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ABSTRACT 

 

At present, the genus Saccharomyces comprises seven species 
according to their patterns of breeding. The species boundaries are not 
clear due to the description of several reticulate events due to introgression 
and hybridization. In the last decade, new natural hybrids have been 
described in wine and brewing, such as S. cerevisiae x S. kudriavzevii. Due 
to new practices in wine and beer production, together with consequences 
in grape properties due to climatic change, led biotechnological companies 
to search for new yeast strains. In this context, hybrids have become of 
importance to biotechnological industries because they show good 
fermentative performance at low temperatures and produce new 
organoleptic compounds of industrial interest.  

This doctoral thesis explores the evolution of the natural S. cerevisiae 
x S. kudriavzevii hybrids and the importance of hybridization in the 
evolution of the Saccharomyces species. This study was performed by 
using different molecular approaches combined with bioinformatic tools for 
phylogenetic tree/networks reconstruction and data analysis. 
Understanding the origin and genome characteristics of natural S. 
cerevisiae x S. kudriavzevii hybrids are our priority for obtaining, in the 
future, personalized yeasts with new properties of biotechnological interest. 
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Introducción 

El género Saccharomyces incluye siete especies, teniendo en cuenta el 

concepto biológico de especie: Saccharomyces cerevisiae, 

Saccharomyces paradoxus, Saccharomyces cariocanus, Saccharomyces 

mikatae, Saccharomyces arboricolus, Saccharomyces kudriavzevii y 

Saccharomyces bayanus. No obstante, los límites entre las especies del 

género no son claros debido a la presencia de eventos reticulados como 

Transferencia Génica Horizontal (HGT), introgresiones e hibridaciones. 

En los últimos años se han descrito híbridos en el género, entre S. 

cerevisiae, S. bayanus y S. kudriavzevii. Los mayores esfuerzos se han 

centrado en investigar el híbrido de cerveza “lager”, Saccharomyces 

pastorianus, originado por la hibridación entre las especies S. cerevisiae y 

S. bayanus (S. eubayanus). Sin embargo, en la última década se han 

aislado híbridos entre S. cerevisiae x S. kudriavzevii en vino y cerveza. La 

naturaleza quimérica de los cromosomas del genoma nuclear de los 

híbridos, se ha podido describir utilizando diferentes métodos moleculares, 

como los Polimorfismos de Longitud de Fragmentos de Restricción 

(RFLPs) y los chips de Hibridación Genómica Competitiva (aCGH). La 

caracterización fisiológica de las especies parentales S. cerevisiae y S. 

kudriavzevii, como también de los diferentes híbridos S. cerevisiae x S. 

kudriavzevii, ha demostrado el posible papel de cada parental en el 

genoma quimérico. Estos estudios revelaron que los híbridos tienen 

propiedades intermedias heredadas de ambos parentales. Así pues, la 

resistencia al etanol parece haber sido heredada de S. cerevisiae y la 

capacidad de crecer a bajas temperaturas y la producción de más glicerol 

podría haberse heredado del parental S. kudriavzevii. 

El interés en innovar en el proceso de producción de vino y cerveza, 

está obligando a las compañías biotecnológicas a buscar nuevas cepas 

fermentadoras, que sean capaces de producir vino y cerveza con nuevas 

propiedades organolépticas. Además, se está buscando mantener las 
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propiedades aromáticas en ambos procesos, que se puede conseguir 

llevando a cabo fermentaciones a más bajas temperaturas. Por otro lado, 

el cambio climático está generando mostos de uva con mayor 

concentración de azúcares fermentables y alto pH, lo que influye en las 

propiedades organolépticas finales del vino. 

Las nuevas prácticas en producción de vino y cerveza necesitan nuevas 

cepas para llevar a cabo una fermentación alcohólica exitosa bajo 

condiciones de fermentación donde se puedan mejorar las propiedades 

aromáticas. Además, los híbridos de levaduras se han convertido en cepas 

con un alto interés biotecnológico, ya que pueden fermentar a bajas 

temperaturas mientras producen muy buenos perfiles fermentativos. A esto 

hay que sumarle la capacidad de estos híbridos en desviar el metabolismo 

del azúcar a la producción de glicerol, solucionando los problemas de 

astringencia y alta concentración de etanol final como consecuencia del 

cambio climático. 

Objetivos y Metodología 

Entender la evolución y el posible role de la cepas parentales en los 

genomas de los híbridos es crucial para la producción futura de híbridos 

comerciales a la carta. El conocimiento del origen de los híbridos naturales 

y sus propiedades nos abrirá la posibilidad de generar híbridos con 

aquellas propiedades fermentativas que las empresas biotecnológicas 

deseen. 

En esta tesis, nos centraremos en la estructura y evolución de los 

genomas de los híbridos S. cerevisiae x S. kudriavzevii como también en 

su origen. Los principales objetivos y la metodología utilizada se enumeran 

a continuación. 
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1. Identificación de nuevos híbridos naturales S. cerevisiae x S. 

kudriavzevii 

Los híbridos S. cerevisiae x S. kudriavzevii utilizados en esta tesis han 

sido aislados de vino y cerveza producidos en los países del Centro de 

Europa y de la Zona Mediterránea Europea. La identificación de los nuevos 

híbridos naturales S. cerevisiae x S. kudriavzevii se realizó usando el 

método de los RFLPs, el cual ha sido previamente utilizado en la 

caracterización de otros híbridos S. cerevisiae x S. kudriavzevii de vino y 

cerveza. Alrededor de 35 genes distribuidos a lo largo de los dieciséis 

cromosomas de las especies de Saccharomyces fueron amplificados por 

PCR y digeridos con enzimas de restricción capaces de discriminar entre 

las diferentes especies. Esta metodología garantiza la identificación de los 

parentales Saccharomyces y como contribuyen a cada gen en cada 

cromosoma. Además podemos identificar si el híbrido comercial utilizado 

en producción de vino, sidra, suplemento dietético o aislados de pacientes 

clínicos, está formado por dos o más parentales. 

Para apoyar los datos de la naturaleza doble o triple híbrida se 

secuenciaron 7 genes nucleares (BRE5, CAT8, EGT2, GAL4, MET6, CYR1 

y CYC3). La secuenciación de un gen mitocondrial (COX2) se realizó para 

conocer que parental ha contribuido al genoma mitocondrial. Las diferentes 

secuencias fueron ensambladas usando el paquete Staden y los 

alineamientos se realizaron en MEGA4 (o MEGA5). La reconstrucción del 

árbol filogenético de BRE5 y COX2 se hizo mediante el método de máxima 

verosimilitud (ML) implementado en el programa PhyML 3.0, usando los 

modelos evolutivos obtenidos en el programa jModeltest, para deducir la 

contribución de cada parental a los genes secuenciados. 
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2. Caracterización genómica de los híbridos naturales S. cerevisiae x S. 

kudriavzevii 

Los chips de Hibridación Genómica Comparada (aCGH) se utilizaron 

con el objetivo de confirmar la contribución de cada genoma parental al 

genoma del híbrido y conocer las diferencias entre híbridos S. cerevisiae x 

S. kudriavzevii de cerveza y de vino. Además, determinar la estructura 

genómica de los híbridos fue clave para conocer qué mecanismo es más 

probable para la formación de estos híbridos. 

La información obtenida por la técnica de aCGH está limitada al estudio 

del genoma parental de S. cerevisiae ya que los chips utilizados están 

basados en el genoma de S. cerevisiae. La hibridación se llevó a cabo a 

alta temperatura, 65ºC (temperatura restrictiva), donde sólo los genes de 

S. cerevisiae podrían hibridar. La técnica consiste en marcar el DNA 

genómico del híbrido con un fluoróforo, y la de S. cerevisiae (cepa de 

referencia) con otro. Los dos DNAs genómicos se hibridaron en el mismo 

chip a 65ºC. Después de la hibridación la fluorescencia de cada fluoróforo 

(genoma) se detectó mediante el escáner GenePix Personal 4100A. 

Diferencias en la intensidad de fluorescencia de cada marcaje nos permitió 

estimar el número de copias de cada gen de S. cerevisiae (ORF) en el 

híbrido comparado con la cepa de referencia (S. cerevisiae haploide). El 

programa ChARM nos permitió representar los datos del subgenoma S. 

cerevisiae en diagramas “caryoscopes” para cada cromosoma, 

detectándose aquí aneuploidías o segmentos con diferente número de 

copias (delecciones, duplicaciones o cromosomas quiméricos). La 

confirmación del número de cromosomas en el genoma de los híbridos 

tuvo que realizarse por citometría de flujo, usando para marcar el DNA el 

fluoróforo “SYTOX Green” y comparándola contra la señal obtenida en la 

cepa haploide de S. cerevisiae. 

El genoma de S. kudriavzevii se encuentra en sintenia con el genoma 

de S. cerevisiae. Por tanto, podemos estimar la estructura de los 
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subgenomas de S. cerevisiae y S. kudriavzevii combinando la información 

obtenida por las técnicas de PCR-RFLPs, aCGH y citometría de flujo. 

Además, pudimos describir la presencia de cromosomas quiméricos y la 

contribución del parental S. kudriavzevii al genoma de los híbridos. 

Observamos que la pérdida de genes de S. kudriavzevii en el genoma 

de los híbridos era generalizada. Sin embargo, encontramos un grupo de 

genes de S. kudriavzevii común a todos los híbridos. Este grupo de genes 

se analizaron usando GeneMAPP y YeastMine para obtener los términos 

de “Gene Ontology” (GO) enriquecidos en los genomas de los híbridos S. 

cerevisiae x S. kudriavzevii. El análisis de enriquecimiento de términos 

GOs reveló el potencial papel del subgenoma de S. kudriavzevii en la 

resistencia al frío. 

 

3. Estudio del origen de los híbridos naturales S. cerevisiae x S. 

kudriavzevii 

El objetivo de esta parte es descubrir qué tipo de parentales dio lugar a 

los híbridos naturales de S. cerevisiae x S. kudriavzevii y estimar el número 

mínimo de eventos de hibridación necesarios para generar el conjunto de 

estos híbridos naturales. La naturaleza vínica o no vínica del parental S. 

cerevisiae se estudió reconstruyendo redes filogenéticas con el programa 

Networks 4.6 usando el método de “Median-Joining” (MJ) para cuatro 

genes nucleares (BRE5, CAT8, EGT2 and GAL4). Además, el conjunto de 

genes del parental S. cerevisiae, con menos copias en los híbridos 

naturales, comparado con otras cepas de S. cerevisiae, se obtuvieron de 

los análisis de aCGH. Combinando las redes de MJ y el grupo de genes 

con menos copias pudimos conocer qué tipo de parental S. cerevisiae dio 

origen a estos híbridos. 

Las secuencias génicas de siete genes nucleares (BRE5, CAT8, EGT2, 

GAL4, MET6, CYR1 y CYC3) sirvieron para la reconstrucción de los 

árboles filogenéticos, con el programa MEGA5, usando el método de 
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“Neighbor-Joining” (NJ) y las super redes filogenéticas para cada tipo de 

alelos (S. cerevisiae y S. kudriavzevii). El método de Z-closure, utilizado en 

la reconstrucción de super redes permite usar como dato de entrada una 

colección de árboles filogenéticos con diferente número de taxones, por 

tanto nos permite utilizar híbridos que hayan perdido alguno de los alelos 

parentales. Con la información obtenida de las super redes, SNPs y los 

árboles filogenéticos reconstruidos usando el método de Neighbor-Joining 

y Máxima Parsimonia pudimos definir el número de parentales de S. 

cerevisiae o S. kudriavzevii que podrían haber dado lugar a los híbridos 

naturales. 

Las secuencias del gen COX2 fueron utilizadas para reconstruir la red 

filogenética usando el método “Neighbor-net”. Tanto las redes filogenéticas 

como las super redes fueron reconstruidas con el programa SplitsTree 4. 

Los análisis filogenéticos, los niveles de ploidía y la información 

obtenida de los “caryoscopes” y la técnica de PCR-RFLPs fueron 

combinadas para obtener el número mínimo de eventos de hibridación 

necesarios para explicar la diversidad encontrada en los genomas de los 

actuales híbridos S. cerevisiae x S. kudriavzevii. 

 

4. Reconstrucción de eventos de hibridación ancestrales entre las especies 

de Saccharomyces 

La transferencia génica horizontal y las introgresiones son huellas que 

quedan en el genoma, indicativos, en algunos casos, de hibridaciones 

ancestrales. Elementos egoístas, como las “homing endonucleases”, 

pueden expandirse rápidamente en la población, pudiendo ser utilizadas 

para identificar hibridaciones ancestrales. El objetivo de esta sección es 

analizar si las especies de Saccharomyces han hibridado en el pasado, 

para ello usaremos las secuencias de los genes COX2, ORF1 y COX3 que 

se encuentran en el genoma mitocondrial. 
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Herramientas informáticas, como los programas RDP3 y SplitsTree 4, 

revelaron un punto común de recombinación en el gen COX2 para varias 

especies del género Saccharomyces, incluyendo algunos híbridos. El gen 

ORF1 codifica para una “free-standing homing endonucleasa”, anotada 

como un pseudogen o como no funcional. La secuencia de ORF1 se 

encuentra dentro de la secuencia del gen COX2, en el extremo 3’, pero en 

diferente pauta de lectura. El gen COX3 se encuentra en una unidad de 

transcripción diferente a COX2 y ORF1. Las cepas representativas de la 

secuenciación del gen COX2, que incluyen diferentes especies del género 

Saccharomyces, fueron utilizadas para secuenciar el gen ORF1 y COX3. 

Se diseñaron cebadores específicos para amplificar y secuenciar el ORF1 

y COX3 de las diferentes especies, usando las herramientas de IDT 

Scitools. Las secuencias fueron alineadas usando el algoritmo MUSCLE y 

refinadas manualmente en Jalview 4.9b2. Se detectaron secuencias 

repetidas en tándem, en los genes ORF1 y COX2, con el programa 

Tandem Repeat Finder. Las anotaciones de los dominios se basaron en 

descripciones previas y utilizando la herramienta Conserved Domain en el 

NCBI. La conservación de los sitios aminoacídicos de ORF1 se detectó 

utilizando el programa WebLogo 2.8.2. Los haplotipos de COX2, ORF1 y 

COX3 se clasificaron con el programa DnaSP v5. Y la detección de 

selección positiva en la secuencia del gen ORF1 se hizo utilizando 

Datamonkey. Los árboles filogenéticos y las redes filogenéticas fueron 

realizadas mediante PhyML/MEGA5 y SplitsTree4, respectivamente. 

 

Conclusiones 

1. Identificación de los nuevos híbridos naturales S. cerevisiae x S. 

kudriavzevii 

La distribución geográfica de los híbridos naturales S. cerevisiae x S. 

kudriavzevii está limitada a climas Oceánicos y Continentales, que se 

caracterizan por tener inviernos fríos y veranos cálidos y secos. En esta 
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tesis, se extendió el límite geográfico de los híbridos S. cerevisiae x S. 

kudriavzevii, aislados de vino, a zonas más sureñas del clima Oceánico 

Europeo. Por primera vez, se han identificado híbridos S. cerevisiae x S. 

kudriavzevii en ambientes no vínicos ni cerveceros. Estas nuevas fuentes 

de aislamiento corresponden a un suplemento dietético y a un aislado 

clínico. 

 

2. Caracterización genómica de híbridos naturales S. cerevisiae x S. 

kudriavzevii 

La estructura genómica de los híbridos naturales S. cerevisiae x S. 

kudriavzevii apunta a una gran diversidad genómica. El contenido de DNA 

variaba de 3.00C a 4.00C comparado con la cepa de referencia haploide S. 

cerevisiae. Todos los híbridos tienden a mantener al menos 1 copia de 

cada cromosoma del parental S. cerevisiae y a perder cromosomas 

completos o partes de cromosomas del parental S. kudriavzevii. El papel 

del subgenoma de S. cerevisiae en los híbridos parece ser el 

mantenimiento del poder fermentativo y la resistencia al etanol, y por parte 

del subgenoma de S. kudriavzevii la resistencia al frío. 

La secuenciación del gen COX2 muestra que la mayoría de los híbridos 

naturales S. cerevisiae x S. kudriavzevii han heredado el genoma 

mitocondrial de S. kudriavzevii, lo que genera una restricción evolutiva a la 

pérdida masiva de genes del parental S. kudriavzevii. Esto se apoya 

debido a que los pocos híbridos naturales S. cerevisiae x S. kudriavzevii 

que heredaron el mitocondrial del parental S. cerevisiae han sufrido una 

mayor pérdida de genes del parental S. kudriavzevii. Además, estos 

resultados indican que pueden existir incompatibilidades citonucleares que 

favorezcan la existencia de una barrera postzigótica en los híbridos del 

género Saccharomyces, y por ello una baja viabilidad de sus esporas. 

El nivel de ploidía junto con la estructura genómica de los híbridos 

naturales S. cerevisiae x S. kudriavzevii indicaría que el mecanismo más 
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probable para la formación de híbridos es el “rare-mating”. En la mayoría 

de casos, este “rare-mating”, se produjo posiblemente entre una cepa 

diploide de S. cerevisiae y una cepa haploide de S. kudriavzevii. Sin 

embargo, en otros casos como PB7 el cruce se habría dado entre dos 

cepas diploides, generando una cepa tetraploide con 2 cromosomas de S. 

cerevisiae y dos de S. kudriavzevii para el conjunto de los 16 cromosomas. 

En el caso de la cepa AMH, su origen parece haber sido una doble 

hibridación, entre una cepa diploide de S. cerevisiae y una haploide S. 

kudriavzevii y el híbrido derivado de este cruce habría vuelto a hibridar con 

una cepa diploide de S. cerevisiae. 

La aparición de cromosomas quiméricos parece ser el resultado del 

entrecruzamiento de los cromosomas homeólogos mediado por 

secuencias altamente recombinantes, como son las ARS, elementos Ty, 

elementos Y’, regiones de rRNA y regiones génicas muy conservadas. 

Esto activaría el mecanismo de reparación MMR que generaría los 

cromosomas quiméricos. 

 

3. Estudio del origen de los híbridos naturales S. cerevisiae x S. 

kudriavzevii 

La secuenciación de genes nucleares y mitocondriales, combinado con 

los datos de aCGH, PCR-RFLPs, citometría de flujo y análisis 

bioinformáticos reveló que al menos existen seis eventos de hibridación 

diferentes que han generado el conjunto de los doble híbridos naturales 

estudiados en esta tesis. Varias cepas parentales podrían haber dado 

origen a los híbridos naturales, tanto dobles como triples. En todo caso, 

estas cepas están relacionadas con el grupo de las S. cerevisiae vínicas y 

Europeas, y con S. kudriavzevii de Europa. En el caso de los híbridos 

cerveceros, la cepa S. cerevisiae parental podría ser un heterocigoto 

emparentado con las S. cerevisiae cerveceras. El lugar exacto del origen 

de los diferentes grupos de híbridos es difícil de asegurar debido a la 
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expansión de S. cerevisiae alrededor del mundo; sin embargo, los datos 

apuntan a un origen Europeo. Se identificaron seis grupos de híbridos 

según su origen. Las cepas cerveceras (excepto CECT11003 y 

CECT11004), junto con el aislado clínico MR25, parecen haberse originado 

del mismo evento de hibridación. Las cepas vínicas Suizas y dos 

cerveceras (CECT11003 y CECT11004) podrían haber evolucionado de la 

misma célula híbrida original. Otro grupo engloba a los híbridos Austriacos, 

Vin7 y SOY3. El suplemento dietético IF6 parece haberse formado de 

cepas parentales muy parecidas a las cerveceras y vínicas. Y en el caso 

de PB7, AMH y los triples híbridos (CBS 2834 y CID1) sus linajes parecen 

ser independientes. 

 

4. Reconstrucción de eventos de hibridación ancestrales entre las especies 

de Saccharomyces 

La presencia de un punto caliente de recombinación en el gen 

mitocondrial COX2 y su cercanía al gen ORF1 parece indicar que la 

proteína Orf1p podría estar implicada en la recombinación en esta región. 

El gen ORF1 es un elemento egoísta, el cual está bajo evolución neutral, 

que podría haberse perdido varias veces en los linajes de las cepas del 

género Saccharomyces, y recuperado posteriormente, tras la fusión de 

mitocondrias, como consecuencia de un evento de hibridación. 

La hibridación entre especies del género Saccharomyces parece ser un 

fenómeno bastante frecuente, complicando el concepto biológico actual de 

especie, en levaduras. Los datos apuntan a que la hibridación es un 

mecanismo adaptativo muy importante en la evolución de levaduras, tanto 

en el pasado como en la actualidad. Los híbridos generados, podrían estar 

mejor adaptados a la variación ambiental o a las condiciones nuevas de 

fermentación, que sus progenitores, desplazándolos exitosamente donde 

las condiciones son más extremas para ambos parentales. 
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1. ASCOMYCETE YEASTS AND EVOLUTION 

1.1 Yeasts and ecology 

Ascomycete yeasts (phylum Ascomycota: subphylum 

Saccharomycotina: class Saccharomycetes: order Saccharomycetales) 

comprise a monophyletic lineage with a single order of about 1500 known 

species (Kurtzman et al., 2011). Pasteur was the first to put forward the 

notion that yeast are necessary components of the microbiota of fermenting 

wine or beer by effecting the conversion of sugar to ethanol, while. Hansen 

provided the first insights on the distribution of yeasts in their natural 

habitats, being recognized as the founder of yeasts systematic (Phaff et al., 

1978). 

Present whole genome sequencing projects are involved in 

sequencing Ascomycete yeast genomes. About 40 different yeast species 

have been sequenced so far (figure 1)  and special attention has been 

directed to the Saccharomycotina (or Hemiascomycetes) (Casaregola et 

al., 2011). 

Yeasts are found in association with plants, animals and their 

interfaces. The characteristics of yeast habitats are usually rich in simple 

organic carbon, liquid or very high moisture, acidic or occasionally alkaline, 

and nutritionally complex. Such conditions are found in plant tissue 

undergoing various forms of decays, as well as exudates of roots, leaves, 

or flowers. Moreover, some yeasts are adapted to conditions met in 

association with the body of certain animals, usually acting as intestinal 

commensals. Yeasts are continuously found in habitats depending of 

serendipitous situations due to scarce previous knowledge (Kurtzman & 

Fell 1998). 



GENERAL INTRODUCTION 

32 

 

Figure 1. Tree topology of Ascomycetes yeasts with a complete sequenced genome. (adapted 
from Bernard Dujon 2010)). 

A few yeast species are human pathogens, and fewer than 10 

species are plant pathogens. Yeasts are responsible for important industrial 

and biotechnological processes, including baking, brewing, wine, 

bioethanol production and synthesis of recombinant proteins (Suh et al., 

2006). 

1.2 The Saccharomyces genus 

The Saccharomyces genus (previously called Saccharomyces sensu 

stricto) currently includes the species Saccharomyces cerevisiae, 

Saccharomyces paradoxus, Saccharomyces bayanus (Naumov 1987), 

Saccharomyces cariocanus, Saccharomyces mikatae, Saccharomyces 
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kudriavzevii (Naumov et al., 2000) and Saccharomyces arboricolus 

(Naumov et al., 2010). 

The ecology of Saccharomyces species is diverse. Several species of 

this genus have been only found in natural environments, this is the case of 

S. mikatae (in partially decayed leaf), S. kudriavzevii (decayed leaf, soils 

and oaks) and S. arboricolus (oak trees); whereas S. cerevisiae, S. 

paradoxus and S. bayanus have been found associated to both natural and 

biotechnological environments. 

Previous studies on S. cerevisiae indicated that this domesticated 

yeast, chiefly adapted to man-made fermentations (wine, beer, sake, baker) 

and normally absent in natural ecosystems, might have evolved from wild 

S. paradoxus (Naumov 1996; Naumov et al., 1997; Martini 1993; Vaughan-

Martini & Martini 1995; Ciani et al., 2004). 

However, recent studies suggest that S. cerevisiae is a natural 

species which has been ‘domesticated’ to perform superbly on man-made 

fermentations (Fay & Benavides 2005). Industrial S. cerevisiae strains are 

highly specialized organisms, which have evolved to growth in the different 

environments or ecological niches that have been provided by human 

activity. This specialization has been associated with some genome 

characteristics, such as diploidy genome with the presence of aneuploidies 

or polyploidies, high level of chromosome length polymorphism, 

homotallism, genome renewal and allopolyploid/hybrid genomes (Mortimer 

et al., 1994; Querol et al., 2003). In addition, wine strains have been 

characterized by the presence of a set of duplication and depletion genes 

referred as “commercial wine yeast signature” (Dunn et al., 2005; Carreto 

et al., 2008). Recently, genome sequencing of a S. cerevisiae wine yeast 

have revealed the presence of horizontal gene transfers that could be 

involved in adaptation to industrial environment (Novo et al., 2009). 
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 1.2.1 Population studies 

Many Saccharomyces species have been sequenced with the 

purpose to unveil the population structure (Liti et al., 2009; Schacherer et 

al., 2009) (figure 2). 

In S. cerevisiae, five “pure” populations have been described: North 

American, Sake, Malaysian, West African and Wine/European (Liti et al., 

2009). In S. paradoxus three populations depending on the geographic 

isolation were found: American (includes S. cariocanus), Far Eastern and 

European (Liti et al., 2006, 2009). In the case of S. kudriavzevii two 

different populations have been described: European and Japanese 

(Sampaio & Gonçalves 2008; Hittinger et al., 2010; Lopes et al., 2010). S. 

bayanus includes two varieties: uvarum and bayanus. S. bayanus var. 

bayanus strains have been shown to be hybrids between S. cerevisiae and 

other unknown yeast close to S. bayanus var. uvarum (Rainieri et al., 

2006). Recently, a “pure” strain of S. bayanus has been described as the 

new species S. eubayanus (Libkind et al., 2011). The S. eubayanus like-

strain genome has been found in the former S. pastorianus, a hybrid 

between S. cerevisiae and S. bayanus var. bayanus (now S. eubayanus), 

which is found in lager-brewing fermentation (Libkind et al., 2011). Future 

debate on definition of S. eubayanus and S. uvarum as different species 

(Pulvirenti et al., 2000; Nguyen & Gaillardin 2005) or different varieties of 

the same specie S. bayanus (Naumov 2000) is expected. 
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Figure 2. Population structure of some Saccharomyces species (adaptation from Liti et al., 

2009 and Hittinger et al., 2010) 

 

 1.2.2 Saccharomyces hybrid yeasts 

The development of molecular methods of yeast characterization has 

demonstrated that some wine and beer Saccharomyces strains have 

complex genomes composed by genetic elements from two or more 

species (Masneuf et al., 1998; Groth et al., 1999; de Barros Lopes et al., 

2002; Liti et al., 2005; González et al., 2006, 2008). These strains are 

widely known as interspecific hybrids (figure 3). 

The best known industrial interspecies hybrid is the lager yeast S. 

pastorianus, originated from hybridization between S. cerevisiae and S. 

eubayanus-related yeast strain. S. bayanus strains have long been 

recognized as a cryotolerant yeast species (Sato et al., 2002; Rainieri et al., 

2006), therefore the hybridization between S. cerevisiae and a cryotolerant 

S. eubayanus might be the result of selective pressures derived from 

brewing at low temperatures (Libkind et al., 2011). 

S. paradoxusS. cerevisiae

S. kudriavzevii
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Figure 3. Interspecific hybrid formation. 

 

Other natural hybrids are those originated from hybridization between 

S. cerevisiae and S. kudriavzevii (González et al., 2006, 2008; Lopandic et 

al., 2007). The role of S. kudriavzevii genome in hybrids is unclear, since 

the known strains of this species have been found in decaying leaves from 

Japan and oak trees from Portugal and Spain (Naumov et al., 2000; 

Sampaio & Gonçalves 2008; Lopes et al., 2010) but not associated to 

fermentative environments. Physiological evaluation of some S. 

kudriavzevii isolates has shown that this species is characterized by a 

higher cryotolerance and a lower ethanol tolerance than S. cerevisiae 

(Arroyo-López et al., 2009; Salvadó et al., 2011). 

Albeit differences between S. cerevisiae x S. eubayanus and S. 

cerevisiae x S. kudriavzevii hybrids, the role of the S. eubayanus or S. 

kudriavzevii genomes in the hybrid seems to be similar, that is, 

maintenance of good fermentative performance at low temperatures 

(Belloch et al., 2008). 

Commercial yeasts S. cerevisiae x S. kudriavzevii hybrids have been 

identified in wine from Switzerland, Austrian and Germany, and lager beer 

from Belgium, England and New Zealand (González et al., 2006, 2008; 

Bradbury et al., 2006; Lopandic et al., 2007) (figure 4). Genome diversity of   

Mating
Yeast A Yeast B
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Figure 4. S. cerevisiae x S. kudriavzevii hybrid distribution. Orange and violet colors indicate brewing companies and vineyards distribution around the 
world, respectively. Red color indicates regions where vineyards and brewing companies are located. More detailed is done for European region and 
thermometer indicates low temperature where hybrids where isolated. 
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commercial S. cerevisiae x S. kudriavzevii hybrids has been analysed by 

Restriction Fragment Length Polymorphisms (RFLPs) of 35 genes 

distributed in the 16 chromosomes of these Saccharomyces hybrids (figure 

5). 

 

Figure 5. RFLPs data from S. cerevisiae x S. kudriavzevii hybrids. Each square corresponds to 

a copy of each gene region according to its chromosome location, indicated at the left. White 

and black squares represent alleles of S. cerevisiae and S. kudriavzevii origin, respectively. 

Brewing and wine hybrids are indicated in bold and italics, respectively. The presence or 

absence of alleles coming from each parent species was determined by restriction analysis of 

the 35 gene regions amplified by PCR with general primers (adapted from Gonzalez et al., 

2008). 

 

Genome structure of a Swiss commercial S. cerevisiae x S. 

kudriavzevii hybrid was explored by array Comparative Genome 

Hybridization (aCGH), flow cytometry and Real Time qPCR (RT-qPCR) 

(Belloch et al., 2009). The results of this study indicated that the genome of 

this hybrid is diploid with a trend to loss S. kudriavzevii genes (figure 6). 
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 1.2.3 Yeast hybrids and the biological species concept 

The definition of species is a central concept in biological sciences 

(Mallet 1995; Coyne & Orr 1998). There are different species concepts 

depending on which criteria are used (Mallet 2007). 

The biological species concept (BSC) is based on patterns of 

breeding. Species are groups of interbreeding natural populations that are 

reproductively isolated from other such groups (Mayr 1970), but within 

which interbreeding and genetic recombination reduce the possibility of 

divergence. 

 

Figure 6. Genome structure of W27 S. cerevisiae x S. kudriavzevii hybrid inferred by the 

combination of macroarray data with RFLPs and RT-qPCR. In the genome structure black and 

white bars indicate S. cerevisiae and S. kudriavzevii subgenome, respectively (adapted from 

González (2006 and 2008) and Belloch et al., (2009)). 

 

Problems in the BSC are found due to asexual reproduction in many 

organisms including fungi (Taylor et al., 2000), hybridization in plants 

(Rieseberg, 1997) and in yeast (de Barros Lopes et al., 2002), and lateral 

Macroarray (aCGH) RFLPs Genome structure

W27
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gene transfer between bacteria (Gogarten and Townsend 2005) and 

between yeast (Liti et al., 2005).  

Saccharomyces species have been classified according to the 

Biological and the Phylogenetic species (PSC) concepts being in 

agreement with both of them. The exception is the species S. cariocanus 

which is almost identical in genome sequence to the American S. 

paradoxus differing only by four translocations, therefore being the BSC not 

in accordance with the PSC. 

The PSC (Cracraft, 1989) defines the species as an irreducible 

(basal) cluster of organisms, diagnosably distinct from other such clusters, 

and within which there is a parental pattern of ancestry and descent. 

However, a parental pattern of ancestry and descent is not clear when 

there are hybrids. It is necessary to define the genotypic cluster criterion 

(GCC), where separate species are recognized if there are several clusters 

separated by multilocus phenotypic or genotypic gaps, in a local area. A 

single species (the null hypothesis) is recognized if there is only a single 

cluster in the frequency distribution of multilocus phenotypes and 

genotypes. The genotypic gaps may be entirely vacant, or they may contain 

low frequencies of intermediate genotypes, or hybrids (Mallet 1995; Feder 

1998). 

1.2.4 Identification of hybrid yeasts 

For hybrid identification, DNA-DNA hybridization (Vaughan Martini & 

Kurtzman 1985) and analysis of nuclear genes, such as MET2 (Hansen & 

Kielland-Brandt 1994) unveiled the hybrid nature of S. pastorianus although 

failed in the identification of S. monacensis. In addition, gene sequencing of 

MET2 and ATP9, and karyotypes were combined to infer the hybrid nature 

of CID1 and S6U (Masneuf et al., 1998; Groth et al., 1999). Analysis using 

multilocus markers, such as AFLPs o RAPDs have unveiled the hybrid 

nature of several Saccharomyces strains (de Barros Lopes et al., 2002; 
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Fernández-Espinar et al., 2003). Saccharomyces strains containing 

introgressed sequences or genomes containing two species sequences 

have been detected by PCR amplification and sequencing (Casaregola et 

al., 2001), combined with microarrays analysis (Belloch et al., 2009; Muller 

& McCusker 2009). 

1.3 Genome evolution in yeasts 

Yeasts offer unique advantages for evolutionary genomic studies 

among eukaryotic organisms. They are easily amenable to microbial 

genetic techniques, and the limited size and compactness of their genomes 

facilitate the characterization of naturally or artificially evolved populations 

using sequencing. Studies to infer evolutionary changes using the 

comparison of yeast genomes can be complemented by experimental 

analyses to elucidate the underlying molecular mechanisms. Yeasts were 

considered primitive unicellular eukaryotes, however they have repeatedly 

emerged from distinct phylogenetic lineages of ‘modern’ fungi (Kurtzman et 

al., 2011). 

The complete genome sequence of S. cerevisiae offers an 

unparalleled reference source for studying basic molecular mechanisms of 

eukaryotic cells, as more than 80% of its ~5780 protein-coding genes have 

been functionally characterized (Peña-Castillo & Hughes 2007).  

Saccharomycetaceae yeasts are characterized by point centromeres 

(which are highly conserved) and triplicate mating-type cassettes that 

ensure the simultaneous presence of both mating-type alleles in haploid 

cells (with some exceptions). In this family a whole-genome duplication has 

been described (Kellis et al., 2004), creating a subset of clades that have 

shorter chromosomes bearing the traces of the duplication followed by 

numerous gene deletions (Dujon 2010). 

Genomes of the budding yeasts range in size from ~9 to 20 

megabases (for the haploid set) and contain a limited number of protein-
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coding genes (~4700-6500). They have few spliceosomal introns (~2-15% 

of split genes) and a variable number of tRNA genes (~160-510). The 

presence of a large number of paralogous gene copies is common to all 

yeast genome, which are highly diverged in their sequences and represent 

various types of ancestral duplications. Non-coding RNAs can be found 

within budding yeast genomes, in addition to limited numbers of mobile 

elements belonging to various families (mostly class I). iRNA machinery are 

generally absent, except in specific cases (Drinnenberg et al., 2009). The 

presence of autonomous plasmids or viral elements is highly variable 

(Meinhardt et al., 1990).  

Genome comparisons of distinct yeast clades showed high 

differences. The orthologous proteins of S. cerevisiae and S. paradoxus are 

as different as those of humans and mouse (Dujon 2006). Classical 

Darwinian Theory proposes gradual evolutionary adaptations; however 

these high differences between yeast genomes can be only explained by 

repeated bottlenecks events that occurred during clonal divisions. This 

clonal mode of propagation, and the effects of bottlenecks, is important as it 

offers the possibility for non-optimized variants to survive and eventually 

colonize novel niches to which they may be better adapted. In addition it 

allows the involvement of different evolutionary mechanisms in reshaping 

the yeasts genomes (Dujon 2010) (figure 7). 

A mechanism of loss of heterozigosity (LOH) has been described in 

S. cerevisiae (Butler et al., 2009) and Candida albicans (Andersen et al., 

2008). C. albicans show a mosaic of heterozygous and homozygous 

regions in homologous chromosomes. LOH reduces heterozigosity in 

diploid cells or hybrids as has been shown in S. cerevisiae (Acuña et al., 

1994). 

The genomes of wine strains of S. cerevisiae contain DNA fragments 

from different species, such as S. paradoxus, S. kudriavzevii, S. uvarum 
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and even the distantly related Zygosaccharomyces bailii (Liti et al., 2006; 

Naumova et al., 2005; Doniger et al., 2008; Muller & McCusker 2009; Novo 

et al., 2009). These foreign sequences called introgressions are the result 

of homologous recombinations after a hybridization event between two 

different yeast species. This is observed in S. cerevisiae and S. paradoxus 

where several introgressions have been described (Liti et al., 2006; Wei et 

al., 2007; Muller & McCusker 2009). This suggests that very recent 

introgressions have occurred. This phenomenon seems to be common in 

yeast genomes, although the importance of this mechanism in the 

domestication has not been determined (Dujon 2010). 

 

Figure 7. Evolutionary mechanisms involved in reshaping yeast genomes (adapted from 
Dujon (2010); Galeote et al., (2011)). 

 

The acquisition of genes from bacteria (Horizontal Gene Transfer or 

HGT) was considered to be rare in yeasts. However, some recent studies 

have reported the gaining of important functional innovations or 

reacquisition of bacterial genes (Gojković et al., 2004). Furthermore, recent 
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analysis suggest that HGT is not rare in yeasts (Fitzpatrick 2011) and could 

be occurring between different species of yeast due to hybridization events. 

In this case, HGT and introgression could be considered as similar 

domestication mechanisms reshaping yeast genomes. 

As postulated by Ohno 40 years ago (Ohno 1970), all genomes show 

numerous traces of gene duplications. In yeast, duplications can occur by 

different mechanisms: i) expansions of tandem gene arrays mediated by 

unequal homologous recombination (Fogel & Welch 1982; Despons et al., 

2010); ii) segmental duplication (SD) (Souciet et al., 2009) mediated by 

dispersed repeated elements in genomes, such as remnants of Ty 

elements (class I retrotransposons) or microhomology/microsatellite-

induced replication (MMIR) mechanism (Payen et al., 2008); iii) single-gene 

duplications mediated by Ty retrotransposons (Schacherer et al., 2004); iv) 

whole-genome duplications (WGD). 

WGD hypothesis was confirmed by sequence comparisons of S. 

cerevisiae with other yeasts of Saccharomycetaceae family (Dietrich et al., 

2004; Kellis et al., 2004). Genomes of the Saccharomycetaceae family 

have been the most extensively studied. ‘Protoploid’ Saccharomycetaceae 

have a large number of chromosomes (6-8) and ‘duplicated’ 

Saccharomycetaceae have twice as many (13-16). WGD could be studied 

to understand the evolutionary consequences of such duplications events. 

WGD has consequences for gene dosage and could affect the protein 

interaction networks. WGD could explain successive deletions of genes 

from the initial polyploidy stage creating phenotypically disadvantaged 

intermediates that could be maintained and evolved under several steps of 

bottlenecks (Presser et al., 2008; Vinogradov & Anatskaya 2009). In S. 

cerevisiae, only ~550 duplicated pairs (ohnologues) have been retained 

(Byrne & Wolfe 2005), and similar or lower number of duplicates are 

observed for other yeasts coming from the same duplication event. 
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Although WGD is not a special feature of biotechnological strains, it 

provided new genes that played a direct role in the adaptation of 

Saccharomyces species toward highly efficient fermentation performance 

under anaerobic conditions (Piskur & Langkjaer 2004; Wolfe 2004). 

Hybridization has been not considered important in the evolution of yeast. 

However, WGD could be occurred due to a complete genome duplication 

(autopolyploidization) or by diploid mating (allopolyploidization), some 

authors supported the latter mechanism to be occur in the ancestor of post-

WGD yeasts (Andalis et al., 2004; Dunn & Sherlock 2008). This and recent 

descriptions support the hypothesis that hybridization is more important 

than previously has been recognized. 

 

2. LIFE CYCLE OF YEASTS AND HYBRID FORMATION 

Diploid yeasts reproduce asexually, frequently dividing by mitosis and 

budding off genetically identical cells, when they are grown in rich medium. 

But, when placed in medium lacking sufficient nitrogen to maintain mitosis, 

diploids can undergo meiosis producing tetrad of four haploid spores. 

Spores are dormant and resistant to many environmental conditions, but 

when returned to rich medium, they germinate into metabolically active 

haploid gametes of two mating types, MATα and MATa. Two gametes with 

different mating types can fuse together to produce a single diploid cell 

(Greig 2008). Sexual reproduction in yeast is facultative and not all diploids 

in a population will enter meiosis when deprived of the nutrients. In some 

situations, diploids, in starvation conditions, do not enter meiosis and can 

die or survive for many months (Fabrizio & Longo 2003). Meiosis and 

sporulation usually produce a tetrad of haploid spores, but in carbon source 

limitation during sporulation they can produce triads, dyads or monads 

(Taxis et al., 2005). 
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In species with haploid mating types, e.g. S. cerevisiae, three 

principally different mating behaviors are possible: amphimixis, haplo-

selfing and automoxis. Amphimixis is the mating of haploid cells derived 

from meiotic products of unrelated diploid cells. Haplo-selfing involves cells 

that derive from the same haploid cell, via mother-daughter mating upon 

mating type switching of one of the cells involved (Herskowitz 1988). Haplo-

selfing is only possible when cells are able to change mating type, and 

leading to the formation of an entirely homozygous diploid cell. The 

population genetic implications have been characterized as ‘renewal of the 

genome’ (Mortimer 2000) because it efficiently selects for favorable 

combinations of alleles, and enables purify deleterious mutations. 

Automoxis, or intratetrad mating, is the mating of haploid cells originating 

from the same ascus (figure 8). 

 

  Figure 8. Life cycle of Saccharomyces with different types of mating. 

Yeasts heterozygous for mating are generally lacking the ability to 

mate. Nevertheless, in rare circumstances these yeasts show rare-mating 

abilities due to conversion from heterozigosity to homozigosity for the 
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mating type alleles (Gunge & Nakatomi 1972). Rare-mating could have as 

consequence the formation of polyploid genomes. 

Coexistence of Saccharomyces species in similar habitats 

(Sniegowski et al., 2002) and the isolation of interspecific viable natural 

hybrids (de Barros Lopes et al., 2002) indicates the absence of prezygotic 

isolation, despite the preference to mate with cells from the same species 

(Maclean & Greig 2008), and might have occurred in the wild. A postzygotic 

barrier may exist between Saccharomyces species due to the isolation of 

few viable spores (≤1%) in interspecies crossings (Naumov 1987). 

Apparently, gene order is not the only reason to postzygotic barrier, as 

seem to be between S. paradoxus and S. cariocanus, since many of the 

Saccharomyces species genomes are collinear (Fischer et al., 2000; Kellis 

et al., 2003; Scannell et al., 2011). 

The genome structure of several hybrids between S. cerevisiae x S. 

bayanus and S. cerevisiae x S. kudriavzevii have been described. In the 

first case two different groups of hybrids has been found. The group 1 

indicates haploid x haploid hybridization and in the group 2, homozygous S. 

cerevisiae x haploid S. bayanus hybridization, (Dunn & Sherlock 2008; 

Nakao et al., 2009). In the S. cerevisiae x S. kudriavzevii hybrids two 

haploids should have mated due to the diploid status of hybrids (Belloch et 

al., 2009). However, these studies cannot elucidate which is the 

mechanism involved in the hybrids formation, being spore-spore, cell-spore 

or rare-mating equally probable. 

In yeasts, mitochondrial DNA (mtDNA) is of uniparental inheritance, 

thus driving to a homoplasmic state. However, biparental inheritance of 

mitochondria (heteroplasmic state) has been documented in fungi of the 

genus Neurospora (Yang & Griffiths 1993). In S. cerevisiae the fusion of 

two mating yeast cells to form a diploid zygote is rapidly followed by the 

fusion of mitochondria to form a continuous mitochondrial reticulum where 
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mtDNA as well as other mitochondrial constituents derived from both 

parents are mixed (Berger & Yaffe 2000). A large body of data has 

confirmed that intraspecific mitochondrial recombination occurs readily in S. 

cerevisiae (Wilkie & Thomas 1973; Dujon et al., 1974).  

 

 Figure 9. mtDNA inheritance during yeast mating and zygotic budding (adapted from Berger & 
Yaffe (2000)). 

 

Genetic comparison of mtDNA from medial-bud and end-bud derived S. 

cerevisiae cells revealed that cells formed from medial buds generally 

inherited mtDNA from both parents (in form of recombinant mtDNA), 

whereas cells from end buds typically inherited mtDNA only from the 

proximal half of the zygote (Nunnari et al., 1997) (fig. 9). 

In all natural hybrids studied, S. cerevisiae x S. bayanus or S. 

cerevisiae x S. kudriavzevii, the mtDNA seems to be inherited from the 

non-S. cerevisiae parental (Gonzalez et al., 2008; Rainieri et al., 2008) (fig. 

10). In a recent study, nucleo-mitochondrial incompatibilities within hybrids 

between S. cerevisiae and S. bayanus have been reported. In these 

hybrids, the S. bayanus nuclear gene AEP2 is incompatible with the S. 

cerevisiae mitochondrial gene OLI1 (Lee et al., 2008), supporting the 

Dobzhansky-Muller mechanism of postzygotic barrier (Dobzhansky 1937). 
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Figure 10. COXII phylogenetic tree (adapted from (Gonzalez et al., 2008; Rainieri et al., 2008). 

 

Further cytonuclear incompatibilities have been reported between MRS1 

and AIM22 genes in hybrids between S. cerevisiae, S. paradoxus and S. 

bayanus (Chou et al., 2010). In those studies, low spore viability and high 

frequency of non-S. cerevisiae mtDNA inheritance were also observed. In 

the case of S. cerevisiae x S. kudriavzevii hybrids, the genetic 

incompatibilities that could generate the postzygotic barrier, involved in the 

low viability of spores, has not been explored. 

 

3. IMPORTANCE OF THE HYBRIDS FOR BIOTECHNOLOGY 

3.1 History of winemaking and brewing 

Molecular evidence for the production of fermented beverages dates 

back to 7000 BC from the Neolithic village of Jiahu in China (McGovern et 

al., 2004).  

The earliest reports about grapevine domestication date from 7000-

4000 BC from a region between the Black Sea and Iran. The first evidence 

of winemaking is associated with Mesopotamia 5400-5000 BC and from 
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there vineyards and wine production expanded around the world 

(Chambers & Pretorius 2010; Sicard & Legras 2011) (fig 11). 

 

 

Figure 11. Vine and vineyard technology expansion around the world (adapted from 

Pretorius (2000)). 

 

Beer elaboration was first mentioned in the Mesopotamian, recorded 

in a Sumerian tablet. Analysis of 1500-1300 BC old beer jars suggested 

that beer was made from cooked and uncooked malt (Samuel 1996). Later 

on brewing would diverge into two processes, ale and lager, differentiated 

by the fermentation temperature. Ale beer acquired from the Middle East by 

Germanic and Celtic tribes around the 1st century AD and lager appeared 

during the Middle Ages in Europe (Sicard & Legras 2011). 
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3.2 Alcoholic fermentation 

Alcoholic fermentation (AF) is the anaerobic transformation of sugars 

into ethanol and carbon dioxide  by yeasts (Zamora 2009). In addition to 

ethanol and carbon dioxide, several important flavor compounds are 

produced throughout wine and beer fermentation. 

 3.2.1 Winemaking process 

Winemaking process, which starts in the vineyard, is an ancient art 

influenced by several factors such as viticulture practices, soil quality, and 

the cultivar of Vitis vinifera. All of these factors are of crucial importance for 

wine quality (Vivier & Pretorius 2002) (fig 12).  

 3.2.2 Brewing process 

A brief diagram of brewing process is depicted in figure 12. 

There are two types of brewing processes: 

i) Ale fermentation, which usually uses a S. cerevisiae, top-cropping 

yeast at a temperature of 14 to 17ºC. The fermentation is fast and cooling is 

applied to maintain a constant temperature. 

ii) Lager fermentation is done at lower temperature, typically 8 to 

13ºC, using bottom-cropping S. pastorianus hybrid yeast. The traditional 

lagering process involves a primary fermentation using flocculant yeasts, 

which is followed by a secondary fermentation using nonflocculant yeasts 

at lower temperatures, around 8ºC. Finally, yeasts are removed and beer is 

put under an aging process where it is stabilized and matured at low 

temperature (Priest & Stewart 2006). 

In certain types of traditional beers, as Belgian lambic and gueuze, 

fermentation is conducted by spontaneously growing yeasts. In these 

processes, fruits as cherry (‘Kriek’) or raspberry (‘Framboise’) are added to 

the beer. Late fermentation steps are conducted by Brettanomyces (Van 

Oevelen et al., 1977). 
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Figure 12. Winemaking and brewing processes (adapted from Pretorius (2000) and “http://www.monarch-beverage.com”). 
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 3.2.3 Stress conditions associated with alcoholic fermentation 

During AF yeast cells are subjected to several stress conditions 

(Ivorra et al., 1999; Carrasco et al., 2001) (figure 13). 

 

  Figure 13. Schematic representation of the temporal and sequential nature of potential 

stress encountered by yeast during AF (adapted from (Gibson et al., 2007)). 

 

The most important are:  

i) heat-shock stress, nowadays eliminated from the fermentation 

process by modern temperature control systems. 

ii) oxidative stress, that occurs during biomass production and yeast 

drying (Erasmus et al., 2003).  

iii) hyperosmolarity, which is an ever present stress condition for wine 

yeasts. A typical grape must usually contains 125-260 g/L of an equimolar 

mixture of glucose and fructose selectively influencing the species and 

strains of yeasts responsible for the fermentation (Belloch et al., 2008). In 

some situations, such as the production of dessert wines the sugar 

concentration may be as high as 500 g/L. Osmotic stress can also occur 

during yeast biomass production, downstream processing and drying 

(Ivorra et al., 1999). 

iv) nitrogen limiting conditions that can increase the H2S levels. 

Excessive amount of ethanol inhibits the uptake of solutes (sugars and 
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amino acids) and also inhibits yeast growth rate, viability and fermentation 

capacity 

v) ethanol concentration of the must that can adversely affect nitrogen 

uptake . 

vi) temperature, which is one of the most important parameters 

influencing AF can affect the duration and rate of fermentation, but more 

significantly, the final quality of the wine (Torija et al., 2003). Low 

temperature fermentations are becoming more frequent due to the 

consumer’s demand of wines with more pronounced aromatic profiles. The 

high risk of stuck and sluggish fermentations is the biggest drawback to 

these fermentations, as low temperatures (10-15ºC) restrict yeast growth 

and lengthen fermentations. 

Similarly, during beer production yeasts are exposed to fluctuations in 

oxygen concentration, osmotic potential, pH, ethanol concentration, nutrient 

availability and temperature (Briggs et al., 2004). 

 3.3 Biotechnological yeasts 

The Saccharomyces genus contains species that are industrially 

important. While S. cerevisiae is the predominant species responsible for 

AF (wine, ale-brewing, sake and different traditional fermented beverages), 

other species such as S. uvarum has been described as adapted to low-

temperature fermentations during wine-making (Naumov et al., 2000; 

Naumov et al., 2002) and cider production (Naumov et al., 2001; Coton et 

al., 2006). S. paradoxus is being used for fermentation of Croatian wines 

(Redzepović et al., 2002). 

During AF, yeasts are gown in different stress conditions which might 

compel special genome features present in most of biotechnological 

Saccharomyces strains when compared with non-biotechnological strains 

(Querol & Bond 2009; Barrio et al., 2006). Carreto et al., 2008, using array 

Comparative Genome Hybridization (aCGH), described several traits of 
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deleted/duplicated genes that are common to wine commercial S. 

cerevisiae strains compared with natural and clinical isolates. Genome 

renewal has been observed in population of S. cerevisiae isolated from 

spontaneous wine fermentation, due to the high frequency of homozygous 

strains (Mortimer et al., 1994). 

One of the most interesting mechanisms observed in the adaptation 

of these yeasts to industrial process is the formation of interspecific hybrids. 

 3.4. Biotechnological hybrid strains 

In the last years, an increasing demand to produce wines and beers 

with different organoleptic properties has occurred. Climatic change affects 

negatively wine quality by generating grape musts with higher fermentable 

sugar content and higher pH deriving in wines with high ethanol 

concentration (Jones et al., 2005). Attempts to decrease alcohol content in 

wine start by harvesting grapes at an early maturation stage thus 

containing less fermentable  sugars; however, these wines present an 

astringent character due to high tannins concentration that are not 

consumer desirable.  

Nowadays, wine and beer companies are looking for new fermenting 

strains that generate low alcohol amount while increasing glycerol 

concentration thus solving the astringency problem (Arroyo-López et al., 

2009). Moreover, new yeast strains are also required to provide more 

aromatic wines. Wines produced at low temperatures are known to 

preserve better the aromatic varietal and fermentative compounds, 

therefore yeast strains able to perform superbly at low temperatures are 

also desirable (Torija et al., 2003). 

Previous studies had shown that S. kudriavzevii was a worthy glycerol 

producer while showing a good growth profile at low temperatures. 

However, fermentation using S. kudriavzevii often leads to stuck 

fermentations, as this yeast species is not able to perform till end of 
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fermentation due to its low ethanol resistance (Gonzalez, et al., 2006; 

Belloch et al., 2008; Arroyo-López et al., 2010). Fermentation at low 

temperatures using hybrids between S. cerevisiae and S. kudriavzevii 

seems to be a good alternative, as natural hybrids are not considered 

genetically modified organisms (GMOs) (Gonzalez et al., 2008; González et 

al., 2006; Masneuf et al., 1998; Sipiczki, 2008). Moreover, natural hybrid 

strains between S. cerevisiae x S. kudriavzevii, appear well adapted to 

stress conditions occurring during alcoholic fermentations while showing 

intermediate temperature and ethanol tolerances when compared with their 

parental S. cerevisiae and S. kudriavzevii strains (Arroyo-López et al., 

2009; Tronchoni et al., 2009; Arroyo-López et al., 2010). Unfortunately, how 

these natural hybrids between S. cerevisiae x S. kudriavzevii were 

originated in nature remains unclear (Gonzalez et al., 2008) (fig. 14). 

 
Figure 14. Evolutionary reconstruction of the S. cerevisiae x S. kudriavzevii origin (adapted 
from Gonzalez et al., 2008). 
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In the last decade, natural Saccharomyces hybrids have been found 

responsible of diverse fermentative processes carried out at low 

temperatures (Masneuf et al., 1998; Nguyen et al., 2000; Rainieri et al., 

2006; González et al., 2006; Gonzalez et al., 2008; Sipiczki 2008). 

Saccharomyces hybrids, constituted by mating of the parental species S. 

cerevisiae and S. bayanus or S. kudriavzevii, or all of them, seem to 

contain a composite genome containing portions contributed by the 

different parental species (Dunn & Sherlock 2008; Rainieri et al., 2006; 

Belloch et al., 2009; Borneman et al., 2011). 

Extensive efforts have been done for the elucidation of the genomic 

and biotechnological particularities in case of the hybrids constituted by the 

species S. cerevisiae and S. bayanus, the species S. pastorianus, mostly 

conducting beer fermentation (Boulton & Quain 2001; Dunn & Sherlock 

2008; Nakao et al., 2009, Libkind 2011). However, recently described 

hybrids between S. cerevisiae and S. kudriavzevii have been barely 

investigated, albeit they have been found in wine and beer (Gonzalez et al., 

2006 and 2008). 

Competitive genome hybridization of a wine S. cerevisiae x S. 

kudriavzevii hybrid revealed the chimeric nature of the nuclear genome 

whereas mitochondrial DNA appeared to be exclusively S. kudriavzevii 

(Belloch et al., 2009). 

Recent research evaluating the resistance of S. cerevisiae x S. 

kudriavzevii hybrids to diverse physical and chemical agents, considered as 

stress factors in winemaking, revealed that hybrids were better suited to 

grow at low temperature and high ethanol concentration than S. cerevisiae 

and S. kudriavzevii respectively (Belloch et al., 2008; Arroyo-Lopez et al., 

2010). Physiological studies predicting winemaking performance of a wine 

hybrid S. cerevisiae x S. kudriavzevii compared to a commercial S. 
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cerevisiae wine strain and S. kudriavzevii revealed mixed traits coming 

from both parental species, where ethanol resistance seems to be inherited 

from the S. cerevisiae parental and the ability to ferment at low temperature 

and increased glycerol production would come from the S. kudriavzevii 

parental (Arroyo-Lopez et al., 2009; Tronchoni et al., 2009). Moreover, the 

study of production and release of aromas during winemaking revealed an 

increase in desirable chemical aromatic compounds at low temperature by 

Saccharomyces hybrids respect to cold temperature adapted S. cerevisiae 

strains (Gangl et al., 2009; Gamero et al., 2011a, b). 

This doctoral thesis explores the genome diversity present in a 

varied selection of S. cerevisiae x S. kudriavzevii hybrids isolated from 

different sources and geographical locations. The different techniques 

applied have made possible the accurate identification of S. cerevisiae x S. 

kudriavzevii hybrids and the extensive characterization of their chimeric 

genomes procuring new hints on the origin of these hybrids and the most 

probable scenario for any ancestral hybridization events. 
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1. Identification of new natural Saccharomyces cerevisiae x 

Saccharomyces kudriavzevii hybrids. 

2. Genome characterization of natural Saccharomyces cerevisiae x 

Saccharomyces kudriavzevii hybrids. 

3. Study of the origin of natural Saccharomyces cerevisiae x 

Saccharomyces kudriavzevii hybrids. 

4. Reconstruction of ancestral hybridization events between 

Saccharomyces species. 
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Abstract 

New double and triple hybrid Saccharomyces yeasts were 

characterized by using PCR-restriction fragment length polymorphism of 35 

nuclear genes, located at different chromosome arms, and the sequencing 

of one nuclear and one mitochondrial genes. Most of these new hybrids 

were originally isolated from fermentations, however, two of them 

correspond to clinical and dietary supplement isolates. This is the first time 

that the presence of double hybrids S. cerevisiae x S. kudriavzevii in non-

fermentative substrates is reported and investigated. 

The phylogenetic analysis of the MET6 nuclear gene confirmed the 

double or triple parental origin of the new hybrids. The restriction analysis 

of gene regions in these hybrids revealed a high diversity of genome types. 

From these molecular characterizations, a reduction of the S. kudriavzevii 

fraction of the hybrid genomes is observed in most hybrids. 

Mitochondrial inheritance in hybrids was deduced from the analysis of 

the mitochondrial COX2 gene sequences, which showed that most hybrids 

received the mitochondrial genome from the S. kudriavzevii parent. 

However, two strains inherited a S. cerevisiae COX2, being the first report 

of S. cerevisiae x S. kudriavzevii hybrids with S. cerevisiae mitochondrial 

genomes. These two strains are those showing a higher S. kudriavzevii 

nuclear genome reduction, especially in the wine hybrid AMH. This may be 

due to the release of selective pressures acting on the other hybrids to 

maintain kudriavzevii mitochondria-interacting genes. 

 

 

Keywords: Saccharomyces hybrids, S. cerevisiae, S. kudriavzevii, wine, 

dietary, clinical yeasts. 
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1. Introduction 

The genus Saccharomyces consists of eight species, three of them 

associated with industrial fermentation processes (S. bayanus, S. 

cerevisiae, and S. pastorianus), and five isolated from natural habitats (S. 

arboricolus, S. cariocanus, S. kudriavzevii, S. mikatae and S. paradoxus) 

(Kurtzman & Robnett , 2003; Wang & Bai , 2008). S. cerevisiae, the 

predominant species responsible for the alcohol fermentation, has been 

found associated to diverse fermentation processes including baking, 

brewing, distilling, wine making, cider production, etc. and also in different 

traditional fermented beverages and foods around the world. The species 

S. bayanus includes two recognized varieties, bayanus and uvarum 

(Vaughan-Martini & Martini , 2011). S. bayanus var. uvarum is present in 

wine and cider fermentations from cold regions of Europe (as examples see 

(Demuyter et al., 2004; Naumov et al., 2001). The S. pastorianus taxon 

includes hybrid strains between S. bayanus and S. cerevisiae, which are 

responsible for the production of lager beer (Kodama et al., 2005). The rest 

of the species are only associated with natural habitats, with the exception 

of some S. paradoxus strains isolated from Croatian vineyards (Redzepovic 

et al., 2002), that show a good winemaking performance (Orlic et al., 2010). 

During their evolution, yeasts have suffered diverse selective 

processes to become adapted to the fermentation conditions (Querol et al., 

2003). Diverse molecular mechanisms were involved in the generation of 

the evolutionary novelties that allowed the adaptation of yeasts to the 

fermentation processes (for review, see (Barrio et al., 2006). In the case of 

the genus Saccharomyces, one of the most interesting mechanisms 

involved in their adaptation to industrial processes, is the generation of 

interspecific hybrids (Querol & Bond , 2009). Hybrids between S. cerevisiae 

and S. bayanus were already identified several decades ago (for review, 

see (Kodama et al., 2005). In the last years, a new type of hybrids, between 
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S. cerevisiae x S. kudriavzevii, have been found both in winemaking and 

brewing (Bradbury et al., 2006; Gonzalez et al., 2006; Lopandic et al., 

2007).  

In the present study we characterize the genome composition of new 

S. cerevisiae x S. kudriavzevii hybrids. These new hybrids include two 

strains isolated from wine regions located in the southernmost limits of the 

Oceanic and Continental Europe, and two hybrids isolated for the first time 

from non-fermentative sources, such as a human respiratory tract isolate 

(de Llanos et al., 2004) and a strain employed as dietary supplement. Other 

hybrids, molecularly characterized for the first time in this study, are some 

commercial wine strains described as such by (Bradbury et al., 2006) and 

some of the Austrian wine hybrids (Lopandic et al., 2007), as well as two 

triple hybrids S. bayanus x S. cerevisiae x S. kudriavzevii CID1 (Groth et 

al., 1999) and CBS2834 (Gonzalez et al., 2006). The genetic 

characterization was performed by restriction analysis of 35 nuclear genes 

located in different chromosomes, and by sequencing the nuclear gene 

MET6 and the mitochondrial COX2 genes. Accordingly, these new hybrids 

were compared to those characterized in our previous study (González et 

al., 2008). 

 

2. Materials and methods 

2.1 Yeast strains and culture media 

The natural yeast hybrids S. cerevisiae x S. kudriavzevii used in this 

study were originally isolated from different sources and locations as 

described in Table 1. Yeast strains were grown at 28ºC in GPY medium 

(2% glucose, 0.5% peptone, 0.5% yeast extract). 
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Table 1. List of strains used in this study. Double hybrids correspond to S. 
cerevisiae x S. kudriavzevii hybrids and triple hybrids to S. bayanus x S. 
cerevisiae x S. kudriavzevii hybrids. Accession numbers of new gene 
sequences are indicated. 
Strain type Strain 

reference 

Isolation source COX2 MET6-C MET6-K 

Double hybrids AMH  Commercial strain, Pinot noir 

wine, Assmanshausen, 

Germany 

HQ414035 HQ414054  

 HA1835 Weißer Burgunder (Pinot 

blanc) grapes, Perchtoldsdorf, 

Austria 

HQ414039 HQ414049 HQ414059 

 HA1837 Weißer Burgunder grapes, 

Perchtoldsdorf, Austria 

HQ414040 HQ414050 HQ414060 

 HA1841 Weißer Burgunder grapes, 

Perchtoldsdorf, Austria 

HQ414041 HQ414051  

 HA1842 Weißer Burgunder grapes, 

Perchtoldsdorf, Austria 

HQ414042 HQ414052 HQ414061 

 IF6 Brewer’s yeast dietary 

supplement, Barcelona, Spain 

HQ414034 HQ414057  

 MR25 Human respiratory tract 

isolate, Barcelona, Spain 

HQ414033 HQ414058 HQ414065 

 PB7 Pietro Picudo wine, Los 

Oteros Winery, León, Spain 

HQ414036 HQ414056 HQ414064 

 SOY3 Graševina (Welschriesling) 

must fermentation, Daruvar, 

Croatia  

HQ414032 HQ414055 HQ414063 

 VIN7 Commercial strain of unknown 

origin, Anchor, South Africa 

HQ414031 HQ414053 HQ414062 

Triple hybrids CBS 2834 Wine, Wädenswil, Switzerland    

 CID1 Home-made cider, Brittany, 

France 

   

S. kudriavzevii ZP542 Oak bark, Adagoi, Portugal HQ414038   

 ZP591 Oak bark, Castelo de Vide, 

Portugal 

HQ414037   

Double hybrids correspond to S. cerevisiae x S. kudriavzevii hybrids and triple hybrids to S. bayanus x 
S. cerevisiae x S. kudriavzevii. Accession nos of new gene sequences are indicated.  
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2.2 PCR amplification and restriction analysis of 35 nuclear gene regions 

Characterization of the hybrids was performed by PCR amplification 

and restriction of 35 gene regions located in different chromosome arms 

(Fig. 2). DNA was extracted following the procedure described by Querol et 

al., (1992). Amplification and digestion of the nuclear genes was performed 

by using the methodology described in González et al., (2008) except for 

the subtelomeric MNT2 gene, that failed to amplify the S. kudriavzevii gene 

and, hence, it was replaced by GCN1. Primers used for amplification of 

GCN1 gene were GCN1-5 (GGTTTRGTKAAAGGTTAYGG) and GCN1-3’ 

(CACCAGCYAAAATRGTTGG) and PCR conditions were as in González et 

al., (2008), but using an annealing temperature of 55.5 ºC. 

 

2.3 Amplification, sequencing and phylogenetic analysis of COX2 and 

MET6 genes 

The genes COX2 and MET6 were amplified by PCR using the 

primers and conditions described in Belloch et al., (Belloch et al., 2000) and 

González et al., (2006), respectively. PCR products were cleaned with the 

Perfectprep Gel Cleanup kit (Eppendorf, Hamburg, Germany) and both 

strands of the DNA were directly sequenced using the BigDyeTM 

Terminator V3.0 Cycle Sequencing Kit (Applied Biosystems, Warrington, 

UK), following the manufacturer’s instructions, in an Applied Biosystems 

automatic DNA sequencer Model ABI 3730l (Life Technologies 

Coorporation, Carlsbad, California).  

COX2 and MET6 sequences obtained for the present study are listed 

in Table 1 with their accession numbers. Other sequences from hybrids 

were retrieved from sequence databases (accession numbers for MET6 

sequences AJ973280-AJ973295 and AJ973305-AJ973322; and for COX2 

sequences AJ938037-AJ93844, AJ938047, AJ938048 and AJ966727-

AJ966733). 
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Finally, MET6 sequences from reference or type strains of S. 

bayanus var. uvarum (MCYC 623), S. cerevisiae (S288C), S. kudriavzevii 

(IFO 1802T), S. mikatae (IFO 1815T) and S. paradoxus (CECT 1939NT) 

were retrieved from the fungal alignment viewer of the Saccharomyces 

Genome Database (http://db.yeastgenome.org/cgi-bin/FUNGI/showAlign). 

Each set of homologous sequences was aligned in MEGA 4 (Tamura 

et al., 2007). The sequence evolution model that fits our sequence data 

best was optimized using the corrected Akaike Information Criterion (AICc) 

with a BioNJ tree as the initial tree, implemented in jModelTest program 

(Posada , 2008). The best fitting model of evolution for MET6 sequences 

was TIM1 model (Posada , 2003) with a gamma distribution (G) of 

substitution rates with a shape parameter = 0.35; and for COX2 gene 

sequences the TVM model (Posada , 2003) with a gamma distribution (G) 

of substitution rates with a shape parameter = 0.123 and 46.2% of 

invariable sites (I). The parameters of each model, estimated in the 

previous analysis, were used to obtain the best trees under optimality 

criterion of maximum-likelihood (ML). Tree reliability was assessed using 

non-parametric bootstrap re-sampling of 1000 pseudo-replicates. 

Phylogenetic analyses were performed using PhyML 3.0 program (Guindon 

et al., 2010). 

In the case of COX2 sequences, due to evidences of recombination 

obtained from sequence comparisons, a Neighbor-net network analysis 

was also performed with SPLITSTREE4 program (Huson & Bryant , 2006). 

 

3. Results 

3.1 Analysis of the hybrid nature of the strains by the phylogenetic analysis 

of MET6 gene sequences. 

To confirm the hybrid nature of the strains under study and their 

genealogical relationships, we performed phylogenetic analyses of partial 

http://db.yeastgenome.org/cgi-bin/FUNGI/showAlign
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sequences of a nuclear (MET6) and a mitochondrial (COX2) genes, 

because such sequences are also available for other hybrids (González et 

al., 2006, 2008). 

Three different MET6 sequence types were found in hybrids that 

correspond to those of the reference strains of the parental species S. 

bayanus, S. cerevisiae and S. kudriavzevii (Fig. 1). Thus, the average 

number of nucleotide substitutions among S. cerevisiae alleles is 0.97 ± 

0.88 (from 0 to 3 differences), among S. kudriavzevii alleles is 0.23 ± 0.59 

(from 0 to 3) and among S. bayanus var. uvarum is 0 ± 0. In contrast, 

average numbers of All double and triple hybrids included in the analysis 

contain two or three MET6 alleles coming from their parental species (B, C 

and K), except double hybrids HA1841, IF6 and AMH that lost the S. 

kudriavzevii MET6 allele. These results confirm the hybrid nature of the 

new strains. 

 

3.2 Nuclear genome characterization of Saccharomyces hybrids 

The restriction patterns of the 35 genes for the differentiation of the S. 

cerevisiae and S. kudriavzevii alleles were described in González et al., 

(2008) with the exception of MNT2 which was replaced in the present study 

by GCN1. The restriction analysis of the GCN1 gene region yielded the 

following fragments: HaeIII, S. cerevisiae 462 + 302 + 144 + 114 bp, and S. 

kudriavzevii 450 + 366 + 206 bp; MspI, S. cerevisiae 514 + 508 bp, and S. 

kudriavzevii 1022 bp; and CfoI, S. cerevisiae 766 + 256 bp, and S. 

kudriavzevii 634 + 388 bp. Hybrids characterized in a previous study 

González et al., (2008) were also assayed for this gene, resulting in the 

presence of both parental copies in all of them. 

The PCR-RFLP patterns of the 10 newly characterized S. cerevisiae 

x S. kudriavzevi hybrids, and the 2 triple hybrids are depicted in Figures 2 
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and 3, respectively. The specific alleles present in each hybrid strain are 

given in the Table S1 and the new restriction patterns in Table S2. 

 

 
Figure 1. Phylogenetic tree obtained with partial sequences of the nuclear MET6 gene from hybrid 

strains and reference strains of Saccharomyces. The new hybrids are indicated in bold gray characters. 
Hybrid strains contain one, two or three different MET6 alleles named C (S. cerevisiae), B (S. bayanus 
var. uvarum) or K (S. kudriavzevii) according to the closest parental relative. Numbers at the nodes 
correspond to bootstrap values based on 1000 pseudo-replicates. The scale is given in nucleotide 
substitutions per site. 
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Since the S. cerevisiae and S. kudriavzevii genomes are colineal 

(Kellis et al., 2003), the locations of the gene regions under analysis were 

chosen to obtain information about the presence of possible chromosomal 

rearrangements in the hybrid genomes, as described in other hybrids 

(Gonzalez et al., 2008; Belloch et al., 2009). This way, the absence in the 

hybrids of S. kudriavzevii alleles for genes located in the same 

chromosome likely resulted from the loss of the whole chromosome. 

However, the loss of one gene located in a chromosome but not the other 

genes of the same chromosome can be postulated as a result of 

recombination between homeologous chromosomes, as demonstrated for 

some hybrids (Belloch et al., 2009). This resulted in the replacement of the 

missing segment by the homologous segment from the other chromosome 

of different parental origin (see Figures 2 and 3).  

This way, chromosomal rearrangements can be postulated as 

occurred in chromosomes IV (AMH), V (IF6), VII (AMH, VIN7, IF6 and 

MR25), IX (IF6, MR25), X (IF6, MR25), XI (PB7 and IF6), XIII (IF6, MR25), 

XIV (MR25), XV (AMH) and XVI (IF6). In four wine hybrids (SOY3, from 

Croatia, and HA 1835, HA 1837 and HA 1842 from Austria) no 

rearrangement can be deduced because they contain both parental alleles 

for all genes.  

In general, the S. cerevisiae genome fraction is maintained in all 

these double hybrids whereas a progressive loss of the S. kudriavzevii 

genes is observed. This reduction is more evident in the case of hybrid 

AMH, which has lost most of the S. kudriavzevii chromosomes. 

In the case of the triple hybrids (Fig. 3), the typical restriction pattern 

of S. bayanus var. uvarum was found in addition to those of S. cerevisiae 

and S. kudriavzevii alleles, indicating that they contain chromosomes from 

the three parental species. The S. cerevisiae and S. kudriavzevii  
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Figure 2. RFLPs analysis of 35 nuclear genes from double hybrids. Each square corresponds to a copy of each gene region according to its chromosome 
location, indicated on the left map. Alleles of S. cerevisiae are indicated as white squares and S. kudriavzevii alleles are represented as black squares. 
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Figure 3. RFLPs of 35 nuclear genes from triple hybrids. Each square corresponds to a copy of each 
gene region according to its chromosome location, indicated on the left map. Alleles of S. cerevisiae are 
indicated as white squares, S. kudriavzevii alleles are represented as black squares and S. bayanus 
var. uvarum alleles are depicted in grey squares. Squares filled with two colors indicate that the 
presence of any of these alleles is possible. Gene orders are the same for S. cerevisiae and S. 
kudriavzevii because their genomes are colineal, however, gene orders differ for S. bayanus var. 
uvarum because this species exhibits a series of reciprocal translocations as depicted.  
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chromosomes are co-lineal (synthenic), however, the chromosomes of S. 

bayanus var. uvarum contain 4 differential reciprocal translocations (Kellis 

et al., 2003), as depicted in Figure 3. In the case of triple hybrids, a higher 

preservation of the S. bayanus var. uvarum fraction is observed. 

The comparison of the RFLP patterns obtained in this study for the 

new hybrids and those described by González et al., (2008, see their figure 

3) reveals a considerable diversity in the genome structure of S. cerevisiae 

x S. kudriavzevii hybrids, although certain similarities among strains are 

observed as well. Accordingly, double hybrid strains can be classified in 

three groups according to the parental genome rearrangements. The first 

group includes hybrids that maintain the complete genome from both 

parents (most HA strains and SOY3) or have independently lost from 1-2 

chromosomes or chromosome regions from S. kudriavzevii (wine strains 

PB7, VIN7 and most brewing hybrids), the second group comprises strains 

with a moderate loss (3-4) of S. kudriavzevii chromosomes or chromosome 

regions, including 3 shared events (Swiss wine hybrids and the brewing 

strain CECT 11003), and the third group includes strains with moderate 

(MR25, 6 losses) to large S. kudriavzevii gene losses (CECT 11002, IF6 

and AMH, with 9, 11 and 13, respectively). 

 

3.3 Mitochondrial inheritance in hybrids 

The analysis of mitochondrial COX2 gene sequences has been 

shown as useful to decipher which parental species contributed with their 

mitochondria to the hybrid strains (González et al., 2006). 

The comparative analysis of COX2 sequences with those previously 

described (González et al., 2006), showed the presence of new haplotypes 

in hybrids PB7, AMH and IF6 (Fig. 2 and 3). The wine hybrids AMH and IF6 

contain COX2 sequences more related to S. cerevisiae (1 and 14 

differences, respectively being the first description of S. cerevisiae x S. 
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kudriavzevii hybrids that received their mitochondrial genomes from a S. 

cerevisiae parent. 

The other new hybrids contain COX2 sequences that correspond to 

previously described haplotypes. Thus, with the exception of PB7, all new 

wine hybrids contain haplotype K4, already described in the triple hybrid 

CBS 2834. This haplotype is closely related to haplotypes K2 and K3 from 

Swiss wine hybrids (1 and 2 nucleotide differences, respectively) and 

haplotypes exhibited by the Japanese type (haplotype K1, 5 differences) 

and European strains from S. kudriavzevii (haplotypes K8 and 9, with 1 and 

3 differences, respectively). The clinical isolate MR25 exhibits the same 

haplotype K6 described in brewing hybrids, which is related to haplotype 

K10 present in the wine hybrid PB7 (6 nucleotide differences). 

However, a detailed analysis of the COX2 sequence alignment suggested 

the possibility of reticulate evolution due to recombination (Table 2). This 

way, haplotypes K5 (triple hybrid CID1), K6 (brewing hybrids CECT 1388, 

1990, 11002, 11011 and the clinical strain MR25) and K10 (wine hybrid 

PB7) appear as putative recombinant sequences with similarities to S. 

kudriavzevii, S. cerevisiae and S. paradoxus sequences in their 5’-end, 

central and 3’-end regions, respectively (see Table 2). 

In the case of reticulate evolution due to recombination, a better 

representation of the phylogenetic relationships is obtained by a Neighbor-

net network analysis (Figure 4). Most wine hybrids (except PB7 and AMH) 

and two Trappist beer hybrids (CECT 11003 and 11004) inherited their 

mitochondrial genomes (haplotypes K2, K3 and K4) from S. kudriavzevii, 

AMH and IF6 received their mitochondrial genomes from S. cerevisiae, 

although IF6 COX2 appears in a striking intermediate position between S. 

cerevisiae and S. paradoxus-S.mikatae clades, likely due to its highly 

divergent 3’ end. Finally, most brewing hybrids and the clinical isolate  
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Table 2. Comparison of COX2 haplotype sequences from hybrid and type and reference strains of 
Saccharomyces species. A dot indicates nucleotides identical to that from the type strain of S. cerevisiae 
CECT 1942T. COX2 regions in hybrids that exhibit a higher similarity to S. cerevisiae, S. kudriavzevii and S. 
paradoxus COX2 sequences are indicated in squared white, black and grey backgrounds, respectively. 

Species Strains 

COX2 

haplotype 

COX2 variable nucleotide positions (in vertical) 

     1111111123333333444444455555555555555555555555555 
446790233355750127999233568800111111222222333344455566 
064342404647534380147403734728014789034569258901403658 

S. cerevisiae  CECT1942
T
  C1 ATTAATTTATTTTATATTCTATTATTTTACTCTAGCATTCTGGTGACATATGGC 

Hybrids AMH C2 .................................G.................... 

 IF6  C3 ............A.....................CA....AAA.ACT.ATC.AT 

 CID1 K5 TACT..CAGACA.TC.A.T..CC......T....CA.C..A..C...TACCAAT 

 PB7  K10 TACT..CAGACA.TC.A.T..CC......T....CA.C..A..C.CTGACCAAT 

 MR25 & brewing K6 TACT..CAGACA.T....T..CC......T...GCA.C..A..C.CTGACCAAT 

 Swiss & 11003-4 K2 TACT..CAGACA.T...A.AT.CTAAAAG.AT.T..TCAG.A..T.......A. 

 W46 K3 TACT..CAGACA.T...A.AT.CTAAAAG.AT.T..TCAG.A..T....C..A. 

 HAs, SOY3, VIN7 K4 TACT..CAGACA.T...A.AT.CTAAAAG.AT.T..TCAG.A..A.......A. 

S. kudriavzevii  IFO1802
T
  K1 TACT..CAGACA.TC..A.AT.CT.AAAG.ATCT..TCAG............A. 

 ZP542 K8 TACT..CAGACA.T...A.AT.CTAAAAG.AT.T..CCAG.A..A.......A. 

 ZP591 K9 TACT.CCAGA.A.T...A.AT.CTAAAA..AT.T..TCAG.A..A.......A. 

S. paradoxus CECT1939
NT

 K2 ..............C.A.T..CC......T...G...CAG.A.C.CTGACCAAT 

S. mikatae IFO1815
T
 K2 ....G..........TA.T...C...CA.T...G...CAG...CACTGACC.AT 

A dot indicates nucleotides identical to that from the type strain of S. cerevisiae CECT 1942
T
. COX2 regions in hybrids that exhibit a higher similarity to 

S. cerevisiae, S. kudriavzevii and S. paradoxus COX2 sequences are indicated in squared white, black and grey backgrounds, respectively. 
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(haplotype K6), the cider CID1 (K5) and the wine PB7 (K10) hybrids appear 

in an intermediate position due to their chimerical COX2 sequences. 

 

3.4 Different groups of hybrids according to their nuclear and mitochondrial 

genome constitutions 

The combined analysis of the nuclear and mitochondrial genome 

compositions of S. kudriavzevii double and triple hybrids indicates a higher 

genetic diversity. Strains that differed in a few chromosomal 

rearrangements contain different mitochondrial haplotypes (e.g. PB7 and 

the Austrian and Croatian hybrids) and others showing important 

chromosomal differences share the same mitochondrial sequences (e.g. 

MR25 and brewing hybrids).  

In other cases, there is a certain association between the nuclear and 

mitochondrial diversities. This way, the two hybrids with a S. cerevisiae 

mitochondrial DNA are those that lost a higher fraction of S. kudriavzevii 

nuclear genome. As well, with the mentioned exception of PB7, wine 

hybrids appear in two closely related clusters, the Austrian-Croatian cluster 

(also including VIN7) with low number of chromosomal rearrangements and 

the sharing the same S. kudriavzevii-like mitochondrial haplotype K4, and 

the Swiss cluster (also including Trappist hybrids CECT11003 and 11004), 

which share several fixed rearrangements (Belloch et al., 2009) and the S. 

kudriavzevii-like mitochondrial haplotype K2 (including the derived K3). 

In the case of the two triple hybrids known so far, they also show 

important differences both in their mitochondrial and nuclear genomes. 

Thus, these strains do not share any common chromosomal 

rearrangements indicating independent losses in the three fractions of their 

hybrid genomes. Moreover, the wine triple hybrid inherited a S. kudriavzevii 

mitochondrial genome similar to that present in wine double hybrids, whilst 

the cider hybrid contains a mitochondrial COX2 closely related to that  
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Figure 4. Phylogenetic Neighbor-net network obtained with partial sequences of the mitochondrial COX2 gene from hybrid strains and reference 
Saccharomyces strains. The new hybrids are indicated in bold gray characters. The different COX2 sequence haplotypes are named by the initial of the 
species name of the closest parental (C, for S. cerevisiae; and K, for S. kudriavzevii) followed by a number, according to González et al.,  (, 2008). The new 
COX2 haplotypes described in the present study are indicated in italics. Strains sharing the same haplotype are given at the left. 
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present in most brewing, the clinical and a wine hybrid with similarities 

intermediate between S. cerevisiae and S. kudriavzevii. 

 

4. Discussion 

4.1 New strains expanding the distribution range of Saccharomyces 

kudriavzevii hybrids 

It is more than a decade since an unusual S. bayanus x S. cerevisiae 

hybrid, CID1, isolated from home-made Breton cider, was identified as 

bearing a mitochondrial genome coming from S. kudriavzevii (Masneuf et 

al., 1998; Groth et al., 1999). Later, a S. kudriavzevii contribution to a 

fraction of the chimerical nuclear genome of this strain was demonstrated 

(Naumova et al., 2005; González et al., 2006). 

Some years later, a new type of natural hybrid strains between S. 

cerevisiae x S. kudriavzevii was described in wine fermentations (Bradbury 

et al., 2006; González et al., 2006; Lopandic et al., 2007). and brewing 

environments (Gonzalez et al., 2008). 

In the present study, new S. cerevisae x S. kudriavzevii hybrid yeasts 

are described and molecularly characterized. These hybrids contribute to 

expand the geographical distribution range of this type of hybrids as well as 

the sources whence they can be isolated.  

This way, the new wine hybrids (PB7 and SO3) were isolated from 

wine fermentation in the southernmost locations where this kind of hybrids 

has been isolated so far (Pajares de los Oteros, in Northwestern Spain, and 

Daruvar, in Central Croatia, respectively). These new descriptions extend 

the distribution limits of S. cerevisiae x S. kudriavzevii hybrids to the 

Southern limit of the European wine regions of Oceanic and Continental 

climate, where these hybrids have been found so far associated to 

fermentation processes. In these wine regions, hybrids can be predominant 

(Schütz & J Gafner 1994; González et al., 2006; Lopandic et al., 2007) 
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likely due to a better adaptation to lower temperatures compared to S. 

cerevisiae (González et al., 2007). 

The molecular characterization of PB7 showed that, although its 

nuclear genome composition is similar to other wine hybrids, exhibits a 

recombinant mitochondrial genome different but closely related to brewing 

hybrids. Its marginal distribution and its peculiar genome characteristics are 

indicative of a putative independent origin from other wine hybrids. 

However, the genome composition of the Croatian SOY3 hybrid was 

identical to Austrian hybrids, predominant in another wine region of the 

same Pannonian basin (Lopandic et al., 2007), with similar climatologic 

characteristics as well as historical links in the development of viticulture 

and enology. 

In these Southern locations where the new wine hybrids were 

isolated, hybrids did not appear as predominant. In both cases, these wine 

hybrids were found at low frequencies and coexisting with the dominant S. 

cerevisiae strains during the first stages of the wine fermentations. Perhaps 

the milder temperatures at which spontaneous fermentations occur in these 

Southern regions still allow S. cerevisiae to outcompete these hybrids. 

The present study also describes for the first time S. cerevisiae x S. 

kudriavzevii hybrids isolated from non-fermentative environments. Strain 

MR25 is a human respiratory isolate from ‘Hospital del Vall d’Hebron’, 

Barcelona, Spain; and IF6, is commercialized as a dietary supplement. 

These hybrids are quite different at the genome level, particularly in their 

mitochondrial genomes. The clinical isolate MR25 shares a COX2 

sequence identical to that present in 4 brewing hybrids, indicating that beer 

could likely be the source of infection, and the dietary supplement IF6 

exhibits a S. cerevisiae mitochondrial DNA. 

 



OBJECTIVE 1 -Chapter 1- 

93 

4.2 The high genetic diversity among Saccharomyces kudriavzevii hybrids 

suggests independent hybridization origins 

The analysis of the nuclear and mitochondrial genome compositions 

of S. kudriavzevii double and triple hybrids unveiled a high diversity, which 

likely is indicative of independent primary, as well as secondary, 

hybridization events. 

The fact that hybrids inherited 3 types of mitochondrial genomes (S. 

cerevisiae-like, S. kudriavzevii-like and recombinant) from their parental 

ancestors is indicative of at least 3 different origins. Moreover, the 

important differences in their nuclear genome compositions could also be 

taken as evidences of independent primary hybridization events. 

The presence of recombinant mitochondrial genomes in hybrids can 

be explained by recombination events occurring after the fusion of 

mitochondria observed in conjugating Saccharomyces spores or cells. This 

kind of recombination events were already described in S. cerevisiae at the 

within-species level (Berger & Yaffe 2000), but this is the first time that is 

described in hybrids at the between-species level. However, we suspect 

that these recombination events are limited to this COX2 region because 

sequences from the next downstream gene, COX3, correspond to S. 

kudriavzevii (data not shown). 

In addition, the existence of natural triple S. bayanus var. uvarum x S. 

cerevisiae x S. kudriavzevii hybrids can be explained by secondary 

hybridization between either S. cerevisiae x S. kudriavzevii hybrids with S. 

bayanus var. uvarum strains or S. bayanus var. uvarum x S. cerevisiae 

hybrids with S. kudriavzevii strains. Although both types of double hybrids 

have been found associated to fermentation environments, the first type of 

secondary hybridization event could be more probable because S. 

kudriavzevii seems to be present only in natural environments (Sampaio & 

Gonçalves 2008; Lopes et al., 2010) and is outcompeted by S. cerevisae in 
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experimental wine fermentations (Arroyo-López et al., 2011), whilst S. 

bayanus var. uvarum coexists with, or even replaces, S. cerevisiae in wine 

fermentations from cold regions of Europe (Torriani et al., 1999; Naumov et 

al., 2000, 2002; Rementeria 2003; Demuyter et al., 2004). However, a 

secondary hybridization event in natural environments, involving a S. 

kudriavzevii and a S. bayanus x S. cerevisiae, cannot be totally discarded. 

After hybridization, the hybrid genome suffers random genomic 

rearrangements mediated by crossing-over between homeologous 

chromosomes (Belloch et al., 2009). If these rearrangements were 

randomly fixed, hybrids with a higher number of rearrangements should 

derive from older hybridization events, and hybrids with no rearrangements 

should be very recent. However, double hybrids showed a trend to maintain 

the S. cerevisiae genome and to reduce the S. kudriavzevii that can only be 

explained by selection acting under the strong restrictive conditions 

prevailing during fermentation (nutrient depletion, osmotic stress, 

fermenting temperature, increasing levels of ethanol, etc.). The better 

adaptation of S. cerevisiae to these prevailing conditions constrains the 

loss of the S. cerevisiae fraction of the hybrid genome, and only the S. 

kudriavzevii genome fraction of selective importance for the hybrid (e.g. 

involved in adaptation to low fermentation temperatures) would be 

maintained. The fact that hybrids with a S. kudriavzevii mitochondrial 

genome maintain a larger fraction of the S.kudriavzevii genome than 

hybrids with a S. cerevisiae mitochondrial DNA, such as AMH and IF6, is 

also indicative that the inheritance of a S. kudriavzevii mitochondrial 

genome constrains to maintain those S. kudriavzevii genes involved in the 

proper function and maintenance of the mitochondria. Incompatibility 

between nuclear and mitochondrial genes has been reported for artificial S. 

cerevisiae x S. bayanus hybrids (Lee et al., 2008). Accordingly, strains 

possessing S. cerevisiae-inherited mitochondria overcome this restriction 
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and may lose these S. kudriavzevii mitochondrial-related genes from their 

nuclear genome. 
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Abstract 

Background: Interspecific hybrids between S. cerevisiae × S. kudriavzevii 

have frequently been detected in wine and beer fermentations. Significant 

physiological differences among parental and hybrid strains under different 

stress conditions have been evidenced. In this study, we used comparative 

genome hybridization analysis to evaluate the genome composition of 

different S. cerevisiae × S. kudriavzevii natural hybrids isolated from wine 

and beer fermentations to infer their evolutionary origins and to figure out 

the potential role of common S. kudriavzevii gene fraction present in these 

hybrids. 

Results: Comparative genomic hybridization (CGH) and ploidy analyses 

carried out in this study confirmed the presence of individual and differential 

chromosomal composition patterns for most S. cerevisiae × S. kudriavzevii 

hybrids from beer and wine. All hybrids share a common set of depleted S. 

cerevisiae genes, which also are depleted or absent in the wine strains 

studied so far, and the presence a common set of S. kudriavzevii genes, 

which may be associated with their capability to grow at low temperatures. 

Finally, a maximum parsimony analysis of chromosomal rearrangement 

events, occurred in the hybrid genomes, indicated the presence of two 

main groups of wine hybrids and different divergent lineages of brewing 

strains. 

Conclusion: Our data suggest that wine and beer S. cerevisiae × S. 

kudriavzevii hybrids have been originated by different rare-mating events 

involving a diploid wine S. cerevisiae and a haploid or diploid European S. 

kudriavzevii strains. Hybrids maintain several S. kudriavzevii genes 

involved in cold adaptation as well as those related to S. kudriavzevii 

mitochondrial functions. 
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1. Introduction 

The development of molecular methods of yeast characterization has 

demonstrated that some wine and brewing Saccharomyces strains possess 

complex genomes composed by genetic elements from two or more 

species (Barros Lopes et al., 2002; Gonzalez et al., 2006; González et al., 

2008; Groth et al., 1999; Liti et al., 2005; Lopandic et al., 2007; Masneuf et 

al., 1998). These strains are widely known as interspecific hybrids. 

The best characterized industrial interspecific hybrid is the lager yeast 

S. pastorianus, originated from hybridization between S. cerevisiae and a 

S. bayanus-related yeast, which recently has been suggested to belong to 

the new species S. eubayanus (Libkind et al., 2011). The hybridization 

between S. cerevisiae and the cryotolerant S. eubayanus have been 

suggested as the result of selective pressures derived from brewing at low 

temperatures (Libkind et al., 2011). 

Other kind of natural Saccharomyces hybrids are those originated 

from hybridization between S. cerevisiae and S. kudriavzevii. These hybrids 

have mainly been isolated from wine and brewing environments (Gonzalez 

et al., 2006; Lopandic et al., 2007; González et al., 2008). 

The role of the S. kudriavzevii genome in these hybrids is unclear, 

since the known strains of this species have been found in decaying leaves 

from Japan and oak trees from Portugal and Spain (Sampaio et al., 2008; 

Lopes et al., 2010), but not in fermentative industrial environments yet. The 

physiological evaluation of some of these S. kudriavzevii isolates showed 

that this species is characterized by a higher cryotolerance than S. 

cerevisiae, but a lower ethanol tolerance (Arroyo-López et al., 2009; 

Salvadó et al., 2011). 

Albeit differences between S. cerevisiae × S. eubayanus and S. 

cerevisiae × S. kudriavzevii hybrids, the role of the S. eubayanus or S. 
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kudriavzevii genomes in the hybrid seems to be similar, that is, the 

maintenance of good fermentative performance at low temperatures. 

The characterization of a particular group of Swiss wine hybrids by 

PCR-RFLP, DNA arrays, ploidy analysis and gene dose determination by 

quantitative real-time PCR, evidenced the existence of a single common 

hybridization event to explain the origin of these hybrids followed by 

extensive chromosomal rearrangements including chromosome losses and 

the generation of chimerical chromosomes (Belloch et al., 2009). 

In this work, genome composition by array-CGH of a more diverse set 

of wine and brewing S. cerevisiae × S. kudriavzevii natural hybrids from 

diverse origins was evaluated to decipher their origins and evolution. The 

examination of gene losses and gains as well as the maintenance of 

specific metabolic pathways from the S. cerevisiae or S. kudriavzevii 

parental genomes was also analyzed with the aim of elucidating the role of 

each parental genome in the fermentative performance of the hybrid 

strains. 

 

2. Material and methods 

2.1 Yeast strains and culture media 

The natural yeast hybrids S. cerevisiae × S. kudriavzevii used in this 

study have been isolated from wine and brewing fermentations in different 

locations (Table 1). The haploid strain S. cerevisiae S288c was used as 

control for microarray DNA hybridizations. Yeast strains were grown at 

28°C in GPY medium (2% glucose, 0.5% peptone, 0.5% yeast extract). 

 

2.2 Ploidy estimations by flow cytometry 

Ploidy estimates are very important to interpret aCGH data from 

hybrids because hybridization signals are commonly normalized with 

respect to those of the reference haploid strain S288c. 
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The DNA content of both hybrid and control strains was assessed by 

flow cytometry by two different procedures. The first ploidy estimates were 

obtained in a FACScan cytometer (Becton Dickinson Inmunocytometry 

Systems, California, United States) by using the propidium iodide dye 

method described in Belloch et al., (2009). Due to discrepancies with the 

aCGH analysis, new estimates were later obtained in a Beckman Coulter 

FC 500 (Beckman Coulter Inc., California, USA) by using the SYTOX 

Green dye method described in Haase and Reed (Haase and Reed, 2002). 

In both cases, ploidy levels were scored on the basis of the fluorescence 

intensity compared with the haploid (S288c) and diploid (FY1679) reference 

S. cerevisiae strains. Ploidy reported for each strain is the result of three 

independent measures. Results were tested by one way ANOVA and 

Tukey’s HSD tests. 

 

Table 1. List of hybrid strains used in this study.  

Strain name Isolation source 

HA1841 wine, Perchtoldsdorf, Austria 

HA1842 wine, Perchtoldsdorf, Austria 

PB7 wine Pietro Picudo, León, Spain 

Assmanhausen (AMH) wine, Geisenheim, Germany 

Anchor VIN7 commercial strain, Anchor, South Africa 

SOY3 wine, Daruvar, Croatia  

CECT1388 ale beer, United Kingdom 

CECT1990 beer, Göttinger Brauhaus AG, Germany 

CECT11002 beer Chimay Trappist, Belgium 

CECT11003 beer Orval Trappist, Belgium 

CECT11004 beer, Westmalle Trappist, Belgium 

CECT11011 brewery, New Zealand 
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2.3 DNA labeling and microarray competitive genome hybridization 

Total DNA, extracted as described in Querol et al., (1992), was 

resuspended in 50 μl of de-ionized water and digested with endonuclease 

Hinf I (Roche Applied Science, Germany), according to the manufacturer’s 

instructions, to fragments of an average length of 0.25 to 8 kbp. Each 

sample was purified using High Pure PCR Product Purification Kit (Roche 

Applied Science, Germany) and 2 μg was labelled using BioPrime Array 

CGH Genomic Labelling System (Invitrogen, California, USA). 

Unincorporated label was removed using MinElute PCR Purification Kit 

(Qiagen, Germany). Equal amounts of labelled DNA from the 

corresponding hybrid strains and the control S288c strain were used as 

probes for microarray hybridization. 

Array competitive genomic hybridization (aCGH) was performed 

using a double-spotted array containing 6,240 ORFs of S. cerevisiae plus 

control spots totaling 6.4 K (Microarray Centre, University Health Network, 

Toronto, Canada). New microarrays were pre-treated for one hour at 65°C 

with pre-hybridization solution (7.5 ml 20× SSC, 0.5 ml 10% SDS, 0.5 ml 10 

mg/ml bovine serum albumin in 50 ml final volume). Pre-hybridization 

solution was washed during 15 s in mili-Q H2O, 2 s in 2-propanol, 2 s in 

milli-Q H2O and dried by centrifugation at 1200 rpm, 10 min. Microarrays 

were treated with hybridization solution (15 μl SSC, 0.6 μl 10% SDS, 6 μl 1 

mg/ml salmon DNA and DNA labelled in 60 μl final volume) at 95°C for 1 

min and at room temperature for 5 min before DNA hybridization. 

Hybridization was performed for 18 h in chamber at 65°C, thus allowing 

hybridization of the S. cerevisiae part of the hybrid genome. A negative 

control of microarray hybridization was done by using DNA from S. 

kudriavzevii IFO 1802 strain vs. S288c. After hybridization microarrays 

were washed at 65°C for 5 min in 2× SSC, 0.1% SDS, at room temperature 
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in 0.1× SSC− 0.1% SDS for 10 min and six times in 0.1× SSC 1 min and 

dried by centrifugation at 1200 rpm, 10 min. 

Experiments were carried out in duplicates and Cy5-dCTP and Cy3-

dCTP dye-swap assays were performed to reduce dye-specific bias. The 

aCGH was performed for all hybrid strains except for W27, W46, SPG16-91 

and SPG441 previously analyzed by Belloch et al., (2009). 

 

2.4 Microarray scanning and data normalization 

Microarray scanning was done by using a GenePix Personal 4100A 

scanner (Axon Instruments/Molecular Devices Corp., California, USA). 

Microarray images and raw data were produced with the GenePix Pro 6.1 

software (Axon Instruments/Molecular Devices Corp., California, USA) and 

background was subtracted by applying the local feature background 

median option. M-A plots (M = Log2 ratios; A = log2 of the product of the 

intensities) were represented to evaluate if ratio data were intensity-

dependent. The normalization process and filtering were done using Acuity 

4.0 (Axon Instruments/Molecular Devices Corp., California, USA). Raw 

hybridization signals from hybrids were normalized with respect to those of 

the reference haploid strain S228c by using the ratio-based option, in which 

average hybridization ratios are adjusted to 1 (and hence, the 

corresponding log2 values to 0). 

Normalized data were filtered by regression correlations 

635/532 > 0.6, signal intensity in both channels more than 350 units, and 

signal to noise (SNR) > 2.5. Features with artifacts or flagged as bad were 

removed from the analysis. Replicates were averaged after filtering. It is 

worth to remark that strong normalization factors were applied to the 

negative control signal in each channel (2 to the red and 0.46 to the green 

one). Raw data and normalized microarray data are available in 

ArrayExpress (Brazma, 2003), under the ref. E-MEXP-3114. 
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2.5 Chromosome structure and recombination sites in the chimerical 

chromosomes 

The log2 of normalized Cy5/Cy3 signal ratio obtained for each ORF 

was represented with respect to its corresponding chromosomal location 

using the completely sequenced reference S. cerevisiae strain S288c. 

These plots, called caryoscopes, were generated using ChARM v.1.1 

(Myers et al., 2004). Highly stringent hybridization conditions (65°C) were 

used to avoid the cross hybridization of S. kudriavzevii DNA present in the 

hybrids. The caryoscope of the negative control experiment showed that 

most S. kudriavzevii genes did not hybridize under these conditions and in 

the case of cross hybridization (red signal) this was due to the very strong 

normalization factors applied in these control, which increased the red 

signal and reduced the green one by factors not applied in the case of the 

experiments performed with DNA from hybrids (see   Figure S1). 

Accordingly, differences in the log2 ratio values observed in the 

caryoscopes revealed variations in the relative copy number of S. 

cerevisiae genes present in the hybrid strains. 

The identification of over- and underrepresented regions was 

confirmed due to the normalization procedure, the hybridization ratios 

derived from aCGH analysis show the relative proportions of each gene 

with respect to the average number of copies in the hybrid, allowing the 

identification of over- and underrepresented regions in the hybrid genome 

by a one-way ANOVA test to determine the different levels of hybridization 

observed in the aCGH analysis. The approximate locations of the 

recombination points in the mosaic chromosomes were determined from 

the up and down jump locations in the ORFs mapping by microarray 

analysis of the hybrid yeast genomes. 
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Finally, by considering the collinearity of S. kudriavzevii and S. 

cerevisiae genomes (Cliften et al., 2003), the S. kudriavzevii gene content 

in the hybrid genomes can be deduced from the presence/absence of the 

chromosome regions coming from each parental species, obtained in a 

previous PCR-RFLP analysis of these hybrids (Peris et al., 2012a). 

 

2.6 Gene Ontology (GO) analysis of S. kudriavzevii genes 

GenMAPP v2.1 software (Doniger et al., 2003) was used to perform 

gene ontology analysis of the S. kudriavzevii fraction in the hybrid 

genomes. Four different GO analyses were carried out using S. 

kudriavzevii genes present in all hybrid strains, including those previously 

characterized (Belloch et al., 2009), these analyses corresponded to: i) the 

complete set of wine and brewing hybrids, except strain AMH, showing the 

lowest S. kudriavzevii gene content, ii) only wine hybrids, except AMH, iii) 

only brewing hybrids and iv) only AMH. In all cases, statistically significant 

GO term enrichments were shown by computing a p-value using the 

hypergeometric distribution (the background set of genes was 6241, the 

number of ORFs measured in microarray experiments). GO terms showing 

significant values (z-score >2 and p-value <0.05) were sorted according to 

their corresponding GO category. 

2.7 Maximum parsimony tree 

A list of minimal number of chromosomal rearrangements, 

chromosomal losses and restriction site changes were used to reconstruct 

the maximum parsimony tree. Data obtained from a previous study (Belloch 

et al., 2009) were again included in this analysis. A binary matrix was 

constructed to codify each particular event (Table S1). Parsimony trees 

were constructed by PHYLIP 3.66 package using the Mix program 

(Felsenstein, 2005), taking chromosomal rearrangements and gain/losses 

as irreversible events (Camin-Sokal model) and the RFLP changes as 
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reversible events (Wagner model). The consensus tree was obtained with 

Consense program using the Majority rule. 

 

3. Results 

3.1 Hybrid genome structures 

Caryoscopes, representing log2 hybridization ratios for each gene 

mapped onto its corresponding chromosome position, of six hybrid strains 

from wine and 6 hybrids from brewing were obtained by array comparative 

genomic hybridization (aCGH) (Figure S2). Due to the normalization 

procedure, the hybridization ratios derived from aCGH analysis show the 

relative proportions of each gene with respect to the average number of 

copies in the hybrid, allowing the identification of over- and 

underrepresented regions in the hybrid genome. However, aCGH analysis 

in combination with ploidy estimates and with information on the 

presence/absence of the chromosome regions coming from each parental 

species, obtained in a previous PCR-RFLP analysis of these hybrids 

(González et al., 2008; Peris et al., 2012a), allowed us to decipher the 

genome composition of hybrids. 

This way, ploidy estimate for these hybrids were obtained by flow 

cytometry. The initial estimates with the propidium iodide method 

suggested that most hybrids were diploids or close to diploidy (relative C-

values of 2.0 to 2.6). However, these ploidy values were not congruent with 

the caryoscope and PCR-RFLP data. The ratio-based normalization of 

hybridization signals adjusts the average signal ratios (problem 

strain/reference strain) to 1, and hence the log2 values to 0. In the analysis 

of hybrids, ploidy estimates were 2n-2.6n, corresponding on average to a 

subgenome coming from each parental species, i.e. for each gene there 

are on average a copy coming from S. cerevisiae and another from S. 

kudriavzevii. Due to the high astringent hybridization conditions used in the 
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aCGH analysis of hybrids, only the S. cerevisiae subgenome is hybridizing, 

as confirmed by the negative control performed with S. kudriavzevii DNA. 

Therefore, in the normalization of hybridization signals, these ratios 

correspond to the adjustment of average signals coming from 1 S. 

cerevisiae gene copy from the hybrid to 1 gene copy form the reference 

haploid S. cerevisiae strain. In the case of an increase of copy numbers in 

specific genes or chromosomal regions, log2 values should be higher than 0 

(1, 2, etc. depending on the number of copies), but in the case of loss of S. 

cerevisiae gene copies in the hybrid, a ratio of 0 (log2 of – ∞) should be 

observed. However, 3–4 levels of log2 values, including negative but not 

infinite, are observed for some hybrids (Figure S2), which made difficult the 

interpretation of the aCGH results and suggested that ploidy estimates with 

propidium iodide were wrong. 

Therefore, new ploidy estimates of hybrids were obtained by using 

SYTOX Green as the DNA-binding dye, because Haase and Reed (2002) 

demonstrated that improves linearity between DNA content and 

fluorescence, and decreases peak drift associated with changes in dye 

concentration, growth conditions or cell size. In this new ploidy analysis, 

Swiss wine hybrids analyzed in our previous study (Belloch et al., 2009) 

were also included. 

The statistical analysis of the new estimates showed two significantly 

different groups of hybrids according to ploidy levels: most hybrids, 

including the Swiss wine strains, appear as allotriploids and hybrids AMH 

and PB7 as allotetraploid yeasts (Table 2). The new ploidy estimates are in 

agreement with the different levels of hybridization observed in the aCGH 

analyses and also with the previous PCR-RFLP analysis of hybrids (Peris 

et al., 2012a). 
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Table 2. DNA contents of natural hybrids, estimated by flow cytometry 
using the SYTOX green method with respect to the reference haploid and 
diploid S. cerevisiae strains, S288c and FY 1679, respectively. Results are 
the mean value of three replicates. Means with the same letters do not 
differ significantly by one way ANOVA and Tukey’s HSD tests (p < 0.05). 

Strain 

DNA content relative to 

haploid strain S288c 

FY1679 2.00a ± 0.00 

HA 1841 3.01b ± 0.08 

HA 1842 3.07b ± 0.07 

VIN7 3.04b ± 0.08 

SOY3 2.89b ± 0.09 

CECT 1388 3.25b ± 0.09 

CECT 1990 2.86b ± 0.07 

CECT 11002 3.02b ± 0.14 

CECT 11003 3.21b ± 0.09 

CECT 11004 3.13b ± 0.07 

CECT 11011 2.99b ± 0.05 

W27 3.18b ± 0.08 

W46 3.20b ± 0.07 

441 3.10b ± 0.09 

SPG16-91 3.14b ± 0.08 

PB7 3.96c ± 0.08 

AMH 3.85c ± 0.18 

 

According to this combined analysis, 11 different patterns were 

differentiated in the 12 hybrids under analysis. As a general rule, different 

degrees of loss of S. kudriavzevii gene content in most hybrids were 

observed. Only the allotetraploid hybrid PB7 maintains a complete diploid 

set of chromosomes from each parental species, with the exception of 

small segment located in the left arm of chromosome XI of the S. 
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kudriavzevii subgenome. On the contrary, the largest reduction of the S. 

kudriavzevii gene content is observed in the partial allotetraploid hybrid 

AMH, which lost 72% of the S. kudriavzevii genes. The rest of hybrids, all of 

them allotriploid, showed intermediate situations derived from ancestors 

containing a diploid set of S. cerevisiae chromosomes and an haploid set of 

S. kudriavzevii chromosomes. 

These combined analyses also allowed us to detect different types of 

chromosome rearrangements present in hybrids: i) the complete loss of a 

S. kudriavzevii parental chromosome compensated by an extra copy of the 

S. cerevisiae chromosome (chr. II,,III, V, X, XI, XII, XIV and XVI in AMH; 

chr. V in HA1841; chr. IV, IX and XII in CECT 11002; chr. I in CECT 

11011); ii) aneuploidies (chr. I, VI and VIII in AMH; chr. IX in CECT 1388; 

chr. XIV in CECT 1990; chr. IX in CECT 11002; chr. III and V in CECT 

11003 and CECT 11004; chr. III in VIN7), and iii) the presence of chimerical 

chromosomes (chr. IV, VII and XV in AMH; chr. XI in PB7; chr. IV in SOY3; 

chr. VII in VIN7; chr. VII and XIV in CECT 1388; chr. IV and XVI CECT 

1990; chr. II, V, VII, X, XI, XIII and XIV in CECT 11002; chr. IV, V, VII, IX, 

XIV and XV in CECT 11003 and CECT 11004; and chr. VII in CECT 

11011); (see Figure 1). 
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Figure 1 Genome composition of hybrids deduced from aCGH analysis, ploidy estimates and a 
previous analysis of absence/presence of parental genes by RFLP analysis (González et al., 2008; 
Peris et al., 2012a). White and black bars are used to represent the S. cerevisiae and S. kudriavzevii 
genome fractions, respectively. Chromosomes showing black and white regions correspond to 
chimerical chromosomes. The percentages of S. kudriavzevii genes maintained in each chromosome 
are shown for each chormosome. Strains names are depicted on a black or a gray background 
corresponding to wine or brewing strains, respectively. Asterisks in AMH Chr. III and VII indicate regions 
where non-reciprocal translocations or segmental duplications can be present 

 

These chimerical chromosomes are characterized by over- and 

underrepresented regions evidenced as up and down jumps in the log2 ratio 

in the caryoscopes, which is indicative of probable non-reciprocal 

recombination events between homeologous chromosomes (homologous 

from different species) (Table 3). The recombination sites in the chimerical 

chromosomes were mapped according to the genome browser from 

Saccharomyces genome database (SGD). Using a windows size of 15–20 

Kb (four genes in the left and right of the most plausible recombination 

point) we found Ty elements, ARS sequences, clusters of homologous 

regions (CHRs) and tRNA elements that may have facilitated the 

recombination of the two homologous parental chromosomes (Table 3). In 

several cases, a common recombination site was observed in 

chromosomes belonging to two or more hybrids, indicative of common 

ancestry. This is the case of chromosomes IV, V, IX, XIV and XV in brewing 

hybrids CECT 11003 and 11004; chromosome XIV in CECT 1388 and 

11002; chromosome XV in CECT 11003, 11004 and AMH and 

chromosome VII in hybrids CECT 11003, CECT 11004, CECT 11002, 

CECT 11011 and CECT 1388 (Table 3 and Figure S2). 
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Table 3. List of chimerical chromosome (CC) types found in the different S. cerevisiae × S. kudriavzevii hybrids. 
Chr., chromosome number; CHR, cluster of homology region. Strain names in italics correspond to wine hybrids 
and in bold to brewing hybrids. Some recombination sites were described elsewhere (Belloch et al., 2009), as 
indicated 

 

Chr. CC type Strains Breakpoint mapping 
interval 

Putative recombining sequences 

II type 1 CECT 11002 YBL018C-YBL011W Ty1 LTR, Ty3 LTR, tRNA-Ile, tRNA-Gly, ARS 

IV type 1 W27, W46, 441, SPG16-91, CECT 11003, 
CECT 11004 

YDL095W PMT1 (Belloch et al, 2009) 

 type 2 AMH, SOY3 YDL185W-YDL179W CHR 12 

 type 3 CECT 1990 YDL185W-YDL179W CHR 12 

V type 1 W27, W46, 441, SPG16-91, CECT 11003, 
CECT 11004 

YER006W  NUG1 (Belloch et al, 2009) 

 type 2 CECT 11002 YEL018C-YEL011W Ty1 LTR, Ty4 LTR, tRNA-Gln 

VII type 1 W46, CECT 11003, CECT 11004, CECT 
11002, CECT 11011, CECT 1388 

YGR249W-YGR244C ARS, CHR 29 

 type 2 AMH YGR062C-YGR058W CHR 30 

 type 3 VIN7 YGR106C-YGR112C tRNA-Leu, tRNA-Lys, Ty1 LTR, tRNA-Cys, Ty3 
LTR, ARS 

IX type 1 W27, W46, 441, SPG16-91, CECT 11003, 
CECT 11004 

YIL053W RHR2-RPL34B (Belloch et al, 2009) 

X type 1 CECT 11002 YJL039C-YJL036C tRNA-Asp, tRNA-Arg, Ty1 LTR, ARS, tRNA-Val 

XI type 1 CECT 11002 YKR025C-YKR028W Ty1 LTR 

 type 2 PB7 YKL203C-YKL204W ARS 

XIII type 1 CECT 11002 YML012C-YML009W-B CEN13, ARS 

XIV type 1 W27, W46, 441, SPG16-91, CECT 11003, 
CECT 11004 

YNR001C CEN14 (Belloch et al, 2009) 

 type 2 CECT 1388, CECT 11002 YNR029C-YNR032W ARS 

XV type 1 W27, W46, 441, SPG16-91, CECT 11003, 
CECT 11004, AMH 

YOL053W THI20-PSH1 (Belloch et al, 2009) 

XVI type 1 CECT 1990 YPR007C-YPR011C Ty1LTR, tRNA-Gly, tRNA-Lys,  

 726 
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3.2 S. cerevisiae gene depletions in hybrids  

Although hybrids maintain in their genomes at least a complete set of 

S. cerevisiae chromosomes, aCGH data from all hybrids analyzed in this 

work, as well as from those previously analyzed (Belloch et al., 2009), 

can be used to determine the common fraction of S. cerevisiae genes 

showing gene copy variations in hybrids compared to the reference strain 

S288c. A common set of genes showing the same copy number variations 

in hybrids may be indicative of common origins. 

The analysis of the S. cerevisiae gene content from all hybrids 

revealed the presence of less copies of a common set of genes. Among 

them, the most interesting were CUP1, ASP3, and ENA gene families, as 

well as Ty elements and 13 ORFs of unknown function (Table S2). In 

general, copy variations in the S. cerevisiae genome fraction of the hybrids 

were found in genes located in subtelomeric regions (Figure S2), although 

in some cases involve genes located in intrachromosomal regions, such as 

CUP1. 

Short segment amplifications were also detected in the aCGH 

analysis. This was the case of hybrid AMH that showed three short region 

amplifications in chr. III, VII and XIII. The higher hybridization signals of 

genes located in the two first regions could be postulated as indicative of 

the presence of chimerical chromosomes, however according to the 

previous PCR-RFLP analysis S. kudriavzevii genes were absent. Other 

amplifications of S. cerevisiae segments located in chromosome XVI are 

observed in hybrids CECT 1388 (between genes YPL159C and YPL126W) 

and CECT 11002 (between YPL141C and YPL126W). Finally, a deleted 

region was found in one of the two copies of S. cerevisiae chromosome XIV 

from strain CECT 1990 (between loci YNR013C and YNR031C) (Figure 

S2). 

 



OBJECTIVE 2 -Chapter 1- 

119 

3.3. S. kudriavzevii gene content and Gene Ontology (GO) analyses 

Data obtained from all hybrids analyzed in this work as well as from 

those previously analyzed (Belloch et al., 2009) were also used to 

evaluate the presence of common S. kudriavzevii genes (Table S3). These 

common set of genes could be interesting to unveil potentially genes of 

adaptive value in hybrids. 

As a general rule, most hybrids maintained around 90% of the S. 

kudriavzevii genome, with the exception of the brewing strain CECT 11002 

and the wine strain AMH which only maintain 56.9% and 30.5% 

respectively. 

To determine if a group of S. kudriavzevii genes associated particular 

cellular components, molecular functions or biological processes may have 

been maintained in all hybrids due to potential adaptive value, four different 

gene ontology (GO) term enrichment analyses were performed (Table S4). 

The first analysis included all wine and brewing hybrids. Due to the low 

representation of the S. kudriavzevii genome fraction in AMH, this strain 

was removed from this first analysis. Gene ontology analysis was also 

separately performed according to the source of isolation of hybrids, wine 

and brewing fermentations. GO terms showing significant values were 

sorted according to their corresponding GO categories (Table S4). Table 4 

shows only those significantly represented GO terms of putative importance 

for wine or brewing fermentations. 

Significantly represented GO terms common to both wine and 

brewing hybrids mainly corresponded to genes related to fatty acid 

metabolism (particularly transport), sulfur metabolism and the NAD+ 

salvage pathway. Genes associated with amino acid metabolism (N-linked 

glycosylation and glutamate metabolism) were also represented (Table 4). 
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Table 4. Summary of the most relevant metabolic pathways and biological processes obtained after Gene 
Ontology analysis using the S. kudriavzevii genes retained in each group of hybrids. Due to the massive S. 
kudriavzevii gene losses in AMH, this strain was not included in any grouping, and hence, analyzed alone. 
 

 
 

 

Group of hybrids GO ID GO Name Npresent/Nmeasured % p-value 

WINE 6487 Protein amino acid N-linked glycosylation 36/42 85.7 0.013 

 6839 Mitochondrial transport 10/10 100 0.033 

  Ergosterol Biosynthesis 17/19 89.5 0.049 

BREWING 6487 Protein amino acid N-linked glycosylation 28/42 66.7 0.017 

  Fatty acid elongation saturated 4/4 100 0.039 

  Glycine serine and threonine metabolism 27/42 64.3 0.03 

  Arginine_and_proline_metabolism 16/23 69.6 0.049 

  Sulfur_Degradation 4/4 100 0.048 

ALL 6487 Protein amino acid N-linked glycosylation 25/42 59.5 0.003 

 15908 Fatty acid transport 4/4 100 0.025 

  Glutamate metabolism 15/27 55.6 0.046 

  Sulfur metabolism  8/11 72.7 0.021 

  NAD salvage pathway 5/6 83.3 0.027 

  Sulfate assimilation pathway II 5/6 83.3 0.019 

AMH 6972 Hyperosmotic response 5/7 71.4 0.036 

 9331 Glycerol 3 phosphate dehydrogenase complex 3/3 100 0.033 

  Histidine biosynthesis 5/7 71.4 0.039 

  Fatty acid metabolism 11/17 64.7 0.010 

 726 
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GO terms related to amino acid N-linked glycosilation were also 

significantly present in hybrids from wine and brewing analyzed 

independently. Moreover, GO terms associated with ergosterol 

biosynthesis and mitochondrial transport were also significantly detected in 

wine hybrids; while those related to metabolism of amino acids such as 

glycine, threonine, arginine and proline, sulfur metabolism, as well as fatty 

acid elongation were significant present in brewing strains (Table 4). 

Finally, an independent analysis of significant GO terms for AMH hybrid 

revealed the presence of genes involved in hyperosmotic response, 

glycerol-3-phosphate dehydrogenase complex, histidine biosynthesis and 

fatty acid metabolism (Table 4). 

 

3.4 Phylogenetic relationships among hybrids 

A maximum parsimony tree was constructed based in 

presence/absence of chromosomes and chromosome regions data 

obtained for each particular genetic event in all analyzed hybrids. The tree 

topology revealed the presence of two main groups containing most 

allotriploid hybrids, particularly those from wine (Figure 2). 

Group I was constituted by Swiss wine strains W46, 441, W27 and 

SPG 16-91 as well as the brewing strains CECT 11003 and CECT 11004. 

This group is supported by the presence of five shared chimerical 

chromosomes as well as the CYC3 K2 allele (González et al., 2008). 

Group II includes the remaining allotriploid wine hybrids HA1841, HA 

1842, VIN7 and SOY3. This group is only supported by the common 

presence of S. kudriavzevii K2 alleles for genes EUG1 and APM3 (Peris et 

al., 2012a), and the possession of a higher fraction of S. kudriavzevii 

genome. 
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Figure 2 Maximum parsimony tree indicating the minimum number of chromosomal 
rearrangements and restriction site changes (presence/absence matrix is given in Table S1) 
necessary to connect the different genotypes exhibited by the S. cerevisiae × S. kudriavzevii 
hybrids to a putative hybrid ancestor. This putative ancestor is not necessarily the same for all 
lineages, it just corresponds to an ancestral state containing the complete S. cerevisiae and S. 
kudriavzevii genomes, but it could be generated several times from different parental strains, as 
discussed in the main text. Genotypes are represented by white and gray circles for wine and brewing 
hybrids, respectively. Rearrangements are indicated by arrows giving the direction of the irreversible 
change and were treated under the Camin-Sokal criterion. Rearrangements were assumed to be 
caused by nonreciprocal recombination (rec) among homoeologous chromosomes (roman numbers) 
and whole chromosome losses (loss) of one of the parental chromosomes (kud, S. kudriavzevii). 
Restriction site changes can be reversible (gains/losses represented by diamonds) and were treated 
under the Wagner criterion. The gene region and the restriction patterns involved are also indicated (for 
a description see references González et al., 2008 and Peris et al., 2012a) 

 

The rest of the allotriploid hybrids, isolated from brewing, and the 

wine allotetraploid PB7 and AMH strains, appeared in separated branches 

with strain-specific chromosomal rearrangements. The only exception is the 

shared loss of S. kudriavzevii chr. XII between the partial allotetraploid 

AMH and the allotriploid CECT 11002, which can be considered a 

convergent event. PB7 also shared similar restriction alleles with Group II 

but this strain is also allotetraploid (Table 2). 

This most parsimonious tree shows several convergent events, such 

as chromosomal losses, chromosomal rearrangements and restriction site 

changes (evidencing different allelic variants). S. kudriavzevii chr. I seems 

to have been lost independently in hybrids SPG 441, CECT 11011, and 

AMH. In a similar way, the lack of chr. V in hybrids HA 1841 and AMH, and 

chromosome XIV in CECT 1990 and AMH seem to be independent events 

according to this parsimony analysis. 

Convergent events involving recombinant chromosomes were also 

found. This is the case of the type 2 recombination in chr. IV (shared by 

AMH and SOY3), type 1 recombination in chr. VII (shared by CECT 11002, 

CECT 11011, 1388, W46, CECT 11003 and CECT 11004), type 2 

recombination in chr. XIV (CECT 1388 and CECT 11002) and the 

recombinant chr. XV (AMH and Group I hybrids). This could be indicative of 

the presence of recombination hotspots in the Saccharomyces genomes. 
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4. Discussion 

4.1 The genome diversity in S. cerevisiae x S. kudriavzevii hybrids 

The genome composition of 11 new wine and brewing S. cerevisiae x 

S. kudriavzevii hybrid strains was described in this work by means of aCGH 

analysis. Additionally, a comparison between them and other four wine 

hybrids already described by (Belloch et al., 2009) was also performed. 

Individual and differential chromosomal composition patterns were found 

for each particular strain, except for brewing strains CECT 11003 and 

CECT 11004 which appear closely related to the previously described 

Swiss wine hybrids (Belloch et al., 2009). The close relationships between 

wine hybrid strains from Switzerland and the brewing strains CECT 11003 

and 11004 was already observed in a previous study based on PCR-RFLP 

analysis of hybrids as well as in the phylogenetic reconstruction based on 

COX2 sequences (Peris et al., 2012a). In that work, a recombination in 

chromosome XV was proposed as the unique difference between strains 

11003 and 11004; however, aCGH analysis carried out in this study 

demonstrated that this recombination is present in both strains (Figure 2). 

These Swiss wine hybrids were previously described as diploids (Belloch et 

al., 2009) on the basis of ploidy estimations with propidium iodide. 

However, in the reanalysis of ploidy with SYTOX Green, they also resulted 

to be allotriploids as CECT 11003 and CECT 11004. 

Flow cytometry results with SYTOX Green were in accordance with 

genome structure deduced from aCGH analysis carried out in this work and 

with the presence/absence of parental genes deduced from a previous 

PCR-RFLP analysis of hybrids (Peris et al., 2012a). Most S. cerevisiae × S. 

kudriavzevii hybrid strains were allotriploids, with the exception of AMH and 

PB7 which were allotetraploids. Some aneuploidies were also found in 

several hybrids. Aneuploidies seem to be common in Saccharomyces 
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hybrids since this phenomenon have also been observed in S. cerevisiae × 

S. bayanus hybrids (Dunn and Sherlock, 2008; Nakao et al., 2009). The 

role of aneuploidies in the hybrid genomes is not clear, but their presence 

in S. cerevisiae affected both the transcriptome and proteome, generating 

significant phenotypic variation and bringing fitness gains under diverse 

conditions (Pavelka et al., 2010). 

Recently, the hybrid genome of VIN7, one the hybrids analyzed in the 

present study, has completely been sequenced (Borneman et al., 2012), 

concluding that this strain is an almost perfect allotriploid hybrid that 

contains a heterozygous diploid S. cerevisiae genome and a haploid S. 

kudriavzevii genome. The genome constitution of VIN7 deduced from the 

sequencing analysis is basically similar to the one inferred by aCGH in the 

present study, but there are some differences. The genome sequence 

analysis detected a homeologous recombination generating a chimerical 

chromosome VII, a genomic substitution of a region of 15 kb, of S. 

kudriavzevii genomic DNA from chromosome IV by the orthologous 

sequences from S. cerevisiae and a genomic substitution of a 13 kb region 

of S. cerevisiae genomic DNA from chromosome IV by S. kudriavzevii 

sequences combined with homeologous recombination between the S. 

kudriavzevii and S. cerevisiae alleles. The first rearrangement involving a 

chimerical chromosome VII was clearly detected in the aCGH analysis, but 

not the two genomic substitutions. Both genomic substitution involve short 

segmental replacements of a few genes (7 and 8), and the second an 

almost reciprocal recombination between homeologous chromosomes that 

cannot be observed by aCGH analysis. However, the presence/absence 

analysis of parental genes in hybrids (Peris et al., 2012a) detected the loss 

of S. kudriavzevii chromosome III in our VIN7. As an ongoing project, our 

group is also sequencing the whole genome of several S. cerevisae × S. 

kudriavzevii hybrids, including the commercial VIN7 yeast. We checked in 
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the preliminary sequencing of our VIN7 strain for the presence of S. 

kudriavzevii chromosome III sequences and the result was negative, 

confirming our aCGH results and indicating that our VIN7 strain is different. 

These differences may be due to the fact that our VIN7 strain was isolated 

from a commercial dry yeast sample provided by Anchor Yeast but 

Borneman et al., (2012) sequenced the original mother culture of VIN7, as 

they mention in their acknowledgements. Therefore, the continuous 

propagation of this yeast in molasses under aerobic conditions to obtain 

commercial dry yeasts may have promoted a new chromosomal 

rearrangement, the loss of the S. kudriavzevii chromosome III. 

Taking into consideration the ploidy data as well the fact that most 

hybrids possess either trisomic (2 S. cerevisiae chromosomes: 1 S. 

kudriavzevii chromosome) or tetrasomic chromosomes (2 S. cerevisiae 

chromosomes: 2 S.kudriavzevii chromosomes), two scenarios on the 

hybridization process are plausible. In the case of allotriploid hybrids, the 

simplest explanations for their origins are hybridization events by rare-

mating between a diploid cell of S. cerevisiae and a haploid cell or spore of 

S. kudriavzevii. This is also supported by the genome sequencing of VIN7, 

one of the allotriploid strains, which resulted to contain heterozygous diploid 

genome from S. cerevisiae and a haploid genome from S. kudriavzevii 

(Borneman et al., 2012). 

On the other hand, diploid and diploid cell rare-mating between S. 

cerevisiae and S. kudriavzevii should be invoked to explain the origin of 

allotetraploid hybrids. In the case of PB7 it was observed high spore 

viability (95%) due to the presence of the two chromosomes copies of each 

parental strain. 

Rare-mating between diploid cells was already proposed as a 

probable mechanism for hybrids generation (Sipiczki, 2008; Belloch et al., 

2009). However, haploid cell or spore mating between S. cerevisiae and S. 
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kudriavzevii, followed by a whole genome duplications due to 

endoreplication or chromosome duplications due to non-disjunction, and 

subsequent chromosomal rearrangements, although less plausible, cannot 

totally be discarded. 

 

4.2 Characterization of the S. kudriavzevii subgenome from hybrids 

According to Sipiczki (2008), genomes from each parental species 

interact in the new hybrid genome. This interaction can be observed in the 

loss of large parts of one or both genomes as well as in the presence of 

chimerical chromosomes that make the hybrid genome as stable as 

possible to future genetic modifications. Additionally, adaptive evolution of 

these hybrid genomes under fermentative environmental conditions could 

make hybrid genome to conserve the chromosomes, or part of them, which 

grant a selective advantage (Barrio et al., 2006). According to the results 

obtained in this work as well as in our previous studies (González et al., 

2008; Belloch et al., 2009; Peris et al., 2012a), S. cerevisiae × S. 

kudriavzevii hybrids seem to have the common trend to lose the S. 

kudriavevii parental chromosomes maintaining the S. cerevisiae ones. The 

reduction of the non-S. cerevisiae genome observed in both wine and 

brewing S. cerevisiae × S. kudriavzevii hybrids was already reported for 

artificial S. cerevisiae × S. uvarum hybrids genetically stabilized by 

successive sporulation steps (Antunovics et al., 2005). In contrast, S. 

pastorianus (S. cerevisiae × S. eubayanus hybrids) Group 1 strains 

obtained from different brewing processes and studied by aCGH analysis, 

showed a trend to lose the S. cerevisiae genome fraction (Dunn and 

Sherlock, 2008). The cause of the predominance of one or the other 

parental genome in the hybrids remains unclear yet. However, selective 

pressures acting under harsh environmental conditions and cytonuclear 

interactions have been suggested as the main factors affecting the genome 
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conformation of hybrids. In S. cerevisiae × S. eubayanus lager strains, 

supposed to be naturally selected after years of use in brewing, the 

predominance of a S. eubayanus-like genome has been related to the 

maintenance of the S. eubayanus mitochondria (Dunn and Sherlock, 2008; 

Rainieri et al., 2008). However, artificial hybrids constructed from the same 

two parental species, but without selective pressures, inherited their 

mitochondrial genome from either one or the other parental species 

randomly (Rainieri et al., 2008; Solieri et al., 2008). The conservation of the 

mitochondrial genome from the parental species most represented in the 

nuclear genome was also observed in the stable artificial S. cerevisiae × S. 

uvarum hybrids, which maintained the mitochondrial genome of the S. 

cerevisiae parental strain (Antunovics et al., 2005). All S. cerevisiae × S. 

kudriavzevii natural hybrids analyzed in this work, except for AMH, 

maintained a S. kudriavzevii mitochondrial genome (González et al., 2008; 

Peris et al., 2012a). However, S. cerevisiae × S. kudriavzevii artificial 

hybrids, randomly inherited the S. cerevisiae or the S. kudriavzevii 

mitochondrial DNA (Pérez-Través et al. personal communication). This 

discrepancy between the mtDNA inheritance in artificial vs. natural hybrids 

has been associated with the result of an unwitting human-driven selection 

of naturally generated hybrid strains for fermentations at low temperature 

(Rainieri et al., 2008). A common origin for all hybrids could be another 

possible explanation, but the present analysis of the genome constitutions 

in hybrids suggests diverse origins. 

Interestingly, the hybrid AMH, which maintained the S. cerevisiae 

mitochondria, has lost a 69% of the nuclear genes of S. kudriavzevii coding 

for proteins with functions associated to the mitochondria; while the rest of 

the analyzed hybrids with S. kudriavzevii mitochondria have lost only 

0.67%–42.48% of the S. kudriavzevii genes related to mitochondrial 

functions. Due to the fact that a number of mitochondrial proteins encoded 
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in the nuclear genome play an important role in the mtDNA replication and 

transmission, both the type of mitochondrial DNAs and the functions of the 

mitochondria in a hybrid strain are clearly under the control of the nuclear 

genome (Vero et al., 2003). One of the most interesting evidence about 

nuclear-mitochondrial genome interactions were described by Lee et al., 

(Lee et al., 2008), who demonstrated that the presence of the S. bayanus 

nuclear gene AEP2 together with the S. cerevisiae mitochondrial gene OLI1 

cause a cytonuclear incompatibility. More recently, Chou et al., (2010) 

identified other two genes, MRS1 and AIM22, associated with cytonuclear 

incompatibility among S. cerevisiae, S. paradoxus and S. bayanus. A 

similar behavior involving the same or other different genes in S. cerevisiae 

× S. kudriavzevii hybrids was not yet demonstrated. 

aCGH and GO analysis carried out with those S. kudriavzevii genes 

conserved in all S. cerevisiae × S. kudriavzevii hybrids with S. kudriavzevii 

mitochondria (excluding AMH) evidenced a significant enrichment in 

nuclear genes related to mitochondrial function (a total of 328 genes) 

supporting the hypothesis of a necessary interaction between the S. 

kudriavzevii nuclear-encoded proteins and the mitochondrial genomes or 

their products. Taking into consideration that a total of 751 proteins 

encoded by the nuclear genome are associated with the mitochondrial 

function in S. cerevisiae (Sickmann et al., 2003), and considering a similar 

number in S. kudriavzevii, we can assume that the remaining genes up to 

751 might be non-essential for the maintenance of the S. kudriavzevii 

mitochondria in hybrids. In particular the S. kudriavzevii gene AEP2 

reported by Lee et al., (2008) was not common to all analyzed hybrids, 

indicating that different incompatible nuclear-mitochondrial pair of genes 

could be associated with each particular pair of Saccharomyces parental 

species involved in hybrid generation. 
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GO analysis was also very informative with regards to the 

conservation in hybrids of particular groups of genes, inherited from each 

parental species that may be potentially related to adaptive advantage for 

fermentation at low temperatures. A significant overrepresentation of S. 

kudriavzevii genes associated with the physiological adaptation of yeasts to 

grow at low temperatures, such as fatty acid transport and N-glycosilation 

of proteins in all hybrids, and ergosterol biosynthesis in the case of wine 

hybrids (Higgins et al., 2003; Beltrán et al., 2006; Aguilera et al., 2007) was 

observed (Table 4). Changes in membrane fluidity are the primary signal 

triggering the cold shock response (Aguilera et al., 2007). This response 

involves certain groups of genes: members of the DAN/TIR family of cell-

wall mannoproteins, genes coding for temperature inducible protein (TIP1) 

and seripauperins (PAU), genes related to ergosterol and phospholipid 

synthesis (ERG, INO1 and OPI3) and the gene coding for the only known 

desaturase in S. cerevisiae (OLE1), among others (Aguilera et al., 2007). 

These sets of genes are present in the S. kudriavzevii subgenome of all 

hybrids analyzed in this work, with some exceptions mainly involving AMH 

(Table 4 and Table S4). 

Our results are in agreement with results about stress tolerance, 

including adaptation to low temperatures, previously obtained in our 

laboratory using some of the S. cerevisiae × S. kudriavzevii hybrids 

analyzed in this work (Belloch et al., 2008; Arroyo-López et al., 2009). 

Physiological implications of possessing S. kudriavzevii genes in those 

particular functions or metabolic pathways must be elucidated in future 

studies involving both transcriptomic and metabolomic analyses. 

 

4.3 Wine yeast signatures in the S. cerevisiae subgenome from hybrids 

An interesting result obtained from aCGH analysis was the detection 

of a common set of S. cerevisiae genes that are in lower copies in the 
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genome of all S. cerevisiae × S. kudriavzevii hybrids (Table S2). This 

finding might indicate that the S. cerevisiae parental strains involved in the 

different hybridization events shared a similar genetic background and were 

closely related yeasts. 

Using a similar methodology, a trend to loss some particular set of 

genes in S. cerevisiae wine strains, with regards to strains belonging to the 

same species but isolated from different sources, was previously 

demonstrated (Dunn et al., 2005; Carreto et al., 2008). Dunn et al., (2005) 

proposed the term “commercial wine yeast signature” to refer to this set of 

genes. Most of these genes that are frequently depleted in wine strains are 

also depleted in the S. cerevisiae fraction of the hybrid genomes of all 

hybrids. This finding supports the hypothesis that these hybrids have likely 

been generated from wine S. cerevisiae parental strains. 

 

4.4 On the origin of hybrids 

The maximum parsimony analysis of the relationships between the 

wine and beer hybrids are congruent with diverse origins for the strains 

according to chromosomal rearrangement differences, mainly due to the 

presence of chimerical chromosomes, and S. kudriavzevii chromosome 

losses, in some cases compensated by the presence of an extra copy of 

the homeologous S. cerevisiae chromosome (Figure 2). 

While the brewing strains seem to represent different and divergent 

lines (except strains CECT11003 and 11004), most wine hybrids clustered 

in two main groups of strains sharing common events, with the exception of 

AMH and PB7 that were independently originated. Brewing strains CECT 

11003 and 11004 shared the same genome than wine hybrid W46 probably 

evidencing that either an original strain with this common genome structure 

was introduced in both fermentative processes, or colonize one 

fermentative process from the other. The parsimony tree obtained in this 
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study is congruent with previous phylogenetic reconstructions of hybrids 

based on COX2 sequences (Peris et al., 2012a). 

The occurrence of several chimerical chromosomes sharing similar—

if not the same—recombination points, common to some S. cerevisiae × S. 

kudriavzevii hybrids located in different branches of the parsimony tree, 

indicates the presence of recombination hot spots. Recombination between 

homeologous chromosomes are probably mediated by highly recombining 

regions located in the recombination sites, such as ARS sequences (Di 

Rienzi et al., 2009), Ty elements (Kim et al., 1998), Y’ elements, rRNA 

regions and conserved coding genes (Belloch et al., 2009; Pérez-Ortín et 

al., 2002). When recombination is initiated in a region with high homology, 

the mismatch repair system (MMR) stimulates the loss of one partner of the 

recombination event in the hybrids and the fixation of the other, thus 

generating a chimerical recombinant chromosome. With the exception of 

the almost perfect allotetraploid PB7, hybrids have low spore viability (<1%) 

indicating that they are maintained by mitotic budding. Therefore, mitotic 

homeologous recombination, although much less frequent than meiotic, 

may also explain the generation of chimerical chromosomes. 

The genome composition of hybrids reveals that the ancestral hybrid 

strains were allotriploid or allotetraploid, resulting from rare mating between 

diploid S. cerevisiae and haploid or diploid S. kudriavzevii (Barros Lopes et 

al., 2002; Borneman et al., 2012). The presence of triple hybrids also 

supports this hypothesis (González et al., 2006; Peris et al., 2012a). Finally, 

the presence of S. kudriavzevii alleles shared between most hybrids and 

the European S. kudriavzevii population (Lopes et al., 2010), as well as the 

presence of the gene GAL4 from S. kudriavzevii (González et al., 2008; 

Peris et al., 2012a), which is a functional gene in the European populations 

of S. kudriavzevii but a pseudogene in the Japanese strains (Hittinger et al., 
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2010), indicate that these hybrids were originated from a European S. 

kudriavzevii parental strain. 

 

5. Conclusions 

Hybridization between S. cerevisiae and S. kudriavzevii have 

occurred several times by rare-mating between different wine S. cerevisiae 

diploid and European S. kudriavzevii haploid or diploid progenitors. After 

hybridization, the hybrid genome suffered random genomic rearrangements 

mediated by crossing-over between homologous chromosomes and non-

disjunction, promoting the loss of variable fractions of the parental 

subgenomes. Both the restrictions imposed by interactions between both 

parental genomes as well as between nuclear and mitochondrial genomes, 

together with the selective environmental conditions prevailing during 

fermentation modulated the final composition of the hybrid genomes, 

characterized by the maintaining of the S. cerevisiae genome and the 

progressive reduction of the S. kudriavzevii contribution. 
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Abstract 

In recent years, interspecific hybridization and introgression are 

increasingly recognized as significant events in the evolution of 

Saccharomyces yeasts. These mechanisms have probably been involved in 

the origin of novel yeast genotypes and phenotypes, which in due course were 

to colonize and predominate in the new fermentative environments created by 

human manipulation. The particular conditions in which hybrids arose are still 

unknown, as well as the number of possible hybridization events that 

generated the whole set of natural hybrids described in the literature during 

recent years. 

In this study, we could infer at least six different hybridization events that 

originated a set of 26 S. cerevisiae x S. kudriavzevii hybrids isolated from both 

fermentative and non-fermentative environments. Different wine S. cerevisiae 

strains and European S. kudriavzevii strains were probably involved in the 

hybridization events according to gene sequence information, as well as from 

previous data on their genome composition and ploidy. 

Finally, we postulate that these hybrids may have originated after the 

introduction of vine growing and winemaking practices by the Romans to the 

present Northern vine-growing limits and spread during the expansion of 

improved viticulture and enology practices occurred during the Late Middle 

Ages. 

 

 

Keywords: Saccharomyces, interspecific hybridization, S. cerevisiae, S. 

kudriavzevii, phylogenetic supernetworks, multigene sequence analysis, 

hybridization origins.  
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1. Introduction 

The first evidence of production of fermented beverages dates back to 

7000 BC in the Neolithic village of Jiahu in China (McGovern et al.,, 2004), but 

the earliest evidence of winemaking is traced to Iran at the Hajji Firuz Tepe 

site (5400-5000 BC) (This et al.,, 2006). From these origins in the slopes of 

northern Zagros, eastern Taurus and Caucasus Mountains, vineyards and 

grape wine production gradually spread to adjacent regions of the Fertile 

Crescent such as Mesopotamia and the Jordan Valley, and beyond, to the 

Eastern Mediterranean regions of Egypt, Phoenicia, Crete and Greece (5000 

BC). Colonization by the Phoenicians, Carthaginians and Greek spread 

winemaking far across the Western Mediterranean regions of Southern 

Europe and Northern Africa. By 500 BC, wine was being produced in Italy, 

Sicily, Southern France, the Iberian Peninsula and the Maghreb. Vine 

cultivation was later extended by the Romans to the Northern limits of their 

empire (100 BC-100 AD). The next important expansion of winemaking was 

during the European colonization of America (16th century), South Africa (17th 

century), and Australia and New Zealand (18-19th centuries) (Pretorius, 2000; 

McGovern, 2010).  

On the other hand, beer elaboration is first recorded in the 

Mesopotamian region and in Egypt. Brewing diverged into two processes 

mainly differentiated by the prevailing fermentation temperature: ale, acquired 

from the Middle East by Germanic and Celtic tribes around the 1st century AD, 

and lager, which appeared during the Late Middle Ages in Europe (Corran, 

1975; Sicard & Legras, 2011). 

A fortuitous domestication that acted on the S. cerevisiae populations is 

associated with wine and beer elaboration: it occurred as a consequence of 

the expansion of these fermentation processes. The first genetic diversity 

characterization of S. cerevisiae strains, isolated from different sources, 

showed clear differences between wild and domesticated strains (Fay & 
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Benavides, 2005). Another study (Arias, 2008) evaluated the genetic variability 

of ~250 S. cerevisiae strains based on four nuclear gene sequences, and 

revealed for some genes the presence of two groups of alleles that 

differentiated wine strains from those isolated from other, non-wine, sources. 

Liti et al., (2009) performed a genetic-population analysis based on whole 

genome sequences of 36 S. cerevisiae strains and reported the presence of 

five ‘clean’ (pure) lineages and different ‘mosaic’ (recombinant) strains. One of 

the ‘clean’ genotypic lineages comprises a number of wine strains from 

different geographic origins as well as European non-wine strains, and 

therefore, it was called wine/European population, the other lineages 

corresponded to strains isolated from other sources and origins (Liti et al.,, 

2009). 

In recent years, hybrids between S. cerevisiae and other 

Saccharomyces species such as the cryotolerant S. uvarum (Masneuf et al.,, 

1998; Naumov et al.,, 2000; Le Jeune et al.,, 2007) and S. kudriavzevii 

(Bradbury et al.,, 2006; González, 2006; Gonzalez et al.,, 2008; Lopandic et 

al.,, 2007; Peris et al.,, 2012a) have been isolated from wine, cider and 

brewing fermentations, and other sources. These discoveries suggest that 

hybridization between different Saccharomyces species has been a frequent 

phenomenon in their evolution, particularly relevant during the adaption of 

Saccharomyces to fermentative conditions (Gonzalez et al.,, 2007; Belloch et 

al.,, 2008; Gangl et al.,, 2009). Some hybrids can be predominant even in the 

most Northern winemaking regions from Europe, very likely due to a better 

adaptation to growth at lower temperatures acquired from the non-cerevisiae 

parental, compared to S. cerevisiae (Gonzalez et al.,, 2007; Lopandic et al.,, 

2007; Belloch et al.,, 2008; Erny et al.,, 2012). 

Some reports carried out on a set of wine and beer S. cerevisiae x S. 

kudriavzevii hybrid strains suggested that those hybrids could be generated 

from hybridization between wine strains of S. cerevisiae and natural European 
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strains of S. kudriavzevii; however, those results were not completely 

conclusive (Sampaio & Gonçalves, 2008; Lopes et al.,, 2010; Peris et al.,, 

2012b). The aim of this study was to evaluate, by means of a multigenic 

sequence approach, the potential origin of 24 S. cerevisiae x S. kudriavzevii 

and 2 S. cerevisiae x S. kudriavzevii x S. uvarum hybrid strains obtained from 

wine, beer and two other non-fermentative sources. The possible number of 

hybridization events that gave origin to the complete set of hybrids was also 

proposed based on the results obtained in this work and in previously reported 

data. 

 

2. Material and methods 

2.1 Saccharomyces strains, culture media and nucleotide sequences 

Twenty-six S. cerevisiae x S. kudriavzevii hybrid strains from different 

origins (Table S1) and seven strains belonging to S. kudriavzevii species 

(Table S2) were used in this study. Yeasts were grown at 28ºC in GPY 

medium (2% glucose, 0.5% peptone, 0.5% yeast extract).  

Nucleotide sequences corresponding to representative S. cerevisiae 

wine and non-wine alleles according to Arias (Arias, 2008) for genes BRE5, 

CAT8, EGT2 and GAL4 were also included in this study (Table S3 and Table 

S4).  

Sequences for genes BRE5, CAT8, CYC3, CYR1, EGT2, CAT8, GAL4 

and MET6 from S. cerevisiae strains (Table S2) representative of each pure 

population defined by Liti et al., (2009) were obtained from SGRP 

(Saccharomyces Genome Resequencing Project, version 2 assemblies (20x 

coverage), except for strain RM11, which corresponded to version 1 

(ftp://ftp.sanger.ac.uk/pub/dmc/yeast/SGRP2/assembly/). In addition, 

sequences from wine strain EC1118 (Novo et al.,, 2009) were retrieved from 

GenBank database. Finally, S. kudriavzevii ZP591 and IFO 1802 sequences 

ftp://ftp.sanger.ac.uk/pub/dmc/yeast/SGRP2/assembly/
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were downloaded from the Saccharomyces sensu stricto database 

(www.SaccharomycesSensuStricto.org). 

 

 

2.2 PCR amplification and sequencing 

DNA was extracted following the procedure described by Querol et al., 

(1992). Genes BRE5, CAT8, CYC3, CYR1, EGT2 and GAL4 were amplified 

by PCR, using primers CAT8_3, CYR1_5, MET6_5, MET6_3, MET6_3K from 

González et al., (2008) and newly designed primers (Table S5), obtained from 

the comparison among sequences from strains S. cerevisiae S288C and S. 

kudriavzevii IFO 1802 and ZP591. 

Most primers were species-specific with the exception of those for genes 

CAT8, EGT2 and GAL4. The analysis of these genes required a previous step 

of cloning, performed by using a TOPO XL PCR Cloning Kit (Invitrogen). To 

detect the S. cerevisiae alleles in clones, a screening was carried out by 

colony-PCR with the corresponding primers, and a subsequent digestion of 

the PCR fragments following the procedure described in González et al., 

(2008). 

PCR amplifications were performed by using conditions described in 

González et al., (2008) in a G-Storm Thermocycler (G-Storm Ltd, UK). 

Amplification products were cleaned with a High Pure PCR Product 

Purification Kit (Roche Diagnostics, Mannheim, Germany) and both strands of 

the DNA were directly sequenced using the BigDyeTM Terminator V3.0 Cycle 

Sequencing Kit (Applied Biosystems, Warrington, UK), following the 

manufacturer’s instructions in an Applied Biosystems automatic DNA 

sequencer Model ABI 3730l (Applied Biosystems). Sequences were edited 

and assembled with Staden Package v1.5 (Staden et al.,, 2000) to be 

deposited in GenBank under accession numbers JN709116 to JN709440. 

 

http://www.saccharomycessensustricto.org/
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2.3 Haplotype and haplogroup classification 

Gene sequences were aligned in MEGA 5 (Tamura et al.,, 2011). 

Haplotype classification was done in DnaSP v5 (Librado & Rozas, 2009) using 

the previous haplotype number classification given by Arias (2008). New 

haplotypes were classified with consecutive Arabic numbers following the 

previous enumeration (Arias, 2008). Median joining (MJ) networks (Bandelt et 

al.,, 1999) for BRE5, CAT8, EGT2, GAL4 were constructed using Network 4.5 

(http://www.fluxus-engineering.com/). 

 

2.4 Phylogenetic analysis and Supernetworks 

The neighbor-joining (NJ) and maximum-parsimony (MP) methods of 

phylogenetic reconstruction were applied to BRE5, CAT8, CYC3, CYR1, 

EGT2, GAL4 and MET6 separate sequence alignments of S. cerevisiae and 

S. kudriavzevii alleles from hybrid and reference strains described in Table S2. 

NJ trees were obtained with nucleotide distances corrected using the 

Maximum Composite Likelihood method. MP trees were obtained using the 

Close-Neighbor-Interchange algorithm in which the initial trees were obtained 

with the random addition of sequences (10 replicates). In all cases, a 

bootstrap analysis based on 2,000 pseudo-replicates was performed. For 

each gene, two NJ and MP phylogenetic trees were obtained, a tree based on 

S. cerevisiae alleles and another based on S. kudriavzevii alleles. 

Phylogenetic analyses were performed with MEGA 5 (Tamura et al.,, 2011). 

Two nexus files, with the collection of phylogenetic trees for S. 

cerevisiae and S. kudriavzevii, were created as an input of SPLITSTREE 4 

package (Huson & Bryant, 2006). Two outputs corresponding to S. cerevisiae 

and S. kudriavzevii consensus super split networks (Supernetworks) were 

obtained, analyzing about 3.4 kb. For S. cerevisiae nexus file we reduced the 

number of splits setting maximum dimension parameter to 1, removing those 

splits in the network that are less supported. For the S. kudriavzevii nexus file 

http://www.fluxus-engineering.com/


OBJECTIVE 3 -Chapter 1- 

145 

we reduced the number of splits to simplify the final Supernetwork. For this 

simplification we applied the filtered Z-Closure method (filtering = 2). A filter of 

2 takes into account those splits that are compatible in at least 2 input trees in 

the nexus file. The result is a network that summarizes the relationships found 

in at least two trees simplifying the network (Whitfield et al.,, 2008). 

 

2.5 Array competitive genomic hybridization (aCGH) and flow cytometry 

Array competitive genomic hybridization (aCGH) experiments, scanning 

and data normalization were performed for IF6 and MR25 strains as 

previously described in Peris et al., (2012b). A double-spotted array containing 

6,240 ORFs of S. cerevisiae plus control spots totaling 6.4K (Microarray 

Centre, University Health Network, Toronto, Canada) was used in aCGH 

assays. Raw and normalized microarray data are available in ArrayExpress 

(Brazma et al.,, 2003), under accession number E-MEXP-3375. 

Caryoscopes were obtained using ChARM v.1.1 (Myers et al.,, 2004). 

Genome composition of IF6 and MR25 was inferred by combining aCGH 

(present study) and previous PCR-RFLPs data (Periset al.,, 2012a). aCGH 

was performed following the procedure described in Peris et al., (2012b). 

The approximate locations of the recombination points in the mosaic 

chromosomes were determined from the up and down jump locations in the 

ORFs mapping by microarray analysis of the hybrid yeast genomes. 

Collinearity between S. kudriavzevii and S. cerevisiae genomes (Cliften et al.,, 

2003; Scannell et al.,, 2011) allowed us to deduce S. kudriavzevii gene 

content in the hybrid genomes. 

The list of S. kudriavzevii genes, excluding those with unknown function, 

retained in the hybrid genomes of IF6 and MR25 were independently analyzed 

using YeastMine in SGD database 

(http://yeastmine.yeastgenome.org:8080/yeastmine/begin.do) to obtain those 

Gene Ontology terms enriched in them. GO terms enrichment with p-values < 

http://yeastmine.yeastgenome.org:8080/yeastmine/begin.do
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0.05 were shown, after computing the Holm-Bonferroni for multiple hypothesis 

test correction. Significant GO terms were sorted according with their 

corresponding GO category. 

The DNA content (C-value) of IF6 and MR25 was assessed by flow 

cytometry using a Beckman Coulter FC 500 (Beckman Coulter, USA) following 

the methodology described in Peris et al., (2012b). Ploidy level was scored on 

the basis of the fluorescence intensity compared with the haploid S. cerevisiae 

S288c and diploid S. cerevisiae FY1679 reference strains. 

 

2.6 Maximum parsimony tree of chromosomal rearrangements 

A list of minimal number of chromosomal rearrangements, chromosomal 

losses and restriction site changes for IF6 and MR25 strains obtained in this 

work as well as data obtained from Belloch et al., (2009) and Peris et al., 

(2012b, b) were included in the maximum parsimony analysis. A binary matrix 

was constructed to codify each particular event and these data were used to 

generate parsimony trees using MIX program from Phylip 3.66 package 

(Felsenstein, 2005). For this analysis, both chromosomal rearrangements and 

chromosomal gain/losses were considered as irreversible events (Camin-

Sokal criterion), but data obtained from PCR-RFLP or sequence analyses 

were considered reversible events (Wagner criterion). The consensus tree 

was obtained by using the majority rule in the Consense program.  

This binary matrix was also used to reconstruct a Median Joining 

Network, using Networks 4.5 (http://www.fluxus-engineering.com/), and a 

NeighborNet Phylonetwork, using SPLITSTREE 4 package (Huson & Bryant, 

2006). 

 

3. Results 

3.1 Phylogenetic analysis of S. cerevisiae genes from hybrids 

http://www.fluxus-engineering.com/
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Phylogenetic relationships between S. cerevisiae x S. kudriavzevii 

natural hybrids obtained from several origins and a set of pure strains of the 

two parental species were analyzed to decipher possible common origins of 

these hybrids. 

Nucleotide sequence data for both S. cerevisiae and S. kudriavzevii 

alleles of seven nuclear genes (BRE5, CAT8, CYC3, CYR1, EGT2, GAL4, and 

MET6) were obtained from a total of 24 natural S. cerevisiae x S. kudriavzevii 

and 2 S. cerevisiae x S. kudriavzevii x S. uvarum hybrid strains from several 

origins (Table S1). In a first phylogenetic analysis, we compared the S. 

cerevisiae sequences obtained for genes BRE5, CAT8, EGT2 and GAL4 from 

hybrids and from a representative selection, at the genotypic level, of 65 wine 

and 19 non-wine S. cerevisiae strains previously analyzed in our laboratory 

(Table S3 and Table S4). These genes were selected because they had 

shown high variability among S. cerevisiae strains from different origins (Arias, 

2008). Additionally, sequences from eight S. cerevisiae strains, five 

representative of the different “pure” lineages proposed by Liti et al., (2009) 

and those from the completely sequenced genome of wine strain EC1118 

(Novo et al.,, 2009) were also included in this study (Table S4).  

Median-Joining networks (Figure 1) for all genes, except GAL4, showed 

two clearly differentiated groups of alleles or haplogroups. One haplogroup 

comprises those alleles present only in non-wine strains (so called non-wine 

alleles) and the second haplogroup includes alleles present in both wine and 

non-wine strains; however they are the only alleles exhibited by wine strains, 

and hence, they were called wine alleles. These wine alleles, when present in 

non-wine strains, are mainly found in heterozygosis with non-wine alleles. 

GAL4 is the exception because non-wine alleles were clustered into two 

haplogroups. The first group is characterized by the presence of a common 

deleted region of 15 bp, and the second comprises different lineages and 

appears to be closer to the wine alleles than to haplogroup 1 (Figure 1D).  
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Figure 1. Median Joining (MJ) networks obtained for genes BRE5 (A), CAT8 (B), EGT2 (c) and GAL4 (D) 
from hybrid strains and representative wine and non-wine allele sequences according to Arias (Arias, 2008). 
Strains representative of each different origin according to Liti et al., (Liti et al.,, 2009) and the alleles from 
wine strain EC1118 (Novo et al.,, 2009) were also included. Asterisks indicate new alleles not reported by 
Arias (Arias, 2008). Numbers in italics indicate those alleles exhibited by wine strains from Liti et al., (Liti et 
al.,, 2009) and Novo et al., (Novo et al.,, 2009). Numbers in bold indicate alleles present in non-wine strains 
from Liti et al., (Liti et al.,, 2009). Underlined numbers correspond to alleles classified as “non-wine” in Arias 
(Arias, 2008).  

 

 

Fourteen BRE5 alleles were present in hybrids (Figures 1 and S1), six 

are haplotypes already described in wine strains (32, 35, 41, 58, 66 and 95) 

and the other 8 were new alleles (96, 97, 98, 99, 100, 108, 109 and 110). 

MR25, CECT 1388 and CECT 1990 are heterozygous for this gene, exhibiting 

two wine S. cerevisiae alleles differing in one single nucleotide substitution 

(Figure S1). In the case of CAT8, 5 alleles from hybrids were present in wine 

yeasts (26, 33, 55, 57 and 91) and 2 were new (92 and 93). For EGT2, 2 

alleles correspond to very common alleles in wine strains (3 and 5) and two 

were new (62 and 63), and finally GAL4 showed a higher diversity in hybrids 

with 3 already known alleles (1, 18 and 27) and 6 new (84, 89, 90, 92, 93 and 

94). These new alleles, found in hybrids for the first time, are indicated with 

asterisks in Figure 1. In general, alleles present in hybrids show few 

nucleotide differences (Figure S1) and are grouped together within the wine 

allele group for the four genes under analysis, with the exception of the BRE5 

new allele 98 from the brewing strain CECT11011 which is located within the 

non-wine haplogroup, probably due to the presence of 2 convergent 

nucleotide substitutions. 

Strains DBVPG6044, Y12, YPS128 and UWOPS03-461.4 were selected 

as representative strains of the West African, Sake, North American and 

Malaysian pure populations of S. cerevisiae, respectively, as defined by Liti et 

al., (2009). Sequences from these strains (indicated in bold in Figure 1) 

always clustered within the non-wine group for the four genes analyzed. To 

the contrary, L1528, EC1118 and RM11, three wine strains representative of 

the pure Wine/European genotypic lineage defined by Liti et al., (2009), 
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always appear within the wine allele group (alleles indicated in italics in Figure 

1). The laboratory strain S288c clustered within the wine (for BRE5, CAT8 and 

GAL4) or non-wine groups (for EGT2) in accordance with its mosaic nature 

according to Liti et al., (2009). 

Because most S. cerevisiae alleles from hybrids are included within the 

wine allele group, the possible geographical origin of the hybrids was 

evaluated by analyzing the presence of these hybrid alleles in a set of 142 

wine strains isolated from 8 different geographical areas, previously studied by 

Arias (2008). Table 1 shows the frequency of wine strains from each particular 

country sharing haplotypes with hybrids. The new alleles detected only in 

hybrids were not included in this analysis. As a general rule, the most frequent 

alleles in hybrids also corresponded to the most frequent alleles present in 

wine strains from several winemaking countries. For this reason, it is difficult to 

identify a specific geographic origin where hybridization processes may have 

occurred according to these comparisons (Table 1). Alleles 58 and 18 for 

BRE5 and GAL4 respectively were not found among the S. cerevisiae wine 

strains analyzed (Table 1), but they were detected in some non-wine strains 

(Table S4 and ref. (Arias, 2008)). However, these two alleles clustered within 

the wine allele groups (Figure 1 A and D). 

To identify how many putative S. cerevisiae parental strains were 

potentially involved in the origin of S. cerevisiae x S. kudriavzevii hybrids, we 

increased the number of genes analyzed in a second phylogenetic analysis. 

For this new analysis we included sequence data previously reported by Liti et 

al., (2009) and Novo et al., (2009) for comparative purposes.  

Initial phylogenetic analyses on yeast were based on single gene 

sequences (Kurtzman & Robnett, 1998), but several times they failed to 

establish the overall history of these organisms. As an improvement, 

multigene sequence approaches using a concatenation of genes were  
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Table 1: Frequency of wine strains isolated from different countries showing the same alleles found in hybrids. 

Country 
Total 

number of 
strains 

 
Frequency (%) of each allelea 

 
BRE5 

 
CAT8 

 
EGT2 

 
GAL4 

 
32* 35 41 58 66 

 
26 33* 55 57 

 
3* 5 

 
1 18 27* 84 

Argentina 37 
 

49* - 41 - - 
 

- 60* 3 - 
 

81* 3 
 

6 - 81* 3 

Austria 30 
 

30* 10 20 - - 
 

10 40* - - 
 

60* - 
 

10 - 70* - 

Chile 23 
 

23 - 41* - 4 
 

- 37* 4 - 
 

81* - 
 

7 - 63* - 

France 13 
 

23 - 46* - 8 
 

- 38* 23 - 
 

92* - 
 

38 - 62* - 

Slovenia 5 
 

20 - - - - 
 

- 20 - - 
 

80* - 
 

- - 80* - 

South Africa 15 
 

33* - - - - 
 

- 33* 13 - 
 

87* - 
 

33* - 33* - 

Spain 14 
 

21* - 14 - 7 
 

- 43* 14 21 
 

93* - 
 

36 - 57* - 

Switzerland 5 
 

40* - 40* - - 
 

20 - - - 
 

80* - 
 

40* - 40* - 

*The most frequent haplotype 
a Only those alleles present in more than one strain were included. 

 1 
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proposed to construct the phylogenetic tree (Kurtzman & Robnett, 2003; 

Rokas et al.,, 2003); however, they would represent an oversimplified version 

of the genetic history (Huson & Bryant, 2006). As an alternative, the 

construction of consensus trees has also been proposed, but this method can 

be only used when each gene tree has the same taxa representation (Bull et 

al.,, 1993). In this work, because some hybrid strains have lost some particular 

S. kudriavzevii genes, both concatenated or consensus trees would 

oversimplify the results. Recently, a Z-closure method has been proposed to 

overcome this kind of problem (Huson et al.,, 2004; Huson & Bryant, 2006; 

Murphy et al.,, 2008; Whitfield et al.,, 2008). With this methodology, several 

gene trees with different taxa representation can be used as input files and a 

supernetwork with the complete set of taxa is obtained as (Huson et al.,, 

2004). However, one of the limitations of the Supernetwork analysis is the 

absence of statistical support, for this reason we interpreted our results 

according to a complementary phylogenetic analysis of the individual genes 

based on both Maximum Parsimony and Neighbor Joining. Both methods 

gave very similar or identical phylogenetic reconstructions (Figures S2 and 

S3). 

A supernetwork, containing the information of 7 S. cerevisiae nuclear 

genes (Figure 2A), showed two well defined groups of strains: a group 

comprising non-wine strains Y12, DBVPG6044, YPS128 and UWOPS03-

461.4 and a group containing wine strains RM11, L1528, EC1118 and all 

hybrids (Figure 2A). The position of strain S288c in this supernetwork proved 

again ambiguous due to the mosaic nature of this strain. 

According to this supernetwork analysis of S. cerevisiae gene 

sequences, hybrid strains appear clustered in two main subgroups (C1 and 

C2) and several independent lineages (Figure 2A). Subgroup C1 comprises 

Austrian (HA strains) and 3 other wine hybrids (PB7, SOY3 and Vin7), and the 

triple hybrids CID1 and CBS 2834, and subgroup C2 includes Swiss wine  
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Figure 2. Supernetworks obtained using data from seven nuclear genes (BRE5, CAT8, CYC3, CYR1, 
EGT2, GAL4 and MET6) for both Saccharomyces cerevisiae (A) and Saccharomyces kudriavzevii (B) 
alleles from hybrids, from reference S. cerevisiae (Liti et al., 2009; Novo et al., 2009) and S. kudriavzevii 
strains. Scale bar represents the edge’s weights inferred using the tree size weighted means options, a 
measure similar to those from branches in a phylogenetic tree. 

 

 

hybrids and Trappist beer strain CECT11003. The other hybrids appear in 

independent lineages (AMH, CECT 1990, 11002, 11004 and 11011) or in an 

ancestral position with respect to the two main subgroups (CECT1388, IF6 

and MR25). 

The supernetwork reconstruction method takes as input a set of 

complete or partial gene trees and produces a split network with the signals 

present in the gene trees, but it doesn’t allow to test the reliability of the the 

phylogenetic relationships. Therefore, bootstrap analyses for each individual 

gene Maximum-Parsimony and Neighbor-Joining trees were performed to 

contrast the confidence of these groupings (Supplemental Figures S2 and S3). 

Three of the seven genes (CYC3, CYR1 and EGT2) showed low variability 

among hybrids and were useless to differentiate hybrid subgroups, although 

EGT2, together with CAT8, were the best genes to discriminate among wine 

and non-wine alleles. The remaining genes (BRE5, CAT8, GAL4 and MET6) 

differentiate subgroups of hybrids, but due to the low variability and the 

presence of putative convergent nucleotide substitutions, bootstrap values 

were low and did not support significantly many of these groupings.  

In these individual gene trees (Figures S2 and S3), strains comprised in 

the supernetwork subgroup C1 (Swiss double hybrids and CECT 11003) are 

always included in the same cluster (Figure S2, alleles in blue), however, in 

the case of subgroup C2 (Figure S2, alleles in yellow), only Austrian hybrids, 

VIN7 and CBS2834 always appeared in the same cluster. The positions of the 

remaining strains change from one subgroup to the other, or to independent or 

intermediate lineages (Figure S2, alleles in green) depending on the gene 

(summarized in Table S6). As examples, wine hybrid SOY3 always appears 
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within subgroup C1 group except for the BRE5 tree, where it is located in an 

intermediate position between wine and non-wine reference strains; W46 

always appears within subgroup C2, except for MET6 tree, in which it appears 

as part of subgroup C1; or CECT 1388 and 11002, which appear within 

subgroup 1 in two gene trees but within subgroup 2 in the other 2. 

 

3.2 Phylogenetic analysis of S. kudriavzevii alleles from hybrids 

Another composite supernetwork was also obtained for the sequences 

of the S. kudriavzevii alleles present in hybrids. It is important to remark that S. 

cerevisiae x S. kudriavzevii hybrids are characterized by a trend to lose parts 

of the S. kudriavzevii subgenome (Gonzalez et al.,, 2008; Belloch et al.,, 2009; 

Peris et al.,, 2012b, b), and hence, some of the genes under analysis are 

absent in some strains. The most extreme case is strain AMH, which lost 

~72% of the S. kudriavzevii genome, and only maintains one of the seven 

genes under analysis (CAT8). 

Homologous sequences from S. kudriavzevii pure strains isolated in 

Japan, Spain and Portugal were also included in the analysis (Table S1 and 

Table S2). This initial supernetwork was reconstructed without applying any 

filter (data not shown), however, a subsequent filtering was introduced to the 

analysis (see Methods section) to simplify the supernetwork analysis (Figure 

2B). In this supernetwork, the European population represented by strains 

from Spain (CA111, CR85, CR89, CR90 and CR91) and Portugal (ZP591) 

forms a group far distant from the Japanese type strain IFO1802T (Figure 2B). 

All S. cerevisiae x S. kudriavzevii hybrid strains were included within the 

European group. As in the case of the S. cerevisiae alleles, two main 

subgroups of hybrids are observed in this supernetwork. Subgroup K1 

comprises most hybrids and occupies an ancestral position with respect to 

subgroup K2, including Swiss wine hybrids and Trappist beer hybrids CECT 

11003 and 11004 (Figure 2B). 
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However, in the case of the S. kudriavzevii alleles, these groupings are 

better supported by the bootstrap analysis of Maximum-parsimony and 

Neighbor-Joining gene trees, even when nucleotide diversities are lower than 

in the case of S. cerevisiae alleles. In those trees based on variable genes 

BRE5, CAT8, CYC3 and CYR1, Swiss wine hybrids and beer hybrids CECT 

11003 and 11004 always appear within subgroup K2 (indicated in blue in 

Figure S2); and the wine hybrids from Austria (HA strains), VIN7 and SOY3 

within subgroup K1 (indicated in yellow in Figure S2). In the case of hybrid 

IF6, this strain has lost two genes (CAT8 and CYC3), but for the other genes it 

shares the same alleles than hybrids from subgroup K1 (Figure S1). 

The positions of the remaining strains change from one subgroup to the 

other, or to independent positions (Figure S2, alleles in green) depending on 

the gene (summarized in Table S6). Thus, brewing hybrids CECT1388, 1990, 

and 11002, and the clinical isolate MR25 lost 1-2 genes (including the shared 

loss of BRE5). In the CAT8 and CYC3 trees, these strains appear within 

subgroup K1, but for CYR1 they are included in a separate subgroup 

(indicated in green in Figure S2) due to the presence of allele 7, which differs 

from subgroup K1 allele 8 in a nucleotide substitution (Figure S1). Hybrid 

CECT11011 shares with the previous strains the CYR1 allele 7 and their 

inclusion within subgroup K1 in the CAT8 and CYC3 trees, but within 

subgroup K2 in the BRE5 tree, because maintains an allele identical to that 

from subgroup K2 strains. A similar situation is observed for triple hybrids 

CBS2834 and CID1, they appear within subgroup K2 in the BRE5 tree but 

within subgroup K1 in the other gene trees, including CYR1. Finally, the 

Spanish wine hybrid PB7 appears within subgroup K1 in two gene trees 

(CYC3 and CYR1), within subgroup K2 in other two (BRE5 and CAT8), and it 

exhibits a different allele for EGT2. 
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3.3 Genotypes of the putative parents of hybrids based on the sequence 

analysis of seven nuclear genes 

We tried to infer how many S. cerevisiae and S. kudriavzevii parents 

may have been involved in the generation of hybrids according to the 

phylogenetic analyses of the seven gene sequences. According to these 

sequences, the 24 double and 2 triple hybrids exhibit 20 different S. cerevisiae 

genotypes (allelic combinations) and 11 different S. kudriavzevii genotypes 

(Figure S1). These S. cerevisiae and S. kudriavzevii genotypes are found in 

22 different combinations in hybrids. However, this does not mean that 22 

different hybridization events occurred because hybrids are evolving after their 

origins. As seen before, the phylogenetic analysis of the sequences 

discriminate groups of alleles with putative common origins from an ancestral 

parental strain. In fact, the presence of rare alleles differing in few unique 

nucleotide substitutions (singletons) from the most common alleles in hybrids 

supports that these changes occurred after the hybridization process. 

By considering the phylogenetic relationships among alleles and their 

combinations in hybrids (summarized in Table S6), we could infer 6 S. 

cerevisiae and 6 S. kudriavzevii putative ancestral genotypes (parental 

strains) that are arranged in 10 hybrid combinations (possible hybridization 

events). The first main hybrid combination is present in 6 wine hybrids, four 

from Austrian (HA strains), one from South Africa (VIN7, likely of European 

origin) and another from Croatia (SOY3). This SOY3 strain shares identical or 

closely related S. cerevisiae and S. kudriavzevii alleles with the other strains 

of this group for all genes except BRE5, which shows 4 nucleotide differences. 

This allele appears in the BRE5 gene as closer to alleles from other hybrids 

(Figure 2S). These similarities could be explained by convergent substitutions, 

but we cannot rule out the possibility that the parental strain were originally 

heterozygous for BRE5 and suffered a subsequent differential loss of 

heterozygosity in each derived hybrid lineage. 
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The second main combination is found in the 8 wine double hybrids from 

Switzerland and the Trappist beer hybrids CECT11003 and 11004 from 

Belgium. In this group, a slight discrepancy is also observed in strain 

CECT11004. This strain exhibits a MET6 allele (allele 1) different to that 

present in other strains of this group (allele 2), but identical to that exhibited by 

strains from other groups (Figure S1). However, these MET6 alleles 1 and 2 

differ in one single synonymous substitution and a simple convergent change 

may explain this difference. An alternative explanation would be to consider 

allele MET6-1 as the ancestral one present in the S. cerevisiae parent of this 

group of hybrids later originating the derived allele MET6-2 shared by the 

Swiss and CECT11003 hybrids. 

In the remaining hybrid combinations, both S. cerevisiae and S. 

kudriavzevii genotypes basically correspond to different arrangements of the 

alleles present in the first and second hybrid combinations described before. 

One explanation is that these recombining genotypes, generated by sexual 

mating at the within species level, were already present in the S. cerevisiae 

and S. kudriavzevii population before the hybridization events occurred. In this 

case, a minimum of 10 hybridization events would be necessary to explain the 

origin of these hybrids. However, another compatible explanation is that some 

hybrids may have originated by rare mating between diploid heterozygous 

cells, and a subsequent segregation of alleles due to chromosome loss (most 

hybrids are triploid (Erny et al.,, 2012; Peris et al.,, 2012b), or random loss of 

heterozygosity due to recombination and/or gene conversion would generate 

the different mosaic hybrids. In this case, the number of hybridization events 

would be smaller than ten.  This could be the case of brewing strains 

CECT1388, 1990, 11002, 11011 and the clinical isolate MR25. These strains 

exhibit similar S. kudriavzevii genotypes (including the specific allele CYR1-7), 

but different S. cerevisiae allele combinations, including wine and non-wine 

alleles (CYR1-2 and -4 in strains CECT1990 and 11011). 
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3.4 The genome constitution of non-fermentative hybrids IF6 and MR25 

In previous studies, we analyzed the genetic diversity of S. cerevisiae x 

S. kudriavzevii hybrids by RFLP analysis of 35 nuclear genes (Gonzalez et 

al.,, 2008; Peris et al.,, 2012a) combined with array comparative genome 

hybridization (aCGH) (Belloch et al.,, 2009; Peris et al.,, 2012b). These 

analyses provided us information on the genome rearrangements occurred in 

the hybrids after their origins. Most of these rearrangements are non-

reversible events that can complement the information obtained with the 

phylogenetic analysis of gene sequences to unveil the origin and evolution of 

these S. cerevisiae x S. kudriavzevii hybrids.  

However, the genome constitutions of hybrids IF6 and MR25 were not 

characterized in our previous studies, and therefore, they were subjected to 

aCGH and flow cytometry analyses to assess their genome compositions. Our 

results indicated that DNA content of IF6 and MR25 were 3.25 and 2.92 times 

that of the reference haploid strain S288c, respectively. These DNA content 

values, together with the aCGH analysis and PCR-RFLP data for 35 nuclear 

genes previously reported (Peris et al.,, 2012a), allowed us to detect the 

presence of three chimerical chromosomes in hybrid IF6 (chr. X, XII and XIII) 

and five in MR25 (chr. IV, VII, IX, XII and XIV) (Figure 3). The hypothetical 

recombination points were mapped according to the Saccharomyces genome 

described in the SGD database (http://db.yeastgenome.org) using a window 

size of 15-20Kb (four genes in the left and right of the most plausible 

recombination point). These recombination points were located in sequences 

corresponding to Ty LTRs, ARS and tRNAs (Table S7). RFLP analysis of 

genes located at the end of chromosomes (Peris et al., 2012a) confirmed the 

presence of S. kudriavzevii segments in chromosomes VII and IX from IF6, 

http://db.yeastgenome.org/
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Figure 3. Genome composition of hybrid strains IF6 and MR25 obtained by combining aCGH (this work) 
and PCR-RFLP (Peris et al., 2012a) analyses. Red and green signals correspond to the hybrid strain and 
the reference strain (S288c), respectively. White and black bars are used to represent S. cerevisiae and S. 
kudriavzevii fractions, respectively. Chromosomes showing black and white sections correspond to 
chimerical chromosomes. As an example, chromosome XIV in MR25 displayed a double RFLP pattern for 
EGT2, corresponding to the S. cerevisiae and S. kudriavzevii alleles, and one single pattern for BRE5, 
matching the S. cerevisiae allele restriction pattern (Peris et al., 2012a). The chimerical nature of this 
chromosome is confirmed by the caryoscope diagram where two different log2 ratios are observed, 
indicating a different S. cerevisiae chromosome content. By combining both sources of information, we can 
deduce that most chromosome XIV corresponds to two copies of S. cerevisiae (according to the EGT2 
RFLP pattern and aCGH data) and one of S. kudriavzevii (according to EGT2 RFLP pattern), but 
chromosome XIV right end corresponds to three copies of S. cerevisiae (according to BRE5 RFLP pattern 
and aCGH data). The recombination site in the chimerical chromosome can be located according to the log2 
ratio jump observed in the caryoscope diagram. 

 
 
and chromosomes X and XIII from MR25, however, their putative chimerical 

nature could not be detected by the aCGH analysis (Figure 3). 

Following the same methodology used in our previous study (Peris et 

al.,, 2012b), we obtained a list of S. cerevisiae genes lost in both hybrids IF6 

and MR25. Both IF6 and MR25 have depleted a similar number of genes 

classified as retrotransposons as well as genes belonging to the ASP3, CUP1 

and ENA clusters (Table S8). In particular, hybrid IF6, obtained from a dietary 

supplement, exhibited a deleted region (YLR155C-YLR256w) in its S. 

cerevisiae chromosome XII (Figure 3). This region is adjacent to the rDNA 

repeat region located between YLR154C and YLR155C, which is not included 

in the microarray platform. A PCR amplification of the 5.8S-ITS region and the 

subsequent restriction analysis (Gonzalez et al.,, 2006), revealed the absence 

of S. cerevisiae rDNA genes in this region (data not shown). 

With respect to their S. kudriavzevii subgenome, IF6 and MR25 hybrids 

lost ~33% and ~18% of the total S. kudriavzevii genes, respectively. Gene 

Ontology (GO) enrichment analysis applied to the common set of S. 

kudriavzevii genes maintained by the two hybrids, demonstrated a high 

frequency of stress response genes among those S. kudriavzevii genes 

conserved in both hybrids (Table S9). Some of the significant GO terms 

shared by MR25 and IF6 are “response to stimulus”” with p-values < 0.05. In 
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the case of MR25 is also important to note the significant GO term “cellular 

lipid metabolic process” and “response to stress” (p-value < 0.05). 

 

3.5 Analysis of the number of hybridization events 

Genome composition data obtained for the 26 S. cerevisiae x S. 

kudriavzevii hybrids from this study as well as from previous studies (Belloch 

et al.,, 2009; Peris et al.,, 2012b) were used to reconstruct a parsimony tree 

based on the presence of chimerical chromosomes, on the absence of 

chromosomes from one or another parental strain and the presence of specific 

allelic variants. Using the information from this parsimony tree together with 

the putative genetic constitution of the hypothetical parental strains obtained 

from the phylogenetic analysis of nuclear gene sequences, as well as from 

COX2 sequences also obtained in our previous studies (Peris et al.,, 2012a), 

allowed us to reduced the number of hybridization events to a minimum of six 

for the S. cerevisiae x S. kudriavzevii hybrids under analysis, and two 

additional events for the origin of the S. cerevisiae x S. kudriavzevii x S. 

uvarum triple hybrids. The putative ploidies of the parental cells involved in 

hybridization were also estimated by analyzing the genomic constitution of the 

hybrids derived from each event. 

Figure 4 shows five out of the six different origins for double hybrids 

proposed according to this study. AMH is not included due to its complex 

genome structure, because it is a tetraploid hybrid that lost most of the S. 

kudriavzevii subgenome (Peris et al.,, 2012a, b). Independent origin for AMH 

is clearly supported by the different sets of data used in this analysis. 

Wine hybrid strains from Switzerland (W27, SPG14-91, SPG16-91,126, 

172, 319 and 441), and the Trappist brewing strains CECT11003 and 

CECT11004 share a common origin. Their nuclear genomes derive from a 

hybridization event between the hypothetical S. cerevisiae CG2 and S. 

kudriavzevii KG2 parents (Figure S1). They inherited their mtDNA type K2  
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Figure 4. Possible multiple origins for hybrid strains based on Supernetworks, Polymorphic sites (Figure 
S1), Parsimony (Figure S2) and Neighbor-Joining (Figure S3) gene trees, PCR-RFLP data (González et al., 
2008; Peris et al., 2012a), COX2 sequence data (Peris et al., 2012a) and maximum parsimony analysis of 
chromosome rearrangements (Peris et al., 2012b). Five out of six hybridization events are depicted in this 
figure, AMH and tripe hybrid origins have not been depicted due because they involved secondary 
hybridization events, in the case of AMH with another S. cerevisiae strain. The putative genetic 
backgrounds of the parental strains involved are indicated by squares on the left of each network. Symbols: 
triangles correspond to chromosome loss; squares to mitochondrial COX2 haplotypes; diamonds to 
chromosome recombination events; rectangles to mutations generating new allele variants; circles to 
chromosome non-disjunctions. Those depicted in white are referring to events occurring in the S. cerevisiae 
subgenome of hybrids; in black, in the S. kudriavzevii subgenome; and in grey, those events involving both 
subgenomes (recombination events). 

 

 

from S. kudriavzevii (Peris et al.,, 2012a). Hybrid W46 was also included in 

this group although it exhibits a mitochondrial type K3 (Figure 4), derived from 

K2 by a single nucleotide difference (Gonzalez et al.,, 2008). 

The group of Austrian hybrids HA as well as wine hybrids VIN7 and 

SOY3 have also a common origin in a hybridization event involving 

hypothetical parents S. cerevisiae CG1 and S. kudriavzevii KG1 (Figures 2, 4 

and S1), and sharing the mitochondrial type K4 from S. kudriavzevii (Peris et 

al.,, 2012a).  

A third group includes the brewing triploid hybrids CECT1388, 

CECT1990, CECT11002, CECT11011 and the clinical isolate MR25, sharing 

several genome rearrangements and restriction patterns as well as a 

recombinant mtDNA type K6 (Peris et al.,, 2012a). According to the seven 

gene sequence analysis, these strains seem to have independent  

hybridization origins from crosses between different S. cerevisiae parents 

(CG3, CG4 and CG5) but the same S. kudriavzevii strain KG3 characterized 

by an specific CYR1 allele (Figure S1). These contradictory results may be 

explained by considering a heterozygous S. cerevisiae diploid cell containing 

wine and non-wine alleles as the parental strain, as mentioned above. 

Wine strain PB7 from Leon, Spain, was included in the same subgroup 

than the Austrian wine strains according to the supernetwork analyses, due to 

network simplification (Figure 2). However, this strain likely originated in an 

independent hybridization event because it derives from different parents, the 
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mosaic S. cerevisiae CG6 and S. kudriavzevii KG5 genotypes (Figure S1), 

exhibits a recombinant mtDNA K10 (Peris et al.,, 2012a), and finally, it 

possesses a tetraploid genome (Peris et al.,, 2012b).  

In the case of IF6, although it shares the same S. kudriavzevii KG1 

ancestor with Austrian hybrids, its S. cerevisiae parental strain is clearly 

different: a mosaic CG5 genotype closer to the S. cerevisiae parent of the 

brewing hybrids. The different hybrid combination of parental genotypes 

supports an independent origin for this strain. 

 

4. Discussion 

By analyzing the sequences of four nuclear genes from a total of more 

than 250 S. cerevisiae yeast isolates from wine (Europe, South America and 

South Africa) and non-wine origins (wild, brewing, cider, sake and traditional 

beverage fermentations mainly from Latin America, but also from Africa and 

Asia), Arias (2008) demonstrated the existence of two groups of alleles, those 

present only in strains isolated from non-wine sources, called non-wine alleles, 

and another group of alleles that, while they also appear in non-wine alleles, 

they are the only alleles present in wine strains (wine alleles). These wine 

alleles are much less frequent in non-wine strains, and they mainly appear in 

heterozygosis with non-wine alleles. Liti et al., (2009) obtained the complete 

genome sequences of 37 S. cerevisiae strains from different sources of 

isolation and geographic origins. The phylogenetic analysis of nucleotide 

polymorphisms showed a complex S. cerevisiae population structure. Liti et 

al., (2009) observed five genotypic lineages, called according to their origins 

or source of isolation as Malaysia, West Africa, sake, North America and 

‘Wine/European’, which exhibited the same phylogenetic relationships across 

their entire genomes. The strains from these five lineages were considered as 

‘clean’, pure strains, representative of diverged populations. The other strains 

evidenced variable phylogenetic relationships depending on the genome 
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region analyzed, and were considered as ‘mosaics’ with a mixed genome 

architecture that could be due to human traffic in yeast strains and subsequent 

recombination between them. The analysis of the sequences of the same four 

gene regions used by Arias (2008) indicated that alleles present in the four 

non-wine lineages fell within the group of non-wine alleles; alleles present in 

strains of the wine/European lineage were included within the ‘wine allele’ 

group, and the locations of the ‘mosaic’ alleles were variable depending on the 

gene. Because Liti et al., (2009) sequenced derivative monosporic cultures, 

some of the ‘mosaic’ parental strains could be heterozygous for wine and non 

wine alleles for many genes, as observed by Arias (2008). High levels of 

heterozygosity for non-wine yeast were also observed by Fay and Benavides 

(2005), and for ale strains by Dunn and Sherlock (2008). 

The accessibility to such a collection of sequences (including genome 

sequences) from S. cerevisiae strains from different sources of isolation and 

geographic origins was an excellent opportunity to decipher the nature of the 

S. cerevisiae parents involved in the origin of hybrids. This way, for all genes 

under analysis, S. cerevisiae alleles from hybrids were always clustered within 

the wine allele group, with the exception of the BRE5 allele from the brewing 

strain CECT11011, which clustered in the non-wine group, and CYR1 allele 

from the brewing CECT1388 and CECT11011, which clustered with non-wine 

strains from Liti et al., (2009) in the individual gene trees. Moreover, the 

phylogenetic supernetwork analysis of S. cerevisiae alleles from hybrids 

identified two main subgroups of S. cerevisiae parental strains, and due to its 

simplification it failed to detect mosaic S. cerevisiae genotypes. It followed that 

the S. cerevisiae CG2 parental strain was involved in the hybridization event 

that originated the complete group of wine Swiss hybrids and S. cerevisiae 

CG1 was involved in the origin of the Austrian wine hybrids, SOY3 and Vin7.  

The aCGH analyses of hybrid genome composition (present study and 

(Peris et al.,, 2012b)) showed the depletion or underrepresentation of certain 
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S. cerevisiae genes (Ty retrotransposons and ENA and ASP gene families), 

which were proposed as genomic signatures for wine S. cerevisiae yeasts 

(Carreto et al.,, 2008; Dunn et al.,, 2005), which is in agreement with the 

postulated wine origin of the S. cerevisiae parental strains involved in the 

generation of these hybrids. The maintenance of S. kudriavzevii genes related 

to stress response, in MR25 and IF6, and lipid metabolism, in MR25, also 

confirms the importance of S. kudriavzevii subgenome in cold stress 

resistance, postulated in previous studies (Peris et al., 2012b). 

In the case of IF6, aCGH and PCR confirmation of 5.8S-ITS regions 

support the loss of heterozygosity (LOH) of the rDNA region in chromosome 

XII, maintaining only the S. kudriavzevii sequences for this region. This region 

has been characterized, in plants and animals, to be under concerted 

evolution (Joly et al.,, 2004; Wendel et al.,, 1995; Gromicho et al.,, 2006). This 

has been also observed in a natural hybrid S. pastorianus (CBS 1538 strain), 

where the S. cerevisiae rDNA region of chromosome XII has been lost 

(Kodama et al.,, 2005). 

The wine origin of the S. cerevisiae parent of most S. cerevisiae x S. 

kudriavzevii hybrids has already been postulated in previous works based on 

genomic composition data inferred by aCGH and PCR-RFLP analysis (Peris 

et al., 2012b), as well as by microsatellite analysis (Erny et al.,, 2012). The 

use of a multilocus sequence analysis approach certainly confirms the wine 

origin of the S. cerevisiae strains involved in the generation of most S. 

cerevisiae x S. kudriavzevii hybrids. 

The exceptions are the brewing hybrid CECT11011, in which a possible 

recombinant BRE5 allele is present, and CECT1990 and CECT11011, which 

contain CYR1 non-wine alleles, and hence, a heterozygous non-wine S. 

cerevisiae strain, with both wine and non-wine alleles, could be involved in 

their origin. Dunn and Sherlock (2008) demonstrated that S. pastorianus 

hybrids, responsible of lager beer fermentations, very likely derived from a 
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cross between a haploid S. bayanus-like strain, later identified as belonging to 

the new species S. eubayanus (Libkind et al.,, 2011), and a diploid S. 

cerevisiae strain, related to ale brewing strains, which are characterized by a 

high heterozygosity. Arias (2008) also included in his study several ale strains 

that showed as heterozygous, for wine and non-wine alleles. Therefore, the 

parental S. cerevisiae involved in the origin of brewing hybrids CECT1990 and 

CECT11011 could be an ale strain originally heterozygous for wine and non-

wine alleles. Another brewing hybrid, strain CECT11002, appeared as related 

to the brewing hybrids and the clinical isolate, but it did not contain non-wine 

alleles for the genes under analysis; all these hybrids may also have been 

originated from a similar ale parental strain. Erny et al., (2012) included in their 

microsatellite analysis a Chimay strain which clusters with the S. cerevisiae 

brewing strains. We do not know whether their Chimay strain and our 

CECT11002 (also from Chimay) is the same or not, but at least they should be 

related, which could corroborate the ‘ale’ origin of their S. cerevisiae parent. 

Genome sequencing of one of these strains will elucidate this hypothesis. 

By using the population genetic information from Arias (2008), we also 

tried to determine the exact geographic origin of the parental S. cerevisiae 

strains. We looked for particular S. cerevisiae strains from different wine 

regions possessing the combination of alleles present in the hypothetical 

parental S. cerevisiae strains. With the exception of one CAT8 allele, 

genotype CG1 was present in strains from Chile, South Africa, Switzerland 

and Spain; and genotypes CG2 and CG3, with the exception of BRE5, were 

found in strains from Argentina, Chile, Italy, Japan, South Africa, Austria, 

France and Spain. Other genotypes, with slight differences were found in 

Argentina, Chile, South Africa, Austria, Slovenia, Switzerland, Italy, Japan, 

France and Spain. As strains from the new winemaking regions (South 

America and South Africa in this case) were introduced from Europe with 

vines and winemaking tools, the most probable geographic origin for 
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hybridization, according to the S. cerevisiae hypothetical parental genotype, is 

Europe. 

The European origin of hybrids is also supported by the phylogenetic 

analysis of S. kudriavzevii alleles. Alleles present in hybrids were detected 

among European S. kudriavzevii pure strains. Three of seven alleles of S. 

kudriavzevii KG1, were found in 3 S. kudriavzevii strains from Ciudad Real 

(Spain), Castellon (Spain) (Lopes et al.,, 2010) and Portugal (Sampaio & 

Gonçalves, 2008). However, other genotypes have not been found among the 

few S. kudriavzevii pure strains available. Future surveys on the genetic 

variability of European populations of S. kudriavzevii may be of interest to 

decipher the geographic origin of hybridization, because this wild species has 

not been subjected to human traffic and it may preserve its original population 

structure in the same way than S. paradoxus (Johnson et al.,, 2004; 

Koufopanou et al.,, 2006). A recent study (Erny et al.,, 2012), complementary 

to the present one, on the possible origin of a different set of European S. 

cerevisiae x S. kudriavzevii hybrids from winemaking (only four Swiss hybrids 

and VIN7 are in common), carried out by means of microsatellite information, 

also confirmed the European origin of the putative parental strains of hybrids. 

By combining the phylogenetic analysis of gene sequences with all the 

available information on genetic and genomic characterization of S. cerevisiae 

x S. kudriavzevii hybrids (Gonzalez et al.,, 2008; Belloch et al.,, 2009; Erny et 

al.,, 2012; Peris et al.,, 2012a, b), a total of six potential hybridization events 

were determined. The first hybridization event involved a haploid S. kudriavevii 

parental KG2 with mtDNA K2 and a diploid S. cerevisiae parental CG2. This 

event originated all Swiss hybrids and the related Trappist brewing strains 

CECT11003 and 11004. This clearly independent origin for Swiss wine 

hybrids is in accordance with the microsatellite phylogenetic analysis of 

hybrids performed by Erny et al., (2012).  



OBJECTIVE 3 -Chapter 1- 

170 

A second hybridization event involving a haploid S. kudriavzevii KG1 

with mtDNA type K4 (found in all hybrids from this group) and a diploid S. 

cerevisiae CG1 originated a lineage of hybrids widely distributed in different 

wine regions such as Austrian hybrids, the Croatian strain SOY3, and the 

South African hybrid VIN7 of putative European origin according to Erny et al., 

(2012). These authors observed in their study that VIN7 is included in the 

same group as other Alsatian and German wine hybrids and bears a close 

relationship to Hungarian wine hybrids, confirming an European origin for 

VIN7. Therefore, this is a lineage of wine hybrids widely distributed from the 

Rhine valley (Alsace and Germany) to the Danube valley (Pannonian region: 

Austria, Croatia and Hungary). 

A third hybridization event was involved in the origin of a lineage of 

brewing strains also widely distributed in ale breweries from England, 

Germany, Belgium (Chimay Trappist Abbey), New Zealand and the clinical 

isolate MR25. This hybridization event involved a haploid S. kudriavzevii 

parental close to K2, KG3 strain, and probably a heterozygous diploid S. 

cerevisiae parental. An “ale” S. cerevisiae strain heterozygous for wine and 

non-wine alleles could be involved in the origin of this group of hybrids. 

Hybrid PB7 was probably originated from two diploid cells derived from 

mosaic strains S. cerevisiae CG6 and S. kudriavzevii KG5. Its tetraploidy 

(Peris et al.,, 2012b) and the presence in this hybrid of a recombinant mtDNA 

(Peris et al.,, 2012a) supports an independent hybridization event. 

Independent origins are postulated for hybrids IF6 and AMH. In the case 

of AMH, its complex tetraploid genome (Peris et al.,, 2012b), in which most of 

the S. kudriavzevii subgenome is lost (Peris et al.,, 2012a), led us to suspect a 

possible scenario in which a diploid S. cerevisiae crossed with a haploid S. 

kudriavzevii strain and, after sporulation or a drastic S. kudriavzevii genome 

reduction, a diploid spore or an evolved derivative backcrossed with a diploid 

S. cerevisiae. IF6 was originated from a cross between a diploid S. cerevisiae 
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CG5 mosaic genotype and a haploid S. kudriavzevii KG1, identical to the one 

involved in the origin of Austrian hybrids. Therefore, the possibility of a 

common origin with Austrian HA, VIN7, and SOY3 hybrids cannot completely 

ruled out if a heterozygous S. cerevisiae ancestor were involved in the 

hybridization event. However, this hypothesis not only requires the differential 

loss or segregation of alleles in the IF6 and Austrian lineages, but also the 

independent acquisition of the mitochondrial genome from the hybrid zygote, 

S. cerevisiae type C2 in IF6 and S. kudriavzevii type K4 in the Austrian 

lineage. This is possible in hybrid zygotes where three types of mitochondrial 

genomes may be present: two from each parental and a recombinant, 

generated after mitochondria fusion (Berger and Yaffe, 2000), but 

mitochondrial sorting occurs from the first budding formation (Shibata and 

Ling, 2007), generating independent lineages that are difficult to distinguish 

from independent hybridizations in which parental relatives were involved. 

Finally, triple hybrids S. cerevisiae x S. kudriavzevii x S. uvarum are not 

shown in Figure 4, also due to to their complex origins, in which a secondary 

hybridization was involved. However, the supernetwork analysis and gene 

trees information indicates that CBS2834 and CID1 were probably derived 

from the same (or similar) S. kudriavzevii parent (KG6) but different S. 

cerevisiae parental strains, the same than the Austrian strains (CG1) for 

CBS2834 and similar to PB7 (CG6) for CID1. 

Finally, the origin of the triple hybrids CID1 and CBS2834 is not clear 

due to the additional occurrence of a secondary hybridization event either 

between a S. cerevisiae x S. kudriavzevii hybrid or derivative with a S. uvarum 

strain or between a S. cerevisiae x S. uvarum hybrid or derivative with a S. 

kudriavzevii strain. However, CID1 and CBS2834 were probably originated 

from independent hybridization events. 

Most hybrids seem to have been generated by rare-mating events 

involving a diploid S. cerevisiae strain and a haploid strain of S. kudriavzevii 
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generating different chimerical genomes with ploidy values close to 3n. This is 

most clear for brewing strains (CECT1388, CECT1990, CECT11011 and 

MR25) where heterozygous genes could be observed. In PB7, which exhibited 

a ploidy value of 3.96, two diploid parents could be involved. Rare-mating has 

already been proposed as a mechanism for natural hybrid generation (Barros 

Lopes et al.,, 2002). Additionally, artificial hybrids generated by rare mating 

are easily obtained in laboratory conditions (Pérez-Través et al.,, 2012). 

Hybrid distribution and their physiological properties, together with the 

conclusions of recent studies on the population-genetic structure of S. 

cerevisiae (Fay & Benavides, 2005; Liti et al.,, 2009) as well as the 

phylogenetic analyses performed in the present study, can be used to 

speculate a possible scenario for the hybridization process. Grapevine 

(Arroyo-García et al.,, 2006) and barley (Badr et al.,, 2000) domestication 

mainly occurred in the Middle East, where the earliest archaeological evidence 

of winemaking (McGovern et al.,, 1997) and brewing (Michel et al.,, 1992) 

have been discovered. From these areas of domestication, there was a 

gradual radiation to adjacent areas of the Mediterranean regions of Europe 

and Africa, following the spread of Phoenician, Greek and Carthaginian 

civilizations. Finally, the expansion of vine growing and winemaking to 

temperate regions of Oceanic and Continental climates of Europe, following 

the main trade fluvial routes, was performed under the influence of the 

Romans, who would take vine-growing to the limits of their empire, the Rhine 

and Danube Rivers. By the end of the Roman Empire, grape growing was 

common in most European locations. In the Middle Ages, viticulture and 

enology were improved and expanded by Christian monks. 

Recent studies on the genetic diversity of S. cerevisiae populations (Fay 

& Benavides, 2005; Aa et al.,, 2006; Arias, 2008; Liti et al.,, 2009) show that 

wine strains constitute a genetically differentiated population that could have 

appeared during the process of adaptation to winemaking conditions, a 
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process of fortuitous domestication of a S. cerevisiae wine strain. The 

microsatellite population analysis of Saccharomyces strains (Legras et al.,, 

2007) also suggests that this population likely originated in the Near East and 

spread during the expansion of grapevine and winemaking. 

About 2,000 years ago, wine S. cerevisiae yeasts were likely taken by 

the Romans, together with the vines and winemaking tools, to the Northern 

limit of grapevine distribution. There, S. cerevisiae wine strains, even 

nowadays, have problems when performing wine fermentations at the lower 

temperatures to which other Saccharomyces species are better adapted 

(Salvadó et al.,, 2011). In these regions, cryotolerant species, such as S. 

bayanus var. uvarum, may outcompete S. cerevisiae (Naumov et al.,, 2000; 

Naumov et al.,, 2001; Naumov et al.,, 2002; Demuyter et al.,, 2004). Under 

such circumstances, however, hybrids may have advantages over the parental 

species (Serra et al.,, 2005; Arroyo-Lopez et al.,, 2009; Belloch et al.,, 2008). 

This is due to the acquisition of physiological properties from both parents, 

which provide a mechanism for selection of hybrids (Zambonelli et al.,, 1997; 

Masneuf et al.,, 1998; Greig et al.,, 2002; Gonzalez et al.,, 2007). In the case 

of S. cerevisiae x S. kudriavzevii hybrids, they acquired good alcohol and 

glucose tolerances and fast fermentation performances from S. cerevisiae 

(Belloch et al.,, 2008; Arroyo-López et al.,, 2010) and a better adaptation to 

low and intermediate temperatures from S. kudriavzevii (Gonzalez et al.,, 

2007; Belloch et al.,, 2008; Arroyo-Lopez et al.,, 2009). 

These S. cerevisiae x S. kudriavzevii hybrids likely appeared several 

times, according to this study, and became frequent in some areas of the 

Northern limit of vine growing, but they could probably spread in Central 

Europe with the expansion of vine growing and winemaking practices that 

occurred during the Middle Ages (McGovern, 2010). Winemaking was 

preserved and improved during the Middle Ages by Christian monks. 

Benedictine abbeys were the main wine producers and traders, but the 
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Cistercian reformation made possible the main revolution in winemaking 

improvements and vine growing extension (Burton & Kerr, 2011). 

From their original abbeys in Burgundy, Cistercians spread across 

Europe during the 11th and 12th centuries to establish more than 300 abbeys. 

During this expansion, the white monks spread the viticulture and enology 

practices to the Rhine and Danube valleys and the Pannonian basin of Central 

Europe (Burton & Kerr, 2011). They extended the Burgundian family of grape 

varieties, mainly Chardonnay and Pinots, as well as German varieties, and 

with them likely the hybrid yeasts responsible for wine fermentation. 

In the regions where the main lineages of S. cerevisiae x S. kudriavzevii 

wine hybrids have been found, winemaking was introduced or improved on by 

Cistercian monks. In fact, the Cistercian order is given credit for planting in the 

French regions of Burgundy, Chablis, Loire, Rhone, Champagne (where the S. 

cerevisiae x S. kudriavzevii hybrid EPII, also called Epernay 2, was isolated 

(Dunn et al.,, 2012)), Alsace (where many hybrids are also present and 

predominant (Erny et al., 2012)) and in several other wine regions in Central 

Europe. Some of these regions are: Rheingau Wine Region in Germany, 

where hybrid AMH (Assmannshausen) and those from Geisenheim (Erny et 

al., 2012) were isolated; Thermenregion, Austria, where HA hybrids, 

characterized in this study, were found as predominant in vineyards (Lopandić 

et al., 2007); Slavonian Croatia, where SOY3 was isolated; and Hungary, 

where these hybrids have also been found (Erny et al.,, 2012). 
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Abstract 
Saccharomyces genus includes seven species based on patterns of 

breeding. The species boundaries are not clear due to the description of 

several reticulate events between Saccharomyces species, such as 

Horizontal Gene Transfer (HGT), introgressions and hybridizations. These 

events are footprints in the genomes that indicate ancestral hybridization 

events driving to non stable hybrid formations increasing the difficulties of 

phylogenetic studies due to phylogenetic incongruence. Application of next 

generation sequencing facilitates the identification of Saccharomyces 

species due to complete nuclear genome information. Some genome 

sequencing projects using nuclear genome have described the population 

structure of S. cerevisiae and S. paradoxus depending on source/country 

origin. Although mitochondrial genome is not a proper marker for 

phylogeographical studies in yeast, the aim of this study is support the 

“pure” nature of the previous strains, using the mitochondrial COX2 gene 

sequences. In addition, our results indicate a common recombination 

hotspot in COX2 gene between different Saccharomyces species due to 

ancestral hybridization events and we postulate a molecular mechanism 

involve in the recombination. 

In the present study, we analyzed the mitochondrial COX2 sequences 

from 532 strains, belonging to the seven pure Saccharomyces species and 

to five types of interspecific hybrids, to determine the extent of 

recombination in this gene. As a result, patent evidences of extensive 

interspecific mtDNA recombination are described for the first time in 

Saccharomyces yeasts and a putative mechanism to explain the presence 

of such recombination hotspot is proposed. 
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1. Introduction 

The genus Saccharomyces encompasses the industrially most 

exploited species known to man, S. cerevisiae. Strains of S. cerevisiae are 

used worldwide in the production of different fermented foods and 

beverages. In addition to S. cerevisiae, at present, several other species 

are recognized in the genus Saccharomyces (Vaughan-Martini and Martini 

2011): S. arboricolus, S. bayanus (with two varieties, bayanus and 

uvarum), S. cariocanus, S. kudriavzevii, S. mikatae, S. paradoxus and S. 

pastorianus. Strains belonging to the last species, S. pastorianus (syn. S. 

carlsbergensis) are employed in lager beer production, and they were 

described as hybrids between S. cerevisiae and S. bayanus (Kodama et 

al., 2005; Rainieri et al., 2006; Dunn and Sherlock, 2008; Nakao et al., 

2009; Bond 2009). Some authors proposed the reinstatement of S. 

bayanus var. uvarum to the species level, as S. uvarum, when the hybrid 

nature of S. bayanus var. bayanus (renamed as S. bayanus) strains was 

demonstrated (Nguyen and Gaillardin, 2005; Rainieri et al., 2006). 

Recently, pure strains of S. bayanus var. bayanus, renamed as S. 

eubayanus, were found in the Argentinian Patagonia (Libkind et al., 2011). 

This new species was proposed as the ancestor of S. bayanus and S. 

pastorianus hybrids together with S. uvarum and S. cerevisiae, respectively 

(Libkind et al., 2011; Nguyen et al., 2011). In the case of S. paradoxus, four 

different populations have been described: American, European, Far 

Eastern and Hawaiian (Liti et al., 2006; Liti et al., 2009), which seem to be 

in the process of speciation (Kuehne et al., 2007). 

With the exception of the hybrid taxa S. pastorianus and S. bayanus, 

Saccharomyces species definition is congruent with the biological species 

concept based on reproductive isolation (Naumov, 1996; Liti et al., 2006; 

Greig, 2008). Artificial interspecific hybridization experiments have 

extensively been performed to delimitate the species of the genus 
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Saccharomyces according to the biological species concept based on 

postzygotic reproductive isolation (Naumov et al., 2000; Liti et al., 2006; 

Naumov, 2009). These experiments indicated that Saccharomyces 

interspecific hybrids can easily be formed, and although sterile, they are 

viable and can be maintained by asexual reproduction. 

Although pre-mating reproductive isolation in the form of mate choice 

can reduce hybridization rates (Maclean and Greig, 2008), hybrids just form 

when the closest available mate is another species. These Saccharomyces 

hybrids are generally sterile, with less than 1% viable ascospores (Greig, 

2008). Activation of the mismatch repair system by sequence divergence 

between the two parental genomes (Chambers et al., 1996; Hunter et al., 

1996; Greig et al., 2003; Liti et al., 2006), and in a lesser extent the 

presence of reciprocal translocations (Delneri et al., 2003; Liti et al., 2006), 

were described as the most important postzygotic barriers contributing to 

the reproductive isolation among Saccharomyces species. Finally, recent 

cases of cytonuclear incompatibility between different nuclear and 

mitochondrial gene pairs have also been reported as involved in 

Saccharomyces interspecific hybrid sterility (Lee et al., 2008; Chou et al., 

2010). 

Because reproductive isolation in the genus Saccharomyces is mainly 

postzygotic, interspecific hybridization is possible in natural environments. 

In addition to S. pastorianus (S. cerevisiae x S. eubayanus), S. bayanus (S. 

eubayanus x S. uvarum), other new natural Saccharomyces hybrids have 

also been isolated from wine, beer, cider, dietary supplements or clinical 

samples. They include S. cerevisiae x S. uvarum (Masneuf et al., 1998; Le 

Jeune et al., 2007) and S. cerevisiae x S. kudriavzevii double hybrids 

(González et al., 2006; Lopandic et al., 2007; González et al., 2008; Erny et 

al., 2008; Peris et al., 2012a), as well as S. cerevisiae x S. kudriavzevii x S. 
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uvarum (González et al., 2006) and S. cerevisiae x S. eubayanus x S. 

uvarum (Rainieri et al., 2006; Nguyen et al., 2011) triple hybrids. 

Recent and past events of hybridization leave recombination 

footprints that can be detected. This way, the genome characterization of 

Saccharomyces hybrids, either by array comparative genome hybridization 

(aCGH) with DNA chips (Bond et al., 2004; Kodama et al., 2005; Belloch et 

al., 2009; Peris et al., 2012b) or sequencing (Nakao et al., 2009; Borneman 

et al., 2012), revealed the presence of chimerical chromosomes generated 

by recombination between homologous regions of the parent genomes. 

Moreover, genome sequencing and aCGH analysis of S. cerevisiae, and S. 

paradoxus strains showed evidence of introgression in both directions (Liti 

et al., 2006; Wei et al., 2007; Doniger et al., 2008; Muller and McCusker, 

2009; Dunn et al., 2012), likely generated during unstable hybridization 

between these species followed by backcrosses with one or the other 

parental species. Recently, introgression from S. mikatae to S. cerevisiae 

has also been described (Dunn et al., 2012).  

In a recent characterization of new S. cerevisiae x S. kudriavzevii 

hybrids (Peris et al., 2012a), the mitochondrial gene COX2, encoding 

subunit II of the cytochrome-c oxidase complex, from these hybrids was 

sequenced to determine their mitochondrial inheritance. These sequences 

showed putative evidence of interspecific recombination at the 

mitochondrial genome from certain hybrids. 

Yeast mitochondrial DNA (mtDNA) shows a paucity of genes, which 

in some species is compensated by a structural complexity in the intergenic 

regions, resulting from the distribution of optional introns, rearrangements 

and/or insertions/deletions (Clark-Walker, 1989; Clark-Walker, 1992; 

Langkjær et al., 2003; Nosek et al., 2006). In S. cerevisiae, mitochondria 

from the two parents positioned towards the central region of the zygote 

fuse after mating. In these fused mitochondria, parental mtDNAs mix and 
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recombine with high frequency (Nunnari et al., 1997; Berger and Yaffe, 

2000). A large body of data confirming intraspecific mitochondrial 

recombination in S. cerevisiae is available since several decades ago 

(Dujon et al., 1974; Fonty et al., 1978). In this way, genetic analysis of cells 

derived from medial buds generated in the central region of the zygote 

revealed recombinant mtDNA, whereas cells from end buds inherited one 

of the parental mtDNA types (Dujon et al., 1974; Nunnari et al., 1997; 

Berger and Yaffe, 2000). This mitochondrial vegetative segregation 

establishes homoplasmic lineages by a DNA recombination protein-

dependent mechanism (Ling and Shibata, 2004; Shibata and Ling, 2007). 

In the present study, we analyzed the mitochondrial COX2 sequences 

from 532 strains, belonging to the seven pure Saccharomyces species and 

to five types of interspecific hybrids, to determine the extent of 

recombination in this gene. As a result, patent evidences of extensive 

interspecific mtDNA recombination are described for the first time in 

Saccharomyces yeasts and a putative mechanism to explain the presence 

of such recombination hotspot is proposed. 

 

2. Material and Methods 

2.1 Saccharomyces strains and culture media 

Five hundred thirty-two strains from different origins and sources of 

isolation were used in this study (Table 1). The species assignations for 

these strains, confirmed by restriction analysis and/or sequencing of the 

5.8S-ITS region (Fernández-Espinar et al., 2000), are as follows: 1 strain to 

S. arboricolus, 2 S. cariocanus, 420 S. cerevisiae, 21 S. paradoxus; 2 S. 

mikatae, 9 S. kudriavzevii, 28 S. bayanus var. uvarum (or S. uvarum), and 

15 S. bayanus var. bayanus (or S. bayanus, i.e. S. eubayanus x S. uvarum 

hybrids), 5 S. pastorianus (S. cerevisiae x S. eubayanus hybrids), 1 S. 

cerevisiae x S. uvarum hybrid, 25 S. cerevisiae x S. kudriavzevii hybrids,   
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Table 1. Geographic origin of Saccharomyces strains. Wine or non-wine sources of Saccharomyces 
cerevisiae strains are also included. 
 

Species     Origin     Strains 

S. cerevisiae            420 

         European   130 
         Africa    27 
         Far-East   20 
         America   227 
         Unknown   16 

         Wine    131 
         Non-wine   289 
 

S. paradoxus            23 

         European   8 
         Far-East   6 
         America   9 

S. mikatae        Far-East   2 

S. arboricolus       Far-East   1 

S. kudriavzevii           9 

         Far-East   2 
         Europe   7 

S. uvarum            28 

         Europe   26 
         Unknown   2 

S. cerevisiae x S. kudriavzevii     Europe   25 

S. cerevisiae x S. kudriavzevii x S. uvarum       2 

         Europe   2 

S. cerevisiae x S. eubayanus          5 

         Europe   4 
         Unknown   1 

S. cerevisiae x S. uvarum      Europe   1 

S. eubayanus x S. uvarum          15 

         Europe   7 
         Unknown   8 
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and 2 S. cerevisiae x S. kudriavzevii x S. uvarum hybrids. One strain of 

Lachancea castelli was used as outgroup. Yeast strains were grown at 

28°C in GPY medium (2% glucose, 0.5% peptone, 0.5% yeast extract). 

 

2.2 PCR amplification and sequencing of COX2 genes. 

Total yeast DNA was extracted following the procedure described 

elsewhere (Querol et al., 1992). The mitochondrial gene COX2 was 

amplified by PCR, using the primers described in ref. (Belloch et al., 2000). 

PCR products were cleaned with High Pure PCR Product Purification Kit 

(Roche Diagnostics, Mannheim, Germany) and both strands of the DNA 

were directly sequenced using the BigDyeTM Terminator V3.0 Cycle 

Sequencing Kit (Applied Biosystems, Warrington, UK), following the 

manufacturer's instructions, in an Applied Biosystems automatic DNA 

sequencer ABI 37301 (Applied Biosystems). 

COX2 gene sequences obtained in this study were deposited into 

GenBank under accession numbers JN676363-JN676823. Other COX2 

gene sequences, not determined in this study, were retrieved from 

GenBank, where they are deposited under the accession numbers 

indicated in Table S1. Other sequences were obtained from the 

Saccharomyces Genome Resequencing Project by Blast searching 

(http://www.sanger.ac.uk/research/projects/genomeinformatics/sgrp.html). 

 

2.3 Phylogenetic analysis and detection of recombination 

COX2 sequences were aligned with MEGA5 (Tamura et al., 2011) 

and classified into haplotypes by using DNASP v5.10 (Librado and Rozas, 

2009). A median joining (MJ) network (Bandelt et al., 1999) was 

constructed by using Network 4.5 (http://www.fluxus-engineering.com/). 

Recombination analyses were performed with one representative 

sequence from each haplotype. Recombination points were defined by 

http://www.sanger.ac.uk/
http://www.fluxus-engineering.com/
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using the RDPv3.44 package (Martin et al., 2010). This program includes 

six methods to detect recombination: RDP (Martin and Rybicki, 2000), 

Bootscanning (Salminen et al., 1995), MaxChi (Smith, 1992), Chimaera 

(Smith, 1992), GeneConv (Padidam et al., 1999) and Sis-scan (Gibbs et al., 

2000). Common settings for all methods were to consider sequences as 

circular, statistical significances were set at the P < 0.05 level, with 

Bonferroni correction for multiple comparisons. Visual comparison of the 

polymorphic site distribution was also performed to confirm the results. 

Different recombination points were detected but two most frequent 

recombination sites divided the COX2 gene into two segments, referred as 

5'-end (positions 1-496 in the alignment or 124-620 in the reference COX2 

gene sequence from strain S288c, GenelD: 854622) and 3'-end (from 

position 497 to the end of the alignment, or from 621-708 in the reference 

S288c COX2 gene sequence). 

Phylogenetic networks were obtained from the two segments of 

COX2 alignment with the Neighbor-Net method, with default settings, 

included in SPLlTSTREE 4 package (Huson and Bryant, 2006). These two 

COX2 segments were also used to obtain maximum-likelihood trees with 

the best suited models of nucleotide substitution defined according to 

jModeltest (Posada, 2008). Tree Puzzle v5.2 (Schmidt et al., 2002) was 

used to test the phylogenetic congruence of the two ML trees with respect 

to a consensus Saccharomyces species tree topology obtained by 

combining phylogenetic trees from previous studies (Rokas et al., 2003; Liti 

et al., 2006; Wang and Bai, 2008; Scannell et al., 2011). The statistical 

significance of these comparisons was assessed with the Shimodaira-

Hasegawa (Shimodaira and Hasegawa, 1999) and ELW (Strimmer and 

Rambaut, 2002) tests. 
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3. Results 

3.1 COX2 variability in the Saccharomyces yeasts. 

The 532 COX2 coding sequences used in this study correspond to 93 

different species-specific haplotypes. Their alignment yields 585 nucleotide 

positions, of which 98 are variable (16.8%), and of them 77 are 

phylogenetically informative (13.2%). Half of this nucleotide variability 

occurs in the 3’ end of this gene (from positions 451-585, almost the last 

fifth of the alignment). Twenty-two variable sites correspond to 0-fold 

degenerated positions where non-synonymous substitutions occur, but only 

7 of them are informative; 31 variable sites correspond to 2-fold 

degenerated positions, but only 5 of them show non-synonymous 

substitutions (2 informative and 3 singletons). Finally, 44 variable sites are 

4-fold degenerated and 41 of them are informative. Two adjacent codons 

(positions 535-537 and 538-540) show several non-synonymous 

substitutions, in the second codon the corresponding amino acid 

replacements are unique (singletons), but in the first one they are 

convergent, and a “flip-flop” amino acid replacement pattern is observed. 

Two other codons (positions 541-543 and 556-558) show several 

informative and convergent substitutions corresponding to synonymous 

changes between the two codon families coding for Serine (TCN and AGY), 

and between the two codon families encoding Threonine (CTN and ACN), 

respectively (Table 2). The variability in these 3 codons, showing 

informative and convergent changes, classifies haplotypes in groups, as 

indicated in Table 2. 

The 93 different COX2 haplotype sequences were used to reconstruct their 

phylogenetic relationships by means of a MJ network analysis. 

Phylogenetic networks should be employed when reticulate events such as 

intra- or interspecific hybridization, horizontal gene transfer, recombination, 

or gene duplication and loss are believed to be involved (Huson and  
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Figure 1A.- A median joining network of COX2 mitochondrial gene alignment. Each haplotype is 
represented by a circle, with the area of the circle proportional to its frequency. Species or hybrid strains 
were indicated by different colors, with the exception of haplogroups 1 and 2 that were colored in 
Figures 1B and 1C, respectively. The length of each branch is proportional to the number of mutations 
on the respective branch. 
Figure 1B.- A zoom in of median joining network part of Haplogroup 1. 
Figure 1C.- A zoom in of median joining network part of Haplogroup 2. 
 

 

Bryant, 2006). Seven haplogroups can be described according to the MJ 

network analysis (Fig. 1A). Relationships among haplotypes within 

Haplogroups 1 and 2 are given in more detail in Figures 1B and 1C, 

respectively. 

In the MJ phylogenetic network based on COX2 sequences, haplotype 76 

(from S. arboricolus) occupies an ancestral position close to the root 

located by the outgroup Naumovia castellii COX2 sequence. The first 

branch to diverge corresponds to haplogroups 5 and 6, which appear as 

derived and ancestral haplogroups, respectively. These haplogroups 

comprise haplotypes found in S. uvarum and the hybrid species S. bayanus 

(S. eubayanus x S. uvarum hybrids) and S. pastorianus (S. cerevisiae x S. 

eubayanus hybrids).   

 
Table 2. Variable COX2 nucleotide positions among haplotypes (H). 
Haplotypes are colored according to the color codes depicted in Figures 2. 
COX2 regions are also colored according to their similarities. Hg 
corresponds to the haplogroup according to the phylogenetic network 
analysis (Fig. 1), and N stands for number of strains exhibiting each 
haplotype. The 3’ end regions contain 3 codons (indicated in red) that are 
variable for their 3 positions (squared). The first codon is the only showing 
several informative and convergent non-synonymous substitutions 
(aminoacids A, N, Q, S or T), the second encodes Serine with a six-codon 
family, TCN (S1) or AGY (S2), and the third encodes Threonine with an 
eight-codon family, CTN (T1) or ACN (T2). The variability in these codons 
classifies haplotypes in groups according to their codon combinations, as 
indicated. 
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_____________________________________________________________________________________________________________________ 

                                              COX2 variable nucleotide positions (in vertical) 
             ______________________________________________________________________________________________________ 

                       1111111111111122222222333333333444444444444444445555555555555555555555555555555555555555 

          24556677891112344455779900234799023467788001122445677889990011222333333344444445555556666777777888 Codon 

H   Hg N  18273558101796514713142712240057010565817891403170814032381409578145678901236890256781789013679245 Group 

__________________________________________________________________________________________________________________ 

          AGTATTAATAATTTATATATCTTGTGATAAATTTAATTATTCGTATTTCATTTTTTCTCACACTCTACAATGCTCAATGTCACTGACAACAGTATATT QS1T1 

H9  1  4  .................................................................................................. QS1T1 

H15 1 33  ............................................................................................A..... QS1T1 

H52 1  1  .......................A....................................................................A..... QS1T1 

H18 1 11  ..............................................................T.............G...............A..... QS1T1 

H19 1 44  ..............................................................T.............................A..... QS1T1 

H41 1  1  .........................A....................................T.............................A..... QS1T1 

H11 1  2  ..........................................................T.................................A..... QS1T1 

H53 1  1  ..........................................................T.T.T.............G...............A..... QS1T1 

H54 1  1  ..........................................................T.T.T.............G.A.............A..... QS1T1 

H49 1  1  ..........................................................T.T.T.............G...T...........A..... QS1T1 

H20 1  5  ............................................................T.T...GGC...TAGT................G..... AS2T1 

H10 1  2  ..............................................................T.........TAGT................G..... QS2T1 

H33 1  1  ........................................................................TAGT................G..... QS2T1 

H25 1  1  ............................................................T.T.........TAGT................A..... QS2T1 

H4  1 30  ..........................................................T.T.T.........TAGT................G..... QS2T1 

H13 1 15  ............................................................T.T.........TAGT................G..... QS2T1 

H55 1  1  ............................................................T.T.......G.TAGT................G..... QS2T1 

H34 1  1  ....................T...................................................TAGT................G..... QS2T1 

H40 1  1  ....................T.....................................TTT...........TAGT............C...G..... QS2T1 

H50 1  9  ....................T.....................................TTT...........TAGT................G..... QS2T1 

H39 2  4  ....................T.....................................TTT.....GGC...T..TG...TGACATA..T..A..G.C AS1T2 

H36 2  4  ....................T.....................................T.T.....GGC...T..TG...TGACATA..T..A..G.C AS1T2 

H37 2  9  ....................T...........................T.........TTT.....GGC...T..TG...TGACATA..T..A..G.C AS1T2 

H57 2  1  ....................T...........................T.........TTT.T...GACGGTT..TG...TGACATA..T..A..G.C TS1T2 

H47 2  5  ............................................................T.....GGC...T..TG...TGACATA..T..A....C AS1T2 

H59 2  1  ............................................................T.T...GGC...T..TG...TGACATA..T..A....C AS1T2 

H58 2  3  ............................................................T.....GGC...T..TG...TGACATA..T..A..G.C AS1T2 
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Table 2. Cont.  
_________________________________________________________________________________________________________________ 
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          24556677891112344455779900234799023467788001122445677889990011222333333344444445555556666777777888 Codon 
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__________________________________________________________________________________________________________________ 

          AGTATTAATAATTTATATATCTTGTGATAAATTTAATTATTCGTATTTCATTTTTTCTCACACTCTACAATGCTCAATGTCACTGACAACAGTATATT QS1T1 

H24 2  1  ..........................................................TT......GGC...T..TG...TGACATA..T.......C AS1T2 

H7  2 33  ..........................................................T.T.....GGC...T..TG...TGACATA..T..A....C AS1T2 

H21 2  1  ..........................................................T.T.....GGC...T..TG...TGACATA..T..A..G.C AS1T2 

H27 2  1  ..........................................C...............TTT....C.GC...T..TGC..TCACACAG.T..AG.G.G AS1T2 

H14 2 15  ..........................................................TTT.....GGC...T..TG...TGACATA..T..A..G.C AS1T2 

H38 2  1  ..A.......................................................TTT.....GGC...T..TG...TGACATA..T..A..G.C AS1T2 

H56 2  2  ................................................T.........TTT.T...GGC...T..TG...TGACATA..T..A....C AS1T2 

H48 2  1  ................................................T.........T.T.....GGC...T..TG...TGACATA..T..A..G.C AS1T2 

H31 2  1  ................................................T.........TTT......GC...T..TG...TGACATA..T..A..G.C AS1T2 

H29 2  1  ...................................T............T.........TTT......GC...T..TG...TGACATA..T..A..G.C AS1T2 

H42 2  1  ...................................T............T.........TTT.....GGC...T..TG...TGACATA..T..A..G.C AS1T2 

H30 2  1  ..............................C....T............T.........TTT......GC...T..TG...TGACATA..T..A..G.C AS1T2 

H8  2 26  ....................T..............T............T.........TTT.T...GGC...T..TG...TGACATA..T..A....C AS1T2 

H22 2 11  ....................T..............T............T.........T.T.T...GGC...T..TG...TGACATA..T..A....C AS1T2 

H43 2  1  ....................T...A..........T............T.........T.T.T...GGC...T..TG...TGACATA..T..A....C AS1T2 

H28 2  1  ....................T..............T............T.........TTT.....GGC.A.T..TG..CTGACATA..T..AC.... AS1T2 

H35 2  3  ....................T..............T............T.........TTT.....GGC...T..TG...TGACATA..T..A....C AS1T2 

H45 2  1  ....................T..............T............T........GTTT.....GGC...T..TG...TGACATA..T..A..G.C AS1T2 

H46 2  3  ......C.............T..............T............T.........TTT.....GGC...T..TG...TGACATA..T..A..G.C AS1T2 

H51 2  1  ....................T..............T............T.........TTT.....GGC...T..TG...TGGCATA..T..A..G.C AS1T2 

H3  2 30  ....................T..............T............T.........TTT.....GGC...T..TG...TGACATA..T..A..G.C AS1T2 

H1  2 16  ....................T..............T............T.........TTT......GC...T..TG...TGACATA..T..A..G.C AS1T2 

H26 2  1  ....................T.........C....T............T.........TTT......GC...T..TG...TGACATA..T..A..G.C AS1T2 

H23 1  1  ....................T..............T............T.........T.T.T.............G...............A..... QS1T1 

H16 1 24  ....................T..............T............T.........TTT...........TAGT................G..... QS2T1 

H17 1  1  ....................T..............T............T.........TTT...........TAGT................G...C. QS2T1 

H12 1  6  ....................T..............T............T.........T.T.T.........TAGT................G..... QS2T1 

H2  1 54  ....................T..............T............T.........TTT...........T.....A.T...A.T.....A..... QS1T1 

H60 1  2  ....................T..............T............T.......A.TTT...........T.....A.T...A.T.....A..... QS1T1 

H32 1  1  ....................T.A............T............T.........TTT...........T.....A.T...A.T.....A..... QS1T1 
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          AGTATTAATAATTTATATATCTTGTGATAAATTTAATTATTCGTATTTCATTTTTTCTCACACTCTACAATGCTCAATGTCACTGACAACAGTATATT QS1T1 

H64 2  1  .A..................T....................T..................T.....GGC...T..TG...TGACATA..T..A....C AS1T2 

H65 1  1  .A..................T....................T..................T.................A.....A.......A..... QS1T1 

H66 1  1  .A..................T............C.......T..................T.................A.....A.......A..... QS1T1 

H67 1  1  .A..................T............C.......T..................T.......................A.......A..... QS1T1 

H68 1  1  .A..................T....................T..................T...........T.....A.....A.......A..... QS1T1 

H69 2  2  ....................T.....................................TTT.....T.........G...TGACTTA..T..G....C QS1T2 

H70 2  3  ....................T.....................................TTT.....T......AGTG...TGACTTA..T..G....C QS2T2 

H72 2  3  ....................T........................G............TTT.....T.........G...TGACTTA..T..G....C QS1T2 

H73 2  2  .A..................T.......T.............................TTT.....C.........G...TGACTTA..T..G....C QS1T2 

H71 2  1  ....................T.....................................TTT.....GGC.......G...TGACTTA..T..G....C AS1T2 

H5  7  1  ....................T............C.......T.....C..........TTT.T..........AGT.....G.........AA.A..G QS2T1 

H6  7  1  ....................T............C.......T.....C..........TTT.T..........AGT.....G........CAA..... QS2T1 

H62 7  1  ....................T............C.......T.....C..........TTT.T...G......AGT.....G.........AA..... QS2T1 

H61 7  3  ....................T............C.......T.....C..........TTT.T...GGC....AGT.....G.........AA..... AS2T1 

H92 7  1  .................................C.......T.....C..........TTT.T...GGC....AGT.....G.........AA..... AS2T1 

H63 7  1  ....................T............C.......T.....C..........TTT.T...GGC.......G....G.........AA..... AS1T1 

H75 -  1  ..........G.........T.............T......T....................T...GGC.......G....GACATA..T..A..... AS1T2 

H74 -  1  ..........G.........T.............T......T..................T.T...GGC....AGTG...............A..... AS2T1 

H76 -  1  .A...........AT.....TA.......T....T......T..................T.T.........T..................AA..... QS1T1 

H87 4  1  ...TA...CT.....C.AGA.A.......T...C.......T.....C..........TTT.T.............G....G.........AA..... QS1T1 

H89 4  1  ...TA...CT.....C.AGA.A.......T...C.......T.....C..........TTT.T.............G....GACT......AA..... QS1T2 

H88 4  5  ...TA...CT.....C.AGA.A.......T.....T.....T.....C..........TTT.T...G.........G....G.........AA..... QS1T1 

H86 -  1  ...TA...CT.......AGA.A.......T...C.T....A..AT....T...AA...A.T.T....A.T..T..T....TG..ATT..........C NS1T1 

H83 3  1  ...TA...CT.....C.AGA.A.......T...C.T....A..AT....T...A....A.TG.ATCTGCT...AGTG...TGACATA..T..A....C AS2T2 

H90 3  1  ...TA...CT..C..C.AGATA.......T.....T....A..AT....T..AA....A.T..AT.TGCT...AGT....T.ACATA..T..A....C AS2T2 

H44 3 10  ...TA...CT.....C.AGA.A.......T.....T....A..AT....T..AA....A.TG.AT.TGCT...AGT....T.ACATA..T..A....C AS2T2 

H91 3  3  ...TA...CT.....C.AGA.A.......T.....T....A..AT....T..AA....A.TG.AT.TGCC...AGT....T.ACATA..T..A....C AS2T2 

H84 3  9  ...TA...CT.....C.AGA.A.......T.....T....A..AT....T..AA....A.TG.AT.TGCT...AGT....TTACATA..T..A....C AS2T2 

H85 3  1  ...TA...CT.....C.AGA.A.......T.....T....A..AT....T..AA....A.TG.AT.TGCT...AGT....TTACAT...T..A....C AS2T2 
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          AGTATTAATAATTTATATATCTTGTGATAAATTTAATTATTCGTATTTCATTTTTTCTCACACTCTACAATGCTCAATGTCACTGACAACAGTATATT QS1T1 

H78 6  10 T....GTT...A..T..AG.TA.......T.AA.T...CA.T.A..A.TTG...AC....T.T...TA.T........A.T.ACTCT..T..G..... NS1T2 

H79 6   1 T....GTT...A..T..AG.TA.......T.AA.T...CA.T.A..A.TTG...AC....T.T...TA.T........A.T.ACTCT..T.TG..... NS1T2 

H93 6   1 T....GTT...A..T..AG.TA.......T.AA.T...CA.T.A..A.TTG...AC....T.T...TA.T........A.T.ACTCT..T..G....C NS1T2 

H81 5   3 T..T.GTT......TCT.G..A....GC.T.AA.TTAATAAT.A..A.TTGC..AC....T.T...TA.T........A.T.ACTCT..T..G..... NS1T2 

H77 5  17 T..T.GTT......TCT.G..A....GC.T.AA.TTAATAAT.A..A.TTGC..AC....T.T....TCT..T..T....T.ACTCT..T..G..... SS1T2 

H80 5  12 T..T.GTT......TCT.G..A....GC.T.AA.TTAATAAT.A..A.TTGC..AC....T.T....A.T..T.......T.ACTCT..T..G..... NS1T2 

H82 5   4 T..T.GTT......TCT.G..A....GC.T.AA.TTAATAAT.A..A.TTGC..AC....T.T....A.T..T..C....T.ACTCT..T..G..... NS1T2 
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Then, Haplogroup 1 appears in a basal position with respect to the 

remaining haplogroups, located in 2 separated branches. Haplotypes 

included within haplogroup 1 can be divided in four subgroups (Fig. 1B). 

The first subgroup comprises haplotypes H2, H60 and H94, corresponding 

to 55 S. cerevisiae strains, mostly from wines, and 2 S. cerevisiae x S. 

kudriavzevii (UvCEG and IF6) and 1 S. cerevisiae x S. uvarum (S6U) 

hybrids. The second one, located in an intermediate position, includes 4 

haplotypes (H65 to H68) exhibited by 5 S. paradoxus strains from Far East 

Siberia. The third subgroup includes the remaining 24 haplogroup 1 

haplotypes, corresponding to 197 S. cerevisiae strains from different origins 

and sources of isolation, but mainly from non-wine sources. Finally, the 

fourth subgroup only includes haplotype H68, found in S. paradoxus strain 

CECT 11424 from Far East Russia, which is located in a separated 

position. 

Closely related to haplogroup 1 appears haplogroup 7, in fact, its 

haplotypes could be included as a subgroup within haplogroup 1, but as 

they correspond to European S. paradoxus strains and are connecting 

haplogroup 1 to haplogroups 3 and 4, they were included in a different 

group. Haplogroups 3 and 4 (ancestral and derived, respectively) include 

haplotypes present in S. kudriavzevii strains and its hybrids S. cerevisiae x 

S. kudriavzevii and S. cerevisiae x S. kudriavzevii x S. uvarum. 

Haplogroup 2 is the second main group, located in a branch 

separated from haplogroup 1 by haplotypes H74 and H75, present in the 2 

S. mikatae strains under analysis. Haplogroup 2 (fig. 1C) comprises two 

subgroups of haplotypes, the first one includes haplotypes present in S. 

cerevisiae strains from diverse origins, but mainly from non-wine sources, 

and one S. paradoxus strain from Japan (haplotype H64). The second 

subgroup contains haplotypes found in American S. paradoxus (H69-H72) 

and S. cariocanus strains (H73).  
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As can be seen, there is no correlation between the phylogenetic 

relationships deduced from mitochondrial COX2 gene sequences, and the 

taxonomic assignation of strains based on the restriction analysis and/or 

sequencing of the 5.8S-ITS region (data not shown), or the expected 

phylogenetic relationships among Saccharomyces species and populations 

(Liti et al., 2006; Wang and Bai, 2008). This is relevant in the cases of S. 

cerevisiae and S. paradoxus strains, which are intermixed within two 

differentiated groups. In the case of S. paradoxus strains, they are grouped 

according to their geographic origin, Europe, Far East Siberia, Japan and 

America, but each geographic group is closer to different groups of S. 

cerevisiae strains. In this way, a group of S. cerevisiae strains are closely 

related to S. paradoxus from Far Eastern Siberia (haplogroup 1) and from 

Europe (haplogroup 7), and a second group of S. cerevisiae strains are 

closely related to a Japanese and the American S. paradoxus (haplogroup 

2). Moreover, although Haplogroup 1 includes a higher number of American 

S. cerevisiae strains, there is no clear correspondence between the S. 

cerevisiae groupings and the strain origin (Figure S1) or source of isolation. 

Moreover, hybrids exhibiting S. cerevisiae COX2 sequences appear in both 

haplogroups: two S. cerevisiae x S. kudriavzevii strains IF6, from a dietary 

complement, and UvCEG, from wine, and one S. cerevisiae x S. uvarum 

strain S6U, from wine, are grouped within Haplogroup 1, but the hybrid S. 

cerevisiae x S. kudriavzevii AMH, from wine, is Included in Haplogroup 2. 

 

3.2 Recombinant COX2 sequences. 

Due to the incongruences between the COX2 phylogenetic 

relationships and the expected phylogenetic relationships among 

Saccharomyces species and populations based on nuclear genes (Liti et 

al., 2006; Wang and Bai, 2008), we investigated the possible presence of 

recombination signals in the COX2 sequences. For this purpose we used 
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the different methods to detect recombination implemented in the RDP 

v3.44 program (see materials and methods), and the results of this analysis 

were confirmed by the visual inspection of the COX2 nucleotide variability 

(Table 2). In most cases, the identification of the recombinant sequences 

and their parental non-recombinant forms is difficult because one of the two 

recombinant derivatives can be absent in our large sample or because the 

putative parentals and their recombinants can show slight nucleotide 

differences either due to divergence since the recombination event or due 

to the absence of the real parental in the sample but a closely related 

haplotype to the parental is present. 

According to the RPD analysis, many haplotypes are recombinant 

and in most of them a major recombination site is located between 

positions 501 and 525 of the COX2 sequence alignment (Table 2), although 

in some cases the recombination site is located in other positions, e.g. 

haplotypes H87, H88 and H89. In most cases, recombinant segments 

extend beyond the limits of the COX2 gene but in a few cases the 

recombination segment finishes within the COX2 gene (e.g. haplotype 

H63). Finally, in a couple of haplotypes (H20 and H86), two recombination 

events are postulated. Because, in most cases the recombinant segments 

extend beyond the limits of the COX2 gene, the assignation of the 

recombinant and the parental forms (see Table 2) can be wrong, because 

the parental may be the recombinant and vice versa. 

Recombination in COX2 has been occurring at both the intraspecific, 

among S. cerevisiae COX2 (different haplotypes), and the interspecific 

levels, between S. cerevisiae and S. paradoxus or between S. cerevisiae 

and S. mikatae (haplotype H75). It is remarkable the case of haplotypes 

H2, H32 and H60, on one hand, and H64, on the other, which correspond 

to the two closely related reciprocal recombinant forms resulting from a 

recombination event between S. cerevisiae COX2 haplotypes from 
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haplogroup 2 and Far Eastern S. paradoxus COX2 haplotypes from 

haplogroup 1.  

It is also worth to note that in several cases the putative recombinant 

COX2 haplotypes are present in interspecific hybrids of different nature. 

This way, the recombinant haplotypes H87 and H88 are present in S. 

cerevisiae x S. kudriavzevii hybrids (PB7 and 5 brewery hybrid strains, 

respectively) and haplotype H89 in the cider strain CID1 (a triple hybrid S. 

cerevisiae x S. kudriavzevii x S. uvarum). These haplotypes showed a 5’ 

end sequence (alignment positions 1 to 300 or 350, depending on the 

haplotype) identical to S. kudriavzevii COX2 sequences, and the 3’ end is 

closely related not to COX2 from S. cerevisiae (as expected), but to COX2 

from European S. paradoxus strains (Table 2). Another example comes 

from recombinant haplotype H81, exhibited by 5 S. bayanus strains 

corresponding to S. eubayanus x S. uvarum hybrids. The first 504 

nucleotides of the COX2 gene are identical to the S. uvarum haplotypes, 

but the rest of the gen is identical to haplotype H78 present in other S. 

eubayanus x S. uvarum (S. bayanus) and S. eubayanus x S. cerevisiae (S. 

pastorianus) hybrids, which likely corresponds to the COX2 gene inherited 

from the S. eubayanus parent. 

 

3.3 Phylogenetic networks of COX2 segments 

As a result of the recombination analysis, we detected a 

recombination hotspot present in most recombinant COX2 haplotypes. 

Therefore, we constructed maximum-likelihood (ML) phylogenetic trees for 

each COX2 segment: 5’ end segment, from the beginning to the hotspot, 

and 3’ end from the hotspot to the end. These partial COX2 phylogenetic 

trees were compared against the expected topology based on the species 

tree derived from previous studies (Rokas et al., 2003; Liti et al., 2006; 
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Wang and Baig, 2008). These comparisons were performed with the 

Shimodaira-Hasegawa (SH) and Expected Likelihood Weight (ELW) tests.  

The topology of the ML phylogenetic tree of the COX2 5’-end 

sequences was not significantly different from the species topology 

phylogenetic tree. However, the ML tree of the second segment (COX2 3’-

end sequences) was significantly better than the tree with the topology of 

the species tree. As phylogenetic networks are better representations of the 

phylogenetic relationships when reticulated events, such as recombination, 

are involved in the evolution of the sequences, we obtain phylogenetic 

networks for each COX2 segments (Fig. 2A and 2B). 

The network of the first COX2 5’-end segment (fig. 2A) showed well 

defined groups of strains for each species. In the case of S. eubayanus 

haplotypes, they correspond to COX2 sequences from this species present 

in S. eubayanus x S. uvarum and S. eubayanus x S. cerevisiae hybrids. 

And in the case of S. uvarum and S. kudriavzevii haplotypes, they 

correspond to those found in pure strains of these species as well as in 

their hybrids that inherited COX2 from these parentals. Haplotypes H87, 

H88 and H89 appear in a separated group within the S. kudriavzevii 

lineage, but this is due to the fact that their recombination sites are located 

within the 5’-end segment used for the phylogenetic network reconstruction. 

In the case of S. paradoxus, strains are grouped according to their 

geographic origins: Europe, Asian Far East (Japan and Siberian Far East) 

and America. And in the case of S. cerevisiae, strains appear in three main 

groups (indicated by dashed squares) as well as additional lineages of 

sequences recombinant for this segment. These groupings are not 

correlated either with their geographic origins or with their sources of 

isolation. One of these groups, formed by haplotypes H34, H36, H39, H40 

and H50, is the only exception to the species clustering because they are  
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Figure 2A.- Phylogenetic network of the COX2 first part alignment (1-496). Haplotypes are colored 
according to the specie included in them. The length of each edge is proportional to the weight of the 
associated split, this is analogous to the length of a branch in a phylogenetic tree. 
Figure 2B.- Phylogenetic network of the COX2 second part alignment (497-End). Haplotypes are 
colored according to the specie included in them. The length of each edge is proportional to the weight 
of the associated split, this is analogous to the length of a branch in a phylogenetic tree. 

 

 

grouped with the American S. paradoxus haplotypes. This tree is congruent 

with the putative recombinant nature of these haplotypes (see Table 2).  

The phylogenetic network of the second segment (Fig. 2B), 

corresponding to the COX2 3’-end sequences, shows radically different 

relationships due to the recombination events. This tree is congruent with 

the sequence polymorphisms of this region shown in Table 2.  

Haplotypes are clustered in three main groups (indicated in Fig 2B) 

that are more or less correlated to the combinations of those codons that 

showed a ‘flip-flop’ variability (see Table 2). Exceptions to these groups 

seem to be due to putative recombination events leading to intermediate 

positions of these recombinant haplotypes. 

The first group (indicated as AXT2) comprises a subgroup of S. 

cerevisiae strains (codon combination type AS1T2), in which the 

recombinant haplotype H64 from the Japanese S. paradoxus strain is 

included, as well as the American S. paradoxus, most S. kudriavzevii 

haplotypes (type AS2T2) and the S. mikatae recombinant haplotype H75. 

The second group (QXT1) includes three different S. cerevisiae strain 

clusters. One is closely related to a subgroup formed by European S. 

paradoxus haplotypes and related recombinant haplotypes from S. 

kudriavzevii hybrids. And the second and third clusters are closely related 

to Far East S. paradoxus haplotypes as well as to the non-recombinant S. 

mikatae haplotype H76. 

Finally, the third group (NS1X) includes three lineages, that of the 

non-recombinant haplotypes of S. eubayanus together with the 
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recombinant haplotype H81, the non-recombinant haplotypes of S. uvarum, 

and the lineage of the recombinant haplotype H86 from the Japanese S. 

kudriavzevii strain IFO1803. The 5’ end region of this haplotype (from the 

beginning to the hotspot) is similar to S. kudriavzevii COX2 sequences, but 

part of the 3’-end segment (positions 510 to 542) is identical to S. uvarum 

haplotypes 80 and 82, and the rest (543 to the end) different to any other 

haplotype (unknown origin). 

 

4. Discussion 

Seven species (S. cerevisiae, S. paradoxus, S. cariocanus, S. 

mikatae, S. arboricolus, S. kudriavzevii and S. bayanus) have been 

described in the genus Saccharomyces, according to the biological species 

concept (Naumov et al., 1995a,b, 2000; Wang and Bai 2008). The 

boundaries between the species of genus Saccharomyces are unclear. 

Previous results have shown that hybrids, S. cerevisiae x S. eubayanus 

(some of them known as S. pastorianus) and S. cerevisiae x S. 

kudriavzevii, are frequent in nature (de Barros Lopes et al., 2002, González 

et al., 2006, 2008). Natural hybrids between S. cerevisiae and S. 

paradoxus have not been discovered, although introgressions have been 

(Liti et al., 2006, Muller and McCusker, 2009). No natural hybrids between 

S. cerevisiae and S. mikatae have been found. However an horizontal gene 

transfer and introgressions between them has been described (Liti et al., 

2005, Dunn et al., 2012). 

In the present study we have analyzed the phylogenetic relationship 

among the different species, strains and their hybrids from genus 

Saccharomyces, using the mitochondrial gene COX2. The study of 

mitochondrial gene is of interest because mitochondrial genes are haploid 

and they show high variability. COX2 gene sequence has been used 
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previously to carry out phylogenetic analysis in ascomicetous yeasts 

(Belloch et al., 2000, Kurtzman and Robnett 2003). 

COX2 gene has a high variability in the Saccharomyces genus, we 

detected up to 94 different haplotypes in the seven species. This variability 

is not translated to amino acids changes which were lower (27 different 

COX2 aa sequences). Different authors have proposed a population 

structure for S. cerevisiae (Liti et al., 2009, Schacherer et al., 2009). We did 

not find a clear distribution of strains using COX2 sequences. According to 

continental isolation our strains were equally distributed around the 

haplogroup 1 and haplogroup 2. Taking into account the isolation source, 

only a clear distribution was identified in the laboratory and bakery strains 

which were enclosed in haplogroup 2. Liti and collaborators (2009) defined 

five pure subpopulations of S. cerevisiae, according to the 

continental/isolation source. Our results supported the wine/European, 

West African and Malaysian pure groups which strains where enclosed in 

one of the haplogroups (Haplogroup 2), the only exception was L1528 (H2) 

which is in ambiguous position between S. paradoxus from Far-East (H65-

H68). North American and Sake groups are not well supported. In the case 

of North American we found that YPS606 (H23) is enclosed in haplogroup 

1 and YPS128 (H29) is in haplogroup 2. K11 strain (H1) in Sake group was 

found in a different haplogroup than Y9 (H33) and Y12 (H34). These results 

are indicative that North American is not a pure group and Sake could be a 

pure group, not considering K11 in it. The Liti et al., 2009 study was done 

using a monosporic culture and heterozigosity information is lost, for this 

reason strains that apparently are pure, probably are not . 

In Schacherer et al., (2009) study the S. cerevisiae strains were 

grouped according to the isolation source. They found three different 

groups: wine, sake and laboratory strains. Our results supported the Sake 

group with Y9 and Y12 in Haplogroup 1. Our laboratory strains were found 
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in Haplogroup 2, and wine/nature/clinical group, used in Schacherer et al., 

(2009) study, were all of them found in Haplogroup 2 as well. 

In the case of S. paradoxus strains Liti et al., (2009) described three 

different populations. In our study we found similar results: America 

(enclosed in Haplogroup 2), Far-East (enclosed in Haplogroup 1) and 

European (Haplogroup 7). The only exception was the 11152JP (H26) that 

appears closest to S. cerevisiae strains, in Haplogroup 2. 

Mitochondrial inheritance is reported to be uniparental (Basse, 2010). 

After the mating between two different cells, the daughter cell receives one 

of the parental mitochondrial. Most of the hybrids have a COX2 sequence 

similar to one of the parental strains involved in the hybridization. In the 

double S. cerevisiae x S. kudriavzevii hybrids, most of them have the S. 

kudriavzevii COX2 gene sequence, with the exception of AMH which 

inherited the S. cerevisiae mitochondrial genome (H3), where S. cerevisiae 

wine strains were also found (Peris et al., 2012a), and IF6 and UvCEG, 

found between Far East S. paradoxus haplotypes. In the case of S. 

eubayanus x S. uvarum hybrids and S. cerevisiae x S. eubayanus they 

inherited one of the two COX2 sequences enclosed to Haplogroup 5 or 

Haplogroup 6. A debate is around the differentiation of S. bayanus 

varieties. Some authors have proposed to consider S. bayanus var. 

bayanus and S. bayanus var. uvarum as different species (Rainieri et al., 

2006, Perez-Traves et al., in preparation) where other consider them as 

varieties (Nguyen and Gaillardin, 2005). Our results showed two well 

defined S. bayanus COX2 sequences, Haplogroup 5 and 6. Number of 

nucleotide differences among Haplogroup 5 and 6 were similar to 

nucleotide differences between S. arboricolus and Haplogroup 1 (S. 

cerevisiae). This is also supported by the recent description of a pure 

strain, called S. eubayanus, postulated as the parental strain of non-

cerevisiae subgenome in the hybrid S. pastorianus (Libkind et al., 2011). 
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During mating, after the fusion of two different yeast cells, the fusion 

of mitochondria organelles is followed to form a continuous reticulum 

denominated heteroplasmic state (Berger and Yaffe, 2000). When the 

daughter cell is in the middle of the zygote (medial buds), the new 

mitochondria could inherit mtDNA from both parental cells, in the form of 

recombinant products, previously described in S. cerevisiae strains 

(Nunnari et al., 1997; Berger and Yaffe, 2000). Our results showed different 

groups, based in the last polymorphic aminoacid positions, of S. cerevisiae 

COX2 sequences clustering with different populations of S. paradoxus and 

other species are in ambiguous position between two different species. The 

existence of introgressions, HGT and hybrids between different species (Liti 

et al., 2005 and 2006, Rainieri et al., 2006, Gonzalez et al., 2006 and 2008, 

Peris et al., 2012a) are indicative that the species of genus Saccharomyces 

are able to produce hybrids with high frequency. In some cases the hybrid 

strains are stable, maintaining chromosomes copies from the two parental, 

as S. cerevisiae x S. bayanus and S. cerevisiae x S. kudriavzevii hybrids 

(Dunn and Sherlock, 2008, Belloch et al., 2009, Peris et al., 2012b), but in 

other are not found hybrids, probably must to genetic incompatibilities, as 

S. cerevisiae x S. paradoxus and S. cerevisiae x S. mikatae. Hybridization 

between different species is not rare because they are found in the same 

ecological niche (Sampaio and Gonçalves, 2008). However, the reasons for 

having a stable or not stable allopolyploid genome must to be studied. In 

cases where non stable hybridizations have occurred, parts of the missing 

genome could be maintained as a footprint of this ancestral hybridization 

event. 

Some aminoacid positions appear to show a flip-flop pattern 

increasing the complexity of the analysis. This pattern are obtained when 

an aminoacid position revert to the ancestral state due to positive selection. 
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This kind of pattern has been described in virus (Botosso et al., 2009) and it 

may be confirm in COX2 gene. 

The existence of a common recombination point is indicative that a 

molecular process could be involved in the recombination between the two 

different mtDNA genomes more than a random process. In the same COX2 

transcription unit and next to COX2 gene, taking some nucleotides of the 

COX2 3’ end, is encoded a gene known as RF1 or ORF1 (a maturase-

related gene) (Bordonné et al., 1988). Maturases are encoded in homing 

endonucleases genes (HEGs) which are selfish genetic elements that 

spread by first cleaving chromosomes that do not contain them and then 

getting copied across to the broken chromosome as a byproduct of the 

repair process (Burt and Koufopanou, 2004). We speculate that ORF1 

could be a homing endonuclease active in some strains or species. ORF1 

could be involved in the recombination of the two different mtDNA 

genomes, after the fusion of the parental mitochondrial organelles. The 

sequencing of ORF1 and other genes from mtDNA could shed light if our 

hypothesis could be truth and how far is the recombination sequences 

extended. 

In conclusion, the boundaries between different species of 

Saccharomyces genus are unclear. Although some species like S. 

paradoxus showed a population structure in COX2 sequences, it is not 

clear in S. cerevisiae strains. Moreover hybridization between the different 

species of Saccharomyces genus gave us results that increase the 

complexity of the studies, such as introgressions, HGT and recombinant 

sequences. These results show that hybridization events between species 

of Saccharomyces genus are really frequent and could have an 

evolutionary advantage. We demonstrated that COX2 gene is not a proper 

gene to show the evolution of different species of Saccharomyces genus 

but it has information about ancestral hybridizations. 
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Abstract 

 The Saccharomyces genus is comprised of a complex group of 

species. Natural hybrids have been found involving S. cerevisiae and 

other species, including S. cerevisiae x S. bayanus, S. cerevisiae x S. 

kudriavzevii, and triple hybrids of S. cerevisiae x S. bayanus x S. 

kudriavzevii. Natural hybrids between S. cerevisiae x S. paradoxus or 

S. cerevisiae x S. mikatae have not been described, although footprints 

from ancestral unstable hybridizations have been found, as cases of 

introgression or horizontal gene transfer. Most of these events involved 

nuclear genomes. Recombination among mitochondria has previously 

only been described at the intraspecific level between S. cerevisiae 

strains. In this study, we show that the previously described COX2 

recombination hot spot could be due to the activity of a homing 

endonuclease gene (HEG), ORF1. HEGs are selfish elements which 

are spread quickly in the population, and when spread could involve 

different species being marked as a footprint of ancestral hybridizations. 

We describe transfers and recombination events involving ORF1 

between different species of Saccharomyces, and infer ancestral 

unstable hybridization. These findings suggest that species from 

Saccharomyces genus are frequently hybridizing, in most cases, such 

as wild environments, they are unstable and in biotechnological 

environments they could be stable. Biotechnological environments and 

just when conditions are not proper for parental strains, hybrids could 

be maintained in nature due to their better adaptation. We postulate that 

ORF1 gene could be a functional homing endonuclease and its transfer 

to one species to another an indication of ancestral hybridization. 
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1. Introduction 

 Several species are enclosed into the Saccharomyces genus: S. 

cerevisiae, S. paradoxus, S. cariocanus, S. mikatae, S. arboricolus, S. 

kudriavzevii and S. bayanus, the latter includes the varieties uvarum and 

bayanus (Kurtzman, 2003; Naumov et al., 2000, 2010; Wang and Bai, 2008). 

Although a recent study provides strong evidence that S. bayanus var. 

bayanus and S. bayanus var. uvarum (S. uvarum) are genetically and 

ecologically isolated sister species from two distinct lineages, being the former 

called S. eubayanus (Libkind et al., 2011), we continue using the varieties 

names here as in the last version of “The Yeast: A Taxonomic Study” 

(Kurtzman et al., 2011), and following the Biological Species Concept (BSC) 

(Mayr, 1942), where species are considered to be units reproductively isolated 

from other such units, but within which interbreeding and genetic 

recombination reduce divergence.  

 Species from Saccharomyces genus are able to form hybrids. Natural 

double (S. cerevisiae x S. bayanus, S. cerevisiae x S. kudriavzevii) and triple 

(S. cerevisiae x S. bayanus var. uvarum x S. kudriavzevii) hybrids have been 

identified in alcoholic beverages, dietary supplements and clinical patients 

(Masneuf et al., 1998; Naumova et al., 2005; González et al., 2006, 2008; Le 

Jeune et al., 2007; Peris et al., 2012a). Hybrids show sterility, with less than 

5% viable ascospores (Naumov et al., 1997). At least three postzygotic 

barriers contribute to reproductive isolation between Saccharomyces species. 

First, activation of the mismatch repair system by sequence divergence 

between two parental genomes prevents the crossovers necessary for proper 

chromosome segregation (Chambers et al., 1996). Multiple reciprocal 

translocations also lead to aneuploidy meiotic progeny (Delneri et al., 2003). 

Recently, multiple reciprocal cases of cytonuclear incompatibility were 

reported between S. cerevisiae and its relatives, S. bayanus and S. paradoxus 

(Lee et al., 2008; Chou et al., 2010). Thus, the existence of these hybrids 
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suggests that evolution of the Saccharomyces genus is more complex than 

expected. 

 Despite their close relationships, natural hybrids between S. cerevisiae x 

S. paradoxus and S. cerevisiae x S. mikatae have been not described. 

Nonetheless, some S. cerevisiae strains contain introgressed S. paradoxus 

sequences as footprints of ancestral hybridizations (Liti et al., 2006; Muller and 

McCusker, 2009), while other strains contain a selfish genetic element 

horizontally transferred from S. mikatae (Liti et al., 2005). Since, horizontal 

gene transfer is rare in yeast (Dujon et al., 2010), those footprints could be 

indicative of ancestral unstable hybridizations. These reticulate events have all 

involved the transfer of nuclear genes into S. cerevisiae from other species. 

 Mitochondrial recombination occurs readily in yeast (Dujon et al., 1974; 

Birky et al., 1982; Taylor 1986; MacAlpine et al., 1998), but it has only been 

described between S. cerevisiae strains. The GC cluster and A+T tandemly 

repeated sequences appear to be involved in the initiation of recombination 

and rearrangements of the mitochondrial genome (Dieckmann and Gandy, 

1987; Skelly and Clark-Walker, 1991; Bouchier, 2009). Other genetic elements 

are also involved in mitochondrial recombination, such as homing 

endonuclease genes (HEGs) (Nakagawa et al., 1992), a type of selfish genetic 

element (Burt and Koufopanou, 2004). The first HEG discovered in S. 

cerevisiae mitochondrial was ω and called I-SceI (Dujon et al., 1974). HEGs 

can transfer its genetic sequence in a HEG- genome (Colleaux et al., 1986). 

The protein encoded in the HEG mediates a double-strand break (DSB) in the 

genome with a HEG- allele. The HEG+ allele is used, by the recombinational 

repair system, to repair the break. This gene conversion mechanism replaces 

the HEG- allele with the HEG+ allele (Burt and Koufopanou 2004). The 

Saccharomyces mitochondrial genome contains several active HEGs 

(Sargueil et al., 1991; Séraphin et al., 1992). Several additional open reading 

frames in the mitochondrial genome are hypothesized to encode homing 
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endonucleases, such as ORF1, a free-standing endonuclease (Séraphin et al., 

1987). In the Saccharomyces genus, ORF1 is located 19 nucleotides 

upstream from 3’ end of COX2. In S. cerevisiae ORF1 gene is interrupted by 

GC clusters and probably inactivated as occurred in ORF3 (ENS2 or 

Endo.SceI). However, GC clusters were not detected in the S. bayanus var. 

uvarum ENS2 gene, suggesting ENS2 is active (Séraphin et al., 1987, 

Nakagawa et al., 1991) and after on demonstrated (Nakagawa et al., 1992). 

 We previously showed that the COX2 gene contains a recombination hot 

spot and hypothesized that the ORF1 homing endonuclease could be involved 

(Peris et al., in preparation). Here, we report the sequences of the ORF1 gene 

and COX3 gene of different species and strains of Saccharomyces genus and 

compare their sequences with ORF1 homologs in Kazachstania 

(Saccharomyces) servazii and Williopsis saturnus var. suaveolens. These 

data support the plausible involvement of ORF1 in the COX2 recombination 

hot spot and some evolutionary scenarios for ORF1 are hypothesized. 

 

2. Material and methods 

2.1 Yeast strains 

 Seventy-two Saccharomyces strains from a previous work (Peris et al., 

in preparation) were selected as representative strains of the different groups 

described (table S1). Forty-seven Saccharomyces cerevisiae, eight 

Saccharomyces paradoxus, 1 Saccharomyces mikatae, 1 Saccharomyces 

arboricolus, three Saccharomyces kudriavzevii, 1 Saccharomyces bayanus 

var. uvarum (S. uvarum), four S. bayanus var. bayanus (S. eubayanus) x S. 

bayanus var. uvarum (S. uvarum) hybrids and seven S. cerevisiae x S. 

kudriavzevii hybrids. Yeast strains were grown at 28ºC in GPY medium (2% 

glucose, 0.5% peptone, 0.5% yeast extract). 
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2.2 PCR amplification and sequencing of ORF1 and COX3 genes 

 DNA was extracted using the methodology developed by Querol et al., 

(1992). The mitochondrial gene ORF1 was amplified by PCR, using a primer 

walking approach. Primers were designed using IDT Scitools 

(http://eu.idtdna.com/SciTools/SciTools.aspx?cat=DesignAnalyze). Primer 

pairs used in each strain to amplify the different portions of ORF1 and COX3 

are listed in (table S2). Primer sequences and conditions are listed in table S3. 

PCR products were cleaned with High Pure Product Purification Kit (Roche 

diagnostics, Manheim, Germany) and both strands of the PCR product were 

directly sequenced using the BigDye Terminator v3.1 Cycle Sequencing kit 

(Applied Biosystems, California, U.S.A.) in an Applied Biosystems (Model 310) 

automatic DNA sequencer. Sequences were edited and assembled with 

Staden Package v1.5 (Staden et al., 2000). The new sequences were 

deposited under the GenBank accession numbers (JN709044-JN709115). 

 

2.3 ORF1 and COX3 alignments 

 ORF1 and COX3 sequences from other S. cerevisiae strains, not 

sequenced in this study, were obtained applying a blastn search in the 

Saccharomyces Genome Re-sequencing Project 

(http://www.sanger.ac.uk/cgi-bin/blast/submitblast/s_cerevisiae_sgrp). A PSI-

Blast search was run to obtain ORF1 sequences from non-Saccharomyces 

species. Accession numbers of these sequences are listed in (table S2). 

ORF1 sequences were aligned using MUSCLE (Edgar 2004) and were further 

refined by visual inspection in Jalview 4.0.b2 (Waterhouse et al., 2009). COX3 

was directly aligned using ClustalW (Thompson et al., 1994), implemented in 

MEGA 4.0 (Tamura et al., 2007). COX3 from Kluyveromyces lactis was used 

as an outgroup. 

Tandem repeat sequences in ORF1 and COX2 genes were searched 

using Tandem Repeat Finder software (Benson 1999). ORF1 domains were 

http://eu.idtdna.com/SciTools/SciTools.aspx?cat=DesignAnalyze
http://www.sanger.ac.uk/cgi-bin/blast/submitblast/s_cerevisiae_sgrp
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annotated in Jalview according to previous description by Dalgaard et al., 

(1997) and using Conserved domain tool in NCBI 

(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) (Marchler-Bauer  et al., 

2009). WebLogo profiles of LAGLIDADG and NUMOD1 domains were done in 

WebLogo 2.8.2 tool (http://weblogo.berkeley.edu/.), using a representative 

sequence from each ORF1 haplotype (including non-Saccharomyces strains). 

GC insertions found in ORF1 sequences were classified according to de 

Zamaroczy and Bernardi et al., (1986). COX2 accesion numbers are listed in 

table S2. 

 

2.4 Haplotype classification. 

 The sequences of this study were selected as representative sequences 

based on previous work done with COX2 sequences by Peris et al., (in 

preparation). The new sequences from ORF1 and COX3 were classified 

according to their haplotypes. Haplotype classification was done in DnaSP v5 

(Librado and Rozas 2009). 

 

2.5 Phylogenetic analysis and detection of recombination points 

Recombination points were defined using RDPv3.44 (Martin et al., 

2010). Six methods were used to detect the recombination points: RDP 

(Martin and Rybicki, 2000), Bootscanning (Salminen, 1995), MaxChi (Smith 

1992), Chimaera (Smith 1992), GeneConv (Padidam et al., 1999) and Sis-

scan (Gibbs et al., 2000). For all methods, we considered the sequences as 

circular and set statistical significance at the P<0.05 level with Bonferroni 

correction for multiple comparisons. Similar results were also achieved using 

GARD method (Pond et al., 2006), implemented in Datamonkey (Delport et 

al., 2010). Visual comparison of the polymorphic sites at amino acid level was 

also done to confirm the results.  

http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://weblogo.berkeley.edu/


OBJECTIVE 4 -Chapter 2- 

222 

ORF1 alignment length of 1253 nucleotides, where GC insertions and 

indels were removed, was used in the next analyses. A phylogenetic network 

of ORF1 alignment was constructed using the Neighbor-Net method with 

default settings, as included in SPLITSTREE 4 package (Huson and Bryant, 

2006). The COX3 sequence evolution model that fits our sequence data best 

was optimized using the corrected Akaike Information Criterion (AICc) with a 

BioNJ tree as initial tree, implemented in jModelTest program (Posada 2005). 

The best fitting model of evolution for COX3 sequences was TIM2+G (Posada 

2009) with a gamma distribution (G) of substitution rates with a shape 

parameter 

analysis, were used to obtain the best trees under optimality criterion of 

Maximum-likelihood (ML) (Posada, 2003). Tree reliability was assessed using 

non-parametric bootstrap resampling of 100 replicates. Phylogenetic analyses 

were performed using PhyML program (Guindon et al., 2010). 

The most frequent recombination points were used to define four 

alignment segments for phylogenetic analyses. The first one is a concatenated 

sequence taking from 621 nucleotide position in COX2 gene until the 246 

nucleotide position in ORF1 alignment sequence (corresponding to nucleotide 

292 in ORF1 gene of S288c, AJ011856). The last nineteen nucleotides of 

COX2 gene are the first nucleotides of ORF1 gene (being a segment of 224 

nucleotides length). The second takes from 247 to 644 nucleotides, in ORF1 

alignment (from 293 to 704 in S288c ORF1). The third was built from 645 to 

920 (706-980 in S288c), and the forth from 921 to the end of the alignment 

(981-1435 in S288c annotation). 

 

2.6 Detection of selection 

 The single likelihood ancestor counting (SLAC), fixed effects likelihood 

(FEL), and random effects likelihood (REL) methods (Pond and Frost, 2005) 

available at the Datamonkey website were used to detect the signatures of 
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selection operating on ORF1 protein gene. Different alignments were used to 

describe selection signatures. In the first approach, a complete ORF1 

alignment (without GC Insertions and indels), previously analyzed with GARD 

to describe the four partitions, was used. In a second survey, the three 

different domains were analyzed independently. Codons, under positive or 

negative selection, analyzed by three methods (SLAC, FEL and REL) and 

significantly described by two of the three methods were considered as 

positives. Phylogenetic relationships between ORF1 gene sequences were 

inferred with the REV substitution model and phylogenetic trees were 

reconstructed by the NJ method. Codon-specific selection pressure along the 

sequences (i.e. site specific dN-dS) was measured and p-values were 

estimated at each site. 

 

3. Results 

3.1 ORF1 gene structure 

To determine the extent of ORF1 diversity within the Saccharomyces, 

we determined the sequence of an additional 36 ORF1 genes, including 

previously unsampled species, resulting in a collection of 72 ORF1 

sequences. All strains have an ORF1 gene, suggesting it is shared by all 

Saccharomyces. Among these strains, 51 different haplotypes were found 

(Table S2). ORF1 start codon is nineteen nucleotides inside the 3’ end of 

COX2 gene. The average GC-composition of the ORF1 is 18%. Eleven strains 

have GTG as ORF1 start codon (uncommon start codon in mitochondria): 

haplotypes M2-M7 and M9-M12, while the translation of ORF1 gene into 

protein predicts that fourteen strains have premature stop codons: haplotypes 

M2, M3, M7-M11, M17-M20, M23 and M46. ORF1 sequence length range 

from 1363 nucleotides (ZA17 strain) or 454 amino acids to 1516 nucleotides 

(VRB strain) or 505 amino acids. Note that we sequenced a partial ORF1 
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gene, 45 nucleotides left comparing to the complete ORF1 gene of reference 

strain S288c. 

Differences in size between ORF1 genes were due to the presence of GC 

insertions and AT repeats. Seven different GC clusters insertion points were 

found along the ORF1 alignment (fig. 1). The first GC cluster is found in VRB 

ORF1 sequence. Three different types were found in the GC cluster 2, which 

are in CBS435, CECT 11757 and 120M. CBS 10644 have the third GC 

cluster. VRB displayed another GC cluster in the fourth GC cluster insertion 

point. CBS 435 showed a cluster in the fifth insertion point which was similar in 

structure to the GC cluster of CBS 10644 in the third insertion point (Figure 

S1). The most number of GC cluster were found in the sixth (40 S. cerevisiae 

strains and one S. cerevisiae x S. kudriavzevii hybrid), and in the seventh 

insertion points (36 S. cerevisiae, 2 S. cerevisiae x S. kudriavzevii, 2 S. 

paradoxus Far East and 2 from America) (Figure S2). The CBS 435 GC 

cluster 6th was oriented in an opposite direction to the other strains (Figure 

S1). We found three different subtypes for GC cluster 6 and six for GC cluster 

7. GC cluster in 120M and CBS 5313 has the same nucleotide sequence than 

CBS 435, YPS606 and Y9. 

 Following a previous structure description and classification done by de 

Zamaroczy and Bernardi (1986), we were able to classify the new GC clusters 

found in the ORF1 sequence, with the exception of GC cluster 2. GC cluster 1 

and 4 are similar to a1 family, and GC cluster 3 and 5 were similar to a4 

family. In the case of GC cluster 1, 2, 4, and 5 are on the opposite strand. As 

Séraphin et al., (1987) and Weiller et al., (1989) described, the GC clusters in 

the ORF1 gene were flanked by TAG and AGGAG, or CTA and CTCCT if 

cluster was in the other strand (Figure S1). These conserved nucleotides were 

flanked by A+T rich sequences. Flanking sequences TAG and AG (CTA and 

CT) are conserved in most of the sequences with and without GC clusters. All 

GC clusters in ORF1 belong to group M1 (Weiller, 1989).   
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Figure 1 COX2–ORF1 alignment. A schematic representation of COX2-ORF1 alignment is shown. Black arrows and dotted arrows represent the primer pairs 
(also see Table S3). Empty arrows represent the three domains found in ORF1. LAGLIDADG 1 and 2 corresponds to previously described P1 and P2. GC 
clusters, A+T tandem repeats and recombination points detected in the previous work and in this study are drawn in the figure. Nucleotide coordinates 
correspond to the S288c S. cerevisiae reference strain. 

 

 

COX2 ORF1 (Q0255)

73758 74513

74495

(ORF1 Start Point)

75984

LAGLIDADG 1 LAGLIDADG 2 NUMOD 1GC Insertion

Recombination point

1 2 3 4
5 6 7

Cox2-5

Cox2MT ORF1C_3’

ORFD7Y_3

ORF1P_3’

ORF1I_5 ORF1I_3

A+T Tandem repeats



OBJECTIVE 4 -Chapter 2- 

 

226 

 On the other hand, differences in size were also due to the presence of 

AT repeats. Twenty-one different A+T rich sequences that repeated at least 

twice were found in the ORF1 alignment (Table S4). The length of A+T rich 

tandem repeats ranged from three nucleotides to twenty five nucleotides. The 

most repeated sequence (AAT) was repeated ten times in haplotypes M1, 

M12, M22, M39, M40, and M50. The A+T rich tandem repeats were located 

near to GC clusters (fig. 1). In COX2 gene, we found three A+T rich 

sequences repeated twice (Table S4).  

 Three different domains were annotated in all of the sequences, two 

LADGLIDADG (P1 and P2) and one NUMOD1 (fig 1). The alignment 

comparison of our sequences and the two homing endonucleases from 

Williopsis saturnus var. suaveolens (ORF1 and ORF3), and one from 

Kazachstania servazii (SasefMp08) is showed in the three domains (Figure 

S3A). Saccharomyces strains showed low structural conservation along the 

three different ORF1 domains, only in NUMOD1 was near to 50%. In 

LAGLIDADG 2 we could visually describe two different structures, that we 

called ORF1 type I and type II (Figure S3B-D). 

 To analyze the role of selection, we subjected 417 codons (ORF1 

alignment without GC Clusters and indels) of the total 458 codons to several 

tests using Datamonkey. These analyses did not reject the neutral evolution 

model for most codons. A few codons (61 or 15%) were found to be under 

purifying selection, 43 of which were inside the LAGLIDADGs and NUMOD1 

domains (Figure S3A). 

 

3.2 ORF1 and COX3 phylogenetic networks 

 To determine how ORF1 sequences were related, we constructed an 

ORF1 neighbor-joining tree using K. servazii SasefMp08  and W. saturnus var. 

suaveolens ORF1 and ORF3 as outgroups. The tree did not match the 

species phylogeny (Kurtzman and Robnett 2003; Rokas et al., 2003) (Figure 
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S4). The phylogenetic network of ORF1 showed two clearly separated groups 

(fig 2). Type I comprised most haplotypes of different species (S. cerevisiae, 

American S. paradoxus, S. arboricolus, S. mikatae, three S. cerevisiae x S. 

kudriavzevii hybrids and S. bayanus). Type II included most of the S. 

cerevisiae haplotypes and one S. paradoxus from Far East (M51, CECT 

11152). The placement of the remaining strains of S. cerevisiae was 

ambiguous, as was the placement of S. paradoxus from Europe, some S. 

paradoxus from Far East (M19, M20) and the S. kudriavzevii haplotypes, 

including in the latter some S. cerevisiae x S. kudriavzevii hybrids (tables S1-

S2). In contrast, the maximum likelihood tree of COX3 gene recapitulated the 

species phylogeny (Kurtzman and Robnett 2003; Rokas et al., 2003), with the 

exception of American S. paradoxus haplotypes (fig. 3). S. paradoxus 120M 

was identical to S. cerevisiae haplotype C17. 

 

3.3 Recombination points in ORF1 

 The low bootstrap values of some branches in ORF1 phylogenetic tree 

and the conflict with the species phylogeny could indicate the presence of 

recombinant sequences or gene transfer from one species to another. To 

investigate whether some sequences might be recombinant, we used RDP3 

and GARD software to partition the ORF1 alignment. Indels and GC clusters 

were excluded for analysis. And visual inspection was done to confirm the 

segments. RDP3 detected up to four different recombination points; all were 

near A+T rich sequences or GC clusters, with the exception of the third 

recombination point, which was located in the beginning of LAGLIDADG 2 

domain (fig. 1). At least one recombination event involved the haplotypes 

located in ambiguous position in the previous phylogenetic network (M8-M12, 

M19, M20, M24-M29, M31-M33, M36 and M42). Four partitions were found 

using GARD, only the second disagreed with RPD3. The trees inferred from 

each partition were significantly incongruent each other  
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Figure 2 Neighbour-Net phylogenetic network of ORF1 gene. The length of each edge is proportional to the 
weight of the associated split, this is analogous to the length of a branch in a phylogenetic tree. Haplotypes 
for ORF1 gene are represented in this figure, after remove GC cluster and indels. Hypothetical active 
homing endonucleases are indicated with a symbol (*). 

 
using Kishino-Hasegawa test (KH) (Kishino & Hasegawa, 1989). ΔAICc for the 

best model (3 breakpoints) was 143.724, and for each breakpoint the p-value 

was lower than 0.01. 

 To identify the recombinant haplotypes and minor and major parents, we 

constructed one phylogenetic network for each of the partitions inferred by 

GARD (Figure S5). The phylogenetic network of the first partition (3’end 

COX2-ORF1, see M&M section) (Figure S5A) showed two different groups, 

the first of which (Type I) displayed seven subtypes where different 

Saccharomyces species were included. The second group (Type II) included 

most of the S. cerevisiae strains (haplotypes: M37-M46, M48-M50) and one 

strain of S. paradoxus from Far East (M51). 

 In the phylonetwork inferred using the second partition, the two types 

were more clearly separated. Interestingly, several haplotypes have different 

positions in the network, including to some S. cerevisiae, S. paradoxus from 

Europe (54 and CECT 1939), S. paradoxus from Far East, S. kudriavzevii 

from previous Subtype I-5, and strains in Subtypes I-1 and I-7 (Figure S5B). 

For example, S. cerevisiae haplotypes M18, M30, M35, M43 and M47 

changed their affinities from Type I to Type II (Subtype II-1). Curiously, Y12 

(M31), 54 and CECT 1939 (M32 and M33) were circumscribed in a new 

Subtype II-2 with YIIc17 (M42). Subtypes I-5 and I-3 are now circumscribed 

into the new Subtype II-3. Subtypes I-1, I-6, and I-7 have merged in one. 

Haplotypes M24-M27 and M36 were found in an ambiguous position. 

 The third partition phylonetwork again showed haplotypes in different 

positions (Figure S5C). S. cerevisiae haplotypes M24-M27 and M36, 

previously in an ambiguous position, and now enclosed in Subtype II-2 with S.  
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Figure 3 Maximum likelihood tree of partial COX3 gene sequence. The scale is given in nucleotide substitution per site. Dotted lines separate S. cerevisiae and 
American S. paradoxus from the other sequences.  
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paradoxus from Europe (54, CECT 1939) and two S. cerevisiae M31 and M42. 

S. cerevisiae YPS606 (M28) was located in Subtype II-1. S. paradoxus from 

Far East were located in a separate subtype (Subtype II-4) between Subtypes 

II-1 and II-3. 

 In the fourth phylonetwork reconstruction, we recovered Type I subtypes 

with the exception of Subtype I-3 (Figure S5D). Subtype I-6 included the S. 

cerevisiae haplotypes M24-26, which were located in Subtype II-2 in the third 

partition. In Type II, the Subtypes II-1, II-2 and II-4 were maintained, but 

Subtype II-2 also contained several S. cerevisiae haplotypes (M18, M28, M35, 

M47 and M49). 

 In summary, we detected at least four different major recombination 

points (Table 1). In the case of M24-M27 and M36, we also detected a 

recombination point in the middle of the second partition of the alignment 

(Table 1), leading to their ambiguous placement in the second partition 

phylonetwork (Figure S5B). Thus, there is substantial evidence for each 

possible type of recombination between and within the two main types (Type I 

x Type I, Type I x Type II, and Type II x Type II). 

 

4. Discussion 

4.1 ORF1 an active homing endonuclease 

 The Saccharomyces genus includes seven species: S. cerevisiae, S. 

paradoxus, S. cariocanus, S. mikatae, S. arboricolus, S. kudriavzevii and S. 

bayanus, according to the biological species concept (Naumov et al., 1995a, 

b, 2000; Wang and Bai, 2008). The boundaries between the Saccharomyces 

species are fuzzy, and many sterile hybrids have been found, such as S. 

cerevisiae x S. bayanus, S. cerevisiae x S. kudriavzevii (de Barros Lopes et 

al., 2002; González et al., 2006, 2008; Peris et al., 2012a). Although no 

natural hybrids have been described between S. cerevisiae x S. paradoxus
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Table 1. A representative sequence of each haplotype of the ORF1 Homing Endonuclease alignment sequence is shown. Only polymorphic 
sites are displayed and colored according to similarity. 
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10308EU_P_M21 MIWTMIMNLLMFLNNNNNNNIKYNKNMKMYSSPYINVINSRSLNNLIIVQKNNNNEINNFHKWLVGFTDGDSFYMGTERDLKFFHLKISHKNKLPNINIRETSVQTVTKWMSDLLPFDMTMKMKEALMKSLKVSNKELLNYKLLINYEVIDNMKNHHFLEELTIESKSCKLFISEKSKKLEADINWKNTPMFNYNNNNMYSKTNCNNLTTANMDFLVIPFNNMNWYSIKYNSFMNQSIINIYMLKVNYIESLGINKNIELYNNIINPLKNYTRTIIHSKKNITGGFYDLMTTGHVPASLHFHEI  

YJM789_C_M23  ........................R.............KR................M.....................................................................................................M................................................................S.....*?..............I....N..........................................Y..........  

11002_CxK_M15 ......IY..N................E......M...KRG.....................................K.......................................................................N.......M......................T...............D...............................................I....N.......................F....N........................  

11757_C_M17   ...........T..........................KR...............K.............?-............T................................................................I.........M.............................M........Y..Y....................S....N.......................F............................N.............Y..........  

51PE_C_M22    ...........T..........................KR................M....................................M................................................................M......................................................................................I....N........................V.......................Y....  

B10644_A_M7   V.....IY..K.....D......RY.RELF..ACAKI.KRS...K........D.NM...Y.................K..........N...MT........A...M...N........I.................ME..T.....I....E.N........DNRC.S...TM......V..M.....NLE...DT....P.......T..........S..........Y....V.......IE...N...........S........R..........A......K.......GV.....  

IFO1816_M_M1  ......IY..............N....DL.......I.KRC...K......D....M....................................M..........................I..................S........I......N.........................V.........L.....D............................T..................I....N...........................R.S................GA.....  

120MX_P_M13   .....................T..R..EL....FM.I.KR.......................................................................N.......NI....G............ME..T.....I.KD.....................................................................S............................N....................P........S...........S..T.GT.....  

5313MX_P_M14  .....................T..R..EL....FM.I.KR.......M...............................................................N........I....G...........FME..T.....I.KD...........................F.V...............D......................YD.......................IE...N.....D..............P........S...........S..T.GA.....  

W34/70_CxB_M2 V.....IY..LIIMD.SD...TL...NVLS.N.F..I.KRS...K.T..K.DTS..MD..Y.......N......N..YGF.LM...LQN..NMT..S.........S...Y........I..R.V.I..MN..S...IKN.T.....I....E.N....KFM.NNM..R.....Q.N...V..T..S....*D..D..Q........AMS.TY............T...............I..IQ...N..A........K.....M.LSK.LNYKTNKFI..Y..F.RS.TINVG....MV  

11035_BxU_M6  V.....IY..LTIKD.YD...TL...SVLF.N.F..I.KRS...K.V....DTS..MD..Y..............N..YGF.LM...LQN..NMT..S.....I...Y...Y........I..R.V.I..MN..S...IKN.T.....I....E.N.....F..NNT..R.....Q.....V.....S....ED..D..Q........AMS.TY.....L.S....T...............I..IQ...N..A........K.....MYLS..LTYKTNKFI..Y..F.RS.T.N.G....M.  

11185_BxU_M3  V.....IY..LIIMD.SD...TL...NVLS.N.F..I.KRS...K.T..K.DTS..MD..Y.......N......N..YGF.LM...LQN..NMT..S.........S...Y.....Y..I..R.V.I..MN..S...IKN.T.....I....E.N....KFM.NNM..R.....Q.N...V..T..S....*D..D..Q........AMS.TY............T...............I..IQ...N..A........K.....M.LSK.LNYKTNKFI..Y..F.RS.TINVG....M.  

12627_U_M4    V.....I...LMIKD.YD...TL...SVLF.N.F..I.KRS...K.V....DTS..MD..Y..............N..YGF.LM...LQN..NMT..S.....I...Y...Y........I..R.V.I..MN......IKN.T.....I....E.N.....F..NNT..R.....Q.....V.....S....ED..D..Q........AMS.T......L.S....T...............I..IQ...N..A........K.....MYLS..LTYKTNKFI..Y..F.RS.T.N.G....M.  

CBS378_BxU_M5 V.....IY..LTIKD.YD...TL...SVLF.N.F..I.KRS...K.V....DTS..MD..Y..............N..YGF.LM...LQN..NMT..S.....I...Y...Y........I..R.V.I..MN..S...IKN.T.....I....E.N.....F..NNT..R.....Q.....V.....S....ED..D..Q........AMS.T......L.S....T...............I..IQ...N..A........K.....MYLS..LTYKTNKFI..Y..F.RS.T.N.G....M.  

NCYC361_C_M29 ......IY...T............R.............KR................M..................................M.M................................................................M...............KR....................DYT..................L...........*MD.Q?KTTME....NT.LKLNIRYYST.NIIDDALMTIYKLP.MD.QRLNSFIN.........YR..ATY....  

YPS606_C_M28  ......................................KR.........................................................................................................................FDTSP.I.GFNV.KR.IN.K.SV......LL.KKDDSSKT.PDNGK.EFNR.....L.LYSLK...R.EID.QLKTTME....NT.LKLNIRYYS..NIIDDVLMTIYKLP.MD.QRLNSFIN.........Y..........  

7Arg_C_M25    ........................R..EL.........KRG...............M.....................NNF............M.S..........................Y.K.MIDN.GMT.NDV..I.NT.....MP.L.DKY.M..FEVIKTI.SFN..QR.IE.K.S.T.....LM.QKDDSSKT.PDNGK.DFYR.........S..........Y....MV......I....N..........................................Y.....Y....  

CBS435_C_M24  ........................R..EL.........KRG...............M.....................NNF............M.S..........................Y.K.MIDN.GMT.NDV..I.NT.....MP.L.DKY.M..FEVIKTI.SFN..QR.IE.K.S.T.....LM.QKDDSSKT.PDNGK.DFYR.........S..........Y....MV......I....N......N..............................................  

K1M_C_M27     ........................R..EL.........KRG...............M.....................NNF............M.S..........................Y.K.MIDN.GMT.NDV..I.NT.....MP.L.DKY.M..FEVIKTI.SFN..QR.IE.K.S.T.....LM.QKDDSSKT.PDNGK.DFYR.........S..........Y....MV......I....N................................................Y....  

ZA17_C_M26    ........................R..EL.........KRG...............M.....................?YF............M.S..........................Y.K.MIDN.GMT.NDV..I.NT.....MP.L.DKY.M..FEVIKTI.SFN..QR.IE.K.S.T.....LM.QKDDSSKT.PDNGK.DFYR.........S..........Y....MV......I....N................................................Y....  

54EU_P_M33    ........................M..EL.........KRG...............MD..Y.............ILNNKK.R..RMIKVKRMNM.SFEETTKTIMVNS..LFSIMT......Y.K.MIDN.GMT.NDV..IQNT.....MP.L.DKY.M..FEVIKTI.SFN..QR.IE.K.S.T.....LM.QKDDSSKT.PDNGK.DFYR....................Y....MV......I....N..T.........................N........................  

1939EU_P_M32  .......K................M..EL.........KRG...............MD..Y.............ILNNKK.R..RMIKVKRMNM.SFEETTKTIMVNS..LFSIMT......Y.K.MIDN.GMT.NDV..IQNT......P.L.DKY.M..FEVIKTI.SFN..QR.IE.K.S.T.....LM.QKDDSSKT.PDNGR.DFYR....................Y....MV......I....N..T.........................N................?..?....  

W27_CxK_M8    .....VIY..K.....D......KN.R.LF..ACA.I.KRS...K..VI.N..D.NM...Y.......N.....ILNDKK.R..R.IKAN.MNM.YFKETPKTIMVNSE.LHFIVT..L.I.Y.K.MIDN.SKI..DVM.IQNT......P.F*EKN.IK.FEAVKNI.SFNV..R.ID.K.SV.....Q.L.MKDDSSKT.PDNGK.DLYR..L..M.L............Y..*.MV.M....IE..QN.................S..PK..L..R.K..SE..Y......I..GA...D.  

Vin7_CxK_M9   V....VIY..K.....D......KN.R.LFY.ACA.F.KRS...K..VI.N..D.NM.Y.Y....E..NR....ILNDKK.R..R.IKAN.MNM.YFKETPKTIMVNS..LHSIVT..L.I.Y.K.MIDN.SKI..DVM.IQNT......P.F*EKN.IK.FEAVKNI.SFNV..R.ID.K.SV.....Q.L.TKDDSSKT.PDNGK.DLYR.....M.L............Y..*.MV.M....IE..QN.................SY.P...L..R.K..SE..Y......I..GA...D.  

CR90_K_M10    V....V.Y..K.....D......KN.R.LFY.ACA.F.KRS...K..VI.N..D.NM...Y.......N.....ILNDKK.R..R.IKAN.MNM.YFKETPKTIMVNSE.LHSIVT.YL.I.Y.K.MIDN.SKI..DVM.IQNT......P.F*EKN.IK.FEAVKNI.SFNV..R.ID.K.SV.....Q.L.MKDDSSKT.PDNGK.DLYR.....M.L............Y..*.MV.M....IE..QN.................S..PK..L..R.S..SE..Y......I..GA...D.  

CR91_K_M11    V....VIY..K.....D......KN.R.LFY.ACA.F.KRS...K..VI.N..D.NM...Y......IN.....ILNDKK.R..R.IKAN.MNM.YFKETPKTIMVNSE.LHSIVT.YL.I.Y.K.MIDN.SKI..DVM.IQNT......P.F*EKN.IK.FEAVKNI.SFNV..R.ID.K.SV.....Q.L.TKDDSSKT.PDNGK.DLYR.....M.L............Y..*.MV.M....IE..QN.................S..PK..L..R.K..SE..Y......I..GA...D.  

IFO1802_K_M12 V....VIY..K.....D......RN.RELF..ACA.I.KRG...K.....N..D.NMD..Y.............ILNDKK.R..R.IKAN.MNM.SFEETPKTIMVNS..LHSIVT..L.I.Y.K.MIDN.GKI..DVM.IQNT......P.L.EKN.I..FEAVKNI.SFNV..R.ID.K.SV.......L.TKDDSSKT.PDNGK.DFYR.......L............Y....MV......IE...N.................S..P...LY.R.S.............I..GA.....  

BC187_C_M36   ..............S.........R..EL.........KRG...............M....................?-KF............M.S....................Y.....Y.K.MIDN.GMT.NDV..I.NT.....MP.L.DKY.M..FEVIKTI.SFN..QR.IE.K.S.T.....LM.QKDDSSKT.PDNGK.DFYR.........S.....R.EID.QLKTTME....NT.LKLNIRYYS..NIIDDVLMTIYKLP.MD.QRLNSFIN.........Y.....Y....  

Y12_C_M31     ........................R..EL.........KRG...............M.............Y....LNDKK.R..RMIKAKRMNM.SFEETTKTIMVNS..LYSIVT......Y.K.MIDN.GMT.NDV..T.NT.....MP.L.EKY.M..YEVIKTI.SFN..QR.IE.K.S.T.....LM.QKDDSSKT.PDNGK.DFYR.........S.....R.EID.QLKTTME....NT.LKLNIRYYS..NIIDDVLMTIYKLP.MD.QRLNSFIN...EW....Y..........  

YIIc17_C_M42  ......IY.................D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R..RMIKAKRMNM.SFEETTKTIMVNS..LYSIVT......Y.K.MIDN.GMT.NDV..I.NT.....MP.L.DKY.M..FEVIKTI.SFN..QR.IE.K.S.T.....LM.QKDDSSKT.PDNGK.DFYR.........S.....R.EID.QLKTTME....NT.LKLNIRYYS..NIIDDVLMTIYKLP.MD.QRLNSFIN.........YR..ATY....  

D1373_C_M48   ......IY.................D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R..RMIKAKRMNM.SFEETTKTIMVNS..LYSIVT..L.I.Y.M.MINN.GM...D...I.NT.....MP.L.DKY.I..FDTSP.I.GFNV.KR.IN.K.SV......LL.KKDDSSKT.PDNGK.EFNR.....L.LYSLK...R.EID.QLKTTME....NT.LKLNIRYYS..NIIDDVLMTIYKLP.MD.QRLNSFIN.........Y..........  

YPS128_C_M49  ......IY.................D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R..RMIKAKRMNM.SFEETTKTIMVNS..LYSIVT..L.I.Y.M.MINN.GM...D...I.NT.....MP.L.DKY.I..FDTSP.I.GFNV.KR.IN.K.SV......LL.KKDDSSKT.PDNGK.EFNR.....L.LYSLK...R.EID.QLKTTME....NT.LKLNIRYYS..NIIDDVLMTIYKLP.MD.QRLNSFIN........RY...D..I...  

L1528_C_M18   ...........T..........................KR..................................ILNDKK.R..RMIKAKRMNM.SFEETTKTIMVNS..LYSIVT..L.I.Y.M.MINN.GM...D...I.NT.....MP.L.DKY.I..FDTSP.I.GFNV.KR.IN.K.SV......LL.KKDDSSKT.PDNGK.EFNR.....L.LYSLK...R.EID.QLKTTME....NTLL.NNIRYYS..NIIDDVLMTIYKLP.MD.QRLNSFIN.........Y...G?.....  

YS9_C_M38     ......IY.................D.DL.......I.KRG...K......D....MD..Y...........V.ILNDKK.R..RMIKAKRMNM.SFEETTKTIMVNS..LYSIVT..L.I.Y.M.MINN.GM...D...I.NT.....MP.L.DKY.I..FDTSP.I.GFNV.KR.IN.K.SV......LL.KKDDSSKT.PDNGK.EFNR.....L.LYSLK...R.EID.QLKTTME....NT.LKLNIRYYS..NIIDDVLMTIYKLP.MD.QRLNSFIN.........YR..ATY....  

11152FE_P_M51 ......IY.................D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R..RMIKAKRMNM.SFEETTKTIMVNS..LYSIVT..L.I.Y.M.MINN.GM...D...I.NT.....MP.L.DKY.I..FDTSP.I.GFNV.KR.IN.K.SV......LL.KKDDSSKT.PDNGK.EFNR.....L.LYSLK...R.EID.QLKTTME....NT.LKLNIRYYS..NIIDDVLMTIYKLP.MD.QRLNSFIN.........YR..ATY....  

S288c_C_M41   ......IY.................D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R..RMIKAKRMNM.SFEETTKTIMVNS..LYSIVT..L.I.Y.M.MINN.GM...D...I.NT.....MP.L.DKY.I..FDTSP.I.GFNV.KR.IN.K.SV......LL.KKDDSSKT.PDNGK.EFNR.....L.LYSLK...R.EID.QLKTTME....NT.LKLNIRYYS..NIIDDVLMTIYKLP.MD.QRLNSFIN.........YR..ATY....  

VRB_C_M40     ......IY.................D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R..RMIKAKRMNM.SFEETTKTIMVNS..LYSIVT..L.I.Y.M.MINN.GM...D...I.NT......S.L.DKY.I..FDTSP.I.GFNV.KR.IN.K.SV......LL.KKDDSSKT.PDNGK.EFNR.....L.LYSLK...R.EID.QLKTTME....NT.LKLNIRYYS..NIIDDVLMTIYKLP.MD.QRLNSFIN.........YR..ATY....  

UWOPS83_C_M47 .........V...............D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R..RMIKAKRMNM.SFEETTKTIMVNS..LYSIVT..L.I.Y.M.MINN.GM...D...I.NT.....MP.L.DKY.I..FDTSP.I.GFNV.KR.IN.K.SV......LL.KKDDSSKT.PDNGK.EFNR.....L.LYSLK...R.EID.QLKTTME....NT.LKLNIRYYS..NIIDDVLMTIYKLP.MD.QRLNSFIN..F......Y.....Y....  

YS2_C_M37     ......IY.................D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R..RMIKAKRMNM.SFEETTKTIMVNS..LYSIVT..L.I.Y.M.MINN.GM...D...I.NT......S.L.DKY.I..FDTSP.I.GFNV.KR.IN.K.SV......LL.KKDDSSKT.PDNGK.EFNR.....L.LYSLK...R.EID.QLKTTME....NT.LKLNIRYYS..NIIDDVLMTIYKLP.MD.QRLNSFIN.........YR..ATY.T..  

13Arg_C_M50   ......IYS................D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R..RMIKAKRMNM.SFEETTKTIMVNS..LYSIVT..L.I.Y.M.MINN.GM...D...I.NT......S.L.DKY.I..FDTSP.I.GFNV.KR.IN.K.SV......LL.KKDDSSKT.PDNGK.EFNR.....L.LYSLK...R.EID.QLKTTME..I.NT.LKLNIRYYS..NIIDDVLMTIYKLP.MD.QRLNSFIN.........YR..ATY....  

Y55_C_M39     ......IY......I..........D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R..RMIKAKRMNM.SFEETTKTIMVNS..LYSIVT..L.I.Y.M.MINN.GM...D...I.NT......S.L.DKY.I..FDTSP.I.GFNV.KR.IN.K.SV......LL.KKDDSSKT.PDNGK.EFNR.....L.LYSLK...R.EID.QLKTTME....NT.LKLNIRYYS..NIIDDVLMTIYKLP.MD.QRLNSFIN.........YR..ATY....  

D1788_C_M43   RTRALTTY.M.TV..H.........D.DT....H..ITTR.PS.KVT.A..DHHHQMD.CMQRATRT...YN.STTNDKK.R..RMIKAKRMNM.SFEETTKTIMVNS..LYSIVT..L.I.Y.M.MINN.GM...D...I.NT.....MP.L.DKY.I..FDTSP.I.GFNV.KR.IN.K.SV......LL.KKDDSSKT.PDNGK.EFNR.....L.LYSLK...R.EID.QLKTTME....NT.LKLNIRYYS..NIIDDVLMTIYKLP.MD.QRLNSFIN.........YR..ATY....  

378604X_C_M45 ......IY.................D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R..RMIKAKRMNM.SFEETTKTIMVNS..LYSIVT..L.I.Y.M.MINN.GK..N*RICLN??KS?INKFWR*DKY.I..FDTSP.I.GFNV.KR.IN.K.SV......LL.KKDDSSKT.PDNGK.EFNR.....L.LYSLK...R.EID.QLKTTME....NT.LKLNIRYYS..NIIDDVLMTIYKLP.MD.QRLNSFIN.........YR..ATY....  

W303_C_M46    .S....IY.................D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R..RMIKAKRMNM.SFEETTKTIMVNS..LYSIVT..L.I.Y.M.MINN.GM...D..KI.NT.....MP.LQDRY.I..FDTSPRISGFNV.TR.IN.K.SV.GQ...LL.KKDDSSKTNPDKGKTEFNR...WG*HM.*LKRIGVGEIG.PLKATRE.DI.NPSLKM*IRCYSS.NIIDDVLMTIYKLP.MD.QRLNSFIN.........YR..ATY....  

UWOPS87_C_M30 ........................R..EL.........KRG...............M.................ILNDKK.R..RMIKAKRMNM.SFEETTKTIMVNS..LYSIVT..L.I.Y.M.MINN.GM...D...I.NT.....MP.L.DKY.I..FDTSP.I.GFNV.KR.IN.K.SV......LL.KKDDSSKT.PDNGK.EFNR.....L.LYSLK...R.EID.QLKTTME....NT.LKLNIRYYS..NIIDDVLMTIYKLP.MD.QRLNSFIN.........YR..ATY....  

322134S_C_M44 ......IY.................D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R..RMIKAKRMNM.SFEETTKPIY?NSEGVYFIVIL.L.INL.M.MINN.GF...DFM.I.NT..F...P.L.DKYL?K.FDTSP.I.GFKV.KR.IN.K.SV......LL.KKDDSSKT.PDNGK.EFNR.....L.LYSLK...R.EID.QLKTTME....NT.LKLNIRYYS..NIIDDVLMTIYKLP.MD.QRLNSFIN.........YR..ATY....  

UWOPS05_C_M34 ...........T.......?----?D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R..RMIKAKRMNM.SFEETTKTIMVNS..LYSIVT..L.I.Y.M.MINN.GM...D...I.NT.....MP.L.DKY.I..FDTSP.I.GFNV.KR.IN.K.SV......LL.KKDDSSKT.PDNGK.EFNR.....L.LYSLK...R.EID.QLKTTME....NT.LKLNIRYYS..NIIDDVLMTIYKLP.MD.QRLNSFIN.........Y.....Y....  

Y9_C_M35      ..........W.....IYIITY.RN-LEL?.....I..KRG..KK.NNG..D....MD..Y.............ILNDKK.R..RMIKAKRMNM.SFEETTKTIMVNS..LYSIVT..L.I.Y.M.MINN.GM...D...I.NT.....MP.L.DKY.I..FDTSP.I.GFNV.KR.IN.K.SV......LL.KKDDSSKT.PDNGK.EFNR.....L.LYSLK...R.EID.QLKTTME....NT.LKLNIRYYS..NIIDDVLMTIYKLP.MD.QRLNSFIN.........Y..........  

11424FE_P_M19 ...........T.D..D......RN.KELF.TACA.I.KRG...K....KN..D.NMD..Y.............ILNDKK.R..R.IKAN.MNM.SF*ETTKTIMVNS..LHSIVT..L.I.Y.K.MIDN.GKI..DVM.IQNT......P.F.EKN.I.MFEAVKNI.SFNV..R.ID.K.SV.......L.TKDDSSKT.PDNGK.EFNR.....L.LYSLK...R.EID.*LKTTME....NT*L.NNIRYYS..NIIDDVLMTIYKFP.MD.QRLNSFINR........YR..ATY....  

11422FE_P_M20 ...........T.D..D......RN.KELF..ACA.I.KRG...K....KN..D.NMD..Y.............ILNDKK.R..R.IKAN.MNM.SFEETTKTIMVNS..LHSIVT..L.I.Y.K.MIDN.GKI..DVM.IQNT......P.F.EKN.I.MFEAVKNI.SFNV..RNID.K.SV.......L.TKDDSSKT.PDNGK.EFNR.....L.LYSLK...R.EID.*LKTTME...FNTLL.NNIRYYS..NIIDDVLMTIYKLP.MD.QRLNSFINR........YR..ATY....  
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Table 1 by segments. 
 

                                                                                                  

                     1111111112222222233333333334444444555555555666666666777777777788888888999999 

              12456790124567890134578901234567890123456013456789012346789012345678901345689012345 

10308EU_P_M21 MIWTMIMNLLMFLNNNNNNNIKYNKNMKMYSSPYINVINSRSLNNLIIVQKNNNNEINNFHKWLVGFTDGDSFYMGTERDLKF 

YJM789_C_M23  ........................R.............KR................M.......................... 

11002_CxK_M15 ......IY..N................E......M...KRG.....................................K.... 

11757_C_M17   ...........T..........................KR...............K.............?-............ 

51PE_C_M22    ...........T..........................KR................M.......................... 

B10644_A_M7   V.....IY..K.....D......RY.RELF..ACAKI.KRS...K........D.NM...Y.................K.... 

IFO1816_M_M1  ......IY..............N....DL.......I.KRC...K......D....M.......................... 

120MX_P_M13   .....................T..R..EL....FM.I.KR........................................... 

5313MX_P_M14  .....................T..R..EL....FM.I.KR.......M................................... 

W34/70_CxB_M2 V.....IY..LIIMD.SD...TL...NVLS.N.F..I.KRS...K.T..K.DTS..MD..Y.......N......N..YGF.L 

11035_BxU_M6  V.....IY..LTIKD.YD...TL...SVLF.N.F..I.KRS...K.V....DTS..MD..Y..............N..YGF.L 

11185_BxU_M3  V.....IY..LIIMD.SD...TL...NVLS.N.F..I.KRS...K.T..K.DTS..MD..Y.......N......N..YGF.L 

12627_U_M4    V.....I...LMIKD.YD...TL...SVLF.N.F..I.KRS...K.V....DTS..MD..Y..............N..YGF.L 

CBS378_BxU_M5 V.....IY..LTIKD.YD...TL...SVLF.N.F..I.KRS...K.V....DTS..MD..Y..............N..YGF.L 

NCYC361_C_M29 ......IY...T............R.............KR................M.......................... 

YPS606_C_M28  ......................................KR........................................... 

7Arg_C_M25    ........................R..EL.........KRG...............M.....................NNF.. 

CBS435_C_M24  ........................R..EL.........KRG...............M.....................NNF.. 

K1M_C_M27     ........................R..EL.........KRG...............M.....................NNF.. 

ZA17_C_M26    ........................R..EL.........KRG...............M.....................?YF.. 

54EU_P_M33    ........................M..EL.........KRG...............MD..Y.............ILNNKK.R. 

1939EU_P_M32  .......K................M..EL.........KRG...............MD..Y.............ILNNKK.R. 

W27_CxK_M8    .....VIY..K.....D......KN.R.LF..ACA.I.KRS...K..VI.N..D.NM...Y.......N.....ILNDKK.R. 

Vin7_CxK_M9   V....VIY..K.....D......KN.R.LFY.ACA.F.KRS...K..VI.N..D.NM.Y.Y....E..NR....ILNDKK.R. 

CR90_K_M10    V....V.Y..K.....D......KN.R.LFY.ACA.F.KRS...K..VI.N..D.NM...Y.......N.....ILNDKK.R. 

CR91_K_M11    V....VIY..K.....D......KN.R.LFY.ACA.F.KRS...K..VI.N..D.NM...Y......IN.....ILNDKK.R. 

IFO1802_K_M12 V....VIY..K.....D......RN.RELF..ACA.I.KRG...K.....N..D.NMD..Y.............ILNDKK.R. 

BC187_C_M36   ..............S.........R..EL.........KRG...............M....................?-KF.. 

Y12_C_M31     ........................R..EL.........KRG...............M.............Y....LNDKK.R. 

YIIc17_C_M42  ......IY.................D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R. 

D1373_C_M48   ......IY.................D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R. 

YPS128_C_M49  ......IY.................D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R. 

L1528_C_M18   ...........T..........................KR..................................ILNDKK.R. 

YS9_C_M38     ......IY.................D.DL.......I.KRG...K......D....MD..Y...........V.ILNDKK.R. 

11152FE_P_M51 ......IY.................D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R. 

S288c_C_M41   ......IY.................D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R. 

VRB_C_M40     ......IY.................D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R. 

UWOPS83_C_M47 .........V...............D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R. 

YS2_C_M37     ......IY.................D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R. 

13Arg_C_M50   ......IYS................D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R. 

Y55_C_M39     ......IY......I..........D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R. 

D1788_C_M43   RTRALTTY.M.TV..H.........D.DT....H..ITTR.PS.KVT.A..DHHHQMD.CMQRATRT...YN.STTNDKK.R. 

378604X_C_M45 ......IY.................D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R. 

W303_C_M46    .S....IY.................D.DL.......I.KRG...K......D....MD..Y.............ILNDKK.R. 
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and S. cerevisiae x S. mikatae, introgression of nuclear genes (Liti et al., 

2006; Muller and McCusker, 2009) and HGT of selfish elements (Liti et al., 

2005) have both been detected. Mitochondrial recombination occurs readily in 

yeast (Dujon et al., 1974; Birky et al., 1982; Taylor 1986; MacAlpine et al., 

1998), but until now, mtDNA recombination has only been described between 

different strains of S. cerevisiae. In our study we show that mtDNA 

recombination occurred between different species of Saccharomyces 

suggesting several hybridization events. 

In a previous study we found a recombination hot spot in COX2 gene, 

involving different species of Saccharomyces genus (Peris et al., in 

preparation). We hypothesized that recombination could be mediated by the 

ORF1 (RF1) free-standing HEG. As previously described with ω (I-SceI), the 

proteins codified in HEGs are selfish genetic elements that can infect other 

genomes without the HEG allele (HEG-) (Colleaux et al., 1986; Burt and 

Koufopanou 2004). A HEG protein mediates a DSB in the HEG- allele, and the 

HEG+ allele is used, by the recombinational repair system to repair the break, 

spreading the HEG into other genomes (Burt and Koufopanou 2004). 

Surprisingly, we found two major groups of sequences for ORF1 gene, 

each of which contained strains from different species (fig. 2). For example, S. 

cerevisiae and S. paradoxus strains could be found in both groups, Type I and 

Type II. Both groups also contained ORF1-encoded homing endonucleases 

that are predicted to be active (e.g. M51 in Type I and M1, M4-M6, M15, M16, 

M21, and M22 in Type II). We also previously described recombination points 

between Saccharomyces spp. in the COX2 gene, which overlaps with ORF1 

(Peris et al., in preparation). Thus, as the ORF1 homing endonuclease spread 

rapidly between Saccharomyces genomes by creating and repairing DSBs, it 

appears to have created multiple recombinant alleles of COX2 and itself, 

including variants that cross species boundaries. 

 



OBJECTIVE 4 -Chapter 2- 

238 

4.2 Recombination hot spots 

 We described several recombination points along the ORF1 gene (Table 

1). Most GC clusters and A+T tandem repeats were inserted near 

recombination points (fig. 1), consistent with previous observations that GC 

clusters are favored sites for mitochondrial recombination (Dieckmann and 

Gandy, 1987; Bouchier, 2009). Tandem repeat polymorphisms are commonly 

associated with GC insertions, indicating than GC clusters and their 

associated A+T repeats may have transposed as a unit (Skelly and Clark 

Walker, 1991). Based on our analyses, it seems likely that the internal 

recombination points found in the ORF1 gene (fig. 1) are mediated by the 

presence of GC cluster and A+T rich sequences. For example, some 

haplotypes of S. kudriavzevii (M10-M12) and S. cerevisiae x S. kudriavzevii 

hybrids (M8 and M9) received segments from Far East S. paradoxus (CECT 

11424 and CECT 11422) (Table 1, Figure S5B-C). These results indicate that 

interspecific recombination does occur in nature and suggest that the common 

flanking sequences may also mediate internal gene recombinations. 

To determine the extent of the recombination hot spot, we sequenced the 

COX3 gene. In S. cerevisiae, S. bayanus, and the ancestral Saccharomyces 

genome, COX3 was near COX2, although they were separated by ORF1 and 

the tRNA cluster (Groth et al.,, 2000). Although S. paradoxus COX3 has been 

described in a different location (Groth et al.,, 2000), we still compared COX3 

gene sequences to its haplotypes correlated with the COX2-ORF1 region. S. 

mikatae, S. arboricolus, and S. kudriavzevii mitochondrial genomes have been 

not described, so we assumed that COX3 is near COX2-ORF1-tRNAs, as in 

the ancestral Saccharomyces mitochondrial genome. Another free standing 

homing endonuclease ORF2 (RF2) that also contains GC clusters is near the 

COX3 gene (Michel, 1984). Our results showed species-specific groups, with 

the exception of 120M and CBS 5313, indicating that recombination hot spots 

are probably located in the COX2-ORF1 region and not COX3. If our model 
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about the ORF1 HEG-mediated recombination is correct, it may suggest 

ORF2 is inactive in most strains (fig. 3) or absent, as has been recently 

published in S. paradoxus CBS432 (Procházka et al., 2012). 

 

4.3 ORF1 gene inactivation 

HEGs follow a life cycle (Goddard and Burt 1999). An empty site is 

infected by a HEG+ allele, the functional HEG degenerates and loses 

functionality, and finally suffers a precise lost, starting again the cycle. In the 

case of ORF1 gene, we found two different types, both of which included 

active variants. Moreover, all the strains sequenced in this study or in other 

projects (as SGRP) have an ORF1 gene sequence. These findings indicate 

that the ORF1 gene is widespread and often functional in the Saccharomyces 

genus.  

Two different I-SceI types have been described: an inactive one containing 

a GC cluster that breaks the reading frame in S. cerevisiae (de Zamaroczy 

and Bernardi, 1986) and an active one without the GC cluster in S. bayanus 

var. uvarum (Séraphin, 1987). For ORF1, we described up to 7 GC clusters 

inserting points, most of which were found in Type II. Importantly, our 

haplotype classification procedure did not take GC clusters and indels into 

account. Some strains grouped into the same haplotypes showed differences 

in GC clusters, which suggest that GC cluster insertion occurred after ORF1 

infection. In the case of S. paradoxus 120M and CBS 5313, which have 

maintained a mtDNA from S. cerevisiae (see below) but an ORF1 type 

different to those observed in most S. cerevisiae strains, they showed a GC 

cluster similar to S. cerevisiae strains. This suggests that GC cluster jumped 

from a different mtDNA region (S. cerevisiae mtDNA region) and inserted in 

the ORF1 gene (Figure S2). 

Most strains from the M40 haplotype have two GC clusters (6 and 7), 

although VRB strain had two additional GC clusters (1 and 4), and L351 and 
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AMH had only GC cluster 6. Similarly, SK1 of the M41 haplotype had only GC 

cluster 6. The introduction of GC clusters is apparently independent but region 

specific, because some haplotypes have GC cluster 6 but not 7, while some 

have GC cluster 7 but not 6. 

Sequences with and without GC clusters maintain the flanking regions 

necessary for GC insertion (Figure S1), as previously described for GC cluster 

6 and 7 (Weiller et al.,, 1989; Séraphin et al., 1987). After infection by an 

ORF1 homing endonuclease, GC clusters could be introduced into the ORF1 

gene as a defense mechanism. According to our results, strains with similar 

mtDNA (COX2 and COX3 sequences) but with different ORF1 genes have 

similar GC clusters. This suggests that GC cluster origin is from mtDNA. GC 

cluster insertion is not a unique mechanism to inactivate ORF1. Accumulation 

of mutations can produce premature stop codons as occurred in S. cerevisiae 

haplotypes M26 and M23; S. kudriavzevii haplotypes M8, M10 and M11; and 

S. bayanus var. bayanus x S. bayanus var. uvarum M2 and M3. 

Analysis of dN/dS showed that most of the amino acid residues are 

evolving neutrally, suggesting that ORF1 is not performing an important 

function in these strains, consistent with their role as selfish genetic elements 

(Doolittle and Sapienza, 1980). The conservation of some amino acids in 

LAGLIDADGs and NUMOD domains are probably because rapid re-infection 

continually restores the original amino acid sequences of ORF1 domains. 

 

4.4 Evolution of ORF1 homing endonuclease 

The evolution of the ORF1 gene is quite complex. The most plausible 

scenario is that type I ORF1 homing endonuclease is the most ancestral 

sequence inherited by the Saccharomyces common ancestor. Most of the 

Saccharomyces strains are circumscribed in the Type I group, including S. 

cerevisiae strains (M17, M22 and M23), S. paradoxus from America (M13 and 

M14) and Europe (M21), S. arboricolus, S. mikatae, S. cerevisiae x S. 
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kudriavzevii (CECT 1990, CECT 1388 and CECT 11002), S. bayanus var. 

bayanus and S. bayanus var. uvarum. Type I is probably more infective than 

Type II and may serve as a reservoir of functional alleles, since we found that 

most putatively active ORF1 genes are Type I. Some S. cerevisiae and S. 

paradoxus from FE (CECT 11152) have lost the Type I ORF1 gene, but they 

were re-infected with a new version of ORF1 that we called Type II. The origin 

of Type II is unknown, but probably it was received from a member of the 

Saccharomycetaceae family. However, the high similarity of ORF1 Type II with 

ORF1 Type I and their phylogenetic placement (Figure S4) suggest that the 

donor was not a distant relative. Alternatively, ORF1 Type II could have 

suffered rapid evolution and degeneration after inactivation of a Type I-like 

ancestor. 

Homing endonucleases usually are found inside introns or inteins. They 

facilitate the splicing of intron and inteins, receiving the name of maturases 

(Belfort 2003). In the case of ORF1, it is not found inside an intron or intein, 

being a free-standing homing endonuclease. It has been described in 

Schizosaccharomyces pombe the presence of intron and intron-less strains in 

COX2, containing a homing endonuclease encode inside the intron (Schäfer 

et al., 1998). Probably, in the evolution of Saccharomyces genus the intron of 

COX2 was lost but the infective character of homing endonucleases has 

allowed it to be maintained in the nearest of COX2 gene. However, it 

surprising that the homing endonuclease of S. pombe in COX2, an H-N-H 

family (Schäfer et al., 1998), is from a different family than S. cerevisiae 

COX2, LAGLIDAD family. It suggests that the evolution of these homing 

endonucleases is independent and conclusions are more complex to obtain. In 

our opinion, the self-splicing nature of group I and group II mitochondrial 

introns (Belfort 2003) indicate that maturases are not needed. However, the 

efficiency of splicing is increased, and in other cases could be necessary 
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(Belfort 2003). This could explain the presence of different homing 

endonucleases in the COX2 of S. pombe and Saccharomyces genus. 

 

4.5 Footprint of ancestral hybridization 

 Though intraspecific recombination is well-documented in S. cerevisiae, 

our results suggest that the mitochondrial genome can retain the footprint of 

prior interspecific infections by homing endonucleases. When mating occurs 

between two different strains or even species, fusion of mitochondrial 

organelles is followed by the formation of a continuous reticulum-denominated 

heteroplasmic state (Berger and Yaffe, 2000). During this process, the Orf1 

homing endonuclease spreads from ORF1+ mtDNA to ORF1- mtDNA by 

targeted gene conversion. GC insertions and A+T repeated sequences also 

seem to facilitate recombination between different ORF1+ alleles. Inheritance 

of mtDNA is uniparental and a homoplasmic state is quickly reached (Basse, 

2010). Thus, after recombination, daughter cells could receive a unique 

recombinant type of mtDNA. As we showed here (Table 1 and Figure S5) and 

previously (Peris et al., in preparation), interchanges of nucleotides sequences 

have occurred several times between different Saccharomyces species 

(Figure S5B).  

 We also observed a complex mtDNA in 120M and CBS 5313, two 

strains with 5 nuclear gene sequences from an American S. paradoxus (Arias 

2008). 120M and CBS 5313 displayed COX2 sequences similar to S. 

cerevisiae strains (Peris et al., in preparation), and here we show that COX3 

gene also matches S. cerevisiae. Thus, it seems that an ancestral unstable 

hybridization occurred between an American strain of S. paradoxus and a 

strain of S. cerevisiae with an ORF1 type I homing endonuclease closer to S. 

paradoxus from Europe, suggesting that the parental donor could be a strain 

similar to 51PE. In the case of S. cerevisiae x S. kudriavzevii hybrids 

containing a mtDNA type K5, K6 and K10 in Peris et al. (2012a) or haplotypes 
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H87-H89 in Peris et al. (in preparation) two scenarios are possible. In one of 

them, a European S. paradoxus could transfer its ORF1 to the mtDNA of a 

European S. kudriavzevii strain and inherited by these hybrids after mating 

with a brewery or ale, depending of the parental strain S. cerevisiae, as we 

shown in the evolutionary reconstruction of these hybrids (Peris et al., 

accepted). In the contrary, ORF1 from a European S. paradoxus could be 

transferred to a wine S. cerevisiae as we have shown the high similarity 

between CECT 11757 and European S. paradoxus ORF1 sequences, and a 

derivative strain could hybridize with a European S. kudriavzevii (Peris et al., 

accepted) and a recombinant mtDNA S. kud-S.cer could be maintained in 

these hybrids. 

 In conclusion, as more mitochondrial genomes will be sequenced, we 

could more thoroughly trace the complex evolution of Saccharomyces genus. 

Apparently, the evolution of this genus is not strictly linear. The recently 

demonstration that some species can live in sympatric association (Sampaio 

and Gonçalvez, 2008), species of this genus could hybridize with a high 

frequency yielding unstable hybrids, maintaining the portion of one parental 

genome, or new cells with a genome from predominantly one parent in most of 

the cases (Dunn and Sherlock 2008; Peris et al., 2012b). Nonetheless, in the 

former case some footprints are occasionally left in the nuclear genome 

(through introgression and HGT) or the mitochondrial genome, as we have 

shown in this work, occurring with the ORF1 allele. This indicates that 

hybridization is a random and frequent mechanism, which in some conditions, 

as biotechnological environment, the hybrid genome could be maintain or 

stabilized. 
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In this doctoral thesis we have elucidated important questions 

regarding S. cerevisiae x S. kudriavzevii hybrid yeasts. We have identified 

and characterized new hybrids from different environments. We have 

researched the genome structure of the hybrids unveiling the origin of the 

parent strains and their role in the hybrid genomes. We have estimated the 

minimum number of hybridization events, the geographical origin of the 

hybrids and we detected ancestral hybridization between different 

Saccharomyces species supporting a high frequency of this phenomenon. 

Finally, we have explored the biotechnological advantages of the 

hybridization process underwent by S. cerevisiae and other 

Saccharomyces species as well as the evolutionary consequences of 

species hybridization for the genus Saccharomyces. 

 

1. Identification of natural hybrids 

PCR-restriction fragment length polymorphisms of 35 nuclear genes 

distributed around the 16 chromosomes of Saccharomyces were used for 

identification of new natural hybrids S. cerevisiae x S. kudriavzevii. Four 

new natural hybrids, PB7 and SOY3 isolated from wines in the Southern of 

Europe and, MR25 and IF6 isolated from clinical and food environment, 

respectively, have been described. The double parental origin of these 

natural hybrids S. cerevisiae x S. kudriavzevii was confirmed by gene 

sequencing of seven nuclear genes (BRE5, CAT8, EGT2, GAL4, MET6, 

CYR1 and CYC3). 

RFLPs data have revealed high diversity in the genomes of the 

double hybrids S. cerevisiae x S. kudriavzevii and triple hybrids S. bayanus 

var. uvarum x S. cerevisiae x S. kudriavzevii. Different degrees of S. 

kudriavzevii gene loss could be deduced from RFLP data, ranging from 

hybrids with a copy of each parent RFLP allele to hybrids with a complete 

set of S. cerevisiae RFLP alleles but lower content of S. kudriavzevii RLFP 
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alleles, such as AMH and IF6. A similar trend of S. kudriavzevii gene loss 

was found in brewing and a group of Swiss wine S. cerevisiae x S. 

kudriavzevii hybrids, using the same methodology (González et al., 2008). 

The high genome diversity found among the S. cerevisiae x S. kudriavzevii 

hybrids could be indicative of several hybridization events, as it is explained 

in the next sections. 

The discovery of the new natural S. cerevisiae x S. kudriavzevii 

hybrids has expanded the present limits of their geographical distribution, 

from the Continental Europe where previous S. cerevisiae x S. kudriavzevii 

hybrids had been isolated, to the southern Mediterranean countries of the 

European wine regions (Schütz & Gafner 1994; González et al., 2006; 

Lopandic et al., 2007). These new hybrids, from Southern Europe wine 

areas, have appeared at low frequencies, coexisting with the dominant S. 

cerevisiae strains during the first stages of the wine fermentation. Perhaps 

the milder temperatures of these regions, at which spontaneous 

fermentations occur, still allow the coexistence of S. cerevisiae and hybrids. 

 

2. Genome structure of S. cerevisiae x S. kudriavzevii hybrids 

The genome structure of 14 S. cerevisiae x S. kudriavzevii hybrids has 

been elucidated using a combination of RFLPs, array Comparative 

Genome Hybridization (aCGH) and flow cytometry. Regarding DNA 

content, the interpretation of caryoscope diagrams obtained from aCGH 

analyses combined with RFLPs and flow cytometry indicated that most 

hybrids are triploids, except of AMH and PB7 that are tetraploids. Hybrids 

displayed a complex genome structure containing aneuploidies and several 

rearrangements due to recombinations between homeologous 

chromosomes generating chimerical chromosomes. Different types of 

chromosome rearrangements were detected: i) the complete loss of a S. 

kudriavzevii parent chromosome compensated by an extra copy of the S. 



SUMMARY OF RESULTS & DISCUSSION 

249 

cerevisiae chromosome; ii) aneuploidies, involving more or less 

chromosome copies; iii) and the presence of chimerical chromosomes. 

Hybrids displayed frequent chromosome rearrangements, as genome 

sequencing projects of wine hybrid VIN7 and lager brewing hybrid W34/70 

(S. cerevisiae x S. eubayanus) have confirmed (Nakao et al., 2009; 

Borneman et al. 2011). In yeast, any kind of aneuploidies decreases 

cellular fitness (Torres et al., 2008), although aneuploidies generate 

significant phenotypic variation conferring fitness advantages in not 

common conditions, such as stress conditions (Pavelka et al., 2010). The 

frequency of aneuploidies or chromosome rearrangements in hybrid strains 

could be due to their adaptation to winemaking and beer production, two 

processes characterized by a succession of physicochemical stress 

conditions (Ivorra et al., 1999; Carrasco et al., 2001; Briggs et al., 2004). 

Future studies about engineered hybrids with different composition of 

aneuploid chromosomes could reveal which of them confers fitness gains in 

different stress conditions. 

Previous studies had shown similar complex genome structure of 

hybrid W27 S. cerevisiae x S. kudriavzevii isolated from wine in Switzerland 

(Belloch et al., 2009). Using propidium iodide, to quantify the DNA content, 

these authors described W27 and other Swiss S. cerevisiae x S. 

kudriavzevii hybrids as diploids (Belloch et al., 2009). In this thesis, 

quantification of DNA content using SYTOX Green revealed that W27 and 

other Swiss hybrids are triploids. Recent studies, using a similar approach, 

determined hybrids ploidy between 2n and 4n, being most cases 3n (Erny 

et al., 2012). Genome sequencing of VIN7 (Borneman et al., 2011) and 

W27 (data not published), is in accordance to 3n DNA content. 

S. cerevisiae x S. kudriavzevii hybrids show a complete copy of S. 

cerevisiae chromosomes and a complete or partial copy of S. kudriavzevii 

chromosomes. The reduction of the non S. cerevisiae genome in 
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Saccharomyces hybrids was already reported in artificial S. cerevisiae x S. 

uvarum hybrids (Antunovics et al., 2005). In contrast, hybrids S. cerevisiae 

x S. eubayanus group 1 maintain the genome of S. eubayanus and can 

lose S. cerevisiae chromosomes (Dunn and Sherlock 2008). These 

differences could be due to the different mtDNA inheritance. In the case of 

artificial S. cerevisiae x S. uvarum hybrids, all hybrids inherited a S. 

cerevisiae mtDNA genome (Antunovics et al., 2005); in contrast, S. 

cerevisiae x S. eubayanus group 1 hybrids inherited the ancestor S. 

bayanus mtDNA (Dunn and Sherlock 2008). Is important to note the 

different behavior in S. cerevisiae x S. kudriavzevii hybrids where most of 

them inherited a S. kudriavzevii mtDNA and they can lose the S. 

kudriavzevii nuclear genes. 

Despite the loss of S. kudriavzevii genes all hybrids shared a common 

pool of S. kudriavzevii genes. GO analysis showed a significant 

overrepresentation of S. kudriavzevii genes associated with the 

physiological adaptation of hybrids to growth at low temperatures, such as 

fatty acid transport and N-glycosilation of proteins, important to maintain the 

integrity of membranes. Furthermore, GO terms related with stress 

tolerance such as ergosterol, phospholipids and aminoacid metabolism, as 

well as temperature inducible protein (TIP1) and seripauperins (PAU) were 

conserved in most of hybrids. Previous studies showed a better adaptation 

of S. kudriavzevii at lower temperatures (Belloch et al., 2008) attributed to 

having a different lipid composition of membrane compared to S. cerevisiae 

(Tronchoni et al., 2012). However, S. kudriavzevii shows low tolerance to 

ethanol compared with S. cerevisiae (Belloch et al., 2008; Arroyo-López et 

al., 2009). 

The gene reduction observed in the S. kudriavzevii moiety and 

maintenance of genes from the S. cerevisiae moiety might be a direct effect 

of selective pressure under fermentative or propagation conditions where 
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the S. cerevisiae parent has advantages. For this reason, the most recent 

hybrids could be those showing a complete copy of each parent strain, 

such as PB7, whereas the most ancient hybrids would be those with 

genomes showing less percentage of S. kudriavzevii genome and more 

rearrangements. This is supported by the comparison of the genome 

structure of VIN7 analyzed in this thesis with the genome sequence of VIN7 

from Borneman et al., (2011) study. The latter is the original strain and the 

former is a derived commercial strain which presents the absence of S. 

kudriavzevii chromosome III compared with the original strain probably due 

to the process of propagation under stress conditions. Nevertheless, the S. 

kudriavzevii genes would be maintained as a counterpart of the S. 

cerevisiae genome distinguishing these hybrids with higher fermentative 

power at lower temperature of fermentation. 

 

3. mtDNA of S. cerevisiae x S. kudriavzevii hybrids 

COX2 gene sequencing was used to infer the mtDNA inheritance in S. 

cerevisiae x S. kudriavzevii hybrids. Most of the natural hybrids inherited 

the S. kudriavzevii mitochondrial DNA, except hybrids AMH and IF6 which 

have inherited the mtDNA from the S. cerevisiae parent. Mitochondrial 

inheritance is uniparental, therefore hybrids can only inherit the mtDNA 

from S. cerevisiae, S. kudriavzevii or occasionally a recombinant mtDNA 

(Basse 2010). 

Harboring any of the different mtDNAs might impose limitations in 

conserving specific genes in the nuclear genome. The presence of the S. 

kudriavzevii mtDNA in the hybrid forces the retention of most S. 

kudriavzevii nuclear genes involved in mitochondrial functions. GO analysis 

of nuclear S. kudriavzevii genes shows a significant enrichment in genes 

related to mitochondrial functions. Strains retaining the S. cerevisiae 

mtDNA, such as AMH and IF6, have suffered the highest S. kudriavzevii 
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gene reduction. Recent studies have shown the presence of nucleo-

mitochondrial incompatibilities between S. bayanus nuclear gene AEP2 and 

S. cerevisiae mitochondrial gene OLI1 (Lee et al., 2008). Moreover, genes 

MRS1 and AIM22 are associated with cytonuclear incompatibilities among 

S. cerevisiae, S. paradoxus and S. bayanus hybrids (Chou et al., 2010). In 

S. cerevisiae x S. kudriavzevii hybrids, the retention of a high number of 

nuclear genes of S. kudriavzevii carrying the S. kudriavzevii mtDNA 

compared with hybrids containing the S. cerevisiae mtDNA could be 

attributed to cytonuclear incompatibilities. 

It’s noteworthy that mtDNA inheritance has an important role in nuclear 

gene expression (Parikh et al., 1987), influencing in the metabolic fluxes 

that could increase or decrease the respiratory or fermentative pathways. 

Artificial hybrids S. cerevisiae x S. uvarum showed different carbohydrate 

metabolism and hexose transport depending on the parental mtDNA 

(Solieri et al., 2008). Moreover, the lipid composition of the membrane is 

essential to yeast adaptation at different environmental temperatures 

(Henschke and Rose, 1991; Beltran et al., 2008; Redón et al., 2011; Torija 

et al., 2003). Yeast adaptation to the beginning of fermentation (in wine or 

beer) requires an initial step of respiration for lipid synthesis (Hammond, 

2000; Briggs et al., 2004). Recently, it has been shown the different lipid 

composition of S. cerevisiae, S. kudriavzevii and their hybrids (Tronchoni et 

al., 2012). Here, we postulate that these differences could be done by new 

interactions between mtDNA and nuclear genome in the hybrids, changing 

the flux of respiration and fermentation, obtaining wines and beers with new 

organoleptic properties, where glycerol, aromatic compounds and ethanol 

concentrations are modified compared to the S. cerevisiae strains. This is 

supported by the different gene expression between hybrids and their 

parents (Tronchoni et al., in preparation) conducting to a different aroma 
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profiles (Gangl et al., 2009; Gamero et al., 2011) and glycerol and ethanol 

production (Arroyo-Lopez et al.,, 2010). 

A group of hybrids (most brewing hybrids, PB7, CID1 and MR25) 

enclosed in type (haplotype) K5 (H89), K6 (H88) and K10 (H87), have 

inherited a recombinant version of mtDNA. However, recombination only 

involves the 3'-end of COX2 gene and ORF1, as we will describe in more 

detail in the Mitochondrial recombination section. The hybrids above, 

harbor a mtDNA recombinant sequence which one of the segments of the 

gene is similar in sequence to a European S. paradoxus strain, although 

hybrids between S. kudriavzevii x S. paradoxus have not been found. 

However, this finding opens the possibility that a S. kudriavzevii strain, not 

found yet, could have hybridized with a European S. paradoxus. The S. 

kudriavzevii strain could have inherited a recombinant version of mtDNA S. 

kudriavzevii-S. paradoxus and later on, it could have been involved in the 

origin of the S. cerevisiae x S. kudriavzevii hybrids. Nevertheless, some S. 

cerevisiae strains have a recombinant mtDNA S. cerevisiae-S. paradoxus, 

in the same manner as the hybrids, although in those cases the COX2 

gene sequences correspond to S. cerevisiae and the 3'-end and ORF1 to a 

European S. paradoxus. In this case, the parent S. cerevisiae would be the 

donor of the S. paradoxus sequences to the S. cerevisiae x S. kudriavzevii 

hybrids. 

 

4. On the origins of the hybrids 

The results obtained from RFLPs, aCGH, flow cytometry and nuclear 

and mitochondrial gene sequencing were used for the construction of 

phylogenetic trees (Neighbor-Joining and Maximum Parsimony methods) 

and supernetworks to infer the minimum number of hybridization events 

necessary for explaining the genome diversity found in the hybrids, as well 

as the number of parental strains involved in their generation. In addition, 
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the comparison of nuclear and mitochondrial sequences from S. cerevisiae 

and S. kudriavzevii strains from different geographical origins was used to 

deduce the geographical origin of the hybrids. 

Differences between wine and non-wine related S. cerevisiae strains 

have been previously described. Arias (2008) demonstrated the existence 

of genetic polymorphisms shared by most wine strains forming a “wine 

allele haplogroup”. Moreover, genome sequencing of monosporic cultures 

of S. cerevisiae, isolated from different origins and sources, has 

demonstrated different groups of "pure" S. cerevisiae strains (Liti et al., 

2009). One of them corresponds to the wine/European S. cerevisiae 

strains. As showed in this thesis "wine alleles" from Arias (2008) are 

clustered with wine/European strains from Liti et al., (2009). Similarly, 

Carreto et al., (2008), using microarray analysis, established that S. 

cerevisiae strains isolated from wine fermentations shared a common pool 

of depleted genes. This common pool of depleted genes was also observed 

by microarray analysis in the hybrids. The S. cerevisiae alleles from seven 

nuclear genes of S. cerevisiae x S. kudriavzevii hybrids have been shown 

to cluster in the "wine haplogroup", where wine alleles from Arias (2008) 

and wine/European from Liti et al., (2009) were also found. These findings 

support the wine origin of the putative S. cerevisiae parent strain of most S. 

cerevisiae x S. kudriavzevii natural hybrids. In the case of CECT 11011 

(brewing hybrid strain), a non-wine allele was found, indicating that 

probably an "ale" strain could have originated the brewing group of hybrids 

that clustered with CECT 11011. In addition, CECT 1388, 1990, 11011 and 

MR25 have heterozygous alleles which is another feature of brewing S. 

cerevisiae strains (Arias 2008). CHIMAY brewing hybrid, using 

microsatellite data, was clustered with brewing S. cerevisiae strains (Erny 

et al., 2012), supporting our hypothesis. A genome sequencing project of 

the brewing hybrids could elucidate the "ale" origin of this group. 
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A similar approach was used in the case of S. kudriavzevii alleles. It 

has been shown that S. kudriavzevii strains from Japan and from Europe 

are different at metabolic level, such as GAL pathway (Hittinger et al., 

2010), as at genetic level (Lopes et al., 2010). The S. kudriavzevii alleles 

from the seven nuclear gene sequences and RFLP allele patterns of S. 

cerevisiae x S. kudriavzevii hybrids, described in this thesis, were also 

shared by some European S. kudriavzevii strains. 

Our results indicate that at least six different hybridization events would 

have been necessary to generate the double hybrids S. cerevisiae x S. 

kudriavzevii and two additional origins for the triple hybrids S. cerevisiae x 

S. kudriavzevii x S. uvarum, studied in this thesis. Six wine/European S. 

cerevisiae and six European S. kudriavzevii strains could have been 

involved in the generation of the hybrids. COX2 gene sequences have 

displayed two clear haplogroups where wine/European S. cerevisiae strains 

could be found, supporting at least two clear groups of parental S. 

cerevisiae strains, as we found in the supernetworks. Some parental S. 

cerevisiae strains could be mosaics from the two meaning groups. Previous 

studies had postulated two different origins for the S. cerevisiae x S. 

kudriavzevii hybrids (Gonzalez et al., 2008); however the results generated 

in this thesis have increased this number. Although more hybridization 

events can be postulated than in Erny et al., (2012) study, where three 

hybridization events were proposed, our results are in agreement with that 

study. We propose an independent origin for the Swiss and two brewing 

(CECT 11003 and CECT 11004) hybrids, what is in accordance with the 

microsatellite phylogenetic analysis of hybrids, performed by Erny et al., 

(2012). A second origin, proposed for the Alsatian VIN7, Austrian and 

Croatian SOY3 hybrids, is also in accordance to Erny et al., (2012) work, as 

these hybrids are close relatives of the Hungarian wine hybrids. Therefore, 

this is a lineage of wine hybrids widely distributed along the Rhine valley 
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(Alsace and Germany) to the Danube valley (Pannonian region: Austria, 

Croatia and Hungary). 

A different origin, for most of the brewing hybrid strains and MR25 (a 

clinical isolate), is also proposed in this thesis. Microsatellite analysis has 

demonstrated that CHIMAY hybrid strain is close to S. cerevisiae from beer 

(Erny et al., 2012). In addition, the presence of a non-wine allele in CECT 

11011 and CECT 1388, and two alleles for BRE5 in some brewing and 

MR25 are indicative of a brewing origin of the parent S. cerevisiae, 

supporting the independence of this group.  

In this thesis independent origins for PB7, AMH and IF6 hybrids are 

also proposed. And finally, the origin of the triple hybrids CID1 and 

CBS2834 is not clear due to the additional occurrence of a secondary 

hybridization event either between the S. cerevisiae x S. kudriavzevii hybrid 

or derivative and a S. uvarum strain or between a S. cerevisiae x S. uvarum 

hybrid or derivative and a S. kudriavzevii strain. The S. cerevisiae CBS 

2834 parent strain seem to be that originating the Austrian-Croatian 

hybrids, but not the S. kudriavzevii parent; although similar mtDNA 

sequence, inherited from S. kudriavzevii parent, was observed. 

The DNA content (ploidy) observed in the S. cerevisiae x S. 

kudriavzevii hybrids indicates different types of crosses or mating types. 

For most S. cerevisiae x S. kudriavzevii hybrids, a cross between a diploid 

S. cerevisiae and a haploid S. kudriavzevii might have occurred. Moreover, 

the genome composition of the S. cerevisiae x S. kudriavzevii natural 

hybrids indicates a high ploidy of the ancestral hybrid, around triploid or 

tetraploid, that is compatible with a rare-mating mechanism between a 

diploid S. cerevisiae and a haploid/diploid S. kudriavzevii (Pretorius 2000; 

de Barros Lopes et al., 2002). Hybrid PB7 seems to be originated by a 

cross between two diploid strains. The genome structure of hybrid AMH 

indicates that two hybridization events might have occurred. In the first one, 
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a diploid S. cerevisiae would have mated with a haploid S. kudriavzevii, and 

in the second a cross between the hybrid or derivative and a diploid S. 

cerevisiae would have occurred. Hybrid generation by two crosses or 

mating events have been already described to elucidate natural triple 

hybrids CID1 and CBS 2834 (Groth 1999; González et al., 2006). Although 

Erny et al., (2012) proposes spore matings and duplication of the complete 

set of S. cerevisiae chromosomes as the meaning mechanism of hybrid 

generation, heterozygotes brewing hybrids and the formation of artificial 

hybrids generated by rare-mating in laboratory, which appears to be very 

easy (Pérez-Través et al. .2012), supports our hypothesis. 

The results generated in this thesis do not allow to infer the primal 

country where the first S. cerevisiae x S. kudriavzevii hybrids were 

originated; however, gene similarity between the S. kudriavzevii 

subgenome of the hybrids and the European S. kudriavzevii, and between 

the S. cerevisiae subgenome of the hybrids and S. cerevisiae strains 

isolated in Europe indicated that Europe could be considered the primary 

continental origin for the natural S. cerevisiae x S. kudriavzevii hybrids. 

Although, our Swiss group of hybrids were not close relative to any of 

described European S. kudriavzevii populations, the recent efforts focus in 

sampling S. kudriavzevii strains around Europe are discovering new S. 

kudriavzevii strains. We suspect that the new group of S. kudriavzevii from 

Ardèche (France) (Erny et al., 2012), quite different to those from Portugal 

and Spain probably could be related to the parent S. kudriavzevii from 

where Swiss hybrids were originated. 

From a historical perspective, the expansion of the S. cerevisiae wine 

strains can be seen as a consequence of the spread of vineyards around 

the world (Chambers & Pretorius 2010; Sicard & Legras 2011). These 

"domesticated" S. cerevisiae strains (Fay and Benavides et al., 2005) have 

problems when performing wine fermentations at the lower temperatures to 
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which other Saccharomyces species are better adapted (Salvadó et al., 

2011). Under such circumstances, hybrids have clear advantages over the 

parent species (Serra et al., 2005; Belloch et al., 2008; Arroyo-López et al., 

2009). Acquiring good alcohol and glucose tolerances and fast fermentation 

performances from S. cerevisiae (Belloch et al., 2008; Arroyo-López et al., 

2010) and a better adaptation to low and intermediate temperatures from S. 

kudriavzevii (González et al., 2007; Belloch et al., 2008; Arroyo-López et 

al., 2009). In the regions where principal successful lineages of S. 

cerevisiae x S. kudriavzevii wine hybrids have been found (Rhine and 

Danube valleys: Pannonian basin of Central Europe, Alsace and other 

oceanic and continental climate regions) (Erny et al., 2012 and this thesis), 

winemaking had been introduced or improved on by Cistercian monks. In 

all these regions, winemaking and beer production were located in abbeys 

established by Cistercians monks or new orders derivative from 

Cistercians, such as Trappist monks. Cistercians monks established 

abbeys around Europe between 11th and 13th centuries. Around 300 

Cistercian abbeys where established in the Rhine and Danube valleys and 

Trappist abbeys were located in Belgium (Burton and Kerr, 2011; Courtray, 

1986). Hybrids have been isolated from these regions, indicative that 

hybrids and Cistercians/Trappist monks could be related. 

Another interesting point to consider is the environment in which the 

hybrids might have surfaced. S. kudriavzevii has been not found in 

biotechnological environments; in contrast it is found in oaks, in sympatric 

association with S. cerevisiae and S. paradoxus (Sampaio & Gonçalves 

2008). Therefore, the origin of the hybrids might be linked with the arboreal 

environment. Experiments done to favor hybrid generation between S. 

cerevisiae and S. kudriavzevii under fermentative conditions demonstrated 

that the biotechnological environment is not adequate for hybrid generation 

(Arroyo-López et al., 2011). The fermentations underwent in the past were 
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not sophisticated as nowadays and many insects, principal vectors of 

yeasts (Reuter et al., 2007), as wasps from Italian regions, recently 

demonstrated (Stefanini et al., 2012), could have been in contact with the 

first steps of the fermentations process. If S. cerevisiae x S. kudriavzevii 

hybrids were randomly originated and maintained as a consequence of the 

better adaptation to lower temperatures, of continental and oceanic 

climates in the wild, and put in contact with the substrates of wine and beer, 

they might be selected by an unconscious manner by humans and 

maintained until today due to their good fermentative properties. After on, 

their genomes could evolve as a consequence of the new fermentative 

environment conditions. However, it must be confirmed the existence of 

hybrids in nature or insects from Central Europe. 

 

5. Nuclear recombination hotspots 

Caryoscopes diagrams from aCGH and phylogenetic trees were used 

to define several recombination hotspots in the genome of the hybrids. 

Genome structure of the hybrids revealed the presence of several 

chimerical chromosomes which structure was shared by hybrids from 

putatively different origin. A detailed study of the regions where 

recombination had been occurred revealed the presence of highly 

recombining sequences, such as ARS, Ty elements, Y’ elements, rRNA 

regions and conserved coding genes. Recombination between 

homeologous chromosomes could then have been mediated by highly 

recombining sequences, as described in previous studies (Kim et al., 1998; 

Pérez-Ortín et al., 2002; Di Rienzi et al., 2009) . The mismatch repair 

system (MMR) that favors the loss of one partner when the recombination 

is initiated between homeologous chromosomes would have mediated the 

complete or partial chromosome losses of the S. kudriavzevii subgenome in 

the hybrids. In addition, this process increases the LOH of many parts of 
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the hybrid genomes, as we observed in the region ITS5.8-rDNA of IF6 

hybrid. 

Presence of chimerical chromosomes has also been related with low 

viability of spores. Most of S. cerevisiae x S. kudriavzevii hybrids have 

shown low spores viability (<1%), with the exception of hybrid PB7 which 

showed close to 100% spores viability. Hybrid PB7 is an exception within 

the hybrids as it shows two copies of each parent chromosome for most of 

the chromosomes and very few chromosomal rearrangements. The low 

spore viability observed in hybrids could be due to as a consequence of 

post-zygotic barriers, created by nucleo-cytoplasm incompatibilities, 

chimerical chromosomes or other unknown mechanisms. Consequences of 

low spore viability are the lack of successful sexual reproduction and 

prevalence of reproduction by mitosis. Although recombination have been 

associated with meiosis, mitotic recombination has also been described 

occurring at low frequency (Andersen & Sekelsky 2010) being the most 

plausible mechanism occurring in hybrids. 

 

6. Mitochondrial recombination as a footprint of ancestral 

hybridizations 

The Phylogenetic analysis using networks of COX2 mitochondrial gene 

sequences from different species of Saccharomyces genus has supported 

the population structure of some "pure" S. cerevisiae from Liti et al., (2009) 

and Schacherer et al., (2009) and hinted the presence of a recombination 

hotspot in the mitochondrial genome. 

The median-joining network based on COX2 sequences revealed two 

independent haplogroups for S. cerevisiae strains, 1 and 2, which have not 

shown a relationship depending on country or source of isolation, with the 

exception of laboratory and bakery strains. This indicates that studies 

based on COX2 sequencing and mitochondrial genomes are not proper for 
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phylogeographical analysis in S. cerevisiae. Studies from Liti et al., (2009) 

and Schacherer et al.,(2009) defined different populations for S. cerevisiae 

and S. paradoxus coincident with the country or source of isolation. COX2 

sequences can be used to support these analysis based on nuclear 

genomes. The wine/European, West African and Malaysian pure groups 

described by Liti et al., (2009) and the wine, sake and laboratory groups 

from Schacherer et al., (2009), have been found in specific haplogroups. 

However the strains enclosed in the groups North American and Sake from 

Liti et al., (2009) have been located in both haplogroups, indicating that 

these groups are not pure. In the case of heterozygous genes, the 

sequencing of a monosporic culture drives to the loss of one allele, thus 

losing information. Probably, in the North American and Sake groups these 

alleles, that could indicate that this group is not pure, have not been 

sequenced, as we suspect with COX2 gene sequence results. 

In the case of S. paradoxus, we found three haplogroups named Far-

East (haplogroup 1), American (haplogroup 2) and European (haplogroup 

7), as have been described by Liti et al., (2009). Special discussion will be 

done in American S. paradoxus below. 

One S. kudriavzevii from Japan, the European S. kudriavzevii, the 

triple hybrid CBS 2834 and most of the S. cerevisiae x S. kudriavzevii 

hybrids were enclosed in the Haplogroup 3. In addition, S. arboricolus and 

S. mikatae have been located in independent positions. 

S. bayanus var. uvarum (S. uvarum) and S. bayanus var. bayanus (or 

S. eubayanus) sequences were divided into haplogroups 5 and 6, 

respectively. A recent study have found a pure strain of S. bayanus var. 

bayanus, called S. eubayanus (Libkind et al., 2011). Our results have 

shown that S. uvarum and S. eubayanus COX2 sequences have nucleotide 

differences similar to those found between other Saccharomyces species. 

This supports the idea that S. eubayanus (S. bayanus var. bayanus) and S. 
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uvarum could be different species, and not varieties, as some authors 

claimed (Libkind et al., 2011). 

Analysis of COX2 gene sequences revealed the presence of a frequent 

recombination point in the 3’ end of the gene. Alignment of the 3’ end 

sequences revealed the presence of intra and interspecific recombinations, 

involving some species within the Saccharomyces genus. Regarding the 

hybrids S. cerevisiae x S. kudriavzevii included in the mtDNA types K5, K6 

and K10, all of them displayed a recombinant COX2 end between S. 

kudriavzevii and the European S. paradoxus, as we commented in the 

mtDNA of S. cerevisiae x S. kudriavzevii hybrids section.  

Some representative strains, of the previous phylogenetic analysis with 

COX2 sequences, were selected for sequencing the COX2 adjacent genes, 

ORF1 and COX3 (not in all species COX3 is near to COX2-ORF1-tRNA). 

ORF1 gene encodes a free-standing homing endonuclease (HEG) whose 

start codon is located in the COX2 3’-end. ORF1 sequences provided 

information about the length of the recombination occurring in the 

mitochondrial genome. Gene COX3, codifying the subunit 3 of the 

cytochrome oxidase, could provide information about the mechanism 

involved in the recombination as this gene is located in a transcriptional unit 

different to COX2 and ORF1. Mitochondrial gene order differences have 

been described to occur at transcriptional unit level and at gene level 

(Groth et al., 2000). 

The ORF1 gene sequencing has revealed two different types of 

sequences for ORF1 gene in the Saccharomyces species. ORF1 

translation frame could be found truncated by the presence of premature 

stop codons and GC insertions causing a shift in the open reading frame. In 

addition to the recombination in COX2, other recombination points have 

also been found in the ORF1 gene, located near to GC insertions and A+T 

tandem repeats. The evolution of the ORF1 gene was difficult to explain 
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due to the lack of information (sequences) deposited in the databases. 

Future efforts in this field could elucidate the origin of this maturase like-

protein, and other HEGs located in the mitochondrial genomes. We 

speculate about the ancestrality of ORF1 type I due to it’s observed in most 

Saccharomyces species, and ORF1 type II could be a derivative of ORF1 

type I or transferred from a Saccharomycetaceae member. 

No recombination could be found in the sequence of the COX3 gene, 

and the phylogenetic analysis showed similar species specific clusters to 

the ones found with the first segment of COX2 gene, with the exception of 

two American S. paradoxus now enclosed in the S. cerevisiae cluster. 

Our results showed frequent recombinant mtDNA in different species 

and hybrids within the genus Saccharomyces. This recombinant mtDNA 

might be the result of an ancestral hybridization what is supported by the 

presence of mtDNA from S. cerevisiae in some S. paradoxus from America, 

as we demonstrated in COX2 5’-end and COX3 mitochondrial gene 

sequences. Mitochondrial DNA recombination can be explained due to 

fusion of mitochondria organelles during cell mating driving to a 

heteroplasmic state (Berger & Yaffe 2000). However, Saccharomyces 

yeasts are homoplasmic and daughter cells in polar positions could inherit 

one of the two parent mtDNA whereas daughter cells in the middle of the 

zygote (medial buds) could inherit recombinant mtDNA after mitochondrial 

fusion as has been observed in S. cerevisiae (Nunnari et al., 1997; Berger 

& Yaffe 2000).  

In the case of two American S. paradoxus (120M and CBS 5313), gene 

sequencing of five nuclear genes have not shown the presence of S. 

cerevisiae sequences (Arias 2008). However, we found a high gene 

sequence similarity of American S. paradoxus COX2-5' end and COX3 

partial gene with S. cerevisiae sequences, indicating that mtDNA could be 

inherited from a parent S. cerevisiae after a hybridization with an American 
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S. paradoxus. A nuclear and mitochondrial genome sequencing project of 

these S. paradoxus strains could demonstrate introgressions between S. 

cerevisiae and American S. paradoxus, as previously have been described 

for other S. paradoxus strains (Liti et al., 2006; Muller and McCusker, 2009; 

Dunn et al., 2012) or the hybrid character of these strains. This has been 

also observed in hybrids S. cerevisiae x S. kudriavzevii, as we have 

described in the mtDNA of S. cerevisiae x S. kudriavzevii hybrids section. 

At COX2 level we detected more putative recombinant mtDNA not explored 

at ORF1 and COX3 level, such as IFO 1803 (S. kudriavzevii from Japan), 

IFO 1816 (S. mikatae) and other strains of S. paradoxus. The complete 

mtDNA gene sequencing of more strains of Saccharomyces will elucidate 

accurately the evolutionary history of these strains. 

Our results suggest that COX2 recombinant hotspot could be mediated 

by Orf1p due to a common recombination point that is present in most of 

the recombinant sequences. Mitochondrial ORF1 gene has been annotated 

as a maturase like-protein (or free standing HEG-homing endonuclease 

gene). Homing endonucleases are selfish genetic elements. A HEG protein 

seems to mediate a double strand break (DSB) in the HEG less genome 

allele (HEG
-
), whereas the HEG

+
 allele is used by the recombinational 

repair system to repair the break (Burt & Koufopanou 2004). After a 

hybridization event the two types of mitochondrial genomes, one containing 

a HEG
+
 and the other a HEG

-
 would fuse, and the homing endonuclease 

protein could mediate the gene conversion of HEG- to HEG+, as have been 

described in other homing endonucleases at mitochondrial and nuclear 

level (Burt and Koufopanou, 2004). In this way, the daughter cells would 

inherit the recombinant version of the mtDNA. Moreover, the lack of 

recombinant sequences in COX3 supports that mitochondrial 

recombination is located in the COX2-ORF1 region and, in addition, the 
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high frequency of mitochondrial recombination in the COX2-ORF1 region 

supports that a molecular mechanism is involved. 

The observation of recombination within ORF1 gene indicates that 

other mechanisms are taking place after hybridization. In some cases, a 

recombination between GC clusters or regions enriched with A+T tandem 

repeats should have happened. This is supported by other studies where 

recombination is also mediated by GC clusters and A+T tandem repeats 

between S. cerevisiae mitochondrial genomes (Dieckmann & Gandy 1987; 

Bouchier et al., 2009; Skelly & Clark-Walker 1991). In this case, both 

mtDNAs could be HEG
+
 and the highly recombinant sequences, such as 

A+T tandem repeats and GC clusters, could mediate recombination 

between the mitochondrial genomes. 
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1. The biological species concept in yeast 

The occurrence of natural hybrids between S. cerevisiae and other 

species in the genus Saccharomyces is in contradiction with the biological 

species concept in yeast. The presence of S. cerevisiae x S. kudriavzevii 

(Gonzalez et al., 2008; Peris et al., 2011a), S. cerevisiae x S. eubayanus 

(Dunn & Sherlock 2008; Libkind et al., 2011), S. uvarum x S. eubayanus, S. 

cerevisiae x S. uvarum (Rainieri et al., 2006) hybrids, horizontal gene 

transfer between Saccharomyces species (Liti et al., 2005), introgressions 

(Liti et al., 2006; Muller & McCusker, 2009; Dunn et al., 2012) and 

recombinant mitochondrial DNA indicates that the frequency of 

hybridization is very high in this genus. 

The independent evolution of the Saccharomyces species genomes 

has generated a postzygotic barrier between them, supporting in some 

cases the Dobzhansky-Muller model as reproductive isolation mechanism 

(Dobzhansky 1937). However, there is a margin that consents gene 

survival throughout hybridization under unfavorable living conditions for the 

parent strains. As we have described in this thesis, hybridization is a 

mechanism occurring by chance, that leads to the production of new 

individuals which could be better adapted to new growing conditions where 

parent strains cannot compete. 

A reformulation of the species concept in yeast must be done to be 

according the different processes that are not taking into account in the 

BSC. Genotypic cluster criterion could be an alternative to BSC. 

 

2. Yeast hybridization as an adaptive mechanism and its 

biotechnological applications 

Hybridization of two diploid strains can be considered as a Whole 

Genome Duplication (WGD), originating an allotetraploid. Some hybrids 

maintain the tetraploid state; however in most cases hybrids are as triploids 
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or diploids that indicate a diploidization process or the mating of diploid and 

haploid strains. 

Whole Genome Duplications have been described in vertebrates, 

plants and yeast (Ramsey & Schemske 1998; Otto & Whitton 2000; Wolfe 

& Shields 1997). Some authors have postulated that WGD in yeasts might 

have occurred due to hybridization between two ancestral diploid strains 

giving as a consequence an allotetraploid/polyploid strain (Kellis et al., 

2004; Andalis et al., 2004). From this allotetraploid strain would have arisen 

the present post-WGD yeasts which are adapted to fermentation producing 

high rates of ethanol in aerobic conditions (Crabtree positives) (Merico et 

al., 2007; Conant & Wolfe 2007). WGD events have also been associated 

as a process that emerge after a decrease in the number of species in the 

world and/or the existence of new niches (Edger & Pires 2009). In the case 

of yeasts, WGD occurred 100 Ma when angiosperm plants and fruits with 

high sugar content appeared (Wolfe & Shields 1997; Kellis et al., 2004). 

In another way, recent hybridizations, as the ones observed between 

Saccharomyces species, are maintained due to human activity which has 

made new artificial niches, such as fermentative ones. In the case of S. 

cerevisiae x S. kudriavzevii hybrids, as we have explained in this thesis, 

fermentations at low temperature during winemaking or beer production 

have made possible the replacement of the less competitive parent strains. 

For this reason, data is pointing out that WGD by allotetraploidy 

process seems to be an excellent adaptive mechanism. If it is 

demonstrated, that WGD is due to hybridization, in yeast, more than a 

duplication of the genome, we could understand the consequences of 

WGDs using artificial hybrids as a model. 

Natural and artificial hybrids have intermediate physiological properties 

compared with their parental species (Greig et al., 2002; Belloch et al., 

2008). In environmental conditions where the parental strains are not well 
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adapted, as low temperature for S. cerevisiae and higher ethanol 

concentrations for S. kudriavzevii, hybrids between these two species 

would be maintained in the population and finally replace their parent. 

Moreover, hybrids might produce wines with different organoleptic 

properties when compared with the parental strains, as in the case of 

aromas (Gangl et al., 2009; Gamero et al., 2011). This appears to be one of 

the reasons driving to an unconscious human selection of these 

strains/hybrids. This opens the possibility to originate personalized hybrids 

to improve the actual alcoholic beverages in the market. Generation of new 

hybrid strains for winemaking, beer and bioethanol production, 

detoxification or bakery industry is the new goal of the biotechnological 

companies. 

 

3. Future perspectives 

We have discussed the relevance of hybridization for the evolution of 

yeast and their biotechnological application.  

Understanding how the mechanism of hybridization works and how 

hybrid genomes evolve is key for the application of hybridization to create 

new biotechnological strains. Questions that have remained unresolved at 

the end of this thesis are: i) What are the real parents of the different 

hybrids found in nature? ii) What are the ecological properties where 

hybrids are obtained and who has spread them around Europe? iii) How 

are protein interaction networks rewired to maintain the cell active and what 

consequences it has at the physiological level? iv) Although hybrids are 

maintained in the population by clonal division (mitosis), evolved hybrids 

could originate new species able to divide by meiosis (recovering the 

sexual character)? 
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Finally, in the case of the HEG, ORF1, from mitochondrial DNA some 

questions remain unclear: i) what is the mechanism of ORF1 infection and 

its origin? ii) Could it have a function in the cell? 

Future questions regarding the hybrids will be answered by applying 

next generation sequencing, functional genomics, proteome analysis and 

experimental evolution.  
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The general conclusions deduced from this doctoral thesis are summarized 

as follows: 

 The geographical distribution of natural S. cerevisiae x S. kudriavzevii 

hybrids is limited to European regions of Oceanic and Continental climate 

characterized by cold winters and warm and dry summers. Expansion of 

wine S. cerevisiae x S. kudriavzevii hybrids to Southern European regions 

has brought them to these regions, corresponding to the northern limit of 

vine growing in Europe. 

 Hybridization might be a very important mechanism of evolution in yeasts 

as hybrids seem to be better adapted to new environments or 

fermentative conditions, successfully replacing the parental strains 

 In general, genome compositions of S. cerevisiae x S. kudriavzevii hybrids 

show a trend to maintain a complete copy of the parental S. cerevisiae 

genome and to lose the S. kudriavzevii fraction.  

 The genome structure of natural S. cerevisiae x S. kudriavzevii hybrids is 

highly diverse. Their DNA content varies from 3.0 to 4.0 times that of the 

haploid S. cerevisiae reference strain. All hybrids showed differences in 

the number of chromosomal rearrangements, varying from genomes 

without rearrangements to genomes highly rearranged indicating different 

evolutionary times for hybrid formation.  

 Chimerical chromosomes appear to be the result of chromosomal 

crossing over between homologous chromosomes mediated by highly 

recombinogenic sequences, such as ARS, Ty elements, Y’ elements, 

rRNA regions and conserved coding genes, activating the mismatch 

repair system (MMR) mechanism. 

 The role of S. cerevisiae parental genes in the hybrid seems to be the 

maintenance of a high fermentative capability whereas the role of S. 
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kudriavzevii parental genes related with adaptation to stress during 

fermentation at lower temperatures. 

 Most natural S. cerevisiae x S. kudriavzevii hybrids inherited their mtDNA 

from the S. kudriavzevii parent, which imposes a restriction to the loss of 

those S. kudriavzevii nuclear genes involved in mtDNA functions. The few 

natural S. cerevisiae x S. kudriavzevii hybrids bearing mtDNA from the S. 

cerevisiae parent exhibit a higher reduction of the S. kudriavzevii 

subgenome. These results support cytonuclear incompatibilities in the 

Saccharomyces hybrid genomes. 

 At least six different hybridization events are necessary to explain the 

origin of the natural double hybrids S. cerevisiae x S. kudriavzevii. 

Brewing strains (except CECT 11003 and 11004) and MR25 likely derived 

from the same hybridization event. Similarly, Swiss wine hybrids and 

brewing hybrids CECT 11003 and 11004 share a common hybrid 

ancestor. Austrian hybrids, Vin7 and SOY3, clustered together indicating 

also a common origin. The dietary supplement IF6 seems to be similar to 

hybrids participating in the formation of brewing and wine hybrids. Finally, 

PB7, AMH and triple hybrids seem to derive from independent 

hybridization events. 

 In most cases, the parental strains involved in hybridization were 

European wine strains of S. cerevisiae and European S. kudriavzevii 

yeasts. The exception maybe the hybrid ancestor of brewing yeasts which 

could derived from a European heterozygous ale S. cerevisiae yeast. 

 Most S. cerevisiae x S. kudriavzevii hybrids originated by rare mating 

between diploid S. cerevisiae strains and haploid S. kudriavzevii cells. 

However, wine hybrid PB7 likely was the result of a hybridization event 

between diploid S. cerevisiae and S. kudriavzevii cells; and strain AMH 

appears to be the result of two successive hybridization events, the first 

involving a diploid S. cerevisiae and a haploid S. kudriavzevii and the 
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second concerning the cross between the result of the first hybridization 

and a diploid S. cerevisiae. 

 The recombination hotspot found in COX2 mtDNA could be the result of 

the action of the neighboring homing endonuclease encoded by gene 

ORF1. Orf1p activity could have been lost several times in different S. 

cerevisiae and S. paradoxus strains but recovered after mitochondrial 

fusion due to hybridization event between the two species. 

  Internal recombinations in ORF1 and other uncommon recombining 

regions in COX2 could be mediated by GC clusters and A+T rich regions.
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