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4. Poincaré coaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 The coaction as a differential operator . . . . . . . . . . . . 56



xii Contents

5. The real forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 The real forms in the classical case . . . . . . . . . . . . . . 61

5.2 The real forms in the quantum case . . . . . . . . . . . . . 63

5.3 The deformed quadratic invariant. . . . . . . . . . . . . . . 65

6. Invariant sigma model in SO(2, n)/SO(2)× SO(n). . . . . . . . . 67

6.1 The SO(2,1)/SO(2) example . . . . . . . . . . . . . . . . . . 69

6.2 The invariant WZW model SO(2, 2)/SO(2)× SO(2)
in solvable coordinates. . . . . . . . . . . . . . . . . . . . . . 73

6.3 The SO(2,3)/SO(2)×SO(3) example . . . . . . . . . . . . . 75

7. Contraction of sigma models . . . . . . . . . . . . . . . . . . . . 79

7.1 SO(2, 3)/SO(2)× SO(3) contracted with respect to
SO(2, 2)/SO(2)× SO(2) . . . . . . . . . . . . . . . . . . . . 79

7.2 SO(2, 3)/SO(2)× SO(3) contracted with respect to
SO(1, 3)/SO(3) . . . . . . . . . . . . . . . . . . . . . . . . . 85

8. General properties of the S-expansion method . . . . . . . . . . . 91

8.1 Properties preserved under the S-expansion procedure . . . 92

8.1.1 Solvable Lie algebras . . . . . . . . . . . . . . . . . . 92

8.1.2 Nilpotent Lie algebras . . . . . . . . . . . . . . . . . 95

8.1.3 Semisimple Lie algebras . . . . . . . . . . . . . . . . 96

8.1.4 Expansion of compact Lie algebras . . . . . . . . . . 97

8.2 Expansions of sl(2,R), an instructive example . . . . . . . . 98

8.2.1 Classification of the different kinds of expansions . . 98

8.2.2 General properties of the expansions with n = 3, . . . , 6100

9. S-related Lie algebras in dim = 2, 3 . . . . . . . . . . . . . . . . . 103

9.1 The 3-dimensional algebras related with 2-dimensional Lie
algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.1.1 The type III Lie algebra . . . . . . . . . . . . . . . . 104

9.1.2 The type II and V algebras . . . . . . . . . . . . . . 109

9.1.3 The type I algebra . . . . . . . . . . . . . . . . . . . 112

9.1.4 Brief summary . . . . . . . . . . . . . . . . . . . . . 113

9.2 The Bianchi spaces not-related with 2-dimensional isometries 114

9.2.1 Type IV, VI, VII2, VIII and IX algebras . . . . . . . 114

9.3 Checking with computer programs . . . . . . . . . . . . . . 116

9.3.1 Type II . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.3.2 Type III . . . . . . . . . . . . . . . . . . . . . . . . . 118



Contents xiii

9.3.3 Type V . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.3.4 Isomorphisms and consistency of the procedure . . . 121

10. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

11. Metodologia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

12. Resum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Appendix 141
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1. INTRODUCTION

In this Thesis we investigate several aspects of the physical applications of
Lie algebras. In particular, this work is divided in 3 parts: the construction
of an associative, non commutative product on the Minkowski space [1, 2, 3],
the development of sigma models [4] with left invariance under the action of
the symmetry group and the study of the expansions of Lie algebras under
discrete semigroups and their properties [5, 6].

The first part of this Thesis is developed in Chapters 3, 4 and 5.

The main objectives of this part of the work are:

• To define a non-commutative star product for the conformal comple-
xification of Minkowski space.

• To give an explicit, analytic formula for the star product of two poly-
nomials in Minkowski space.

• To show that the action of the star product on polynomials can be
reproduced by a bidifferential operator.

• To define a coaction of the Poincaré group plus dilations on Minkowski
space, compatible with the star product.

• To show that this coaction can be reproduced by a differential ope-
rator up to some order in the quantization paramether.

• To complete the construction of the non commutative Minkowski and
Euclidian spaces, giving adequate real forms.

The second part is developed in Chapters 6 and 7. There our goals
are:

• To define a class of sigma models invariant under a symmetry group
(ISM).
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• To study the differences between these models and the correspondent
gauged WZW models.

• To show that, in general, these models do not present conformal in-
variance.

• To relate different ISM models by contraction of Lie groups.

The third part is developed in Chapters 8 and 9. Our objectives are:

• To study properties of Lie algebras which are preserved under the
expansion of the Lie algebra with a finite semigroup (S-expansion).

• To perform a classification of the S-expansions of simple algebras.

• To use the S-expansion procedure to find relations between 2-dimensio-
nal and 3-dimensional Lie algebras.

The structure of spacetime at a fundamental level has been discussed
since the discovery of General Relativity. This theory describes gravity
as the metric of spacetime, being the matter the source of the metric.
The success of General Relavity describing gravity is remarkable (think for
example on GPS devices).

With the discovery of quantum mechanics at the beginning of XXth cen-
tury, it became clear that the fundamental structure of spacetime should
come out of the combination of these two theories. The quantization of
General Relativity, seen as a quantum field theory, gives a non renormali-
zable theory. Several alternatives to solve this problem have been proposed,
like string theory or loop quantum gravity, which try to quantize gravity
in different ways. There is even a hope that Supergravity can actually be
finite [7]. Unfortunately, the technical complexity of these theories makes
it impossible today to have a definitive theory of quantum gravity. What
seems to be clear is that, at a fundamental level, spacetime should have a
fuzzy structure described by some, generically non commuting, unknown
operators.

It is possible to ask about the structure of this spacetime without the
introduction of a dynamical theory. Several attempts have been done [8, 9,
10, 11], defining non commutative products in field theories, to introduce
the non commutativity effects of spacetime in diferent ways.
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In Section 2.4 we introduce the conformal complexification of the usual
Minkowski spacetime by means of the Grassmannian manifold G(2, 4), i.e.,
the space of complex 2-planes in C4 space (see, for example, refs.[12, 13]).
In this manifold a natural action of the Poincaré plus dilations group exists,
given by the lower parabolic subgroup, Pl ⊂ SL(4,C). It is convenient to
work with this group in an algebraic way, i.e., with the algebra of poly-
nomials in the group variables, O(Pl). In this formalism the group law is
encoded as a coproduct (dual of the product) and the inverse is generalized
to the antipode. The action of the Poincaré group on Minkowski space
is given by a coaction defined on the generators of Minkowski space. We
call O(M) the algebra of polynomials in the Minkowski generators. This
formalism is convenient because it allows us to perform the quantization of
the Minkowski space in a direct way.

Quantum groups [14] can be seen as deformations of Lie groups. The
operations of product, coproduct and antipode are defined in terms of a
non commutativity paramether q. The algebras involved here are defined
as polynomials in terms of non commutative generators (non commutative
variables). In the particular case where q = 1, we recover the commutative
algebra. In Section 2.5 a deformation of the Grassmannian and Minkowski
space in terms of quantum groups is given. Moreover, in ref.[1] a quantiza-
tion of chiral super Minkowski space in terms of quantum groups is given.
We denote it by Oq(M).

Working with fields defined on the quantum variables Oq(M) offers a
great difficulty. We can define a map Cq between O(M) and Oq(M), which
are isomorphic as modules, so we work with ‘classical’ objects (the fields de-
fined on the usual Minkowski space) and introduce the non commutativity
using a non commutative product for the fields. This map is the so called
quantization map or ordering rule. In Chapter 3 we define a non commu-
tative product (star product) in G(2, 4) comming from the gluing of star
products on the big cells (the Minkowski space). In Minkowski space, an or-
dering rule is used. This product is associative by construction and defined
for polynomials in G(2, 4), i.e., purely algebraic. To apply this product to
a field theory it is mandatory to make a generalization to smooth functions
defined in G(2, 4). For this we have to find a differential expression of the
star product. Redefining q = eh it is possible to perform an expansion,
which can be reproduced by the action of bidifferential operators on the
classical polynomials (see Section 3.2). This result is non trivial, because
the coefficients multiplying each monomial must match carefully. A careful
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analysis on the structure of the terms which appear in the star product
allows to demostrate that all the polynomials that appear in the develop-
ment of the star product have the correct structure, so the star product
is differentiable and its expression by means of a bidifferential operator is
unique. Thanks to this we define the star product on smooth functions
in O(M) as the corresponding expansion in terms of bidifferential opera-
tors. To write down the differential operators to an arbitrary order in the
non commutativity paramether the explicit calculation must be done. We
compute them to order 2 and show that they exist to arbitrary order.

It is also possible to define a star product for the Poincaré group (Chap-
ter 4). An ordering rule for the generators of the group is defined (see Ap-
pendix A.2.5) and we follow a procedure analogous to the one used for the
star product in Minkowski space. Next, we define a star coaction compati-
ble with the star product, using the quantization map. The star coaction,
when acting on the generators of Minkowski space, is formally identical to
the classical one, being all the non commutative effects due to the presence
of the star product. This coaction is algebraic, so to be able to apply it to
smooth functions we need to find how to express it in terms of differential
operators. In this case we study the action of the group on Minkowski
space as a differential operator which acts on a single argument: the clas-
sical result of the action. It is possible to find a first order expression for
the action, which can be reproduced by a differential operator. In this way
we define the action of the group on smooth functions (up to first order).

Up to here we have worked with complex Minkowski space and complex
groups. In Chapter 5 we discuss the problem of finding the corresponding
real forms. Classically the problem reduces to that of finding an involution,
i.e., an automorphism with properties (5.1), whose set of fixed points is
the real form. We give an involutive automorphism for Minkowski and
Euclidean space, with the real forms of the groups which act on them.

The quantum case is different, because the involution must be consistent
with the commutation rules, which forces it to be an antiisomorphism (i.e.
an antiinvolution). This rules out the interpretation of the real form as the
set of fixed points of the antiinvolution. Another consequence is that, when
we equip the classical real Minkowski space with the star product that we
have defined, the Poisson bracket is purely imaginary.

Non linear sigma models are built with a set of 2 dimensional fields
taking values at the points of a differentiable manifold (the so called target
space). Although they are described in terms of local coordinates, diffe-
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rential manifolds do not have privileged reference coordinates as the linear
spaces. Sigma models then present a global invariance with respect to
dipheomorphisms of the target space. The fields in a sigma model interact
mainly due to a Riemannian metric in the target manifold, represented by
a symmetric covariant 2-tensor. They can also interact by means of some
other objects, like an antisymmetric tensor or a scalar field (the dilaton).

It is specially interesting when there is a group acting on the manifold.
The global properties of the manifold are important to study the action of
the group: the easiest examples are the ‘coset’ spaces of type G/H, with
H a subgroup of G. H is the isotropy group or little group. The action of
the group G is transitive in this case. The cases where the target manifold
is itself a Lie group are also interesting; the action is the left and right
multiplication of the group. The action is not only transitive: it does not
have any fixed point.

When the group acts by isometries of the metric (or, for other kinds of
interactions, the Lie derivative of the object is zero) this global symmetry
can be made local introducing a non linear connection in the space. This
is what is called a gauged sigma model, which appears in supersymmetric
and Supergravity theories.

In supersymmetric and Supergravity theories, the sigma models appears
because the supersymmetry representations (multiplets) generically contain
scalars whose lagrangians are sigma models plus interaction terms with
other fields.

Sigma models also appear in the context of 2-dimensional theories. In
this case the worldsheet of a string plays the role of the spacetime and
the target space is the spacetime where the string moves. If there is
conformal invariance these theories show invariance under the action of
the infinite-dimensional Virasoro algebra. A classical example are Wess-
Zumino-Witten (WZW) models, which are also invariant under Kac-Moody
algebras.

In ref.[15] certain hierarchies of sigma models appearing in Supergrav-
ity models were discovered. These hierarchies correspond to generalized
contractions [16, 17] of the isometry group of the original model. The con-
tractions decouple some fields and model exact truncations or integrations
on massive modes. Modelling the integrations of massive modes by the
geometric procedure of a contraction simplifies technically the problem.

The 2-dimensional Wess-Zumino-Witten models describe vacuum solu-
tions for a string. The WZW action contains two parts: the integral of a
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3-form in a 3-dimensional manifold whose compact border is a compacti-
fication of the string worldsheet, and the metric term which is an integral
on the worldsheet. The forms are biinvariants (left and right invariants)
under the action of the symmetry group. A WZW model can be, at least
locally, written as a sigma model with a biinvariant metric and a 2-form
which, under the action of the symmetry group, changes by the differential
of a function. The relative constant between both terms is choosen to get
a conformally invariant model.

The gauging of a WZW model [18] is performed by minimal coupling
if the antisymmetric tensor is invariant under the gauged isometries. If it
is not, gauging is still possible if we include additional terms to the model,
provided that the symmetry subgroup which we wish to gauge is anomaly
free [18].

In the series of coset spaces SO(2, n)/SO(2) × SO(n) (Chapter 6) it is
possible to define a metric and a left invariant 2-form. With these objects
we construct what we call invariant sigma models (ISM). One question
that we address is if the result of gauging the SO(2)× SO(n) subgrup in a
SO(2, n) WZW model is a ISM model. The result is negative.

For example we take the SO(2, 1)/SO(2) group (the simplest one). We
use solvable coordinates in the coset. The solvable coordinates are conve-
nient because they allow us to perform the calculation of the metric and
the 2-form easily and also give simple outputs for these objects. They also
make the comparison with ref.[15] possible. In Section 6.1 we check that this
model is different than the SO(2, 1)/SO(2)R gauged WZW model, which is
a free boson. The one loop beta equations tell us that the ISM model is
not conformally invariant. Instead, it is invariant under the left action of
SO(2, 1) on the coset. In ref.[15] it is shown that gauging a subgroup (H)
of the isometry group (G) of a sigma model consisting only in the metric
term is a sigma model in the quotient manifold (G/H), invariant under the
left action of G. We show that this is not true anymore for a WZW model
due to the existence of the antisymmetric tensor.

The next example is the coset SO(2, 2)/SO(2)×SO(2) (see Section 6.2).
As before, we compute the metric and the 2-form and show that the model
is not conformally invariant at a quantum level. Analogous conclusions are
valid for the group SO(2, 3)/SO(2)× SO(3) (see Section 6.3).

In the series of symmetric spaces SO(2, n)/SO(2) × SO(n) it is also
possible to relate groups with different n using contractions of Lie alge-
bras. The procedure to contract the metric was defined in ref.[15], but the
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generalization to contract any invariant tensor is new.
The contraction of the coset space SO(2, 3)/SO(2)×SO(3) with respect

to SO(1, 3)/SO(3) has special interest. In this case it is possible the calcu-
lation of the 2-form to get a (SO(3, 1)/SO(3))×Rm model. Unfortunately
the model is not left invariant under the full SO(1, 3) group.

The deformation of Lie algebras is a procedure which has importance
in Mathematics and Physics. In Chapter 7 we have studied how to relate
ISM models with different symmetry group using Inönü-Wigner contrac-
tions. We can find contractions applied to Supergravity models in ref.[15].
A contraction of a Lie group is a procedure which changes the structure
constants without changing the number of generators.

Expansions of Lie algebras by discrete semigroups (S-expansions, see
Section 2.11) were introduced some years ago in refs.[19, 20, 21, 22, 23]. We
take a discrete semigroup and a Lie algebra and define a new Lie bracket in
the direct product space. It can be shown that this bracket is associative,
antisymmetric and satisfies the Jacobi identity, so the result is a Lie algebra.
An S-expansion changes the dimension of the algebra, since it goes from
an n-dimensional algebra to a n ×m-dimensional one (being m the order
of the semigroup).

It is possible to extract algebras of a smaller dimension from an S-
expanded algebra. It is the case where there is a resonant decomposition
of the semigroup. One can then extract the resonant subalgebra of the
S-expanded algebra. In case the semigroup has a zero element, it is also
possible to perform a reduction by zero. The reduced algebra is a quo-
tient of the S-expanded one. Sometimes it is even possible to perform two
reductions by zero. This is reviewed in Section 2.11.

There are certain properties of the algebras that are preserved under
an S-expansion. We study them in Chapter 8. When we expand a solvable
algebra the result is another solvable algebra. A consequence of this is the
solvability of the resonant subalgebra. Finally, the 0-reduced algebra is also
solvable. The same happens with the nilpotency.

When we expand a semisimple algebra we can not ensure the semisim-
plicity of the S-expanded algebra, its resonant subalgebras or a 0-reduced
algebra. So happens with compactness. In Section 8.2 we use computer
programs to S-expand sl(2) and study the semisimplicity of the S-expanded
algebras, its resonant subalgebras and the 0-reduced ones. This is an exam-
ple of the kind of classification which can be performed for the S-expanded
algebras. A complete study of all the S-expansions by semigroups up to or-
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der 6 of all the simple algebras (up to some dimension) must be performed
in the future. We have developed a Java library for this [24]. This is a
useful tool to study S-expansions. With it we can also look for resonant
decompositions, get the resonant subalgebras, the 0-reduced ones and check
them for semisimplicity. In the future we will implement the study of other
properties of the algebra.

Using S-expansions it is possible to relate Lie algebras with different
dimensions. The problem of knowing if two algebras can be related by
means of an expansion is very interesting from both the physical and the
mathematical points of view. In fact, many physical applications have been
found in this context: for example, in ref.[20] the M -algebra (the maximal
supersymmetric extension of the Poincaré algebra) is obtained as an ex-
pansion of the osp(32/1) algebra. In ref.[25] this result was reobtained but
via the S-expansion method which gives in addition the invariant tensors of
the expanded algebra. This allowed the construction of an 11-dimensional
gauge theory for the M -algebra. Invariant tensors are known for all the
semisimple Lie algebras but this is not true for the non semisimple ones.
Here the role of the expansion using semigroups is important because it
gives the invariant tensors for the expanded algebra in terms of those of
the original algebra (if they are known). So starting from a semisimple alge-
bra it is possible to obtain invariant tensors for the expanded algebra even
when it is not semisimple. This is the case of the simple algebra osp(32/1)
whose expansion yields the invariant tensors for the M algebra. Other inte-
resting applications are in ref.[26] where (2+1)-dimensional Chern-Simons
AdS gravity is obtained from the so called exotic gravity. In ref.[27], stan-
dard General Relativity is obtained from Chern-Simons Gravity. Finally, in
ref.[28] a generalized action for (2 + 1)-dimensional Chern-Simons Gravity
is found.

In Chapter 9 we explore the relations between the 2-dimensional and
3-dimensional Lie algebras, which were classified by Bianchi in ref.[29]. We
find that only going to the resonant subalgebra we can find those relations.
In fact, in the case when different resonant decompositions of the same
semigroup exist, it is possible to relate different algebras performing the
expansion with the same semigroup. Using an iterative procedure it is pos-
sible to deduce some conditions on the multiplication table of a semigroup
and then look for all the possible ways to satisfy these conditions with
different semigroups. This is done with the help of computer programs
developed by us [24]. The programs used in Chapters 8 and 9 are reviewed
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in Appendix B.
Even when these algebras are well known in the literature [29], the

non-trivial relations that we find between 2 and 3-dimensional algebras are
new and interesting results. A possible generalization of this procedure to
higher dimensions can be useful in physical applications.
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2. PRELIMINARS

The mathematical and physical framework used in the Thesis is introduced
in this Chapter. It is devoted to review some results in Mathematics and
Physics which will be used through this work. It can be skipped to come
back to it if needed when reading each Chapter.

The organization of this Chapter is as follows:

In Section 2.1 we define Hopf algebras.

In Section 2.2 we review the algebraic groups SL(4,C) and Pl.

In Section 2.3 we review the quantum groups SLq(4,C) and Plq.

In Section 2.4 we review the construction of the complex conformal com-
pactification of Minkowski space [12, 13, 30]. Its quantization is performed
in ref.[1]. We review it in Section 2.5.

In Section 2.6 we review the Cartan decomposition of a Lie group.

In Section 2.7 we introduce the Iwasawa decomposition of a Lie group.

In Section 2.8 we review the theory of invariant tensors on symmetric
spaces.

In Section 2.9 we present the Inönü-Wigner contraction of Lie algebras
and the procedure to calculate the contracted metric and 2-form.

In Section 2.10 we present discrete semigroups.

In Section 2.11 we review the S-expansion procedure.

In Section 2.12 we summarize Bianchi’s classification of 2 and 3-dimensio-
nal Lie algebras.

In Section 2.13 we present the 2-dimensional WZW models.

2.1 Hopf algebras

Quantum groups are non commutative nor cocommutative Hopf algebras.
We are going to start with a series of definitions that lead to the definition
of Hopf algebras. Unless otherwise stated, the field under consideration can
be understood as R or C [14].
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Definition 2.1.1. An algebra (A,m, η) is a vector space A over the field
k such that

1. The linear map m : A⊗A→ A (the product) is associative.

2. η is the linear map η : k → A by η(1) = 1A (the unit in the algebra).

In terms of commutative diagrams, these maps satisfy the properties
listed in Figure 2.1.

�

A⊗A⊗A

A⊗A
m⊗id

>

A⊗A
id⊗m

<

A

m

>

m

<

A⊗A

k ⊗A

η⊗id
∨

= A

m

< A⊗A

A⊗ k

id⊗η
∨

= A

m

<

Fig. 2.1: Associativity and unit element expressed as commutative diagrams.

Definition 2.1.2. A coalgebra (C,∆, ε) is a vector space C over a field k
such that

1. The linear map ∆ : C → C ⊗ C (the coproduct) is coassociative.

2. ε is a linear map ε : C → k (the counit).

In terms of commutative diagrams, these maps satisfy the properties
listed in Figure 2.2.

�

Definition 2.1.3. A bialgebra (H,∆, ε,m, η) is a vector space H over a
field k such that
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C ⊗ C ⊗ C

C ⊗ C
∆⊗id

>

C ⊗ C
id⊗∆

<

C

∆

>

∆

<

C ⊗ C

k ⊗ C

ε⊗id
∨

= C

∆

< C ⊗ C

C ⊗ k

id⊗ε
∨

= C

∆

<

Fig. 2.2: Coassociativity and counit element expressed as commutative diagrams.

1. (H,m, η) is an algebra.

2. (H,∆, ε) is a coalgebra.

3. ∆ and ε are algebra maps, where H ⊗ H has the tensor product
algebra structure

(h⊗ g)(h
′ ⊗ g′) = hh

′ ⊗ gg′

for all h, h
′
, g, g

′ ∈ H.

H ⊗H m
> H > H ⊗∆ H

H ⊗H ⊗H ⊗H

∆⊗∆

∨
id⊗τ⊗id

> H ⊗H ⊗H ⊗H

m⊗m
∧

H
ε
> k

H ⊗H

m

∧

ε⊗ε

>
k

η
> H

H ⊗H

∆

∨η⊗η >

k
η
> H

k

ε

∨id >

Fig. 2.3: Compatibility between the maps of a bialgebra.
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H
ε

> k
η
> H

H ⊗H

∆

∨
id⊗S, S⊗id

> H ⊗H

m

∧

Fig. 2.4: Additional axioms that make a bialgebra into a Hopf algebra.

In terms of commutative diagrams, property 3 can be seen as Figure
2.3, where τ is the map

H ⊗H > H ⊗H

a⊗ b > τ(a⊗ b) = b⊗ a.

�

Finally we have all the needed ingredients to define a Hopf algebra.

Definition 2.1.4. A Hopf algebra (H,∆, ε,m, η, S) is a vector space H
over a field k such that

1. (H,∆, ε,m, η) is a bialgebra.

2. The map S : H → H (the antipode) satisfies the compatibility condi-
tions of Figure 2.4.

�

The antipode of a Hopf algebra is unique and it satisfies

S(gh) = S(h)S(g)

S2 is an homomorphism. S does not need to have an inverse. If so, S2 is
an automorphism. If S2 = 11 then the Hopf algebra is said to be involutive.

The algebraic groups that we use in this Thesis can be seen as commu-
tative Hopf algebras. We study them in the next Section.
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2.2 The algebraic groups GL(4,C), SL(4,C) and Pl

We first consider the algebraic group GL(4,C). The generators of GL(4,C)
can be organized in matrix form

g =


g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44

 , satisfying the condition det g 6= 0.

(2.1)
The algebra of polynomials of GL(4,C) is the algebra of polynomials

in the entries of the matrix and an extra variable d, which is set to be
the inverse of the determinant, thus forcing the determinant to be different
from zero:

O(GL(4,C)) = C[gAB, d]/(d · det g − 1), A,B = 1, . . . , 4.

If we want to consider the algebra of SL(4,C) we will have simply

O(SL(4,C)) = C[gAB]/(det g − 1), A,B = 1, . . . , 4. (2.2)

We define the lower parabolic subgroup of SL(4,C) as all the matrices of
the form

Pl =

{(
x 0
Tx y

)
/ detx · det y = 1

}
.

The bottom left entry is arbitrary but we have written it in this way for
convenience.

In all cases the group law (matrix multiplication in notation (2.1)) is
expressed algebraically as a coproduct, given on the generators as

O(GL(4,C))
∆c−−−−→ O(GL(4,C))⊗O(GL(4,C))

gAB −−−−→
∑
C gAC ⊗ gCB,

d −−−−→ d⊗ d

A,B,C = 1, . . . , 4,

(2.3)
and extended by multiplication to the whole O(GL(4,C)). The coproduct
is non cocommutative, since switching the two factors of ∆cf does not leave
the result unchanged.

Remark 2.2.1. Let us see intuitively why the coproduct corresponds to
the matrix multiplication on the group itself. We try now to see an element
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of O(GL(4,C)) as a function over the algebraic variety of the group itself.
Let us denote the natural injection

O
(
GL(4,C)

)
⊗O

(
GL(4,C)

) µG−−−−→ O
(
GL(4,C)×O

(
GL(4,C)

)
f1 ⊗ f2 −−−−→ f1 × f2

such that f1 × f2(g1, g2) = f1(g1)f2(g2). Then we have that

µG ◦ (∆cf)(g1, g2) = f(g1g2), f ∈ O(GL(4,C)).

�

We also have the antipode S (which corresponds to the inverse on
GL(4,C)),

O(GL(4,C))
S−−−−→ O(GL(4,C))

gAB −−−−→ g−1
AB = d (−1)B−AMBA

d −−−−→ det g,

(2.4)

where MBA is the minor of the matrix g with the row B and the column
A deleted. There is compatibility between the multiplication and comulti-
plication in O(GL(4,C):

∆c(f1f2) = ∆cf1∆cf2, (2.5)

and the properties of associativity and coassociativity of the product and
the coproduct also hold. There is also a unit and a counit (see ref.[14], for
example), and all this gives to O(GL(4,C)) the structure of a commutative,
non cocommutative Hopf algebra.

One can deal in the same way with the subgroups SL(4,C) and Pl, being
the coproduct and the antipode well defined on their algebras, that is, on
(2.2) and

O(Pl) = C[xij , yab, Tai]/(detx · det y − 1), (2.6)

i, j = 1, 2, a, b = 3, 4.

Since we have made a change of generators in Pl, we want to express the
coproduct and the antipode in terms of x, y and T :
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∆xij = xik ⊗ xkj ,
∆yab = yac ⊗ ycb,
∆Tai = Tai ⊗ 1 + yacS(xji)⊗ Tcj . (2.7)

S(xij) = x−1
ij = det y (−1)j−iMij ,

S(yij) = y−1
ij = detx (−1)j−iMij ,

S(Tai) = −S(yab)Tbjxji. (2.8)

2.3 The quantum groups SLq(4,C) and Oq(Pl).

Remark 2.3.1. If k is a field, we denote by kq the ring of formal power
series in the indeterminates q and q−1, with qq−1 = 1.

�

The quantum group SLq(4,C) [14] is the free associative algebra over Cq
with generators ĝAB, A,B = 1, . . . , 4 satisfying the commutation relations
(Manin relations [31])

ĝAB ĝCB = q−1ĝCB ĝAB if A < C,

ĝAB ĝAD = q−1ĝAD ĝAB, if B < D,

ĝAB ĝCD = ĝCD ĝAB if A < C and D < B or A > C and D > B,

ĝAB ĝCD − ĝCD ĝAB = (q−1 − q) ĝAC ĝBD if A < C and D > B, (2.9)

and the condition on the quantum determinant

detq ĝ =
∑
σ∈S4

(−q)−l(σ)ĝ4σ(4) · · · ĝ1σ(1) = 1. (2.10)

If we denote by ISLq(4,C) the ideal generated by the relations (2.9) and
(2.10), then

SLq(4,C) = Cq〈ĝAB〉/ISLq(4,C).

There is a coproduct in this algebra that, on the generators, is formally is
the same coproduct than (2.3)

∆ ĝAB =
∑
C

ĝAC ⊗ ĝCB
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and it is extended to the whole SLq(4,C) by multiplication. The antipode
is a generalization of the formula (2.4)

Sq(ĝAB) = (−q)B−AM q
BA,

where M q
BA is the corresponding quantum minor. One can see that S2 6= 11,

contrary to what happens in the commutative case. SLq(4,C) is a non
commutative, non cocommutative Hopf algebra.

We define Oq(Pl) to be the subalgebra of SLq(4,C) generated by

g =

(
x̂ 0

T̂ x̂ ŷ

)
=


ĝ11 ĝ12 0 0
ĝ21 ĝ22 0 0

ĝ31 ĝ32 ĝ33 ĝ34

ĝ41 ĝ42 ĝ43 ĝ44

 . (2.11)

We introduce the notation

D̂KL
IJ = ĝIK ĝJL − q−1ĝILĝJK ,

(that is, they are 2×2 quantum determinants). For simplicity, we will write

D̂12
IJ ≡ D̂IJ .

The condition (2.10) on the quantum determinant implies that detq x̂ = D̂12

and detq ŷ = D34
34 are invertible and

detqx̂ · detqŷ = 1.

The generators T̂ in (2.11) can be computed explicitly.

T̂ =

(
−q−1D̂23 detq ŷ D̂13 detq ŷ

−q−1D̂24 detq ŷ D̂14 detq ŷ

)
.

We now give the commutation relations among the generators x̂ij , ŷab, T̂ai.
We have:

x̂11x̂12 = q−1x̂12x̂11, x̂11x̂21 = q−1x̂21x̂11,

x̂11x̂22 = x̂22x̂11 + (q−1 − q)x̂21x̂12, x̂12x̂21 = x̂21x̂12,

x̂12x̂22 = q−1x̂22x̂12, x̂21x̂22 = q−1x̂22x̂21, (2.12)
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ŷ33ŷ34 = q−1ŷ34ŷ33, ŷ33ŷ43 = q−1ŷ43ŷ33,

ŷ33ŷ44 = ŷ44ŷ33 + (q−1 − q)ŷ43ŷ34, ŷ34ŷ43 = ŷ43ŷ34,

ŷ34ŷ44 = q−1ŷ44ŷ34, ŷ43ŷ44 = q−1ŷ44ŷ43, (2.13)

T̂42T̂41 = q−1T̂41T̂42, T̂31T̂41 = q−1T̂41T̂31,

T̂32T̂41 = T̂41T̂32 + (q−1 − q)T̂42T̂31, T̂31T̂42 = T̂42T̂31,

T̂32T̂42 = q−1T̂42T̂32, T̂32T̂31 = q−1T̂31T̂32. (2.14)

and for i = 1, 2, a = 3, 4

x̂1iT̂32 = T̂32x̂1i, x̂1iT̂42 = T̂42x̂1i,

x̂1iT̂41 = q−1T̂41x̂1i, x̂1iT̂31 = q−1T̂31x̂1i,

x̂21T̂a2 = q−1T̂a2x̂21 + q(q−1 − q)x̂11T̂a1, x̂2iT̂31 = T̂31x̂2i,

x̂22T̂a2 = q−1T̂a2x̂22 + q(q−1 − q)x̂12T̂a1, x̂2iT̂41 = T̂41x̂2i, (2.15)

ŷ33T̂3a = qT̂3aŷ33, ŷ34T̂3a = qT̂3aŷ34, ŷ43T̂4a = qT̂4aŷ43,

ŷ33T̂4a = T̂4aŷ33, ŷ34T̂4a = T̂4aŷ34, ŷ43T̂3a = T̂3aŷ43,

ŷ44T̂4a = qT̂4aŷ44,

ŷ44T̂3a = T̂3aŷ44. (2.16)

This can be checked by direct computation [1, 2, 3]. If we denote by
IPl the ideal generated by the relations (2.12, 2.13, 2.14, 2.15, 2.16), then

Oq(Pl) = Cq〈x̂ij , ŷab, T̂ai〉/(IPl , detqx̂ · detqŷ − 1). (2.17)

The coproduct and the antipode are inherited form the ones in SLq(4,C).
It is instructive to compute the quantum antipode in terms of the variables
x̂, ŷ, T̂ . The coproduct is formally as in (2.7), while for the antipode one
has to replace the minors by quantum minors. Explicitly,

S(x̂) = detqŷ

(
x̂22 −qx̂12

−q−1x̂21 x̂11

)
,

S(ŷ) = detqx̂

(
y44 −qŷ34

−q−1ŷ43 ŷ33

)
,

S(T̂ ) = −S(ŷ)T̂ x̂.
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2.4 The conformal complexification of Minkowski space

We give here the classical description of the conformal space as a Grass-
mannian variety and the Minkowski space as the big cell inside it. This
description is well known (see for example refs.[12, 13]). We follow closely
the notation of refs.[1, 13, 30].

The Grassmannian variety G(2, 4) is the set of 2-planes inside a four
dimensional space C4 (the twistor space). A plane π can be given by two
linearly independent vectors

π = (a, b) = span{a, b}, a, b ∈ C4.

If span{a, b} = span{a′, b′} they define the same point of the Grassmannian.
This means that we can take linear combinations of the vectors a and b

(a′, b′) = (a, b)h, h ∈ GL(2,C),
a′1 b′1
a′2 b′2
a′3 b′3
a′4 b′4

 =


a1 b1
a2 b2
a3 b3
a4 b4


(
h11 h12

h21 h22

)
, (2.18)

to represent the same plane π.

What relates the Grassmannian to the conformal group is that there is
a transitive action of GL(4,C) on G(2, 4),

g ∈ GL(4,C), gπ = (ga, gb).

One can take SL(2,C) instead and the action is still transitive. Then, the
Grassmannian is a homogeneous space of SL(4,C). Let us take the plane

π0 = (e1, e2) =


1 0
0 1

0 0
0 0

 ,
expressed in the canonical basis of C4, {e1, e2, e3, e4}. The stability group
of π0 is the upper parabolic subgroup

P0 =

{(
L M
0 R

)
∈ SL(4,C)

}
,
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with L,M,R being 2 × 2 matrices, and detL · detR = 1. Then, one has
that G(2, 4) is the homogeneous space

G(2, 4) = SL(4,C)/P0.

The conformal group in dimension four and Minkowskian signature is
the orthogonal group SO(2, 4). Its spin group is SU(2, 2). If we consider the
complexification, SO(6,C) (later on we will study the real forms), the spin
group is SL(4,C). We have then that the spin group of the complexified
conformal group acts transitively on the Grassmannian G(2, 4).

One can see the complexified Minkowski space as the big cell inside the
Grassmannian. This is a dense open set of G(2, 4). There is in fact an open
covering of G(2, 4) by such sets. As we have seen, a plane π = (a, b) can be
represented by a matrix

π =


a1 b1
a2 b2
a3 b3
a4 b4

 .
This matrix has rank two, since the two vectors are independent. So at
least one of the 2 × 2 blocks has to have determinant different from zero.
We define the six open sets

Uij =
{

(a, b) ∈ C4 × C4 / aibj − biaj 6= 0
}
, i < j, i, j = 1, . . . 4.

(2.19)
This is an open covering of G(2, 4). The set U12 is called the big cell of
G(2, 4). By using the freedom (2.18) we can always bring a plane in U12 to
the form

π =


1 0
0 1
t31 t32

t41 t42

 , (2.20)

with the entries of t totally arbitrary. So U12 ≈ C4.
The subgroup of SL(4,C) that leaves invariant the big cell consists of

all the matrices of the form

Pl =

{(
x 0
Tx y

)
/ detx · det y = 1

}
.

See Section 2.2. The action on U12 is then

t 7→ ytx−1 + T, (2.21)
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so Pl has the structure of semidirect product Pl = HnM2, where M2 = {T}
is the set of 2× 2 matrices, acting as translations, and

H =

{(
x 0
0 y

)
, x, y ∈ GL(2,C), detx · dety = 1

}
.

The subgroup H is the direct product SL(2,C) × SL(2,C) × C×. But
SL(2,C)× SL(2,C) is the spin group of SO(4,C), the complexified Lorentz
group, and C× acts as a dilation. Pl is then the Poincaré group times
dilations.

In the basis of the Pauli matrices

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

(2.22)
an arbitrary matrix t can be written as

t =

(
t31 t32

t41 t42

)
= x0σ0 + x1σ1 + x2σ2 + x3σ3 =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
.

Then

det t = (x0)2 − (x1)2 − (x2)2 − (x3)2.

and (x0, x1, x2, x3) can be recognized as the ordinary coordinates of Minkowski
space.

We have then that the Grassmannian G(2, 4) is the complex conformal
compactification of the Minkowski space, or simply the complex conformal
space. This compactification consists of adding a variety of points at infinity
to the Minkowski space. In fact, the set of points that we add is the closure
of a cone in C4 [30].

Algebraic approach. In the quantum theory the word quantization means
changing (or deforming) the algebra of observables (usually functions over
the phase space) to a non commutative one (usually operators over a Hilbert
space). Also here, when talking about quantum spacetime we refer to a
noncommutative deformation of a commutative algebra. The algebra of
departure is the algebra of functions over spacetime. We will consider first
polynomials (all the objects described above are algebraic varieties). In
Section 3.2 we will see how the construction can be extended to smooth
functions.



2.5. The quantum Minkowski space 23

The Minkowski space is just the affine space C4, so its algebra of poly-
nomials is

O(M) ≈ C[tai], a = 3, 4, i = 1, 2.

The action of the Poincaré group on the Minkowski space is expressed as a
coaction on its algebra

O(M)
∆̃−−−−→ O(Pl)⊗O(M)

tai −−−−→ yabS(x)ji ⊗ tbj + Tai ⊗ 1.
(2.23)

This corresponds to the standard action (2.21) and as in Section 2.1, if

O(Pl)⊗O(M)
µG×M−−−−→ O(Pl ×M) (2.24)

is the natural injection then

µG×M ◦ ∆̃(f)(g, t) = f(ytS(x) + T ), where g ≈ (x, y, T ).

We see then that in this formalism the coaction reproduces the standard
action of the group on the space of functions on the variety,

O(M)
g−−−−→ O(M)

f −−−−→ gf
, where

gf(t) = f(g−1t) = µ ◦ ∆̃(f)(g−1, t).

2.5 The quantum Minkowski space

The quantization of Minkowski and conformal spaces starts with the quanti-
zation of SL(4,C). We substitute the group by the corresponding quantum
group SLq(4,C), which is the quantization of the algebra O(SL(4,C)) and
then we quantize the rest of the structures in order to preserve the relations
among them. This approach is followed in the series of papers [32, 33, 34]
and we are not reproducing it here. We will only state the result for the
quantization of the algebra of Minkowski space. For the proofs, we refer to
those papers. It is nevertheless important to have in mind the structure of
the quantum group SLq(4,C) done in Section 2.3.

The complexified quantum Minkowski space is the free algebra in four
generators

t̂41, t̂42, t̂31 and t̂32,
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satisfying the relations

t̂42t̂41 = q−1t̂41t̂42,

t̂31t̂41 = q−1t̂41t̂31,

t̂32t̂41 = t̂41t̂32 + (q−1 − q)t̂42t̂31,

t̂31t̂42 = t̂42t̂31,

t̂32t̂42 = q−1t̂42t̂32,

t̂32t̂31 = q−1t̂31t̂32. (2.25)

Formally, these relations are the same as (2.14)
The algebra of the complexified Minkowski space will be denoted as

Oq(M). If we denote the ideal (2.25) by IMq , then we have that

Oq(M) ≡ Cq〈t̂41, t̂42, t̂31, t̂32〉/IMq .

It is not difficult to see that Oq(M) is isomorphic to the algebra of
quantum matrices Mq(2) defined by the relations (A.1) (see for example
ref.[14]). The correspondence Mq(2) → Oq(M) is given in terms of the
respective generators: (

â11 â12

â21 â22

)
�

(
t̂32 t̂31

t̂42 t̂41

)
.

Using this correspondence, one can check that the relations (2.25) become
the relations satisfied by the generators of the quantum matrices Mq(2).

There is a coaction of Oq(Pl) on Oq(M), which on the generators has
the same form as (2.23). At this stage, we have lost the interpretation in
terms of functions over the Minkowski space. This will be recovered with
the star product.

2.6 Cartan decomposition of a Lie algebra

As a brief explanation of what the Cartan decomposition is, let us cite
Theorem 6.3 and 7.1 and Definitions from ref.[35]:

Theorem: Every semisimple Lie algebra over C has a compact real
form, which we will denote by gk.

�
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In fact if {Hα, Eα, E−α} is the Cartan-Weyl basis of a semisimple Lie alge-
bra, then the compact real form gk is given by

gk =
∑

R (iHα) +
∑

R (Eα − E−α) +
∑

R (i (Eα + E−α)) . (2.26a)

Theorem: Let g0 be a real semisimple Lie algebra, g its complex form
and u any compact real form of g. Let σ and τ be conjugations of g with
respect to g0 and u respectively. Then there exists an automorphism ϕ of g
such that the compact real form ϕ (u) is invariant under σ.

�

So having these results, it is possible to give (see ref.[35]) the definition
of a Cartan decomposition of a semisimple algebra:

Definition: Let g0 be a semisimple real Lie algebra, g its complexifica-
tion and σ a conjugation of g with respect to g0. Then a decomposition

g0 = h + p, (2.27)

where h is a subalgebra, is called a Cartan decomposition if there exists a
compact real form, gk, of g such that

σ (gk) ⊂ gk and
h = g0 ∩ gk,
p = g0 ∩ (igk).

(2.28)

�

The two first theorems cited imply that each real semisimple Lie algebra
g0 has a Cartan decomposition. It can be demonstrated also that h is
the maximal compactly imbedded subalgebra of g0. From now on, we are
going to use the symbol ‘0’ to characterize structures related to real and
semisimple Lie algebras1. One can prove also that gk = h + ip.

1 The only exeption to this convention will be when we consider an algebra g and a
semigroup S having a decomposition:

g = V0 + V1,

S = S0 ∪ S1.
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2.7 Iwasawa decomposition of a Lie group

Iwasawa decomposition. For non compact symmetric spaces, there is an
alternative decomposition to the Cartan decomposition called the Iwasawa
decomposition (see for example ref.[35]). Let

g0 = h + p

be a Cartan decomposition. We consider another decomposition

g0 = h + s,

such that
[h, s] ⊂ s, [s, s] ⊂ s,

with s a solvable algebra. It is constructed in the following way: we first
choose a maximal abelian subalgebra of p and a basis of it, {H1, . . . Hn}.
Then, we diagonalize the action of Hi over g. The non zero eigenvalues
are the restricted roots of g with respect to the Cartan decomposition.
They come in pairs ±λ1, . . . ,±λp. The restricted roots also have a positive
system and they may have root spaces of dimension larger than 1. The
solvable Lie algebra s is then spanned by the maximal abelian subalgebra
and the positive root spaces. The positive root spaces generate a nilpotent
subalgebra.

There are several advantages for using the Iwasawa decomposition. The
first one is that it exponentiates to the group so there exists a global de-
composition G ≈ ANH where H is the maximal compact subgroup, A is
an abelian Lie group with algebra the maximal abelian subalgebra of p and
N is a nilpotent Lie group whose Lie algebra is spanned by the positive
roots. Then G/H ≈ AN , and it has a solvable group structure.

In the following, we will denote by

solv(G/H)

the solvable Lie algebra associated to the coset space G/H by the Iwasawa
decomposition.

2.8 Symmetric spaces with an invariant tensor field

The coset G/H and its tangent space. Let G be a Lie group and let

G
Lg−−−−→ G

g′ −−−−→ gg′,

G
Rg−−−−→ G

g′ −−−−→ g′g,
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be the left and right translations respectively. The Lie algebra ofG, denoted
by g is the set of left invariant2 vector fields

X l
g = LTgX, X ∈ TeG, (2.29)

(e is the identity of G), with Lie bracket the usual Lie bracket of vector
fields. The left invariant vector fields are non zero everywhere, and choosing
a basis of TeG one can construct a global frame on G. The manifold G is
then parallelizable3. Equation (2.29) establishes an isomorphism of vector
spaces g ≈ TeG, and the Lie bracket can then be defined in TeG through
this isomorphism.

We assume now that G is a semisimple group. We consider a Cartan
decomposition of g (see Section 2.6),

g = h + p,

in terms of a Lie subalgebra h and a subspace p with the properties

[p, p] ⊆ h, [h, p] ⊆ p. (2.30)

The subspace p then carries a representation of h. Let H be the subgroup
of G whose Lie algebra is h. Then p carries a representation of H that we
will denote as

S(h) ≡ Adh|p. (2.31)

We consider the distribution F ⊂ TG spanned by the left invariant
vector fields in h

F = span{X l
g = LTgX | X ∈ TeH},

F is clearly an integrable distribution since h is a subalgebra of g. Next,
we can consider the bundle over G, L = TG/F , the equivalence classes
meaning that two tangent vectors at the same point in G are identified if
its difference belongs to the distribution F .

Let us consider now the space of left cosets, G/H = {gH, | g ∈ G},
so g′ ∈ gH if and only if g′ = gh for some h ∈ H. G/H has a unique
differentiable structure such that G acts as a group of transformations,

G/H
L̃g−−−−→ G/H

[g′] = g′H −−−−→ [gg′] = gg′H.

(2.32)

2 We could use equally the right invariant vector fields.
3 That is, its tangent bundle is trivial.



28 2. Preliminars

The isotropy group of this action at the identity coset is H since hH = H.
At an arbitrary coset gH, the isotropy group is gHg−1, so all the isotropy
groups are conjugate.

To construct the tangent space to the coset manifold, we first identify
the tangent spaces and the distribution subspaces at different points of
[g] = gH in the natural way,

TgG
RTh−−−−→ TghG

Xg −−−−→ RThXg,

FgG
RTh−−−−→ FghG

Xg −−−−→ RThXg,

so Xg ≈ RThXg. The result of these identifications are two bundles over
G/H, denoted as ˜TG and F̃ respectively. The quotient

T (G/H) = ˜TG/F̃ ,

can be identified with the tangent space of the coset manifold G/H.
Let X̃[e] be an equivalence class in ˜TG/F̃ at the identity coset, and let

p : g→ p be the natural projection. We can always choose a representative
X ∈ p, since X − p(X) ∈ h. In fact we have that T[e](G/H) ≈ p.

The Cartan-Killing form. The Cartan-Killing form is a symmetric, invari-
ant, non degenerate bilinear form on g defined by

〈X,Y 〉 = Tr(adXadY ), X, Y ∈ g.

The invariance means that if s : g→ g is an automorphism of g then

〈s(X), s(Y )〉 = 〈X,Y 〉 ∀ X,Y ∈ g.

In infinitesimal form, the invariance becomes

〈[Z,X], Y 〉+ 〈X, [Z, Y ]〉 = 0 ∀ Z,X, Y ∈ g.

The subspaces h and p of a Cartan decomposition are orthogonal with
respect to the Cartan-Killing form on g.

If G is compact (so G/H is a symmetric space of the compact type),
then the Cartan-Killing form is negative definite. If G is noncompact, so
H is its maximal compact subgroup (and G/H is a symmetric space of the
non-compact type) then the Cartan-Killing form is definite negative on h
and positive definite on p.
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2.8.1 Bi-invariant metric on G.

We can define a left invariant metric on G by transporting the Cartan-
Killing form at any point of G with LTg . As before, we denote X l

g = Lg
TX

and Y l
g = Lg

TY . Then we define

Cg(X
l
g, Y

l
g ) ≡ 〈LTg−1X l

g, L
T
g−1Y l

g 〉 = 〈X,Y 〉.

Since the left invariant vector fields span TgG at each g, Cg is well defined.
By construction, C is left invariant:

Cgg′(X
l
gg′ , Y

l
gg′) = 〈X,Y 〉 = Cg′(X

l
g′ , Y

l
g′).

We consider now the right translation

G
Rg−−−−→ G

g′ −−−−→ g′g.

Let us compute the right action on C,

Cg′g(Rg
TX l

g′ , Rg
TY l

g′) = 〈L(g′g)−1
TRTgX

l
g′ , L(g′g)−1

TRg
TY l

g′〉 =

〈Lg−1
TLg′−1

TRg
TX l

g′ , Lg−1
TLg′−1

TRg
TY l

g′〉 =

〈Lg−1
TRg

TX l
e, Lg−1

TRg
TY l

e 〉 =

〈Adg−1X,Adg−1Y 〉 =

〈X,Y 〉 = Cg′(X
l
g′ , Y

l
g′).

We have used the facts that RgLg′ = Lg′Rg, that Adg−1 is an automorphism
of g and that 〈 , 〉 is invariant. So we have proven that C is invariant under
left and right translations.

We note that the same construction can be done starting with right
translations instead of left translations. The result is the same bi-invariant
metric.

2.8.2 Invariant metric on G/H.

The Cartan-Killing form can be restricted to p, where it is definite (positive
or negative). Using the action of the group L̃g onG/H (see (2.32)) inherited
from the left translations, we can define a metric on G/H that has G as a
group of isometries,

C̃[g](X̃[g], Ỹ[g]) ≡ 〈p(X), p(Y )〉,
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where Xg is an arbitrary representative of X̃[g] and X = LTg−1Xg.

Let us see if it is well defined. LetX ′g′ = LTg′X
′ be another representative

with g′ = gh, then (Xg −RTh−1X ′g′) ∈ Fg.
Let us compute it for g = e, so g′ = h. We get

X ′h = LThX
′, RTh−1LThX

′ −X = AdhX
′ −X ∈ h.

The adjoint representation of G decomposes under H as

AdG −−−−→
H

AdH + S,

(see (2.31)). Then we have

p(AdhX
′) = S(h)p(X ′) = p(X).

Since C is invariant under automorphisms,

〈p(X), p(Y )〉 = 〈S(h−1)p(X), S(h−1)p(Y )〉,

then C̃[g] is well defined. Notice that we have only used the invariance
under H.

The invariance of C̃[g] under the left action of G on G/H

G/H
L̃g′−−−−→ G/H

[g] −−−−→ [g′g]

is straightforward: if Xg = LTgX is a representative of X̃[g], L
T
g′Xg is a

representative of L̃Tg′X̃[g]. So we have

C̃[g′g](L̃
T
g′X̃[g], L̃

T
g′ Ỹ[g]) = 〈p(X), p(Y )〉 = C̃[g](X̃[g], Ỹ[g]),

as we wanted to show.

2.8.3 Invariant tensors on G/H.

Let B be a contravariant n-tensor on p, invariant under the action of H,

B(S(h)X1, . . . , S(h)Xn) = B(X1, . . . , Xn), Xi ∈ p, h ∈ H.

Infinitesimally this means,

B([Y,X1], . . . , Xn) + · · ·B(X1, . . . , [Y,Xn]) = 0, Xi ∈ p, Y ∈ h.
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We want to define an invariant tensorial field over G/H. As before, if
Xi
g = LTgX

i is a representative of X̃i
[g] we can define

B̃[g](X̃
1
[g], . . . , X̃

n
[g]) = B(p(X1), . . . , p(Xn)). (2.33)

Using the same arguments than in Subection 2.8.2, one can check that B̃
is well defined and that it is invariant under the action of G.

Notice that the requirements that we have made here are much softer
than the ones in Subsection 2.8.2. We could have started with a symmetric
invariant tensor on p, not necessarily on g and invariant only under H. This
defines an invariant tensorial field over G/H. With the Cartan-Killing form
we have that the resulting tensor is a definite positive metric on G/H.

At the infinitesimal level, the invariance of B̃ means that the Lie deriva-
tive with respect to the fundamental vectors of the action of G on G/H is
zero.

LXB̃ = 0. (2.34)

Invariant scalar functions are constant.

2.9 Inönü-Wigner contractions of Lie algebras

We will use the contraction (Inönü-Wigner and generalized contractions [16,
17]) of an algebra with respect to a subalgebra in order to relate different
sigma models at the Lagrangian level. A similar problem was addressed in
ref.[15] for higher dimensional (Supergravity related) sigma models without
the WZ term. We will use the same technique here. We start by describing
it.

Let g be an arbitrary, finite dimensional Lie algebra with commutator
[ , ] and let g = g1 + g2, with g1 a subalgebra. We define the following
family of linear maps

φε : g→ g

x = x1 ⊕ x2 → x = x1 ⊕ εx2,

labeled by a real parameter ε whose interval of interest is 0 < ε ≤ 1. In
matrix form, the map and its inverse are block-diagonal

φε =

(
111 0
0 ε112

)
, φ−1

ε =

(
111 0
0 ε−1112

)
.
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We can define a new commutator

[X,Y ]ε = φ−1
ε

(
[φε(X), φε(Y )]

)
, X, Y ∈ g.

[ , ]ε is a deformed bracket. For ε 6= 0 it is, by construction, isomorphic to
the bracket with ε = 1. But if the limit ε→ 0 exists, then the bracket

[X,Y ]c = lim
ε→0

[X,Y ]ε , X, Y ∈ g. (2.35)

is well defined but, since φ0 is not invertible, [ , ]c will not be, in general,
isomorphic to the original bracket. The Lie algebra with the same suppor-
ting space than g and bracket [ , ]c is the Inönü-Wigner contraction [16] of
g with respect to the subalgebra g1. We will denote it as gc.

One can generalize this definition by allowing more general linear maps
in the place of φε. They should depend on a parameter ε and give a finite
answer to the contracted bracket (2.35) [17].

Let R : g → End(W ) be a representation of g on a finite dimensional
vector space W . We assume that there is a decomposition W = W1 ⊕W2

such that W1 is an invariant subspace under the action of the subalgebra
g1. We define a one parameter family of linear maps

W
ψε−−−−→ W

w = w1 ⊕ w2 −−−−→ w = w1 ⊕ εw2,

so

ψε =

(
111 0
0 ε112

)
, ψ−1

ε =

(
111 0
0 ε−1112

)
.

A representation of the deformed algebra is constructed as

Rε(X) = ψ−1
ε ◦R

(
φε(X)

)
◦ ψε, X ∈ g. (2.36)

It is easy to check that the map

Rc(X) = lim
ε→0

Rε(X)

is well defined and that it is a representation of gc on W . Notice that
ψε = φε for the adjoint representation.
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2.9.1 Deformed metric and 2-form

To define the deformed metric on a symmetric space we are going to
make use of the fact that G/H is a (solvable) group manifold. Let s =
solv(G/H) = s1 + s2, where s1 = solv(G′/H ′). Notice that not necessarily
G′ ⊂ G nor H ′ ⊂ H (although it is so in our examples but see ref.[15] for
some cases where it is not). We will denote by sε the solvable Lie algebra
with the deformed bracket. The idea is to take the standard inner product
in s,

〈X|p, Y |p〉 , X, Y ∈ s

and transport it with the left action of the deformed solvable group. We will
have a coset representative Lε in terms of some exponential coordinates,

Lε = Πie
siXi ,

where the dependence on ε is hidden in the group law. In a representation
of the deformed algebra

Rε(Lε) = ψ−1
ε ◦Πie

siφε(Xi) ◦ ψε,

so the deformed metric is

ds2
ε (Xx, Yx) =

〈
L−1
ε dLε(Xx)|p, L−1

ε dLε(Yx)|p
〉
.

The calculation will be done in the most convenient representation. Notice
that the resulting metric is invariant by the left action of the solvable group.
The rest of the symmetries are lost at this point, although some may be
recovered after the contraction.

The calculation for the 2-form is the same: we transport the 2-form B
from the tangent space at unity to the whole group by left translations,

Bε(Xx, Yx) = B
(
L−1
ε dLε(Xx)|p, L−1

ε dLε(Yx)|p
)
.

2.10 Discrete semigroups

We consider a set of n elements (that we will call generators) S = {λα, α =
1, · · · , n}. We say that S is a semigroup if it is equipped with an associative
product

· : S × S → S

�
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Notice that:

• It does not exist necessarily the identity element λα · 11S = λα ∀α =
1, . . . , n

• The elements λα do not need to have an inverse.

• If there exists an element 0S such that λα · 0S = 0S ∀α we will call it
a zero element

n is the order of the semigroup. If λα · λβ = λβ · λα, the discrete
semigroup is said to be commutative or abelian.

We can give the product by means of a multiplication table, a n × n
matrix {aαβ} with entries in {λα}.

λ1 · · · λβ · · · λn

λ1 • • • • •
· · · • • • • •
λα • • λκ • •
· · · • • • • •
λn • • • • •

Fig. 2.5: Generic multiplication table for a semigroup of order n

Figure 2.5 is a very visual way to describe a semigroup. For instance,
it allows us to check easily if a semigroup is commutative, because in that
case its multiplication table is symmetric.

The quantities Kκαβ, called selectors are defined in the following way

Kκαβ =

{
1 if λα · λβ = λκ,

0 if λα · λβ 6= λκ.

An informal way of expressing the group law by means of the selectors is
as follows:

λα · λβ = Kκαβλκ.

If we have a subset of m< n generators S
′

= {λα1 · · ·λαm} , S
′ ⊂ S such

that the product closes on this subset, λαp · λαq = Kαrαp αqλαr ∈ S
′
, we say

that {S′ , ·} is a discrete subsemigroup of {S, ·}. A discrete subsemigroup
is itself a semigroup, and it can be commutative and have a 0S′ element,
even if S does not have this properties.



2.10. Discrete semigroups 35

Isomorphisms of semigroups Consider the semigroups given by the multi-
plication tables Figure 2.6 and Figure 2.7.

λ1 λ2

λ1 λ1 λ1

λ2 λ1 λ1

Fig. 2.6: Example of a semigroup.

λ1 λ2

λ1 λ2 λ2

λ2 λ2 λ2

Fig. 2.7: Anoter example of a semigroup. Note that this has the same structure
than Figure 2.6 if we change λ1 by λ2.

These two semigroups have exactly the same structure if we rename λ1

by λ2 in Figure 2.7 and viceversa. This is an example of an isomorphism
of semigroups. The group of isomorphisms between semigroups of order n
is isomorphic to the group of permutations of n elements, Σn [36].

Let A = {aαβ, α, β = 1, . . . , n} and B = {bαβ, α, β = 1, . . . , n} be the
multiplication tables of two semigroups of order n. We say that A and B
describe two isomorphic semigroups if a permutation σ ∈ Σn exists such
that

bαβ = σ(aσ−1(α),σ−1(β)).

If, instead, we have

bαβ = α(aσ−1(β),σ−1(α))

we say that A and B are related by an antiisomorphism.

Resonant decomposition of a semigroup. We consider a discrete semigroup
{S, ·} with two subsets S0, S1 ⊂ S. We say that (S0, S1) is a resonant
decomposition of S if the following properties are satisfied:

1. S0 ∪ S1 = S,

2. S0 · S0 ⊂ S0,

3. S0 · S1 ⊂ S1,



36 2. Preliminars

4. S1 · S1 ⊂ S0.

S0 is a subsemigroup (S1 is not). A semigroup can have more than one
resonant decomposition. We explore this fact in Chapter 8.

2.11 The S-expansion procedure

In this Section we briefly describe the general abelian semigroup expansion
procedure (S-expansion for short). We refer the interested reader to ref.[37]
for further details.

We consider a Lie algebra g with generators {Xi, i = 1, . . . , n} and Lie
bracket

[Xi, Xj ] = CkijXk,

and a finite abelian semigroup S = {λα, α = 1, . . . ,m}. According to The-
orem 3.1 from ref.[37], the direct product

gS = S × g (2.37)

is also a Lie algebra. The elements of this expanded algebra are denoted
by

X(i,α) = λα ×Xi, (2.38)

where the product is understood as a direct product of the elements λα
of the semigroup S and the generators Xi of g. The Lie bracket in gS is
defined as [

X(i,α), X(j,β)

]
= λα · λβ × [Xi, Xj ] . (2.39)

Note that to get an antisymmetric bracket the semigroup must be abelian.4

gS = S × g is called the S-expansion of g. There are two cases when it is
possible to systematically extract subalgebras from S⊗g. For example, if we
assume that we can decompose g in a direct sum of subspaces, g = V0⊕V1,
where

[V0, V0] ⊂ V0,

[V0, V1] ⊂ V1,

[V1, V1] ⊂ V0,

and that the semigroup S has a resonant decomposition, S = S0 ∪S1, then
we have that

gS,R = (S0 ⊗ V0)⊕ (S1 ⊗ V1) (2.40)

4 The only exception is when the algebra g is abelian.
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is a Lie subalgebra of gS called a resonant subalgebra (see Theorem 4.2 of
ref.[37]).

An even smaller algebra can be obtained when there is a zero element
0S in the semigroup. When this is the case, the whole 0S ⊗ g sector can be
removed from the resonant subalgebra. (see Definition 3.3 from ref.[37]).
When the semigroup has a zero element the commutation relations of the
expanded algebra gS are given by,[

X(i,α), X(j,β)

]
= CkijK

γ
αβX(k,γ) + CkijK0

αβX(k,0), λα, λβ 6= 0S ,[
X(i,0), X(j,β)

]
= CkijX(k,0),[

X(i,0), X(j,0)

]
= CkijX(k,0).

0S × g ∈ gS is an ideal so g/0S × g is a Lie algebra. We denote this algebra
by gred

S,R. The commutation relations of the 0S-reduced algebra are[
X(i,α), X(j,β)

]
= CkijK

γ
αβX(k,γ).

2.12 Bianchi’s classification of 3-dimensional Lie algebras

In ref.[29] Bianchi proposed a procedure to classify the 3-dimensional spaces
that admit a 3-dimensional isometry. He showed how to represent the
generators as Killing vectors and how to get the corresponding metrics.
The, he formulated Bianchi’s theorem.

Here we are interested in studying the possibility to relate, by means
of expansions, 2 and 3-dimensional isometry algebras. The 2-dimensional
algebras are simply

[X1, X2] = 0 and (2.41)

[X1, X2] = X1. (2.42)

The 3−dimensional algebras are given in Figure 2.8.

2.13 Wess-Zumino-Witten (WZW) models

In this Section we review Chapter 15 in ref.[38]. We follow closely ref.[39].
We are interested in models that exhibit conformal invariance. We

consider 2-dimensional sigma models whose target space is a semisimple
Lie group, from now on denoted by G. Let g(z0, z1) be a map from a two
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Group Algebra

type I [X1, X2] = [X1, X3] = [X2, X3] = 0

type II [X1, X2] = [X1, X3] = 0, [X2, X3] = X1

type III [X1, X2] = [X2, X3] = 0, [X1, X3] = X1

type IV [X1, X2] = 0, [X1, X3] = X1, [X2, X3] = X1 +X2

type V [X1, X2] = 0, [X1, X3] = X1, [X2, X3] = X2

type VI
[X1, X2] = 0, [X1, X3] = X1, [X2, X3] = hX2,
where h 6= 0, 1

.

type VII1 [X1, X2] = 0, [X1, X3] = X2, [X2, X3] = −X1

type VII2
[X1, X2] = 0, [X1, X3] = X2, [X2, X3] = −X1 + hX2,
where h 6= 0 (0 < h < 2).

type VIII [X1, X2] = X1, [X1, X3] = 2X2, [X2, X3] = X3

type IX [X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2

Fig. 2.8: Bianchi’s classification of 3-dimensional Lie algebras.

dimensional manifold M2 with coordinates (z0, z1) to G. We consider the
following functional action:

S0[g] =
1

4a2

∫
M2

tr(g−1dgg−1dg) =
1

4a2

∫
M2

tr(dgg−1dgg−1), (2.43)

where in (2.43) the notation means

g−1dg = g−1(z0, z1)∂µgdzµ, µ = 0, 1,

that is, we are considering the pull-back by the map g(z0, z1) of the 1-
forms, and the integration is performed over the two dimensional manifold.
In fact, we can write

S0[g] =
1

4a2

∫
M2

d2z tr(g−1∂µgg
−1∂µg) = − 1

4a2

∫
M2

d2z tr
(
∂µ(g−1)∂µg

)
.

The 1-form g−1dg is valued in the Lie algebra g of G, so it has dim(G)
components that are ordinary, left invariant forms (Maurer-Cartan forms).
The trace, taken over a representation of G, can be appropriately normali-
zed. The 1-form dgg−1 is also Lie algebra valued, ant its components are
right invariant forms. We conclude that the action (2.43) is invariant un-
der independent left and right group translations, so the symmetry group
is G×G or, as sometimes it is denoted, GL ×GR.
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There is still another way of writing (2.43). Let us choose coordinates
in G, φi , with i = 1, . . . ,dim(G), then

∂µg = ∂ig∂µφ
i,

and

S0 =
1

2a2

∫
M2

d2σgij∂
µφi∂µφ

j , gij =
1

2
tr(g−1∂igg

−1∂jg). (2.44)

The metric gij has then G × G as a group of isometries. In the form
(2.44) the Wess-Zumino-Witten model is a standard sigma model in two
dimensions.

To obtain the field equations, we compute the variation of S under an
arbitrary change g → g + ∂g,

4a2δL = ∂µδg∂µg + ∂µg−1∂µδg =

∂µ(δg−1∂µg)− δg−1�g + ∂µg−1∂µδg =

∂µ(δg−1∂µg) + g−1δgg−1�g + ∂µ(δg−1∂µg) =

∂µ(δg−1∂µg) + g−1δgg−1�g − g−1∂µgg−1∂µδg =

∂µ(δg−1∂µg) + g−1δgg−1�g + ∂µ(g−1∂µgg−1)δg −
∂µ(g−1∂µgg−1δg).

The first and fourth terms cancel each other using the cyclic property of
the trace and ∂µg

−1 = −g−1∂µgg
−1 . We obtain

4a2δL = g−1δgg−1�g + ∂µ(g−1∂µgg−1)δg =

g−1δgg−1�g + g−1�gg−1δg + ∂µg
−1∂µgg−1δg +

g−1∂µg∂mug
−1δg = g−1δgg−1�g + g−1�gg−1δg +

∂µg
−1∂µgg−1δg + g−1g∂µg

−1gg−1∂µgg
−1δg =

g−1δgg−1�g + g−1�gg−1δg + ∂µg
−1∂µgg−1δg +

g−1δg∂µg−1∂µg.

Reorganizing the terms we have

δS0[g] =
1

2a2

∫
M2

d2z tr(g−1δg∂µg−1∂µg + g−1δgg−1�g) =

1

2a2

∫
M2

d2z tr(g−1δg∂µ(g−1∂µg)).



40 2. Preliminars

Requiring that this variation is zero gives the field equations

∂µ(g−1∂µg) = 0. (2.45)

If we want to use the formalism of complex variables we have to write the
last equation in terms of holomorphic and antiholomorphic variables,

∂zJz̄ + ∂̄z̄Jz̄ = 0, Jz = g−1∂zg, Jz̄ = g−1∂z̄g.

In general it is not true that the two currents, Jz and Jz̄ are conserved
separately. Due to the fact that the Virasoro algebra is spanned by two
currents (the holomorphic and the antiholomorphic one), we should look
for a theory where two independent currents are conserved.

To obtain the separate conservation of the currents, one can add a term
due to Wess and Zumino [40],

Γ[g̃] =
−i

24π

∫
M3

tr(g−1dg ∧ g−1dg ∧ g−1dg)

=
−i

24π

∫
M3

d3y εαβγtr(g̃−1∂αg̃g̃−1∂β g̃g̃−1∂γ g̃). (2.46)

Some explanation is in order. The integration is done over a 3-dimensional
space whose boundary is the compactification of our 2 dimensional space.
For example, we can think on a solid ball in R3, delimited by the sphere
S2 which is the compactification of R2. Then we also compactify R3 to S3.
g̃ is an extension of the map g to that 3 dimensional space. It is easy to
show, using the cyclic property of the trace and the antisymmetry of the
wedge product that

d
(
tr(g−1dg ∧ g−1dg ∧ g−1dg)

)
= 0,

so the expression under the integral sign in (2.46) is a closed, possibly non
exact 3-form.

In S3, the manifold delimited by a given cycle S2 is not unique. Let
us proceed by analogy in two dimensions, so one can visualize it better.
Instead of S3 we consider S2, and we draw a circle S1 on its surface. It
delimits a disc, which plays the role of the solid ball. In Fig. 2.9 we
can see the setting. If we use the right-hand rule in the frontier (the red
circumference) to define the orientation of the manifolds A and B, then
they have opposite orientations. So the difference between the integration
in A and in B is the integration on all the surface of the sphere,

∆Γ = Γ
∣∣
A
− Γ

∣∣
B

= Γ
∣∣
sphere

.
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Fig. 2.9: Example of the setup needed to use the Wess-Zumino term
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This quantity depends only on the cohomology class of the integrand, which
is integer. This implies that it is an integer multiple of 2πi, (we choose a
normalization of the trace so we get exactly this result), so the functional
integral is well defined.

The same argument can be used to prove that the integral is indepen-
dent of the extension g̃. We assume that we have an extension g̃ to the
whole sphere. Let g̃′ a smooth deformation of g̃. Then

Γ
∣∣
A

[g̃′]− Γ
∣∣
A

[g̃] = Γ
∣∣
A

[g̃′] + Γ
∣∣
B

[g̃].

The right hand side of this equation is again Γ
∣∣
sphere

for some map defined

by both, g̃ on A and g̃′ on B, on the whole sphere. It is again a multiple of
2πi, so, as before, the path integral with weight exp(−Γ) is well defined.

The action proposed by Wess and Zumino is then

S = S0 + kΓ, k ∈ Z.

Varying it with respect to g we obtain the field equations

(1 +
a2k

4π
)∂z(g

−1∂z̄g) + (1− a2k

4π
)∂z̄(g

−1∂zg) = 0. (2.47)

One can choose a2 = 4π
k , and then the field equations reduce to the conser-

vation law
∂zJz̄ = 0, Jz̄ = g−1∂z̄g.

The general solution is

g(z, z̄) = f(z)f̄(z̄), f(z), f̄(z̄) ∈ G.

This implies also the conservation of Jz = ∂zgg
−1. The separate conserva-

tion of the two currents implies that the Virasoro algebra is an algebra of
symmetries of the model. Let us see this.

As we mentioned at the beginning of this Section, the model has a global
symmetry under GL ×GR. In fact, the symmetry is local in the following
sense:

g(z, z̄) −→ Ω(z)g(z, z̄)Ω̄(z̄).

where Ω(z) and Ω̄(z̄) are two (different) group elements. The infinitesimal
transformations are

δwg = wg, δw̄g = −gw̄, δww̄g = δwg + δw̄g. (2.48)
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We can actually compute the infinite dimensional algebra of the sym-
metry transformations (2.48). Let ta be a basis of g, so

[ta, tb] = fabct
c,

where fabc are the structure constants. The currents can be expressed as

Jz(z) =
∑
a

Ja(z)t
a, J̄z̄(z̄) =

∑
a

Ja(z̄)t
a.

It is convenient to redefine the currents by multiplying them by the number
k.

There are Ward identities with the currents J(z) and J̄(z̄) , which allow
us to compute the operator product expansion (OPE) of the currents. This
computation is done in detail in ref.[38], so we will just quote the result.
Let us focus in the holomorphic current, with Laurent development

Ja(z) =
∑
n

z−n−1Jan.

Then, the OPE of two currents has the form

Ja(z)Jb(w) ∼ kδab

(z − w)2
+
∑
c

ifabc
Jc

(z − w)
,

one can prove that the modes Jan satisfy the Lie algebra

[Jan, J
b
m] =

∑
c

ifabcJ
c
n+m + knδabδn+m,0.

This is a Kac-Moody algebra. It is an example of an affine Lie algebra, that
can be constructed as a central extension of the loop algebra associated to
g . The number k is called the level of the algebra.

The same procedure can be applied for the antiholomorphic current,
giving another copy of the Kac-Moody algebra

[J̄an, J̄
b
m] =

∑
c

ifabcJ̄
c
n+m + knδabδn+m,0,

and vanishing mixed commutators,

[J̄an, J
b
m] = 0.
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It can be proven [38] that the energy-momentum tensor of a WZW
model has the form

T (z) =
1

2(k + δ)

∑
a

: Ja(z)Ja)(z) :, (2.49)

where we have introduced the normal ordered product of the currents.
The number δ is a characteristic of the Kac-Moody algebra called the dual
Coxeter number 5. Then, the modes of the Laurent expansion of the energy-
momentum tensor (2.49) can be expressed in terms of the modes Jan as

Ln =
1

2(k + δ)

∑
a

 ∑
m≤−1

JamJ
a
n−m +

∑
m≥0

Jan−mJ
a
m

 =

1

2(k + δ)

∑
a

∑
m

: JamJ
a
n−m : .

One can check that these modes satisfy the Virasoro algebra. Then, WZW
models are a type of quantum field theory with conformal symmetry. The
complete Kac-Moody and Virasoro algebras of this model are then

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0,

[Ln, J
a
m] = −mJan+m,[

Jan, J
b
m

]
=

∑
c

ifabcJ
c
n+m + knδabδn+m,0.

5 We do not need to enter in more details on the dual Coxeter number, it will take us
far away from our purpose.



3. STAR PRODUCT ON MINKOWSKI SPACE

In this Chapter we present a noncommutative product in Minkowski space
(M) (see Section 2.4). In Section 3.1 we define this product (the star
product) as an algebraic product in the algebra of polynomials on M , O(M).
We give an explicit formula for the star product of two such polynomials. In
Section 3.2 we show that it is possible to reproduce the star product with a
bidifferential operator to any order in the noncommutativity parameter and
we compute it up to order 2. Finally we define this bidifferential operator
as the star product on fields. These results have been published in ref.[2].

3.1 Algebraic star product on Minkowski space

We consider now the algebra of the classical Minkowski space with the
scalars extended to the ring Cq ≈ C[q, q−1] (see Remark 2.3.1). With the
generators used in (2.20)

O(M)[q, q−1] ≡ Cq[t41, t42, t31, t32].

We consider also the non commutative algebraOq(M) on quantum Minkowski
space defined in Section 2.5. There is an isomorphism O(M)[q, q−1] ≈
Oq(M) as modules over Cq. In fact, in ref.[41] it was proven that the map

Cq[t41, t42, t31, t32]
QM−−−−→ Oq(M)

ta41t
b
42t

c
31t

d
32 −−−−→ t̂a41t̂

b
42t̂

c
31t̂

d
32.

(3.1)

is a module isomorphism (so it has an inverse). A map like (3.1) is called
an ordering rule or quantization map. So Oq(M) is a free module over Cq,
with basis the set of standard monomials.

We can pull back the product on Oq(M) to O(M)[q, q−1]. There, we
can define the star product as

f ? g = Q−1
M

(
QM(f)QM(g)

)
, f, g ∈ O(M)[q, q−1]. (3.2)
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By construction, the star product is associative.
The algebra (O(M)[q, q−1], ? ) is then isomorphic to Oq(M). Working

on O(M)[q, q−1] has the advantage of working with ‘classical’ objects (the
polynomials), were one has substituted the standard pointwise product by
the noncommutative star product. This is important for the physical ap-
plications. Moreover, we can study if this star product has an extension to
all the C∞ functions, and if the extension is differential. If so, Kontsevich’s
theory [42] would then be relevant.

We want to obtain a formula for the star product. We begin by com-
puting the auxiliary relations

t̂m42t̂
n
41 = q−mnt̂n41t̂

m
42,

t̂m31t̂
n
41 = q−mnt̂n41t̂

m
31,

t̂m31t̂
n
42 = t̂n42t̂

m
31,

t̂m32t̂
n
42 = q−mnt̂n42t̂

m
32,

t̂m32t̂
n
31 = q−mnt̂n31t̂

m
32.

After a (lengthy) computation we obtain

t̂m32t̂
n
41 = t̂n41t̂

m
32 +

µ∑
k=1

Fk(q,m, n)t̂n−k41 t̂k42t̂
k
31t̂

m−k
32 ,

where µ = min(m,n),

Fk(q,m, n) = βk(q,m)
k−1∏
l=0

F (q, n− l) with F (q, n) =

(
1

q2n−1
− q

)
(3.3)

and βk(q,m) is defined by the recursive relation

β0(q,m) = βm(q,m) = 1, and βk(q,m+1) = βk−1(q,m)+βk(q,m)q−2k.

Moreover, βk(q,m) = 0 if k < 0 or if k > m. Using the above relations, we
obtain the star product of two arbitrary polynomials:

(ta41t
b
42t

c
31t

d
32) ? (tm41t

n
42t

p
31t

r
32) = q−mc−mb−nd−dpta+m

41 tb+n42 tc+p31 td+r
32

+

µ=min(d,m)∑
k=1

q−(m−k)c−(m−k)b−n(d−k)−p(d−k)Fk(q, d,m)

ta+m−k
41 tb+k+n

42 tc+k+p
31 td−k+r

32 . (3.4)
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3.2 Differential star product on the big cell

In order to compare the algebraic star product obtained above with the
differential star product approach, we consider a change in the parameter,
q = exph. The classical limit is then obtained as h → 0. We will expand
(3.4) in powers of h and we will show that each term can be written as
a bidifferential operator. Then, the extension of the star product to C∞

functions is unique.

3.2.1 Explicit computation up to order 2

We first take up the explicit computation of the bidifferential operators up
to order 2. Then we will argue that a differential operator can be found at
each order.

We rewrite (3.4) as

f ? g = fg +
∞∑
j=1

hjCj(f, g),

with
f = ta41t

b
42t

c
31t

d
32, g = tm41t

n
42t

p
31t

r
32.

At order 0 in h we recover the commutative product. At order n in h we
have contributions from each of the terms with different k in (3.4).

Cn(f, g) =

µ=min(d,m)∑
k=0

C(k)
n (f, g),

(the terms with k = 0 come from the first term in (3.4)).

Let us compute each of the contributions C
(k)
1 :

• k = 0. We have

C
(0)
1 = (−mc−mb− nd− dp) ta+m

41 tb+n42 tc+p31 td+r
32 .

It is easy to see that this is reproduced by the bidifferential operator

C
(0)
1 (f, g) = −(t41t31∂31f∂41g + t42t41∂42f∂41g + t32t42∂32f∂42g+

t32t31∂32f∂31g).
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We will denote the bidifferential operators by means of the tensor
product (as it is customary). For example

C
(0)
1 = −(t41t31∂31 ⊗ ∂41 + t42t41∂42 ⊗ ∂41 + t32t42∂32 ⊗ ∂42+

t32t31∂32 ⊗ ∂31),

so
C

(0)
1 (f, g) = C

(0)
1 (f ⊗ g).

• k = 1. Let us first compute the factor F1(q, d,m) = β1(q, d)F (q,m).
First, notice that

β1(q, d) =1 + q−2 + q−4 + · · ·+ q−2(d−1) =
e−2dh − 1

e−2h − 1
=

d− d(d− 1)h+
1

3
d((1− 3d+ 2d2)h2 +O(h3),

and that
F (q, n) = −2nh+ 2n(n− 1)h2 +O(h3),

so up to order h2 we have

β1(q, d)F (q,m) = −2mdh+ 2md(d+m− 2)h2 +O(h3).

Finally, the contribution of the k = 1 term to C1 is

C
(1)
1 (f, g) = −2mdta+m−1

41 tb+n+1
42 tc+p+1

31 td+r−1
32 .

This is reproduced by the bidifferential operator

C
(1)
1 = −2t42t31∂32 ⊗ ∂41.

• k ≥ 2 We have the factor

βk(q, d)F (q,m)F (q,m− 1) · · ·F (q,m− k) = O(hk),

so the terms with k ≥ 2 do not contribute C1.

Summarizing,

C1 =C
(0)
1 + C

(1)
1 = −(t41t31∂31 ⊗ ∂41 + t42t41∂42 ⊗ ∂41+

t32t42∂32 ⊗ ∂42 + t32t31∂32 ⊗ ∂31 + 2t42t31∂32 ⊗ ∂41), (3.5)
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so C1 is extended to the C∞ functions. If we antisymmetrize C1 we obtain
a Poisson bracket

{f, g} =t41t31(∂41f∂31g − ∂41g∂31f) + t42t41(∂41f∂42g − ∂41g∂42f)+

t32t42(∂42f∂32g − ∂42g∂32f) + t32t31(∂31f∂32g − ∂31g∂32f)+

2t42t31(∂41f∂32g − ∂41g∂32f). (3.6)

We can express the Poisson bracket in terms of the usual variables in
Minkowski space. Using (2.22), the change of coordinates is

(
t31 t32

t41 t42

)
= xµσµ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
,

and the inverse change is

x0 =
1

2
(t31+t42), x1 =

1

2
(t32+t41), x2 =

i

2
(t32−t41), x3 =

1

2
(t31−t42).

In these variables the Poisson bracket is

{f, g} =i
(
(x0)2 − (x3)2)(∂1f∂2g − ∂1g∂2f) + x0x1(∂0f∂2g − ∂0g∂2f)−

x0x2(∂0f∂1g − ∂0g∂1f)− x1x3(∂2f∂3g − ∂2g∂3f)+

x2x3(∂1f∂3g − ∂1g∂3f)
)
. (3.7)

We now compute the term C2. We sum the contributions to the order
h2 of each term in (3.4)

• k = 0. The contribution to the order h2 is

C
(0)
2 =

1

2
(mc+mb+ nd+ dp)2 ta+m

41 tb+n42 tc+p31 td+r
32 .
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This is reproduced by

C
(0)
2 =

1

2
t31t41 ∂31(t31∂31)⊗ ∂41(t41∂41)+

t42t31t41 ∂42∂31 ⊗ ∂41(t41∂41) + t31t32t41t42 ∂31∂32 ⊗ ∂41∂42+

t231t32t41 ∂31∂32 ⊗ ∂41∂31 +
1

2
t42t41 ∂42(t42∂42)⊗ ∂41(t41∂41)+

t41t
2
42t32∂42∂32 ⊗ ∂41∂42 + t41t42t31t32∂42∂32 ⊗ ∂41∂31+

1

2
t32t42t31∂32(t32∂32)⊗ ∂42∂31+

1

2
t32t31 ∂32(t32∂32)⊗ ∂31(t31∂31)+

t32t42t31 ∂32(t32∂32)⊗ ∂42(t42∂42).

• k = 1. We have that

F1(q, d,m) = β1(q, d)F (q,m).

Expanding both factors we have

β1(q, d) = d− d(d− 1)h+O(h2),

F (q,m) = −2mh− 2m(1−m)h2 +O(h3),

so we get

β1(q, d)F (q,m) ≈ −2mdh+ 2md((m− 1) + (d− 1))h2,

and the contribution to order h2 is

h2
(

2md
(
(m− 1) + (d− 1) + (m− 1)c+ (m− 1)b+ n(d− 1)+

p(d− 1)
))
· ta+m−1

41 tb+n+1
42 tc+p+1

31 td+r−1
32 .

We reproduce this result with

C
(1)
2 = 2t32t42t31∂

2
32 ⊗ ∂41 + 2t31t42t41∂32 ⊗ ∂2

41+

2t31t
2
42t41∂42∂32 ⊗ ∂2

41 + 2t42t
2
31t41∂31∂32 ⊗ ∂2

41+

2t31t
2
42t32∂

2
32 ⊗ ∂41∂42 + 2t42t

2
31t32∂

2
32 ⊗ ∂41∂31.



3.2. Differential star product on the big cell 51

• k = 2. One can show that

β2(q, d) =
d(d− 1)

2
+O(h),

so

β2(q, d)F (q,m)F (q,m− 1) ≈ 2d(d− 1)m(m− 1)h2,

and the contribution of this term to the order h2 is

h2 2d(d− 1)m(m− 1) ta+m−2
41 tb+n+2

42 tc+p+2
31 td+r−2

32 .

This is given by

C
(2)
2 = 2t242t

2
31∂

2
32 ⊗ ∂2

41.

Summarizing we get

C2 =
1

2
t31t41 ∂31(t31∂31)⊗ ∂41(t41∂41) + t42t31t41 ∂42∂31 ⊗ ∂41(t41∂41)+

t31t32t41t42 ∂31∂32 ⊗ ∂41∂42 + t231t32t41 ∂31∂32 ⊗ ∂41∂31+

1

2
t42t41 ∂42(t42∂42)⊗ ∂41(t41∂41) + t41t

2
42t32∂42∂32 ⊗ ∂41∂42+

t41t42t31t32∂42∂32 ⊗ ∂41∂31 +
1

2
t32t42t31∂32(t32∂32)⊗ ∂42∂31+

1

2
t32t31 ∂32(t32∂32)⊗ ∂31(t31∂31) + 2t242t

2
31∂

2
32 ⊗ ∂2

41+

t32t42t31 ∂32(t32∂32)⊗ ∂42(t42∂42) + 2t32t42t31∂
2
32 ⊗ ∂41+

2t31t42t41∂32 ⊗ ∂2
41 + 2t31t

2
42t41∂42∂32 ⊗ ∂2

41 + 2t42t
2
31t32∂

2
32 ⊗ ∂41∂31+

2t42t
2
31t41∂31∂32 ⊗ ∂2

41 + 2t31t
2
42t32∂

2
32 ⊗ ∂41∂42.

3.2.2 Differentiability at arbitrary order

We are going to prove now the differentiability of the star product. We
keep in mind the expression (3.4), which has to be expanded in h. Our goal
will be to show that, at each order, it can be reproduced by a bidifferential
operator with no dependence on the exponents a, b, c, d,m, n, p, r.

Let us first argue on a polynomial function of one variable, say x. For
example, we have

m xm−1 = ∂x
(
xm
)
.
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More generally, we have

mb xm = (x∂x)b
(
xm
)

and

mb(m− 1)c · · · (m− k + 1)d xm−k =

∂x(x∂x)d−1 . . . ∂x(x∂x)c−1∂x(x∂x)b−1(xm). (3.8)

Notice that in the last formula, we have b, c, . . . , d ≥ 1, otherwise the for-
mula makes no sense. In fact, an arbitrary polynomial

p(x) =
∑
k∈Z

fk(m,x)xm−k,

is not generically obtainable from xm by the application of a differential
operator with coefficients that are independent of the exponents and poly-
nomial in the variable x. One can try for example with p(x) = xm−1. We
then have that

xm−1 =
1

m
∂x(xm), or xm−1 =

1

x
xm.

So the right combinations should appear in the coefficients in order to be
reproduced by a differential operator with polynomial coefficients.

Let us see the contribution of the terms with different k in (3.4). We
start with the term k = 0. From

q−mc−mb−nd−dp ta+m
41 tb+n42 tc+p31 td+r

32

we only get terms of the form

bibcicdidmimninpip ta+m
41 tb+n42 tc+p31 td+r

32 .

Applying the rules (3.8), these terms can be easily reproduced by the bi-
differential operators of the form

(t42∂42)ib(t31∂31)ic(t32∂32)id ⊗ (t41∂41)im(t42∂42)in(t31∂31)ip ,

applied to
ta41t

b
42t

c
31t

d
32 ⊗ tm41t

n
42t

p
31t

r
32.

We turn now to the more complicated case of k 6= 0. We have to
consider the two factors in (3.4)

q−(m−k)c−(m−k)b−n(d−k)−p(d−k), and Fk(q, d,m).
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Expanding both factors in powers of h it is easy to see that the coeffi-
cients at each order are polynomials in m,n, p, b, c, d, k. What we have to
check is that these polynomials have a form that can be reproduced with a
bidifferential operator using (3.8). Let us start with

Fk(q, d,m) = βk(q,m)
k−1∏
l=0

F (q,m− l).

From the definition (3.3), we have that F (q, j)|j=0 = 0, so

F (q, j) = jG(q, j),

with G(q, j) a series in h with coefficients that are polynomial in j. More
generally, for the product we have

Lk(q,m) =
k−1∏
l=0

F (q,m− l) = m(m− 1)(m− 2) · · · (m− k + 1)L′(q,m).

The polynomials in L′(q,m) are easily obtained with combinations of dif-
ferential operators of the form(

t41∂41
)i

(tm41).

The remaining factor m(m−1)(m−2) · · · (m−k+ 1)tm−k41 is adjusted with
the differential operator

∂k41(tm41) = m(m− 1)(m− 2) · · · (m− k + 1) tm−k41 .

Let us work now with βk(q,m). We have that

βk(q, d) = 0 for d < k,

so
βk(q, d) = d(d− 1)(d− 2) · · · (d− k + 1)β′k(q, d),

with β′k(q, d) a series in h with coefficients that are polynomial in d. The
differential operator that we need is of the form

∂k32(td32) = d(d− 1)(d− 2) · · · (d− k + 1) td−k32 .

Finally, the factor q−(m−k)c−(m−k)b−n(d−k)−p(d−k) introduces factors of
the form

bibcic(d− k)id(m− k)imninpip ta+m−k
41 tb+k+n

42 tc+k+p
31 td−k+r

32 ,
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which are reproduced by

tk42t
k
31

(
t42∂42

)ib(t31∂31
)ic(t32∂32

)id ⊗ (t41∂41
)im(t42∂42

)in(t31∂31
)ip

acting on
ta41t

b
42t

c
31t

d−k
32 ⊗ tm−k41 tn42t

p
31t

r
32.

This completes the proof of differentiability of the star product at arbi-
trary order.
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We can also define a star product on the groups. In this Chapter we show
that it is responsible for the quantum corrections to the classical action of
the Poincaré group on Minkowski space. We start by finding an ordering
rule for the group which we use to define a star coaction compatible with
the star product on Minkowski space. In Section 4.1 we calculate the order
h contribution to the coaction and reproduce it by means of a differential
operator which we define as the order h star coaction on fields. These
results have been published in [2].

Algebraic star coaction In particular, we are interested in the quantum
group Oq(Pl), the lower parabolic subgroup of SL(4,C) (see Section 2.3)
which we call the quantum Poincaré group plus dilations1. We would like
to see how the coaction on the Minkowski space looks in terms of the
star product, and if it is also differential. First of all, we notice that the
subalgebra generated by {x̂ij} and {ŷab} are two copies of the algebra of
2 × 2 quantum matrices, which commute among them. The maps to the
standard quantum matrices (A.1) are(

a b
c d

)
�

(
x̂11 x̂12

x̂21 x̂22

)
,

(
a b
c d

)
�

(
ŷ33 ŷ34

ŷ43 ŷ44

)
,

as can be deduced from (2.12) and (2.13). One can chose the Manin order
in each subset of variables,

ŷ44 < ŷ43 < ŷ34 < ŷ33, x̂22 < x̂21 < x̂12 < x̂11.

With this one can construct a quantization map (given by the standard
monomials basis) for the quantum Lorentz plus dilations group. We have
now to include the translations to have the complete quantization map for

1 We will call it simply quantum Poincaré group, but we shall remember that there is
this dilation factor.
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the Poincaré group. It is clear that one can choose the Manin order also
for the variables T̂ , but, since these variables do not commute with the x̂’s
and the ŷ’s, we have to be careful in choosing a full ordering rule. This is
a non trivial problem, but it can be solved. In Appendix A we show that
the ordering

ŷ44 < ŷ43 < ŷ34 < ŷ33 < x̂22 < x̂21 < x̂12 < x̂11 < T̂41 < T̂42 < T̂31 < T̂32

gives standard monomials that form a basis for the quantum Poincaré group
Oq(Pl). As for the Minkowski space star product (3.2), we extend the
scalars of the commutative algebra to Cq and define a quantization map
QG

O(Pl)[q, q
−1]

QG−−−−→ Oq(Pl)

Y XZ −−−−→ Ŷ X̂Ẑ.

where

Y = ya44y
b
43y

c
34y

d
33, Ŷ = ŷa44ŷ

b
43ŷ

c
34ŷ

d
33,

X = xe22x
f
21x

g
12x

l
11, X̂ = x̂e22x̂

f
21x̂

g
12x̂

l
11,

Z = Tm41T
n
42T

p
31T

r
32, Ẑ = T̂m41 T̂

n
42T̂

p
31T̂

r
32.

If f, g ∈ O(Pl)[q, q
−1], then the star product is defined as for the Minkowski

space,
f ?G g = Q−1

G (QG(f) ·QG(g)).

Let us now consider the coaction, formally as in (2.23). Using both
quantization maps (QM and QG) we can define a star coaction,

O(M)[q, q−1]
∆̃?−−−−→ → O(G)[q, q−1]⊗O(M)[q, q−1]

f −−−−→ Q−1
G ⊗Q

−1
M (∆(QM (f)),

having the compatibility property (see (2.5))

∆̃?(f ?M g) = ∆̃?(f)(?G ⊗ ?M )∆̃?(g), f, g ∈ O(M)[q, q−1]. (4.1)

4.1 The coaction as a differential operator

We will restrict to the Lorentz group times dilations, that is, we will con-
sider only the generators x and y.
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On the generators of Minkowski space the star coaction is simply

∆̃?(tai) = yabS(xji)⊗ tbj ,

and using the notation

t?ami = tmi ?M tmi ?M · · · ?M tmi︸ ︷︷ ︸
a times

for an arbitrary standard monomial the coaction is expressed as

∆̃?

(
ta41t

b
42t

c
31t

d
32

)
= ∆̃?(t

?a
41 ?M t?b42 ?M t?c31 ?M t?d32) =

(∆̃?t41)
?a

(?G ⊗ ?M)(∆̃?t42)
?b

(?G ⊗ ?M)(∆̃?t31)
?c

(?G ⊗ ?M)(∆̃?t32)
?d
.

We have used the symbol ‘?’ to indicate‘?M’, ‘?G’ or ‘?G×M’ to simplify the
notation. The meaning should be clear from the context. Contracting with
µG×M (see (2.24)) we define

τij ≡ µG×M ◦ ∆̃?(tij) = yabtbjS(xji).

Applying µG×M to the coaction, we get

µG×M ◦∆?(t
a
41t

b
42t

c
31t

d
32) = τ?a41 ?G×M τ?b42 ?G×M τ?c31 ?G×M τ?d32 . (4.2)

Notice that in each τ there is a sum of terms with factors ytS(x) that
generically do not commute. So we need to work out the star products in
the right hand side of (4.2).

As we are going to see, the calculation is quite involved. We are going
to make a change in the parameter q = exph and expand the star product
in power series of h. At the end, we will compute only the first order term
in h of the star coaction.

The star product ?G×M is written, as usual,

f1 ?G×M f2 =
∞∑
m=0

hmDm(f1, f2), f1, f2 ∈ O(g ×M)[[h]].

For our purposes it will be enough to consider functions f1 and f2 that are
polynomials in τ . The generators x, y and t commute among themselves,
so the star product in G×M can be computed by reordering the generators
in each set x, y, and t in the Manin ordering. The result will contain terms
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similar to the star product (see Section 3.4), and in particular, D1 will
contain three terms of the type C1 (3.5), one for the variables x, another
for the variables y and another for the variables t. But C1 is a bidifferential
operator of order 1 in each of the arguments, so it satisfies the Leibnitz rule

D1(f1, f2u) = D1(f1, f2)u+D1(f1, u)f2, u ∈ O(Pl)[q, q
−1],

and we have, for example,

D1(τij , τ
a
kl) = aD1(τij , τkl)τ

a−1
kl . (4.3)

In general, we have

τ?a41 ? τ
?b
42 ? τ

?c
31 ? τ

?d
32 =

∑
I∈I

hMDi1(τ41, Di2(τ41, . . . Dia−1(τ41, Dj1(τ42,

Dj2(τ42, . . . Djb−1
(τ42, Dl1(τ31, Dl2(τ31, . . . Dlc−1(τ31, Dm1(τ32,

Dm2(τ32, . . . Dmd−1
(τ32, τ32) . . . ).

Here M = i1 + . . .+ ia + j1 + . . .+ jb + l1 + . . .+ lc +m1 + . . .md and
we sum over all the multiindices

I = (i1, . . . , ia−1, j1, . . . , jb−1, l1, . . . , lc−1,m1, . . . ,md−1) .

We are interested in the first order in h, so M = 1. This means that for any
term in the sum we have only one D1 operator (the others are D0, which
is just the standard product of both arguments). So we have the sum

∑
k

(
τk41D1(τ41, τ

a−k−1
41 τ b42τ

c
31τ

d
32) + τa41τ

k
42D1(τ42, τ

b−k−1
42 τ c31τ

d
32)+

τa41τ
b
42τ

k
31D1(τ31, τ

c−k−1
31 τd32) + τa41τ

b
42τ

c
31τ

k
32D1(τ32, τ

d−k−1
32 )

)
.
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using (4.3) we get

a−1∑
k=1

kτa−2
41 τ b42τ

c
31τ

d
32D1(τ41, τ41) +

a∑
k=1

bτa−1
41 τ b−1

42 τ c31τ
d
32D1(τ41, τ42)+

a∑
k=1

cτa−1
41 τ b42τ

c−1
31 τd32D1(τ41, τ31) +

a∑
k=1

dτa−1
41 τ b42τ

c
31τ

d−1
32 D1(τ41, τ32)+

b−1∑
k=1

kτa41τ
b−2
42 τ c31τ

d
32D1(τ42, τ42) +

b∑
k=1

cτa41τ
b−1
42 τ c−1

31 τd32D1(τ42, τ31)+

b∑
k=1

dτa41τ
b−1
42 τ c31τ

d−1
32 D1(τ42, τ32) +

c−1∑
k=1

kτa41τ
b
42τ

c−2
31 τd42D1(τ31, τ31)+

c∑
k=1

dτa41τ
b
42τ

c−1
31 τd−1

32 D1(τ31, τ32) +
d−1∑
k=1

kτa41τ
b
42τ

c
31τ

d−2
32 D1(τ32, τ32).

These sums can be easily done. We then get the order h contribution to
the action of the deformed Lorentz plus dilations group:

a(a− 1)

2
D1(τ41, τ41)τa−2

41 τ b42τ
c
31τ

d
32 + abD1(τ41, τ42)τa−1

41 τ b−1
42 τ c31τ

d
32+

b(b− 1)

2
D1(τ42, τ42)τa41τ

b−2
42 τ c31τ

d
32 + bcD1(τ42, τ31)τa41τ

b−1
42 τ c−1

31 τd32+

c(c− 1)

2
D1(τ31, τ31)τa41τ

b
42τ

c−2
31 τd32 + cdD1(τ31, τ32)τa41τ

b
42τ

c−1
31 τd−1

32 +

d(d− 1)

2
D1(τ32, τ32)τa41τ

b
42τ

c
31τ

d−2
32 + acD1(τ41, τ31)τa−1

41 τ b42τ
c−1
31 τd32+

adD1(τ41, τ32)τa−1
41 τ b42τ

c
31τ

d−1
32 + bdD1(τ42, τ32)τa41τ

b−1
42 τ c31τ

d−1
32 .

This is reproduced by the differential operator

1

2
D1(τ41, τ41)∂2

τ41
+D1(τ41, τ42)∂τ41∂τ42 +

1

2
D1(τ42, τ42)∂2

τ42
+

D1(τ42, τ31)∂τ42∂τ31 +
1

2
D1(τ31, τ31)∂2

τ31
+D1(τ31, τ32)∂τ31∂τ32+

1

2
D1(τ32, τ32)∂2

τ32
+D1(τ41, τ31)∂τ41∂τ31 +D1(τ41, τ32)∂τ41∂τ32+

D1(τ42, τ32)∂τ42∂τ32 .

Notice that the coefficients have to match in order to get a differential
operator, so the result is again non trivial. For completeness, we write the
values of D1(τij , τkl) in terms of the original variables x, y, t:
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D1(τ41, τ41) =− 2(y44y43s
2
11t41t31 + y2

43s11s21t31t32 + y2
44s11s21t41t42+

y44y43s
2
21t42t32 + 2y44y43s11s21t42t31 + y44y43s11s21t41t32),

D1(τ41, τ42) =− (y2
43s21s12t31t32 + y2

44s21s12t41t42 + 2y44y43s
2
21t42t32+

2y44y43s11s12t41t31 + 2y44y43s21s12t42t31 + y44y43s21s12t41t32)+

y44y43s11s21t42t31),

D1(τ42, τ42) =− (y2
44s21s12t41t42 + 2y44y43s

2
12t41t31 + 2y2

43s12s22t31t32+

y44y43s21s12t42t31 + 2y44y43s12s22t42t31 + 2y44y43s12s22t41t32)+

3y44y43s21s22t42t32),

D1(τ42, τ31) =−
(
y43y33s11s12t

2
31 + y44y33s11s12t41t31 + 2y43y34s11s12t41t31+

y44y34s11s12t
2
41 + y43y34s21s12t41t32 + y43y34s21s12t41t32+

y44y33s11s21t42t31 + 2y44y34s11s21t41t42 + y43y33s21s12t31t32+

y43y33s11s22t31t32 − 2y43y34s21s12t42t31 + y43y34s11s22t42t31+

2y43y34s21s12t42t31 + y43y34s11s22t42t31 + y43y33s21s22t
2
32+

2y43y34s21s22t42t32
)
,

D1(τ31, τ31) =− 2(y34y33s
2
11t41t31 + y2

33s11s21t31t32 + y2
34s11s21t41t42+

y34y33s
2
21t42t32 + 2y34y33s11s21t42t31 + y34y33s11s21t41t32),

D1(τ32, τ32) =− 2(y34y33s
2
12t41t31 + y2

33s12s22t31t32 + y2
34s12s22t41t42+

+ y34y33s
2
22t42t32 + 2y34y33s12s22t42t31 + y34y33s12s22t41t32),

D1(τ41, τ31) =−
(
y43y34s

2
11t41t31 + y43y34s

2
21t42t32 + 2y43y33s11s21t31t32+

y44y33s11s21t42t31 + 2y43y34s11s21t42t31 + y43y34s11s21t41t32+

2y44y34s11s21t41t42
)
,

D1(τ41, τ32) =−
(
y43y34s11s12t41t31 + y43y33s21s12t31t32 + y43y34s21s12t42t31+

y43y34s21s12t42t31 + y44y34s21s12t41t42 + y43y34s21s22t42t32
)
,

D1(τ42, τ32) =−
(
y43y34s

2
12t41t31 + y43y34s

2
22t42t32 + y44y34s21s12t41t42+

2y43y33s12s22t31t32 + 2y43y34s12s22t42t31 + y43y34s12s22t41t32
)
,

D1(τ31, τ32) =−
(
y2

33s21s12t31t32 + y2
34s21s12t41t42 + 2y34y33s11s12t41t31+

2y34y33s21s12t42t31 + y34y33s21s12t41t32+

y34y33s11s22t42t31 + 2y34y33s21s22t42t32
)
.



5. THE REAL FORMS

All the work done up to this point has been realized in a complexification of
the conformal Minkowski space, with complex groups acting on it. In this
chapter we deal with the appropiate real forms. In Section 5.1 we give the
real forms for the classical case and in 5.2 for the quantum one. Finally in
Section 5.3 we say a few words about a quadratic invariant which generalizes
the metric in Minkowski space. These results have been published in ref.[2].

5.1 The real forms in the classical case

LetA be a commutative algebra over C. An involution ι ofA is an antilinear
map satisfying, for f, g ∈ A and α, β ∈ C

ι(αf + βg) = α∗ιf + β∗ιg, (antilinearity) (5.1)

ι(fg) = ι(f)ι(g), (automorphism) (5.2)

ι ◦ ι = 11. (5.3)

Let us consider the set of fixed points of ι,

Aι = {f ∈ A / ι(f) = f}.

It is easy to see that this is a real algebra whose complexification is A. Aι
is a real form of A.

The real Minkowski space.

We consider the algebra of the complex Minkowski space O(M) ≈
[t31, t32, t41, t42] and the following involution,(

ιM(t31) ιM(t32)
ιM(t41) ιM(t42)

)
=

(
t31 t41

t32 t42

)
,

which can be also written simply as

ιM(t) = tT .
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Using the Pauli matrices (2.22)

t =

(
t31 t32

t41 t42

)
= xµσµ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
,

so

x0 =
1

2
(t31 + t42), x1 =

1

2
(t32 + t41),

x2 =
1

2i
(t41 − t32), x3 =

1

2
(t31 − t42),

are fixed points of the involution. In fact, it is easy to see that

O(M)ιM = R[x0, x1, x2, x3].

�

The Euclidean space. We consider now the following involution on
O(M) (

ιE(t31) ιE(t32)
ιE(t41) ιE(t42)

)
=

(
t42 −t41

−t32 t31

)
.

Another way of expressing it is in terms of the matrix of cofactors,

ιE(t) = cof(t).

The combinations

z0 =
1

2
(t31 + t42), z1 =

i

2
(t32 + t41),

z2 =
1

2
(t41 − t32), z3 =

i

2
(t31 − t42),

are fixed points of ιE, and as before,

O(M)ιE = R[z0, z1, z2, z3].

�
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We are interested now in the real forms of the complex Poincaré plus
dilations that have a coaction on the real algebras. So we start with (2.6)

O(Pl) = C[xij , yab, Tai]/(detx · det y − 1).

We then look for the appropriate involution in O(Pl), denoted as ιPl,M or
ιPl,E ‘preserving’ the corresponding real form (Minkowskian, Euclidean) of
the complex Minkowski space. This means that the involution has to satisfy

∆̃ ◦ ιM = ιPl,M ⊗ ιM ◦ ∆̃,

∆̃ ◦ ιE = ιPl,E ⊗ ιE ◦ ∆̃.

It is a matter of calculation to check that

ιPl,M(x) = S(y)T , ιPl,M(y) = S(x)T , ιPl,M(T ) = T T , (5.4)

ιPl,E(x) = S(x)T , ιPl,E(y) = S(y)T , ιPl,E(T ) = cof(T ), (5.5)

are the correct expressions. It is not difficult to realize that in the Minkows-
kian case the real form of the Lorentz group (corresponding to the genera-
tors x and y) is SL(2,C)R and in the Euclidean case is SU(2)×SU(2). One
can further check the compatibility of these involutions with the coproduct
and the antipode

∆ ◦ ιPl,M = ιPl,M ⊗ ιPl,M ◦∆,

∆ ◦ ιPl,E = ιPl,E ⊗ ιPl,E ◦∆, (5.6)

S ◦ ιPl,M = ιPl,M ◦ S,
S ◦ ιPl,E = ιPl,E ◦ S. (5.7)

5.2 The real forms in the quantum case

We have to reconsider the meaning of ‘real form’ in the case of quantum
algebras. We can try to extend the involutions (5.4, 5.5) to the quantum
algebras. We will denote this extension with the same name since they
cannot be confused in the present context.

The first thing that we notice is that property (5.2) has to be modified.
In fact, the property that the involutions ιM, ιE satisfy with respect to the
commutation relations (2.25) of the complex algebra O(M) is that they are
antiautomorphisms, that is
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ιM(fg) = ιM(g)ιM(f),

ιE(fg) = ιE(g)ιE(f).

This discards the interpretation of the real form of the non commutative
algebra as the set of fixed points of the involution. The other two properties
are still satisfied.

When considering the involutions ιPl,M and ιPl,E in the quantum group
Oq(Pl), we also obtain an antiautomorphism of algebras, but now the invo-
lution has to be compatible with the Hopf algebra structure. The coprod-
uct is formally the same and properties (5.6) and (5.7) are still satisfied
(so the involutions are automorphisms of coalgebras). On the other hand,
differently from the classical case, the involutions do not commute with the
antipode. This is essentially due to the fact that S2 6= 1. One can explicitly
check that

S2 ◦ ιPlM ◦ S = S ◦ ιPlM,
S2 ◦ ιPlE ◦ S = S ◦ ιPlE. (5.8)

Property (5.3) is still satisfied, ιPl,M
2 = 1 and ιPl,E

2 = 1. Using this fact,
(5.8) can be written as

(ιPlM ◦ S)2 = 11,

(ιPl,E ◦ S)2 = 11.

All these properties define what is known as a Hopf ∗-algebra structure (see
for example [14]).

Definition 5.2.1. Hopf ∗-algebra structure. Let A be a Hopf algebra.
We say that it is a Hopf ∗-algebra if there exists an antilinear involution ι
on A which is an antiautomorphism of algebras and an automorphism of
coalgebras and such that

(ι ◦ S)2 = 11,

being S the antipode. �

For example, each real form of a complex Lie algebra corresponds to a
∗-algebra structure in the enveloping algebra, seen as a Hopf algebra.
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Remark 5.2.2. Real forms on the star product algebra. The involutions
can be pulled back to the star product algebra using the quantization maps
QM (see (3.1)), and QG (see (4.1)) and then extended to the algebra of
smooth functions. The Poisson bracket in terms of the Minkowski space
variables (xµ) or the Euclidean ones (zµ) is purely imaginary (see (3.7)),
as a consequence of the antiautomorphism property of the involutions.

In the case of the quantum groups, the whole Hopf ∗-algebra structure
is pulled back to the polynomial algebra and then extended to the smooth
functions. �

5.3 The deformed quadratic invariant.

Let us consider the quantum determinant in Oq(M)

Ĉq = detq

(
t̂32 t̂31

t̂42 t̂41

)
= t̂32t̂41 − q−1t̂31t̂42.

Under the coaction of Oq(Pl) with the translations put to zero (that is
for the quantum Lorentz times dilation group), the quantum determinant
satisfies

∆̃(Ĉq) = detqŷ S(detqx̂)⊗ Ĉq,

so if we suppress the dilations, then detqŷ = 1, detqx̂ = 1 and the determi-
nant is a quantum invariant,

∆̃(Ĉq) = 1⊗ Ĉq.

The invariant Ĉq can be pulled back to the star product algebra with
the quantization map QM:

Cq = Q−1
M (Ĉq) = t41t32 − qt42t31. (5.9)

We can now change to the Minkowski space variables, and the quadratic
invariant in the star product algebra is

Cq = −q(x0)2 + q(x3)2 + (x1)2 + (x2)2. (5.10)

Cq is the quantum star invariant. Notice that the expressions (5.9) and
(5.10) depend upon the quantization map or ordering rule chosen.
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6. INVARIANT SIGMA MODEL IN SO(2, N)/SO(2)× SO(N).

In this Chapter we define sigma models on coset spaces that are invariant
under the action of a Lie group G. In particular, we consider the series
of cosets G/H SO(2, n)/SO(2) × SO(n), with H the maximal compact
subgroup of G. We start by choosing a suitable parametrization of these
cosets, then performing the Iwasawa decomposition (see Section 2.7) to
work with solvable coordinates in the coset, which are particularly easy to
use. We define a left-invariant 2-form in the coset and use it to write a
left-invariant sigma model which we call an Invariant Sigma Model (ISM).

In Section 6.1 we write down the SO(2, 1) WZW model (see Section
2.13) and gauge a right SO(2) isometry to get the SO(2, 1)/SO(2)R gauged
WZW model. This model results to be a free boson, which clearly is con-
formally invariant. We compute the ISM in SO(2, 1)/SO(2) and show that
it is a different model than the gauged one. We use the 1-loop beta equa-
tions to test it for conformal invariance and show that it is not conformal
invariant.

The ISM model in SO(2, 2)/SO(2)×SO(2) is built in Section 6.2. Finally
we construct the ISM model in SO(2, 3)/SO(2)× SO(3) in Section 6.3.

ISM on SO(2, n)/SO(2)× SO(n). We consider the orthogonal group G =
SO(2, n) with maximal compact subgroup H = SO(2)× SO(n). We choose
the metric in R2+n in the standard form,

diag(+1,+1,−1, . . . ,−1︸ ︷︷ ︸
n

).

Then, a matrix in the Lie algebra so(2, n) is of the form(
A2×2 b2×n
bTn×2 Cn×n

)
, (6.1)

where A and C are antisymmetric matrices and b is arbitrary. The diagonal
blocs A and C span the maximal compact subalgebra h = so(2)⊕so(n), and
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the matrices b ∈M2xn(R) span the subspace p in the Cartan decomposition
g = h + p. In terms of representations, we have that

so(2, n) = (so(2)⊕ so(n)) n p, p = (2)SO(2) ⊗ (n)SO(n). (6.2)

Let L be a local section L : G/H → G. In the physics literature the
section L is called a coset representative. L is an arbitrary section, and
it will be chosen later on in order to simplify the calculations or to show
explicitly some symmetry.

The invariant metric at a point x ∈ G/H represented by L(x) is then
given by (see Section 2.8.2)

ds2(Xx, Yx) =
〈 (
L−1dL(Xx)

) ∣∣
p
,
(
L−1dL(Yx)

) ∣∣
p

〉
, Xx, Yx ∈ Tx(G/H).

(6.3)
with 〈 , 〉 the Cartan-Killing metric on g.

Next, we are going to construct an invariant 2-form on G/H. We only
need a 2-form on p (the tangent space at the identity coset), invariant under
H. Then, in the same way that it is done for the metric, we can construct
an invariant tensor field over G/H, by translating the 2-form over p, with
the action of the group G. As it is shown in the Section 2.8.3, the invariance
of the 2-form over p under H is enough to ensure the invariance under G
of the tensor defined over G/H .

Notice that SO(2) ⊂ Sp(2,R) ≈ SL(2,R), so there is an invariant,
antisymmetric form on the fundamental representation (2) of SO(2), let
us call it Ω. By definition, SO(n) leaves invariant a symmetric form δ on
the fundamental representation space (n). Then, on the tensor product
p = (2)⊗ (n) (see (6.2)) there is an antisymmetric 2-form B = Ω⊗ δ that
is invariant under the action of H.

We will give this form explicitly for a basis of p. We consider the basis
of M2×n(R)

{êaα, a = 1, 2, α = 1, · · · , n} , where (êaα)bβ = δabδαβ,

which in the notation (6.1) gives

eaα =

(
0 êaα
êTaα 0

)
. (6.4)

It is then enough to give the bilinear form on the elements of the basis,

B(eaα, ebβ) = δαβεab, ε =

(
0 1
−1 0

)
. (6.5)
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Then, as for the metric,

Bx(Xx, Yx) = B
((
L−1dL(Xx)

) ∣∣
p
,
(
L−1dL(Yx)

) ∣∣
p

)
. (6.6)

Let φi, i = 1, . . . n be coordinates on the target space manifold M =
G/H. The Lagrangian of the ISM is defined as1

L =

∫
M

d2x
( 1

4a2
gij∂µφ

i∂νφ
i +

b

2
εµνBij∂µφ

i∂νφ
j + ΦR(2)

)
, (6.7)

where a2 and b are coupling constants which may be not independent (for
example, to obtain conformal invariance in some cases), Φ is a scalar field
(the dilaton), and R(2) is the curvature of the two dimensional world sheet.
The Lagrangian is invariant under G if Φ is constant, in which case this
term becomes a total derivative.

We are going to consider the three cases n = 1, 2, 3.

6.1 The SO(2,1)/SO(2) example

According to (6.1), a matrix M ∈ so(2, 1) can be decomposed as

M =

(
A p
pT 0

)
,

where

A =

(
0 a
−a 0

)
, p =

(
p1

p2

)
.

The Cartan decomposition is then

so(2, 1) = so(2) + p, p =

{ 0 0 p1

0 0 p2

p1 p2 0

}.
1 We use the conventions

dφidφj =
1

2
(dφi ⊗ dφj + dφj ⊗ dφi), dφi ∧ dφj =

1

2
(dφi ⊗ dφj − dφj ⊗ dφi),

ds2 = gijdφ
idφj , B = Bijdφ

i ∧ dφj ,

εµνd2x = dxµ ∧ dxν .
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In p we consider the basis

e11 =

0 0 1
0 0 0
1 0 0

 , e21 =

0 0 0
0 0 1
0 1 0

 .
We choose

H =

0 0 0
0 0 1
0 1 0


as a maximal abelian subalgebra of p in order to perform the Iwasawa
decomposition. There are two roots, and we choose the positive system

X =

 0 1 −1
−1 0 0
−1 0 0

 .
The commutation rule is

[H,X] = X. (6.8)

This is the solvable algebra solv(SO(2, 1)/SO(2)) = span{H,X}.
Using the solvable group structure of G/H we use exponential coordi-

nates, so the coset representative is

L = euXeϕH .

These are called solvable coordinates and they are global [15]. Then,

L−1dL = e−ϕduX + dϕ e21.

Projecting over p we get

L−1dL|p = −e−ϕdu e11 + dϕ e21.

From (6.3) the metric is

ds2 = Tr(L−1dL|p, L−1dL|p) = 2e−2ϕdu2 + 2dϕ2,

and from (6.6) the 2-form is

B = −2e−ϕdu ∧ dϕ.
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The lagrangian is, then,

LSO(2,1)/SO(2) =
1

2a2

(
e−2ϕ∂µu∂

µu+ ∂µϕ∂
µϕ
)
− be−ϕεµν∂µu∂νϕ, (6.9)

and it is invariant under the infinitesimal transformations generated by the
vector fields of the action of the group

XL
u = ∂u,

XL
ϕ = u∂u + ∂ϕ,

XL
φ = eϕ∂φ +

1

2
(1− e2ϕ + u2)∂u + u∂ϕ. (6.10)

The denomination of the generators corresponds to the exponential coor-
dinates in the group SO(2, 1), g = euXeϕHeφA. One can check that they
close the algebra of so(2, 1).

One can ask if this model is quantum-mechanically conformal invariant.
We then must check the 1-loop beta equations, which are (see for example
ref.[43], with appropriate redefinitions in the coupling constants)

0 = 4a2Rµν +

(
4a2b

3

)2

Hλρ
µ Hνλρ − 8π2DµDνΦ,

0 = DλH
λ
µν − 8π(DλΦ)Hλ

µν ,

0 = 4(4π)2(DµΦ)2 − 16πDµD
µΦ +R+

1

12

(
4a2b

3

)2

HµνρH
µνρ+

(D − 26)π

a2
, (6.11)

with

H =
3

2
dB.

But these equations do not have solution (even with the dilaton 6= 0), so
the model is not conformally invariant.

Gauging of the WZW model SO(1, 2). We want to compare our model
with the result of gauging a group valued WZW model. We consider the
basis of so(2, 1) {H,X,A} where A is the basis for so(2),

A =

 0 1 0
−1 0 0
0 0 0


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and H and X are given above.We take exponential coordinates in the group

g = euXeϕHeφA, L ∈ G.

One can prove [15] that (u, ϕ) are global coordinates while φ is a cyclic
(angular) coordinate parametrizing S1 ≈ SO(2). The WZW model on the
group manifold SO(2, 1) is defined as

LSO(2,1) =
1

4a2

∫
M=∂B

Tr(g−1dgg−1dg) +
b

3

∫
B

Tr(g̃−1dg̃g̃−1dg̃g̃−1dg̃),

where B is a three dimensional manifold whose boundary is M , the com-
pactification of the original 2-dimensional space. We have

Tr(g−1dgg−1dg) = −4e−ϕdudφ− 2dφ2 + 2dϕ2,

Tr(g−1dg ∧ g−1dg ∧ g−1dg) = −6e−ϕdu ∧ dφ ∧ dϕ = d(6e−ϕdu ∧ dφ)).

Then the lagrangian can be written, up to boundary terms, in solvable
coordinates as

LSO(2,1) =
1

2a2

(
− 2e−ϕ∂µu∂

µφ− ∂µφ∂µφ+ ∂µϕ∂
µϕ
)

+ 2be−ϕεµν∂µu∂νφ.

Notice that the coupling constant of the WZ term does not become quan-
tized, since there are no topologically different ways of mapping S3 into
SO(2, 1) (namely, π3

(
SO(2, 1)

)
= 0).

This model has invariance under left and right SO(2, 1). The infinitesi-
mal generators of the left and right actions of SO(1, 2) on itself are

• Left invariant vector fields:

XL
φ = eϕ∂φ +

1

2
(1− e2ϕ + u2)∂u + u∂ϕ,

XL
u = ∂u,

XL
ϕ = u∂u + ∂ϕ.

• Right invariant vector fields:

XR
φ = ∂φ,

XR
u = (1− cosφ)∂φ + eϕ cosφ∂u + sinφ∂ϕ,

XR
ϕ = sinφ∂φ − eϕ sinφ∂u + cosφ∂ϕ.
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We are going to gauge the generator XR
φ corresponding to the algebra

element A. In principle, we are not touching the left symmetries, but we
will have to see if they survive. We set

Dµφ = ∂µφ+Aµ, Dµϕ = ∂µϕ, Dµu = ∂µu.

We substitute the standard derivatives by covariant derivatives in the la-
grangian. Then, the equation of motion for Aµ becomes

Aµ = −∂µφ− e−ϕ∂µu+ 2ba2ενµe−ϕ∂νu,

and substituting back in the covariant derivatives and in the Lagrangian
one gets

Lgauged =
1

2a2

((
1 + (2ba2)2)e−2ϕ∂µu∂

µu+ ∂µϕ∂
µϕ
)
.

So if 2ba2 = i the model is a free boson, which is conformally invariant.
Instead, if b = 0, one recovers the symmetric lagrangian without WZ term
(6.9). Notice that the effect of a WZ term in the Lagrangian LSO(2,1) is not
a WZ term in the gauged Lagrangian, but a deformation of the metric on
SO(2, 1)/SO(2).

Under this deformation, the infinitesimal transformations associated to
the action of the group (6.10) do not all preserve the character of symmetry.
While XL

u and XL
ϕ are still symmetries, XL

φ is not anymore.
�

What this example shows is that the invariant models that we are con-
structing do not arise from a gauging of a model with target space a group
manifold.

6.2 The invariant WZW model SO(2, 2)/SO(2)× SO(2)
in solvable coordinates.

We remind the general form of the matrices of so(2, 2) in (6.1). Let us
perform the Iwasawa decomposition. We consider the following basis of
h = so(2)⊕ so(2):

A1 =


0 1 0 0
−1 0 0 0

0 0 0 0
0 0 0 0

 and A2 =


0 0 0 0
0 0 0 0

0 0 0 1
0 0 −1 0

 .
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As a maximal abelian subalgebra of p we choose

H1 =


0 0 1 0
0 0 0 0

1 0 0 0
0 0 0 0

 , H2 =


0 0 0 0
0 0 0 1

0 0 0 0
0 1 0 0

 .
There are four roots with one dimensional root spaces. We denote them as
Ωλ1,λ2 with λi = 1,−1. We have the commutation rules

[Hi,Ωλ1,λ2 ] = λiΩλ1,λ2 ,

and the rest zero. We have the positive system {Ω1,1,Ω1,−1}, which expli-
citly is

Ω1,1 =


0 1 0 −1
−1 0 1 0

0 1 0 −1
−1 0 1 0

 , Ω1,−1 =


0 −1 0 −1
1 0 −1 0

0 −1 0 −1
−1 0 1 0

 .
So

solv (SO(2, 2)/SO(2)× SO(2)) = {H1, H2,Ω1,1,Ω1,−1}, (6.12)

with the commutation rules given above.
The coset representative in solvable coordinates is

L = eϕ1H1+ϕ2H2eαΩ1,1eγΩ1,−1 ,

from which, after projection over p, we get2

L−1dL|p =e11dϕ1 − e12

(
dα+ dγ + (α+ γ)dϕ1 + (α− γ)dϕ2

)
+

e21

(
dα− dγ + (α− γ)dϕ1 + (α+ γ)dϕ2

)
+ e22dϕ2.

Then the invariant metric in the symmetric space (6.3) in terms of the
solvable coordinates is

ds2 =
(
2 + 4α2 + 4γ2

)
dϕ2

1 +
(
8α2 − 8γ2

)
dϕ1dϕ2 + 8αdϕ1dα+

8γdϕ1dγ +
(
2 + 4α2 + 4γ2

)
dϕ2

2 + 8αdϕ2dα− 8γdϕ2dγ+

4dα2 + 4dγ2. (6.13)

2 For this and the rest of the calculations of different metrics, coset representatives and
Killing vectors we have used the program Wolfram Research, Inc., Mathematica, Version
5.1, Champaign, IL (2004).
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As for the invariant 2-form, by equation (6.5), we have

B(e11, e21) = −B(e21, e11) = 1, B(e12, e22) = −B(e22, e12) = 1

and the rest zero, so the invariant 2-form B(L−1dL|p, L−1dL|p) in solvable
coordinates becomes

1

2
B = dϕ1 ∧ dα− dϕ1 ∧ dγ + dϕ2 ∧ dα+ dϕ2 ∧ dγ. (6.14)

For constant dilaton, the Lagrangian is invariant under the rigid sym-
metries

XL
ϕ1

= ∂ϕ1 , XL
ϕ2

= ∂ϕ2 , XL
α = e−ϕ1−ϕ2∂α, XL

γ = eϕ2−ϕ1∂γ ,

XL
φ1

=
(
eϕ1+ϕ2α− eϕ1−ϕ2γ

)
∂ϕ1 + eϕ1−ϕ2

(
e2ϕ2α+ γ

)
∂ϕ2−(

eϕ1+ϕ2α2 +
1

2
sinh (ϕ1 + ϕ2)

)
∂α+

1

4

(
−e−ϕ1+ϕ2 + eϕ1−ϕ2(1 + 4γ2)

)
∂γ ,

XL
φ2

=− eϕ1−ϕ2

(
e2ϕ2α+ γ

)
∂ϕ1 +

(
−eϕ1+ϕ2α+ eϕ1−ϕ2γ

)
∂ϕ2+(

eϕ1+ϕ2α2 +
1

2
sinh (ϕ1 + ϕ2)

)
∂α+

1

4

(
−e−ϕ1+ϕ2 + eϕ1−ϕ2(1 + 4γ2)

)
∂γ ,

which close the algebra so(2, 2). The denomination of the generators cor-
responds to the exponential coordinates in the group

L = eϕ1H1+ϕ2H2eαΩ1,1eγΩ1,−1eφ1A1eφ2A2 .

As for the SO(2, 1)/SO(2) model, this model is not conformally invariant
at the quantum mechanical level.

6.3 The SO(2,3)/SO(2)×SO(3) example

A maximal abelian subalgebra of p is

H1 =


0 0 1 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , H2 =


0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

 .
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There are eight restricted roots, Ωλ1,λ2 with λ1, λ2 = 1, 0,−1 but not both
simultaneously 0. A positive system is

Ω1,1 =


0 1 0 −1 0
−1 0 1 0 0
0 1 0 −1 0
−1 0 1 0 0
0 0 0 0 0

 , Ω1,0 =


0 0 0 0 −1
0 0 0 0 0
0 0 0 0 −1
0 0 0 0 0
−1 0 1 0 0

 ,

Ω1,−1 =


0 −1 0 −1 0
1 0 −1 0 0
0 −1 0 −1 0
−1 0 1 0 0
0 0 0 0 0

 , Ω0,1 =


0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 1
0 1 0 −1 0

 ,

with commutation rules

[Hi,Ωλ1,λ2 ] = λiΩλ1,λ2 , i = 1, 2,

[Ω1,0,Ω0,1] = −Ω1,1, [Ω1,−1,Ω0,1] = 2Ω1,0,

and the rest zero. We have

solv(SO(2, 3)/SO(2)× SO(3)) = span{H1, H2,Ω1,1,Ω1,0,Ω1,−1,Ω0,1},
(6.15)

with the commutation rules given above.
In solvable coordinates, the coset representative becomes

L = eϕ1H1eϕ2H2eαΩ1,1eβΩ1,0eγΩ1,−1eρΩ0,1 .

It is more convenient for the computations to have the Cartan-Killing and
the antisymmetric forms in terms of the solvable basis. We can check

H1 = e11, H2 = e22,

Ω1,1|p = −e12 + e21, Ω1,−1|p = −e12 − e21,

Ω1,0|p = −e13, Ω01|p = e23.

So then

〈Ω11|p,Ω11|p〉 = 4, 〈Ω1,−1|p,Ω1,−1|p〉 = 4,

〈Ω10|p,Ω10|p〉 = 2, 〈Ω01|p,Ω10|p〉 = 2,

〈H1|p, H1|p〉 = 2, 〈H2|p, H2|p〉 = 2,
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B(H1,Ω11) = 1, B(H1,Ω1,−1) = −1,

B(H2,Ω11) = 1, B(H22,Ω1,−1) = 1,

B(Ω10,Ω01) = −1,

and the rest 0. Then we obtain the metric and the 2-form:

ds2 =
(
2 + 4α2 + 2β2 + 4γ2 − 8αβρ+ 8βγρ+ 4β2ρ2 − 8αγρ2 + 8γ2ρ2+

8βγρ3 + 4γ2ρ4
)

dϕ2
1 +

(
8α2 − 8γ2 − 8αβρ− 8βγρ− 16γ2ρ2 − 8βγρ3−

8γ2ρ4
)

dϕ1dϕ2 +
(
8α− 8βρ− 8γρ2

)
dϕ1dα+ (4β − 8αρ+ 8ργ+

8βρ2 + 8γρ3
)

dϕ1dβ +
(
2 + 4α2 + 4γ2 + 2ρ2 + 8αγρ2 + 8γ2ρ2+

4γ2ρ4
)

dϕ2
2 +

(
8α+ 8γρ2

)
dϕ2dα+

(
−8αρ− 8γρ− 8γρ3

)
dϕ2dβ

+
(
−8γ − 8αρ2 − 16γρ2 − 8γρ4

)
dϕ2dγ + 4ρdϕ2dρ+ 4dα2−

8ρdαdγ +
(
2 + 4ρ2

)
dβ2 +

(
8ρ+ 8ρ3

)
dβdγ +

(
4 + 8γ2 + 4ρ4

)
dγ2+

2dρ2, (6.16)

1

2
B =dϕ1 ∧ dα− ρdϕ1 ∧ dβ − (1 + ρ2)dϕ1 ∧ dγ − (β + 2γρ)dϕ1 ∧ dρ+

dϕ2 ∧ dα+ (1 + ρ2)dϕ2 ∧ dγ + 2γρdϕ2 ∧ dρ− dβ ∧ dρ− 2ρdγ ∧ dρ.

(6.17)

One can compute the rigid symmetry generators associated to the solv-
able Lie group:

XL
ϕ1

= ∂ϕ1 , XL
ϕ2

= ∂ϕ2 ,

XL
β = e−ϕ1∂β, XL

γ = eϕ2−ϕ1∂γ ,

XL
α = e−ϕ1−ϕ2∂α, XL

ρ = βe−ϕ2∂α − 2γe−ϕ2∂β + e−ϕ2∂ρ.

There are 4 other symmetry generators, Xφ1 , Xφ2 , Xφ3 and Xφ4 but its
computation exceeds the capabilities of our computers. As in the previous
cases, the model is not conformally invariant.
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7. CONTRACTION OF SIGMA MODELS

In Chapter 6 we have defined what we call Invariant Sigma Models. We
have explicitely written down the SO(2, 1)/SO(2), SO(2, 2)/SO(2)× SO(2)
and the SO(2, 3)/SO(2)× SO(3) models. The Lie algebras of these models
can be related by contraction (see Section 2.9), so we can relate these models
by contraction too.

In Section 7.1 we perform the contraction of the SO(2, 3)/SO(2)×SO(3)
with respect to SO(2, 2)/SO(2)× SO(2) and in Section 7.2 we perform the
contraction of SO(2, 3)/SO(2)× SO(3) with respect to SO(1, 3)/SO(3).

We will denote s(n) = solv(SO(2, n)/SO(2) × SO(n). In the basis that
we have used, the following embeddings of the Lie algebras (6.8), (6.12)
and (6.15) are quite obvious,

s(1) ⊂ s(2) ⊂ s(3).

7.1 SO(2, 3)/SO(2)× SO(3) contracted with respect to
SO(2, 2)/SO(2)× SO(2)

We consider the embedding (see (6.12) and (6.15))

s(2) ⊂ s(3),

with

s(3) = span{H1, H2,Ω1,1,Ω1,0,Ω1,−1,Ω0,1},
s(2) = span{H1, H2,Ω1,1,Ω1,−1}.

One possible contraction is given by the map

s(3)
φε−−−−→ s(3)

H1, H2,Ω1,1,Ω1,−1 −−−−→ H1, H2,Ω1,1,Ω1,−1,

Ω1,0,Ω0,1 −−−−→ εΩ1,0, εΩ0,1.
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The deformed algebra has only one bracket that changes

[Ω1,0,Ω0,1]ε = −ε2Ω1,1,

and it goes to zero after the contraction ε→ 0. The other bracket remains
unchanged

[Ω1,−1,Ω0,1]ε = 2Ω1,0.

In the fundamental representation of so(2, 3) one has two invariant sub-
spaces under the action of s(2):

V1 =

{
a
b
c
d
0


}

and W1 =

{
0
0
0
0
e


}
.

We will do the case V1. It is not difficult to check that the case W1

gives the same metric and the same 2-form.

We have

ψε =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 ε

 .

In the deformed representation (2.36) we have

H1ε = H1, H2ε = H2,

Ω1,1ε = Ω1,1, Ω1,−1ε = Ω1,−1,

Ω1,0ε =


0 0 0 0 −ε2
0 0 0 0 0
0 0 0 0 −ε2
0 0 0 0 0
−1 0 1 0 0

 , Ω0,1ε =


0 0 0 0 0
0 0 0 0 ε2

0 0 0 0 0
0 0 0 0 ε2

0 1 0 −1 0

 .
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The metric is (see Section 2.9.1)

ds2
ε =

(
2 + 4α2 + 2β2 + 4γ2 + 8βγρ− 8αβρε2 + 8γ2ρ2 − 8αγρ2ε2+

4β2ρ2ε4 + 8βγρ3ε4 + 4γ2ρ4ε4
)

dϕ2
1 +

(
8α2 − 8γ2 − 8αβρε2 − 8βγρ−

16γ2ρ2 − 8βγρ3ε4 − 8γ2ρ4ε4
)

dϕ1dϕ2 +
(
8α− 8βρε2−

8γρ2ε2
)

dϕ1dα+
(
4β − 8αρε2 − 8γρ+ 8βρ2ε4 + 8γρ3ε4

)
dϕ1dβ

+
(
8γ + 8βρ+ 16γρ2 − 8αρ2ε2 + 8βρ3ε4 + 8γρ4ε4

)
dϕ1dγ

+
(
2 + 4α2 + 4γ2 + 2ρ2 + 8αγρ2 + 8αγρ2ε2 + 4γ2ρ4ε4

)
dϕ2

2+(
8α+ 8γρ2ε2

)
dϕ2dα+

(
−8γρ− 8αρε2 − 8γρ3ε4

)
dϕ2dβ+(

−8γ − 16γρ2 − 8αρ2ε2 − 8γρ4ε4
)

dϕ2dγ + 4ρdϕ2dρ+ 4dα2−

8ε2ρdαdβ − 8ε2ρ2dαdγ +
(
2 + 4ε4ρ2

)
dβ2 +

(
8ρ+ 8ρ3ε4

)
dβdγ

+
(
4 + 8ρ2 + 4ε4ρ4

)
dγ2 + 2dρ2.

If we take ε = 1 we recover the metric (6.16). The limit ε → 0 is well
defined,

ds2
ε=0 =

(
2 + 4α2 + 2β2 + 4γ2 + 8βγρ+ 8γ2ρ2

)
dϕ2

1 +
(
8α2 − 8γ2−

8βγρ− 16ρ2γ2
)

dϕ1dϕ2 + 8αdϕ1dα+ (4β + 8γρ) dϕ1dβ+(
8γ + 8βρ+ 16γρ2

)
dϕ1dγ +

(
2 + 4α2 + 4γ2 + 2ρ2 + 8γ2ρ2

)
dϕ2

2+

8αdϕ2dα− 8γρdϕ2dβ +
(
−8γ − 16γρ2

)
dϕ2dγ + 4ρdϕ2dρ+ 4dα2+

2dβ2 + 8ρdβdγ +
(
4 + 8ρ2

)
dγ2 + dρ2.

We can rearrange the terms so we can factor the metric (6.13) of the Lie
group SO(2, 2)/SO(2)×SO(2), which depends on the coordinates ϕ1, ϕ2, α, γ
plus a series of terms involving the new coordinates β, ρ which give non
trivial interactions.
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ds2
ε=0 = ds2

SO(2,2)/SO(2)×SO(2) + dϕ2
1

(
2β2 + 8βγρ+ 8γ2ρ2

)
−

dϕ1dϕ2

(
8βγρ+ 16ρ2γ2

)
+ dϕ1dβ (4β + 8γρ) +

dϕ1dγ
(
8βρ+ 16γρ2

)
+ dϕ2

2

(
2ρ2 + 8γ2ρ2

)
− 8γρdϕ2dβ−

16γρ2dϕ2dγ + 4ρdϕ2dρ+ 2dβ2 + 8ρdβdγ + 8ρ2dγ2 + 2dρ2. (7.1)

We can do the same for the two form and obtain

1

2
Bε =

(
2γρ2(ε2 − 1) + ρβ(ε2 − 1)

)
dϕ1 ∧ dϕ2 + dϕ1 ∧ dα−

ε2ρdϕ1 ∧ dβ − (β + 2γρ)dϕ1 ∧ dρ− (ε2ρ2 + 1)dϕ1 ∧ dγ+

dϕ2 ∧ dα+ ρ(1− ε2)dϕ2 ∧ dβ +
(
1 + ρ2(2− ε2)

)
dϕ2 ∧ dγ+

2γρdϕ2 ∧ dρ− dβ ∧ dρ− 2ρdγ ∧ dρ.

For ε = 1 we recover the 2-form (6.17), while for ε = 0 we get (6.14)
plus some interaction terms

1

2
Bε=0 =

1

2
BSO(2,2)/SO(2)×SO(2) − (2γρ2 + ρβ)dϕ1 ∧ dϕ2+

(β + 2γρ)dϕ1 ∧ dρ+ ρdϕ2 ∧ dβdϕ1 ∧ dρ2ρ2dϕ2 ∧ dγ+

2γρdϕ2 ∧ dρ− dβ ∧ dρ− 2ρdγ ∧ dρ. (7.2)

If we assume that the masses of the modes β and ρ are much higher than
the rest, then in the equations of motion their kinetic terms can safely
be ignored. The equations are then compatible with β = 0, ρ = 0, so
they disappear from the lagrangian. So the contracted models admit a
truncation to the light modes, which establishes a hierarchy among the
models SO(2, 3)/SO(2)× SO(3) and SO(2, 2)/SO(2)× SO(2).

We can still perform another contraction (a generalized contraction) in
which this phenomenon is even more natural. Let us consider the map

s(3)
φε−−−−→ s(3)

H1, H2,Ω1,1,Ω1,−1 −−−−→ H1, H2,Ω1,1,Ω1,−1,

Ω1,0 −−−−→ εc Ω1,0,

Ω0,1 −−−−→ εd Ω0,1,
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where c and d are real numbers that we will chose conveniently. This
changes two brackets

[Ω1,0,Ω0,1]ε = −εc+d,
[Ω1,−1,Ω0,1]ε = 2εd−cΩ10. (7.3)

We need d ≥ c. The case d = c = 1 is the one that we studied before. For
case d > c, (7.3) goes to zero when ε→ 0, so the contracted algebra is even
simpler.

We use the adjoint representation of the solvable algebra, with the or-
dered basis (6.15). Then ψε = φε,

ψε =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 εc 0 0
0 0 0 0 1 0
0 0 0 0 0 εd


.

In the deformed adjoint representation the generators become

H1ε = H1, H2ε = H2, Ω1,1ε = Ω1,1,

Ω1,−1ε =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 2εd−c

−1 1 0 0 0 0
0 0 0 0 0 0


,

Ω1,0ε =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −εd+c

0 0 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0


,
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Ω0,1ε =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 εc+d 0 0
0 0 0 0 −2εd−c 0
0 0 0 0 0 0
0 −1 0 0 0 0


.

The metric is

ds2 =
(
2 + 4α2 + 2β2 + 4γ2 + 8βγρε−c+d − 8αβρεc+d − 8αγρ2ε2d+

8γ2ρ2ε−2c+2d + 4β2ρ2ε2c+2d + 8βγρ3εc+3d + 4γ2ρ4ε4d
)

dϕ2
1+(

8α2 − 8γ2 − 8βγρε−c+d − 8αβρεc+d − 16γ2ρ2ε−2c+2d − 8βγρ3εc+3d−

8γ2ρ4ε4d
)

dϕ1dϕ2 +
(
8α− 8βεc+dρ− 8γρ2ε2d

)
dϕ1dα

+
(
4β + 8γρε−c+d − 8αρεc+d + 8βρ2ε2c+2d + 8γρ3εc+3d

)
dϕ1dβ+(

8γ + 8βρε−c+d − 8αρε2d + 16γρ2ε−2c+2d + 8βρ3εc+3d + 8γρ4ε4d
)

dϕ1dγ+(
2 + 4α2 + 4γ2 + 2ρ2 + 8αγρ2ε2d + 8γ2ρ2ε−2c+2d + 4γ2ρ4ε4d

)
dϕ2

2+(
8α+ 8γρ2ε2d

)
dϕ2dα+

(
−8γρε−c+d − 8αρεc+d − 8γρ3εc+3d

)
dϕ2dβ+(

−8γ − 8αρ2ε2d − 16γρ2ε−2c+2d − 8γρ4ε4d
)

dϕ2dγ + 4ρdϕ2dρ+ 4dα2

− 8ρεc+ddαdβ − 8ρ2ε2ddαdγ +
(
2 + 4ρ2ε2c+2d

)
dβ2 +

(
8ρε−c+d+

8ρ3εc+3d
)

dβdγ +
(
4 + 8ρ2ε−2c+2d + 4ρ4ε4d

)
dγ2 + 2dρ2.

Taking ε = 1 we recover the metric (6.16). For ε → 0 we get the metric
(6.13) plus interaction terms

ds2 = ds2
SO(2,2)/SO(2)×SO(2) +

(
2β2 +

(
8βγρ+ 8γ2ρ2

)
δc,d
)

dϕ2
1 − (8βγρ+

16γ2ρ2
)
δc,ddϕ1dϕ2 + (4β + 8γρδc,d) dϕ1dβ + (8βρδc,d+

16γρ2δc,d
)

dϕ1dγ +
(
2 + 8γ2ρ2δc,d

)
dϕ2

2 − 8γδc,ddϕ2dβ−

16γρ2δc,ddϕ2dγ + 4ρdϕ2dρ+ 2dβ2 + 8ρδc,ddβdγ + 8ρ2δc,ddγ
2 + 2dρ2.

If d = c we recover (7.1). If d > c several interaction terms cancel and we
get a simpler expression

ds2 =ds2
SO(2,2)/SO(2)×SO(2) + 2β2dϕ2

1 + 4β + dϕ1dβ + 2dϕ2
2 + 4ρdϕ2dρ+

2dβ2 + 2dρ2.
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For the two form we obtain

1

2
Bε =

(
2γρ2(ε2d − εd−c) + ρβ(εc+d − 1)

)
dϕ1 ∧ dϕ2 + dϕ1 ∧ dα−

εc+dρdϕ1 ∧ dβ − (β + 2γρεd−c)dϕ1 ∧ dρ− (ε2dρ2 + 1)dϕ1 ∧ dγ+

dϕ2 ∧ dα+ ρ(1− εc+d)dϕ2 ∧ dβ +
(
1 + ρ2(2εd−c − ε2d)

)
dϕ2 ∧ dγ+

2γρεd−cdϕ2 ∧ dρ− dβ ∧ dρ− 2ρεd−cdγ ∧ dρ,

recovering (6.17) for ε = 1. For ε→ 0 we get (6.14) plus interaction terms

1

2
B =

1

2
BSO(2,2)/SO(2)×SO(2) −

(
2γρ2δc,d + ρβ

)
dϕ1 ∧ dϕ2−

(β + 2γδc,d) dϕ1 ∧ dρ+ ρdϕ2 ∧ dβ + 2ρ2δc,ddϕ2 ∧ dγ + 2γρδc,ddϕ2 ∧ dρ−
dβ ∧ dρ− 2ρδc,ddγ ∧ dρ.

As for the metric, if d = c we recover (7.2), and if d > c some terms cancel
and we get the simpler form

1

2
B =

1

2
BSO(2,2)/SO(2)×SO(2) − ρβdϕ1 ∧ dϕ2 − βdϕ1 ∧ dρ+ ρdϕ2 ∧ dβ−

dβ ∧ dρ.

7.2 SO(2, 3)/SO(2)× SO(3) contracted with respect to
SO(1, 3)/SO(3)

We want now to contract the ISM SO(2, 3)/SO(2)× SO(3) with respect to
SO(3, 1)/SO(3). We first identify the algebra

t = solv(SO(3, 1)/SO(3))

as a subalgebra of SO(2, 3). We can take the lower diagonal 4× 4 block of
(6.1)

g =

{(
0 b1×3

bt1×3 C3×3

)}
, CT = −C,

being the Cartan decomposition

h =

{(
0 0
0 C3×3

)}
, p =

{(
0 b1×3

bt1×3 0

)}
.
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It is convenient to take as maximal abelian subalgebra of p

span

{
H =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


}
,

in which case the generalized root spaces are

n+ = span

{
n+

1 =


0 1 0 0
1 0 −1 0
0 1 0 0
0 0 0 0

 , n+
2 =


0 0 0 1
0 0 0 0
0 0 0 1
1 0 −1 0


}
,

n− = span

{
n−1 =


0 1 0 0
1 0 1 0
0 −1 0 0
0 0 0 0

 , n−2 =


0 0 0 1
0 0 0 0
0 0 0 −1
1 0 1 0


}
,

with

[H,n+
i ] = n+

i , [H,n−i ] = −n−i .

Finally we get the algebra

t = span{H}+ n+ = span{H,n+
1 , n

+
2 } ≈ span{H2,Ω1,1,Ω0,1},

where we have already identified the generators with a subalgebra of s3.
Notice that the identification corresponds to the lower diagonal 4×4 blocks.
In ref.[15] the choice of the abelian subalgebra is different but it gives the
same result.

We consider the coset representative for the Lie group SO(1, 3)/SO(3),
L = eϕ2H2eαΩ1,1eρΩ0,1 and compute the metric as usual1

ds2
SO(1,3)/SO(3) = (2 + 4α2 + 2ρ2)dϕ2

2 + 8αdϕ2dα+ 4ρdϕ2dρ+ 4dα2 + 2dρ2.
(7.4)

1 If we choose instead the coset representative L = eα
′Ω1,1eρ

′Ω0,1eϕ
′
2H2 the metric is

ds2
SO(1,3)/SO(3) = 2dϕ′

2
2 + 4e−2ϕ′

2dα′
2

+ 2e−2ϕ′
2dρ′

2
,

which can be compared with the results in [15].
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We are going to perform a generalized contraction of s(3) with respect
to t. We define φε as

g
φε−−−−→ g

H2, Ω1,1, Ω0,1 −−−−→ H2, Ω1,1, Ω0,1,

H1, Ω1,0, Ω1,−1 −−−−→ εaH1, ε
bΩ1,0, ε

cΩ1,−1,

where a, b, c > 0. In the ordered basis (6.15) we have

φε =



εa 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 εb 0 0
0 0 0 0 εc 0
0 0 0 0 0 1


.

The deformed algebra is

[H1,Ω1,1] = εaΩ1,1,

[H1,Ω1,−1] = εa+cΩ1,−1,

[H1,Ω1,0] = εaΩ10,

[H2,Ω1,1] = Ω1,1,

[H2,Ω1,−1] = Ω1,−1,

[H2,Ω0,1] = Ω0,1,

[Ω1,0,Ω0,1] = −εbΩ1,1,

[Ω1,−1,Ω0,1] = εc−b2Ω10,

and the rest 0. We see that c ≥ b in order to have a well defined contracted
bracket (ε→ 0). The case c = b gives a different result when ε→ 0.

The deformed representation that we get is given by the matrices

H1ε = εaH1, H2ε = H2,

Ω1,1ε =



0 0 0 0 0 0
0 0 0 0 0 0
−εa −1 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,
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Ω1,−1ε =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 2εc−b

−εa 1 0 0 0 0
0 0 0 0 0 0


,

Ω1,0ε =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −εb
−εa 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0


,

Ω0,1ε =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 εb 0 0
0 0 0 −2εc−b 0 0
0 0 0 0 0 0
0 −1 0 0 0 0


.

The deformed metric then becomes

ds2 = dϕ2
1

(
2 + 4α2ε2a + 2β2ε2a + 4γ2ε2a − 8αβρε2a+b + 8βγρεa+c−b+

4β2ρ2ε2(a+b) − 8αγρ2ε2a+c + 8γ2ρ2εa+2(c−b) + 8βγρ3ε2a+b+c+

4γ2ρ4ε2(a+c)
)

+ dϕ1dϕ2

(
8α2εa − 8γ2εa − 8αβρεa+b − 8βγρεa+c−b−

16γ2ρ2εa+2(c−b) − 8βγρ3εa+b+c − 8γ2ρ4εa+2c
)

+ dϕ1dα (8αεa−

8βρεa+b − 8γρ2εa+c
)

+ dϕ1dβ
(
4βεa − 8αρεa+b + 8γρεa+c−b + 8βρ2εa+2b+

8γρ3εa+b+c
)

+ dϕ1dγ
(
8γεa + 8βρεa+c−b − 8αρ2εa+c + 16γρ2εa+2(c−b)+

8βρ3εa+b+c + 8γρ4εa+2c
)

+ dϕ2
2

(
2 + 4α2 + 4γ2 + 2ρ2 + 8αγρ2εc+

8γ2ρ2ε2(c−b) + 4γ2ρ4ε2c
)

+ dϕ2dα
(
8α+ 8γρ2εc

)
+ dϕ2dβ

(
−8αρεb−

8γρεc−b − 8γρ3εb+c
)

+ dϕ2dγ
(
−8γ − 8αρ2εc − 16γρ2ε2(c−b) − 8γρ4ε2c

)
+

4ρdϕ2dρ+ 4dα2 − 8ρεbdαdβ − 8ρ2εcdαdγ + dβ2
(
2 + 4ρ2ε2b

)
+

dβdγ
(
8ρεc−b + 8ρ3εb+c

)
+ dγ2

(
4 + 8ρ2ε2(c−b) + 4ρ4ε2c

)
+ 2dρ2.
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For ε = 1 we obtain (6.16). For ε→ 0 we get

ds2 = ds2
SO(1,3)/SO(3) + 2dϕ2

1 +
(
2ρ2 + 8γ2ρ2δc,b

)
dϕ2

2 − 8γρδc,bdϕ2dβ−

dϕ2dγ
(
8γ + 16γρ2δc,b

)
+ 2dβ2 + 8ρδc,bdβdγ +

(
4 + 8ρ2δc,b

)
dγ2,

and for c > b it is simpler,

ds2 = ds2
SO(1,3)/SO(3) + 2dϕ2

1 + 2ρ2dϕ2
2 − 8γdϕ2dγ + 2dβ2 + 4dγ2.

The deformed 2-form is

1

2
B =

(
α(1− εa) + γρ2(εc + εa+c − 2εa+c−b) + γ(1− εa)− βρ(εa − εa+b)

)
dϕ1 ∧ dϕ2 + dϕ1 ∧ dα− ρεbdϕ1 ∧ dβ − (1 + ρ2εc)dϕ1 ∧ dγ−
(βεa + 2γρεa+c−b)dϕ1 ∧ dρ+ dϕ2 ∧ dα+ ρ(1− εb)dϕ2 ∧ dβ+(

1− ρ2(εc − 2εc−b)
)

dϕ2 ∧ dγ + 2γρεc−bdϕ2 ∧ dρ− dβ ∧ dρ−

2ρεc−bdγ ∧ dρ.

For ε = 1 we get (6.17) and for ε→ 0 we get

1

2
B = (α+ γ)dϕ1 ∧ dϕ2 + dϕ1 ∧ dα− dϕ1 ∧ dγ + dϕ2 ∧ dα+ ρdϕ2 ∧ dβ

+
(
1 + 2ρ2δc,b

)
dϕ2 ∧ dγ + 2γρδc,bdϕ2 ∧ dρ− dβ ∧ dρ− 2ρδc,bdγ ∧ dρ.

Truncating to the coset SO(1, 3)/SO(3) corresponds to take the coordinates
ϕ1 = γ = β = 0. Substituting back we get a 2 form on SO(1, 3)/SO(3)

1

2
BSO(1,3)/SO(3) = dϕ2 ∧ dα.

By construction, this 2-form is invariant under the action of the solvable
group, but one can explicitly check that it is not invariant under the whole
SO(1, 3). So, although it is defined on the coset manifold SO(1, 3)/SO(3),
the lagrangian (or the model) is not invariant under the whole isometry
group SO(1, 3) (see Sec. 2.8.3).
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8. GENERAL PROPERTIES OF THE S-EXPANSION METHOD

The expansion of a Lie algebra by a discrete semigroup that we have des-
cribed in Sections 2.10 and 2.11 has some applications in Physics. We
have said some words about them in the introduction and in Chapter 9
we will apply it to relate the 2-dimensional and 3-dimensional Lie alge-
bras in Bianchi’s classification. In this Chapter we discuss the conservation
of solvability, nilpotency and semisimplicity of Lie algebras under the S-
expansion procedure. We have collected these results in ref.[5], to appear
soon.

History of finite semigroups programs The number of finite non-isomorphic
semigroups of order n are given in the following table:

order Q = # semigroups
1 1
2 4
3 18
4 126 [Forsythe ’54]
5 1,160 [Motzkin, Selfridge ’55]
6 15,973 [Plemmons ’66]
7 836,021 [Jurgensen, Wick ’76]
8 1,843,120,128 [Satoh, Yama, Tokizawa ’94]
9 52,989,400,714,478 [Distler, Kelsey, Mitchell ’09]

Fig. 8.1: Number of semigroups of each order, up to order 9.

As shown in the table the problem of enumerating all the discrete semi-
grups of a certain order up to isomorphism is a nontrivial problem. In fact,
the number Q of semigroups increases very quickly with the order of the
semigroup.
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In ref.[44] a set of algorithms is given that allow us to make certain
calculations with finite semigroups. The first program, gen.f, gives, up to
isomorphism all the semigroups of order n for n = 1, 2, . . . , 8. The input
is the order of the semigroups that we want to obtain and the output is a
list of all the isomorphism classes of semigroups that exist at this order.
We denote each semigroup as Sα(n) where the superindex α = 1, . . . , Q runs
over all the semigroups of order n. In Appendix C all the semigroups of
order 3 and some of order 4 used in this work are shown.

We have developed a Java library to be able to automatize the S-
expansion of Lie algebras and then easily check properties of the S-expanded
algebras. Our starting point is the output of the program gen.f. We review
how the library works in Appendix B [24].

In Section 8.2 we are going to use this library to perform all the possible
expansions of the algebra sl (2) that can be made (with semigroups up to
the order 6) and check explicitly the theoretical properties that we will find
in the next sections.

�

This Chapter is organized as follows: in Section 8.1 we study the ques-
tion of the preservation (or not) of the properties of solvability, nilpotency,
semisimplicity and compactness under expansions. In Section 8.2 we make
an exhaustive study of the possible expansions that can be made for the
algebra sl (2) and check our theoretical results.

8.1 Properties preserved under the S-expansion procedure

When looking for a semigroup to get a given Lie algebra from the expansion
of another one, it is convenient to know which properties are going to be
preserved after the expansion. In this way some expansions can be rejected
a priori.

8.1.1 Solvable Lie algebras

A solvable algebra g is one for which the sequence

g(0) = g, g(1) =
[
g(0), g(0)

]
, . . . , g(n) =

[
g(n−1), g(n−1)

]
(8.1)

terminates, i.e., g(n) = 0 for some n (see ref.[45] for details).



8.1. Properties preserved under the S-expansion procedure 93

In order to study the expansions of solvable algebras, it will be useful
to have an expression of the solvability condition in terms of the structure
constants. This is done in the following way:

Let {Xi} , i = 1, . . . , n be a basis of an algebra g. The fact that g = g(0)

is solvable implies that in its commutation relations

[Xi, Xj ] = CkijXk (8.2)

there is at least one value of k for which Ckij = 0. So, let k(1) represent the

set of values for which Ck
(1)

ij 6= 0. Then k(1) runs for all values of the basis
elements {Xk} except for those values for which

Ck 6=k
(1)

ij = 0. (8.3)

It is clear then that the set {Xk(1)} is smaller than {Xk} and {Xk(1)} ⊂
{Xk}.

Let us consider g(2) =
[
g(1), g(1)

]
where g(1) =

[
g(0), g(0)

]
=: span {Xk(1)}

according to the notation established above. We have[
Xi(1) , Xj(1)

]
= Ck

(2)

i(1)j(1)Xk(2) . (8.4)

As g is solvable the index k(2) must run in a smaller subset with respect to
that where k(1) runs. So as the algebra is solvable, there exists some n for
which g(n) = 0 and g(n−1) is abelian, i.e.,[

Xi(n−1) , Xj(n−1)

]
= Ck

(n)

i(n−1)j(n−1)Xk(n) = 0. (8.5)

The solvability of an algebra can then be expressed in terms of its structure
constants as the condition that there is some n for which Ck

(n)

i(n−1)j(n−1) = 0.

Proposition 8.1.1. (For the expanded algebra)
Let {Xi} , i = 1, . . . , n be a basis of a solvable Lie algebra g, S =

{λα} , α = 1, . . . ,m a finite abelian semigroup and

gS = S ⊗ g = {λα ⊗Xi} =
{
X(i,α)

}
(8.6)

the S-expanded algebra, which satisfies[
X(i,α), X(j,β)

]
= C

(k,γ)
(i,α)(j,β)X(k,γ) = CkijK

γ
αβX(k,γ). (8.7)

Then the expanded algebra gS = S ⊗ g of a solvable algebra g is solvable.



94 8. General properties of the S-expansion method

Proof. Let us consider the following sequence for the expanded algebra

g
(0)
S = gS , g

(1)
S =

[
g

(0)
S , g

(0)
S

]
, . . . , g

(n)
S =

[
g

(n−1)
S , g

(n−1)
S

]
. (8.8)

For g
(n)
S we have[

X(i(n−1),α(n−1)), X(j(n−1),β(n−1))

]
= Ck

(n)

i(n−1)j(n−1)Kγ
(n)

α(n−1)β(n−1)X(k(n),γ(n)).

(8.9)
So as g is solvable by hypothesis, then there exists some n for which the se-

quence (8.8) terminates, i.e., for which g
(n)
S = 0 or, in terms of the structure

constants, for which

C
(k(n),γ(n))
(i(n−1),α(n−1))(j(n−1),β(n−1))

= Ck
(n)

i(n−1)j(n−1)Kγ
(n)

α(n−1)β(n−1) = 0.

�

Proposition 8.1.2. (For the resonant subalgebra)
The resonant subalgebra gS,R (defined in Section 2.11) of the expanded

algebra gS is always solvable if the original algebra g is solvable.

Proof. By the theory of classification of Lie algebras, any subalgebra of a
solvable algebra must be solvable �

Proposition 8.1.3. (For the 0S-reduced algebra)
Consider the expansion of a solvable Lie algebra g with a zero element.

Then the reduced algebra gredS is always solvable.

Proof. According with the S-expansion procedure (of ref. [37]) when the
semigroup has a zero element 0S , S = {λα, 0S} the commutation relations
of the expanded algebra gS are given by,[

X(i,α), X(j,β)

]
= CkijK

γ
αβX(k,γ) + CkijK0

αβX(k,0),[
X(i,0), X(j,β)

]
= CkijX(k,0),[

X(i,0), X(j,0)

]
= CkijX(k,0)

and the 0S-reduced algebra gred
S is given by[

X(i,α), X(j,β)

]
= CkijK

γ
αβX(k,γ).
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So if g is solvable then there exists some n for which Ck
(n)

i(n−1)j(n−1) = 0.

Therefore, for the same n

C
(k(n),γ(n))
(i(n−1),α(n−1))(j(n−1),β(n−1))

= Ck
(n)

i(n−1)j(n−1)Kγ
(n)

α(n−1)β(n−1) = 0.

and we can conclude that if g is solvable then the reduced algebra gred
S is

solvable, too. �

8.1.2 Nilpotent Lie algebras

A nilpotent algebra g is an algebra for which the sequence

g(0) = g, g(1) =
[
g(0), g

]
, . . . , g(n) =

[
g(n−1), g

]
terminates, i.e., g(n) = 0 for some n (see ref.[45] for details). In terms of

the structure constants this means that for some n, Ck
(n)

i(n−1)j
must vanish.

Proposition 8.1.4. (For the expanded algebra)

The S-expansion of a nilpotent algebra g, gS = S⊗g is always nilpotent.

Proof. For the expanded algebra gS = S ⊗ g, let us consider the sequence

gS,(0) = gS , gS,(1) =
[
gS,(0), gS

]
, . . . , gS,(n) =

[
gS(n−1), gS

]
.

For

gS,(n) =
{
X(i(n),α(n))

}
we have [

X(i(n−1),α(n−1)), X(j,β)

]
= C

(k(n),γ(n))
(i(n−1),α(n−1))(j,β)

X(k(n),γ(n)).

But as g is supposed to be nilpotent, so C
k(n)

i(n−1)j
= 0 for some n, and

consequently we have

C
(k(n),γ(n))
(i(n−1),α(n−1))(j,β)

= C
k(n)

i(n−1)j
Kγ(n)

α(n−1)β
= 0.

which means that gS,(n) = 0 for this n. Therefore, the expansion gS = S⊗g
of a nilpotent algebra g must be nilpotent, too. �
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Proposition 8.1.5. (For the resonant subalgebra)

The resonant subalgebra gS,R (defined in Section 2.11) of the expanded
algebra gS is always nilpotent if the original algebra g is nilpotent.

Proof. As in the case of a solvable algebra, from the theory of Lie algebras,
we know that a subalgebra of a nilpotent algebra must be nilpotent. As a
consequence the resonant subalgebra gS,R of the expanded algebra gS of a
nilpotent algebra g must be nilpotent, too. �

Proposition 8.1.6. (For the 0S-reduced algebra)

Consider the expansion of a nilpotent Lie algebra g with a zero element.
Then the reduced algebra gredS is always nilpotent.

Proof. When the semigroup has a zero element 0S , S = {λα, 0S} the com-
mutation relations of the 0S-reduced algebra gred

S are given by[
X(i,α), X(j,β)

]
= CkijK

γ
αβX(k,γ).

So if g is nilpotent then there exists some n for which C
k(n)

i(n−1)j
= 0. There-

fore, for the same n

C
(k(n),γ(n))
(i(n−1),α(n−1))(j,β)

= C
k(n)

i(n−1)j
Kγ(n)

α(n−1)β
= 0.

and we can conclude that if g is nilpotent, then the reduced algebra gred
S is

nilpotent, too. �

8.1.3 Semisimple Lie algebras

The Cartan-Killing metric of a Lie algebra is defined as

g(X,Y ) = Tr(adX , adY )

which in a basis-dependent notation gives the symmetric matrix

gij = C likC
k
jl.

An algebra g is semisimple if its Cartan-Killing metric is not degener-
ated (det (gij) 6= 0, see ref.[45] for details).
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If we perform the expansion of a semisimple algebra g, the Cartan-
Killing metric of the expanded algebra gS is

g(i,α)(j,β) = C
(l,λ)
(i,α)(k,γ)C

(k,γ)
(j,β)(l,λ)

= KλαγK
γ
βλC

l
ikC

k
jl

and here we can see that there is no argument to know if det
(
g(i,α)(j,β)

)
va-

nishes or not, because the information is mixed with the semigroup selectors
Kγαβ which take values in the set {0, 1}. So depending on the semigroup,

the selectors Kγαβ can make the Cartan-Killing metric g(i,α)(j,β) degenerated
or not.

This fact agrees with the results obtained in different applications of the
S-expansion method. For example, in ref.[28] the semisimple extension of
the Poincaré algebra was obtained as an expansion of the semisimple AdS
algebra. On the other hand, in ref.[25] the non semisimple superalgebra M
(the maximal supersymmetric extension of the Poincaré algebra in d = 11
dimensions) was obtained as an expansion of the semisimple superalgebra
osp(32/1)1. So in general, and depending on the semigroup used in the
expansion procedure, starting from a semisimple algebra we can obtain
eitter

• semisimple Lie algebras,

• non-semisimple Lie algebras.

We can find examples of both in Figure 8.2.

8.1.4 Expansion of compact Lie algebras

If we perform the expansion of a compact algebra gk = {Xi} with a semi-
group S = {λα} what we obtain is an algebra gk,S with a Cartan-Killing
metric given by

g(i,α)(j,β) = C
(l,λ)
(i,α)(k,γ)C

(k,γ)
(j,β)(l,λ) (8.10)

= KλαγK
γ
βλgij .

1 The S-expansion procedure can be extended to the case of superalgebras, as shown
in ref.[37].
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We know that gij is definite negative, because gk is compact (see ref.[45]
for details). We cannot say the same for g(i,α)(j,β), because the selectors

Kλαγ can change this property.

Therefore, compactness is not preserved in general by the S-expansion
procedure. Even if the metric (8.10) is non degenerate and the semisimpli-
city is preserved, the result may be a metric that is not negative definite.

8.2 Expansions of sl(2,R), an instructive example

In this section we are going to study expansions with the abelian semigroups
that are in the lists given by the computer programs gen.f . We identify each
semigroup by Sα(n), being n the order of the semigroup and α the identifier
assigned to the semigroup by the program gen.f . We have developed a
Java library to perform the expansions (see Appendix B or [24]).

8.2.1 Classification of the different kinds of expansions

The real semisimple Lie algebra sl(2, ) is given in the Cartan Weyl (CW)
basis by

sl(2,R) = {σ3}+ {σ+, σ−}
= V0 + V1,

with V0 = {σ3} and V1 = {σ+, σ−} having the subspace structure

[V0, V0] ⊂ V0,

[V0, V1] ⊂ V1,

[V1, V1] ⊂ V0.

We are going to study the properties of all the possible expansions that
can be made using semigroups of order n = 1, 2, . . . , 6. From the list of all
non-isomorphic semigroups of order n we can perform the following kinds
of expansions:

• expansions with a generic abelian semigroup. As it has been seen
in Section 2.11 we need abelian semigroups to get a well defined Lie
bracket in the S-expanded algebra.

• Expansions with a generic abelian semigroup with a zero element.
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• Expansions with a generic abelian semigroup with a resonant decom-
position of the form

S = S0 ∪ S1, such that,
S0 · S0 ∈ S0,
S0 · S1 ∈ S1,
S1 · S1 ∈ S0.

(8.11)

• Expansions with a generic abelian semigroup with a zero element and
simultaneously with a resonant decomposition of the form (8.11)2.

To perform all the possible expansions we use an algorithm that will be
described in what follows. First we identify all the semigroups of a certain
order n (we have limited this to up to order 6) satisfying the conditions
enumerated above. For example, for n = 3 the results are given in figure
8.2. The interested reader can check a complete list of the semigroups of
order 3 in Appendix C.

Fig. 8.2: Expansions of sl(2,R) with abelian semigroups of order 3

The are 18 different semigroups of order 3, listed explicitly in Appendix
C as Sα(3), α = 1, . . . , 18. In Figure 8.2 we write only the label a for brevity.
The horizontal axis represents the set of semigroups used in some specific
expansion while the vertical axis represents the different kinds of expansions
that can be performed. So,

2 A semigroup can have more than one resonant decomposition leading then to different
expanded algebras.
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• in the first level we list all the abelian semigroups that allow us to
perform a general expansion S⊗g. Those are the abelian semigroups:
S1

(3), S
2
(3), S

3
(3), S

6
(3), S

7
(3), S

9
(3), S

10
(3), S

12
(3), S

15
(3), S

16
(3), S

17
(3), S

18
(3).

• In the second level we find all the abelian semigroups that contain at
least one resonant decomposition so that a resonant subalgebra can be
extracted from the expanded one. Those are the abelian semigroups:
S1

(3), S
2
(3), S

3
(3), S

6
(3), S

12
(3), S

15
(3), S

16
(3), S

17
(3).

• In the third level we see all the abelian semigroups that contain a
zero element so that a reduced algebra can be extracted from the
expanded one. Those are the semigroups: S1

(3), S
2
(3), S

3
(3), S

6
(3), S

7
(3),

S9
(3), S

10
(3), S

12
(3).

• In the fourth level we find all the abelian semigroups that contain
at least one resonant decomposition and also a zero element. So a
reduced algebra can be obtained from the resonant subalgebra. The
semigroups that allow us to do that are: S1

(3), S
2
(3), S

3
(3), S

6
(3), S

12
(3).

Then, for all these expansions, we identify the semigroups that preserve
the semisimplicity of the original algebra. In the graphic of Figure 8.2 those
semigroups are labeled with a red number.

8.2.2 General properties of the expansions with n = 3, . . . , 6

For higher orders n ≥ 4 it is not possible to show a graphic like the one
given in Figure 8.2. Instead we have Figure 8.3 that gives the number
of abelian semigroups that lead to the different kinds of expansions that
we have mentioned in the previous section. We also give in each case the
number of semigroups preserving semisimplicity.

In the different rows we see the various kinds of expansions that can
be done (the expanded algebra, the resonant subalgebra, the reduced al-
gebra and the reduction of the resonant subalgebra) for each order of the
semigroups. In each case the number of semigroups with which the expan-
sions can be performed is specified. The number of semigroups preserving
semisimplicity is also given. However, it may happen that a certain semi-
group has more than one resonance, which then leads to different expanded
algebras. We summarize all this information:

Order n = 3: There are 8 semigroups with resonant decomposition, 9
different resonant decompositions (so this is the number of different kinds
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order 3 4 5 6

expanded

S⊗g
preserving

semisimplicity

#12

#4

#58

#16

#325

#51

#2,143

#201

expanded

and reduced

preserving

semisimplicity

#8

#3

#39

#9

#226

#34

#1,538

#135

resonant

subalgebra

preserving

semisimplicity

#8

#1

#48

#4

#299

#7

#2,059

#23

reduction of

resonant subalg.

preserving

semisimplicity

#5

#1

#32

#1

#204

#6

#1,465

#12

Fig. 8.3: Expansions of sl(2,R) with abelian semigroups of order 3, 4, 5 and 6.

of expansions that can be made for n = 3) and 1 expansion that gives a
semisimple Lie algebra with one of its resonances.

Order n = 4: There are 48 semigroups with resonant decomposition,
124 different resonant decompositions (so this is the number of different
kinds of expansions that can be made for n = 4) and 4 expansions that
give a semisimple Lie algebra.

Order n = 5: There are 299 semigroups with resonant decomposition,
1, 653 different resonant decompositions (so this is the number of different
kinds of expansions that can be made for n = 5) and 7 expansions that
give a semisimple Lie algebra.

Order n = 6: There are 2, 059 semigroups with resonant decompo-
sition, 25, 512 different resonant decompositions (so this is the number of
different kinds of expansions that can be made for n = 6) and 23 expansions
that give a semisimple Lie algebra.

In general all these expansions with n = 3, 4, 5, 6 share the following
property:
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Consider a semigroup having more than one resonance. Then if it pre-
serves semisimplicity, this happens just for one of its resonances. There
is no semigroup preserving semisimplicity with more than one of its reso-
nances.

It has been explicitly verified that starting from a semisimple algebra
the expanded algebras are not necesarily semisimple, as was suggested in
Section 8.1. In fact most of the expansions do not preserve semisimplicity.



9. S-RELATED LIE ALGEBRAS IN DIM = 2, 3

This Chapter is devoted to the study of the possibility to relate the 3-
dimensional Lie algebras with the 2-dimensional ones in Bianchi’s classifi-
cation (see Section 2.12) through the S-expansion method. The results in
this Chapter are new and have been collected in ref.[6], to appear soon.
The programs used in the second part of the Chapter have been reviewed
in ref.[24], which will also appear soon.

This Chapter is organized as follows:
In Section 9.1 it is shown in an instructive way how some types of 3-

dimensional Lie algebras are related with 2-dimensional Lie algebras using
known semigroups. We also use other semigroups that have not been used
before in the applications of the S-expansion procedure. We then define an
iterative procedure to relate 2-dimensional and 3-dimensional Lie algebras
with a S-expansion1. In Subsection 9.1.4 we briefly summarize the results
obtained by this procedure.

In Section 9.2 it is shown why is it not possible to obtain, by expansions,
the other 3-dimensional isometries from the 2-dimensional algebras.

Finally in Section 9.3 we check the results using computer programs
and solve the problem entirely.

9.1 The 3-dimensional algebras related with 2-dimensional Lie
algebras

We start with a 2-dimensional Lie algebra and we are looking for a 3-
dimensional one. The S-expanded algebra with a semigroup of order 4 is 8-
dimensional and the reduced is 6-dimensional. So to obtain a 3-dimensional
algebra we need to extract one smaller algebra. This is possible if there is
a resonant subalgebra.

1 In the first part of this Chapter we use a notation for the semigroups different to
the one proposed in Chapter 8, due to historical reasons. In the end of this Chapter
we identify these semigroups using our standard notation. The correspondence can be
checked in Figure 9.4.
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It is useful to remind Bianchi’s classification of 3-dimensional Lie alge-
bras in this point:

Group Algebra

type I [X1, X2] = [X1, X3] = [X2, X3] = 0

type II [X1, X2] = [X1, X3] = 0, [X2, X3] = X1

type III [X1, X2] = [X2, X3] = 0, [X1, X3] = X1

type IV [X1, X2] = 0, [X1, X3] = X1, [X2, X3] = X1 +X2

type V [X1, X2] = 0, [X1, X3] = X1, [X2, X3] = X2

type VI
[X1, X2] = 0, [X1, X3] = X1, [X2, X3] = hX2,
where h 6= 0, 1

.

type VII1 [X1, X2] = 0, [X1, X3] = X2, [X2, X3] = −X1

type VII2
[X1, X2] = 0, [X1, X3] = X2, [X2, X3] = −X1 + hX2,
where h 6= 0 (0 < h < 2).

type VIII [X1, X2] = X1, [X1, X3] = 2X2, [X2, X3] = X3

type IX [X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2

Fig. 9.1: Bianchi’s classification of 3-dimensional Lie algebras.

9.1.1 The type III Lie algebra

We want to perform the S-expansion of the Lie algebra

[X1, X2] = X1

and study the 3-dimensional algebras that we can get.

Let us begin with the semigroup S = {λ1, λ2, λ3, λ4} defined by the
following conditions:

I) λ4 is a zero of the semigroup, so the table of multiplication law is of
the generic form

λ1 λ2 λ3 λ4

λ1 λ4

λ2 λ4

λ3 λ4

λ4 λ4 λ4 λ4 λ4

,
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where the empty spaces must be filled in a way such that it is an abelian
semigroup, i.e., closed, associative and commutative.

In order to get a smaller algebra we also demand

II) that it contains a resonant decomposition

S0 = {λ2, λ3, λ4} , (9.1)

S1 = {λ1, λ4} .

Then, the resonant subalgebra of gS,R = S × g is generated by

gS,R = (S0 × V0)⊕ (S1 × V1)

= {λ2 ×X2, λ3 ×X2, λ4 ×X2} ⊕ {λ1 ×X1, λ4 ×X1}
= {λ2 ×X2, λ3 ×X2, λ4 ×X2, λ1 ×X1, λ4 ×X1} . (9.2)

Now we extract an even smaller algebra by means of a 0S-reduction. This
is done by just cancelling from (9.2) the generators that contain the zero
element, λ4. Therefore, the reduction of the resonant subalgebra is given
by

gred
S,R = {λ2 ×X2, λ3 ×X2, λ1 ×X1}

with the following commutation relations

[λ2 ×X2, λ3 ×X2] = 0,

[λ2 ×X2, λ1 ×X1] = −λ1 · λ2 ×X1,

[λ3 ×X2, λ1 ×X1] = −λ1 · λ3 ×X1.

In order to close the algebra we should choose:

(a) λ1 · λ2 = λ1 or λ1 · λ2 = λ4 and

(b) λ1 · λ3 = λ1 or λ1 · λ3 = λ4.

So we are left with four possibilities to construct a closed algebra:

(i) λ1 · λ2 = λ1 · λ3 = λ4,

(ii) λ1 · λ2 = λ1 and λ1 · λ3 = λ4,

(iii) λ1 · λ2 = λ4 and λ1 · λ3 = λ1,

(iv) λ1 · λ2 = λ1 · λ3 = λ1.

The case (i) will lead to translations in 3 dimensions, i.e., to the type I
algebra

[X1, X2] = [X1, X3] = [X2, X3] = 0.
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It can be checked that the case (iv) is not useful, because it leads to a
non associative product. On the other hand, it can be seen that both (ii)
and (iii) will lead to the type III algebra. In fact, in case (ii) we have

[λ2 ×X2, λ3 ×X2] = 0,

[λ2 ×X2, λ1 ×X1] = −λ1 ×X1,

[λ3 ×X2, λ1 ×X1] = −λ4 ×X1 = 0. (λ4 is a zero element)

Renaming the generators as

Y1 = λ1 ×X1,

Y2 = λ3 ×X2,

Y3 = λ2 ×X2,

we immediately recognize the type III algebra (see table (2.8)).
In case (iii) we would have

[λ2 ×X2, λ3 ×X2] = 0,

[λ2 ×X2, λ1 ×X1] = −λ4 ×X1 = 0 (λ4 is a zero element),

[λ3 ×X2, λ1 ×X1] = −λ1 ×X1,

and we recover again the type III algebra by renaming the generators as

Y1 = λ1 ×X1,

Y2 = λ2 ×X2,

Y3 = λ3 ×X2.

We will study now case (iii) to construct a semigroup that leads to the
type III algebra. The case (ii) includes other semigroups leading to the
same result. The table describing the multiplication law case (iii) is of the
form

λ1 λ2 λ3 λ4

λ1 λ4 λ1 λ4

λ2 λ4 λ4

λ3 λ1 λ4

λ4 λ4 λ4 λ4 λ4

, (9.3)

where the empty spaces must be filled in such a way that associativity is
satisfied and the decomposition (9.1) satisfies the resonant condition.

There are semigroups that fit the multiplication table (9.3) and the
resonant condition (9.1). We give several examples of semigroups of this
type.
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Semigroup S
(3)
K

Consider the series of semigrous S
(n)
K , with the multiplication law defined

by

λα · λβ = λmin{α,β}, α+ β > n,

λα · λβ = λn+1, α+ β ≤ n,
α, β = 1, 2, . . . , n. (9.4)

It is directly seen that for n = 3 the multiplication table

λ1 λ2 λ3 λ4

λ1 λ4 λ4 λ1 λ4

λ2 λ4 λ2 λ2 λ4

λ3 λ1 λ2 λ3 λ4

λ4 λ4 λ4 λ4 λ4

fits with the form of the table (9.3). Therefore, an expansion with the

semigroup S
(3)
K reproduces the type III algebra after a 0S-reduction of the

resonant subalgebra.

Semigroup SN1

Let us consider the following multiplication table:

λ1 λ2 λ3 λ4

λ1 λ4 λ4 λ1 λ4

λ2 λ4 λ2 λ4 λ4

λ3 λ1 λ4 λ3 λ4

λ4 λ4 λ4 λ4 λ4

.

Here we have filled the empty spaces of (9.3) in another way, obtaining
another semigroup that verifies the required properties. It can be directly
shown that this multiplication table is associative, satisfies the resonant
condition and fits the form of the table (9.3). The proof is direct but a
little tedious. Therefore the semigroup SN1 also reproduces the type III

algebra, although it is not isomorphic to the previous semigroup, S
(3)
K .
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The semigroup S
(2)
E , another way to obtain the type III algebra

We consider now the series of semigroups S
(n)
E introduced in ref.[37] with

n = 2. Its multiplication law is given by the following table

λ0 λ1 λ2 λ3

λ0 λ0 λ1 λ2 λ3

λ1 λ1 λ2 λ3 λ3

λ2 λ2 λ3 λ3 λ3

λ3 λ3 λ3 λ3 λ3

and its resonant decomposition is

S0 = {λ0, λ2, λ3} ,
S1 = {λ1, λ3} .

The 0S-reduction of the resonant subalgebra is given by

gred
S,R = {λ0 ×X2, λ2 ×X2, λ1 ×X1}

with commutation relations

[λ0 ×X2, λ2 ×X2] = 0,

[λ0 ×X2, λ1 ×X1] = −λ1 ×X1,

[λ2 ×X2, λ1 ×X1] = 0.

Renaming the generators as

Y1 = λ1 ×X1,

Y2 = λ2 ×X2,

Y3 = λ0 ×X2,

we obtain again the type III algebra

[Y1, Y2] = [Y2, Y3] = 0, [Y1, Y3] = Y1.
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9.1.2 The type II and V algebras

The natural question here is if it is possible to generate other algebras
starting from the 2-dimensional Lie algebras. To answer this question we
will continue the procedure of Subsection 9.1.1, considering a semigroup
S = {λ1, λ2, λ3, λ4} where λ4 is a zero element, but we will use a different
resonant decomposition:

S0 = {λ2, λ4} ,
S1 = {λ1, λ3, λ4} . (9.5)

The reduction of the resonant subalgebra is given by

gred
S,R = {λ2 ×X2, λ1 ×X1, λ3 ×X1}

and the commutation relations

[λ2 ×X2, λ1 ×X1] = −λ1 · λ2 ×X1, (9.6)

[λ2 ×X2, λ3 ×X1] = −λ2 · λ3 ×X1,

[λ1 ×X1, λ3 ×X1] = 0.

The resonant condition guarantees that (9.6) is a closed algebra. Here we
have different possibilities.

Type II algebra and the SN2 semigroup

To reproduce the type II algebra we have to choose, for example,

λ1 · λ2 = λ3 and λ2 · λ3 = λ4. (9.7)

In that case the commutation relations (9.6) take the form

[λ2 ×X2, λ1 ×X1] = −λ3 ×X1,

[λ2 ×X2, λ3 ×X1] = 0,

[λ1 ×X1, λ3 ×X1] = 0,

and renaming the generators as

Y1 = λ3 ×X1,

Y2 = λ1 ×X1,

Y3 = λ2 ×X2,
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we obtain the type II algebra

[Y1, Y2] = [Y1, Y3] = 0, [Y2, Y3] = Y1.

But in order for this result to be true, we must provide an explicit
semigroup that satisfies the conditions (9.7). Until now our table has the
form

λ1 λ2 λ3 λ4

λ1 λ3 λ4

λ2 λ3 λ4 λ4

λ3 λ4 λ4

λ4 λ4 λ4 λ4 λ4

(9.8)

and the empty spaces must be filled in such a way that it defines an associa-
tive, commutative product and such that the decomposition (9.5) satisfies
the resonant condition.

After looking for different possibilities we have found one way to fill the
multiplication table. The proposed semigroup is SN2:

λ1 λ2 λ3 λ4

λ1 λ2 λ3 λ4 λ4

λ2 λ3 λ4 λ4 λ4

λ3 λ4 λ4 λ4 λ4

λ4 λ4 λ4 λ4 λ4

. (9.9)

This multiplication table represents in fact an abelian semigroup. The
associativity is proved by a tedious but direct calculation.

Note that there may be other semigroups that can also lead to the type
II algebra. Those correspond to other ways to fill the empty spaces in table
(9.8).

Type V and the SN3 semigroup

If we choose
λ1 · λ2 = λ1 and λ2 · λ3 = λ3 (9.10)

the commutation relations (9.6) take the form

[λ2 ×X2, λ1 ×X1] = −λ1 ×X1,

[λ2 ×X2, λ3 ×X1] = −λ3 ×X1,

[λ1 ×X1, λ3 ×X1] = 0,
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and renaming the generators as

Y1 = λ1 ×X1,

Y2 = λ3 ×X1,

Y3 = λ2 ×X2,

we obtain the type V algebra

[Y1, Y2] = 0, [Y1, Y3] = Y1, [Y2, Y3] = Y2.

We must now provide of an explicit semigroup that satisfies the condi-
tions (9.10). Until now our table has the form

λ1 λ2 λ3 λ4

λ1 λ1 λ4

λ2 λ1 λ3 λ4

λ3 λ3 λ4

λ4 λ4 λ4 λ4 λ4

(9.11)

and the empty spaces must be filled in a way that respects the required
conditions. Note that there are 44 = 256 possibilities to fill this table in
a closed way. This number is reduced by imposing associativity, commu-
tativity and the resonant condition for the decomposition (9.5). There are
semigroups that fit multiplication table (9.11) and resonant condition (9.5).

One way to fill the multiplication table (9.11) is the SN3 semigroup:

λ1 λ2 λ3 λ4

λ1 λ4 λ1 λ4 λ4

λ2 λ1 λ2 λ3 λ4

λ3 λ4 λ3 λ4 λ4

λ4 λ4 λ4 λ4 λ4

.

We point out again that there may be other semigroups that can also lead
to the type V algebra. Those correspond to other ways to fill the empty
spaces in the multiplication table (9.11).



112 9. S-related Lie algebras in dim = 2, 3

9.1.3 The type I algebra

Starting from the abelian 2-dimensional algebra

[X1, X2] = 0 (9.12)

we note that it also possesses a graded subspace structure where V0 = {X2}
and V1 = {X1}. So, for example, by choosing the semigroup S

(3)
K or SN1,

both having a resonant decomposition of the form

S0 = {λ2, λ3, λ4} , (9.13)

S1 = {λ1, λ4} ,

we obtain the reduction of the resonant subalgebra

gred
S,R = {λ2 ×X2, λ3 ×X2, λ1 ×X1} , (9.14)

with the following commutation relations:

[λ2 ×X2, λ3 ×X2] = λ2 · λ3 × [X2, X2] = 0, (9.15)

[λ2 ×X2, λ1 ×X1] = λ1 · λ2 × [X2, X1] = 0,

[λ3 ×X2, λ1 ×X1] = λ1 · λ3 × [X2, X1] = 0.

We see that it does not matter if we use the semigroup S
(3)
K or SN1, the

result is always an abelian algebra in 3 dimensions because the original

algebra is abelian. The same result can be reached with the semigroup S
(2)
E

whose semigroup decomposition is similar to (9.13).
Also, by using the semigroups SN2, SN3 and probably others that have

a resonant decomposition of the form

S0 = {λ2, λ4} , (9.16)

S1 = {λ1, λ3, λ4} ,

we obtain a reduction of the resonant subalgebra

gred
S,R = {λ2 ×X2, λ1 ×X1, λ3 ×X1} ,

whose commutation relations

[λ2 ×X2, λ1 ×X1] = λ1 · λ2 × [X2, X1] = 0,

[λ2 ×X2, λ3 ×X1] = λ2 · λ3 × [X2, X1] = 0,

[λ1 ×X1, λ3 ×X1] = λ1 · λ3 × [X1, X1] = 0,
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are again the ones of a 3-dimensional abelian algebra.

So we conclude that starting from the abelian Lie algebra (9.12) whate-
ver semigroup with a zero element and that has a resonant decomposition
of the form (9.13) or (9.16) will lead to the type I algebra. Moreover, this
result can be generalized:

An abelian Lie algebra in d dimensions can be obtained as an expansion
of the abelian algebra in 2-dimensions by using an abelian semigroup with
probably a zero element and a suitable resonant decomposition. By suitable
we mean that using the resonant subalgebra plus the reduction by the zero
elements gives the correct dimension.

Note that a crucial property to relate a 3-dimensional algebra (whichever
type I, II, III and V) with a 2-dimensional algebra is the existence of the
resonant subalgebra and the 0S-reduction. This is the only way to obtain
three generators starting from two.

9.1.4 Brief summary

Starting from

[X1, X2] = 0 (9.17)

it is possible to obtain the type I abelian algebra in three dimensions using

many semigroups as for example S
(2)
E , S

(3)
K , SN1, SN2, SN3 and probably

others. Now starting from

[X1, X2] = X1, (9.18)

it is also possible to obtain the type I abelian algebra in three dimensions
using for example a semigroup whose multiplication satisfies the condition
(i) of Section 9.1.1, i.e., whose table has the form

λ1 λ2 λ3 λ4

λ1 λ4 λ4 λ4

λ2 λ4 λ4

λ3 λ4 λ4

λ4 λ4 λ4 λ4 λ4

,

where the empty spaces must be filled with the corresponding conditions
of associativity, resonant condition and reduction condition.
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The semigroups which can be used to get the type I, II, III and V algebra
starting from the 2-dimensional algebra (9.18) appear in the following table:

Algebra Semigroup used

Type I
any semigroup with a 0-element
and a resonant decomposition

Type II SN2 and probably others

Type III S
(2)
E , S

(3)
K , SN1 and probably others

Type V SN3 and probably others

. (9.19)

The above semigroups are described in Figure 9.2.

9.2 The Bianchi spaces not-related with 2-dimensional isometries

9.2.1 Type IV, VI, VII2, VIII and IX algebras

Let us consider for example the type IV algebra

[Y1, Y2] = 0, (9.20)

[Y1, Y3] = Y1, (9.21)

[Y2, Y3] = Y1 + Y2. (9.22)

As the S-expansion method uses an induced bracket

[λα ×Xi, λβ ×Xj ] = λα · λβ × [Xi, Xj ] = λγ(α,β) × [Xi, Xj ]

for the expanded algebra, and considering that our original algebra has
i, j = 1, 2 and commutation relation

[X1, X2] = X1,

we have that the first two relations (9.20, 9.21) can be easily reproduced,
but to reproduce (9.22) we must have a relation like

[λα ×X1, λβ ×X2] = λα · λβ × [X1, X2] = λγ(α,β) ×X1.

And here we can see that no matter which semigroup we choose, λγ(α,β)

will always be an element of the semigroup and therefore we will be able
to reproduce a sum of two generators.
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Semigroup Multiplication table Res. decomposition 0S

S
(2)
E

λ0 λ1 λ2 λ3

λ0 λ0 λ1 λ2 λ3

λ1 λ1 λ2 λ3 λ3

λ2 λ2 λ3 λ3 λ3

λ3 λ3 λ3 λ3 λ3

S0 = {λ0, λ2, λ3},
S1 = {λ1, λ3}

λ3

S
(3)
K

λ1 λ2 λ3 λ4

λ1 λ4 λ4 λ1 λ4

λ2 λ4 λ2 λ2 λ4

λ3 λ1 λ2 λ3 λ4

λ4 λ4 λ4 λ4 λ4

S0 = {λ2, λ3, λ4},
S1 = {λ1, λ4}

λ4

SN1

λ1 λ2 λ3 λ4

λ1 λ4 λ4 λ1 λ4

λ2 λ4 λ2 λ4 λ4

λ3 λ1 λ4 λ3 λ4

λ4 λ4 λ4 λ4 λ4

S0 = {λ2, λ3, λ4},
S1 = {λ1, λ4}

λ4

SN2

λ1 λ2 λ3 λ4

λ1 λ2 λ3 λ4 λ4

λ2 λ3 λ4 λ4 λ4

λ3 λ4 λ4 λ4 λ4

λ4 λ4 λ4 λ4 λ4

S0 = {λ2, λ4},
S1 = {λ1, λ3, λ4}

λ4

SN3

λ1 λ2 λ3 λ4

λ1 λ4 λ1 λ4 λ4

λ2 λ1 λ2 λ3 λ4

λ3 λ4 λ3 λ4 λ4

λ4 λ4 λ4 λ4 λ4

S0 = {λ2, λ4},
S1 = {λ1, λ3, λ4}

λ4

Fig. 9.2: Description of some of the semigroups used in this Chapter.
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Now consider the type VI algebra:

[Y1, Y2] = 0,

[Y1, Y3] = Y1,

[Y2, Y3] = hY2, h 6= 0, 1.

Again the first two brackets could be reproduced by a certain semigroup,
but for the third one we would have something like

[λα ×X1, λβ ×X2] = λγ(α,β) ×X1,

and again, no matter which semigroup we choose, λγ(α,β) will always be
an element of the semigroup and we will never be able to reproduce a
semigroup element multiplied by a numeric factor. A similar argument
can be used to show that type VII1 algebra cannot be obtained by the
S-expansion procedure.

A mixture of the above arguments also explain why it is impossible to
obtain the type VII2 and VIII algebras as an expansion of a 2-dimensional
algebra.

Finally, to show why it is also impossible to reproduce the type IX
algebra

[Y1, Y2] = Y3, [Y2, Y3] = Y1, [Y3, Y1] = Y2,

we have to realize that the candidate for the expanded algebra will have
three commutation relations of the form

[λα ×Xi, λβ ×Xj ] = λγ(α,β) × [Xi, Xj ]

but where i, j takes the values 1 and 2. Therefore, in one of the three com-
mutation relations one index will always be repeated leading to a vanishing
bracket. So it is impossible to generate, by means of an S-expansion, a
3-dimensional algebra with the three brackets having a nonzero value.

Thus we conclude that these types of algebra, that cannot be obtained
by an expansion of the 2-dimensional algebras, are in some sense intrinsic
to 3 dimensions.

9.3 Checking with computer programs

A common question when working with semigroups in Section 9.1 is that
of the existence of diverse semigroups given some elements of the multipli-
cation table. We have, for example, a table like this one:
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λ1 λ2 λ3 λ4

λ1 λ4 λ1 λ4

λ2 λ4 λ4

λ3 λ1 λ4

λ4 λ4 λ4 λ4 λ4

.

In principle there are 256 different symmetric matrices which fill this
template, but not all of them will be semigroups because the multiplication
table will not always be associative. Moreover, we have to select only those
that satisfy a certain resonant condition. Finally, many of these associative
tables will be isomorphic, so we have to select one representant in each
isomorphism class.

In what follows we find all the non isomorphic ways to fill the tables
(9.3), (9.8) and (9.11) with the mentioned conditions and show that all the
semigroups given in table (9.19) (those semigroups that we have constructed
by hand) are isomorphic to one of the semigroups given by the computer
program com.f of ref.[44].

We have developed a Java library [24] to answer these questions. The
programs used in this Section are reviewed in Appendix B.

9.3.1 Type II

The template is:

λ1 λ2 λ3 λ4

λ1 λ3 λ4

λ2 λ3 λ4 λ4

λ3 λ4 λ4

λ4 λ4 λ4 λ4 λ4

.

By using computer programs, we have found that there are two non
isomorphic ways to fill this template such that: a) the resulting table is an
abelian semigroup and b) the resonant decomposition is given by

S0 = {λ2, λ4}, S1 = {λ1, λ3, λ4}. (9.23)
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Those are:

S1
II λ1 λ2 λ3 λ4

λ1 λ4 λ3 λ4 λ4

λ2 λ3 λ4 λ4 λ4

λ3 λ4 λ4 λ4 λ4

λ4 λ4 λ4 λ4 λ4

,

S2
II λ1 λ2 λ3 λ4

λ1 λ2 λ3 λ4 λ4

λ2 λ3 λ4 λ4 λ4

λ3 λ4 λ4 λ4 λ4

λ4 λ4 λ4 λ4 λ4

. (9.24)

Each of them is isomorphic to one of the semigroups of the list given by
the program com.f of ref.[44] for n = 4. We give this information in the
following table,

Isomorphic to Isomorphism

S1
II ≈ S10

(4) (λ4 λ3 λ1 λ2)

S2
II ≈ S12

(4) (λ4 λ3 λ2 λ1)

. (9.25)

where the isomorphism denoted by (λa λb λc λd) means: change λ1 by λa,
λ2 by λb, λ3 by λc and λ4 by λd. The semigroups S10

(4) and S12
(4) of the list

given by the program com.f for n = 4 are:

S10
(4) λ1 λ2 λ3 λ4

λ1 λ1 λ1 λ1 λ1

λ2 λ1 λ1 λ1 λ1

λ3 λ1 λ1 λ1 λ2

λ4 λ1 λ1 λ2 λ1

,

S12
(4) λ1 λ2 λ3 λ4

λ1 λ1 λ1 λ1 λ1

λ2 λ1 λ1 λ1 λ1

λ3 λ1 λ1 λ1 λ2

λ4 λ1 λ1 λ2 λ3

. (9.26)

It can be checked directly that applying the isomorphism (λ4 λ3 λ1 λ2)
to S10 one obtains S1

II and applying the isomorphism (λ4 λ3 λ2 λ1) to S12

one obtains S2
II .

9.3.2 Type III

The template is:

λ1 λ2 λ3 λ4

λ1 λ4 λ1 λ4

λ2 λ4 λ4

λ3 λ1 λ4

λ4 λ4 λ4 λ4 λ4

.
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We have found that there are 7 non isomorphic ways to fill this template
such that: a) the resulting table is an abelian semigroup and b) the resonant
decomposition is given by

S0 = {λ2, λ3, λ4}, S1 = {λ1, λ4}. (9.27)

Those ways are:

S1
III λ1 λ2 λ3 λ4

λ1 λ4 λ4 λ1 λ4

λ2 λ4 λ4 λ4 λ4

λ3 λ1 λ4 λ3 λ4

λ4 λ4 λ4 λ4 λ4

,

S2
III λ1 λ2 λ3 λ4

λ1 λ3 λ4 λ1 λ4

λ2 λ4 λ4 λ4 λ4

λ3 λ1 λ4 λ3 λ4

λ4 λ4 λ4 λ4 λ4

,

S3
III λ1 λ2 λ3 λ4

λ1 λ4 λ4 λ1 λ4

λ2 λ4 λ4 λ2 λ4

λ3 λ1 λ2 λ3 λ4

λ4 λ4 λ4 λ4 λ4

,

S4
III λ1 λ2 λ3 λ4

λ1 λ2 λ4 λ1 λ4

λ2 λ4 λ4 λ2 λ4

λ3 λ1 λ2 λ3 λ4

λ4 λ4 λ4 λ4 λ4

,

S5
III λ1 λ2 λ3 λ4

λ1 λ4 λ4 λ1 λ4

λ2 λ4 λ2 λ4 λ4

λ3 λ1 λ4 λ3 λ4

λ4 λ4 λ4 λ4 λ4

,

S6
III λ1 λ2 λ3 λ4

λ1 λ4 λ4 λ1 λ4

λ2 λ4 λ2 λ2 λ4

λ3 λ1 λ2 λ3 λ4

λ4 λ4 λ4 λ4 λ4

,

S7
III λ1 λ2 λ3 λ4

λ1 λ4 λ4 λ1 λ4

λ2 λ4 λ2 λ4 λ4

λ3 λ1 λ4 λ3 λ4

λ4 λ4 λ4 λ4 λ4

.

As before, each of these semigroups is isomorphic to one of the semi-
groups in the list given by the program com.f of ref.[44] for n = 4. The
semigroups and the corresponding isomorphisms are given in the following
table:
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Isomorphic to Isomorphism

S1
III ≈ S13

(4) (λ4 λ2 λ1 λ3)

S2
III ≈ S28

(4) (λ4 λ2 λ3 λ1)

S3
III ≈ S42

(4) (λ4 λ1 λ2 λ3)

S4
III ≈ S43

(4) (λ4 λ2 λ1 λ3)

S5
III ≈ S44

(4) (λ4 λ1 λ2 λ3)

S6
III ≈ S45

(4) (λ4 λ1 λ2 λ3)

S7
III ≈ S64

(4) (λ4 λ2 λ3 λ1)

, (9.28)

where the semigroups S13
(4), S

28
(4), S

42
(4), S

43
(4), S

44
(4), S

45
(4) y S64

(4), of the list
generated by the program com.f for n = 4, are explicitly given in Appendix
C.

9.3.3 Type V

The template is:

λ1 λ2 λ3 λ4

λ1 λ1 λ4

λ2 λ1 λ3 λ4

λ3 λ3 λ4

λ4 λ4 λ4 λ4 λ4

.

In this case we have found that there is just one way to fill this template
such that: a) the resulting table is an abelian semigroup and b) the resonant
decomposition is given by

S0 = {λ2, λ4}, S1 = {λ1, λ3, λ4}. (9.29)

This is:

SV λ1 λ2 λ3 λ4

λ1 λ4 λ1 λ4 λ4

λ2 λ1 λ2 λ3 λ4

λ3 λ4 λ3 λ4 λ4

λ4 λ4 λ4 λ4 λ4

.

This table is isomorphic to the semigroup S42
(4) given in Appendix C. The

isomorphism is given by
(λ4 λ1 λ3 λ2). (9.30)
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Algebra Semigroup used

Type I many semigroups (see Subsection 9.1.3)

Type II S10
(4), S

12
(4)

Type III S13
(4), S

28
(4), S

42
(4), S

43
(4), S

44
(4), S

45
(4) and S64

(4)

Type V S42
(4)

.

Fig. 9.3: Summary of the results in this Chapter.

Note that the semigroup S42
(4) also allows us to obtain the type III al-

gebra. So we can ask, how can the same semigroup lead at the same time
to type III and V algebras? The reason is that this semigroup has two
different resonant decompositions, (9.23) and (9.27). Each of them leads,
after the reduction, to completely different algebras.

9.3.4 Isomorphisms and consistency of the procedure

In the following table we summarize our results by specifying all the non
isomorphic semigroups that allow us to generate the type I, II, III and the
V algebra starting from the 2-dimensional algebra (9.18):

For consistency we should prove that each semigroup of the table (9.19)
(which we have constructed by hand in Section 9.1) is isomorphic to one
of the semigroups of table (9.3) that we have found by using computer
programs. This information is given in the following table:

Isomorphic to Isomorphism

SN1 ≈ S44
(4) (λ4 λ1 λ2 λ3)

SN2 ≈ S12
(4) (λ4 λ3 λ2 λ1)

SN3 ≈ S42
(4) (λ4 λ1 λ3 λ2)

S
(2)
E ≈ S43

(4) (λ4 λ3 λ2 λ1)

S
(3)
K ≈ S45

(4) (λ4 λ2 λ1 λ3)

Fig. 9.4: Identification of the semigroups used in this Chapter with the semigroups
generated by gen.f.

All the semigroups used in this Chapter are shown in Appendix C.
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10. CONCLUSIONS

Here we summarize the results presented in this Thesis.
We have computed an explicit formula for that star product on Minkowski

space which has several properties:

• It can be extended to a star product on the conformal space G(2, 4).
This is done by gluing the star products computed in each open set
(2.19).

• It can be extended to act on smooth functions as a differential star
product.

• The Poisson bracket is quadratic in the coordinates.

• There is a coaction of the quantum Poincaré group (or the conformal
group in the case of the conformal spacetime) on the star product
algebra.

• It has at least two real forms corresponding to the Euclidean and
Minkowskiam signatures.

• It can be extended to the superspace (to chiral and real superfields).

Since fields are smooth functions, the differentiability of the star product
gives a hope that one can develop a quantum deformed field theory, that is,
a field theory on the quantum deformed Minkowski space. The departure
point will be to find a generalization of the Laplacian and the Dirac operator
associated to the quantum invariant Cq.

One advantage of using the quantum group SLq(4,C) is that the coalge-
bra structure is isomorphic to the coalgebra of the classical group SL(4,C)
(see for example Theorem 6.1.8 in ref.[46]). This means that the group
law is unchanged, so the Poincaré symmetry principle of the field theory
would be preserved in the quantum deformed case. Those results have been
published in ref.[2].
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We have defined what we call Invariant Sigma Models (ISM). These
models can be defined in the series of coset spaces SO(2, n)/SO(2)×SO(n)
due to the existence of a left-invariant 2-form. We have built explicitely
the SO(2, 1)/SO(2), SO(2, 2)/SO(2) × SO(2) and SO(2, 3)/SO(2) × SO(3)
models.

We have discussed exhaustively the SO(2, 1)/SO(2), comparing it to
the SO(2, 1)/SO(2)R gauged Wess-Zumino-Witten model. We have showed
that, although these models coincide if there is no antisymmetric form, in
general they are different. The SO(2, 1)/SO(2) ISM does not show confor-
mal invariance at a quantum level, even adding a non trivial dilaton.

We discuss the contraction of ISM. We have defined the method to
deform invariant tensors and we have applied it to the contraction of
SO(2, 3)/SO(2)× SO(3) with respect to SO(2, 2)/SO(2)× SO(2) and with
respect to SO(3, 1)/SO(3). We have performed both, usual and generalized
contractions which can be interpreted as truncations of massive modes.
Those results will be published in ref.[4].

We show that the properties of commutativity, solvability and nilpo-
tency of the Lie algebras are preserved under a S-expansion. Other pro-
perties like semisimplicity and compactness are not necessarily preserved.
This depends on the semigroup used to perform the expansion procedure
[5].

These results are summarized in Figure 10.1.

Original g Expanded gS Resonant gS,R Reduced & res. gredS,R

Abelian Abelian Abelian Abelian

Solvable Solvable Solvable Solvable

Nilpotent Nilpotent Nilpotent Nilpotent

Compact Arbitrary Arbitrary Arbitrary

Semisimple Arbitrary Arbitrary Arbitrary

Arbitrary Arbitrary Arbitrary Arbitrary

Fig. 10.1: Properties preserved under an S-expansion.

Finally, we gave an interesting example studying all the possible ex-
pansions of the semisimple algebra sl(2,R) by abelian semigroups. All our
theoretical results were verified by using this example. We must point out
that we could not get a simple algebra expanding sl(2), but we do not have
any theoretical result forbiding the obtention of a simple algebra as the
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result of an S-expansion. Finding such result is a work to do in the future.
We have collected these results in ref.[5], to appear soon.

Finally, we have presented a complete study about the possibility of re-
lating, by means of an expansion, two and three dimensional Lie algebras,
specifically those of type I, II, III and V (according to Bianchi’s classifica-
tion), as expansions of the Lie algebras in 2 dimensions. It can happen that
different semigroups lead to the same expanded algebra. Also, it is shown
that the other Bianchi algebras, types IV, VI-IX, cannot be obtained as an
expansion from the algebras in 2 dimensions. This means that there are
some algebras that have properties in some sense intrinsic to 3 dimensions.
This work has been published in ref.[6].

There are some undergoing works based on the calculations in this The-
sis. This includes:

• We can try to S-expand so(2, 1) and get so(2, 2) and so(2, 3) to find
the inverse construction of the contractions described in Chapter 7. In
ref.[6] no simple Lie algebra was found by expanding sl(2). Succeding
to find so(2, 3) would also give us an example of a simple algebra
obtained as the result of an S-expansion.

• To complete a catalog with the properties of all the S-expansions
of all the simple algebras up to some dimension. For instance, one
could say which expansions give semisimple or simple algebras, which
ones give compact algebras and identify the resulting algebras. The
programs in Appendix B can be extended to fit these purposes.

• To compute the real quantum Minkowski space with a flag manifold.
Using a flag manifold is mandatory if one wants to find the real form
of complex quantum Minkowski space. In ref.[47] we calculate the
classical case. The quantization of the flag manifold is an extremely
complicated work which must be performed with the aid of computer
programs. We are enhancing the programs developed in ref.[47] to
try to perform the quantization.

Some of these works will be published in the next months.
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11. METODOLOGIA

En aquesta Tesi hem seguit la metodologia de recerca habitual en f́ısica
teòrica.

En els Caṕıtols 3, 4 i 5 s’han definit estructures algebraiques com el
producte ‘star’ i la coacció ‘star’. S’han realitzat programes amb Mathe-
matica per a poder calcular algoŕıtmicament aquests objectes. S’han trobat
expressions anaĺıtiques que han permés realitzar a mà desenvolupaments
complexes en potències de la constant de no commutativitat, ajudant-se
amb programes fets amb Mathematica i Maxima, per tal de trobar opera-
dors diferencials que reprodüıren aquests resultats.

En el Caṕıtol 6 s’han definit tensors invariants en espais coset i realitzat
càlculs anaĺıtics tant a mà com mitjançant el programa Mathematica per
als casos en què la dificultat dels càlculs era massa elevada. Per a cada
model s’han calculat tots els objectes importants: generadors de l’acció del
grup, corrents associats i tensors invariants. Els càlculs de les contraccions
que apareixen en el Caṕıtol 7 s’han realitzat amb l’ajut de Mathematica.

En el Caṕıtol 8 s’han estudiat de forma anaĺıtica algunes propietats
preservades sota l’expansió S d’una àlgebra de Lie. Aquest estudi s’ha
realitzat a mà, mentres que per a la seua aplicació a les expansions S de
l’àlgebra de Lie sl(2) s’ha desenvolupat una llibreria en Java [24]. En el
Caṕıtol 9 s’estudia a mà com obtindre les àlgebres tridimensionals en la
classificació de Bianchi a partir de les bidimensionals. Una vegada obteses
les condicions sobre els semigrups a usar, la busca es realitza mitjançant
programes escrits en Java [24].
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12. RESUM

En aquesta Tesi investiguem distints aspectes de l’aplicació a la f́ısica de les
àlgebres de Lie. En particular, aquest treball es divideix en tres parts: la
construcció d’un product no commutatiu per a l’espai de Minkowski [1, 2, 3],
el desenvolupament de models sigma [4] amb invariància sota l’acció del
grup de simetria i l’estudi de la possiblitat de relacionar distintes àlgebres
de Lie mitjançant l’expansió amb semigrups discrets [6].

La primera part d’aquesta Tesi es desenvolupa en els Caṕıtols 3, 4 i
5.

Els principals objectius d’aquesta part del treball són:

• Definir un producte ‘star’ no commutatiu per a la compactificació
conforme de l’espai de Minkowski.

• Donar una fórmula anaĺıtica expĺıcita per al producte ‘star’ de dos
polinomis en l’espai de Minkowski.

• Mostrar que l’acció del producte ‘star’ en polinomis es pot reproduir
mitjançant un operador bidiferencial i per tant el producte ‘star’ es
pot estendre a l’espai de les funcions C∞.

• Definir una coacció del grup de Poincaré més dilatacions en l’espai de
Minkowski de forma que siga compatible amb el producte ‘star’.

• Mostrar que aquesta coacció es pot reproduir mitjançant un operador
diferencial fins a un cert ordre en el paràmetre de quantització.

• Completar la construcció dels espais de Minkowski i Euclidià quàntics
donant formes reals adequades.

La segona part es desenvolupa en els Caṕıtols 6 i 7. Alĺı:

• Definim una classe de models sigma invariants sota un grup de sime-
tria (ISM).
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• Estudiem les diferències entre aquests models i els corresponents mo-
dels ‘gauged’ WZW.

• Mostrem que, en general, aquests models no presenten invariància
conforme.

• Relacionem distints ISM per contracció de grups de Lie.

La tercera part es desenvolupa en els Caṕıtols 8 i 9. Els nostres
objectius són:

• Estudiar propietats que es preserven sota el procediment d’expansió
per semigrups discrets.

• Realitzar una classificació de les expansions S d’àlgebres simples.

• Usar el procediment d’expansió S per a trobar relacions entre àlgebres
bidimensionals i tridimensionals.

L’estructura de l’espai-temps a un nivell fonamental ha sigut discutida
des del descobriment de la Relativitat General. Aquesta teoria descriu la
gravetat com la mètrica de l’espai-temps, mentre que la matèria és la font
de dita mètrica. L’èxit de la Relativitat General descrivent la gravetat és
remarcable (per exemple, penseu en els dispositius GPS).

Amb el descobriment de la mecànica quàntica al principi del segle XX
es feu palés que l’estructura fonamental de l’espai-temps deuria sortir de
la combinació d’aquestes dos teories. La quantització de la Relativitat
General, vista com una teoria quàntica de camps, dóna una teoria no re-
normalitzable. S’han proposat diverses alternatives per a resoldre aquest
problema, com la teoria de cordes o la gravetat quàntica de bucles, les
quals intenten quantitzar la gravetat de formes distintes. Inclús existeix
l’esperança què la Supergravetat podria ser finita [7]. Desafortunadament,
la complexitat tècnica d’aquestes teories fa impossible tindre avui una teo-
ria definitiva de la gravetat quàntica. El què sembla clar és que, a un nivell
fonamental, l’espai-temps deuria tindre una estructura no localitzada o
‘fuzzy’ descrita per un àlgebra d’operadors que en general no commutarien.

És possible estudiar l’estructura de l’espai-temps sense introduir-hi una
teoria dinàmica. S’han realitzat distints intents en aquest sentit [8, 9, 10,
11], definint productes no commutatius en teories de camps, per a introduir
els efectes de la no commutativitat de l’espai-temps de diferents maneres.
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En la Secció 2.4 presentem la complexificació conforme de l’espai-temps
de Minkowski usual mitjançant la varietat Grassmaniana G(2, 4), és a dir,
l’espai de plans bidimensionals en l’espai C4. En aquesta varietat existeix
una acció natural del grup de Poincaré més dilatacions, donada per l’acció
del subgrup parabòlic inferior, Pl ⊂ SL(4,C). Convé treballar amb aquest
grup de forma algebraica, és a dir, amb l’àlgebra de polinomis en les varia-
bles del grup, O(Pl). En aquest formalisme la llei de grup es codifica com
un coproducte (dual del producte) i la inversa es generalitza a l’ant́ıpoda.
L’acció del grup de Poincaré en l’espai de Minkowski està donada per una
coacció definida en els generadors de l’espai de Minkowski. Anomenem
O(M) a l’àlgebra de polinomis en l’espai de Minkowski. Aquest formalisme
és convenient perquè ens permet realitzar la quantització de Minkowski de
forma directa.

Es pot veure els grups quàntics [14] com deformacions dels grups de Lie.
Les operacions de producte, coproducte i ant́ıpoda es defineixen en termes
d’un paràmetre de no commutativitat (q). Les àlgebres involucrades aćı
es defineixen com polinomis en termes de generadors no commutatius (va-
riables no commutatives). En el cas particular q = 1, recuperem l’àlgebra
commutativa. En la Secció 2.5 es dóna una deformació de la Grassman-
niana i l’espai de Minkowski en termes de grups quàntics. A més a més,
en ref.[1] es dóna una quantització de l’espai de superMinkowski quiral en
termes de grups quàntics.

Treballar amb camps definits en les variables quàntiquesOq(M) presenta
una gran dificultat. Podem definir un mapa QM entre O(M) i Oq(M), els
quals són isormorfs com a mòduls, de forma que treballem amb funcions
C∞ (els camps definits en l’espai de Minkowski usual) i introdüım la no
commutativitat usant un producte no commutatiu per als camps. Aquest
mapa és l’anomenat mapa de quantització o regla d’ordre. En el Caṕıtol 3
definim un producte no commutatiu (producte ‘star’) en G(2, 4) que ve del
‘gluing’ de productes ‘star’ en la ‘big cell’ (l’espai de Minkowski). En l’espai
de Minkowski s’usa una regla d’ordre. Aquest producte és associatiu per
construcció i definit per a polinomis en G(2, 4), és a dir, purament algebraic.
Per a aplicar aquest producte a una teoria de camps és prećıs fer una gene-
ralització a funcions suaus definides en G(2, 4). Per a açò hem de trobar
una expressió diferencial per al producte ‘star’. Redefinint q = eh és pos-
sible realitzar una expansió que pot ser reprodüıda per l’acció d’operadors
diferencials en els polinomis clàssics (veure la Secció 3.2). Aquest resultat
no és trivial, perquè els coeficients que multipliquen cada terme s’han de
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reproduir exactament. Una anàlisi acurada de l’estructura dels termes que
apareixen en el producte ‘star’ permet demostrar que tots els polinomis
que apareixen en el seu desenvolupament en termes de h tenen l’estructura
correcta, de forma que el producte ‘star’ és diferencial i la seua expressió
per un operador bidiferencial és única. Gràcies a açò definim el producte
‘star’ per a funcions suaus en O(M) com l’expansió corresponent en ter-
mes d’operadors bidiferencials. Per a escriure els operadors bidiferencials
a un ordre arbitrari en el paràmetre de no commutativitat s’ha de fer el
càlcul expĺıcit. Els calculem fins a ordre 2 i mostrem que existeixen a ordre
arbitrari.

També és possible definir un producte ‘star’ per al grup de Poincaré
(Caṕıtol 4). Es defineix una regla d’ordre per al grup (veure Apèndix A.2.5)
i seguim un procediment anàleg a l’usat per al producte ‘star’ en l’espai
de Minkowski. Seguidament definim una coacció ‘star’ del grup quàntic en
Oq(M) compatible amb el producte ‘star’, usant el mapa de quantització.
La coacció ‘star’, quan actua sobre els generadors de l’espai de Minkowski,
és formalment idéntica a la clàssica, éssent deguts els efectes no commu-
tatius a la presència del producte ‘star’. Aquesta coacció és algebraica,
aix́ı que per a poder aplicar-la a funcions suaus necessitem expressar-la en
termes d’operadors diferencials. En aquest cas estudiem l’acció del grup en
l’espai de Minkowski com un operador diferencial que actua sobre un sol
argument: el resultat clàssic de l’acció. L’acció pot ser reproduida per un
operador diferencial i el trobem a primer ordre.

Fins a aquest punt hem treballat amb una complexificació de Minkowski
i grups complexes. En el Caṕıtol 5 discutim el problema de trobar les
formes reals corresponents. Clàssicament el problema es redueix a trobar
una involució, és a dir, un automorfisme amb les propietats (5.1), el conjunt
de punts fixes del qual és la forma real que estem buscant. Donem les
involucions per a l’espai de Minkowski i Euclidià, amb les formes reals dels
grups que actuen en ells.

El cas quàntic és distint, perquè la involució ha de ser consistent amb
les regles de commutació, cosa que la força a ser un antiisomorfisme, (és a
dir, una antiinvolució). Açò descarta la interpretació d’una forma real com
el conjunt de punts fixes d’un mapa. Una altra conseqüència és que, quan
equipem l’espai de Minkowski real amb el producte ‘star’ que hem definit,
el parèntesi de Poisson és purament imaginari.

Els models sigma no linials consisteixen en un conjunt de camps que
prenen valors en els punts d’una varietat diferenciable (l’ anomenat espai
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‘target’). Encara que es descriuen en termes de coordenades locals, les
varietats diferenciables no tenen sistemes de coordinades privilegiats com
els espais linials. Els models sigma presenten una invariància global res-
pecte a difeomorfismes de l’espai target. Els camps en un model sigma
interaccionen principalment degut a una mètrica Riemanniana en la varie-
tat ‘target’, representada per un tensor simètric 2-covariant. També poden
interaccionar mitjançant altres objectes, com un tensor antisimètric o un
camp escalar (dilató).

És especialment interessant quan hi ha un grup actuant en la varietat.
Les propietats globals de la varietat són importants per a estudiar l’acció del
grup: els exemples més senzills són els espais quocient de tipus G/H, amb
H un subgrup de G. H és el grup d’isotropia o grup menut. L’acció del grup
G és transitiva en aquest cas. Els casos en què la varietat ‘target’ és ella
mateixa un grup de Lie són també interessants, l’acció és la multiplicació
per l’esquerra i per la dreta en el grup. L’acció no només és transitiva, sinò
que amés no té cap punt fix.

Quan el grup actua mitjançant isometries de la mètrica (o, per a al-
tres classes d’interaccions, la derivada de Lie de l’objecte és zero) aquesta
simetria global es pot fer local introduint una conexió no linial en l’espai.
Açò és el que s’anomena un model sigma ‘gauged’, els quals apareixen en
teories supersimètriques i de Supergravetat.

En les teories supersimétriques i de Supergravetat els models sigma
apareixen perquè les representacions de supersimetria (multiplets) genèri-
cament contenen escalars, el lagrangià dels quals són models sigma més
termes d’interacció amb altres camps.

Els models sigma també apareixen en el context de teories de cordes. En
aquest cas la fulla món d’una corda juga el paper de l’espai-temps i l’espai
‘target’ és l’espai-temps on es mou la corda. Si hi ha invariància con-
forme aquestes teories mostren invariància sota l’acció de l’àlgebra infinit-
dimensional de Virasoro. Un exemple clàssic són els models de Wess-
Zumino-Witten (WZW), què són a més invariants sota àlgebres de Kac-
Moddy.

En ref.[15] es descobriren jerarquies de models sigma que apareixen en
models de Supergravetat. Aquestes jerarquies corresponen a contraccions
generalitzades [16, 17] del grup d’isometria del model original. Aquestes
contraccions desacoblen alguns camps i modelen truncacions exactes o in-
tegracions de modes massius. Modelar les integracions de modes massius
pel procediment geomètric d’una contracció simplifica tècnicament el pro-
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blema.

Els models WZW bidimensionals descriuen solucions de buit per a una
corda. L’acció WZW conté dos parts: la part de la mètrica i la integral
d’una 3-forma en una varietat tridimensional, la frontera de la qual és una
compactificació de la fulla món de la corda. Aquestes formes són biinvari-
ants (invariants esquerres i dretes) sota l’acció del grup mateix. Un model
de WZW pot ser, almenys localment, escrit com un model sigma amb una
mètrica biinvariant i una 2-forma la qual, sota l’acció del grup de simetria,
canvia per la diferencial d’una funció. Les constants relatives entre ambdós
termes s’elegeixen de forma que el model siga invariant conforme.

El ‘gauging’ d’un model WZW [18] es fa per acoblament mı́nim si el
2-tensor antisimètric és invariant sota les isometries ‘gaugeades’. Si no ho
és, encara és possible ‘gaugear’ si afegim termes adicionals al model, sempre
que el subgrup de simetria que volem gaugear estiga lliure d’anomalies [18].

En la sèrie d’espais ‘coset’ SO(2, n)/SO(2)×SO(n) (Caṕıtol 6) és possi-
ble definir una mètrica i una 2-forma invariants sota SO(2, n). Amb aquests
objectes podem construir el que anomenem invariant sigma models (ISM).
Cal esbrinar si el resultat de gaugear el subgrup SO(2) × SO(n) en un
model WZW SO(2, n) és un ISM. El resultat és negatiu en els casos que
hem estudiat.

Prenem per exemple el grup SO(2, 1)/SO(2) (el més simple). Usem co-
ordenades solubles en el quocient. Les coordenades solubles són convenients
perquè ens permeten realitzar el càlcul de la mètrica i la 2-forma fàcilment,
donen formes simples per a aquests objectes i, a més, fan la comparació
amb ref.[15] possible. En la Secció 6.1 comprovem que aquest model és
diferent del model WZW ‘gauged’ SO(2, 1)/SO(2)R, què és un bosó lliure.
Les equacions de la funció beta a un loop ens diuen que l’ISM no és in-
variant conforme. En canvi, és invariant sota l’acció esquerra de SO(2, 1)
en el coset. En ref.[15] es mostra que el ‘gauging’ d’un subgrup (H) del
grup d’isometria (G) d’un model sigma consistent només en el terme de
la mètrica és un model sigma en la varietat quocient (G/H) invariant sota
l’acció de G en G/H. Mostrem que açò no és cert en un model WZW degut
a l’existència del tensor antisimètric.

El següent exemple és el grup SO(2, 2)/SO(2)×SO(2) (veure Secció 6.2).
Com adés, calculem la mètrica i la 2-forma i mostrem que el model no és
invariant conforme a nivell quàntic. Conclussions anàlogues són vàlides per
al grup SO(2, 3)/SO(2)× SO(3) (veure Secció 6.3).

En la sèrie d’espais simètrics SO(2, n)/SO(2)× SO(n) és possible rela-
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cionar grups amb diferent n usant contraccions d’àlgebres de Lie. El pro-
cediment per a contraure la mètrica sigué definit en la ref.[15] i aćı el ge-
neralitzem per a qualsevol tensor invariant.

La contracció de SO(2, 3)/SO(2)× SO(3) respecte a SO(1, 3)/SO(3) és
d’especial interés. En aquest cas és possible obtindre un model de tipus
(SO(3, 1)/SO(3)) × Rm. Desafortunadament el model no és invariant es-
querre respecte al grup complet SO(3, 1), només respecte a la part soluble.

La deformació d’àlgebres de Lie és un procediment que té importància
en Matemàtiques i F́ısica. En el Caṕıtol 7 hem estudiat com relacionar
ISMs amb distints grups de simetria usant un procediment de contracció.
Podem trobar contraccions aplicades a models de Supergravetat en ref.[15].
Una contracció d’àlgebres de Lie és un procediment que canvia les constants
d’estructura sense canviar el nombre de generadors.

L’expansió d’àlgebres de Lie per semigrups discretes (des d’ara, expansió
S, veure Secció 2.11) sigué introdüıda fa alguns anys en refs.[19, 20, 21, 22,
23]. Prenem un semigrup discret i una àlgebra de Lie i definim un nou
parèntesi de Lie en l’espai producte directe. Es pot demostrar que aquest
parèntesi és associatiu, antisimètric i que satisfà la identitat de Jacobi, per
la qual cosa el resultat és una àlgebra de Lie. Una expansió S canvia la
dimensió de l’àlgebra, ja que va d’una àlgebra n-dimensional algebra a una
n×m-dimensional (éssent m l’ordre del semigrup).

És possible extraure àlgebres de dimensió menor a partir d’una àlgebra
expandida S. És el cas quan hi ha una descomposició ressonant del semi-
grup. Hom pot extraure la subàlgebra ressonant de l’àlgebra expandida S.
En el cas què el semigrup tinga un element zero, és possible realitzar una re-
ducció per l’element zero. L’àlgebra redüıda és un quocient de l’expandida
S. De vegades és inclús possible realitzar dos reduccions per zero. Açò es
tracta en la Secció 2.11.

Existeixen certes propietats que es preserven sota una expansió S. Les
estudiem en el Caṕıtol 8. Quan expandim una àlgebra soluble el resultat
és una altra àlgebra soluble. Una conseqüència d’açò és la solubilitat de
la subàlgebra ressonant i de l’àlgebra 0-redüıda. El mateix passa amb la
nilpotència.

Quan expandim una àlgebra semisimple no podem assegurar la semisim-
plicitat de l’àlgebra expandida S, les seues subàlgebres ressonants o la 0-
redüıda. El mateix succeeix amb la compacitat. En la Secció 8.2 usem pro-
grames d’ordinador per a estudiar la semisimplicitat de l’àlgebra expandida
S, les seues subàlgebres ressonants i la 0-redüıda. Açò és un exemple del
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tipus de classificació que es pot realitzar. Un estudi complet de totes les
expansions S per semigrups fins a ordre 6 de totes les àlgebres simples
(fins a una certa dimensió) es deu realitzar en el futur. Les ferramentes
computacionals desenvolupades per a aquest treball ho fan possible.

En la Secció 8.2 discutim algunes expansions S interessants trobades
usant els nostres programes. Amb aquest objectiu hem desenvolupat una
llibreria Java [24]. Açò mostra la utilitat dels programes com a ferramenta
per a l’estudi de les expansions S. Amb ells podem buscar descomposicions
ressonants, obtindre les subàlgebres ressonants, les 0-redüıdes i comprovar
si són semisimples. En el futur implementarem la busca d’altres propietats
de les àlgebres.

En el Caṕıtol 9 explorem les relacions entre les àlgebres de Lie bidi-
mensionals i tridimensionals en la classificació de Bianchi [29]. Trobem que
només podem establir eixes relacions gràcies a les subàlgebres ressonants.
De fet, quan distintes descomposicions ressonants del mateix semigrup exis-
teixen és possible relacionar distintes àlgebres mitjançant el mateix semi-
grup. Mitjançant un procediment iteratiu és possible dedüır algunes condi-
cions en la taula de multiplicació d’un semigrup donant una certa relació
i aleshores buscar totes les possibles formes de satisfer aquestes condicions
amb distints semigrups usant programes desenvolupats per nosaltres.

A continuació presentem les conclusions d’aquesta Tesi.
Hem calculat una fórmula expĺıcita per al producte ‘star’, que té les

propietats següents:

• Es pot extendre a productes ‘star’ en l’espai conforme G(2, 4). Açò
es fa enganxant els productes ‘star’ calculats en cada conjunt obert
(2.19).

• Es pot extendre a actuar en funcions suaus com un producte diferen-
cial.

• El parèntesi de Poisson és quadràtic en les coordinades.

• Existeix una coacció del grup de Poincaré quàntic (o el grup conforme
en cas de l’espai conforme) en l’àlgebra del producte ‘star’.

• Té almenys dos formes reals corresponent a les signatures Euclidiana
i Minkowskiana.

• Es pot extendre al superespai (per a supercamps quirals i reals).
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Donat què els camps són funcions suaus, la diferenciabilitat del producte
‘star’ ens dona esperança què hom puga desenvolupar una teoria de camps
sobre la deformació quàntica de l’espai de Minkowski. El punt de partida
és trobar una generalització del Laplacià i l’operador de Dirac associats a
l’invariant quàntic Cq.

Un avantatge d’usar el grup quàntic SLq(4,C) és que l’estructura de
coàlgebra és isomorfa a la coàlgebra del grup clàssic SL(4,C) (veure per
exemple el Teorema 6.1.8 en ref.[46]). Açò significa que la llei de grup
roman inalterada, de forma que el principi de simetria de Poincaré de la
teoria de camps seria preservat en el cas deformat quàntic.

Hem definit el que anomenem models sigma invariants (ISM). Aquests
models es poden definir en la sèrie d’espais coset SO(2, n)/SO(2)× SO(n)
degut a l’existència d’una 2-forma invariant. Hem constrüıt expĺıcitament
els models basats en els espais coset SO(2, 1)/SO(2), SO(2, 2)/SO(2) ×
SO(2) i SO(2, 3)/SO(2)× SO(3).

Hem discutit exhaustivament el model SO(2, 1)/SO(2), comparant-lo
amb el model WZW ‘gauged’ SO(2, 1)/SO(2)R. Hem fet veure què, en-
cara que aquests models coincideixen si no afegim el terme de la 2-forma
antisimètrica, quan prenem els models complets són dos models fonamen-
talment distints. L’ISM SO(2, 1)/SO(2) no posseeix invariància conforme
a nivell quàntic.

Discutim la contracció de models ISM. Hem definit el mètode per a
deformar un tensor invariant arbitrari i l’hem aplicat a la contracció de
SO(2, 3)/SO(2) × SO(3) respecte a SO(2, 2)/SO(2) × SO(2) i respecte a
SO(3, 1)/SO(3). Hem realitzant tant contraccions al mode usual com gene-
ralitzades, les quals podem interpretar com contraccions de modes massius.

Mostrem que les propietats de commutativitat, solubilitat i nilpotència
de les àlgebres de Lie es preserven sota l’acció del procés d’expansió S a tots
els nivells. Per altra part, altres propietats com ara la semisimplicitat i la
compacticitat no es preserven necessàriament, fet que depén del semigrup
usat per a realitzar l’expansió S. Aquests resultats es resumeixen en la
Figura 12.1.

Presentem un exemple interessant estudiant totes les expansions possi-
bles de l’àlgebra semisimple sl(2,R). Tots els nostres resultats teòrics han
sigut verificats gràcies a aquest exemple. Hem d’assenyalar què no hem
pogut obtindre cap àlgebra simple expandint sl(2), però no tenim cap re-
sultat teòric que prohibisca l’obtenció d’una àlgebra simple com a resultat
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Original g Expandida gS Ressonant gS,R Redüıda i res. gredS,R

Abeliana Abeliana Abeliana Abeliana

Soluble Soluble Soluble Soluble

Nilpotent Nilpotent Nilpotent Nilpotent

Compacta Arbitrària Arbitrària Arbitrària

Semisimple Arbitrària Arbitrària Arbitrària

Arbitrària Arbitrària Arbitrària Arbitrària

Fig. 12.1: Propietats preservades sota l’expansió S.

d’una expansió S. Trobar aquest resultat és un treball a realitzar en el futur.

Finalment, hem presentat un estudi complet sobre la possibilitat de rela-
cionar, mitjançant una expansió S, les àlgebres de Lie en 2 i 3 dimensions.
Hem trobat que algunes àlgebres tridimensionals, espećıficament les de ti-
pus I, II, III i V (segons la classificació feta per Bianchi), es poden obtindre
com a expansions d’àlgebres bidimensionals. Pot ocòrrer que distints semi-
grups condüısquen a la mateixa algebra expandida. A més, es mostra que
els tipus IV, VI-IX en la classificació de Bianchi no es poden obtindre com
a expansió d’àlgebres bidimensionals. Açò vol dir que aquestes àlgebres en
un cert sentit són intŕınseques a 3 dimensions.

Actualment estem realitzant alguns treballs basats en els resultats pre-
sentats en aquesta Tesi. Açò inclou:

• Intentar trobar les àlgebres so(2, 2) i so(2, 3) mitjançant l’expansió S
de l’àlgebra de Lie so(2, 1) per tal de trobar la construcció inversa de
les contraccions descrites en el Caṕıtol 7. En la ref.[6] no es trobà
cap àlgebra de Lie simple expandint sl(2). Conseguir trobar so(2, 3)
ens donaria un example d’una àlgebra simple obtesa com a resultat
d’una expansió S.

• Completar un catàleg amb les propietats de totes les expansions S
de totes les àlgebres simples fins a una certa dimensió. Per exem-
ple, hom podria dir quines expansions donen àlgebres semisimples
o simples, quines donen àlgebres compactes i identificar les àlgebres
resultants. Hom pot extendre els programes en l’Apèndix B per a
aquesta finalitat.

• Calcular l’espai de Minkowski quàntic real amb una varietat ‘flag’.
Cal usar una varietat ‘flag’ si hom vol trobar la forma real de l’espai de
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Minkowski quàntic complex. En la ref.[47] calculem el cas clàssic. La
quantització de la varietat flag és un treball extremadament complicat
que s’ha de realitzar amb l’ajut de programes d’ordinador. Estem
millorant els programes desenvolupats en la ref.[47] per tal d’intentar
realitzar la quantització.

Alguns d’aquests treballs seran publicats en els pròxims mesos.
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APPENDIX





A. A BASIS FOR THE POINCARÉ QUANTUM GROUP

In this Appendix we prove that, given a certain specific ordering on the
generators of the Poincaré quantum group, the ordered monomials form
a basis for its quantum algebra. This is a non trivial result based on the
classical work by Bergman [48].

A.1 Generators and relations for the Poincaré quantum group

Let us consider SLq(n,C) the quantum complex general linear group with
indeterminates gIJ subject to the Manin relations (2.9) and (2.10)1 (see
ref.[31])2. Inside SLq(n,C) we consider the following elements which we
write, as usual, in a matrix form:

(
gij
)

=

(
x 0
Tx y

)
with

x =

(
g11 g12

g21 g22

)
, T =

(
−q−1D23D

−1
12 D13D

−1
12

−q−1D24D
−1
12 D14D

−1
12

)

y =

(
g33 g34

g43 g44

)
.

As in (2.11), let us define the quantum Poincaré group, Oq(Pl) as the
subring of SLq(n,C) generated by the elements in the matrices x, y, T

1 In this appendix we write the noncommutative generators without the hat to simplify
the notation.

2 All of the arguments in this appendix hold replacing SLq(n,C) with the general linear
quantum group and the complex field with any field of characteristic zero.
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defined above. In order to give a presentation forOq(Pl) we need to consider
all of the commutation relations between the generators x, y, T given in
(2.12, 2.13, 2.14, 2.15, 2.16). We call IPl the ideal generated by these
relations.

The entries in x (resp. y) satisfy the Manin commutation relations in
dimension 2, that is,

x =

(
g11 g12

g21 g22

)
∼
(
a b
c d

)
, y =

(
g33 g34

g43 g44

)
∼
(
a b
c d

)

ba = qab, ca = qac, db = qbd, dc = qcd,

cb = bc da = ad− (q−1 − q)bc. (A.1)

Moreover, they commute with each other:

xIJyKL = yKLxIJ .

Similarly one can show that the entries in TIJ satisfy the Manin relations,
with the order

T =

(
T32 T31

T42 T41

)
∼
(
a b
c d

)
,

but they do not commute with x and y (2.15, 2.16).

This provides a presentation of Oq(Pl) in terms of generators and rela-
tions (2.17) (see ref.[1] for more details),

Oq(Pl) = Cq〈xIJ , yKL, TRS〉/(IPl , detqx · detqy − 1),

where IPl is the ideal generated by the commutation relations (2.12, 2.13,
2.14, 2.15, 2.16).

A.2 The Diamond Lemma

Let us recall some definitions and theorems from the fundamental work by
Bergman [48] (see also ref.[49], pg. 103) 3.

3 All of our arguments hold more in general replacing Cq with a commutative ring
with unity.
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Definition A.2.1. Let Cq〈xi〉 be the free associative algebra over Cq with
generators x1, . . . , xn and let

X := {XI = xi1 · · ·xis / I = (i1, . . . , is), ij ∈ {1, . . . , n}}

be the set of all (unordered) monomials. X is clearly a basis for Cq〈xi〉.
We define on X an order, <, such that given two monomials x and y, then
x < y if the length of x is less than the length of y and for equal lengths
we apply the lexicographical ordering. �

Let Π = {(XIk , fk) | k = 1, . . . , s} be a certain set of pairs XIk ∈ X and
fk ∈ Cq〈xi〉. We denote by JΠ the ideal

JΠ = (XIk − fk, k = 1, . . . , s) ⊂ Oq(Pl).

In our application Π will yield the ideal of the commutation relations for
the quantum Poincaré group.

Definition A.2.2. We say that Π is compatible with the ordering < if fk
consists of a linear combination of ordered monomials. �

For example if Mq(2) = Cq〈a, b, c, d〉/IM , where IM is the ideal of the
Manin relations, we have that

ΠM = {(ba, qab), (ca, qac), (cb, bc), (dc, qcd),

(db, qbd), (da, ad− (q−1 − q)bc) }

is compatible with the ordering a < b < c < d.
We want to find a basis consisting of ordered monomials for a Cq-module

Cq〈xi〉/JΠ. Clearly this is not possible for any chosen total order. However,
when Π is compatible with the order, that is, when the relations XIk − fk
behave nicely with respect to the given order, then we can implement an
algorithm to reduce any monomial to a standard form (namely to write it
as a combination of ordered monomials). This is essentially the content of
the Diamond Lemma for ring theory that we shall describe below.

We have two problems to solve: first, one has to make sure that any
procedure to reduce a monomial to the standard form terminates, and then
one has to make sure that the chosen procedure gives a unique result.

Definition A.2.3. Assume that we fix a generic set Π as above. Let
x, y ∈ X and let rxky be the linear map of Cq〈xi〉 sending the elements of
the form xxiky to xfky and leaving the rest unchanged. rxky is called a
reduction and an element x ∈ X (or more generally in Cq〈xi〉) is reduced if
r(x) = x for all reductions r. �
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In general more than one reduction can be applied to an element. For
example if we take the quantum matrices Mq(2) and ΠM as above, we see
that dcba is not reduced, and we have several ways to proceed to reduce
it. We want to make sure that that there are no ambiguities, or, in other
words, we want to make sure there is a unique reduced element associated
with it.

Definition A.2.4. Let x, y, z ∈ X and xik , xil be the first elements of two
pairs in Π. We say that (x, y, z, xik , xil) form an overlapping ambiguity if
xik = xy, xil = yz. The ambiguity is resolvable if there are two reductions r
and r′ such that r(xikz) = r′(xxil). In other words, if we can reduce xyz in
two different ways, we must obtain the same result. Similarly (x, y, xik , xil)
form an inclusion ambiguity if xik = xxily. The inclusion ambiguity is
solvable if there are two reductions r and r′ such that r(xik) = r′(xxily).

�

Theorem A.2.5. (Diamond Lemma). Let R be the ring defined by gene-
rators and relations as:

R := Cq〈xi〉/(XIk − fk, k = 1 . . . s)

If Π = {XIk , fk}k=1,...,s is compatible with the ordering < and all ambi-
guities are resolvable, then the set of ordered monomials is a basis for R.
Hence R is a free module over Cq.

Proof. See ref.[48].
�

A.3 A basis for the Poincaré quantum group

In this section, we want to apply the Diamond Lemma, to obtain an explicit
basis for the quantum algebra of the Poincaré quantum group. Let us fix
a total order on the variables x, y, t as follows:

t32 > t31 > t42 > t41 > x11 > x12 > x21 > x22 > y33 > y34 > y43 > y44.

One sees right away that the relations in IM as described in (2.12,
2.13, 2.14, 2.15, 2.16) give raise to a Π compatible with the given order.
Furthermore, notice that this order is the Manin ordering (see ref.[8]) in
two dimensions when restricted to each of the sets {xIJ}, {yKL}, {tRS}.
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As one can readily see, the fact that Π is compatible with the given
order ensures that any reordering procedure terminates.

Theorem A.3.1. Let Oq(Pl) = Cq〈xij , ykl, til〉/IPl be the algebra corre-
sponding to the quantum Poincaré group. Then, the monomials in the
order:

t32 > t31 > t42 > t41 > x11 > x12 > x21 > x22 > y33 > y34 > y43 > y44.

are a basis for Oq(Pl).

Proof. By the Diamond Lemma A.2.5 we only need to show that all
ambiguities are resolvable. We notice that when two generators a, b, q-
commute, that is ab = qsba, they behave, as far the reordering is concerned,
exactly as commutative indeterminates. Hence we only take into consid-
eration ambiguities where no q-commuting relations appear. The proof
consists in checking directly that all such ambiguities are resolvable.

Let us see, as an example of the procedure to follow, how to show that
the ambiguity x22x11t32 is resolvable. All the other cases follow the same
pattern since the relations have essentially the same form as far as the
reordering procedure is concerned.

We shall indicate the application of a reduction with an arrow, as it is
customary to do.

(x22x11)t32 −→ (x11x22 − (q−1 − q)x12x21)t32 −→ x11(q−1t32x22+

+ (q−1 − q)t31x12)− (q−1 − q)[x12(q−1t32x21+

(q−1 − q)t31x11)] −→ q−1t32x11x22 + q−1(q−1 − q)t31x11x12+

− q−1(q−1 − q)t32x12x21 − q(q−1 − q)t31x11x12 =

= q−1t32x11x22 − q−1(q−1 − q)t32x12x21 + (1− q2)t31x11x12.

Similarly

x22(x11t32) −→ x22t32x11 −→ (q−1t32x22 + (q−1 − q)t32x12)x11

−→ q−1t32(x11x22 − (q−1 − q)x12x21) + (1− q2)t31x11x12.

As one can see the two expressions are the same and reduced, hence we
obtain that this ambiguity is resolvable. �
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Remark A.3.2. We end the discussion by noticing that the Theorem A.3.1
holds also for the order:

x11 > x12 > x21 > x22 > y33 > y34 > y43 > y44 > t32 > t31 > t42 > t41

the proof being the same. �



B. A JAVA LIBRARY TO PERFORM S-EXPANSIONS OF LIE
ALGEBRAS

This Appendix is about the programming tools developed to perform the
calculations in Chapters 8 and 9. We recommend its reading only to those
readers interested into Java programming.

We present a Java library developed to perform expansions of Lie alge-
bras by discrete semigroups. It is able to look for resonant decompositions
of any semigroup up to order 6, identify automatically the zero element of
a semigroup, check if two semigroups are isomorphic or antiisomorphic and
look for semigroups satisfying certain conditions (like a given resonance
condition). With this we can perform S-expansions of any Lie algebra, find
its resonant subalgebras and perform reductions by the zero element. We
show how the library works and we offer some examples of use.

As a preliminar step, we used the semigroup generating program gen.f
listed in ref.[44] to generate files sem.2, sem.3, sem.4, sem.5 and sem.6,
which contain all the semigroups up to isomorphism of orders 2 to 6 (the
content of sem.3 and a partial content of sem.4 can be seen in Appendix
C). We reproduce this program here:

C Semigroup generator program
INTEGER∗2 A( 8 , 8 ) ,P(40320 ,8 ) ,Q(40320 ,8)
OPEN(6 ,FILE=’ sem . 7 ’ )

3 FORMAT(1X, I6 , I3 )
4 FORMAT(1X, I4 )

N=7
ID=0
DO 10 K=1,N
DO 10 L=1,N
A(K, L)=1

10 CONTINUE
A(N,N)=0
CALL PERM(P,Q,N,NF)
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I=N
J=N

20 CONTINUE
A( I , J)=A( I , J)+1
IF (A( I , J ) . LE.N) GO TO 50
A( I , J)=0
IF ( J .EQ. 1 ) GO TO 30
J=J−1
GO TO 40

30 CONTINUE
J=N
I=I−1

40 CONTINUE
IF ( I .EQ. 1 .AND. J .EQ. 1 ) STOP
GO TO 20

50 CONTINUE
CALL ASTEST(A,N,KA)
IF (KA.EQ. 0 ) GO TO 20
CALL ISOTEST(A,P,Q,N,NF, KI)
IF (KI .EQ. 0 ) GO TO 20
IF ( I .EQ.N.AND. J .EQ.N) GO TO 70
IF ( J .EQ.N) GO TO 60
J=J+1
GO TO 20

60 J=1
I=I+1
GO TO 20

70 CONTINUE
ID=ID+1
WRITE( 6 , 3 ) ID ,N
DO 80 K=1,N
WRITE( 6 , 4 ) (A(K, L) ,L=1,N)

80 CONTINUE
GO TO 20
END

SUBROUTINE ISOTEST(A,P,Q,N,NF, KI)
INTEGER∗2 A( 8 , 8 ) ,B( 8 , 8 ) ,C(8 , 8 )
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INTEGER∗2 P(40320 ,8 ) ,Q(40320 ,8)
KI=0
L=0

10 L=L+1
IF (L .GT.NF) GO TO 50
DO 30 I =1,N
DO 30 J=1,N
NA=A(Q(L , I ) ,Q(L , J ) )
IF (NA.EQ. 0 ) GO TO 20
B( I , J)=P(L ,NA)
GO TO 30

20 B( I , J)=0
30 CONTINUE

CALL COMPARE(A,B,N,KC)
IF (KC.EQ. 0 ) RETURN
DO 40 I =1,N
DO 40 J=1,N
C( I , J)=B(J , I )

40 CONTINUE
CALL COMPARE(A,C,N,KC)
IF (KC.EQ. 0 ) RETURN
GO TO 10

50 CONTINUE
KI=1
RETURN
END

SUBROUTINE ASTEST(A,N,KA)
INTEGER∗2 A(8 , 8 )
KA=1
I=0

10 I=I+1
IF ( I .GT.N) RETURN
J=0

20 J=J+1
IF ( J .GT.N) GO TO 10
MF=A( I , J )
IF (MF.EQ. 0 ) RETURN
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K=0
30 K=K+1

IF (K.GT.N) GO TO 20
MS=A(J ,K)
IF (MS.EQ. 0 ) GO TO 10
IF (A( I ,MS) .EQ. 0 ) GO TO 30
IF (A(MF,K) .EQ. 0 ) GO TO 30
IF (A( I ,MS) .NE.A(MF,K) ) GO TO 40
GO TO 30

40 KA=0
RETURN
END

SUBROUTINE COMPARE(A,B,N,KC)
INTEGER∗2 A( 8 , 8 ) ,B(8 , 8 )
KC=0
I=0

10 I=I+1
IF ( I .GT.N) GO TO 30
J=0

20 J=J+1
IF ( J .GT.N) GO TO 10
IF (B( I , J ) .EQ. 0 ) GO TO 30
IF (A( I , J ) .GT.B( I , J ) ) RETURN
IF (A( I , J ) .EQ.B( I , J ) ) GO TO 20

30 CONTINUE
KC=1
RETURN
END

SUBROUTINE PERM(P,Q,N,NF)
INTEGER∗2 P(40320 ,8 ) ,Q(40320 ,8 ) ,T(8)
J=0
M=N
NF=N

10 M=M−1
IF (M.EQ. 0 ) GO TO 20
NF=M∗NF
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GO TO 10
20 CONTINUE

DO 30 L=1,N
T(L)=0

30 CONTINUE
K=1

40 CONTINUE
T(K)=T(K)+1
IF (T(K) . LE.N) GO TO 50
T(K)=0
K=K−1
IF (K.EQ. 0 ) RETURN
GO TO 40

50 CONTINUE
I=0

60 I=I+1
IF ( I .EQ.K) GO TO 70
IF (T( I ) .EQ.T(K) ) GO TO 40
GO TO 60

70 CONTINUE
IF (K.EQ.N) GO TO 80
K=K+1
GO TO 40

80 CONTINUE
J=J+1
DO 90 L=1,N

P(J , L)=T(L)
90 CONTINUE

DO 100 L=1,N
M=P(J , L)
Q(J ,M)=L

100 CONTINUE
IF ( J .EQ.NF) RETURN
GO TO 40
END

The files sem.X contain all the semigroups up to isomorphism of order
‘X’, labelled by a number which univocally identifies each semigroup. This
number runs from 1 up to the number of semigroups of that order. This is
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the input data of our library. In our case, we were only able to compute
the semigroups up to order 6 because we only had acces to our personal
computers. With the program listed above it is possible to generate semi-
groups up to order 8. The order 9 is non trivial and was solved in 2009 in
ref.[50].

We define the Semigroup class to represent a discrete semigroup and all
the operations which can be performed with them.

public class Semigroup {

int [ ] [ ] data ;
int order ; //The order o f the semigroup
int ID ; // This i s the number o f semigroups

// f o r a g iven order .

There is obviously more code but we can not reproduce it completely
here. We see that we use three objects to save the information of a semi-
group: an integer ‘ID ’ which contains the number which identifies the semi-
group, a second integer ‘order ’ which tells us the order of the semigroup
and a matrix of integers ‘data’ where we save the multiplication table of
the semigroup. By convention we label the generators of the semigroup,
λα, by the integer α and define its multiplication table

A =
(
aαβ

)
≡
(
λα · λβ

)
B.1 Preliminars

The first thing that we need to do is loading the semigroups generated
by gen.f. The method loadFile loads all the semigroups of a given order,
returning us an array of Semigroup objects:

private stat ic Semigroup [ ] l o a d F i l e ( int order ) {
int N = 0 ;
int NSemigroups ;
int number , id ;
BufferedReader theReader ;
S t r ing s t r ;
S t r ing strNumero ;
St r ingToken i ze r s t ;
int [ ] [ ] matrix ;
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Semigroup [ ] r e s u l t ;
S t r ing f i leName = null ;
int e lements = 0 ;
switch ( order ) {
case 2 :

f i leName = ” s r c / semigroups / datos /sem . 2 ” ;
e lements = 4 ;
break ;

case 3 :
f i leName = ” s r c / semigroups / datos /sem . 3 ” ;
e lements= 18 ;

break ;
case 4 :

f i leName = ” s r c / semigroups / datos /sem . 4 ” ;
e lements= 126 ;
break ;

case 5 :
f i leName = ” s r c / semigroups / datos /sem . 5 ” ;
e lements= 1160 ;
break ;

case 6 :
f i leName = ” s r c / semigroups / datos /sem . 6 ” ;
e lements= 15973 ;
break ;

}
r e s u l t = new Semigroup [ e lements ] ;
F i l e arx iu = new F i l e ( f i leName ) ;
try {

NSemigroups = elements ;
Fi leReader reader = new Fi leReader ( arx iu ) ;
theReader = new BufferedReader ( reader ) ;
for ( N = 0 ; N < NSemigroups ; ++N ){

matrix = new int [ o rder ] [ order ] ;
//The f i r s t we have to read i s the
// order and ID o f the semigroup
s t r = theReader . readLine ( ) ;
s t = new Str ingToken i ze r ( s t r ) ;
strNumber = s t . nextToken ( ) ;
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number = I n t e g e r . pa r s e In t ( strNumber ) ;
id = number ;
strNumber = s t . nextToken ( ) ;
number = I n t e g e r . pa r s e In t ( strNumber ) ;
int i , j ;
//Now we can s t a r t to read the m u l t i p l i c a t i o n t a b l e
for ( i = 0 ; i < order ; ++ i ){
for ( j = 0 ; j < order ; ++j ) {

s t r = theReader . readLine ( ) ;
s t = new Str ingToken i ze r ( s t r ) ;
strNumber = s t . nextToken ( ) ;
number = I n t e g e r . pa r s e In t ( strNumber ) ;
matrix [ i ] [ j ] = number ;
}
}

r e s u l t [N] = new Semigroup ( matrix ) ;
r e s u l t [N ] . ID = id ;
}

reader . c l o s e ( ) ;
} catch ( IOException excepc io ) {

System . out . p r i n t l n ( ” Error ” ) ;
}
return r e s u l t ;
}

This method just loads the semigroups of a given order. To load all the
avaliable semigroups we use the method loadFromFile. It uses the method
loadFile to load the semigroups from order 2 to 6:

public stat ic Semigroup [ ] loadFromFile ( ) {
Semigroup [ ] r e s u l t ;
Semigroup [ ] aux ;
int i = 0 , j = 0 ;
int alreadySaved = 0 ;
r e s u l t = new Semigroup [4+18+126+1160+15973];
int [ ] e lements = {4 ,18 ,126 ,1160 ,15973} ;
for ( i = 2 ; i < 7 ; ++i ) {
aux = l o a d F i l e ( i ) ;
for ( j = 0 ; j < e lements [ i − 2 ] ; ++j ) {

r e s u l t [ a lreadySaved + j ] = aux [ j ] ;
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}
alreadySaved += elements [ i −2] ;
}
return r e s u l t ;
}

B.1.1 Associativity

A semigroup must be associative, i.e. its generators must satisfy

(λα · λβ) · λγ = λα · (λβ · λγ) .

In terms of the multiplication table the condition above is written as

aaα,β ,γ = aα,aβ,γ .

The method isAssociative returns true if a given multiplication table is
associative, i.e. if it is really a semigroup.

public boolean i s A s s o c i a t i v e ( ) {
int i , j , k ;
for ( i = 0 ; i < order ; ++ i ) {
for ( j = 0 ; j < order ; ++j ) {
for ( k = 0 ; k < order ; ++ k ) {

i f ( ! ( data [ i ] [ data [ j ] [ k ]−1]
== data [ data [ i ] [ j ] −1 ] [ k ] ) ) {

return fa l se ;
}
}
}
}
return true ;
}

B.1.2 Commutativity

To perform an S-expansion, the semigroup used must be commutative. The
method isCommutative returns true if a given semigroup is commutative,
i.e.

λα · λβ = λβ · λα.
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public boolean isCommutative ( ){
int i , j ;
for ( i = 0 ; i < order ; ++i ) {
for ( j = 0 ; j < order ; ++j ) {

i f ( ! ( data [ i ] [ j ] == data [ j ] [ i ] ) ) {
return fa l se ;
}
}
}
return true ;
}

B.1.3 The zero element

A semigroup has a zero element, 0S , when there is an element satisfying

λα · 0S = 0S ∀α.

When a commutative semigroup has a zero element it is possible to
perform a reduction by the zero element of the expanded algebra. To be
able to automatize that procedure we need a method that can look for the
zero element, in case it exists. The method findZero returns −1 in case
that a given semigroup does not have a zero element or the zero element
othercase.

public int f i ndZero ( ) {
int i , j ;
boolean i s Z e r o = fa l se ;
for ( i = 0 ; i < order ; ++ i ) {

i f ( i s Z e r o == true ) {
return i ;
}
j = 0 ;
i s Z e r o = true ;
while ( i s Z e r o && ( j < order ) ) {

i f ( data [ j ] [ i ] != i +1) {
i s Z e r o = fa l se ;
}

++j ;
}
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}
i f ( i s Z e r o == true ) {
return order ;
}
return −1 ;
}

B.1.4 Equality

Sometimes we need an auxiliary method to check for the equality of two
given semigroups. The method isEqualTo returns true if they are equal.

public boolean isEqualTo ( Semigroup B ) {
int i , j ;
i f ( this . o rder != B. order ) {
return fa l se ;
}
for ( i = 0 ; i < this . o rder ; ++i ) {
for ( j = 0 ; j < B. order ; ++j ) {

i f ( this . data [ i ] [ j ] != B. data [ i ] [ j ] ) {
return fa l se ;
}
}
}
return true ;
}

B.2 Isomorphisms and permutations

Two isomorphic semigroups lead, after S-expansion, to two isomorphic Lie
algebras. It is important, then, to be able to check if two given semigroups
are isormorphic. In ref.[44] it was shown that the group of isomorphisms of
the semigroups of order n is the group of permutations of n elements, Σn.

We represent a permutation by

(λi1 λi2 · · ·λin)

which means change λ1 by λi1 , change λ2 by λi2 , etc, and finally change
λn by λin . We define the Set class to represent a permutation.
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public class Set {

int [ ] l i s t ;
int nElements ;

We do not reproduce its complete definition here. We see that a Set object
containts an integer ‘nElements’ which is the number of generators which
we want to apply the permutation to and a ‘list ’ where we save the per-
mutation in the format explained above. These objects will also serve us
to save any set of non repeated integers, like the one we will use for the
resonant decomposition of a discrete semigroup.

B.2.1 Creation of sets

We can create a set just from an array of integers

public Set ( int [ ] e lements ) {
l i s t = elements ;
nElements = elements . l ength ;
}

or we can create a Set of n elements containing the identity permutation
in Σn with

public Set ( int n ){
nElements = n ;
l i s t = new int [ n ] ;
int i ;
for ( i = 0 ; i < n ; ++i ) {

l i s t [ i ] = i +1 ;
}
}

B.2.2 Getting all the elements in Σn

To check if two given semigroups are isomorphic we have to try all the
existent isormorphisms for a given order. This means using all the elements
in Σn. This is performed by the method AllPermutations, which returns
an array of Set objects containing all the elements in Σn.

Set [ ] Al lPermutat ions ( ) {
Set r e s u l t = new Set (0 ) ;
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return this . PermutationsAux ( this , r e s u l t ) ;
}

This method uses the auxiliary method PermutationsAux, which actu-
ally performs most of the work. This is a recursive method which takes a
Set object and reorders its elements in all the possible ways. That is, given
the identity permutation

(1 2 · · · n)

it returns all the elements of the permutation group Σn.

Set [ ] PermutationsAux ( Set o r i g i n a l , Set r e s u l t ) {
int i , j ;
Set o r i g i n a l 2 , r e s u l t 2 ;
Set [ ] l i s t = null ;
Set [ ] t o t a l L i s t = null ;
Set [ ] p r e v i o u s L i s t = null ;
int N = 0 ;
i f ( o r i g i n a l . nElements == 0 ) {

l i s t = new Set [ 1 ] ;
l i s t [ 0 ] = r e s u l t ;
return l i s t ;
}
for ( i = 0 ; i < o r i g i n a l . nElements ; i++ ){

r e s u l t 2
= r e s u l t . addElement ( o r i g i n a l . elementAt ( i ) ) ;

o r i g i n a l 2 = o r i g i n a l . eraseElement ( i ) ;
l i s t = PermutationsAux ( o r i g i n a l 2 , r e s u l t 2 ) ;

N = N + l i s t . l ength ;
p r e v i o u s L i s t = t o t a l L i s t ;
t o t a l L i s t = new Set [N ] ;
for ( j = 0 ; j < N − l i s t . l ength ; ++j ) {

t o t a l L i s t [ j ] = p r e v i o u s L i s t [ j ] ;
}
for ( j = 0 ; j < l i s t . l ength ; ++j ) {

t o t a l L i s t [ j + N − l i s t . l ength ] = l i s t [ j ] ;
}
}
return t o t a l L i s t ;
}
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PermutationsAux uses the methods addElement and eraseElement whose
definition is obvious and we do not reproduce here.

B.2.3 Isomorphisms of semigroups

Given a permutation α ∈ Σn, we say that the semigroups A =
(
aij
)

and

B =
(
bij
)

are isomorphic if

Aα = B ←→ bij = α(aα−1(i),α−1(j)) ∀i, j.

The method which applies a given isormorphism to a semigroup is Per-
muteWith.

public Semigroup PermuteWith ( Set s ) {
int i , j ;
int [ ] [ ] matrix = new int [ this . o rder ] [ this . o rder ] ;
Set i n v e r s e = s . inversePermutat ion ( ) ;
for ( i = 0 ; i < this . o rder ; ++i ) {
for ( j = 0 ; j < this . o rder ; ++j ) {

matrix [ i ] [ j ] = this . data [ i n v e r s e . elementAt ( i ) − 1 ]
[ i n v e r s e . elementAt ( j ) −1] ;

}
}
for ( i = 0 ; i < this . o rder ; ++i ) {
for ( j = 0 ; j < this . o rder ; ++j ) {

i f ( matrix [ i ] [ j ] != −1 ) {
matrix [ i ] [ j ] = s . elementAt ( matrix [ i ] [ j ] − 1 ) ;
}
}
}
return new Semigroup ( matrix ) ;
}

Sometimes what we need is finding all the isomorphic forms of a given
semigroup, i.e., apply all the possible permutations to a given semigroup. In
that case, we use the method Permute, which returns an array of Semigroup
objects containing all the permutations of a given one.

public Semigroup [ ] Permute ( ) {
Set i d e n t i t y = new Set ( this . o rder ) ;
Set [ ] permutat ions = i d e n t i t y . Al lPermutat ions ( ) ;
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int k ;
Semigroup [ ] r e s u l t =

new Semigroup [ permutat ions . l ength ] ;
for ( k = 0 ; k < permutat ions . l ength ; ++k ) {

r e s u l t [ k ] = this . PermuteWith ( permutat ions [ k ] ) ;
}
return r e s u l t ;
}

B.3 Resonant decomposition of discrete semigroups

When the semigroup S can be decomposed in two subsets S = S0 ∪ S1,
such that they satisfy the resonant condition

S0 · S0 ⊂ S0, S0 · S1 ⊂ S1, S1 · S1 ⊂ S0,

it is said that the semigroup has a resonant decomposition.

A previous step to check if two given sets satisfy the resonance condition
is being able to check if, as sets, S0 ∪ S1 = S. This is done by the method
fillTheSpace of the Set class.

public stat ic boolean f i l l T h e S p a c e
( Set s1 , Set s2 , int order ) {

int i ;
for ( i = 0 ; i < order ; ++i ) {

i f ( ! s1 . f i n d ( i +1) && ! s2 . f i n d ( i +1) ){
return fa l se ;
}
}
return true ;
}

The parameter order tells the method the order of the semigroup which
has a resonant decomposition ‘s1’ and ‘s2’.

The method isResonant returns true if the two Set objects ‘s0’ and ‘s1’
represent a resonant decomposition for the current Semigroup object.

public boolean i sResonant ( Set s0 , Set s1 ) {
int i , j , n0 = s0 . nElements , n1 = s1 . nElements ;
i f ( Set . f i l l T h e S p a c e ( s0 , s1 , order ) ){
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for ( i = 0 ; i < n0 ; ++i ) {
for ( j = 0 ; j < n0 ; ++j ) {

i f ( ! s0 . f i n d ( this . data [ s0 . elementAt ( i ) −1]
[ s0 . elementAt ( j )−1] ) ) {

return fa l se ;
}
}
}
for ( i = 0 ; i < n0 ; ++i ){
for ( j = 0 ; j < n1 ; ++j ) {

i f ( ! s1 . f i n d ( this . data [ s0 . elementAt ( i )−1]
[ s1 . elementAt ( j )−1])) {

return fa l se ;
}
}
}
for ( i = 0 ; i < n1 ; ++i ) {
for ( j = 0 ; j < n1 ; ++j ) {

i f ( ! s0 . f i n d ( this . data [ s1 . elementAt ( i )−1]
[ s1 . elementAt ( j )−1])) {

return fa l se ;
}
}
}
} else {
return fa l se ;
}
return true ;
}

Once we are able to check if a given decomposition of a semigroup
is resonant, we want to be able to look for resonant decompositions. The
method findResonances looks for all the possible resonances of a semigroup,
having S0 ‘n1’ elements and S1 ‘n2’ elements.

public Set [ ] [ ] f indResonances ( int n1 , int n2 ) {
Set t o t a l = new Set ( this . o rder ) ;
Set [ ] l i s t 1 = t o t a l . SubSets ( n1 ) ;
Set [ ] l i s t 2 = t o t a l . SubSets ( n2 ) ;
Set [ ] [ ] r e s u l t = null ;
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Set [ ] [ ] a u x i l i a r = null ;
int foundResonances = 0 ;
int i , j , k = 0 ;
for ( i = 0 ; i < l i s t 1 . l ength ; ++ i ) {
for ( j = 0 ; j < l i s t 2 . l ength ; ++j ) {

i f ( this . i sResonant ( l i s t 1 [ i ] , l i s t 2 [ j ] )
&& Set . f i l l T h e S p a c e

( l i s t 1 [ i ] , l i s t 2 [ j ] , this . o rder ) )
{

foundResonances = foundResonances + 1 ;
a u x i l i a r = r e s u l t ;
r e s u l t = new Set [ foundResonances ] [ 2 ] ;
for ( k = 0 ; k < foundResonances −1 ; ++k ) {

r e s u l t [ k ] [ 0 ] = a u x i l i a r [ k ] [ 0 ] ;
r e s u l t [ k ] [ 1 ] = a u x i l i a r [ k ] [ 1 ] ;

}
r e s u l t [ foundResonances − 1 ] [ 0 ] = l i s t 1 [ i ] ;
r e s u l t [ foundResonances − 1 ] [ 1 ] = l i s t 2 [ j ] ;
}
}
}
return r e s u l t ;
}

In case it finds a resonant decomposition, this method returns a 2-
dimensional array whose element result[i][0] is S0 and result[i][1] is S1 for
the ith decomposition found. This method uses the auxiliary method Sub-
Sets which returns all the subsets with n elements of a given set.

public Set [ ] SubSets ( int n ) {
Set r e s u l t = new Set ( ) ;
return Set . c l e anDup l i c a t e s

( AuxSubset ( this , r e s u l t , n ) ) ;
}

This method is just a more convenient way to use the recursive method
AuxSubset

Set [ ] AuxSubset ( Set o r i g i n a l , Set r e s u l t a t , int n) {
int i ;
Set [ ] l i s t = null ;
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Set [ ] t o t a l L i s t = null ;
i f ( n == 0 ) {

t o t a l L i s t = new Set [ 1 ] ;
t o t a l L i s t [ 0 ] = r e s u l t a t ;
return t o t a l L i s t ;
}
for ( i = 0 ; i < o r i g i n a l . nElements ; ++i ) {

l i s t = AuxSubset ( o r i g i n a l . eraseElement ( i ) ,
r e s u l t a t . addElement ( o r i g i n a l . elementAt ( i ) ) , n−1);
t o t a l L i s t = Set . add ( l i s t , t o t a l L i s t ) ;
}
return t o t a l L i s t ;
}

The auxiliary method cleanDuplicates just cleans possible duplicates in
an array of Set objects:

public stat ic Set [ ] c l e anDup l i c a t e s ( Set [ ] l s t ) {
int i , j ;
int n = l s t . l ength ;
int e lements = n ;
Set [ ] newList ;
for ( i = 0 ; i < n ; ++i ) {

l s t [ i ] = Set . s o r t ( l s t [ i ] ) ;
}
for ( i = 0 ; i < n ; ++i ) {
for ( j = i +1 ; j < n ; ++j ){

i f ( l s t [ i ] != null && l s t [ j ] != null
&& l s t [ i ] . equalTo ( l s t [ j ] ) ) {

l s t [ j ] = null ;
e lements = elements − 1 ;
}
}
}
newList = new Set [ e lements ] ;
j = 0 ;
for ( i = 0 ; i < n ; ++i ) {

i f ( l s t [ i ] != null ) {
newList [ j ] = l s t [ i ] ;
++j ;
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}
}
return newList ;
}

To find all the possible resonant decompositions of a given semigroup
we define the method findAllResonances.

public Set [ ] [ ] f indAl lResonances ( ) {
int i , j , k ;
Set [ ] [ ] r e s u l t = null ;
Set [ ] [ ] a u x i l i a r ;
Set [ ] [ ] i n t e rmed ia t eResu l t ;
int N = 0 ;
for ( i = 1 ; i < this . o rder ; ++i ) {
for ( j = 1 ; j < this . o rder ; ++j ) {

i n t e rmed ia t eResu l t = this . f indResonances ( i , j ) ;
i f ( in t e rmed ia t eResu l t != null ) {

a u x i l i a r = r e s u l t ;
N = N + inte rmed ia t eResu l t . l ength ;
r e s u l t = new Set [ N ] [ 2 ] ;
for ( k = 0 ;

k < N − i n t e rmed ia t eResu l t . l ength ; ++k ) {
r e s u l t [ k ] [ 0 ] = a u x i l i a r [ k ] [ 0 ] ;
r e s u l t [ k ] [ 1 ] = a u x i l i a r [ k ] [ 1 ] ;
}
for ( k = 0 ;

k < i n t e rmed ia t eResu l t . l ength ; ++k ) {
r e s u l t [ N − i n t e rmed ia t eResu l t . l ength + k ]

[ 0 ] = in te rmed ia t eResu l t [ k ] [ 0 ] ;
r e s u l t [ N − i n t e rmed ia t eResu l t . l ength + k ]

[ 1 ] = inte rmed ia t eResu l t [ k ] [ 1 ] ;
}
}
}
}

return r e s u l t ;
}



168 B. A Java library to perform S-expansions of Lie algebras

B.4 S-expansions

In this section we explain the Java classes and methods developed to per-
form the S-expansion method reviewed in Section 2.11. We also explain
the methods to get the resonant subalgebras and perform reductions by
the zero element.

B.4.1 The selectors

We need a class to represent the selectors. This is the Selector class:

public class S e l e c t o r {
int order ;
int [ ] [ ] [ ] data ;

It has 2 variables: an integer to save the order of the semigroup and an
array to save all the selectors in the semigroup. We choose

data[a][b][c] ≡ Kcab

B.4.2 Representing the Lie algebra

We define the StructureConstantSet class to represent a Lie algebra.

public class StructureConstantSet {
double [ ] [ ] [ ] cons tant s ;
int N ;

With the convention
[Xi, Xj ] = CkijXk

we choose
constants[i][j][k] ≡ Ckij .

We can perform several simple operations with this set, like computing
the Cartan-Killing metric of the algebra:

public Matrix c a r t a n K i l l i n g M e t r i c ( ){
int a , b , c , d ;
double sum = 0 ;
double [ ] [ ] metr ic = new double [N ] [ N] ;
for ( a = 0 ; a < N ; ++a ) {
for ( b = 0 ; b < N ; ++b ) {
sum = 0 ;
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for ( c = 0 ; c < N ; ++c ) {
for ( d = 0 ; d < N ; ++d ) {
sum = sum + this . s t ructureConstant ( a , c , d )
∗ this . s t ructureConstant (b , d , c ) ;

}
}
metr ic [ a ] [ b ] = sum ;
}
}
return new Matrix ( metr ic ) ;
}

Obviously we can set the values of any structure constant. The method
setStructureConstant sets the values of Ccab and Ccba.

public void s e tSt ructureConstant
( int a , int b , int c , double fabc ) {

cons tant s [ a ] [ b ] [ c ] = fabc ;
cons tant s [ b ] [ a ] [ c ] = − fabc ;
}

B.4.3 The S-expanded algebra

In double index notation, the Lie bracket of the S-expanded algebra is
written as

[Xi,α, Xj,β] = KγαβC
k
ijXk,γ ≡ C

(kγ)
(iα),(jβ)Xk,γ .

We are going to use this double index notation internally in our library.
We create the ExpandedStructureConstantSet class:

public class ExpandedStructureConstantSet {
// n i s the number o f g e n e r a t o r s o f the a lgebra ,
// m i s the order o f the semigroup
int n ,m ;
double [ ] [ ] [ ] [ ] [ ] [ ] data ;

An object of this class has information about the dimension of the
original Lie algebra and the order of the semigroup used to perform the
S-expansion. We use a 6-dimensional array to save the structure constants,
in a way such that

data[a][α][b][β][c][γ] ≡ C(cγ)
(aα)(bβ).
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To get the S-expanded algebra we must follow the next steps:

1. To create a Semigroup object to store the semigroup which we want
to use for the S-expansion.

2. To create a StructureConstantSet to store the original Lie algebra
which we want to S-expand.

3. To ask to the Semigroup object to perform the S-expansion of the Lie
algebra.

An example of a program performing the three steps above would be

public stat ic void main ( St r ing [ ] a rgs ) {
Matrix metr ic ;
StructureConstantSet s l 2

= new StructureConstantSet (3 ) ;
s l 2 . s e tSt ructureConstant (0 , 1 , 1 , 2) ;
s l 2 . s e tSt ructureConstant (0 , 2 , 2 , −2) ;
s l 2 . s e tSt ructureConstant (1 , 2 , 0 , 1) ;
metr ic = s l 2 . c a r t a n K i l l i n g M e t r i c ( ) ;
int [ ] [ ] matrix = {{1 ,2 , 3 , 4} ,{2 ,3 , 4 , 4} ,

{3 ,4 ,4 ,4} , {4 ,4 , 4 , 4}} ;
Semigroup group = new Semigroup ( matrix ) ;
ExpandedStructureConstantSet expandedAlgebra ;
expandedAlgebra

= group . getExpandedStructureConstant ( s l 2 ) ;
metr ic = expandedAlgebra . c a r t a n K i l l i n g M e t r i c ( ) ;
}

The program above performs the expansion of sl(2), written in the basis

[X0, X1] = 2X1,

[X0, X2] = −2X2,

[X1, X2] = X0.

by the semigroup in Figure B.4.3;

B.4.4 The resonant subalgebra

To get a resonant subalgebra of an S-expanded algebra, we define the Re-
sonantExpandedStructureConstantSet class, which extends the Expanded-
StructureConstantSet class.
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λ1 λ2 λ3 λ4

λ1 λ1 λ2 λ3 λ4

λ2 λ2 λ3 λ4 λ4

λ3 λ3 λ4 λ4 λ4

λ4 λ4 λ4 λ4 λ4

Fig. B.1: Semigroup used in the example in Subsection B.4.3.

public class ResonantExpandedStructureConstantSet
extends ExpandedStructureConstantSet {

Set S0 , S1 , V0 , V1 ;

‘S0’ and ‘S1’ represent the resonant decomposition of the semigroup, whilst
‘V0’ and ‘V1’ give the graded decomposition of the Lie algebra. To get the
resonant subalgebra of an S-expanded algebra we must:

1. Get the correspondent S-expanded algebra, following the steps in the
previous section.

2. Introduce the resonant decomposition S0 and S1.

3. Introduce the graded decomposition V0 and V1.

4. Use all these objects to create a ResonantExpandedStructureCons-
tantSet object.

The following piece of code gets the resonant subalgebra of sl(2) S-
expanded by the semigroup in the previous section, given by the resonant
decomposition S0 = {1, 3, 4} and S1 = {2, 4}. Note that, with the genera-
tors that we have choosen for sl(2), its graded decomposition is given by
V0 = {X1} and V1 = {X2, X3}.

public stat ic void main ( St r ing [ ] a rgs ) {
//We i n t r o d u c e the s t r u c t u r e c o n s t a n t s o f s l 2
StructureConstantSet s l 2

= new StructureConstantSet (3 ) ;
s l 2 . s e tSt ructureConstant (0 , 1 , 1 , 2) ;
s l 2 . s e tSt ructureConstant (0 , 2 , 2 , −2) ;
s l 2 . s e tSt ructureConstant (1 , 2 , 0 , 1) ;
//Now we i n t r o d u c e the semigroup
int [ ] [ ] matrix = {{1 ,2 , 3 , 4} ,{2 ,3 , 4 , 4} ,
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{3 ,4 ,4 ,4} , {4 ,4 , 4 , 4}} ;
Semigroup group = new Semigroup ( matrix ) ;
// Next the resonant decomposi t ion
int [ ] mS0 = {1 ,3 ,4} ;
Set S0 = new Set (mS0) ;
int [ ] mS1 = {2 ,4} ;
Set S1 = new Set (mS1) ;
//And now the graded decomposi t ion
// o f the o r i g i n a l Lie a l g e b r a
int [ ] mV0 = {1} ;
Set V0 = new Set (mV0) ;
int [ ] mV1 = {2 ,3} ;
Set V1 = new Set (mV1) ;
//We f i r s t c a l c u l a t e the S−expanded a l g e b r a
ExpandedStructureConstantSet c =

group . getExpandedStructureConstant ( s l 2 ) ;
// Next we use i t to c a l c u l a t e i t s resonant s u b a l g e b r a
ResonantExpandedStructureConstantSet rc =
new ResonantExpandedStructureConstantSet

( c . data , S0 , S1 , V0 , V1 ) ;
}

B.4.5 S-expanded algebra followed by a reduction by the zero element

To perform the reduction by the zero element of an S-expanded Lie algebra
we define the ReducedExpandedStructureConstantSet class, which extends
the ExpandedStructureConstantSet class.

public class ReducedExpandedStructureConstantSet
extends ExpandedStructureConstantSet {

int zero ;

With respect to the ExpandedStructureConstantSet class, it only adds an
integer variable to save the zero element.

To perform the reduction by zero of an S-expanded algebra we have to:

1. Get the S-expanded algebra in a ExpandedStructureConstantSet.

2. Use it to create a ReducedExpandedStructureConstantSet.

The semigroup which we have been using has the zero element λ4. The
following code performs the reduction by zero.
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public stat ic void main ( St r ing [ ] a rgs ) {
Matrix metr ica ;
//We i n t r o d u c e the s t r u c t u r e c o n s t a n t s
// o f s l 2
StructureConstantSet s l 2

= new StructureConstantSet (3 ) ;
s l 2 . s e tSt ructureConstant (0 , 1 , 1 , 2) ;
s l 2 . s e tSt ructureConstant (0 , 2 , 2 , −2) ;
s l 2 . s e tSt ructureConstant (1 , 2 , 0 , 1) ;
//Now we i n t r o d u c e the semigroup
int [ ] [ ] matr iz = {{1 ,2 , 3 , 4} ,{2 ,3 , 4 , 4} ,

{3 ,4 ,4 ,4} , {4 ,4 , 4 , 4}} ;
Semigroup grupo = new Semigroup ( matr iz ) ;
//We perform the r e d u c t i o n by the
// zero element , which i s \ lambda 4

ReducedExpandedStructureConstantSet
algebraExpandidayReducida =

new ReducedExpandedStructureConstantSet (
( grupo . getExpandedStructureConstant ( s l 2 ) . data ) , 4 ) ;

}

B.4.6 Resonant subalgebra followed by a reduction by the zero element

We define the class ReducedResonantExpandedStructureConstantSet, which
inherits from the class ResonantExpandedStructureConstantSet.

public
class ReducedResonantExpandedStructureConstantSet
extends ResonantExpandedStructureConstantSet {

int zero ;

We just add an integer to save the zero element. Its use is analogous to
that of the ResonantExpandedStructureConstantSet.
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B.5 Isomorphisms and templates

Imagine that we have to find a semigroup with some multiplications fixed,
as for example 

3 4
3 4 4

4 4
4 4 4 4

 .
This is a semigroup of order 4. If we think of this as a template, there are
45 = 1024 different ways to fill it, where only some of them are associative
so they are really semigroups. If we ask for a commutative multiplication
table, there are 256 different ways to fill it. In general, for a semigroup of
order n with x given elements, there are (n2 − x)n different ways to fill it.
Then, filling in a random way the template and checking for associativity
is not a convenient way to look for semigroups filling the template.

We propose an alternative. We have a list with all the non isormorphic
semigroups of a given order. What we do is checking if, for any of the semi-
groups, any of its n! isomorphic semigroups fills the template. Depending
on the number of fixed elements in the multiplication table, this can be
much faster than the previous approach. It has the advantadge that we are
sure that all the results that we get are non isomorphic semigroups, and
we obtain its unique identifier in the list generated by the program gen.f.

As in Java an empty space can not be left in an array, we choose to
represent them by a −1 in its place. For example, the template above will
be represented by 

−1 3 −1 4
3 −1 4 4
−1 4 −1 4
4 4 4 4

 .
The method isTemplateFor checks if a semigroup can fill a given tem-

plate.

public boolean i sTemplateFor ( Semigroup B) {
int i , j ;
i f ( this . o rder != B. order ) {
return fa l se ;
}
else {
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for ( i = 0 ; i < this . o rder ; ++ i ) {
for ( j = 0 ; j < this . o rder ; ++j ) {

i f ( this . data [ i ] [ j ] != −1) {
i f ( this . data [ i ] [ j ] != B. data [ i ] [ j ] ) {
return fa l se ;
}
}
}
}
}
return true ;
}

In some applications we may need to know if a semigroup fills a given
template. What we could do in this case is taking the list of non isomorphic
semigroups of a given order and check if any of his isomorphic groups fills
the template. Essentially we do this, but getting a list of isomorphic and
antiisomorphic templates and checking if any of the semigroups in the lists
fits any of the templates. We do this with the method isIsoTemplateFor.

public boolean i s I soTemplateFor ( Semigroup B) {
Semigroup [ ] i s o s = this . Permute ( ) ;
Semigroup [ ] a n t i s = this . AntiPermute ( ) ;
int i ;
for ( i = 0 ; i < i s o s . l ength ; ++i ) {

i f ( i s o s [ i ] . isTemplateFor (B) ) {
// Isomorphism
return true ;
}
}
for ( i = 0 ; i < a n t i s . l ength ; ++i ){

i f ( a n t i s [ i ] . isTemplateFor (B) ) {
// Antiisomorphism
return true ;
}
}
return fa l se ;
}
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Next we show a Java program to look for ways to fill (modulo isomor-
phism) the template used in this examples.

public stat ic void main ( St r ing [ ] a rgs ) {
Semigroup [ ] l i s t = Semigroup . loadFromFile ( ) ;
int i , k = 0 ;
Semigroup [ ] perms = null ;
int [ ] [ ] mTemplate = {{−1 , 3 , −1 , 4} ,
{ 3 , −1, 4 , 4} ,{ − 1 , 4 , −1 ,4} ,{ 4 , 4 , 4 , 4}} ;

Semigroup template = new Semigroup ( mTemplate ) ;
for ( i = 0 ; i < l i s t . l ength ; ++i ) {

i f ( l i s t [ i ] . o rder == 4 ) {
i f ( template . i s I soTemplateFor ( l i s t [ i ] )

&& l i s t [ i ] . isCommutative ( ) ) {
System . out . p r i n t l n

( ”A semigroup f i l l i n g the template has been found . ” ) ;
System . out . p r i n t ( ”#” ) ;
System . out . p r i n t l n ( l i s t [ i ] . ID ) ;
l i s t [ i ] . show ( ) ;
System . out . p r i n t l n

( ”Let us see i t s i somorphic semigroups : ” ) ;
perms = l i s t [ i ] . Permute ( ) ;
for ( k = 0 ; k < perms . l ength ; ++k ) {

System . out . p r i n t l n ( k ) ;
perms [ k ] . show ( ) ;

}
}
}
}
}

B.6 Applications

B.6.1 All the semigroups of a given order with a zero element

In some applications it is interesting to have a list of all the semigroups
of a given order which have a zero element, i.e., if we want to perform all
the possible S-expansions followed by a reduction by zero of a given Lie
algebra.
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With the library that we have developed, it is trivial to write a Java
program to do this.

public stat ic void main ( St r ing [ ] a rgs ) {
Semigroup [ ] l i s t = Semigroup . loadFromFile ( ) ;
int zeroElement ;
int i ;
for ( i = 0 ; i < l i s t . l ength ; ++i ){

zeroElement = l i s t [ i ] . f i ndZero ( ) ;
i f ( zeroElement != −1 && l i s t [ i ] . isCommutative ( ) ){
System . out . p r i n t ( ”#” ) ;
System . out . p r i n t l n ( l i s t [ i ] . ID ) ;
l i s t [ i ] . show ( ) ;
System . out . p r i n t ( ”The zero element i s ” ) ;
System . out . p r i n t l n ( zeroElement ) ;
}
}
}

A sample output is shown next:

#14295

1 1 1 1 1 1

1 2 3 3 5 5

1 3 5 5 2 2

1 3 5 5 2 2

1 5 2 2 3 3

1 5 2 2 3 4

The zero element is 1

#14297

1 1 1 1 1 1

1 2 3 3 5 6

1 3 2 2 6 5

1 3 2 2 6 5

1 5 6 6 2 3

1 6 5 5 3 2

The zero element is 1

#14298

1 1 1 1 1 1

1 2 3 3 5 6
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1 3 2 2 6 5

1 3 2 2 6 5

1 5 6 6 3 2

1 6 5 5 2 3

The zero element is 1

#14301

1 1 1 1 1 1

1 2 3 3 5 6

1 3 5 5 6 2

1 3 5 5 6 2

1 5 6 6 2 3

1 6 2 2 3 5

The zero element is 1

B.6.2 All the resonant decomposition of order N semigroups

A list containing all the possible resonant decomposition of all the semi-
groups of a given order is useful, for example, if we want to study all the
possible resonant subalgebras of all the possible S-expanded algebras of a
given Lie algebra. Creating a program to get this list is trivial with the
Java classes that we have developed.

public stat ic void main ( St r ing [ ] a rgs ) {
Semigroup [ ] l i s t = Semigroup . loadFromFile ( ) ;
Set [ ] [ ] r e sonances ;
int i , k ;
int [ ] N = {0 ,0 ,0 ,0 ,0} ;
for ( i = 0 ; i < l i s t . l ength ; ++i ){

i f ( l i s t [ i ] . isCommutative ( ) ){
re sonances = l i s t [ i ] . f indAl lResonances ( ) ;
i f ( re sonances != null && l i s t [ i ] . o rder == 4) {
System . out . p r i n t ( ”Group #” ) ;
System . out . p r i n t ( l i s t [ i ] . ID ) ;
System . out . p r i n t ( ” , order ” ) ;
System . out . p r i n t l n ( l i s t [ i ] . o rder ) ;
l i s t [ i ] . show ( ) ;
System . out . p r i n t ( re sonances . l ength ) ;
System . out . p r i n t l n ( ” re sonances found” ) ;
N[ l i s t [ i ] . o rder − 1 ] = N[ l i s t [ i ] . o rder − 1 ] + 1 ;
for ( k = 0 ; k < re sonances . l ength ; ++k ) {
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System . out . p r i n t ( ”Resonance #” ) ;
System . out . p r i n t l n ( k +1 ) ;
System . out . p r i n t l n ( ”S0 : ” ) ;
r e sonances [ k ] [ 0 ] . show ( ) ;
System . out . p r i n t l n ( ”S1 : ” ) ;
r e sonances [ k ] [ 1 ] . show ( ) ;
}
}
}
}
System . out . p r i n t ( ”Order=2: ” ) ;
System . out . p r i n t l n (N [ 1 ] ) ;
System . out . p r i n t ( ”Order=3: ” ) ;
System . out . p r i n t l n (N [ 2 ] ) ;
System . out . p r i n t ( ”Order=4: ” ) ;
System . out . p r i n t l n (N[ 3 ] ) ;
System . out . p r i n t ( ”Order=5: ” ) ;
System . out . p r i n t l n (N [ 4 ] ) ;
}

Next we show a sample output:

Group #42 , order 4

1 1 1 1

1 1 1 2

1 1 1 3

1 2 3 4

5 resonances found

Resonance #1

S0 :

1 4

S1 :

1 2 3

Resonance #2

S0 :

1 3 4

S1 :

1 2

Resonance #3

S0 :



180 B. A Java library to perform S-expansions of Lie algebras

1 2 4

S1 :

1 3

Resonance #4

S0 :

1 3 4

S1 :

1 2 3

Resonance #5

S0 :

1 2 4

S1 :

1 2 3

Group #43 , order 4

1 1 1 1

1 1 1 2

1 1 2 3

1 2 3 4

2 resonances found

Resonance #1

S0 :

1 2 4

S1 :

1 3

Resonance #2

S0 :

1 2 4

S1 :

1 2 3

B.6.3 S-related algebras in Bianchi’s classification

In Chapter 9 it has been studied the possibility to obtain the 3-dimensional
Lie algebras classified by Bianchi by an S-expansion of a 2-dimensional one.

To find Bianchi’s type II algebra

[Y1, Y2] = [Y1, Y3] = 0,

[Y2, Y3] = Y1,

after the S-expansion of the 2 dimensional Lie algebra
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[X1, X2] = X1,

the semigroup used must have a resonant decomposition with S0 = {2, 4}
and S1 = {1, 3, 4} and 4 must be its zero element. In the end, the problem
is reduced to find a semigroup filling the template

3 4
3 4 4

4 4
4 4 4 4


in a such way that it satisfies the resonant decomposition given by S0 =
{2, 4} and S1 = {1, 3, 4} .

With the Java library that we have developed it is not difficult to im-
plement a program to solve this problem.

public stat ic void main ( St r ing [ ] a rgs ) {
Semigroup [ ] l i s t = Semigroup . loadFromFile ( ) ;
int i , k = 0 ;
Semigroup [ ] perms = null ;
int [ ] [ ] mTemplate = {{−1, 3 , −1 ,4} ,{3 ,−1 ,4 ,4} ,
{ − 1 , 4 , −1 , 4} ,{ 4 , 4 , 4 , 4 }} ;

Semigroup template = new Semigroup ( mTemplate ) ;
int [ ] mS0 = { 2 , 4} ;
int [ ] mS1 = {1 ,3 , 4} ;
Set S0 = new Set ( mS0 ) ;
Set S1 = new Set ( mS1 ) ;
for ( i = 0 ; i < l i s t . l ength ; ++i ) {

i f ( l i s t [ i ] . o rder == 4 && l i s t [ i ] . isCommutative ( ) ){
i f ( template . i s I soTemplateFor ( l i s t [ i ] ) ) {
System . out . p r i n t l n

( ”A semigroup f i l l i n g the template has been found : ” ) ;
System . out . p r i n t ( ”#” ) ;
System . out . p r i n t l n ( l i s t [ i ] . ID ) ;
l i s t [ i ] . show ( ) ;
// Let ’ s see i f t h i s semigroup
// a l s o has the resonant decomposi t ion
perms = l i s t [ i ] . Permute ( ) ;
for ( k = 0 ; k < perms . l ength ; ++k ) {

i f ( perms [ k ] . i sResonant ( S0 , S1 )
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&& template . isTemplateFor ( perms [ k ] ) ) {
System . out . p r i n t l n ( ” This one i s resonant ! ! ! ” ) ;
System . out . p r i n t l n ( k ) ;
perms [ k ] . show ( ) ;
}
}

System . out . p r i n t l n ( ”To compare with : ” ) ;
template . show ( ) ;
}
}
}
}

Next, we can see a sample output of this program:

A semigroup filling the template has been found:

#12

1 1 1 1

1 1 1 1

1 1 1 2

1 1 2 3

This one is resonant!!!

23

2 3 4 4

3 4 4 4

4 4 4 4

4 4 4 4

B.6.4 Semisimplicity of S-expanded algebras

In Chapter 8 a study of the properties of Lie algebras preserved under the
S-expansion procedures was performed. One of the properties studied was
the semisimplicity of the S-expanded algebras.

The program that we need must calculate all the possible S-expansions
of a given Lie algebra (sl(2) in this case) and check if the determinant of
its Cartan-Killing metric is different than zero.

Next we show a program which calculates all the S-expansions of sl(2)
by semigroups of order 3.

public stat ic void main ( St r ing [ ] a rgs ) {
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Matrix metr ic ;
Semigroup [ ] l i s tOfSemigroups

= Semigroup . loadFromFile ( ) ;
// We i n t r o d u c e the s t r u c t u r e c o n s t a n t s
// o f s l 2
StructureConstantSet s l 2

= new StructureConstantSet (3 ) ;
s l 2 . s e tSt ructureConstant (0 , 1 , 1 , 2) ;
s l 2 . s e tSt ructureConstant (0 , 2 , 2 , −2) ;
s l 2 . s e tSt ructureConstant (1 , 2 , 0 , 1) ;
metr ic = s l 2 . c a r t a n K i l l i n g M e t r i c ( ) ;
System . out . p r i n t l n ( ”We show the metr ic o f s l 2 ” ) ;
metr ic . p r i n t (2 , 2) ;
System . out . p r i n t l n ( ”Now i t s determinant ” ) ;
System . out . p r i n t l n ( metr ic . det ( ) ) ;
Semigroup group = null ;
ExpandedStructureConstantSet expandedAlgebra ;
int i ;
for ( i = 0 ; i < l i s tOfSemigroups . l ength ; ++i ) {

group = l i s tOfSemigroups [ i ] ;
i f ( group . order == 3 && group . isCommutative ( ) ) {
System . out . p r i n t ( ”Expanding by the semigroup #” ) ;
System . out . p r i n t l n ( group . ID ) ;
expandedAlgebra

= group . getExpandedStructureConstant ( s l 2 ) ;
metr ic = expandedAlgebra . c a r t a n K i l l i n g M e t r i c ( ) ;
i f ( metr ic . det ( ) != 0 ) {
System . out . p r i n t l n

( ”We have found a semis imple a lgebra ” ) ;
System . out . p r i n t l n

( ”We have expanded by the semigroup : ” ) ;
group . show ( ) ;
System . out . p r i n t l n

( ”We show the metr ic o f the S−expanded a lgebra ” ) ;
metr ic . p r i n t (2 , 2 ) ;
System . out . p r i n t ( ”Determinant o f the metr ic : ” ) ;
System . out . p r i n t l n ( metr ic . det ( ) ) ;
}
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}
}
}

We show a sample of output of the program.

Expanding by the semigroup #16

We have found a semisimple algebra

We have expanded by the semigroup:

1 1 3

1 2 3

3 3 1

We show the metric of the S-expanded algebra

16.00 16.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

16.00 24.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 16.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 8.00 8.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 8.00 12.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.00

0.00 0.00 0.00 8.00 8.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 8.00 12.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 8.00 0.00 0.00 0.00

Determinant of the metric: -1.34217728E8

Similar programs have been written for the rest of the calculations pro-
posed in Chapter 8.



C. SEMIGROUPS

In this Appendix we give explicitly the multiplication tables of the semi-
groups of order 3. This information is shown in Figure C.1.

Next we give the multiplication table of the semigroups that we have
used in this paper and that belong to the list generated by the program
com.f of [44] for n = 4. Those semigroups are given in Figure C.2.
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S1
(3) λ1 λ2 λ3

λ1 λ1 λ1 λ1

λ2 λ1 λ1 λ1

λ3 λ1 λ1 λ1

S2
(3) λ1 λ2 λ3

λ1 λ1 λ1 λ1

λ2 λ1 λ1 λ1

λ3 λ1 λ1 λ2

S3
(3) λ1 λ2 λ3

λ1 λ1 λ1 λ1

λ2 λ1 λ1 λ1

λ3 λ1 λ1 λ3

S4
(3) λ1 λ2 λ3

λ1 λ1 λ1 λ1

λ2 λ1 λ1 λ1

λ3 λ1 λ2 λ3

S5
(3) λ1 λ2 λ3

λ1 λ1 λ1 λ1

λ2 λ1 λ1 λ1

λ3 λ3 λ3 λ3

S6
(3) λ1 λ2 λ3

λ1 λ1 λ1 λ1

λ2 λ1 λ1 λ2

λ3 λ1 λ2 λ3

S7
(3) λ1 λ2 λ3

λ1 λ1 λ1 λ1

λ2 λ1 λ2 λ1

λ3 λ1 λ1 λ3

S8
(3) λ1 λ2 λ3

λ1 λ1 λ1 λ1

λ2 λ1 λ2 λ1

λ3 λ3 λ3 λ3

S9
(3) λ1 λ2 λ3

λ1 λ1 λ1 λ1

λ2 λ1 λ2 λ2

λ3 λ1 λ2 λ2

S10
(3) λ1 λ2 λ3

λ1 λ1 λ1 λ1

λ2 λ1 λ2 λ2

λ3 λ1 λ2 λ3

S11
(3) λ1 λ2 λ3

λ1 λ1 λ1 λ1

λ2 λ1 λ2 λ2

λ3 λ1 λ3 λ3

S12
(3) λ1 λ2 λ3

λ1 λ1 λ1 λ1

λ2 λ1 λ2 λ3

λ3 λ1 λ3 λ2

S13
(3) λ1 λ2 λ3

λ1 λ1 λ1 λ1

λ2 λ1 λ2 λ3

λ3 λ3 λ3 λ3

S14
(3) λ1 λ2 λ3

λ1 λ1 λ1 λ1

λ2 λ2 λ2 λ2

λ3 λ3 λ3 λ3

S15
(3) λ1 λ2 λ3

λ1 λ1 λ1 λ3

λ2 λ1 λ1 λ3

λ3 λ3 λ3 λ1

S16
(3) λ1 λ2 λ3

λ1 λ1 λ1 λ3

λ2 λ1 λ2 λ3

λ3 λ3 λ3 λ1

S17
(3) λ1 λ2 λ3

λ1 λ1 λ2 λ2

λ2 λ2 λ1 λ1

λ3 λ2 λ1 λ1

S18
(3) λ1 λ2 λ3

λ1 λ1 λ2 λ3

λ2 λ2 λ3 λ1

λ3 λ3 λ1 λ2

Fig. C.1: All the semigroups of order 3
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S10
(4) λ1 λ2 λ3 λ4

λ1 λ1 λ1 λ1 λ1

λ2 λ1 λ1 λ1 λ1

λ3 λ1 λ1 λ1 λ2

λ4 λ1 λ1 λ2 λ1

S12
(4) λ1 λ2 λ3 λ4

λ1 λ1 λ1 λ1 λ1

λ2 λ1 λ1 λ1 λ1

λ3 λ1 λ1 λ1 λ2

λ4 λ1 λ1 λ2 λ3

S13
(4) λ1 λ2 λ3 λ4

λ1 λ1 λ1 λ1 λ1

λ2 λ1 λ1 λ1 λ1

λ3 λ1 λ1 λ1 λ3

λ4 λ1 λ1 λ3 λ4

S28
(4) λ1 λ2 λ3 λ4

λ1 λ1 λ1 λ1 λ1

λ2 λ1 λ1 λ1 λ1

λ3 λ1 λ1 λ3 λ4

λ4 λ1 λ1 λ4 λ3

S42
(4) λ1 λ2 λ3 λ4

λ1 λ1 λ1 λ1 λ1

λ2 λ1 λ1 λ1 λ2

λ3 λ1 λ1 λ1 λ3

λ4 λ1 λ2 λ3 λ4

S43
(4) λ1 λ2 λ3 λ4

λ1 λ1 λ1 λ1 λ1

λ2 λ1 λ1 λ1 λ2

λ3 λ1 λ1 λ2 λ3

λ4 λ1 λ2 λ3 λ4

S44
(4) λ1 λ2 λ3 λ4

λ1 λ1 λ1 λ1 λ1

λ2 λ1 λ1 λ1 λ2

λ3 λ1 λ1 λ3 λ1

λ4 λ1 λ2 λ1 λ4

S45
(4) λ1 λ2 λ3 λ4

λ1 λ1 λ1 λ1 λ1

λ2 λ1 λ1 λ1 λ2

λ3 λ1 λ1 λ3 λ3

λ4 λ1 λ2 λ3 λ4

S64
(4) λ1 λ2 λ3 λ4

λ1 λ1 λ1 λ1 λ1

λ2 λ1 λ2 λ1 λ1

λ3 λ1 λ1 λ3 λ4

λ4 λ1 λ1 λ4 λ3

Fig. C.2: Review of the semigroups of order 4 used in Chapter 9.
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