres. But if we substitute square coated cylinders for the
larger coated circular cylinders, only one level of coated in-
sertions would fill the whole space and no more smaller
square cylinders would be required. This means that the ho-
mogeneous mixture consisting of cubic insertions is not as
different as it seems from the periodic geometry of Fig. 9,
which could explain why the results are close to the lower
HS bound, i.e., to the MG formula. It is worth noting that we
have also modeled a dual mixture in which square cylinder
insertions with �1=2 are homogeneously distributed in a host
medium with permittivity �2=18, labeled dual squares in
Fig. 11. As expected, the effective permittivity corresponds
almost exactly to the upper HS bound.

IV. EFFECTIVE PERMITTIVITY OF HOMOGENEOUS
3D TWO-PHASE DIELECTRIC MIXTURES

Finally and for completeness’ sake, results for 3D mix-
tures are shown in Fig. 12. The node size is �l=0.1 mm
along the three Cartesian directions in all cases. The typical
dimensions of insertions vary but are close to 1.7 mm for the
most unfavorable case considered, in which p1 is around 0.1.
All the insertions are uniformly distributed, so symmetry
conditions are imposed to model only one quarter of each
insertion, thus reducing memory and calculation time re-
quirements. The results are qualitatively similar to those for
2D situations but swapping now happens at lower concentra-
tion values and deviations to the HS limits are observed ear-
lier.

V. CONCLUSION

In this article, the TLM numerical method was applied to
obtain the effective permittivity of dielectric mixtures with
inclusions of different shapes and sizes. Two TLM numerical
approaches were considered: a hybrid TLM technique which,
by means of an auxiliary subgriding technique based on a
pair of dual capacitor circuits, allowed the use of a mesh size
comparable to the inclusion dimensions, and a pure TLM
approach in which finer detail was achieved by using a mesh
size smaller than the typical dimension of insertions. Both
techniques were tested with two-phase dielectric mixtures,
providing results in good agreement with predicting formulas
when insertion concentrations were small but an expected
deviation for larger concentrations was observed, due to in-
teraction between neighbor insertions. In this high concen-
tration range, results were mostly within the limits predicted
by the restrictive HS bounds. Although the results obtained
with the two TLM techniques showed a qualitatively similar
behavior, we detected an important difference between them.
The study of the special periodic geometries of coated inser-
tions enabled us to identify the pure TLM results as more
accurate than those of the hybrid TLM. In addition, these
coated insertions offered an explanation as to why some ho-
mogeneous distributions of insertions may provide effective

FIG. 12. Effective permittivity obtained with the pure TLM model vs con-
centration for a homogeneous distribution of 3D inclusions with different
shapes.
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permittivities closer to the HS bounds than to the mean per-
mittivity value for that concentration. The effects of insertion
size and shape were also considered. With regard to size
inclusion, smaller insertions produced a lower dependence of
the effective permittivity on the specific geometry, which
seems to relate to the high number of inclusions required for
a given concentration. This size effect reduces the statistical
importance of the variations in the specific location of each
insertion concentrating the permittivity values around the
mean value. This may be of interest for the design of dielec-
tric mixtures with a well defined permittivity value, despite
the uncertainty concerning the internal structure of the mate-
rial. Finally, with reference to the shape effect, a deviation
toward the Wiener bounds was observed when changes
veered toward a vertically or horizontally planar distribution
of the dielectrics constituting the mixture, this effect being
more accentuated once the swapping between neighbor in-
sertions occurred.
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