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friends I met in Cañete, Paiporta, Valencia, Mainz, la Coruña, Charleston, Boston,
Brazil and Stockholm, and during my work in Openfinance, Institut Valencià d’Esta-
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Chapter 1

Introduction

Public health surveillance provides information to identify public health problems
and respond appropriately when they occur. This information is crucial to pre-
vent and control a variety of health conditions such as infectious diseases, chronic
diseases, injuries, or health-related behaviors. Quality surveillance is needed to un-
derstand the true health status of the population and to guide the use of limited
public health resources. Under inadequate surveillance systems, leaders are grossly
misinformed and may lose opportunities for the application of early prevention and
control measures. In these situations, it is possible the resurgence of previously
eradicated diseases or the uncontrolled global spread of diseases as in the case of
HIV/AIDS (M’ikanatha et al., 2007). Surveillance involves four main integrated
activities: the collection of health data, the analyses of the data, their interpreta-
tion, and the timely dissemination of the results to those responsible to respond
to a population’s health needs. Surveillance systems capture spatial, temporal and
person characteristics on health outcomes. Incidence and mortality rates quantify
the size of the health problem in a given population and provide the basis for initi-
ating disease control measures and evaluating their effectiveness. Temporal trends
and demographic and ethnic group comparisons can provide important clues as to
disease etiology.

The increased availability of geographically geocoded health and population data,
and the development of geographic information systems (GIS) and software for
geocoding addresses, have facilitated the ascent of the investigations of spatial and
spatio-temporal variations of disease. John Snow’s cholera-outbreak investigation in
London in 1854 provides one of the most famous examples of spatial analysis. Snow
used a spot map to illustrate how cholera deaths appeared to be clustered around a
public water pump. The assessment of the spatial pattern of the cholera cases was
important in identifying the source of the infection and gave support to the theory
of cholera transmission through drinking water. There is a wide range of spatial and
spatio-temporal methods that can be applied as a surveillance tool including disease

15



16 Chapter 1. Introduction

mapping, clustering, and geographic correlation studies. Many of these methods
may be used for highlighting areas at high risk, detecting significant disease clusters
in space and time, early detection of epidemics, assessing disease risk in relation to a
putative source, and identifying disease risk factors. Unfortunately, naive use of the
statistical methods can be highly misleading. Therefore, a thorough understanding
of potential problems such as changes in case definitions and completeness issues
are critical to the analysis of the data and interpretation of the findings.

Over the past few decades, surveillance has undergone considerable develop-
ment. Certain activities have contributed to the advance of public health surveil-
lance (Brookmeyer and Stroup, 2004). These include technological innovations such
as real-time on-line monitoring and advances in GIS, the development of new sta-
tistical methods and computational tools to apply them, and more effective use of
electronic media and other tools of communications that facilitate dissemination of
surveillance information for public health practice. Also, public health surveillance
has changed in response to new public health concerns, such as bioterrorist events
and relatively new diseases and epidemics, such as severe acute respiratory syndrome
(SARS). As public health needs change and new tools and increased computational
capacity of computers become available, statistical methods for disease surveillance
must continue to evolve to improve the quality of the analyses, and the interpreta-
tion and display of the results in the most useful form and appropriate time-frame
to meet the interests of policymakers and stakeholders. The aim of this thesis is to
propose new techniques for helping public health surveillance practice. In particular,
we focus in spatial and spatio-temporal methods that can help deal with missing
data (Chapter 4), model the correlated heterogeneity in disease mapping (Chapter
5), detect disease clusters (Chapter 6), and elucidate spatial variations in temporal
trends (Chapter 7).

We begin with an overview of public health surveillance and spatial data. Chap-
ter 2 provides an introduction in surveillance systems, as well as a review of statis-
tical methods that have been applied for disease surveillance. Methods considered
include computation of rates, temporal trends, detection of clusters and outbreaks,
and disease mapping. Spatial data are generally classified in three major types:
lattice data, geostatistical data, and point patterns. Chapter 3 is devoted to the
review of their basic characteristics and analysis methods. The goal of these two
chapters is to provide some ground to the concepts and statistical methods used in
surveillance that can help the development of the subsequent chapters.

Chapters 4-7 are based on particular questions of interest. Chapter 4 discusses
the problem of missing data and focuses in the analysis of the all-cause and pneu-
monia and influenza (P&I) mortality data in the United States. National estimates
of the all-cause and P&I mortality burden derived from these data treat all missing
values as zero counts. The effect of this methodological decision is to bias estimates
downward and produce underestimates of the true mortality burden. To evaluate
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the impact of this treatment of missing data on national estimates, we propose a
regression-based procedure that utilizes relevant information to impute missing val-
ues and thus produce a more accurate estimate of mortality. We considered and eval-
uated several model specifications to predict weekly death counts by city, calendar
week, calendar year, and age group. We cross-validated these models and calculated
revised all-cause and P&I mortality estimates by imputing the missing data and es-
timating P&I excess mortality using the regression approach recommended by CDC
(Serfling, 1963). We then compared these estimates with an without imputation to
understand the impact on national estimates of this treatment of unreported data.

Chapter 5 is devoted to disease mapping. Hierarchical Bayesian models involving
conditional autoregression (CAR) components are commonly used in disease map-
ping (Besag et al., 1991). An alternative model to the proper or improper CAR is
the Gaussian component mixture (GCM) model (Langford et al., 1999). A review
of CAR and GCM models is provided in univariate settings where only one disease
is considered, and also in multivariate situations where in addition to the spatial
dependence between regions, the dependence among multiple diseases is analyzed.
A performance comparison between models using a set of simulated data is reported.
Moreover, GCM and CAR models are applied for estimating the relative risk of low
birth weight in Georgia, U.S., in the year 2000.

Detection of disease clusters is an important tool in epidemiology that can help
to identify risk factors associated with the disease and in understanding its etiol-
ogy. In Chapter 6 we propose a method for the detection of spatial clusters where
the locations of a set of cases and a set of controls are available. The method is
based on local indicators of spatial association functions (LISA) (Anselin, 1995),
particularly on the development of a local version of the product density, which
is a second-order characteristic of spatial point processes. The behaviour of the
method is evaluated and compared with Kulldorff’s spatial scan statistic (Kulldorff
and Nagarwalla, 1995) by means of a simulation study. Both methods are applied
to detecting spatial clusters of kidney disease in the city of Valencia, Spain, in the
year 2008.

Methods for the assessment of spatial variations in temporal trends (SVTT) are
important tools for disease surveillance which can help governments to formulate
programmes to prevent diseases, and measure the progress, impact, and efficacy of
preventive efforts already in operation. The linear SVTT method is designed to
detect areas with unusual different disease linear trends (Kulldorff, 2010). In some
situations, however, the bad fit of its estimation trend procedure can lead to wrong
conclusions. In Chapter 7, the quadratic SVTT method is proposed as alternative
of the linear SVTT method. A performance comparison between the linear and
quadratic methods using a set of simulated data is provided to help illustrate their
respective properties. The quadratic method is applied to detect unusual different
cervical cancer trends in white women in the United States, over the period 1969 to
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1995.
Finally, in Chapter 8, a discussion about the methods proposed, directions for

future research lines, and some final remarks about public health surveillance are
presented.



Chapter 2

Public health surveillance

The Centers for Disease Control and Prevention (CDC) define public health surveil-
lance as: ”the ongoing, systematic collection, analysis, and interpretation of health
data essential to the planning, implementation, and evaluation of public health prac-
tice, closely integrated with the timely dissemination of these data to those who need
to know. The final link in the surveillance chain is the application of these data to
prevention and control.” (Thacker and Berkelman, 1988).

Public health surveillance information is essential to monitor the health status
of a population, and allow managers to respond quickly to a population’s health
needs. For example, such information can be used to:

• Estimate the magnitude of a health problem

• Portray the natural history of a disease

• Determine the distribution and spread of a health event

• Detect epidemics or new syndromes

• Monitor changes in infectious agents

• Detect changes in health practices and behaviors

• Generate and evaluate hypotheses, and stimulate public health research

• Planning public health actions and use of resources

• Project future needs

• Evaluate control and prevention measures

19
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Comprehensive surveillance systems and appropriate statistical methods are es-
sential for disease surveillance practice. Surveillance systems collect data for a va-
riety of health conditions, including chronic diseases, birth defects, injuries, noso-
comial or hospital-acquired infections, emergency room visits and health behaviors.
Conducting surveillance requires four basic activities: collection, analysis, interpre-
tation and dissemination of health data. In the collection process, it is important
to determine whether the total population in a public health jurisdiction is under
surveillance (population-based) or if surveillance will occur at a group of facilities
or sentinel sites. Mandatory disease notification is the primary method of collect-
ing disease information. Other surveillance methods include vital records, sentinel
surveillance, surveys, registries, or syndromic surveillance.

Analysis of data provides important information on which to base action. These
are useful to documenting the magnitude of a health event, and describing it in
terms of the personal characteristics of those at risk, and the place and timing of
occurrence. A key factor in the selection of methods of analysis is the objective
of surveillance. This could be outbreak detection, trend monitoring, comparison
between different populations, detection of unusual aggregations of cases, or identi-
fication of factors associated with the spatial distribution of the disease. A careful
interpretation of the results allow public health officers to allocate resources effi-
ciently and targeting populations for education or preventive programs.

2.1 Surveillance systems

A number of surveillance systems are used routinely by public health departments
at local and national levels. The process of data collection can be passive or active.
Data in passive surveillance are reported in such a way that the receiving agency
waits for data reports to be sent in by health care providers or laboratories. On the
other hand, active surveillance occurs when the health department requests infor-
mation about conditions or diseases to identify possible cases. An active surveillance
system provides stimulus to health care workers in the form of individual feedback
or other incentives. Although passive surveillance may suffer from incomplete data
due to underreporting, compromised accuracy and show selection bias depending on
the source of reports or laboratory specimens, it is seen in standard systems that
report notifiable diseases to a public health department because it requires substan-
tially less time and resources than active surveillance. Since active surveillance can
produce early, timely and complete information, it is especially useful when there
is a need to identify all cases, for example during disease outbreaks. Many sources
of data can be used for public health surveillance, including the following (Dicker
et al., 2006):

• Vital statistics which consists on records of birth, death, marriage, and divorce.
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These records are a critical component for public health practice. For example,
mortality rate has long been used as indicator of overall population health.
Also, the monitoring of preterm birth is important since it is a risk factor for
a variety of adverse health outcomes.

• Notifiable disease reports which inform of conditions established by law and
are made on the basis of the symptoms alone. Because reports are made
without waiting for laboratory confirmation, they do not necessarily indicate
the presence of the disease itself.

• Laboratory data for surveillance for many diseases, including diseases caused
by virus, bacteria and other pathogens.

• Hospital discharge records which typically include demographic data, diag-
noses, operative procedures and length of stay, and exclude personal informa-
tion which could identify individuals.

• Surveys that sample the health status of citizens representative of the whole
population. These are especially useful for monitoring chronic diseases and
health-related behaviors.

• Sentinel systems which consist of a pre-arranged sample of reporting sites that
collect all cases of a certain condition, such as influenza or certain bacterial
infections among children. Sentinel surveillance is a good way to use limited
resources to indicate trends in the entire population.

• Data on indicators of disease or of disease potential. For example, zoonotic
diseases surveillance which involves the detection of animals infected with dis-
eases that can be transmitted to humans. Or environmental surveillance which
focuses on the detection of contamination, radiation, or other conditions in na-
ture that might favor animal populations that may be reservoirs or vectors of
disease.

• Registries used for particular conditions, such as cancer and birth defects.

• Adverse health events which may detect potential safety problems of approved
drugs and other therapeutic agents.

• Syndromic surveillance systems which use clinical information about disease
signs and symptoms that might be suggestive of disease. These systems are
especially useful for the detection of adverse effects at the earliest possible time,
possibly even before disease diagnoses can be confirmed through unmistakable
signs or laboratory confirmation.
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Surveillance systems may suffer from limitations that compromise their useful-
ness. Underreporting, lack of representativeness, lack of timeliness, and inconsis-
tency of case definitions may sometimes be present. In these situations, methodol-
ogy must be carefully developed and results interpreted, and it is necessary to have a
good understanding of the strengths and weaknesses of the data collection methods,
the reporting process, and the changes in the surveillance system and practices.

Systems should be regularly evaluated to promote the best use of public health
resources, and ensure that problems of public health importance are being moni-
tored efficiently and effectively. The evaluation of surveillance systems should assess
whether a system is serving a useful public health function and is meeting the sys-
tem’s objectives, and should include recommendations for improving quality and
efficiency (MMWR, 2001). The evaluation should involve an assessment of system
attributes, including simplicity, flexibility, data quality, acceptability, sensitivity,
positive predictive value (PPV), representativeness, timeliness, and stability. Be-
cause each surveillance system is unique and attributes that are important to one
system might be less important to another, the evaluation must consider those
characteristics of the system that are of the highest priority to achieve its intended
purpose and objectives.

2.2 Analysis and interpretation

The process of analysis and interpretation of surveillance data encompasses a broad
variety of system designs, analytic methods, modes of presentation, and interpretive
uses (Lee et al., 2010). In general, descriptive methods are the basis of routine re-
porting of surveillance data. These focus on the observed patterns in the data and
might also seek to compare the relative occurrence of disease in different subgroups.
More specialized hypotheses are explored using inferential methods. The aim of
these methods is to make statistical conclusions about the patterns or outcomes
of disease. A thorough understanding of the underlying data, the data collection
process, and the analytical methods used are critical to the interpretation of the
findings. To avoid artifactual inferences, care must be given to changes in report-
ing procedures or case definitions, misdiagnosis, delay in reporting and increase
in reporting due to improved awareness, better laboratory tests or new diagnostic
procedures (CDC, 2010).

Surveillance data are examined by characteristics of time, place, and person. The
most commonly collected person characteristics are age and gender. The examina-
tion of the distribution of health events by these characteristics provides information
about the burden of disease in different populations and can reveal important dis-
ease trends. Depending on the health problem, other characteristics such as race,
ethnicity, occupation, socio-economic status, recent hospitalization, sexual orienta-
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tion or immunization status can provide information useful for disease control and
prevention. Unfortunately, these data are less consistently available for analysis.
Time factors may include the time of year, day, progression over time, or the speed
of development of disease. Analysis of surveillance data by time is usually con-
ducted to describe the distribution of cases over time, characterize trends, compare
the number of cases reported in a particular time period of interest to the number
of cases reported during preceding time periods, and detect changes in disease inci-
dence and disease outbreaks. Health departments usually analyze surveillance data
by cities, counties, states, or other geographic areas. Maps are helpful in showing
the geographic distribution of cases, to facilitate recognition of spatial associations
in the data, detect clusters and assessing the geographic relationships of risk factors
and disease risk.

2.2.1 Rates

The analysis of disease in a population begins by addressing the occurrence of a
particular health event in a particular population over a particular time. Crude rates
are used when a summary measure is needed and it is not necessary or desirable to
adjust for other factors (DOH, 2010). A crude rate is calculated by dividing the total
number of events in a specified time period by the total number of individuals in
the population who are at risk for these events and multiplying by a constant, such
as 100,000. Much of public health assessment involves describing the health status
of a given population over time or comparing health events across populations. In
making these comparisons, we need to account for the fact that the occurrence of
many health conditions depends on risk factors such as age. Standardization offers
a mechanism to adjust rates and remove the effect of known confounding factors.
There are two types of standardization methods: direct and indirect.

Directly age-standardized rates provide, for each population, an indicator in
terms of the overall rate that would have occurred in an arbitrary external or stan-
dard population if it had the age-specific rates of the observed population. The
standardized rate is a weighted average of stratum specific rates of the populations
to be compared, where the weights represent the relative age distribution of the
standard population. Thus, the directly age-standardized rate can be expressed as
follows:

m∑
i=1

ri
n
(s)
i∑
i n

(s)
i

,

where m is the number of age groups, ri is the rate in age group i in the observed
population, and n

(s)
i is the population in the ith age group of the standard popu-

lation. Since all the directly age-standardized rates are based on the same set of
weights, they can be readily compared to each other and to the standard popula-
tion. However, it is important to note that since they are based on an external
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standard population, they do not reflect the absolute frequency of the event in a
population and should be used only for the purpose of comparison, the interest lie
on the relative ranking of the rates.

An alternative approach is the indirect standardization. This method is gener-
ally used when the number of events is relatively small and the age-specific rates
are unstable but the age-specific rates are available for a standard population. Indi-
rect standardization uses the age-specific rates from a standard population (usually
the relevant national or regional population) and applies them to the population
distribution of the observed population to calculate the total number of events one
would expect if the observed population behaved the way the standard population
behaved. The number of cases expected can be expressed as

E =
m∑
i=1

r
(s)
i ni,

where r
(s)
i is the rate in age group i in the standard population, and ni is the

population in stratum i of the observed population. The standardized mortality
ratio or SMR is then calculated as the ratio of the total number of observed events,
Y , to the total number of expected events:

SMR =
Y

E
.

When applied to incidence data it is commonly known as the standardized incidence
ratio or SIR. Ratios greater than 1 indicate more cases observed in the observed
population than expected from the standard population. In some instances the
SMR is multiplied by the overall crude rate of the standard population and pre-
sented as an indirectly standardized rate. Unlike directly standardized rates, indirect
standardized rates of each observed population are based on its own set of weights.
This makes the comparison of indirect standardized rates problematic. In fact, the
only comparisons that are always possible are comparisons between each observed
population and the standard population.

2.2.2 Trends

Public health agencies have a long tradition of monitoring disease incidence and
mortality rates over time and across demographic subgroups. Studies of disease
trends are typically used to determine whether incidence and mortality have in-
creased or decreased over time, and to assess the speed with which the changes have
occurred. Trends in incidence or mortality rates over time are often characterized
by the annual percent change (APC). This approach assumes that the rates change
at a constant percentage of the rate of the previous year. Specifically, the APC is
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estimated by fitting first a linear model where the logarithm of the yearly rates is
regressed on time. That is,

log(rt) = β0 + β1t,

where, t denotes year and rt represent the observed rates. Then, the APC from year
t to year t+ 1 is calculated using a transformation of the slope of the trend line:

APC = 100× rt+1 − rt
rt

= 100× exp(β0 + β1(t+ 1))− exp(β0 + β1t)

exp(β0 + β1t)

= 100× (exp(β1)− 1).

For example, an APC of 1% indicates that the annual rate is increasing on average
by 1% a year. That is, if the estimated APC is 1% and the rate is 50,000 per 100,000
in year y, the rate is 50,000 × 1.01 per 100,000 = 50,500 per 100,000 in y + 1, and
50,500 × 1.01 per 100,000 = 51,005 per 100,000 in y+ 2. A negative APC describes
a decreasing trend whereas a positive APC describes an increasing trend.

The APC is easy to calculate and interpret as a measure of disease trends over
short time periods (Li et al., 2008). However, for long time periods, it is not al-
ways reasonable to expect that a single APC can accurately characterize the trend
over the entire time period of interest. In some situations, the linearity of rates
on the logarithmic scale, implying a constant rate of change, may not apply over
the entire series of data (Clegg et al., 2009). For example, disease rates may drop
sharply for a period of several years, drop gradually for several years after that,
and then rise gradually for the next several years. When the assumption of a con-
stant rate of change does not hold over the entire time interval, the trend may be
described using the average annual percent change (AAPC). The AAPC is derived
by first finding the underlying joinpoint model that best fits the data. This allows
the determination of when and how often the APC changes. The model for the
observations (t1, r1), . . . , (tn, rn) where the ri’s denote the rates observed at the time
points t1 ≤ . . . ≤ tn is written as

E[r|t] = β0 + β1t+ δ1(t− τ1)+ + . . .+ δk(t− τk)+,

where k is the unknown number of joinpoints, the τk’s are the unknown joinpoints
and a+ = a for a > 0 and 0 otherwise (Kim et al., 2000). The optimal number
of joinpoints may be selected using the permutation test which uses a sequence
of permutation tests to determine the true number of joinpoints, or the Bayesian
Information Criterion (BIC) which finds the model with the best fit by penalizing
the cost of extra parameters. The joinpoint model is fitted using joined log-linear
segments, so each segment have an associated APC. The APC of segment i is

APCi = 100× (exp(βi)− 1).
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The AAPC is computed as a weighted average of the slope coefficients for each
segment, βi, with the weights wi equal to the length of each segment over the
interval. Specifically,

AAPC = 100×
(
exp

(∑
wiβi∑
wi

)
− 1

)
.

Thus, whereas the APC’s for each joinpoint segment provides a complete character-
ization of the trend over time, the AAPC provides a summary measure of the trend
over a fixed interval.

2.2.3 Cluster detection

Conceptually, a cluster is an unusual collection of cases which are close to each
other, in the sense that it differs from what would be expected in the absence
of exposure to risk factors or to the effects of transmission, and after accounting
for the heterogeneous density of the at risk population (Waller and Gotway, 2004).
Cluster analysis has attracted great interest in the field of public health, and various
techniques have been developed for evaluating whether the incidence of a disease
shows a particular tendency to group together. The study of potential clusters allows
an evaluation of the possible relationship between a disease and risk factors such as
environmental sources of contamination, genetic factors or socio-economic factors.
Disease clustering is classified into temporal, spatial, and space-time clustering.
Whereas temporal or spatial clustering evaluates whether cases tend to be located
close to each other in time or space, respectively, space-time clustering examines
the question of whether cases that are close in space are also close in time and
vice versa, after adjusting for purely spatial and purely temporal clustering (Pfeiffer
et al., 2008). To investigate clustering, many different tests have been proposed
for different purposes (Kulldorff, 2006; Tango, 2010). The different methods are
classified as either global or local. Global clustering methods are used to assess
whether a global tendency for the disease to group together is apparent throughout
the study region but do not identify the location of clusters. This type of methods
are appropriate, for example, for finding evidence of whether a disease is infectious or
not. Local methods are used to detect the locations and extent of clusters, and can
be further divided into focused and non-focused tests. Non-focused tests identify the
location of all likely clusters in the study region, whereas focused tests investigate
whether there is aggregation around a pre-determined source of risk.

The random labeling procedure offers an approach for assessing clustering in case-
control studies where the data consist of n locations of all known cases of a disease
within a given geographical region over a specified time-period, together with the
location m of a set of controls, defined to be a random sample of the population at
risk. The null hypothesis of no disease clustering is equivalent to the cases being
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an independent random sample from the superposition of the cases and controls.
That is, conditional on the n + m locations, all possible labelings into n cases and
m controls are equally likely. To test this random labeling hypothesis Cuzick and
Edwards (1990) proposed a test statistic based on the nearest-neighbor properties in
case-control point data. Specifically, they consider a test statistic which represents
the number of k nearest-neighbors of cases that are also cases. The rank of the
test statistic based on the data observed among the values based on the randomly
labeled data allows calculation of the p-value associated to the test. The result
can be sensitive to the choice of k, possibly indicating the scale of any clustering
observed. In case-control studies we are dealing with a bivariate process, cases and
controls corresponding to events of type 1 and 2, respectively. A very useful function
for estimating the second-order properties of the process that gave rise to the data is
the reduced second moment measure or K-function (Ripley, 1976). The K-function
is invariant to the random thinning of the process. From this, it follows that for any
bivariate stationary process generated by random labeling of a univariate process
into events of type 1 and 2, the difference between K-functions of type 1 and type
2 events at any distance should be 0. This motivates the use of an estimate of the
difference between K-functions as the basis for a test of spatial clustering.

The most widely used test for space-time clustering is the Knox test (Knox,
1964). By specifying a spatial and a temporal critical distances, the method de-
termines the number of pairs of cases which are simultaneously close in space and
time. A significantly large number would indicate evidence of space-time clustering
of the disease. Two principal limitations of the Knox test are its dependence on the
subjective choice of the spatial and temporal critical distances, and the bias that
will occur if the population increases or decreases with different rates in different
geographical areas (Kulldorff and Hjalmars, 1999). Mantel (1967) proposed a test
that compares inter-event distances in space and time against a null hypothesis that
time and space distances are independent. The sum, across all pairs of cases, of the
spatial distances multiplied by the time distances is computed and a transforma-
tion is used as test statistic to reduce the effects of large space and time distances.
Jacquez (1996), on the other hand, developed a test for space-time interaction which
uses the observed number of pairs of cases close in both space and time, where the
measure of closeness is defined by the k nearest neighbors. Diggle et al. (1995) ex-
tended second-order analysis methods for spatial data, and calculated the difference
between the K-function in space and time and the product of the K-function in
space and that in time. A significantly positive difference would indicate evidence
of spatio-temporal clustering of the disease.

These tests are global tests in that they test for clustering throughout the data
without identifying specific clusters. That is, they are designed for evaluating
whether cases tend to come in groups or are located close to each other no matter
when and where they occur. Methods for the detection of clusters, on the other
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hand, are designed for detecting and localizing specific clusters and evaluating their
significance. The scan statistic (Kulldorff and Nagarwalla, 1995; Kulldorff et al.,
1998) has been implemented as a major analytical tool for cluster detection in a
spatial, temporal, and space-time setting. A statistical package, SaTScan, facilitates
its use and can be downloaded from http://www.satscan.org/.

Scan statistics

Scan statistics scan the study region with a huge number of overlapping windows and
determine the windows which group together an unusual number of cases, adjusting
for multiple testing (Kulldorff et al., 1998). The collection of windows depend on the
application. Typically, the spatial version uses circular windows with radius varying
continuously from zero to some upper limit such that it does not pass beyond 50%
of the at risk population. In the space-time setting, windows are typically defined
as cylinders. The circular base defines a geographical area and the height the time
period. For each choice of base all choices of the temporal height are considered and
vice versa, so that the scanning is done over short and fat cylinders, tall and thin
cylinders, and everything in between.

Conditioning on the observed total number of cases C, the scan test statistic S is
defined as the maximum likelihood ratio over all possible windows Z. The likelihood
ratio S is expressed as

S =
maxZL(Z)

L0

= maxZ
L(Z)

L0

,

where L(Z) is the maximum likelihood for window Z, and L0 is the likelihood
function under the null hypothesis which states that the probability of being a case
inside Z is equal to the probability of being a case outside Z. The mathematical
formulation of S depends on the probability model used. A Poisson model is used
for data where the number of events are Poisson distributed, a Bernoulli model
for case-control type data (Kulldorff, 1997), an ordinal model for ordinal data, an
exponential model for survival data, and a space-time permutation model for looking
at space-time interaction clusters when only case data is available (Kulldorff et al.,
2005). Let c be the observed number of cases within a window Z. For the Poisson
model, let µ(Z) be the covariate adjusted expected number of cases under the null
hypothesis. Then, the ratio L(Z)/L0 for a specific window is(

c

µ(Z)

)c(
C − c

C − µ(Z)

)C−c
,

if c > µ(Z), and 1 otherwise.
The window with the maximum likelihood constitutes the most likely cluster, the

cluster that is least likely to have occurred by chance. Its statistical significance is
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obtained through Monte Carlo hypothesis testing (Dwass, 1957). Thus, the previous
procedure is repeated for a large number of replicas of data generated under the
null hypothesis, say R, and their respective test statistics are calculated. The test
statistic of the observed data is combined with these, and the set of the R + 1
values are ordered. If M is the rank of the observed test statistic, a p-value equal
to M/(R + 1) would be obtained.

Apart from the most likely cluster, secondary clusters can also be identified,
ordered according to the value of S. There will always be a secondary cluster which
is almost identical to the most likely one and with almost the same likelihood,
expanding or reducing the size of the initial cluster, but clusters of this type provide
little additional information. Normally the option chosen is to show the secondary
clusters which do not overlap with the most probable cluster, as they can be of
greater interest.

2.2.4 Outbreak detection

New concerns about the possible threat of bioterrorism, the emergence of new in-
fectious diseases, and the increasing availability of electronic health data, have lead
to a growing interest in methods of surveillance for the early detection of outbreaks
(MMWR, 2004). An outbreak is commonly defined as an increase in cases of disease
in time or place that is greater than expected. The number of cases indicating pres-
ence of an outbreak vary according to the disease, the population, previous exposure
to the disease, and time and place of occurrence. For example, if a condition is rare
or has serious public health implications, an outbreak may involve only one case.
Methods for the early identification of unusual health events which give some indica-
tion of the location and shape of the disturbance, are crucial to allow interventions
to control and diffuse the source of the disturbance, inhibiting further spread to the
population (Lawson and Kleinman, 2005).

A broad range of statistical techniques have been proposed for outbreak detec-
tion. These include regression models such as the Serfling’s method (Serfling, 1963),
time series approaches such as Box-Jenkins models (Box and Jenkins, 1970) and hid-
den Markov models (Strat and Carrat, 1999), and techniques inspired by statistical
process control such as the Shewhart chart (Shewhart, 1931) the cumulative sum
(CUSUM) (Page, 1954), and the exponentially weighted moving average (EWMA)
control chart (Roberts, 1959). Surveillance systems that use spatial information
are important to enable the detection of small localised disease outbreaks. If this
information is not used, the impact of a localized outbreak may be diluted through
its combination with global data and outbreaks will be missed. Examples of meth-
ods that incorporate spatial information include the spatial CUSUM (Raubertas,
1989), and the space-time permutation scan statistic (Kulldorff et al., 2005). A
review of the methods for the detection of disease outbreaks can be found in Unkel
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et al. (2012). Here, we briefly describe the Serfling’s method, which has been exten-
sively used for the detection of influenza epidemics, and the space-time permutation
scan statistic, which can be used for prospective outbreak detection of disease when
population-at-risk information is unavailable.

Serfling’s method

Serfling’s method (Serfling, 1963) represents a simple approach for the detection
of epidemics of influenza-like syndromes. It is the approach the Centers for Dis-
ease Control and Prevention (CDC) use to determine epidemic influenza activity
and excess mortality attributed to influenza. Influenza is a serious viral infection
that annually causes substantial burden of morbidity and mortality (Molinari et al.,
2007). Estimates of influenza-associated deaths are important to determine costs
and benefits of influenza prevention and control strategies and in preparing for both
seasonal epidemics and future pandemics (Thompson et al., 2009). However, esti-
mating the disease burden of influenza is challenging. Influenza infections are often
not laboratory confirmed and deaths from influenza are often due to secondary
complications that occur after the primary viral infection, such as pneumonia or
worsening of chronic health conditions. Thus, many resulting deaths from influenza
are not recorded as such and we must instead estimate the disease burden using
statistical models applied to non-specific disease outcomes such as pneumonia and
influenza (P&I), respiratory and cardiovascular or all-cause mortality (Newall et al.,
2010; Muscatello et al., 2008).

In temperate regions, excess mortality occurring during winter months is as-
sociated with pandemic and seasonal epidemics of influenza. Consequently, most
measures of influenza-attributable disease burden are estimates based on calculat-
ing the number of deaths occurring in excess of the number expected if influenza
viruses were not circulating (Brammer et al., 2009). Estimates can be calculated
using a variety of mathematical models, one of the most common being Serfling’s
model. This model uses five years P&I mortality data to calculate a non-epidemic
seasonal baseline. The model contains terms for intercept, linear trend, and a pair of
harmonic terms to capture the underlying sinusoidal behavior of seasonal influenza.
It is formulated as:

Yt = β0 + β1t+ β2t
2 + β3sin

(
2πt

52

)
+ β4cos

(
2πt

52

)
+ εt,

where Yt denotes observed weekly P&I in the at week t, β1 and β2 represent coef-
ficients associated with temporal trends in deaths, β3 and β4 represent coefficients
associated with seasonal fluctuations, and εt is a normally distributed error term.

Since the model estimates the non-epidemic seasonal baseline, the cooler weeks
in which influenza circulates more widely in temperate settings are excluded to
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avoid biased parameter estimates (Ozonoff et al., 2006). The influenza-attributable
deaths are determined by subtracting estimated seasonal baseline deaths from the
observed deaths. The upper limit of a confidence band around the baseline is used
to determine the epidemic threshold for that time period. As soon as this threshold
is exceeded, an outbreak is declared.

An alternative method has been to use Poisson regression models. These models
usually include coefficients similar to those described for Serfling’s models as well
as additional terms corresponding to influenza virus circulation such as percent-
ages of laboratory specimens testing positive for influenza A(H3N2), A(H1N1), and
B viruses, and respiratory syncytial virus (RSV) activity to explicitly account for
increased winter mortality not caused by influenza virus (Thompson et al., 2009).

Space-time permutation scan statistic

The space-time permutation scan statistic (Kulldorff et al., 2005), which uses only
case data, and applies minimal assumptions concerning the time and the geographi-
cal characteristics of the potential outbreaks, is increasingly used for the early detec-
tion of disease outbreaks. For example, this method has been applied to laboratory
data by the WHO Collaborating Centre for Surveillance of Antimicrobial Resistance
group to detect outbreaks of public health importance in the community and hos-
pital settings (Stelling et al., 2010). The space-time permutation scan statistic does
not require population-at-risk data, and can be used when only the number of cases
is available. It is, therefore, very useful for surveillance of emergency department
visits and pharmacy sales where the catchment area for each hospital/pharmacy is
undefined and the population-at-risk is unknown.

In this method, as in the space-time scan statistic for retrospective detection
of clusters, a search window is gradually moved across space and time looking for
potential outbreaks. The scanning window is a cylinder, whose base and height
represent the geographical area and the number of days, respectively, of the potential
outbreak. The last day is always included in the cylinder. Suppose czd is the observed
number of cases in area z during day d, and C is the total number of observed cases.
Since population-at-risk is not available, the expected cases are calculated using
only the cases. Thus, for each area and day, the expected number of cases µzd is
calculated conditioning on the observed marginals as the proportion of all cases that
occurred in area z times the total number of cases during day d,

µzd =
1

C

∑
z

czd
∑
d

czd,

and, for a given particular cylinder A, the expected number of cases µA is equal to:

µA =
∑

(z,d)∈A

µzd.
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When both
∑

z∈A czd and
∑

d∈A czd are small compared to C, the observed number of
cases in the cylinder cA is approximately Poisson distributed with mean µA. Based
on this approximation, the Poisson generalized likelihood ratio (GLR) is used as a
measure of the evidence that cylinder A contains an outbreak:(

cA
µA

)cA (C − cA
C − µA

)C−cA
.

The cylinder with the maximum GLR constitutes the primary outbreak, that
is, the least likely to be a chance occurrence. To evaluate its significance, a large
number of random permutations are created by shuffling the dates and times and
assigning them to the original set of case locations, and ensuring that both the
spatial and temporal marginals are unchanged. The most likely outbreak is then
calculated for each simulated dataset and the significance is obtained using Monte
Carlo hypothesis testing.

2.2.5 Disease mapping

The mapping of disease risk has a long history in public health surveillance. Dis-
ease maps provide a rapid visual summary of spatial information and allow the
identification of patterns that may be missed in tabular presentations (Elliott and
Wartenberg, 2004). Such maps are crucial for describing the spatial variation of the
disease, identifying areas of unusually high risk, formulating etiological hypotheses,
and allowing better resource allocation. The aim is to obtain low variance estimates
of disease risk within geographic units that are as small as possible. These estimates
are generally based on counts of the observed cases and the number of individuals
at risk. And, possibly, also on covariate information such as the age distribution,
lifestyle, enviromental and genetic factors.

The disease risk is often estimated by the raw standardized mortality (or morbid-
ity) ratio (SMR), calculated as the ratio of observed disease cases versus the number
of expected cases. However, the SMRs are often misleading and insufficiently reliable
for reporting in areas with small populations. In contrast, model-based approaches
enable to borrow information from neighboring areas to improve local estimates,
resulting in the smoothing of extreme rates based on small sample sizes (Gelfand
et al., 2010). Such approaches are often expressed as hierarchichal Bayesian dis-
ease mapping models which are readily implemented via Markov chain Monte Carlo
(MCMC) algorithms.

Bayesian disease mapping models treat the disease risks {θi}, in small areas
indexed by i, as random variables and specify a distribution for them. A natural
model for disease mapping is the following three level hierarchical model:

Yi ∼ Po(Ei × θi) i = 1, . . . , n;
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log(θi) ∼ p(·|φ),

φ ∼ π(),

where Yi and Ei are respectively the observed and the expected number of cases
of disease in area i, θi is the relative risk in area i, p(·|φ) is an appropriate prior
distribution for the {θi} and φ are hyperparameters with hyperprior distributions
π() (Lawson, 2009a). The distribution specified for {θi} is referred to as the second
hierarchical level of the model to distinguish it from the first-level distribution that
pertains to the random sampling variability of the observed counts about their local
mean. It is at this second level that the spatial dependence between the relative risks
is introduced. We term this correlated heterogeneity (CH). To increase flexibility an
unstructured exchangeable component that models uncorrelated noise (UH) can be
included as well as other terms which may include covariates and/or trend effects.
Often a choice is made where either log(θi) is considered to be modeled with a linear
predictor, or it is given a distribution that then has correlation built in to it. In the
former case, a typical log linear model could take the form:

log(θi) = α0 + UH + CH,

where prior distributions are assumed for the α0, UH and CH components.
These hierarchical models allow straightforward extensions to estimate covariate

effects, predict missing data and handle spatio-temporal data and multiple diseases.
In the space-time setting, for example, the disease count Yij observed in the area i
and time period j, may be modeled as

Yij ∼ Po(Eij × θij),

where θij is the risk and Eij is the expected number of cases in the given area and
period of time. Then, three groups of components for log(θij) can be considered:

log(θij) = α0 + Ai +Bj + Cij,

where Ai is the spatial group, Bj is the temporal group, and Cij is the space-time
interaction group (Lawson, 2009b). For example, in Bernardinelli et al. (1995) these
groups are defined as follows: Ai = φi, Bj = βtj and Cij = δitj where φi is an area
random effect, βtj is a linear trend term in time tj, and δitj is an interaction random
effect between area and time.

2.3 Dissemination of results

It is important to note that the goal of surveillance is not merely to collect data
for analysis, but to guide public health policy and action to control and prevent
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diseases. A key aspect of surveillance practice is, therefore, the proper and timely
dissemination of information to those responsible for disease prevention and control.
Depending on the circumstances, those should include health care providers, health
agencies, government agencies, potentially exposed individuals, vaccine manufac-
turers, private voluntary organizations, legislators on the health subcommittee, and
innumerable others (MMWR, 2001). Report findings should be used consistently
and thoughtfully to respond quickly to population’s health needs.



Chapter 3

Spatial data

A spatial process in d dimensions is denoted as

{Z(s) : s ∈ D ⊂ Rd}.

Here, Z denotes the attribute we observe, for example, the number of sudden infant
deaths or the level of rainfall, and s refers to the location of the observation. Cressie
(1993) distinguishes three basic types of spatial data through characteristics of the
domain D:

• Lattice data: The domain D is fixed (of regular or irregular shape) and par-
titioned into a finite number of areal units with well-defined boundaries. Ex-
amples of lattice data are attributes collected by ZIP code, census tract, or
remotely sensed data reported by pixels.

• Geostatistical data: The domain D is a continuous, fixed set. By continu-
ous we mean that s varies continuously over D and therefore Z(s) can be
observed everywhere within D. By fixed we mean that the points in D are
non-stochastic. It is important to note that the continuity only refers to the
domain, and the attribute Z can be continuous or discrete. Examples of this
type of data are air pollution or rainfall measured at several monitoring sites.

• Point patterns: Unlike geostatistical and lattice data, the domain D in point
patterns is random. Its index set gives the locations of random events that
are the spatial point pattern. Z(s) may be equal to 1 ∀s ∈ D, indicating
occurrence of the event, or random, giving some additional information.

In what follows, we present the basic characteristics and analysis methods for
each of the three types of spatial data.

35
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3.1 Lattice data

Lattice or areal data arise when a fixed domain is partitioned into a finite number of
subregions at which outcomes are aggregated. Examples are the number of cancer
cases in the provinces of Spain, or the proportion of people living in poverty in
the counties of United States. Lattice data may be used for a variety of inferential
issues. One of them is the identification of spatial patterns and their strength. If
data are spatially correlated, observations in neighboring areas will be more similar
than observations in areas that are farther away. Often, in order to draw correct
inferences, the smoothing of the data is necessary since observed measurements
in small areas present extreme values due to low population sizes or small samples.
Other times, it is desired to make predictions for new areal units different from those
were data were recorded. For example, we may wish to analyze data at county level
that were initially recorded at the zip code level. This is the Modifiable Areal Unit
Problem (MAUP).

3.1.1 Spatial proximity matrices

The concept of spatial proximity matrix, W , is useful in the exploration of areal
unit data. Given measurements Y1, . . . , Yn associated with areal units 1, 2, . . . , n,
the (i, j)th element in W , denoted by wij, spatially connects units i and j in some
fashion. W defines a neighborhood structure over the entire study region, and its
elements can be viewed as weights. More weight will be associated with j’s closer
to i than those farther away from i.

The simplest neighborhood definition is provided by the binary matrix where
wij = 1 if regions i and j share some common boundary, perhaps a vertex, and
wij = 0 otherwise. Customarily, wii is set to 0 for i = 1, . . . , n. Note that this choice
of proximity measure result in a symmetric spatial proximity matrix. Many other
possibilities of spatial proximity can be considered. For instance, we may expand the
idea of neighborhood to include regions that are close, but not necessarily adjacent.
Thus, we could use wij = 1 for all i and j within a specified distance, or, for a
given i, wij = 1 if j is one of the m nearest neighbors of i. The weight wij can
also be defined as the inverse distance between units. Alternatively, we may want
to adjust for the total number of neighbors in each region and use a standardized
matrix with entries wstd,i,j = wij/

∑n
j=1wij. Note that this matrix is not symmetric

in most situations where the regions are irregularly shaped.

3.1.2 Measures of spatial association

Global indexes of spatial autocorrelation summarize the degree to which similar
observations tend to occur near each other over the entire study area. Two standard
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statistics that are used to measure the global degree of spatial association in areal
data are Moran’s I and Geary’s C. Moran’s I statistic (Moran, 1950) takes the form

I =
n
∑

i

∑
j wij(Yi − Y )(Yj − Y )

(
∑

i 6=j wij)
∑

i(Yi − Y )2
,

where n is the number of regions, Yi is the observed value of the variable of interest
in region i, Y is the mean of Yi, i = 1, . . . , n, and wi is a measure of the spatial
proximity between region i and j. It should be noted that, unlike a traditional
correlation coefficient, Moran’s I statistic is not exactly supported on the interval
[−1, 1]. Positive values indicate a positive spatial autocorrelation. This occurs when
neighboring regions tend to have similar values. Negative values indicate a negative
spatial autocorrelation, regions that are close to one another tend to have different
values. Finally, values near zero indicate an absence of spatial pattern.

Under the null model where the Yi are i.i.d., I is asymptotically normally dis-
tributed with mean and variance equal to

E[I] =
−1

n− 1
,

and

V ar[I] =
n2(n− 1)S1 − n(n− 1)S2 − 2S2

0

(n+ 1)(n− 1)2S2
0

,

where

S0 =
∑
i 6=j

wij, S1 =
1

2

∑
i 6=j

(wij + wji)
2, and S2 =

∑
k

(∑
j

wkj +
∑
i

wik

)2

.

Thus, when the number of regions n is sufficiently large, I has a normal distribution
and we can decide whether any given pattern deviates significantly from a random
pattern by comparing the z-score z = (I − E[I])/(V ar[I])1/2 to a standard normal
distribution. Randomization is an alternative approach to judge the significance of
any observed value of I. This method reassigns the observed regional values among
the n fixed regions, providing a randomization distribution. If the observed value
of I lies in the tails of this distribution, the assumption of independence among the
observations is rejected.

Geary’s C statistic (Geary, 1954) is written as

C =
(n− 1)

∑
i

∑
j wij(Yi − Yj)2

2(
∑

i 6=j wij)
∑

i(Yi − Y )2
.

Geary’s C is never negative and ranges between 0 to 2. Values of Geary’s C close to
0 denote positive autocorrelation and values close to 2 indicate negative correlation.
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Values near 1 denote no spatial autocorrelation. The expected value of Geary’s C
under the null hypothesis of spatial independence is 1. Under the asymptotically
normality assumption the variance is

V ar[C] =

{
(n− 1)

(∑
i

∑
j

wij +
∑
i

(∑
j

wij

(∑
i

wij − 1

))
/2

)

−
(
∑

i

∑
j wij)

2

2

}
×

{
(n+ 1)

(∑
i

∑
j

wij/2

)2}
.

There is often interest in providing a local measure of similarity between each
region’s associated value and those of nearby regions. Local Indicators of Spatial
Association (LISA) (Anselin, 1995) are designed to provide an indication of the
extent of significant spatial clustering of similar values around each observation. A
desirable property is that the sum of the LISA’s values across all regions, be equal to
a multiple of the global indicator of spatial association. As a result, global statistics
may be decomposed into a set of local statistics and most LISAs are defined as local
versions of well-known global indexes. One of the most popular LISAs is the local
version of Moran’s I. For the ith region, it is defined as

Ii =
n(Yi − Y )∑
j(Yj − Y )2

∑
j

wij(Yj − Y ).

Note that the global Moran’s I is proportional to the sum of the local Moran’s I
obtained for all subregions:

I =
1∑

i 6=j wij

∑
i

Ii.

Typically, the values of the LISAs are mapped to indicate the location of areas with
comparatively high or low local association with neighboring areas. A high value for
Ii suggests that the area is surrounded by areas with similar values. Such an area is
part of a cluster of high observations, low observations, or moderate observations.
A low value for Ii indicates that the area is surrounded by areas with dissimilar
values. Such an area is an outlier. The observation in area i is different from most
or all of the observations of its neighbors. To interpret the local Moran’s indexes,
maps of p-values associated with the probability of exceeding the observed value
of each regional LISA are necessary. These p-values, regardless of the presence or
absence of global spatial association, may be obtained by a simulation process with
a conditional randomization approach. In this approach, the observed value Yi at
region i is fixed, and the remaining n − 1 values are randomly reassigned over the
other regions.
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3.1.3 Bayesian inference

Lattice data are often modeled using Bayesian hierarchical models, which allow
complete flexibility in how the estimates borrow strength across neighboring units,
and hence improve estimation and prediction of the underlying model features (Ma
et al., 2006). In a Bayesian approach to statistical analysis, a probability distribution
f(y|θ), called likelihood, is specified for the observed data y = (y1, . . . , yn), given
a vector of unknown parameters θ. Then, a prior distribution p(θ|η) is assigned to
θ, where η is a vector of hyperparameters. The prior distribution for θ represents
the knowledge about θ before obtaining the data y. If η is not known, a fully
Bayesian approach would specify a hyperprior distribution for η. Alternatively, an
empirical Bayes approach might be used, by which an estimate η̂ is used as if η were
known. Assuming that η is known, inference concerning θ is based on the posterior
distribution of θ, which is defined from Bayes’ Theorem as

p(θ|y) =
p(y,θ)

p(y)
=

f(y|θ)p(θ)∫
f(y|θ)p(θ)dθ

.

The denominator p(y) =
∫
f(y|θ)p(θ)dθ defines the marginal likelihood of the data

y. This is free of θ and may be set to a scaling constant which does not impact
the shape of the posterior distribution. Thus, the posterior distribution is often
expressed as

p(θ|y) ∝ f(y|θ)p(θ).

One principal difficulty in applying Bayesian methods is the calculation of the
posterior p(θ|y), which usually involves high-dimensional integration that is gener-
ally not tractable in closed form. Thus, even when the likelihood and the prior dis-
tribution have closed-form expressions, the posterior distribution may not. Markov
chain Monte Carlo (MCMC) methods are used for solving this problem. MCMC
methods work by generating a sample of values {θ(g), g = 1, . . . , G} from a con-
vergent Markov chain whose stationary distribution is the posterior, p(θ|y). From
these samples, empirical summaries of the θ(g) values may be used to summarize
the posterior distribution of the parameters of interest. For example, we might use
the sample mean to estimate the posterior mean,

Ê(θi|y) =
1

G

G∑
i=1

θ
(g)
i ,

and the sample variance to estimate the sample variance,

̂V ar(θi|y) =
1

G− 1

G∑
i=1

(θ
(g)
i − Ê(θi|y))2.
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A variety of MCMC methods have been proposed, the most common of which
is the Gibbs sampler (Geman and Geman, 1984). Suppose our model contains
k parameters, θ = (θ1, . . . , θk)

′. To implement the Gibbs sampler, it is neces-
sary that samples can be generated from each of the full conditional distributions
{p(θi|θj 6=i,y), i = 1, . . . , k}. Starting with (θ

(0)
2 , . . . , θ

(0)
k ), the algorithm repeats for

t = 1, . . . , T :

Draw θ
(t)
1 from p(θ1|θ(t−1)2 , θ

(t−1)
3 , . . . , θ

(t−1)
k ,y)

Draw θ
(t)
2 from p(θ2|θ(t)1 , θ

(t−1)
3 , . . . , θ

(t−1)
k ,y)

...

Draw θ
(t)
k from p(θk|θ(t)1 , θ

(t)
2 , . . . , θ

t
(k−1),y)

The k-tuple obtained at iteration t, (θt1, . . . , θ
t
k), converges to a draw from the joint

posterior distribution p(θ|y). Thus, for t sufficiently large, (say, bigger than t0), the
sequence {θ(t), t = t0 + 1, . . . , T} is a sample from the true posterior.

MCMC methods require the use of diagnostics to decide when the sampling
chains have reached the stationary distribution, that is, the posterior distribution.
One easy way to see if the chain has converged is to examine the traceplot which
is a plot of the parameter value at each iteration against the iteration number, and
see how well the chain is mixing or moving around the parameter space. Sample
autocorrelations are also useful since they can inform whether the algorithm will be
slow to explore the entire posterior distribution and this will impede convergence.
The Geweke diagnostic (Geweke, 1992) takes the first and last part of the chain
and compares the means of both parts, to see if the two parts are from the same
distribution. It is also common to run a small number m of parallel chains, initialized
at different starting locations, and examine the traceplots to see if there is a point
after which all chains seem to overlap. Among the most popular diagnostic is that
of Gelman and Rubin (1992). Here, m chains are run for 2N iterations each and
convergence is monitored by the estimated scale reduction factor which is defined as

√
R̂ =

√(
N − 1

N
+
m+ 1

mN

B

W

)
,

where B/N is the variance between the means from the m parallel chains, and W is
the average of the m within-chain variances. Once convergence is reached, variation

within the chains and variation between the chains should coincide, so
√
R̂ should

approximately equal one.
MCMC algorithms often produce correlated samples of parameters. Thinning a

chain by taking systematic samples at every kth iteration is a common approach
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to produce chains with less autocorrelation. Although MacEachern and Berliner
(1994) show that such a thinning gives less accurate estimates than the complete
chain, this approach is still useful in long runs which need great storage capacity.

3.1.4 Hierarchical modeling

Observed counts of disease cases Yi within spatial regions i = 1, . . . , n are often
modeled as binomial or multinomial given the population at risk. For relatively rare
events, a common statistical practice is to use a Poisson approximation. Thus, a
hierarchical mixed effects model for the count data is used where

Yi ∼ Po(µi),

log(µi) = log(Ei) + xi
′β + ui + vi, i = 1, . . . , n.

Here, Ei represent the internally standardized expected counts, xi denote known
region specific covariates, and ui and vi are correlated and uncorrelated random
effects, respectively, that account for extra-Poisson variability in the observed data.
Usually, the focus of interest is modeling the true underlying relative risk, θi, which
is expressed as

θi =
µi
Ei

= exp(xi
′β + ui + vi), i = 1, . . . , n.

Bayesian modelling requires specification of prior distributions for the random ef-
fects. For modeling the clustering component, a common practice is to use a spatial
correlation structure where the estimation of the risk in any area depends on the
neighboring areas. The conditional autoregressive (CAR) distribution proposed by
Besag et al. (1991) is typically used. The CAR model smoothes the data accord-
ing to a certain neighborhood structure specified in a proximity matrix W and is
expressed as follows:

ui|u−i ∼ N( uδi ,
σ2
u

nδi
),

where uδi = nδi
−1∑

j∈δi uj and δi denotes the set of labels of the neighbors of area i.
Hence, ui has a normal distribution with conditional mean given by the average of
the neighboring uj’s and conditional variance inversely proportional to the number
of neighbors nδi . The uncorrelated heterogeneity may be modeled as independent
and identically distributed normal variables with mean zero and variance σ2

v ,

vi ∼ N(0, σ2
v).

In a full Bayesian analysis, prior distributions are specified for β and for the param-
eters σ2

u and σ2
v which control the variability of u and v. Then, Bayesian estimation

of the parameters is proceed via MCMC methods.
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Once fit, hierarchical Bayesian models may be assessed via the Deviance Infor-
mation Criterion (DIC) (Spiegelhalter et al., 2002). The DIC is a criterion based
on a trade-off between the fit of the data to the model and the complexity of the
model. For a likelihood f(y|θ), the posterior distribution of the deviance is defined
as

D(θ) = −2 log f(y|θ).

The fit of a model can be summarized by the posterior mean of the deviance

D = Eθ|y[D],

and its complexity may be measured by the effective number of parameters, pD,
which is expressed as the posterior mean of the deviance minus the deviance of the
posterior expected parameter estimates,

pD = Eθ|y[D]−D(Eθ|y[θ]) = D −D(θ̄).

The Deviance information criterion (DIC) is defined as

DIC = D + pD = 2D −D(θ̄),

with smaller values of DIC indicating a better model.

3.1.5 Issues with lattice data

Spatial analyses of aggregated data are subject to the Misaligned Data Problem
(MIDP), which occurs when the spatial data are analyzed at a scale different from
that at which they were originally collected (Banerjee et al., 2004). In some cases,
the purpose might be merely to obtain the spatial distribution of one variable at a
new level of spatial aggregation. In other cases, we might wish to relate one variable
to another variables that are available at different spatial scales. An example of
this scenario is where we want to determine whether the risk of an adverse outcome
provided at zip level is related to exposure to an environmental pollutant measured
at a network of stations, adjusting for population at risk and other demographic
information which are available at county level.

The Modifiable Areal Unit Problem (MAUP) (Openshaw, 1984) is a problem that
has long been identified in the analysis of aggregated data, whereby conclusions
may change if one aggregates the same underlying data to a new level of spatial
aggregation. The MAUP consists of two interrelated effects. The first effect is the
scale or aggregation effect. It concerns the different inferences obtained when the
same data is grouped into increasingly larger areas. The second effect is the grouping
or zoning effect. This effect considers the variability in results due to alternative
formations of the areas leading to differences in area shape at the same or similar
scales.
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Ecological studies are characterized by being based on aggregated data (Robin-
son, 1950). Such studies contain the potential for ecological fallacy, which occurs
when estimated associations obtained from analysis of variables measured at aggre-
gated level lead to conclusions different from analysis based on the same variables
measured at the individual level. The ecological inference problem can be viewed as
a special case of the MAUP. The resulting bias, called ecological bias, is comprised
of two effects analogous to the aggregation and zoning effects in the MAUP. These
are the aggregation bias due to the grouping of individuals, and the specification
bias due to the differential distribution of confounding variables created by grouping.
(Gotway and Young, 2002).

3.2 Geostatistical data

When analyzing patterns of disease, we may wish to study potential disease risk
factors. Many of these risk factors are exposure variables representing spatially con-
tinuous phenomenons but measured only at particular sites. For example, exposure
variables may represent the level of a pollutant observed at several monitoring sta-
tions, or the density of mosquitos responsible of disease transmission measured with
traps at different locations (Waller and Gotway, 2004). Suppose Z(s1), . . . , Z(sn)
are observations of a spatial exposure variable Z at the spatial locations s1, . . . , sn.
The data are assumed to be a partial realization of a random process

{Z(s) : s ∈ D},

whereD is a fixed subset of Rd and the spatial index s varies continuously throughout
D. For practical reasons the process Z(·) can only be observed at a finite set of
locations. Based upon this partial realization, we seek to infer the characteristics
of the spatial process that gives rise to the data observed, such as the mean and
variability of the process. These characteristics are useful for the prediction of the
process at unobserved locations and the construction of spatially continuous surfaces
for attribute values.

3.2.1 Stationarity and Variogram

A random process Z(·) is said to be strictly stationary if for any set of locations si,
i = 1, . . . , N , and any h ∈ Rd, the distribution of {Z(s1), . . . , Z(sn)} is the same
as that of {Z(s1 + h), . . . , Z(sn + h)}. A less restrictive condition is given by the
second-order stationarity. Under this condition, the process has a constant mean,

E[Z(s)] = µ,∀s ∈ D,
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and the covariances depend only on the differences between locations,

Cov(Z(s), Z(s + h)) = C(h), ∀s ∈ D, ∀h ∈ Rd.

In addition, if the covariances are functions only of the distances between locations
and not of the directions, the process is called isotropic. If not, it is anisotropic.
A process is said to be intrinsically stationary if in addition to the constant mean
assumption it also satisfies

V ar[Z(si)− Z(sj)] = 2γ(si − sj), ∀si, sj.

The function 2γ(·) is known as the variogram and γ(·) as the semivariogram. Under
the assumption of intrinsic stationarity, the constant-mean assumption implies

2γ(h) = V ar(Z(s + h)− Z(s)) = E[(Z(s + h)− Z(s))2],

and the semivariogram can be easily estimated based on the method-of-moments:

2γ̂(h) =
1

|N(h)|
∑
N(h)

(Z(si)− Z(sj))
2,

where |N(h)| denotes the number of distinct pairs in N(h) = {(si, sj) : si − sj =
h; i, j = 1, . . . , n} (Cressie, 1993).

A plot of the empirical semivariogram against the separation distance conveys
important information about the continuity and spatial variability of the process
(see Figure 3.1). Often, at relatively short distances, the semivariogram is small,
but tends to increase with distance, indicating that observations in close proximity
tend to be more alike than those farther apart. Then, at a large separation distance
referred to as the range, the semivariogram levels off to a nearly constant value
referred to as the sill. Thus, the empirical semivariogram indicates that spatial
dependence decays with distance within the range, and observations are spatially
uncorrelated beyond the range, this reflected by a near constant variance. If there is a
discontinuity or vertical jump at the origin, the process has nugget effect. This effect
is often due to measurement error, but can also indicate a spatially discontinuous
process.

After the empirical semivariogram has been estimated, a valid theoretical semi-
variogram model is fitted to it using visual assessment and statistical algorithms
such as weighted least squares. Three conditions are necessary for a semivariogram
model to be valid. Namely, γ(0) = 0, γ(−h) = γ(h) ∀h, and γ(·) is a conditionally
negative definite function. That is,

∑
i

∑
j aiajγ(si − sj) ≤ 0 for all n, all s1, . . . , sn
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Figure 3.1: Typical semivariogram.

and all a1, . . . , an such that
∑n

i=1 ai = 0. A large number of semivariogram mod-
els have been used, the most popular being the spherical, exponential, gaussian,
Matérn and power models (Gelfand et al., 2010). For example, the exponential
model is defined as

γ(h;θ) =

{
0, h = 0,
c0 + c1[1− exp(−||h||/a)], h 6= 0,

where a > 0, c0 ≥ 0 is the nugget, c1 ≥ 0 is the range, and c0+c1 is the sill.

3.2.2 Kriging

Kriging (Matheron, 1963) is a spatial prediction method that can give predictions of
unknown values of a random process. Under several assumptions, these predictions
are best linear unbiased estimators. Kriging depends on the second-order properties
and the variogram of the process (van Beers and Kleijnen, 2003). There are several
types of Kriging differing by underlying assumptions and analytical goals. For ex-
ample, the Ordinary Kriging gives a linear prediction assuming a constant unknown
mean, Universal Kriging can be used for data with a non-stationary mean struc-
ture, and Cokriging refers to multivariate linear prediction in which one or more
interrelated spatial processes are incorporated.

Here, we describe the Ordinary Kriging in which it is assumed

Z(s) = µ+ δ(s), s ∈ D,

where µ ∈ R is unknown and δ(·) is a zero-mean intrinsically stationary random
process with variogram 2γ(·). Suppose that we have observed data Z(s1), . . . , Z(sn),
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and want to predict the value of the process at an arbitrary location s0 ∈ D. The
Ordinary Kriging estimator at s0 is defined as the linear unbiased estimator

Ẑ(s0) =
n∑
i=1

λiZ(si)

of Z(s0) that minimizes the mean square predictor error defined as E[(Ẑ(s0) −
Z(s0))

2]. Here, the weights λ1, . . . , λn are determined among all the linear predictors
satisfying the properties of unbiasedness and minimum mean-squared prediction
error. For unbiasedness E[Ẑ(s0)] = E[Z(s0)], or equivalently

∑n
i=1 λi = 1. To

minimize the mean-squared prediction error subject to the unbiasedness constraint
the method of Lagrange multipliers is used. Thus, the method finds λ1, . . . , λn and
a Lagrange multiplier m, that minimize the following objective function:

φ(λ1, . . . , λn,m) = E[(
n∑
i=1

λiZ(si)− Z(s0))
2]− 2m(

n∑
i=1

λi − 1).

After some manipulations, this function can be expressed as

φ(λ1, . . . , λn,m) = −
n∑
i=1

n∑
j=1

λiλjγ(si, sj) + 2
n∑
i=1

λiγ(s0, si)− 2m(
n∑
i=1

λi − 1).

Differentiating φ with respect λ1, . . . , λn and m, and equating the result to zero
leads to the linear system

Γ0λ0 = γ0,

where
λ0 = (λ1, . . . , λn,m)′,

γ0 = [γ(s0 − s1), . . . , γ(s0 − sn), 1],

and Γ0 is a symmetric (n+ 1)× (n+ 1) matrix with elements as follows:

Γ0 =


γ(si − sj), i = 1, . . . , n; j = 1, . . . , n,

1, i = n+ 1; j = 1, . . . , n,
j = n+ 1; i = 1, . . . , n,

0, i = n+ 1; j = n+ 1.

The Ordinary Kriging coefficients can then be determined solving the linear system
so that

λ0 = Γ−1
0 γ0.

Putting the optimal weights into the expression of this functional one can see that
the minimum of the prediction error also known as the kriging variance is given by

σ2(s0) = λ′0γ0 = γ′0Γ0
−1γ0.

This expression is a measure of the uncertainty in the prediction of Z(s0).
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3.3 Point patterns

Point processes are stochastic models that describe the locations of interesting events
and possibly some additional information. A point process is written as {Z(s) : s ∈
D}, where D is random. In unmarked processes Z(s) equal 1 ∀s ∈ D indicating
occurrence of the event. In marked process Z(s) is random giving some information
such as the type of event. In general, D is contained in Rd, where d = 2 or d = 3.
A point pattern is a collection of points {si ∈ D : i = 1, . . . , n} and is typically
interpreted as a realization of a point process. A point process is denoted by N . We
write N(A) for the random variable which represents the number of events in the
region A ⊂ D.

A primary goal in the analysis of point processes is to identify patterns in the
distribution of an observed set of locations, as well as the estimation of the density
of events across the region of study. In public health data, it is often of interest the
identification of aggregated patterns which may reflect unusual clusters of cases of
a particular disease. Analysis are also concerned about the correlation between the
cases of a particular disease and spatial covariates, such as environmental exposures,
and the relationships between different point processes, such the cases and controls
of a disease.

3.3.1 First- and second-order properties

The first- and second-order properties of a point process are useful for understanding
important aspects of the behavior of the process. The (first-order) intensity function,
λ(·), describes the way in which the mean value of the process varies across space,
whereas the second-order intensity function, λ2(·, ·), describes the spatial dependence
in the process. The intensity function is defined as

λ(s) = lim
|ds|→0

E[N(ds)]

|ds|
,

where ds denotes an infinitesimal area centered at s. λ(s) is the mean number of
events per unit area at the point s. The second-order intensity function measures
the covariance between values of the process at different regions. This is defined as

λ2(si, sj) = lim
|dsi|→0,|dsj |→0

E[N(dsi)N(dsj)]

|dsi||dsj|
.

The concepts of stationarity and isotropy provide a starting place for modeling
spatial point processes. We say that a process is stationary if the intensity is con-
stant over the study area, λ(s) = λ, and, in addition, the second-order intensity
depends only on event location differences, λ2(si, sj) ≡ λ2(si − sj). If the pro-
cess is furthermore isotropic, the second-order intensity depends only on distance,
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λ2(si, sj) ≡ λ2(||si − sj||). In other words, a process is said to be stationary when it
is invariant to translation, and isotropic when it is also invariant to rotation.

3.3.2 Complete Spatial Randomness

Point processes provide models for point patterns. The simplest theoretical model
is that of complete spatial randomness (CSR), in which an event is equally likely
to occur at any location within the study area, regardless of the locations of other
events. That is, events distribute uniformly and independently across the study
area. The stochastic representation of CSR is the homogeneous Poisson process
(HPP), which is characterized by the two following properties:

1. The number of events in any region A ⊂ D follows a Poisson distribution with
mean λ|A|, where λ denotes the constant intensity function of the process, and
|A| the area of A. That is, N(A) ∼ Po(λ|A|).

2. If A1, . . . , Ak are k disjoint regions of D, then the number of points N(A1), . . . ,
N(Ak) are independent random variables, for an arbitrary k.

Most processes achieve a certain deviation from the CSR in some fashion. However,
CSR plays a central role in many investigations because it operates as a dividing
hypothesis between regular and clustered patterns (Diggle, 1983). We distinguish
random, regular and clustered patterns on the basis of the average distance between
an event and its nearest neighbor. In a clustered pattern, this distance is smaller
than the same distance in a random pattern, whereas in a regular pattern this
distance is larger than expected under randomness.

The most elementary test to contrast the CSR hypothesis is the χ2 test based on
quadrat counts. Suppose the study region is partitioned into r rows and c columns
which define rc non-overlapping subregions or quadrats of equal area. Under the
null hypothesis of CSR, the number of events in quadrat ij, nij, are independent
Poisson random variables with the same expected value n̄ = n/(rc). The Pearson
Chi-square statistic is defined as

X2 =
r∑
i=1

c∑
j=1

(nij − n̄)2

n̄
,

or alternatively as
X2 = (rc− 1)s2/n̄,

where s2 is the sample variance of the rc quadrat counts. This statistic is an index
of departure from CSR. If the pattern is CSR, then the ratio of sample variance and
sample mean should be approximately 1. Under CSR, X2 follows approximately a
χ2 distribution with rc − 1 degrees of freedom provided that the expected number
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of events per quadrat exceeds 1 and rc > 6. The choice of the shape and the
number of quadrats in the χ2 test is a subjective element that can influence the
result. Test statistics based on distances together with Monte Carlo tests eliminate
this subjectiveness.

The nearest neighbor distribution refers to the distance from a randomly chosen
event to the nearest other event. If the observed pattern has n events and di denotes
the distance from the ith event to the nearest other event, then the Empirical
Distribution Function (EDF) is given by

Ĝ(t) = n−1#(di ≤ t).

The point to nearest event distribution considers the distance between a randomly
chosen location and the nearest event. Using distances ei from each of m sample
points to the nearest of the n events, the EDF is

F̂ (t) = m−1#(ei ≤ t).

The estimates of the functions together with confidence envelopes constructed from
Monte Carlo simulation under the HPP hypothesis can be used to test CSR.

3.3.3 K-function

For stationary and isotropic point processes with intensity λ, theK-function (Ripley,
1976) is defined as

K(t) = λ−1E[N(b(s, t)\{s}) : s ∈ N ], t > 0,

where b(s, t) is the disc with center s and radius t. K(t) provides an interpretable
measure of the spatial dependency structure in the point process. In particular, if
a denotes the area of region D, λ2aK(t) is the expected number of ordered pairs of
points in region D with pairwise distance less than or equal to t. For a homogeneous
process with no spatial dependence we expect K(t) = πt2. Under regularity K(t) <
πt2 and under clustering K(t) > πt2. An estimate of the K-function from the data
{s1, . . . , sn} is given by

K̂(t) =
1

λ2a

n∑
i=1

∑
j 6=i

wijI(dij ≤ t),

where I(·) is the indicator function, and dij = ||si − sj|| is the Euclidean distance
between the points si and sj. Here, wij is used for edge-correction and denotes the
reciprocal of proportion of the circle centered on si and with radius dij which is
contained in D. To complete the estimate we need to replace the unknown intensity
λ with an estimate λ̂.
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3.3.4 Estimating the intensity function

For a stationary point process, the intensity is constant and for an observed pattern
of n points, the natural estimator is the observed number of events per unit area:
λ̂ = n/|D|. For nonstationary processes, a common method to estimate the spatially
varying intensity function involves kernel density estimation (Silverman, 1986). Usu-
ally, kernel estimation methods focus on estimating the probability density function
f(·) rather than the intensity function λ(·). The density function defines the prob-
ability of observing an event at a location s and integrates to one across the area
of study. In contrast, the intensity function provides the number of events expected
per unit area at location s and integrates to the overall mean number of events per
unit area. As a result, the density and intensity functions are proportional

λ(s) = f(s)

∫
D

λ(u)du,

and the relative spatial pattern in densities and intensities are the same.
A kernel estimator of the density function f(·) at the location s based on the

observations {s1, . . . , sn} takes the form

f̂(s) =
1

h2

n∑
i=1

k

(
s− si
h

)
,

where k() is a radially symmetric bivariate probability density function known as
kernel function, and h is a smoothing parameter known as bandwidth. Although
the form of the kernel weakly influences the estimates, the bandwidth can have a big
impact. Thus, small values of h can result in estimated densities that are too spiky,
whereas large values provide smoother surfaces that may ignore local characteristics
of the densities. A typical choice for the kernel function might be the quartic kernel,
expressed as

k(s) =

{
3
π
(1− s′s)2 if s′s ≤ 1,

0 otherwise.

The corresponding estimated density is

f̂(s) =
∑

||s−si||≤h

3

πh2
k

(
1− ||s− si||2

h2

)2

.

In practice, exploratory analyses that consider several values of bandwidths may be
carried out to determine, somewhat subjectively, an appropriate bandwidth value.
Other criterions involve the minimization of the mean integrated squared error be-
tween the estimate and the true density (Wand and Jones, 1995). Edge effects tend
to distort the kernel estimates close to the boundary of the region since events near
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the boundary have fewer local neighbors than events in the interior. One way to
deal with this problem is to modify the kernel estimate by dividing by the following
edge-correction term:

ph(s) =

∫
D

h−2k

(
s− u

h

)
du,

which represents the volume under the scaled kernel centered on s which lies inside
the study region (Gatrell et al., 1996).

3.3.5 Estimating the ratio of intensity functions

In many applications, the goal of the analysis is the comparison of spatial variation
in disease risk between two groups. For example, we may wish to detect differences
between the spatial pattern observed in the cases of a particular disease, and the
spatial pattern observed in a set of controls reflecting the population at risk. Con-
sider the locations of all the n1 cases of a disease, and the n2 locations of a set of
controls. The cases and the controls can be assumed to be realizations of two Pois-
son processes with intensity functions λ1(·) and λ2(·), respectively. Each intensity
function is proportional to its associated density. Specifically,

f1(s) = λ1(s)/

∫
D

λ1(u)du, and f2(s) = λ2(s)/

∫
D

λ2(u)du,

where f1 denotes the density of the cases, and f2 denotes the density of the controls.
Kelsall and Diggle (1995) suggest using the logarithm of the ratio of the two

spatial densities,
r(s) = log{f1(s)/f2(s)},

to investigate the relation between the spatial patterns of the cases and controls.
Note that r(s) and the logarithm of the ratio of intensity functions only differ in an
additive constant that does not depend on s:

r(s) = log{λ1(s)/λ2(s)} − log
{∫

D

λ1(u)du/

∫
D

λ2(u)du

}
,

and hence, the two functions contain identical information regarding the spatial
variation in risk. To implement this approach, we estimate the ratio r(s) by the
ratio of the kernel density estimates,

r̂(s) = log{f̂1(s)/f̂2(s)}.

Mapping r̂(s) provides a spatial picture of the areas where r̂(s) > 0 and where
r̂(s) < 0 indicating that the probability of observing cases rather than controls
is more or less likely, respectively. The assessment of these local deviations from
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zero may indicate the presence of local clusters. Their significance is assessed via
Monte Carlo analysis under a random labeling hypothesis. Sometimes, it is also
of interest the investigation of overall clustering. Here, the global null hypothesis
reflects constant relative risk,

H0 : r(s) = 0, ∀s ∈ D.

In this situation the spatial densities of cases and controls may vary across the
study area but are always in the same relative proportion. Inference is based on the
statistic ∫

D

r̂(u)2du,

which summarizes all deviations between the case and control intensities across the
entire study area (Waller and Gotway, 2004).



Chapter 4

Model-based estimation of missing
values in mortality data

In any surveillance system, the processes of detection, confirmation and reporting
of cases are critical activities which greatly influence the capacity to accurately
evaluate the impact of a given disease in a population (Michel et al., 2000). Ideally,
surveillance data is timely, complete, and of high quality. In practice, surveillance
data are often delayed, incomplete, or unreported. A thorough understanding of the
limitations of surveillance data is necessary to inform policy decisions and support
efforts to monitor and control disease.

Missing data are a common problem in surveillance which can be a serious im-
pediment for data analysis. Analyzing data while naively ignoring missing data
sources can result in biased estimates of disease burden and invalid inference to the
larger population. Little and Rubin (1987) established a general statistical frame-
work for classifying missing data mechanisms. Let Y ∗ denote the complete set of
measurements which would have been obtained were there no missing values, and
partition this set into Y ∗ = (Y (o),Y (m)) with Y (o) denoting the measurements ac-
tually observed and Y (m) those that are missing. Let R denote a set of indicator
variables, denoting which elements of Y ∗ fall into Y (o) and which into Y (m). A
probability model for the missing value mechanism defines the probability distribu-
tion of R conditional on Y ∗ = (Y (o),Y (m)). Data are missing completely at random
(MCAR) if R is independent of both Y (o) and Y (m), that is, if there are no system-
atic differences between the observed and the missing values. Data are missing at
random (MAR) if R is independent of Y (m) or, in other words, if the probability a
variable is missing depends only on available information. Finally, data are missing
not at random (MNAR) if R is dependent on Y (m), that is, if the probability that
an observation is missing depends on information that is not observed, like the value
of the observation itself.

Common approaches to handle missing data challenges include ad-hoc adjust-

53
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ments, weighting methods, multiple imputation, and model-based approaches. Fre-
quently, ad-hoc approaches use complete or available observations, impute missing
values using the mean of the the known observations, or include as new variables
indicators of missingness and their interactions. Analyses based on these methods,
however, may be biased when missing data are not MCAR. When it is plausible
that missing data are MAR, such biases can be overcome using other techniques.
Weighting (Carpenter et al., 2006) is a simple approach for making the observations
included in the analysis representative of the original sample. In this approach, a
model for the probability of missingness is fit, and the inverse of these probabilities
are used as weights for the complete observations. Weighting is useful to correct for
bias, but it still has disadvantages in terms of efficiency since not all observations are
included in the study (Horton and Kleinman, 2007). Multiple imputation (Rubin,
1976) is a three-step approach that allows observations with incomplete data to be
included in the analyses. Each missing value is replaced with several imputed values,
each of which is predicted from a slightly different model and also reflects sampling
variability. This process results in the creation of a number of completed datasets
that are analyzed using complete-data methods. Finally, the results are combined
across datasets. The key issue is the appropriate specification of the imputation
model to avoid potential for bias. In model-based procedures a model for the par-
tially missing data is defined and inferences are based on the likelihood under that
model, with parameters estimated by procedures such the EM algorithm (Demp-
ster et al., 1977). This procedure presents several advantages over other methods
like flexibility and availability of large sample estimates of variance, which take into
account incompleteness in the data.

National estimates of the all-cause and P&I mortality burden derived from these
data treat all missing values as zero counts. The effect of this methodological decision
is to bias estimates downward and produce underestimates of the true mortality
burden, although the extent of underestimation has not been studied systematically.
To address this issue, we propose a regression-based procedure that utilizes relevant
information to impute missing values and thus produce a more accurate estimate
of mortality. Our imputation approach uses Poisson regression to model weekly
death counts by city, calendar week, calendar year, and age group. We describe the
full regression model below. In cases where the full model may require information
from other missing observations, we eliminate the corresponding predictors from
the model and refit a new regression model using a subset of the complete set of
predictors.

The outline of the chapter is as follows. First, we describe the all-cause and P&I
mortality data from the 122 Cities Mortality Reporting System (122 CMRS). Next
we describe our imputation model and consider several different model specifica-
tions. We then evaluate each model with the all-cause data using a cross-validation
approach, and select the set of predictors that offer a combination of performance
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and robustness. Finally in Section 4.4 we use the model thus selected to compute
revised national all-cause and P&I mortality, and P&I excess mortality estimates,
and conclude by comparing these revised estimates to those estimates calculated
without imputation.

4.1 Data

Our data consist of weekly all-cause and P&I deaths during the period 1962-2004
from the 122 Cities Mortality Reporting System (122 CMRS) operated by the Cen-
ters for Disease Control and Prevention (CDC). This is one of several component
systems used for influenza surveillance in the United States and has been contin-
uously operated by CDC since 1962, currently by the Influenza Division of the
National Center for Immunization and Respiratory Disease (NCIRD). Participating
cities comprise roughly 25% of the U.S. population, with a heavier geographic rep-
resentation in large- and mid-sized urban areas. Each city reports weekly counts of
all-cause, influenza-related, and pneumonia-related deaths. CDC uses the ratio of
P&I deaths to all-cause deaths as its primary indicator for determining epidemic-
associated activity. These data are the timeliest publicly available source of influenza
mortality data in the U.S., with typical reporting lags of 2-3 weeks. The CDC col-
lects data from participating cities and reports weekly deaths of all-cause and P&I
mortality stratified to the following seven age groups: less than 28 days, 28 days - 1
year, 1-14 years, 15-24 years, 25-44 years, 45-64 years, and 65 years and over.

We analyzed 2,236 weeks of data from 122 cities stratified across seven age
groups, for a total of 1,909,544 observations. Of these, 64,085 (3.36%) are miss-
ing in the all-cause mortality data, i.e. deaths for that week and age group were
unreported to the CDC from the relevant city. And 64,153 (3.36%) are missing in
the P&I mortality data. Table 4.1 summarizes the extent of missing data across all
participating cities. We note that in the all-cause data, 110 of 122 (90.16%) of cities
have less than 2% missing values. The remaining 12 cities (9.84%) have missing
data ranging from 2% to 82%. In the P&I data, 88.52% of cities have less than 2%
missing values, and the rest of cities have missing values ranging from 2% to 82%.
Figure 4.1 shows the distribution of missing data across study years, calendar weeks,
and age groups in the all-cause and P&I mortality data. Year 1965 and week 52
have the highest percentage of missing values (0.14% and 0.41%, respectively). The
percentage of missing values is very similar for all age groups and ranges 0.42% to
0.49%.
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% missing data [0.75-1) [1-2) [2-5) [5-10) [10-15) [15-70) [70-75) [75-82)
All-cause 69 41 5 2 1 0 2 2

P&I 67 41 7 2 1 0 2 2

Table 4.1: Distribution of cities according with their percentages of missing data in
the all-cause and P&I mortality data.
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Figure 4.1: Percentages of missing data in each year, week, and age group in the
all-cause and P&I mortality data.



4.2 Methods 57

4.2 Methods

Let Yw,y,ag,c denote the number of deaths in week w ∈ {1, . . . , nW}, year y ∈
{1, . . . , nY }, age group ag ∈ {1, . . . , nAG} and city c ∈ {1, . . . , nC}. For the 122
CMRS data, nW = 52, nY = 43, nAG = 7 and nC = 122. As potential predictors
to impute a missing value, we considered nearby weeks, years, age groups, or cities.
By ’nearby’ we intend the natural meaning in context, which might be temporal
(the preceding or following week or year), spatial (geographically close cities), or
categorical (next older or younger age group). To make this concrete, suppose there
was no reported mortality count from Boston MA for 15-24 year olds during week
24 of year 1999. As predictors to impute the missing value, we might consider the
same week and year but use mortality of 25-44 year olds, or mortality from nearby
Cambridge MA or Somerville MA. We might also consider mortality in the same
age group from weeks 23 or 25 of 1999, or perhaps from week 24 of the years 1998
or 2000. In order to keep the number of predictors manageable, we specified a max-
imum number of neighboring weeks, years, age groups, and cities. We denote the
bound on each of these parameters by mW , mY , mAG, and mC respectively.

Different choices of mW , mY , mAG and mC can result in different estimates. In
Section 4.3 we present comparisons for several choices when applied to the all-cause
data set. Associated to these values are the sets of indexes IW , IY , IAG and IC
that are defined as follows: IW = {−mW , . . . ,−1, 1, . . . ,mW} if mW ≥ 1, IW = ∅
otherwise, IY = {−mY , . . . ,−1, 1, . . . ,mY } if mY ≥ 1, IY = ∅ otherwise, IAG =
{−mAG, . . . ,−1, 1, . . . ,mAG} if mAG ≥ 1, IAG = ∅ otherwise, and IC = {1, . . . ,mC}
if mC ≥ 1, IC = ∅ otherwise.

Suppose the value Yw,y,ag,c is missing. We can estimate this value on the log
scale with a linear combination of the known number of deaths in the closest weeks,
years, age groups and cities:

log(Yw,y,ag,c) = β̂0 +
∑
i∈IW

β̂W+iI(w + i;w, y, ag, c)Y ∗w+i,y,ag,c

+
∑
i∈IY

β̂Y+iI(y + i;w, y, ag, c)Yw,y+i,ag,c

+
∑
i∈IAG

β̂AG+iI(ag + i;w, y, ag, c)Yw,y,ag+i,c

+
∑
i∈IC

β̂CiI(ci;w, y, ag, c)Yw,y,ag,ci .

Here, ci denotes the ith closest city to c. Y ∗w+i,y,ag,c is the number of deaths in
the week w plus i more weeks if i > 0, or less −i weeks if i < 0. Therefore, it is
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possible Y ∗w+i,y,ag,c represents the number of deaths in a year different from y. For
example, if w = 52, Y ∗w+1,y,ag,s = Y1,y+1,ag,s, and if w = 1, Y ∗w−1,y,ag,s = Y52,y−1,ag,s.
More generally, ∀i ∈ IW ,

Y ∗w+i,y,ag,c =


Yw+i,y,ag,c if (i > 0 and i > 52− w ) or (i < 0 and −i ≥ w),
Yi−(52−w),y+1,ag,c if i > 0 and i > 52− w,
Y52−(−i−w),y−1,ag,c if i < 0 and −i ≥ w.

I(w+i;w, y, ag, c) is a binary variable that indicates whether Y ∗w+i,y,ag,c is missing
(I(w+ i;w, y, ag, c)=0) or known (I(w+ i;w, y, ag, c)=1). I(y+ i;w, y, ag, c), I(ag+
i;w, y, ag, c), I(ci;w, y, ag, c) are defined analogously and indicate whether the values
of year y + i, age group ag + i, and city ci are missing or not. Thus, if the number
of deaths corresponding to some weeks, years, age groups or cities are missing, the
associated binary variables would be 0, and they would not be taken into account
in the estimation of the missing value. Likewise, if any of mW , mY , mAG or mC is
equal to 0, the number of deaths corresponding to weeks, years, age groups or cities
would not be taken into account in the estimation since the corresponding sets of
indexes would be empty. Note also that for some i, Y ∗w+i,y,ag,c, Yw,y+i,ag,c, Yw,y,ag+i,c
or Yw,y,ag,ci could not exist. For example, if y = nY , Yw,y+1,ag,c does not exist. For
the estimation of Yw,y,ag,s, the terms corresponding to non existent values will be
eliminated in the formula of the regression.

The β̂’s needed for the estimation of the missing deaths in the age group ag and
the city c in a given year and week, are obtained from the fit of the following Poisson
regression model,

log(E[Yag,c])) = β0 +
∑
i∈IW

βW+iI(w + i;w, y, ag, c)Yag,c,(w+i)

+
∑
i∈IY

βY+iI(y + i;w, y, ag, c)Yag,c,(y+i)

+
∑
i∈IAG

βAG+iI(ag + i;w, y, ag, c)Yag,c,(ag+i)

+
∑
i∈IC

βCiI(ci;w, y, ag, c)Yag,c,(ci),

where Yag,c is the response vector which contains all deaths in city c and age group
ag, in years 1 to nY , and weeks 1 to nW . And the vectors Yag,c,(w+i), i ∈ IW ,
Yag,c,(y+i), i ∈ IY , Yag,c,(ag+i), i ∈ IAG, and Yag,c,(ci), i ∈ IC , are the covari-
ates used in the regression. Given that Yw,y,ag,c is the jth component of Yag,c, the
jth components of Yag,c,(w+i), Yag,c,(y+i), Yag,c,(ag+i) and Yag,c,(ci) are Y ∗w+i,y,ag,c,
Yw,y+i,ag,c, Yw,y,ag+i,c and Yw,y,ag,ci respectively.
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4.3 Model evaluation

We specify bounds for the model predictors as follows:

0 ≤ mW ,mY ,mAG ≤ 5

mC = 0 or 3

Using these bounds, we consider 25 different model specifications to estimate missing
values in the all-cause data. These models differ in the subset of predictors specified
in the regression model. The details of the various specifications are shown in Table
4.2. The regression model performed very poorly in cities with more than 70% miss-
ing values and those cities were excluded in the following computations. To evaluate
goodness-of-fit, we cross-validate by estimating known values in the all-cause data
set using each one of the models, then computing prediction errors, i.e. differences
between the true and imputed number of deaths. We then computed the mean and
the variance of the errors overall and stratified by age group. We considered lower
absolute values of the mean and the variance of the errors as indicators of superior
model performance. We summarize the results of these evaluations in tables 4.3 and
4.4.

Models 1, 2 and 3, which use only information from prior or upcoming years
but no other predictors, showed higher mean errors compared to all other models.
Within a given set of predictors, variances tend to decrease as we increase the
bounds mY , mW , mAG and mC and thus incorporate more information. We also
note that models with only one type of predictor (e.g. only years or only age
groups) generally have larger variances than models that utilize multiple types of
neighboring data. Considering only models 11, 14, 17, 20 and 23, we observe that
the model with generally smaller error variances is model 11. Considering small
mean errors, models 23 performed the best. For overall performance across several
age groups, we selected model 11. This model uses information from the 5 previous
and 5 following years, weeks and age groups, and the 3 closest cities. With this
model, the error variance obtained is the minimum of all models for age groups 25-
44 years and 45-64 years, and for all age groups combined. The variance of the rest
of age groups are very close to the minimum variances obtained across all models.
When we compare models 11, 12 and 13, we note they have similar error means and
variances. Variances improve only slightly as we increase the maximum number of
years, weeks and age groups included in the regression model.

4.4 Revised national estimates

We described our model evaluation process and our eventual model selection in the
previous section. We then impute the missing all-cause and P&I data using the same
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Years Weeks Age groups Cities
mY mW mAG mC

Model 1 5 0 0 0
Model 2 4 0 0 0
Model 3 3 0 0 0
Model 4 0 5 0 0
Model 5 0 4 0 0
Model 6 0 3 0 0
Model 7 0 0 5 0
Model 8 0 0 4 0
Model 9 0 0 3 0
Model 10 0 0 0 3
Model 11 5 5 5 3
Model 12 4 4 4 3
Model 13 3 3 3 3
Model 14 5 5 5 0
Model 15 4 4 4 0
Model 16 3 3 3 0
Model 17 5 5 0 3
Model 18 4 4 0 3
Model 19 3 3 0 3
Model 20 5 0 5 3
Model 21 4 0 4 3
Model 22 3 0 3 3
Model 23 0 5 5 3
Model 24 0 4 4 3
Model 25 0 3 3 3

Table 4.2: Model specifications to estimate missing values in the all-cause deaths
during 1962-2004. Maximum number of previous and following years, weeks, age
groups and maximum number of closest cities used in each model.
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model (model 11) and compare the reported estimates to those after imputation. We
do not include deaths corresponding to cities with more than 70% missing values.
National estimates are presented in Figure 4.2. For each of the years, we obtain
higher mortality estimates imputing missing values than assuming they are zero
counts. We observe markedly differences in the all-cause mortality patterns obtained
with these two procedures. Specifically, the mortality obtained imputing the missing
data shows an increase of mortality in years 1969 to 1970, 1986 to 1987, and 2003
to 2004, whereas the mortality using zero counts shows a decrease in these periods
of time. Likewise, in years 1993 to 1994, and 1998 to 1999 there is a decrease in
mortality obtained with the model and an increase using zero counts. Also, from
1997 to 2004 we obtain higher mortality using the model than using using zero
counts. We can also observe differences in the patterns of P&I mortality. The
trend over time is very similar using both procedures but higher mortality burden
is observed imputing missing values in years where the percentage of missing values
is greater than 0.10% (1965, 1970, 1976, 1981 and 1987), and years 1993, 1998 and
2004.

We estimated P&I excess mortality in seasons 1972/1973 to 2003/2004 using
the Serfling methods preferred by 122 CMRS researchers and described in Serfling
(1963). In Table 4.5 and Figure 4.3 we present side-by-side the excess deaths es-
timated using the data with missing values imputed, and using the data treating
missing values as zero counts. Some differences can be observed. Using our model
excess deaths are not estimated in season 1994/1995 whereas 57.62 excess deaths
are estimated replacing the missing values by zeros. The biggest difference is ob-
served in season 2003/2004 where 403.13 less excess deaths are estimated using the
imputation model.
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Figure 4.2: National estimates of all-cause (above) and P&I (below) mortality during
1962 to 2004. Zeros represents deaths obtained when replacing missing data by zeros.
Model represents deaths obtained when replacing missing values by our regression
model estimates.
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Figure 4.3: Seasonal P&I excess deaths obtained with Serfling’s method during
1972/1973 to 2003/2004. Zeros represents excess deaths obtained when replacing
missing data by zeros. Model represents excess deaths obtained when replacing
missing values by our regression model estimates.
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Zeros Model
1972/1973 2298.72 2298.43
1973/1974 0 0
1974/1975 1515.35 1514.59
1975/1976 3714.91 3713.92
1976/1977 0 0
1977/1978 1886.42 1884.86
1978/1979 0 0
1979/1980 1494.94 1536.21
1980/1981 3080.12 3077.72
1981/1982 0 0
1982/1983 1147.66 1154.83
1983/1984 0 0
1984/1985 1539.57 1512.67
1985/1986 604.1 609.36
1986/1987 488.04 630.29
1987/1988 1010.54 1014.23

Zeros Model
1988/1989 1350.98 1441.97
1989/1990 1244.93 1368.43
1990/1991 0 0
1991/1992 877.09 949.63
1992/1993 1052.82 1228.98
1993/1994 1911.91 2090.32
1994/1995 57.62 0
1995/1996 652.77 665.56
1996/1997 1357.17 1355.06
1997/1998 2061.06 1793.38
1998/1999 1097.3 1509.64
1999/2000 5350.84 5299.97
2000/2001 0 0
2001/2002 464.12 177.16
2002/2003 0 0
2003/2004 2309.66 1906.53

Table 4.5: Seasonal P&I excess deaths obtained with Serfling’s method during
1972/1973 to 2003/2004. Zeros represents excess deaths obtained when replacing
missing data by zeros. Model represents excess deaths obtained when replacing
missing values by our regression model estimates.
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Chapter 5

Gaussian component mixtures and
CAR models in Bayesian disease
mapping

The representation and analysis of disease incidence or mortality data has become
established as a basic tool in the analysis of regional public health data. The growing
interest in the distribution of certain diseases among epidemiologists and medical
geographers together with the advancements of computational techniques has led to
substantial advances in disease mapping (Ugarte et al., 2006; Lawson and Banerjee,
2010; Lawson, 2009a). Disease maps provide a rapid visual summary of complex
geographic information and may identify subtle patterns in the data that are missed
in tabular presentations.

The importance of spatial dependences in the data and the underlying process
of interest have long been recognized by scientists. The application of traditional
covariance-based spatial statistical models is inappropriate or computationally inef-
ficient in many problems. In recent years, the application of Bayesian hierarchical
spatial and spatio-temporal models have become increasingly popular since the ad-
vances in computational techniques, such as Markov chain Monte Carlo (MCMC)
methods. Modeling spatial interactions that arise in spatially referenced data is
commonly done by incorporating the spatial dependence into the covariance struc-
ture via an autoregressive model (Besag et al., 1991). In the case of irregular lattice
data, a common autoregressive model used is the conditional autoregressive (CAR)
model. This model produces spatial dependence in the covariance structure as a
function of a neighbor matrix and often a fixed unknown spatial correlation param-
eter. It is also possible to use other structures which can mimic spatial correlation
effects, such as, for example, a Gaussian component mixture (GCM). In this chap-
ter, we compare the performance of GCM and CAR structures both in univariate
and multivariate extensions where multiple diseases are analyzed.
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The outline of this chapter is as follows. First, we review the basics of the
the CAR and the GCM structures. Then a simulation study is made where we
fit several models that incorporate these structures to different data sets simulated
from a variety of models for the true underlying risk. Components of the simulated
models are correlated heterogeneity (CH), uncorrelated heterogeneity (UH), trend
and covariates. We use both real and simulated covariates, some of them with values
that produce patterns of increased risk, to encompass a wide range of situations that
can be found in real settings. In terms of goodness-of-fit we examine the posterior
summaries such as the mean of the parameters, the mean square error (MSE),
and also display maps that show the geographic patterns of the parameter values.
Based on these results, the comparison between the models is made. In Section
5.2 the properties of Multivariate CAR and Multivariate GCM distributions are
derived. A simulation study is carried out to assess the performance of each one
of the approaches. We consider three diseases and generate different datasets of
the true risk, choosing different CH and UH components to reflect different types
of dependence between regions and among diseases. Next, we fit to each dataset
models which incorporate Multivariate CAR and Multivariate GCM components.
The performance of the models is assessed by means of the MSE and the parameter
estimates obtained with each model. Finally, in Section 5.3, we model the CH of
a real data set using GCM and CAR structures, and compare the results obtained
with each one. Specifically, we estimate the relative risk of low birth weight in
Georgia, U.S., in the year 2000 adjusting for the median household income and the
percentage of poverty.

5.1 Bayesian disease mapping models

A common Bayesian model for disease mapping is the following three level hierar-
chical model:

Yi ∼ Po(Ei × θi) i = 1, . . . , n;

log(θi) ∼ p(·|φ),

φ ∼ π(),

where Yi and Ei are respectively the observed and the expected number of cases
of disease in area i, θi is the relative risk in area i, p(·|φ) is an appropriate prior
distribution for the {θi} and φ are hyperparameters with hyperprior distributions π()
(Lawson, 2009a). A correlated heterogeneity (CH) component is introduced at the
second hierarchical level to model the spatial dependence between the relative risks.
Also, an unstructured exchangeable component that models uncorrelated noise (UH)
can be included as well as other terms such as covariates and trend effects.
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5.1.1 Conditional Autoregressive (CAR) models

To model CH, a Gaussian Markov random field prior distribution is most commonly
used in disease mapping. These models are usually specified by a set of area-specific
spatially correlated Gaussian random effects

ui, i = 1, . . . , n;

where n is the number of areas in the study region. Their joint distribution is
expressed as follows:

u ∼MVN(µ, vΣ),

where u′ = (u1, . . . , un), µ is the mean vector, v > 0 controls the overall variability
of the ui and Σ is a positive definite matrix. This joint multivariate Gaussian model
can also be expressed in the form of a set of conditional distributions by writing the
between-area covariance matrix in the following form:

vΣ = v(I − γC)−1D,

where I is the identity matrix, D is a diagonal matrix with elements Dii proportional
to the conditional variance of ui|uj, C is a weight matrix with elements Cij reflecting
spatial association between areas i and j, and γ controls the overall strength of the
spatial dependence. Thus, the series of conditional distributions may be written as

ui|u−i ∼ N(µi +
n∑
j=1

γCij(uj − µi), vDii).

Various constraints are needed on the values of C, D and γ in order to ensure that Σ
is symmetric positive definite: Σ is only symmetric if CijDjj = CjiDii, V ar(ui|uj) =
vDii > 0 so Dii must be > 0. To ensure Σ is positive definite, γ must lie between
γmin and γmax where γ−1min and γ−1max are the smallest and largest eigenvalues of
D−1/2CD−1/2. In practice, we often expect positive spatial dependence, so constrain
the prior for γ to be between 0 and γmax. γ = 0 implies no spatial dependence.

Besag et al. (1991) proposed an intrinsic version of this CAR model in which the
covariance matrix Σ is not positive definite. Their model corresponds to choosing
Cij = nδi

−1 if areas i and j are adjacent and Cij = 0 otherwise (with Cii also set to
0) and Dii = nδi

−1. Moreover, γ = γmax which turns out to always be 1 with this
particular choice of Cij and Dii. Here nδi is the number of areas which are adjacent
to area i. This leads to the following model for the conditional distribution

ui|u−i ∼ N( uδi ,
v

nδi
),

where uδi =
1

nδi

∑
j∈δi

uj and δi denotes the set of labels of the neighbors of area i.

Hence ui has a normal distribution with conditional mean given by the average of
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the neighboring uj’s and conditional variance inversely proportional to the number
of neighbors nδi .

5.1.2 Gaussian component Mixture (GCM) models

Another structure to model spatial correlation can be considered (Langford et al.,
1999). The Gaussian component mixture (GCM) proposed consists of random effects
ui, i = 1, . . . , n which are defined as:

ui =

nδi∑
j

wij
∗λj, where

λj
ind∼ N(0, τλ

−1) and wij
∗ =

wij∑nδi
j wij

.

Here τλ is the precision of the normal distributions and wij ≥ 0 ∀i, j ∈ {1, . . . , n}.

If we denote wi =

nδi∑
j

wij, ui can be written as

ui =
1

wi

nδi∑
j

wijλj.

Here note that

E(ui) = 0 and V ar(ui) =
τλ
−1

wi2

nδi∑
j

wij
2,

and therefore this makes the variability of the field locally variable as in the case of
the CAR model. The covariance is expressed as

Cov(ui, uk) =
τλ
−1

wiwk

nδik∑
h

wihwkh,

where nδik is the number in common in the two neighborhoods and λh is the effect

for those in common. If we define Wik =

nδik∑
h

wihwkh, it is straightforward to find the

spatial correlation of the field as

ρik =
Wik

(
∑nδi

j wij2
∑nδk

l wkl2)1/2
.

Weights are defined in such a way that pairs of locations that are close to each
other have a high weight associated, whereas pairs of locations further apart have
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a low weight. This may be achieved using some form of distance decay function or
contiguity based spatial weights. Usually weights for i are chosen so that wij = 1
∀j ∈ δi and therefore wi = nδi . Another option is to choose wij = (nδi)

−1 ∀j ∈ δi
and then wi = 1. With both choices, ui is expressed as the following

ui =
1

nδi

nδi∑
j

λj.

And we obtain

E(ui) = 0, V ar(ui) =
τλ
−1nδi
nδi

2
=
τλ
−1

nδi
,

Cov(ui, uk) =
τλ
−1nδik
nδinδk

and ρik =
nδik

(nδinδk)
1/2
.

This yields a positive correlation on the range (0,1). Then ρik = 1 when the regions
overlapping are the same and 0 when there is no overlap. Also note that the correla-
tions are short range in that completely separate (non-overlapping) neighborhoods
have 0 correlation.

It should be noted that a variant of this model can be defined within the CAR
model paradigm where

ui|u−i ∼ N(γ
n∑
j

Cijuj, vDii).

Assuming µi = 0 and in the spatial association matrix C, we define Cij = nδik/nδi
with Cii = 0 and Dii = 1/nδi ; then this allows different association based on overlap
of neighborhoods. Also then the partial squared correlation is defined as γ2CijCji
(Stern and Cressie, 1999) and so for γ = 1,

ρik =
nδik

(nδinδk)
1/2
.

However this formulation does not lead to a simple neighborhood mean structure in
the conditional distribution [ui|u−i] and so we do not pursue this here.

5.1.3 Simulation study

We would like to evaluate the behavior of the GCM in comparison to the intrinsic
CAR as a model for CH. To this end, we set up a simulation study to compare the
CAR and the GCM structures for modeling CH. We want to examine whether one
is better at recovering the true spatial variation or if there is only slightly differences
between them. To do so we simulate data sets of count distributions from a number
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Figure 5.1: Map of the expected asthma counts in childhood in Georgia.

of different models. Some of the models have a CH component that is specified either
with a CAR or with a GCM component. Two models are fitted to each simulated
data set, one where the CH is modeled with a CAR component and other where a
GCM component is used. To evaluate the merits of each of the fitted models we use
a variety of criteria. We calculate the MSE and examine the patterns of the fitted
parameters, and we observe the differences between the real parameter values and
the estimated ones for biases.

To carry out the study we need to choose both a suitable map of small areas to
simulate relative risks within, and a set of fixed expected cases for these small areas.
The spatial structure we decide to use throughout the simulations is that of the 159
counties in the state of Georgia, U.S. It was felt important to use a real data set of
expected cases for the mapped area instead of a simulated one. Although this choice
has a disadvantage in that the study is relatively specific to the data, it does allow
us to work close to real data. The set of fixed expected counts are chosen as the
expected asthma mortality cases in childhood in the year 2000. Figure 5.1 shows
the distribution of the expected counts in the map.

Simulated models

We simulate the observed cases from a Poisson distribution

Yi ∼ Po(Ei × θi) i = 1, . . . , n;

where n is the number of counties, Yi and Ei are respectively the total number of
observed and expected cases in i, and θi is the relative risk in i. Our purpose is to
study the performance of GCM and CAR structures at modeling disease risk in a
wide range of situations that can appear in real settings and, therefore, θi values are



5.1 Bayesian disease mapping models 73

simulated from several models that produce different simulate count distributions
in the map.

The first model that we consider is the so called convolution model for count
data which takes into account uncorrelated and spatially correlated random effects.
The method is usually adopted in disease mapping to obtain reliable estimates of
the relative risk in those areas where the low number of observations makes the
rough relative risk estimates unstable (where rough means a relative risk estimated
using only observations and target population data at a given area level). We adopt
two convolution models that differ in the way CH u is simulated. We call GCM
the model where u is generated with a GCM structure and CAR the model which
uses a CAR structure. To observe the performance of GCM and CAR structures
when we try to assess covariate effects, we also need to use models in which we
incorporate the effect of a covariate. To this end, we choose models GCM and CAR
with covariates which are specified in the same way that GCM and CAR models
adding a covariate term. It is also used as a model one with two covariate effects
given by the coordinates of the counties. This model is called Trend and it tries
to model the disease risk that is thought to be determined by a geographic trend.
Finally, we use the model Trend with UH, which incorporates to the Trend model
a term that models UH. Thus, the models used for the simulation of {θi} are the
following:

• GCM or CAR: θi = exp(α + ui + vi),

• GCM or CAR with covariate: θi = exp(α + αcov covi + ui + vi),

• Trend: θi = exp(α + β1(xi − x̄) + β2(yi − ȳ)),

• Trend with UH: θi = exp(α + β1(xi − x̄) + β2(yi − ȳ) + vi),

where v is the UH, u is the CH, x and y are the centroid coordinates of the counties
and cov is a covariate. The component v is simulated in all models as vi ∼ N(0, sdv

2),
with a sdv value fixed for the standard deviation. In GCM models the CH component
is simulated with a GCM structure

ui =
1

nδi

∑
j∈δj

λj, λi ∼ N(0, sdλ
2).

and in CAR models with an improper CAR structure

ui|u−i ∼ N(uδi ,
(sdCAR)2

nδi
).

To see the performance of GCM and CAR structures when they are used to fit
simulated data with covariate effects, we simulate models GCM and CAR with dif-
ferent covariates. Specifically, we use 15 covariates, one real and the rest simulated.
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The real one is covpop and it is defined as the standardized population density of
Georgia counties:

(covpop)i =
popi − pop

(n−1
∑n

i=1 (popi − pop)2)1/2
,

where popi is the population density of county i, i = 1, . . . , n, and pop = n−1
∑n

i=1 popi.
The other covariates are simulated. The first is covn and for i = 1, 2, . . . , n it
is simulated from a normal distribution with mean reflecting a geographic trend:
(covn)i ∼ N(0.5xi + 0.5yi, 0.5

2), where x and y are the vectors of centroid coor-
dinates of the counties. The following is called covnc and has the same values as
covn except for two groups of contiguous counties where the value is increased by 1.
Specifically (covnc)i = (covn)i + 1, if i ∈ H0, the set of counties made up of county
44 and its nine nearest neighbors and county 159 and its nine nearest neighbors,
and (covnc)i = (covn)i otherwise. Thus, this covariate reflects a trend pattern and
two clusters of high values.

We are also interested to see if clusters and different degrees of high covariate
values has some effect in the performance of GCM and CAR structures. To see this
the rest of simulated covariates are three sets of covariates, cov1k, cov2k and cov3k
with k ∈ {1, 2, 3, 4}. Each set of covariates are generated in such a way that there is
a group of counties with high values that form a pattern of increased risk in the map
as k increases, while the rest of values are random generated and constant across the
set of covariates. For k ∈ {1, 2, 3, 4} cov1k is a covariate with five isolated counties
of high values that represent five hot spots, cov2k has one big cluster of high values
and cov3k contains a single big cluster on the left of the map. To simulate these
covariates we generate first an auxiliary covariate cov0, as (cov0)i ∼ N(0, 0.12) ∀i,
and define m1 = 0.5, m2 = 1, m3 = 1.5 and m4 = 2. We also define the following
sets of counties that refer to the counties with high covariate values in each set of
covariates:

• H1: this set is made up of the five hot spots counties in cov1k. We choose them
as five isolated single counties with expected counts approximately equal to the
10th, 30th, 50th, 70th and 90th percentiles of the distribution of the expected
counts,

• H2: this set refers to the cluster in cov2k. It consists of a group of eighteen
contiguous counties with center county 143,

• H3: it is used in the definition of cov3k. It is made up of sixty contiguous
counties on the left side of the map.

Then, for i = 1, 2, . . . , n and k ∈ {1, 2, 3, 4}, the covariates are simulated as
follows: (cov1k)i ∼ N(mk, 0) if i ∈ H1 and (cov1k)i = (cov0)i otherwise, (cov2k)i ∼
N(mk, 0.1

2) if i ∈ H2 and (cov2k)i = (cov0)i otherwise, and (cov3k)i ∼ N(mk, 0.1
2)
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if i ∈ H3 and (cov3k)i = (cov0)i otherwise. Note that for j ∈ {1, 2, 3} and k ∈
{1, 2, 3, 4}, covjk values in sets Hj are simulated from normal distributions with
larger mean as k increases. And therefore these covariates show patterns of increased
values as k increases. Maps of Georgia with the values of the covariates represented
are shown in Figure 5.2.

We simulate different data sets of count distributions using the above presented
models and different values for the parameters α, αcov, β1, β2, sdλ, sdCAR, sdv and
the different covariates. The parameter specification is made taking into account
that the simulated risk θ has to take values that are plausible in real settings.
Thus, we tune the parameter values in order to yield a relative risk approximately
between 0.5 and 4 for most counties and avoiding extreme values. This procedure is
especially important in models with covariates where some counties can have a high
covariate value. If the parameters are not carefully chosen in these situations, for
some counties the models can yield extreme relative risk that are impossible in real
settings. The combination of model and parameter values chosen is presented in
Table 5.1. We simulate 500 data sets from each of the combinations to have stable
results.

Fitted models

Six different hierarchical models are used to fit the simulated data sets, each assum-
ing a Poisson likelihood for the first level and a different structure for the logarithm
of the risk in the second level. The fitted models GCM, CAR, GCM with covariate
and CAR with covariate are the same that the models with the same name that are
used to simulate count distributions. Therefore, in GCM and CAR models log(θ)
is modeled as a sum of an intercept and two random effects, one for CH and an-
other for UH. Models GCM and CAR with covariate incorporate also the effect of a
covariate. The CH effect is modeled with a GCM component in GCM models and
with a CAR component in CAR models. The other two fitted models are GCM with
trend and CAR with trend. These models express log(θ) as a sum of an intercept, a
trend, and UH and CH effects. The trend is modeled incorporating the effect of the
coordinates of the counties centroids (x and y). CH is modeled in model GCM with
trend with a GCM structure, and in model CAR with trend with a CAR structure.
Moreover, prior distributions are adopted for the hyperparameters of the models.
In all models we choose, for the intercept, the covariate effect, the trend effects, and
the UH, a normal distribution with mean 0 and standard deviation simulated from
U(0, 5). The prior distributions for the standard deviation of the CH components
GCM and CAR is chosen as a U(0, 5). If we denote the index m as the number of
covariates, and set m = 0 in GCM or CAR models, and m = 2, (cov1)i = (xi−x̄) and
(cov2)i = (yi− ȳ), i = 1, . . . , n in GCM or CAR with trend models, the specification
of the models is as follows:
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covpop covn covnc

cov11 cov12 cov13 cov14

cov21 cov22 cov23 cov24

cov31 cov32 cov33 cov34

Figure 5.2: Maps of the covariates assumed in the simulated models.
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Simulated model α αcov β1 β2 sdλ sdCAR sdv cov

GCM
0.1 - - - 1 - 1 -
0.1 - - - 2 - 1 -
0.01 - - - 1 - 1 -
-0.1 - - - 0.25 - 1 -

CAR
0.1 - - - - 1 1 -
0.1 - - - - 2 1 -
0.1 - - - - 1 2 -
0.01 - - - - 0.75 1 -
-0.1 - - - - 0.25 1 -

0.01 0.01 - - 1 - 1 covpop
GCM with -0.1 0.01 - - 0.25 - 1 covpop
covariate 0.1 0.5 - - 0.25 - 1 covn

0.1 0.5 - - 0.25 - 1 covnc
0.1 1 - - 0.5 - 1 covjk;

j = 1, 2, 3;
k = 1, 2, 3, 4

0.01 0.01 - - - 0.75 1 covpop
CAR with -0.1 0.01 - - - 0.25 1 covpop
covariate 0.1 0.5 - - - 0.25 1 covn

0.1 0.5 - - - 0.25 1 covnc
0.1 1 - - - 0.5 1 covjk;

j = 1, 2, 3;
k = 1, 2, 3, 4

Trend 0.01 - 1 1 - - - -

Trend with UH 0.01 - 1 1 - - 1 -

Table 5.1: Parameter specification and covariates used in simulated models.
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GCM, GCM with covariates or GCM with trend

Yi ∼ Po(Ei × θi)

log(θi) = α +
∑m

l=1 αcovl × (covl)i + vi + ui

α ∼ N(0, τ−1α ), αcovl ∼ N(0, τ−1αcovl
) ∀l, vi ∼ N(0, τ−1v ), λi ∼ N(0, τ−1λ ), ui =

1

nδi

∑
j∈δi

λj

τα = sd−2α , ταcovl = sd−2αcovl
∀l, τv = sd−2v , τλ = sd−2λ

sdα ∼ U(0, 5), sdαcovl ∼ U(0, 5) ∀l, sdv ∼ U(0, 5), sdλ ∼ U(0, 5)

CAR, CAR with covariates or CAR with trend

Yi ∼ Po(Ei × θi)

log(θi) = α +
∑m

l=1 αcovl × (covl)i + vi + ui

α ∼ N(0, τ−1α ), αcovl ∼ N(0, τ−1αcovl
) ∀l, vi ∼ N(0, τ−1v ), ui|u−i ∼ N(uδi ,

τ−1u

nδi
)

τα = sd−2α , ταcovl = sd−2αcovl
, ∀l, τv = sd−2v , τu = sd−2u

sdα ∼ U(0, 5), sdαcovl ∼ U(0, 5) ∀l, sdv ∼ U(0, 5), sdu ∼ U(0, 5)

The purpose of the study is to compare the performance of GCM and CAR
structures in modeling the relative risk. Therefore, two different models, one where
CH is modeled with GCM and another where CH is modeled with CAR, are fitted
to each one of the simulated models (see Table 5.2). Specifically GCM and CAR are
fitted to simulated models GCM and CAR, GCM with covariate and CAR with co-
variate are fitted to simulated models GCM with covariate and CAR with covariate,
and GCM with trend and CAR with trend are fitted to simulated models Trend and
Trend with UH. The fitting is made using WinBUGS (Lunn et al., 2000). Two MCMC
chains are run for each model and data set until they achieve convergence. In par-
ticular the chains are run for a total of 80000 iterations, the first 30000 of which are
discarded as burn-in and with a thin parameter of 50. In total 2000 iterations are
saved.

Results

The performance of each fitted model is assessed by examining the posterior mean
of the parameters averaged over the replicate data sets, and the MSE of each of
the parameters. For a parameter s in a county i, i = 1, 2, . . . , n, we obtain their
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XXXXXXXXXXXXSimulated
Fitted GCM CAR GCM with CAR with GCM with CAR with

covariate covariate trend trend
GCM

√ √

CAR
√ √

GCM with covariate
√ √

CAR with covariate
√ √

Trend
√ √

Trend with UH
√ √

Table 5.2: Models fitted to each one of the simulated models.

posterior mean averaged over the R = 500 replicate data sets computing

1

R

R∑
r=1

(sfittedi )r,

where (sfittedi )r is the fitted value of (sreali )r, the simulated value of s in county i and
replication r. The MSE of parameter s averages the squared differences between
fitted and simulated values over locations in the map and replicate datasets,

MSE[s] =
1

R

R∑
r=1

MSEr[s] =
1

R

R∑
r=1

1

n

n∑
i=1

(
(sreali )r − (sfittedi )r

)2
.

We compare these values for each of the models, and examine the distribution pat-
terns of the fitted values of the relative risk and the CH and UH components.

Tables 5.3 and 5.4 present a summary of the results obtained when we fit the
data simulated with some of the models specified in Table 5.1. The data is fitted
with two models (one with a GCM and another with a CAR structure). For each
parameter of the simulated models, these tables show their MSE and their posterior
mean averaged over the replicate data sets calculated with each of the fitted models.
For each simulated model we mark in bold the value obtained with the fitted model
that performs better. In MSE tables we mark the values that represent lower MSE,
and in posterior mean tables the values closer to the real ones.

We identify some situations where the GCM model gives a slightly better fit
than CAR. If data are simulated with GCM model with α = 0.1, sdv = 1 and
sdu = 1, fitted model GCM produces smaller MSE for all parameters and parameter
estimates closer to the real ones. Moreover, fitted model GCM gives smaller MSE
and better fit of α and sdu if the data are simulated with the following models:
GCM with α = −0.1, sdv = 1 and sdu = 0.25, CAR with α = 0.1, sdv = 2 and
sdu = 1, and CAR with α = −0.1, sdv = 1 and sdu = 0.25. We have not identified
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any situation where CAR performs better than GCM. In all situations GCM does
better than CAR either producing smaller MSE or giving parameter estimates closer
to the real ones.

We observe that when we fit data simulated with GCM, GCM performs better
than CAR. We obtain lower MSE for α and u and lower MSE for θ in all the scenarios
but the one simulated with α = 0.01. Moreover, fitted α values are closer to the real
ones. On the other hand, when the models are used to fit data simulated with CAR
it is not clear which model, GCM or CAR, does better. We see that MSE of α is
lower with GCM. But MSE of the rest of parameters and fitted values of α, sdv and
sdu are better with GCM in some situations and with CAR in others. Regarding
the results obtained when the simulated models are Trend and Trend with UH, we
observe that GCM does better in θ, α and v, while CAR does better in the trend
effects β1 and β2.

If we observe the results obtained for the simulated models GCM and CAR
with covariates covpop, covn and covnc, we observe that in all situations the GCM
estimates the spatial effect and the intercept α better. When the fitted model is
GCM, MSE of u and α is lower and fitted values of α are closer to the real ones.
CAR, on the contrary, does better in θ, sdv and sdu. Regarding αcov, we see that
GCM does better when the simulated models are CAR. We also observe that sdv
and sdu are better fitted with CAR.

Regarding the results obtained when we fit the data simulated with models GCM
and CAR with covjk, j = 1, 2, 3 and k = 1, 2, 3, 4, we see that GCM does better
in the spatial effect u and in the intercept α, and CAR does better in the relative
risk θ. MSE of the UH v is lower with CAR if the simulated model is GCM. When
the simulated model is CAR, fitted models GCM and CAR do better in the half
of situations. We also see that across the simulated models GCM, fitted model
GCM produces lower MSE of αcov. If the simulated models are CAR, MSE of αcov
is sometimes better with GCM and other times better with CAR. Regarding the
fitted values, we see that GCM does better estimating sdv and CAR does better
estimating sdu. Moreover, α is better fitted with GCM if the simulated model is
GCM and better fitted with CAR if the simulated model is CAR. The fitted values
of the covariate effect are estimated better with GCM in half of the situations and
with CAR in the other half of situations.

For all simulated models, we have produced maps of the posterior mean of the
relative risk, and the CH and UH effects obtained with each fitted model, average
across data sets. Across many simulated models, we have found that the distribution
patterns of the parameters are very similar with fitted models with GCM and CAR
structures. Figure 5.3 depicts maps of the average across data sets posterior mean
relative risk, the CH and UH components obtained with fitted models GCM and
CAR with covariate when fitting the data sets simulated with GCM with cov11,
α = 0.1, αcov = 1, sdλ = 0.5 and sdv = 1. We can see in Table 5.3, that for this
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model GCM does better in spatial effect. The MSE of CH component u obtained
with GCM model is smaller than the MSE obtained with CAR model. CAR does
slightly better on θ and on the UH component v. In Table 5.3, we can see that MSE
of θ and MSE of v are slightly lower with the fitted CAR model. Maps in Figure
5.3 show only little differences between fitted values with each model.

Conclusions

The similarity of the results obtained using GCM and CAR suggests that the two
models are not so different. The theoretical similarity between them can be checked
comparing the correlation of two regions for the GCM model, to the correlation
to those arising from the improper CAR model. As indicated in Section 5.1.2, the
correlation between two random effects ui and uk, i = 1, . . . , n of a GCM structure
with weights wil = 1,∀i and ∀l ∈ δi, is given by

CorGCM(ui, uk) =
nδik

(nδinδk)
1/2
.

The correlation between ui and uk for the improper CAR can be approximated by
the following expression (Assunçao and Krainski, 2009),

CorCAR(ui, uk) ≈
1

(nδinδk)
1/2

aik +
∑

l ailalk/nδl
(1 + 1/nδi

∑
l ailali/nδl)

1/2(1 + 1/nδk
∑

l aklalk/nδl)
1/2
,

where aik = 1 if areas i and k are neighbors, and 0 otherwise. We note that if
areas i and k are not neighbors and have no common neighbors, nδik=0, aik = 0
and

∑
l ailalk/nδl = 0. Then, both for GCM and CAR structures the correlation

between the two areas’ effects is 0. We also see that for GCM the correlation
between ui and uk is positively associated with the number of common neighbors,
and negatively associated with the number of neighbors of each area. For the CAR
structure the correlation expression is not so simple but a similar relationship holds.
CorCAR(ui, uk) is positively associated with a weighted sum of the common areas
of i and k with weights equal to the number of neighbors of each of the common
areas (

∑
l ailalk/nδl). Also, CorCAR(ui, uk) is negatively associated with a weighted

sum of the number of neighbors of area i (
∑

l ailali/nδl) and area k (
∑

l aklalk/nδl).
Hence, the general pattern of great similarity of the two models can be explained by
the two similar correlations. We illustrate numerically this similarity by computing
CorGCM(ui, uk) and the approximation to CorCAR(ui, uk) for each pair of counties
in Georgia and summarizing the differences between them. We observe that 89.87%
of the correlations are within 1% of each other, and 90.10% of them are within 5%.
Moreover, the proportions of correlations within 20% and 40% of each other are
96.28% and 99.74% respectively. The maximum difference between correlations is
60.78%.
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5.2 Multiple disease mapping models

Often it is appropriate to consider the analysis of multiple diseases using multivari-
ate spatial modeling. A number of diseases may share the same set of (spatially
distributed) risk factors, or are linked by etiology, a common risk factor, or an af-
fected organ. Moreover, the presence of one disease might encourage or inhibit the
presence of another over a region. When we have information on p ≥ 2 diseases
over the same regions, an obvious first choice would be to use p separate univariate
models. However, because correlation across diseases may occur we may need a
multivariate spatial model to properly analyze this kind of data. This will permit
modeling of dependence among those diseases while maintaining spatial dependence
between regions. Identifying similar patterns in geographical variation of related
diseases in a multivariate way may provide more convincing evidence for any real
clustering in the underlying risk than would be available from the analysis of any
single disease separately. Several multivariate areal models have been proposed to
date, any of which could be applied to multiple disease mapping. Let Yik be the
observed number of cases of disease k in region i, i = 1, . . . , n, k = 1, . . . , p, and
let Eik be the expected number of cases for the same disease in this same region.
As in the univariate case, the Yik are thought of as random variables, while the Eik
are thought of as fixed and known. For the first level of the hierarchical model, we
assume Yik are independent of each other such that

Yik ∼ Po(Eik × θik) i = 1, . . . , n; k = 1, . . . , p.

In the second level, the relative risks are assigned a prior distribution p(·|γ) with
hyperprior distribution π().

log(θik) ∼ p(·|γ),

γ ∼ π().

For example it can be assumed log(θik) = x′ikβk +φik where the xik are explanatory,
region-level spatial covariates for disease k having parameter coefficients βj, and φik
are random effects (Jin et al., 2007).

5.2.1 Multivariate Conditionally Autoregressive (MCAR)
models

Carlin and Banerjee (2003) and Gelfand and Vounatsou (2003) generalized the uni-
variate CAR to a joint model for the random effects φik under a separability assump-
tion, which permits modeling of correlation among the p diseases while maintaining
spatial dependence across space. The multivariate CAR (MCAR) can be viewed
as a conditionally specified probability model for interactions between space and
an attribute of interest. It acknowledges dependence between the diseases as well
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as dependence across space (Zhang et al., 2010). The multivariate intrinsic autore-
gressive (MIAR) distribution is an important special case of the MCAR. We give a
review of a MICAR model illustrating in the case of p = 2 diseases.

Let areal random effects corresponding to the two diseases be Φ = (φ′1,φ
′
2),

where φ′1 = (φ11, . . . , φn1), φ
′
2 = (φ12, . . . , φn2), and n is the number of areal units.

Under the MIAR model, the multivariate joint distribution is defined as

p(Φ) ∝ exp{−1/2Φ′[Λ⊗ (D −W )]Φ},

where W is a proximity matrix whose elements wij measure the closeness of each
pair of areas i and j, D is a diagonal matrix with ith diagonal element equal to∑

j wij, Λ is 2× 2 and positive definite, and ⊗ denotes the Kronecker product. This
corresponds to the conditional distribution(

φi1
φi2

)
|φ−(i1,i2) ∼ N

((
φ̄i1
φ̄i2

)
, (
∑
j

wijΛ)−1

)
,

where φ−(i1,i2) stands for the collection of all φij except φi1 and φi2. Let φ̄i1 =∑
j wijφj1/

∑
j wij and φ̄i2 =

∑
j wijφj2/

∑
j wij, the averages of the random effects

for area i’s neighbors specific to variables 1 and 2, respectively. It can be seen
that Λ serves as a scaled conditional precision for (φi1, φi2) where

∑
j wij is a scale

parameter. Areas with more neighbors have higher precision. Since Λ is common for
all areas i = 1, . . . , n, it controls the conditional precision for each pair of variables
at the same site averaged over all areas (Ma and Carlin, 2007).

5.2.2 Multivariate Gaussian component Mixture (MGCM)
models

The Multivariate Gaussian component mixture (MGCM) consists of random effects
uik, i = 1, . . . , n; k = 1, . . . , p which are defined as

uik = wi
∗′λik,

where wi
∗′ = (wi1

∗, . . . , winδi
∗) and λik

′ = (λ1k, . . . , λnδik). The components of wi
∗

are wil
∗ =

wil∑nδi
l wil

with wil ≥ 0 ∀i, l. In addition, (λl1, . . . , λlp)
′ ind∼ N (0,Σ) ∀l, with

Σ being the covariance matrix of the normal distribution. If, as in the univariate

Gaussian component mixture, we denote wi =

nδi∑
l

wil, uik can be written as

uik =

nδi∑
l

wil
∗λlk =

1

wi

nδi∑
l

wilλlk.
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We can see that E(uik) = 0. The expressions of the covariance between effects are
the following,

Cov(uik1 , ujk2) =


Sk1k2
w2
i

nδi∑
l

w2
il if i = j,

Sk1k2
wiwj

nδij∑
h

wihwjh if i 6= j,

where nδij is the number in common in the two neighborhoods and Sk1k2 is the covari-

ance between common areas h for disease k1 and k2. If we define Wij =

nδij∑
h

wihwjh,

it is straightforward to find the spatial correlation of the field as

ρik1,jk2 =
Sk1k2Wij

(Sk1k1)
1/2(Sk2k2)

1/2(
∑nδi

l wil2
∑nδj

m wjm2)1/2
.

5.2.3 Multivariate simulation study

To see the performance and compare MGCM and MCAR structures, we carry out
a simulation study. It is based on the spatial layout of the n = 159 counties in the
state of Georgia. We assume p = 3 diseases and use a conditionally independent
Poisson likelihood to generate Yik, the observed count for disease k in area i, where
i = 1, . . . , n and k = 1, . . . , p. Thus,

Yik ∼ Po(Eik × θik),

where Eik and θik denotes the expected count and the relative risk for disease k and
area i respectively. For the computation of the expected counts, we use the observed
counts of three ambulatory care-sensitive conditions: angina, asthma, and chronic
obstructive pulmonary disease (COPD), as well as the population for each county
in the state of Georgia in the year 2007. These data are provided by the Online
Analytical Statistical Information System (OASIS; http://oasis.state.ga.us/). The
expected counts for disease k in each area i is set equal to the disease rate in the
state multiplied by the population in the county i, i.e. Eik = popi

∑
i Yik/

∑
i popi,

where popi is the total population in area i, and Yik is the count for disease k in
area i. Figure 5.4 displays the expected counts for each disease in the counties of
Georgia.

We generate data using six different models that encompass different ranges of
relative risk variability. With each of them we generate the relative risk θik with the
following expression

θik = exp(αk + uik + vik).
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Angina Asthma COPD

Figure 5.4: Maps of the expected counts of angina, asthma and COPD used in the
simulation study.

To make sure the values of the simulated risks are sensible, that is, non-extreme
and between 0.5 and 4 for most counties, we need to choose the values of αk, uik
and vik carefully. The αk’s are being fixed constant set to α1 = 0.03, α2 = 0.01 and
α3 = −0.1. The uncorrelated component is generated with

vik ∼ N(0, sdvk
2),

where sdv1 = 0.7, sdv2 = 0.65 and sdv3 = 0.6. To generate the correlated component
uik we use two different distributions. Specifically, we use an MGCM distribution
for three of the models simulated, that is,

uik =
1

nδi

∑
l∈δi

λlk, where

λl1λl2
λl3

 ind∼ N

0
0
0

 ,Σ

 .

And a MCAR distribution with covariance matrix equal to Σ for the other three
models. Both in the models simulated with MGCM and MCAR distributions, we
use the following three covariance matrices,

Σ1 =

 0.010 0.006 0.016
0.006 0.016 0.005
0.016 0.005 0.057

 , Σ2 =

 0.079 0.030 0.004
0.030 0.034 0.010
0.004 0.010 0.089

 , and

Σ3 =

 0.040 0.032 0.027
0.032 0.044 0.027
0.027 0.027 0.023

 .

These are positive definite matrices chosen in such a way that exp(αk + uik + vik)
yield plausible relative risk values, and with different correlations that originate dif-
ferent degrees of correlation between diseases. Specifically, the correlations for Σ1
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are ρ12=0.44, ρ13=0.68, and ρ23=0.16. For Σ2, ρ12=0.59, ρ13=0.05, and ρ23=0.19.
And for Σ3, ρ12=0.76, ρ13=0.90, and ρ23=0.85. Depending on the model and the
covariance matrix used to generate the correlated heterogeneity, the simulated mod-
els are named MGCM Σ1, MGCM Σ2 and MGCM Σ3, MCAR Σ1, MCAR Σ2 and
MCAR Σ3.

We use two models, MGCM and MCAR, to fit the generated data sets. Both
of them express the risk as a sum of an intercept, an UH random effect and a
CH random effect. In the MGCM model the CH random effect is modeled with
an MGCM component. In MCAR, the CH is modeled with an MCAR structure.
Specifically, they are specified as follows:

MGCM

Yik ∼ Po(Eik × θik), log(θik) = αk + vik + uik

αk ∼ N(0, τ−1αk
), vik ∼ N(0, τ−1vk

), uik =
1

nδi

∑
l∈δi

λlk,

λl1λl2
λl3

 ∼ N

0
0
0

 ,Ω−1


ταk = sd−2αk , τvk = sd−2vk , sdαk ∼ U(0, 5), sdvk ∼ U(0, 5)

Ω ∼ Wishart(R, 3), R =

 1 0 0
0 1 0
0 0 1


MCAR

Yik ∼ Po(Eik × θik), log(θik) = αk + vik + uik

αk ∼ N(0, τ−1αk
), vik ∼ N(0, τ−1vk

),

ui1ui2
ui3

 |u−(i1,i2,i3) ∼ N

ūi1ūi2
ūi3

 ,Ω−1


ταk = sd−2αk , τvk = sd−2vk , sdαk ∼ U(0, 5), sdvk ∼ U(0, 5)

Ω ∼ Wishart(R, 3), R =

 1 0 0
0 1 0
0 0 1


To compare the MGCM and MCAR structures, we generate 300 data sets with

each of these six simulated models and we fit the models MGCM and MCAR to
each one. Here, the number of data sets is restricted to 300 since more computation
time is needed to fit multivariate models. The fitting is carried out using WinBUGS.
Convergence was achieved running two MCMC chains of 80000 iterations for each
model and data set. For each chain a burn-in of 30000 and a thinning rate of 50
iterations are used. In total, 2000 iterations are kept.
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Results

To assess the performance of MGCM and MCAR models we compute the MSE and
the estimates of the parameters with each model. In addition to this, we represent in
maps the averaged posterior mean of the relative risk for each disease. The results
obtained are summarized in tables 5.5 and 5.6, and Figure 5.5. They indicate a
similar fit of MGCM and MCAR models.

Table 5.5 shows the MSE and the fitted values for the parameters of the simulated
models MGCM Σ1, MGCM Σ2, MGCM Σ3, MCAR Σ1, MCAR Σ2 and MCAR Σ3,
when they are fitted with models MGCM and MCAR. We observe that for all the
simulated models, the MSE of all the parameters obtained with MGCM and MCAR
are very similar. They are always lower with the fitted model MGCM except when
the model simulated is MCAR Σ2 and θ1 is estimated. In this case, the MSE of θ1
is 0.351 with the fitted model MGCM and 0.346 with the fitted model MCAR.

None of the fitted models allow us to obtain precise estimates of the real param-
eters α1 = 0.03, α2 = 0.01 and α3 = −0.1 (see Table 5.6). If the simulated models
are MGCM Σ1, MGCM Σ2 and MGCM Σ3, with both MGCM and MCAR models
the estimated α1 ranges from 0.0173 to 0.0239, α2 from 0.004 to 0.01, and α3 from
-0.0974 to -0.0897. If the simulated models are MCAR Σ1, MCAR Σ2 and MCAR
Σ3 with both fitted models, the estimated α1 ranges from 0.0138 to 0.0266, α2 from
-0.0021 to 0.0055, and α3 from -0.0993 to -0.0875.

In the simulations, we use sdv1 = 0.7, sdv2 = 0.65 and sdv3 = 0.6. Both the
estimates obtained with fitted models MGCM and MCAR underestimate these true
values. For each of the simulated models, we observe that the estimates obtained
are closer to the real ones with fitted model MGCM than with fitted model MCAR.
For the simulated MGCM, we obtain estimate of sdv1 between 0.6477 and 0.6768,
estimate of sdv2 from 0.6099 to 0.6224, and values of sdv3 from 0.5601 to 0.5753. For
the simulated MCAR, the estimated sdv1 ranges from 0.6476 to 0.6689, sdv2 from
0.6089 to 0.624, and sdv3 from 0.5556 to 0.5865.

Figure 5.5 depicts maps of the average across data sets posterior mean relative
risk obtained with MGCM and MCAR models when fitting data sets generated with
MCAR Σ1. They show the same pattern of risk with both fitted models.

5.3 Estimation of risk of low birth weight in Geor-

gia

In this section we estimate the risk of low birth weight (LBW), defined as babies
weighing less than 2500 grams at birth, during the year 2000 in the 159 counties of
Georgia, United States. We are interested in seeing in a real example the differences
in the estimates and the goodness of fit obtained using GCM and CAR components
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Models Fitted values
Simulated Fitted α1 α2 α3 sdv1 sdv2 sdv3

MGCM Σ1
MGCM 0.0239 0.0065 -0.0875 0.6599 0.6224 0.5731

MCAR 0.0208 0.0091 -0.0955 0.6477 0.6134 0.5607

MGCM Σ2
MGCM 0.0171 0.01 -0.0897 0.6768 0.6205 0.5753

MCAR 0.0173 0.0086 -0.0974 0.6637 0.6136 0.562

MGCM Σ3
MGCM 0.0175 0.0041 -0.0897 0.6726 0.6191 0.5703

MCAR 0.0183 0.006 -0.0956 0.6594 0.6099 0.5601

MCAR Σ1
MGCM 0.0204 0.0125 -0.0963 0.6689 0.6209 0.5795

MCAR 0.0207 0.0117 -0.0993 0.6556 0.6137 0.5609

MCAR Σ2
MGCM 0.0138 -0.0021 -0.0942 0.6718 0.624 0.5865

MCAR 0.0161 0.0013 -0.0945 0.66 0.6187 0.5664

MCAR Σ3
MGCM 0.0266 0.0055 -0.0875 0.6595 0.6148 0.5706

MCAR 0.0222 0.0045 -0.0941 0.6476 0.6089 0.5556

Table 5.6: Fitted values for the parameters of the simulated models MGCM Σ1,
MGCM Σ2, MGCM Σ3, MCAR Σ1, MCAR Σ2 and MCAR Σ3, when they are fitted
with models MGCM and MCAR.
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for modeling the CH. To this end, we fit the models GCM with two covariates and
CAR with two covariates which model the CH with a GCM and a CAR component
respectively. They model the number of LBW with a Poisson distribution with mean
the relative risk times the expected number of LBW. The logarithm of the relative
risk in each county i, θi, is expressed as a sum of an intercept (α), the effect of two
covariates cov1 and cov2, and random effects for the CH (ui) and for the UH (vi).
Specifically, log(θi) = α+β1cov1+β2cov2+ui+vi. Normal distributions with mean 0
and standard deviations simulated from an U(0, 5) are used as prior distributions of
the intercept, the covariates effects, and the UH component. The prior distributions
for the standard deviation of the GCM and CAR components are chosen from an
U(0, 5).

The number of LBW and the number of total births in Georgia for the year 2000
were obtained from the Online Analytical Statistical Information System (OASIS;
http://oasis.state.ga.us/). In the models we adjusted for the effect of the standard-
ized median household income (cov1) and the percentage of people living in poverty
(cov2) in the year 2000. They are both indicators of poor health outcomes and often
used together in deprivation indices. Information about these two covariates were
obtained from the US census (http://www.census.gov). The expected number of
LBW in each county were computed multiplying the total births in each county by
the overall rate of LBW in Georgia, that is, the total LBW divided by the total
births.

A summary of the observed and expected LBW and the covariates included in
the model is shown in Table 5.7. The average count of LBW events in Georgia is
71.8 with a standard deviation equal to 163.04. The minimum and maximum LBW
is 2 and 1326 respectively. We observe values of the standardized median household
income between -1.34 and 4.04. The mean percentage of poverty is 16.11 with
values situated between 3.8 and 28.6. Model fitting was carried out using WinBUGS.
Convergence was obtained running two MCMC chains of 70000 iterations with a
burn-in period of 20000 and a thin parameter of 50.

5.3.1 Results

Estimates and 95% credible intervals of the overall LBW relative risk (α̂), and the

coefficients of the standardized median household income (β̂1) and the percentage of

poverty (β̂2) were obtained with fitted models GCM and CAR with two covariates.
Results are shown in Table 5.8. With both models we observe a negative, although
not significant association between the mean income and LBW. With GCM we
obtain β̂1 = −0.013, and with CAR β̂1 = −0.019. We also observe a positive
association between poverty and LBW. With GCM β̂2 = 0.027, and with CAR
β̂2 = 0.025.

A summary of the standardized incidence ratio and the relative risks obtained
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Standardized
Poverty Y E SIR

RR
income GCM CAR

Mean 0 16.11 71.8 71.8 1.07 1.08 1.08
S.D. 1 5.37 163.04 160.44 0.32 0.19 0.19
Minimum -1.34 3.8 2 1.81 0.26 0.72 0.7
1st quartile -0.69 12 14 13.46 0.85 0.93 0.94
Median -0.26 16.4 27 25.03 1.05 1.08 1.09
3rd quartile 0.42 20.05 61.5 58.64 1.26 1.21 1.21
Maximum 4.04 28.6 1326 1167 2.06 1.61 1.65

Table 5.7: Descriptive statistics of covariates standardized median household income
and percentage of poverty, observed (Y) and expected (E) LBW, standardized inci-
dence ratio (SIR), and relative risks (RR) estimated with fitted models GCM with
two covariates and CAR with two covariates.

α̂ (95% C.I.) β̂1 (95% C.I.) β̂2 (95% C.I.)
GCM -0.372 (-0.647, -0.073) -0.013 (-0.091, 0.061) 0.027 (0.007, 0.043)
CAR -0.349 (-0.527, -0.067) -0.019 (-0.083, 0.037) 0.025 (0.007, 0.037)

Table 5.8: Estimates and 95% credible intervals (C.I.) of the overall LBW relative

risk (α̂), and the coefficients of the standardized median household income (β̂1) and

the percentage of poverty (β̂2) obtained with fitted models GCM and CAR with two
covariates.
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GCM CAR

Figure 5.6: Posterior mean relative risk of LBW obtained with fitted models GCM
and CAR with two covariates.

with the models are represented in Table 5.7. Figure 5.6 displays the posterior ex-
pectations of the relative risks for both fitted models. We can see that the estimates
and the spatial pattern of the relative risks obtained with model GCM are very
similar to the ones obtained using the CAR model. With both models we obtain a
mean relative risk of 1.08 with standard deviation equal to 0.19. Approximately the
values range from 0.7 and 1.6. In Figure 5.6, we can see that the North-West and
South-East regions of Georgia have lower relative risk than the rest of the state.

The goodness of fit of the models is assessed by means of the deviance infor-
mation criterion (DIC) (Spiegelhalter et al., 2002). In this example, we note that
the deviance, the effective number of parameters, and the DIC are very similar with
both models. Specifically, we obtain a slightly lower deviance and DIC for the CAR
model (991.57 and 1042.91), compared to the GCM model (994.61 and 1045.22).
The effective number of parameters is a little lower with GCM model (50.61), com-
pared to CAR model (51.33). Overall, both GCM and CAR with two covariates
provide a similar model for the relative risk.



Chapter 6

Detection of disease clusters with
LISA functions

In this chapter we present a method for the detection of spatial clusters of a par-
ticular disease with point data where temporal information is not available. More
specifically, we focus on case-control studies where the data consist of n locations
of all known cases of a disease within a given geographical region over a specified
time-period, together with the location m of a set of controls, defined to be a random
sample of the population at risk. There are certain advantages and disadvantages to
studying a disease using point data (Lawson, 2006). One negative is that there may
be no relation between the location assigned to the individual and the etiology of
the disease. Most of the time the location assigned to cases is the place of residence
and it may be that the disease is related to risk factors which arise in other places
where the individual spends part of his time. Moreover, the exact location of the
individual is not always available for various reasons, such as confidentiality. On the
other hand, these type of data provide detailed spatial information which can be
lost when aggregated. Thus the data aggregated are an approximation of the point
data. Therefore, whenever point data are available, it is recommended that spatial
information does not get lost and that it is analysed at this level of resolution. The
method we present is based on the second order properties of a spatial point process.
In particular, the local properties (LISA functions) of the product density function
are used. These functions have already been used for studying the spatial structure
of a point process (Cressie and Collins, 2001), and for detecting features in images
with noise (Mateu et al., 2007).

The structure of the chapter is as follows. First of all the concepts of product
density and LISA functions are presented. Then the LISA method for detecting
spatial clusters is explained. In Section 6.3 an evaluation of the LISA method is
made through a simulation study. The power, sensitivity, specificity and type I
error of the LISA method are calculated when it is applied to distinct situations

97
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where the cluster shape, the sample size, the cluster size and the density of cases
are different. The same values are calculated with the scan method and the results
obtained with each method are compared. Finally, the LISA and scan methods are
applied to a real case where the existence and location of kidney disease clusters
during 2008 are studied in the municipality of Valencia, Spain.

6.1 Product density function and LISA functions

We consider a spatial point process N which is observed in a region A ⊂ R2 with
area |A| = a. For stationary and isotropic point processes with intensity λ, the K
function Ripley (1976) is defined as

K(t) = λ−1E[N(b(s, t)\{s}) : s ∈ N ], t > 0,

where b(s, t) is the disc with center s and radius t. K(t) provides an interpretable
measure of the spatial dependency structure in the point process. In particular,
λ2aK(t) is the expected number of ordered pairs of points in region A with pairwise
distance less than or equal to t. An estimate of the K function from the data
{x1, x2, . . . , xN(A)} observed in A is given by

K̂(t) =
1

λ2a

n∑
i=1

∑
j 6=i

wijI(dij ≤ t),

where I(·) is the indicator function, n = N(A) and dij = ||xi− xj|| is the Euclidean
distance between the points xi and xj. Here wij is used for edge-correction and
denotes the reciprocal of proportion of the circle centered on xi and with radius dij
which is contained in A. To complete the estimate we need to replace the unknown
intensity λ with an estimate, say λ̂ = (n − 1)/a. The final estimate of K(t) is
therefore

K̂(t) = (n− 1)−2a
n∑
i=1

∑
j 6=i

wijI(dij ≤ t).

The K function is a cumulative function and the investigation into its differential
leads to the product density function defined as

ρ(t) ≡ λ2K ′(t)

2πt
.

When estimated from the data the empirical product density function, ρ̂(t), provides
a description of the density of interevent distances among the observed locations.
High values for ρ̂(t) for small distances t indicate the aggregation of points. On the
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other hand, small values for small distances t indicate a situation of inhibition. An
estimator of λ2K ′(t) can be expressed as

λ̂2K ′(t) ≡ a−1
n∑
i=1

∑
j 6=i

fε(||xi − xj|| − t), t > ε > 0, (6.1)

where fε is a kernel function and ε is the bandwidth. fε provides weights which
determine the contribution of each interevent distance to the density estimator in
the distance t. Increasing the value of ε increases the bias but smoothes the estimate.
The estimation ρ̂ε of the product density function has the expression

ρ̂ε(t) =
1

2πta

n∑
i=1

∑
j 6=i

fε(||xi − xj|| − t), t > ε > 0.

A corrected version of this estimation which takes into account the edge effect is
given by

ρ̂ε(t) =
1

2πta

n∑
i=1

∑
j 6=i

2π||xi − xj||
|∂b(xi, ||xi − xj||) ∩ A|

fε(||xi − xj|| − t), t > ε > 0,

where |∂b(xi, ||xi−xj||)∩A| denotes the perimeter length of the disc with its center
xi and radius ||xi − xj|| contained in region A.

Both, the K function and the product density function provide a global measure
of the covariance structure by adding up the contributions of each point observed
in the process. We now consider the individual contributions to the estimated func-
tions which are analogous to the local statistics described by Anselin (1995), called
local indicators of spatial association (LISA). A product density LISA function, ρ(i),
indicates the contribution of case xi to the global estimation ρ and can provide a
description of the data structure Cressie and Collins (2001).

A LISA product density function can be constructed in the same way as the
global estimator. We begin by considering local characteristics of the K function.
We define

{λK(t)}(i) ≡ E[N(b(xi, t)\{xi}) : xi ∈ N ], t > 0

as the expected number of points which are found at a distance less than or equal
to t from xi. A kernel estimator of {λK ′(t)}(i) is

{λ̂K ′(t)}(i) =
∑
j 6=i

fε(||xi − xj|| − t), t > ε > 0,

and for a homogenous Poisson process λ̂ = (n− 1)/a is an unbiased estimator of λ.
Thus,

λ̂{λ̂K ′(t)}(i) = (n− 1)a−1
∑
j 6=i

fε(||xi − xj|| − t), t > ε > 0,
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provides a kernel estimator for {λ2K ′(t)}(i).
By analogy with the formulation of the estimation of the global product density,

a local version of the product density function is given by

ρ̂ε
(i)(t) =

n− 1

2πta

∑
j 6=i

fε(||xi − xj|| − t), t > ε > 0.

The corrected version of ρ̂ε
(i) is

ρ̂ε
(i)(t) =

n− 1

2πta

∑
j 6=i

2π||xi − xj||
|∂b(xi, ||xi − xj||) ∩ A|

fε(||xi − xj|| − t), t > ε > 0.

For a fixed t, ρ̂ε(i)(t) satisfies the definition of LISA statistic presented by Anselin
(1995), given that the sum of individual product density LISA functions is propor-
tional to the global function in t,

ρ̂ε(t) =
1

n− 1

n∑
i=1

ρ̂ε
(i)(t).

6.2 LISA method for detecting clusters

We propose a method for cluster detection in situations where a set of cases and a
set of controls for a certain disease is available. The method calculates the LISA
functions for each case and compares them with the LISA functions that would be
obtained under the null hypothesis that the cases are a random sample of the total
set of cases and controls. Through a Monte Carlo procedure it can be checked, for
each case, whether the difference between the LISA obtained with the data and the
LISA under the null hypothesis is significant or not. The method identifies the cases
which have significant associated differences as cases belonging to an aggregation
zone. The stages in the method are explained as follows:

1. The first step consists of calculating, for each case, values for the LISA function
by involving only the rest of the cases. The intensity of the processes of cases
and controls can be very different in different subregions of region under study
depending on several factors, for example population at risk. Therefore, for
each case we choose a different vector of distances for which the LISA function
will be calculated. For a given case this vector is made up of 100 values. The
smallest distance, d1, is chosen as that which exists between the case and the
nearest point, and the greatest distance, d100, is chosen in such a way that the
circle with its center in the case and radius d100 contains x% of the points.
The remaining distances are chosen between those taking increments equal
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to (d100 − d1)/99. Here x is chosen subjectively, taking into account that we
want to calculate the LISA functions for distances at which local interactions
between points are expected to operate, and not where environmental gradients
are expected to vary. For the calculation of the LISA functions we need to
choose a kernel function and the values of the bandwidths. It is widely known
in nonparametric and point process literature that the key point in kernel-
based estimation is the choice of the bandwidth parameter, and not the type
of kernel function used. Thus, we make use here of the Epanechnikov kernel,
as one of the most widely used functions in point process literature. It is given
by

fε(r) =

{
3
4ε

(
1− r2

ε2

)
, if− ε ≤ r ≤ ε;

0, otherwise

where ε > 0 is the bandwidth. We decide to choose an adaptative bandwidth
that takes into account the distribution of all the points included in the dif-
ferent subregions where LISA functions are computed. Thus, for each case i
we consider Ai, the convex hull of the points included in the circle with its
center in the case and radius the greatest distance where LISA is computed,
that is to say the value of d100 associated with case i. Then for each case i
we choose a bandwidth εi guided by the results in Collins (1995) and Fiksel

(1988), namely εi = (51/2/10)|Ai|1/2n−1/2i , where |Ai| is the area of Ai and ni
the number of points included in it.

2. Next, approximations to the LISA function values for each case under the null
hypothesis are calculated. For a given case, a set of points is considered to
be formed by all the controls and all the cases, except for the one considered.
Then a pattern is generated, randomly labeling each point as a case or a
control such that the number of cases and controls continues to be the same.
Afterwards, the case considered is added to the pattern obtained and the LISA
function is calculated for the new cases, with the same set of distances and
the same bandwidth used in the calculation of the function with the original
data. This procedure is repeated R times and the averages of the LISA values
obtained at each iteration are calculated, which are taken as the LISA function
of the case under the null hypothesis.

3. In the following stage the difference, dif0, between the LISA calculated with the
original data and the LISA calculated under the null hypothesis is obtained
for each case. Given that the objective is to detect aggregation zones, to
calculate this difference only the values of the functions in the distances where
the LISA function obtained with the original data is higher than the LISA
obtained under the null hypothesis are taken into account. Thus, the difference
associated to a case is calculated as the average of the positive values of the
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Figure 6.1: LISA functions obtained with original data and under the null hypothesis
for 10 cases located in a cluster (left) and for another 10 not located in a cluster
(right).

differences between the LISA function with the original data and the LISA
function under the null hypothesis in each distance. Figure 6.1 shows both
LISA functions for 10 cases located in a cluster (left) and for another 10 not
located in a cluster (right). The graphs in Figure 6.1 come from one of the
scenarios of the simulation study described in Section 6.3.

4. Finally, Monte Carlo is applied to see the significance of the difference in each
case. For each one of the cases a vector of differences under the null hypothesis
{dif1, dif2, . . . , difR} is constructed. For j ∈ {1, . . . , R}, difj is obtained with
the difference, in the same way as previously explained, between Lj and LM j,
where Lj is the LISA function of the case calculated under the null hypothesis
in the replica j and LM j(t) = 1

R

∑R
k=0,k 6=j L

k(t), with L0 being the LISA
function of the case calculated at Step 1 with the original data. Then pos0,
the position occupied by the original difference of the case calculated at Step
3, dif0, in the set {dif0, dif1, dif2, . . . , difR} ordered from larger to smaller, is
calculated. The significance of dif0 is calculated by applying the Bonferroni
correction for multiple comparisons. In this way, if a value of significance equal
to α is taken, and pos0/(R+ 1) < α/(# cases), dif0 is significant and the case
is marked as belonging to a zone where aggregation exists Diggle (2003).

The results of the method are the differences associated to each case, which indicate
the distance between the LISA obtained with the original data and the LISA under
the null hypothesis, and the significance of each difference. To show these results, the
set of cases is considered as a marked point pattern where the marks are the values
of the differences. In this way it is possible to represent the contour lines of the
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values of the differences in a graph and moreover mark the cases whose differences
are significant.

6.3 Evaluation of LISA method through a simu-

lation study

To evaluate the method we apply it in several situations which allow us to assess its
performance both in the presence and absence of spatial clusters. In each situation
we calculate the type I error, power, sensitivity and specificity. We also calculate
these values with the scan method for the Bernoulli model, and compare the results
obtained with each one. The scan method is well documented in Kulldorff and
Nagarwalla (1995). It enables the location of clusters and the evaluation of their
significance taking into account the correction for multiple tests.

To evaluate the LISA method when clusters exist, we define the window under
study as the unit square and the cluster zone as a circle with its center in (0.3; 0.6)
and with fixed radius equal to 0.1. A set of cases and controls are generated in the
window under study such that the density of cases is greater within the cluster than
outside and bearing in mind the different simulation scenarios. The density of cases
outside the cluster is set at 10%. The different scenarios are created by varying
the sample size, cluster size and the density of cases within the cluster, taking into
account the following:

• Three sample sizes have been used, 400, 1000 and 2000, in which cases and
controls are included. For cluster size, 3%, 6% and 10% of the sample size is
used. Both the points within the cluster and those outside it are randomly
generated within the corresponding boundaries.

• The density of cases within the cluster is 2, 3 and 6 times the density of cases
outside the cluster. Thus, 10% of the points outside the cluster and 20%, 30%
or 60% of the points within the cluster are randomly labeled as cases. The
remaining points are the controls.

For each of the resulting 27 scenarios, 100 patterns of points are generated and
the methods are applied with a value of α = 0.05. For the application of the LISA
method, we subjectively choose the value of x in step 1 of Section 6.2 to be equal
to 20. For each scenario the power, sensitivity and specificity of the methods are
calculated. Power is defined as the proportion of the 100 patterns in which the
null hypothesis is rejected, this rejection occurring when the p-value associated with
the LISA function of one case is smaller than α. Sensitivity is the proportion of
cases belonging to the cluster which have been correctly detected by the method.
Specificity is the proportion of cases not belonging to the cluster which have been
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correctly detected by the method. These two values are obtained as the average
values obtained in the 100 patterns.

This procedure is repeated for another two forms of the cluster, one rectangle
with a clear predominance of one dimension over the other and two orthogonal
rectangles which give rise to an L-shaped structure. The vertices in the rectangle
are (0.2; 0.6), (0.6; 0.6), (0.6; 0.7) and (0.2; 0.7), and the L-shape is obtained by
joining (0.33; 0.33), (0.6; 0.33), (0.6; 0.4), (0.4; 0.4), (0.4; 0.7) and (0.33; 0.7). Figure
6.2 shows 3 of the 27 possible simulation scenarios in which the 3 forms that the
cluster can take are represented.

We are also interested in comparing the behavior of the methods in terms of
type I error. To this end we simulate point patterns under the null hypothesis of
no clusters, and apply the methods to obtain estimates of the true significance level
used. In particular we consider the unit square as the study window, and the same
circle, rectangle and L-shape structures defined before. In each of these settings we
simulate 9 point patterns under the null hypothesis, using samples sizes equal to
400, 1000 and 2000, and number of points inside the structure equal to 3%, 6% and
10% of the sample size. To be consistent with the null hypothesis we label the points
as cases and controls in such a way that the densities of cases inside and outside
the structure are equal. Specifically we randomly label 10% of the points as cases
both inside and outside. Next we generate 100 point patterns for each situation and
apply the methods with α = 0.05. The type I error probability is defined as the
proportion of 100 patterns in which the null hypothesis is rejected.

6.3.1 Results

Tables 6.1-6.3 show the power, sensitivity and specificity of the LISA and scan
methods for each one of the cluster shapes, and for the distinct sample sizes, cluster
sizes and multiplicities. They also show type I error probabilities in the situations
where no clusters exist. It can be seen that the two methods are more powerful in
the circular zone of the cluster, followed by the rectangular form and the L-shape.
Moreover, for all the shapes, the power of the LISA method is larger than the scan
method. As far as sensitivity is concerned, we see that the LISA method is larger
than the scan method in most situations. The specificity of the two methods is
similar, except in situations in which the multiplicity is 6 and the cluster size is 6
or 10, where LISA has less specificity than scan. With the LISA method therefore,
the null hypothesis is rejected more often although it does not always detect the
cluster zone exactly. Moreover, if the multiplicity or the cluster size increases, the
sensitivity of each method also increases. We can see that in all situations type I error
probabilities obtained with scan method are close to the true level of significance
0.05, whereas the ones obtained with LISA are greater than this value if sample size
is 1000 or 2000.
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(a) Circular cluster
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(b) Rectangular cluster
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(c) L-shaped cluster

Figure 6.2: Three possible simulation scenarios in which the 3 shapes that the
cluster can take are represented. In each scenario cases (+) and controls (·) have
been generated using a sample size of 400, a cluster size equal to 3% of the sample
size and with a density of cases within the cluster 6 times the density of the cases
outside.
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We now examine the behavior of the methods in each one of the structure shapes.
In all of them, and when the sample size is 400, the methods are not very sensitive in
situations with a multiplicity of 3 and a cluster size of 3% or 6%, or for all 3 cluster
sizes when the multiplicity is 2. In these situations the methods are not capable of
detecting clusters, which is why we avoid making comparisons.

Circular shape.- When the sample size is 400 the minimum and maximum sen-
sitivities are 0.28 and 0.98 for the LISA method, and 0.44 and 0.94 for the
scan method. The specificity values for both methods range from 0.9 to 0.99
and are very similar, except when the cluster size is 10% and the multiplicity
is 3. In this situation the specificities of LISA and scan are 0.98 and 0.90
respectively. With both methods type I error probabilities range from 0.2 to
0.8. The probabilities obtained with LISA method are lower than those ob-
tained with scan method. If the sample size is 1000, LISA is more sensitive
than scan except when the multiplicity is 2 and the cluster size is 3%, and
when the multiplicity is 3 and the cluster size is 6% or 10%. The specificity
of LISA is better when the multiplicities are 2 or 3. If the sample size is 2000,
the LISA method is more sensitive if multiplicity is 6. In the rest of the sit-
uations the sensitivity of both methods is similar. On the other hand, scan
has more specificity for multiplicities 3 and 6. When sample sizes are 1000
and 2000, type I error probabilities are greater with LISA method than with
scan method. Namely, probabilities obtained with LISA range from 0.13 to
0.15 when sample size is 1000, and from 0.18 to 0.29 when sample size is 2000.
With scan method these probabilities are all in the range 0.02 to 0.06.

Rectangular shape.- If the sample size is 400, the LISA sensitivity values oscillate
between 0.19 and 0.89 and those of scan between 0.26 and 0.84. Specificity
for the LISA and scan methods ranges from 0.92 to 0.98 and from 0.88 to
0.95, respectively. The type I error probabilities with each method are not
very different, the minimum probability is 0.04 and the maximum 0.08. If the
sample size is 1000, the LISA sensitivities are larger except when the cluster
size is 10% and multiplicity is 3. The specificity of the LISA method is also
larger, except for multiplicity 2 and cluster size 3%, and multiplicity 6 and
cluster size equal to 6% or 10%. Type I error probabilities with LISA range
from 0.11 to 0.17, and with scan from 0.01 to 0.07. The LISA method has larger
sensitivity values when the sample size is 2000, except when multiplicity is 3
and cluster size is 6%. Values of specificity are very similar, except in situations
where multiplicity is 6 and cluster size is 6% or 10%, where the differences can
become 0.10, to the detriment of the LISA method. The LISA method yields
type I error probabilities much higher than scan method. Namely in the range
0.19 to 0.29 for LISA, and 0.02 to 0.04 for scan method.
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L shape.- When the sample size is 400, the LISA method has more specificity al-
though scan works better in sensitivity. Type I error probabilities are similar
with both methods and range from 0.02 to 0.09. For a sample size equal to
1000, the LISA method is more sensitive than the scan method in all cases,
except when multiplicity is 3 and cluster size is 6% or 10%, and when multi-
plicity is 6 and cluster size is 3%. The specificity values are also better, except
when multiplicity is 6 and cluster size is 10%, where the difference is 0.02.
With LISA method type I error probabilities are higher than those obtained
with scan. When the sample size is 2000, the LISA method is more sensitive
than the scan method, except when multiplicity is 3 and cluster size 10%.
Specificity is also better in all cases except when multiplicity is 6 and cluster
size is 6% or 10%. In those cases, the maximum difference of specificity is
≤ 0.06. The type I error probabilities obtained with LISA are very high, they
range from 0.26 to 0.34. Those obtained with scan range from 0.02 to 0.05.

We note that in the majority of situations where multiplicity is 6 and the cluster
size is 6% or 10%, the specificity of LISA is lower than that of scan. The explanation
for this comes from the fact that many of the cases situated outside the cluster, but
sufficiently near to its border, have significant associated differences. There are
many small distances between those cases and the others due to the large number
of cases which are inside the cluster. Thus their LISA functions are very different
from their LISA function approximations obtained under the null hypothesis. The
method, therefore, does not inform us of the exact borders of the cluster, but of
their approximate location.

Regarding type I error probabilities, we observe that LISA method does not
perform well across different situations. When sample size is 400 type I error proba-
bilities are close to 0.05. However, when sample size is 1000 and 2000, LISA method
overstates the true significance whereas scan method yields estimations very close
to the real value. Moreover type I error probabilities obtained with LISA increase
as the number of points increases.

6.4 Detection of clusters of kidney disease in Va-

lencia

Next we use the LISA method and the scan method to evaluate the existence and
location of kidney disease clusters in the city of Valencia, Spain, during 2008. A
case-control study is proposed where the data consist of the locations of individuals
with kidney disease (cases) and a set of locations obtained from the population at
risk (controls), which allows the heterogeneity of the population to be taken into
account.



6.4 Detection of clusters of kidney disease in Valencia 111

# cases 25-29 30-34 35-39 40-44 45-49 50-54 55-59
Men 0 1 4 3 0 3 5
Women 1 0 1 1 0 3 1

# cases 60-64 65-69 70-74 75-79 80-84 85-89 90-94
Men 8 3 15 10 7 1 0
Women 1 2 4 4 6 3 1

Table 6.4: Number of kidney disease cases in each of the strata sex-age group.

6.4.1 Data

The geographical area of study is the city of Valencia. The set of cases consists of the
88 people diagnosed with kidney disease in 2008 and was collected by the Conselleria
de Sanitat of Valencia. For each case we know their address, sex and age. There
were 60 men with ages ranging from 31 to 86, and 28 women with ages ranging
from 28 to 90. The sex and age distribution of the cases are shown in Table 6.4.
The control set is formed by 704 locations obtained as a random sample drawn from
the population at risk. For each case, 8 controls are sampled choosing 8 residential
addresses of people living in Valencia in 2008, excluding the cases, and with the
same sex and age as the case. Controls were provided by Valencia City Council.
For the application of the statistical methods, the geocoding of the addresses to
UTM coordinates was carried out. Figure 6.3 shows two maps of Valencia with the
locations of the cases and the controls.

6.4.2 Results

We apply the LISA and scan methods to the set of cases and controls, obtaining the
following results. With the LISA method and using a value of α = 0.05 and x =
20, four cases with significant associated differences are obtained. These cases are
located in the west and north of Valencia. The results of the method are presented
in the first two maps of Figure 6.4. Figure 6.4(a) shows the locations of cases with
significant associated differences, that is, the cases which the method identifies as
belonging to an aggregation zone. Figure 6.4(b) shows the contour lines of the values
of the differences associated to each case. We observe that the detected cases are
located in two of the zones where the differences are larger.

The clusters detected with the scan method with the Bernoulli model and 999
simulations are shown in Figure 6.4(c). The most likely cluster, labeled as 1 in the
figure, has a p-value equal to 0.026 and a population of 10 individuals, 7 of them
cases. The ratio between observed and expected cases (SIR) is 6.397. The method
also highlights three secondary clusters which do not overlap with the most likely
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(a) Cases
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(b) Controls

Figure 6.3: Locations of the cases and the controls of kidney disease in Valencia
during 2008.
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(c) Clusters detected with scan method

Figure 6.4: Results obtained with LISA and scan methods. First map highlights the
cases detected as belonging to clusters with the LISA method, and the second map
shows the contour lines for the differences associated to each case. In the third map
the zones detected by the scan method as being possible clusters are shown. Only
zone 1 is significant.
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cluster and which are not statistical significant. These clusters are labeled as 2, 3
and 4 and have p-values equal to 0.244, 0.572 and 0.960 respectively.

On comparing the results obtained it can be seen that the aggregation zones
identified with each method are located in the same areas. The two zones where
LISA detects cases with significant differences are located in the same areas where
the most likely cluster and first secondary cluster detected with the scan method
are located. Furthermore, the significant and non significant clusters detected with
scan are situated in the zones where the differences obtained with LISA are larger.



Chapter 7

Spatial variations in temporal
trends (SVTT)

The monitoring of disease occurrence provides fundamental baseline information for
the development of research programs into the aetiology of the disease, as well as
for the planning and evaluation of public health interventions. It is well known that
disease incidence and mortality change over time, and using for example disease
registry data, such temporal trends are closely monitored as they provide important
clues concerning the success or failure of disease prevention and control strategies.
Now, it is possible that these temporal trends are different in different geographical
regions, and knowledge about such differences may provide clues as to where dis-
ease prevention and control measures are successfully implemented, or where new
unknown health hazards have emerged. To facilitate investigations of emerging spa-
tial patterns and temporal trends of disease risks, several spatio-temporal models
for disease mapping have been proposed, either based on a parametric description
of time trends, on independent risk estimates for every period, on autoregressive
approaches, or on the definition of the joint covariance matrix for all the periods as
a Kronecker product of matrices (Mart́ınez-Beneito et al., 2008; Waller et al., 1997;
Xia and Carlin, 1998; Bernardinelli et al., 1995). The scan statistics for spatial vari-
ations in temporal trends (SVTT) are designed for the detection of clusters of areas
with unusual different temporal trends. The linear SVTT method (Kulldorff, 2010)
is based on scan statistics and uses a Poisson regression with time as independent
variable to estimate the disease trend. This type of estimation makes impossible
to detect points in time where the tendency changes and gives low power in some
situations. In this chapter we review the linear SVTT method and propose a new
one, the quadratic SVTT method, that allows a more flexible trend estimation and
increases the power of detection in some situations where the linear method fails to
detect existing clusters.

The structure of the chapter is as follows. First, we review the basics of the
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linear SVTT method. In Section 7.2 the quadratic SVTT method is introduced
and the advantages that it presents over the linear method are discussed. Then, a
simulation study is carried out where the quadratic and linear methods are applied
to different data sets simulated from a variety of models for the true underlying
disease trends. Next, the quadratic method is applied to find areas with unusual
cervical cancer trends in white females in the United States over the period 1969
to 1995. Finally, in Section 7.5, a evaluation study is conducted where the power,
sensitivity, positive predictive value (PPV) and type I error probabilities of linear
and quadratic methods are calculated when they are applied to several simulated
scenarios.

7.1 Spatial Variations in Temporal Trends

The spatial, temporal and spatio-temporal scan statistics are used to detect spatial,
temporal and spatio-temporal disease clusters respectively (Kulldorff et al., 1998).
Specifically, they are designed to highlight areas where the number of cases are
significantly greater than expected. Unlike these scan statistics, the statistics for
spatial variations in temporal trends (SVTT) are used for the detection and infer-
ence of any zone with exceptionally different temporal trend. The SVTT method
considers a fixed temporal period of interest where the disease trend is assessed.
The method gradually scans a spatial window centered in each location and with
different sizes, and the disease trend in each of the windows is estimated. The win-
dow with the trend that most differs from the rest of trends is considered as having
unusual different trend and its statistical significance is assessed.

The SVTT linear method is a special case that can be used for the detection and
inference of any zone with exceptionally increasing or decreasing linear trend. Here,
the trend estimation is done using a Poisson regression with time as independent
variable, the time changing population size as offset, and the number of events as
dependent variable. These trends are then used to adjust the expected number of
cases for each location and time, where the adjustment will be different inside and
outside the window due to the different estimated trends. With the new expected
counts, the likelihood for this window is calculated, and the maximum likelihood
over all windows is found. This maximum is then compared with the maximum
likelihoods from a large set of random data sets. Since the interest is only in the
difference in the trends between areas, and not the overall trend, the analysis is
conditioned on the latter. This is done in the randomization step, by not random-
izing the observed times. Instead, for each time, a spatial location according the
background population size at that time is randomized.
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7.2 Quadratic SVTT method

The trend estimation procedure in the linear SVTT method can lead to wrong
conclusions in some situations. For example, consider that a particular disease has
constant trend across the study region except in one area where it has a parabolic
trend. Here, the linear SVTT would estimate the parabolic trend as a constant
trend, and the area with different trend would not be identified. To overcome the
bad performance of the linear SVTT method in situations like this, we propose
the quadratic SVTT method. Basically, the quadratic method is a modification of
the linear method where the trend estimation procedure is changed. Specifically, a
new explanatory variable, time squared, is added to the regression model used in
the linear method. This modification provides better estimates of the real trends,
and increases the power of detection in situations where the linear method fails
to detect existing clusters. The steps of the quadratic method are the same that
those performed in the linear method, with the only difference in the way the trends
are estimated. First, a huge number of windows are constructed. Then, for each
window, the trends inside and outside are estimated and the likelihood is computed.
After that, the most likely cluster, defined as the window with maximum likelihood,
is picked up and their p-value is obtained using Monte Carlo hypothesis testing.
The rest of this section gives specific details about the estimation of the trends,
the hypothesis test considered, the test statistic and the procedure to assess its
significance.

A log-linear model is used to estimate the trend over time of the disease risk,
defined as the number of observed cases over the number of expected cases. In the
model, the observation time and the observation time squared are used as explana-
tory variables. These variables are denoted as X1 and X2, respectively. Thus, for
t = 1, . . . , T , the model is specified as

log(µt/mt) = β0 + β1X1t + β2X2t,

or equivalently as
µt = mtexp(β0 + β1X1t + β2X2t),

where µt and mt denote the mean number of observed cases and the number of
expected cases, respectively, at time t. Let yt denote the number of cases at time
t and let x′t = (1, X1t, X2t) and β′ = (β0, β1, β2). The likelihood expression of the
Poisson model is

L(β|y1, . . . , yT ) =
T∏
t=1

e−µtµytt
yt!

=
T∏
t=1

exp
(
−mtexp(x

′
tβ)
){
mtexp(x

′
tβ)
}yt

yt!
,

The vector of parameters β is estimated by maximizing the log likelihood

l = log(L) =
T∑
t=1

−mtexp(x
′
tβ) +

T∑
t=1

ytlog(mt) +
T∑
t=1

ytx
′
tβ −

T∑
t=1

log(yt!).
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via the Newton-Raphson algorithm.
For each of the windows constructed, we estimate the global trend and the trends

inside and outside the window, and perform a hypothesis test to assess whether the
inside trend is different from the outside trend. Specifically, we test the following
hypothesis:

H0: β
in
1 = βout1 and βin2 = βout2 vs. Ha: β

in
1 6= βout1 or βin2 6= βout2 ,

where {βinj , j = 0, 1, 2} and {βoutj , j = 0, 1, 2} are the regression coefficients of the
trend inside and outside z, respectively. For testing the hypothesis, the log likelihood
ratio (LLR) of each window is computed. Let {βgj , j = 0, 1, 2} be the regression
coefficients of the global trend. For time t = 1, . . . , T , let yint and youtt be the
observed cases inside and outside z, and min

t and mout
t the expected cases inside and

outside z. The LLR of window z takes the form

LLR(z) = la(z)− l0(z) = (l1a(z) + l2a(z))− (l10(z) + l20(z)),

where

l1a(z) =
T∑
t=1

−min
t exp(x

′
tβ

in) +
T∑
t=1

yint log(min
t )

+
T∑
t=1

yint x
′
tβ

in −
T∑
t=1

log(yint !),

l2a(z) =
T∑
t=1

−mout
t exp(x′tβ

out) +
T∑
t=1

youtt log(mout
t )

+
T∑
t=1

youtt x′tβ
out −

T∑
t=1

log(youtt !),

l10(z) =
T∑
t=1

−min
t exp(x

′
tβ

g in) +
T∑
t=1

yint log(min
t )

+
T∑
t=1

yint x
′
tβ

g in −
T∑
t=1

log(yint !),

l20(z) =
T∑
t=1

−mout
t exp(x′tβ

g out) +
T∑
t=1

youtt log(mout
t )

+
T∑
t=1

youtt x′tβ
g out −

T∑
t=1

log(youtt !),

and

βin = (βin0 , β
in
1 , β

in
2 )′, βout = (βout0 , βout1 , βout2 )′,
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βg in = (βg in0 , βg1 , β
g
2)′, βg out = (βg out0 , βg1 , β

g
2)′,

βg in0 = log

(
T∑
t=1

yint

)
− log

(
T∑
t=1

min
t exp(β

g
1X1t + βg1X2t)

)
,

βg out0 = log

(
T∑
t=1

youtt

)
− log

(
T∑
t=1

mout
t exp(βg1X1t + βg1X2t)

)
.

The test statistic is defined as the maximum LLR over all windows. Its statistical
significance is obtained through Monte Carlo hypothesis testing by generating a large
number of random data sets generated under the null hypothesis.

7.3 Simple examples using simulated data

We are interested in seeing the performance of the SVTT quadratic method when
detecting geographical variations in trends with different shapes. Also, we want to
see whether the method erroneously detects areas with different trends when they
actually do not exist. To this end, we simulate different datasets with and without
areas with different trends, and see the performance of the quadratic method when
it is applied to them. The datasets are simulated in such a way to contain areas
with different increasing and decreasing trends, and areas with trends of different
shapes, as linear and parabolic shapes. Moreover, we also apply the linear method
in all of these situations and compare the quadratic and linear methods results.

The geographical region used to carry out the simulation is the state of New
Mexico. New Mexico is divided in 32 counties which are represented in Figure 7.1.
The period of time considered in the simulation is from 1980 to 2000, a total of 21
years. Given this region and this fixed period of time, we simulate seven situations
setting the disease trend of one county being different from the rest. Then, we apply
the quadratic and linear methods to each of the simulated data, and for each method
we observe which areas, if any, have been detected as having unusual different trend,
and examine their inside and outside trends estimates.

The specification of the scenarios is as follows: In all situations we work with
a constant population equal to 10,000 in each county and year. We define variable
time t as t = yr− 1980 + 1, where yr ∈ {1980, . . . , 2000}. Therefore t ∈ {1, . . . , 21}.
For each county, we generate the number of observed cases in each time t. We choose
county 21 as the county with different trend. In this county the number of observed
cases is simulated using a expression different from the rest of counties. In the first
six scenarios the observed cases are generated as a function of time. The expressions
of the observed counts inside and outside the county with different trend are shown
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Figure 7.1: Locations of New Mexico state counties.

in Table 7.1. The observed counts in scenario 7 have been set fixed to take a trend
with a particular curve shape shown in Figure 7.2. In scenario 1, the trend is the
same in all counties. In situations 2, 3 and 7, the county 21 has a increasing trend
different from the rest of counties. And in situations 4, 5 and 6, the observed counts
are specified as the exponential function of a quadratic function of time.

The results obtained are presented in Figure 7.2. The figure shows for each
scenario, the trends generated inside and outside county 21. These trends represent
the risk of disease in each time, calculated as the number of observed cases divided
by the number of expected cases. Moreover, in situations where the methods identify
groups of counties with unusual different trends, plots of the estimated trends inside
and outside these groups of counties are depicted. We observe that the quadratic
method works well in all situations whereas the linear method fails in situation 5.
In this situation all counties have a constant trend except county 21 which have a
trend with parabolic shape. This county is detected with the quadratic method but
not with the linear method which estimates trend in county 21 constant as in the
rest of counties. Scenario 1 has the same trend in all counties, and both methods
work good as they do not find any area with unusual different trend.

7.4 Application to cervical cancer mortality in

the United States

Cervical cancer is a highly preventable and curable disease if detected early. Im-
portant strategies to reduce its risk include screening with the Papanicolaou (Pap)
and human papillomavirus (HPV) tests, as well as prevention of HPV infection with
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Figure 7.2: Real trends simulated inside and outside the area with unusual different
trend. Estimated trends inside and outside the area obtained with the quadratic
and linear methods. Estimated trends are not presented in situations where the
method does not detect any area with unusual different trend.
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Scenario
# cases observed inside the # cases observed outside the
area with different trend area with different trend

1 2t t
2 20 + t 2t
3 t 20 + t
4 100 exp(0.15− 0.02t+ 0t2) 100 exp(0.05− 0.05t+ 0t2)
5 100 exp(0.213− 0.066t+ 0.003t2) 100 exp(0 + 0t+ 0t2)
6 100 exp(−0.11 + 0.01t+ 0t2) 100 exp(0.11− 0.01t+ 0t2)

Table 7.1: For scenarios 1 to 6, functions of time used to generate the number of
cases inside and outside the area with different trend at each time t = 1, . . . , 21.

the HPV vaccine. Although cervical cancer incidence and mortality rates have de-
clined approximately 50 percent in the United States over the past three decades,
the disease remains a serious health threat. The National Cancer Institute esti-
mates cervical cancer accounts for 2.5 percent of all cancers that afflict women in
the United States, and about 13,500 cases are diagnosed each year.

This section examines the spatial variations in temporal trends occurred in cer-
vical cancer mortality in white women living in the United States during the period
1969 to 1995. For each of the counties of Unites States and D.C., the population
and deaths of cervical cancer of white women are available as aggregated counts in
periods of three years, from 1969 until 1995, and by 4-years age groups.

We use the quadratic SVTT method to detect groups of counties with unusual
different temporal trends. The method identifies 5 of such groups of which only 3 are
significant. For each of the detected groups, Table 7.2 shows its population, observed
and expected deaths, risk, LLR and p-value. Moreover, parameter estimates of
the trend inside and outside the groups are also shown. The groups of counties
detected are labeled with the numbers 1 to 5 according to their significance, with
the group 1 being the most significant and the group 5 the less significant. Figure
7.3 represents the significant detected groups of counties in the United States map
and their temporal trends. We observe that the area with the most significant
different trend corresponds to a group of counties located in New York, New Jersey,
Pennsylvania and Delaware. In this area the trend decreases until 1991 and then
is approximately constant. The second area detected comprises a big part of the
east of United States, except the counties located in the east coast and the state of
Florida. Here, the trend is more decreasing than the global trend. The third group
corresponds to south California. In this area we observe a decreasing trend until
1985 and then a constant trend.



7.4 Application to cervical cancer mortality in the United States 123

C
lu

st
er

P
op

u
la

ti
on

O
b
s.

E
x
p
.

R
is

k
T

re
n
d

In
si

d
e

T
re

n
d

O
u
ts

id
e

L
L

R
P

-v
al

u
e

β
0

β
1

β
2

β
0

β
1

β
2

1
27
,4

04
,7

23
9,

45
9

10
,4

22
.7

7
0.

90
0.

36
6

-0
.1

58
0.

01
0

0.
72

3
-0

.2
17

0.
01

2
55

.3
1

0.
01

2
14

6,
29

1,
12

5
53
,7

84
50
,9

75
.6

6
1.

11
0.

77
2

-0
.2

16
0.

01
1

0.
58

8
-0

.2
00

0.
01

2
40

.2
7

0.
01

3
18
,8

78
,7

67
6,

19
1

6,
08

2.
28

1.
02

0.
58

2
-0

.1
87

0.
01

2
0.

69
2

-0
.2

12
0.

01
1

18
.2

2
0.

02
4

3,
83

2,
16

3
1,

03
3

1,
26

9.
45

0.
81

0.
63

3
-0

.2
10

0.
00

6
0.

68
6

-0
.2

10
0.

01
1

9.
59

0.
87

5
5,

00
4,

53
2

96
6

1,
37

5.
49

0.
70

0.
61

2
-0

.3
94

0.
03

2
0.

68
6

-0
.2

09
0.

01
1

9.
27

0.
92

T
ab

le
7.

2:
P

op
u
la

ti
on

,
ob

se
rv

ed
an

d
ex

p
ec

te
d

d
ea

th
s,

ri
sk

,
L

L
R

an
d

p
-v

al
u
e

of
th

e
d
et

ec
te

d
gr

ou
p
s

of
co

u
n
ti

es
w

it
h

u
n
u
su

al
d
iff

er
en

t
ce

rv
ic

al
ca

n
ce

r
tr

en
d

in
w

h
it

e
w

om
en

ov
er

th
e

p
er

io
d

19
69

to
19

95
.

P
ar

am
et

er
es

ti
m

at
es

of
th

e
tr

en
d
s

in
si

d
e

an
d

ou
ts

id
e

of
ea

ch
gr

ou
p

of
co

u
n
ti

es
.



124 Chapter 7. Spatial variations in temporal trends (SVTT)

1
2

3

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

          year

RR

1970 1973 1976 1979 1982 1985 1988 1991 1994

1. NY/NJ/PA/DE
2. Midwest
3. South California
USA

Figure 7.3: Temporal trends in areas with unusual different cervical cancer trends
in white women over the period 1969 to 1995.
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Figure 7.4: Expected brain cancer cases in New Mexico in years 1973 and 1991.

7.5 Power evaluation

In this section we perform a simulation study to evaluate the quadratic SVTT
method and to compare it with the linear SVTT method. We consider the 32
counties of New Mexico and simulate several situations varying the period of time
of study and the population, observed and expected disease cases in each of the
counties and times. The observed counts are generated in such a way that there
is a particular zone with a trend different from the trends of the rest of the region
of study. Both the quadratic and the linear methods are applied to the simulated
data, and the power, sensitivity and PPV of the methods are computed. In order to
see the performance of the methods at detecting geographic variations in temporal
trends both when these variations occur in single counties, and when they occur in
a group of counties, we set up two different situations:

• One single county with different trend.- In the first situation there is
only one single county, namely county 15, with a different temporal trend
in the region of study. In this case we use a temporal window of 21 years,
from 1980 to 2000. In each county and year, the underlying population is set
constant to 10, 000 implying also an equal number of expected counts. We set
the expected counts equal to 100 in each county and year.

• Group of counties with different trend.- In the second situation there is a
group of contiguous counties with a different temporal trend, namely counties
15, 20 and 21. Here the temporal window is 19 years, from 1973 to 1991. The
expected counts of the disease are set equal to the expected counts of brain
cancer calculated using the population of the whole state of New Mexico as
standard population. Figure 7.4 represents the expected counts in years 1973
and 1991.

We want to assess the performance of the methods when they are applied to
detect variations in temporal trends of different shapes. We expect the quadratic
method, unlike the linear, to pick up variations when the shape of the unusual trend
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is parabolic. Furthermore, we want to see whether the methods performance is
comparable at detecting variations in linear trends. For each of the two situations
described above, we set up 37 scenarios where different temporal trends are simu-
lated. In the scenarios corresponding to the first situation, the temporal trends are
constant in every county different from county 15. On the other hand, in scenarios
corresponding to the second situation, the temporal trends are constant in every
county different from counties 15, 20 and 21. In counties with nonconstant trend,
the temporal trends are simulated as follows: In the first 12 scenarios the simulated
trends have a parabolic shape in logarithmic scale, 6 with a minimum and 6 with a
maximum. In the following 12 scenarios the trends have a linear shape in logarith-
mic scale, 6 increasing and 6 decreasing. And in the last 12 scenarios the trend has
a curve shape, 6 increasing and 6 decreasing. Moreover, in order to compute the
type I error probabilities, we set one scenario where all the counties have the same
constant trend risk.

We simulate 1,000 data sets of disease observed counts in each county and year.
For a given county the observed number of cases in time t, Yt, is simulated from a
Poisson distribution with mean Et × θt

Yt ∼ Po(Et × θt),

where Et and θt are the expected count and the relative risk in time t respectively.
In counties with parabolic and linear shape, θt is defined as

θt = exp(β0 + β1t+ β2t
2),

where the β′s are chosen to make the trend to have a parabolic or linear shape. In
the scenarios where the trend is linear, β2 is equal to 0. In counties with curve shape
the values θt for each t are obtained with a nonparametric procedure. In counties
where trend is constant, θt = 1 ∀t. Figure 7.5 shows the different trend shapes in
county 15 in the first situation.

We apply both the quadratic and the linear methods to the simulated data sets
in each scenario with a significance level α = 0.05. In the situations where there is
a county with different risk trend, we calculate the power, the sensitivity and the
PPV obtained with each method. In the situations where all the counties have the
same trend, we calculate the type I error probabilities. Power is defined as the pro-
portion of the 1,000 data sets in which the null hypothesis is rejected. This rejection
occurs when the p-value associated to any county or groups of counties with unusual
different temporal trend detected by the method is smaller than α. Sensitivity is
the number of counties that have different trend and have been correctly detected
divided by the total number of counties that have different trend. The PPV is the
number of counties which have different trend and have been correctly detected by
the method divided by the total number of counties detected as having different
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trend. These two values are obtained as the average values obtained in the 1,000
patterns. In the situation in which all counties have the same risk trend we calculate
the type I error probability as the proportion of the 1,000 data sets in which the
null hypothesis is rejected. The results obtained allow us to evaluate and compare
both methods. These are presented in tables 7.3-7.5.

• One single county with different trend.- The results obtained in situa-
tions with one single county with different trend are the following. We observe
that in scenarios where the risk trend has a parabola shape the linear method
does not work well and the power, sensitivity and PPV are very low. For
this method we obtain values of power ≤ 0.06, sensitivity ≤ 0.03 and PPV
≤ 0.004. However, the quadratic method does better at detecting the area
with different trend and the power, sensitivity and PPV values obtained are
higher. The lowest power and sensitivity are 0.07 and 0.03, respectively and
they are obtained in the scenarios with the parabolas with less curvature. In
the scenarios with biggest parabola curvatures we obtain power and sensitiv-
ity values equal to 1. The PPV ranges from 0.011 to 0.90. We observe that
the power and sensitivity of the quadratic method decrease as the parabola
becomes flatter.

In scenarios with linear trend we see that the power and sensitivity of the
quadratic method are a little lower than the values obtained with the linear
method. The greatest differences between linear and quadratic methods are
0.12 in power and also 0.12 in sensitivity. In the quadratic method, the power
ranges from 0.07 to 1, and the sensitivity from 0.03 to 1. In the linear method,
power range 0.08 to 1 and sensitivity 0.04 to 1. For both methods, power and
sensitivity decrease as the slope of the trend line decreases. We obtain higher
PPV with the quadratic method when β1 is equal to -0.03, -0.025, 0.025 and
0.03.

In situations with curve shape trend, we observe that power and sensitivity
are 0.999 or 1 in all cases for both linear and quadratic methods. The PPV
obtained with the quadratic method are slightly higher than those obtained
with the linear. They range 0.83 to 0.89 with the quadratic method, and 0.71
to 0.86 with the linear method.

We observe that type I error probabilities of both quadratic and linear methods
equal to 0.05, the significance level specified.

• Group of counties with different trend.- In situations where there is a
group of counties with different trend we obtain the following results. When
the trend has a parabolic shape the quadratic method has higher sensitivity
and PPV than the linear method. The power is also higher in all cases except
when β2 is equal to 0.001 or -0.001. In both cases the power difference is 0.01.
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We observe that, as in the situation with only one county with different trend,
the power, sensitivity and PPV obtained with the quadratic method increases
as the curvature of the parabola increases. We observe also that the linear
and quadratic methods give similar results for parabolas with low curvature.

When the trend has a linear shape, the power and sensitivity of the linear
method are better than those of the quadratic method. For the quadratic
method power ranges from 0.09 to 1, and sensitivity 0.02 to 0.98. For the
linear method, power ranges from 0.11 to 1 and sensitivity 0.03 to 0.99. PPV
is also higher for the linear method in all situations except when β1 is equal
to -0.03, -0.025, 0.025 and 0.03.

In situations with curve shape trend we obtain power and sensitivity values
greater than 0.94 in all situations for both methods. The PPV of the quadratic
method ranges from 0.86 to 0.94, and the PPV of the linear method from 0.79
to 0.91. PPV values obtained with the quadratic method are slightly higher
than those obtained with the linear method.

The type I error probabilities are 0.07 and 0.10 with the quadratic and linear
methods, respectively.
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Chapter 8

Conclusions and future research
lines

8.1 Conclusions

Proper statistical methodology is needed for public health surveillance. Over the
past decade, the use of spatial and spatio-temporal techniques has become increas-
ingly common through advances in computing and the availability of geocoded
databases. In this thesis, we addressed various aspects related to the analysis of
geocoded health data and developed statistical methods that can be used for help-
ing surveillance practice.

Model-based estimation of missing values in mortality data

Specifically, in Chapter 4, we presented a model to estimate missing values in the
all-cause and P&I mortality data from the 122 CMRS operated by the CDC. This
work was developed under the supervision of Al Ozonoff at Harvard School of Public
Health, and as a result, one paper is in progress. We proposed different specifications
which modeled weekly death counts by city, calendar week, calendar year, and age
group, and the best model was selected assessing the expectation and variance of
the prediction errors of all models using a cross-validation approach. The selected
model uses information from the 5 previous and 5 following years, weeks and age
groups, and the 3 closest cities. The model performs very poorly in cities with a
large number of missing values and we did not include in our computations cities
with more than 70% missing values. We computed the mortality burden and excess
of deaths using data where missing values were imputed with the model proposed
and using data where missing values were assumed to be zero counts. Comparison of
the results obtained with both procedures reflects some differences in the mortality
burden and trends over time. These results lead us to conclude that some approach
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has to be taken in order to handle missing data. Otherwise, analyses could produce
inaccurate estimates and incorrect conclusions. The model we presented is just one
of possible alternatives to impute missing values, but it is a useful approach to
estimate missing data and improve inferences in situations with a moderate number
of missing values.

Gaussian component mixtures (GCM) and CAR models in Bayesian dis-
ease mapping

In Chapter 5, we presented two possible structures to model correlated heterogene-
ity in hierarchical Bayesian models: GCM and CAR models. We explained their
respective properties both in univariate and multivariate situations where the risk of
multiple diseases was modeled. We carried out a simulation study in both situations
to compare the behavior of these structures when they were used to fit several sim-
ulated models that encompass a wide range of situations that can be encountered
in real settings. The results of the univariate study suggest that in most situations
GCM and CAR have similar properties for modeling. We observed that across many
models the patterns of relative risk and UH and CH effects plotted were very similar,
and the goodness-of-fit criteria indicated a similar fitting to the data. One of the
objectives of the study was to analyze the performance of the different fitted models
at estimating covariate effects. We observed that different covariate patterns yield
different results, and that across some covariates GCM and CAR produce similar es-
timates. Similarly, the multivariate study results indicate a comparable performance
of MGCM and MCAR, with only slight differences in the relative risk patterns and
the goodness-of-fit. This work can also be found in Moraga and Lawson (2012).

CAR structures within hierarchical models are enormously popular for small
area estimation, and offer a robust and flexible mechanism for modeling correlated
heterogeneity. However, this work show they are certainly not the only models nor
necessarily the optimal for this type of data. The simulation studies carried out show
that GCM and CAR have a comparable performance in a wide range of situations,
and also identify some types of situations where GCM gain advantage over CAR
models. These results lead us to conclude that GCM models are a good alternative
to CAR models.

Detection of disease clusters with LISA functions

The method for the detection of clusters in case-control studies presented in Chap-
ter 6 can be found in Moraga and Montes (2011). The method is based on local
indicators of spatial association (LISA) functions of the product density function of
the point pattern of cases, and highlights the cases which form part of an agglom-
eration zone. It has the advantage that it does not need a priori specification of
the shape of the cluster and is capable, therefore, of detecting clusters of any shape.
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The results of the method are dependent on the sample size, the cluster size and the
density of cases inside the cluster. It is important to point out that a considerable
number of controls are necessary for the estimates of the LISA functions to be good
and for the method to function. A major disadvantage of the LISA method when
comparing with the scan method, is that type I error is high, specially when the
number of cases is high. We conclude that LISA method is very useful in situations
where clusters exist, since it is capable of detecting clusters of any shape and with
high sensitivity and specificity.

Spatial variations in temporal trends (SVTT)

In Chapter 7 the quadratic SVTT method for the detection of areas with unusual dif-
ferent disease temporal trends has been presented. This method was developed un-
der the supervision of Martin Kulldorff at Harvard Medical School, and has been im-
plemented in the SaTScan software, www.satscan.org. The quadratic SVTT method
is based on the spatial scan statistics, and is a modified version of the linear SVTT
method where the trend estimation procedure is changed. Through several exam-
ples, we observed that the quadratic method is able to detect areas with unusual
different trends in situations where the linear method fails, and also gives better
estimates of the real trends. A simulation study was carried out to compare the
performance of the quadratic and linear methods. The methods were applied to
detect areas with different temporal trends on simulated datasets generated in such
a way to encompass a wide range of situations that can be encountered in real set-
tings. The results indicate a comparable performance of both methods in situations
where the trends are linear. However, when the trends are not linear, the quadratic
method is better than the linear method and presents higher sensitivity, specificity
and PPV. The quadratic method is very useful for the evaluation of the control and
prevention measures in progress. When applied to detect areas with unusual differ-
ent trends of cervical cancer in white women in the United States over the period
from 1969 to 1995, it was observed that mortality is decreasing overall but not in
the same way in all areas. Specifically, three areas of interest where the behavior of
the risk trend is significantly different from the rest were highlighted.

8.2 Future research lines

Detection of spatio-temporal clusters with LISA functions

While spatial clusters of disease are of great interest, spatio-temporal clusters are
also important and can be encountered often. The spatial LISA method described in
Chapter 6 can be easily adapted to look for spatio-temporal clusters by considering
cases and controls as three-dimensional points with coordinates representing the
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geographic locations and dates of the individuals, and computing distances in R3.
We will adapt the spatial LISA method to the spatio-temporal setting. To do that,
we first must transform the study region and the points in the dataset so that
they are in a coordinate system where distances between three-dimensional points
make sense. Specifically, we should have a coordinate system where geographic and
temporal distances mean the same, in terms of proximity and remoteness of the
points. After carrying out the transformation of the study region and the dataset,
the steps of the spatio-temporal method will be the same as the steps of the spatial
method but considering points and distances in R3.

In this work we will carry out a simulation study to evaluate the performance of
the LISA method when it is applied to detect spatio-temporal clusters. Although
many disease clusters may have a regular shape, it is very common to find irregu-
larly shaped clusters arising in real situations, such as disease concentrations along
rivers and oceans shores, transport ways or plumes of air pollution. Moreover, some
clusters relate to a fixed point in space, whereas others allow the spatial focus to
move with time (Duczmal and Assunçao, 2004; Duczmal et al., 2006; Biggeri et al.,
1996; Katsouyanni et al., 1991; Xu et al., 1989). In the simulation study it will be
important to use cluster zones with similar characteristics as the ones that could
be encountered in real situations. Thus, some of the cluster zones constructed will
have irregular shapes or grow or move over time.

Model-based detection of disease clusters

The existing techniques for detecting disease clusters have several limitations: they
can not deal with some types of data, do not adequately model situations with
excess of zeros, or do not address confounding and bias. Therefore, a model-based
approach would be of interest in order to explore disease incidence to potential
risk factors. We would like to develop a method to detect and evaluate clusters in
spatial, temporal, and spatio-temporal settings that extends the existing techniques
and overcomes their limitations. To this end, we will use a flexible method that uses
Generalized Linear Models (GLMs) and allows the incorporation of information
about covariates and random effects. Specifically, the method will consider a large
number of potential clusters in the study region and will construct dummy variables
associated to each one. The collection of potential clusters that the method will test
is not composed of all possible configurations of aggregated zones in the study region.
In the spatial setting, for example, clusters will be defined as circles or ellipses of
geographic size between zero and an upper limit defined either as a percent of the
population at risk or in terms of the geographical spread of the disease. Then,
for each one of the potential clusters, a model relating the incidence, mortality or
other measure of the disease and the dummy variable will be fitted. Selection of the
best models will be done using general techniques of model selection such as AIC.
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The models selected will indicate the most likely clusters and their significance.
Since models can be specified using different distributions for the response variable
and can include fixed and random effects, this method offers several advantages
over the existing ones. Specifically, different types of outcomes such as Poisson or
Binomial can be considered. Confounding can be addressed including covariates in
the model. Moreover, the incorporation of random effects makes possible to deal
with overdispersion and measurement bias.

This method will be implemented in a new R package called DClusterm using
techniques that are described in Zhang and Lin (2009b), Zhang and Glaz (2008)
(GLMs), Zhang and Lin (2009a) (mixed models), and Gómez-Rubio and López-
Qúılez (2010) (zero-inflated models). This work was initiated during the Google
Summer of Code 2011 program where I participated under the supervision of Virgilio
Gómez-Rubio and Barry Rowlingston.

Applied work

We are also working in two applied projects to understand the dynamics of measles
in Europe, and the incidence of leptospirosis in a slum of Salvador de Bahia, Brazil.
These analyses will help stakeholders to make decisions to allocate resources and
target interventions in an effective way. The European Centre of Disease Prevention
and Control (ECDC) aims at strengthening Europe’s defences against infectious
diseases. With the eradication of measles as objective, one of its projects studies
the spatio-temporal distribution of measles in Europe. Disease mapping, temporal
trends and detection of clusters methods are helping us to assess the distribution of
the disease.

The project about leptospirosis is taking place in Pau da Lima, a slum neigh-
borhood that grew at the outskirts of urban Salvador de Bahia. Pau da Lima hosts
a densely populated community which is characterized by a high annual incidence
of leptospirosis. Since 2003, Fiocruz’s Centro de Pesquisa Gonçalo Moniz has been
leading community-based cohort studies on lepstospirosis to understand the trans-
mission dynamics of leptospirosis within this community. In the CHICAS group at
Lancaster University, UK, we are helping with the analysis of the data. Spatial and
spatio-temporal methods are being useful to identify the enviromental and social
determinants of infection, as well as to understand the unexplained spatio-temporal
structure of the process.

8.3 Final remarks

Merely collecting and analysing health data has little impact. However, successful
surveillance programs also disseminate results to inform findings and strategies to
the target audience (M’ikanatha et al., 2007). A particular strength of the spatial
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and spatio-temporal techniques is that outputs can be visualized through maps,
greatly facilitating effective communication (Pfeiffer et al., 2008). Despite clear ad-
vances in some aspects of surveillance, there is still an urgent need to effectively
address ethical, policy and legal concerns related to the readily access to detailed
information of individual persons that might constrain access to data of potential
public health importance (Teutsch and Thacker, 1995). Attention to these issues as
well as further development of appropriate analytical methods, and advancement in
collection and dissemination tools, can facilitate the effective planning, implemen-
tation, and growth of a variety of public health surveillance programs.
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Gómez-Rubio, V. and López-Qúılez, A. (2010). Statistical methods for the geo-
graphical analysis of rare diseases. Adv Exp Med Biol, 686:151–171.

Gotway, C. A. and Young, L. J. (2002). Combining incompatible spatial data.
Journal of the American Statistical Association, 97(458):632–648.



142 BIBLIOGRAPHY

Horton, N. J. and Kleinman, K. P. (2007). Much ado about nothing: A comparison
of missing data methods and software to fit incomplete data regression models.
Am Stat., 61:79–90.

Jacquez, G. M. (1996). A k nearest neighbor test for space-time interaction. Statistics
in Medicine, 15:1935–1949.

Jin, X., Carlin, B. P., and Banerjee, S. (2007). Order-free coregionalized areal
data models with application to multiple disease mapping. Journal of the Royal
Statistical Society, 69:817–838.

Katsouyanni, K., Trichopoulos, D., Kalandidi, A., Tomos, P., and Riboli, E. (1991).
A case-control study of air pollution and tobacco smoking in lung cancer among
women in athens. Preventive Medicine, 20:271–280.

Kelsall, J. E. and Diggle, P. J. (1995). Kernel estimation of relative risk. Bernoulli,
(1)1/2:003–016.

Kim, H. J., Fay, M. P., Feuer, E. J., and Midthune, D. N. (2000). Permutation tests
for joinpoint regression with applications to cancer rates. Statistics in Medicine,
19:335–351.

Knox, E. G. (1964). The detection of space-time interaction. Applied Statistics,
13:25–29.

Kulldorff, M. (1997). A spatial scan statistic. Commun. Statist.-Theory Meth.,
26(1):1481–1496.

Kulldorff, M. (2006). Tests of spatial randomness adjusted for an inhomogene-
ity: A general framework. Journal of the American Statistical Association,
101(475):1289–1305.

Kulldorff, M. (2010). SaTScan User Guide v9.0. Martin Kulldorff and Information
Management Services Inc., http://www.satscan.org.

Kulldorff, M., Athas, W. F., Feuer, E. J., Miller, B. A., and Key, C. R. (1998).
Evaluating cluster alarms: A space-time scan statistic and brain cancer in los
alamos, new mexico. American Journal of Public Health, 88(9):1377–1380.

Kulldorff, M., Heffernan, R., Hartman, J., Assunçao, R., and Mostashari, F. (2005).
A space–time permutation scan statistic for disease outbreak detection. PLoS
Med, 2(3):216–224.

Kulldorff, M. and Hjalmars, U. (1999). The knox method and other tests for space-
time interaction. Biometrics, 55:544–552.



BIBLIOGRAPHY 143

Kulldorff, M. and Nagarwalla, N. (1995). Spatial disease clusters: detection and
inference. Statistics in Medecine, 14:799–810.

Langford, I. H., Leyland, A. H., Rasbash, J., and Goldstein, H. (1999). Multi-
level modelling of the geographical distributions of diseases. Journal of the Royal
Statistical Society. Series C (Applied Statistics), 48:253–268.

Lawson, A. B. (2006). Statistical Methods in Spatial Epidemiology. Wiley, New
York.

Lawson, A. B. (2009a). Bayesian Disease Mapping: hierarchical modeling in spatial
epidemiology. CRC Press, New York.

Lawson, A. B. (2009b). Bayesian Disease Mapping: Hierarchical Modeling In Spatial
Epidemiology. Chapman & Hall/CRC.

Lawson, A. B. and Banerjee, S. (2010). Bayesian spatial analysis. In Fotheringham,
S. and Rogerson, P., editors, Handbook of Spatial Analysis, chapter 9. Sage, New
York.

Lawson, A. B. and Kleinman, K. (2005). Spatial and Syndromic Surveillance for
Public Health. John Wiley & Sons, England.

Lee, L. M., Teutsch, S. M., Thacker, S. B., and Louis, M. E. S. (2010). Principles
and Practice of Public Health Surveillance. Oxford University Press, New York.

Li, Y., Tiwari, R. C., and Zou, Z. (2008). An age-stratified poisson model for
comparing trends in cancer rates across overlapping regions. Biom J., 50(4):608–
619.

Little, R. J. A. and Rubin, D. B. (1987). Statistical analysis with missing data.
Wiley, New York.

Lunn, D., Thomas, A., Best, N., and Spiegelhalter, D. (2000). Winbugs – a bayesian
modelling framework: concepts, structure, and extensibility. Statistics and Com-
puting, 10:325–337.

Ma, H. and Carlin, B. P. (2007). Bayesian multivariate areal wombling for multiple
disease boundary analysis. Bayesian Analysis, 2:281–302.

Ma, H., Virnig, B. A., and Carlin, B. P. (2006). Spatial methods in areal adminis-
trative data analysis. Italian Journal of Public Health, 3:94–104.

MacEachern, S. N. and Berliner, L. M. (1994). Subsampling the gibbs sampler. The
American Statistician, 48:188–190.



144 BIBLIOGRAPHY

Mantel, N. (1967). The detection of disease clustering and a generalized regression
approach. Cancer Research, 27:209–220.
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Resumen

Objetivos y metodoloǵıa

La vigilancia en salud pública proporciona información útil para identificar los pro-
blemas de salud pública y dar una respuesta apropiada cuando éstos ocurren. Esta
información es crucial para prevenir y controlar una variedad de condiciones de salud
como enfermedades infecciosas, enfermedades crónicas, daños en la salud, y com-
portamientos relacionados con la salud. Una vigilancia de calidad es necesaria para
entender el verdadero estatus de salud en la población y guiar el uso de recursos
limitados. Bajo sistemas de vigilancia inadecuados, los responsables están desin-
formados y pueden perder oportunidades para la aplicación temprana de medidas
de prevención y control. En estas situaciones, es posible el resurgimiento de enfer-
medades previamente erradicadas o la extensión incontrolada de enfermedades como
en el caso del VIH/SIDA (M’ikanatha et al., 2007). La vigilancia en salud pública
implica cuatro principales actividades integradas: la recopilación de datos de salud,
el análisis de los datos, su interpretación y la diseminación oportuna de los resulta-
dos a los responsables de responder a las necesidades de salud de la población. Los
sistemas de vigilancia capturan caracteŕısticas espaciales, temporales y personales
de los datos de salud. Las tasas de incidencia y mortalidad cuantifican el tamaño de
los problemas de salud en una población dada y proporcionan las bases para iniciar
medidas de control de enfermedades y evaluar su efectividad. Las tendencias tempo-
rales y las comparaciones entre grupos demográficos y étnicos pueden proporcionar
importantes claves sobre la etioloǵıa de la enfermedad.

El aumento de la disponibilidad de datos de salud y de población geográficamente
georreferenciados, aśı como el desarrollo de los sistemas de información geográfica
(SIG), han facilitado el aumento de investigaciones sobre las variaciones espaciales y
espacio-temporales de enfermedades. La investigación del brote de cólera en Londres
en 1854 por John Snow proporciona uno de los ejemplos más famosos de análisis
espacial. Snow utilizó un mapa para ilustrar como las muertes por cólera parećıan
situarse alrededor de una fuente pública. La evaluación del patrón espacial de los
casos de cólera fue importante para identificar la fuente de infección y apoyó la teoŕıa
de transmisión de cólera a través de agua contaminada. Existe un amplio rango de
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métodos espaciales y espacio-temporales que pueden aplicarse como herramienta de
vigilancia incluyendo mapas de enfermedades, clustering y estudios de correlación
geográfica. Muchos de estos métodos pueden ser usados para destacar áreas con un
alto riesgo, detectar clusters de enfermedades, la detección temprana de epidemias,
evaluar el riesgo de enfermedad en relación a una fuente putativa, e identificar
factores de riesgo de enfermedades. Desafortunadamente, un mal uso de los métodos
estad́ısticos puede ser altamente engañoso. Por tanto, un profundo entendimiento
de los posibles problemas como cambios en la definición de los casos y cuestiones
relativas a la integridad de los datos son cŕıticos en el análisis de los datos y la
interpretación de los resultados.

Durante las últimas décadas, la vigilancia en salud pública ha sufrido un desa-
rrollo considerable. Entre las actividades que han contribuido a su avance están las
innovaciones tecnológicas como la monitorización en tiempo real y avances en SIG,
el desarrollo de nuevos métodos estad́ısticos y herramientas computacionales para
aplicarlos, y el uso más efectivo de medios electrónicos y otras herramientas de co-
municación que facilitan la diseminación de la información (Brookmeyer and Stroup,
2004). Asimismo, la vigilancia en salud pública ha cambiado en respuesta a nuevas
preocupaciones, como acciones de terrorismo biológico o las enfermedades y epi-
demias relativamente nuevas, como el śındrome respiratorio agudo severo (SARS).
A medida que cambios en la salud pública se hacen necesarios y existen nuevas
herramientas y las capacidades computacionales aumentan, los métodos estad́ısticos
para la vigilancia de enfermedades deben continuar evolucionando para mejorar la
calidad de los análisis, y la interpretación y visualización de los resultados en la
forma más útil y en el marco de tiempo apropiado para satisfacer los intereses de
quienes elaboran y toman decisiones. El objetivo de esta tesis es proponer nuevas
técnicas para ayudar a la práctica de la vigilancia en salud pública. En particular,
nos centramos en métodos espaciales y espacio-temporales que puedan ayudar en
temas como la existencia de datos faltantes (Caṕıtulo 4), modelizar la heterogenei-
dad correlacionada en mapas de enfermedades (Caṕıtulo 5), detectar clusters de
enfermedades (Caṕıtulo 6), y elucidar variaciones espaciales en tendencias tempo-
rales (Caṕıtulo 7).

Comenzamos con una visión general de la vigilancia en salud pública y de los
datos espaciales. El Caṕıtulo 2 proporciona una introducción a los sistemas de
vigilancia, aśı como una revisión de los métodos estad́ısticos que han sido aplica-
dos en la vigilancia de enfermedades. Los métodos considerados incluyen el cálculo
de tasas, tendencias temporales, detección de clusters y brotes, y mapas de enfer-
medades. Generalmente, los datos espaciales se clasifican en tres grandes tipos:
ret́ıculo, geoestad́ısticos y patrones puntuales. El Caṕıtulo 3 está dedicado a la
revisión de sus caracteŕısticas básicas y los métodos de análisis. El objetivo de es-
tos dos caṕıtulos es proporcionar una base de los conceptos y métodos estad́ısticos
usados en vigilancia que pueden ayudar en el desarrollo de los siguientes caṕıtulos.
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Los caṕıtulos 4-7 están basados en cuestiones de interés particulares. El Caṕıtulo
4 trata el problema de datos faltantes y se centra en el análisis de datos de mor-
talidad de todas las causas y de neumońıa y gripe (P&I) en los Estados Unidos.
Estimaciones nacionales de la mortalidad de todas las causas y de P&I derivadas
de estos datos tratan todos los valores faltantes como ceros. El efecto de esta de-
cisión metodológica es sesgar las estimaciones y subestimar la verdadera mortalidad.
Para evaluar el impacto de este tratamiento de valores faltantes en las estimaciones
nacionales, proponemos un procedimiento basado en una regresión que utiliza infor-
mación relevante para imputar los valores faltantes y aśı producir una estimación
más precisa de la mortalidad. Consideramos y evaluamos varios modelos que predi-
cen el número de muertes semanales por ciudad, semana de calendario, año de ca-
lendario y grupo de edad. Crosvalidamos estos modelos y calculamos estimaciones
revisadas de la mortalidad por todas las causas y por P&I imputando los valores
faltantes y estimamos el exceso de mortalidad de P&I usando un procedimiento de
regresión recomendado por el CDC (Serfling, 1963). Por último, comparamos las
estimaciones con y sin imputación para entender el impacto de este tratamiento de
datos no disponibles en las estimaciones nacionales.

El Caṕıtulo 5 está dedicado a mapas de enfermedades. Los modelos jerárquicos
Bayesianos que utilizan componentes condicionales autorregresivas (CAR) son común-
mente usados en mapas de enfermedades (Besag et al., 1991). Un modelo alternativo
a las componentes CAR propia o impropia es el modelo mixtura de componentes
Gaussianas (GCM) (Langford et al., 1999). En este caṕıtulo llevamos a cabo una
revisión de los modelos CAR y GCM en escenarios univariables donde sólo se con-
sidera una enfermedad, y también en situaciones multivariables donde además de la
dependencia espacial entre regiones, se analiza la dependencia entre múltiples enfer-
medades. Mostramos una comparación del comportamiento de los modelos usando
un conjunto de datos simulados. Además, utilizamos los modelos GCM y CAR para
estimar el riesgo relativo de bajo peso al nacer en Georgia, Estados Unidos, en el
año 2000.

La detección de clusters de enfermedades es una importante herramienta en epi-
demioloǵıa que puede ayudar a identificar factores de riesgo y a entender su etioloǵıa.
En el Caṕıtulo 6 proponemos un método para la detección de clusters espaciales
donde se disponen de las localizaciones de un conjunto de casos y un conjunto de
controles. El método está basado en funciones indicadores locales de asociación es-
pacial (LISA) (Anselin, 1995), particularmente en el desarrollo de una versión local
de la densidad producto, una caracteŕıstica de segundo orden de los procesos pun-
tuales espaciales. El comportamiento del método es evaluado y comparado con el
estad́ıstico de escaneo espacial de Kulldorff (Kulldorff and Nagarwalla, 1995) por
medio de un estudio de simulación. Ambos métodos se aplican para detectar clus-
ters espaciales de enfermedades renales en la ciudad de Valencia, España, en el año
2008.
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Los métodos para la evaluación de las variaciones espaciales en tendencias tempo-
rales (SVTT) son importantes herramientas para la vigilancia de enfermedades que
pueden ayudar a los gobiernos a formular programas para prevenir enfermedades, y
medir el progreso, impacto y eficacia de esfuerzos preventivos ya en operación. El
método lineal SVTT está diseñado para detectar áreas con tendencias lineales de
enfermedades inusualmente diferentes (Kulldorff, 2010). En algunas situaciones, sin
embargo, el mal ajuste del procedimiento de estimación de tendencias puede llevar
a conclusiones equivocadas. En el Caṕıtulo 7, proponemos el método cuadrático
SVTT como alternativa al método lineal SVTT. Llevamos a cabo una comparación
entre los métodos lineal y cuadrático usando un conjunto de datos simulados para
ayudar a ilustrar sus respectivas propiedades. Por último, aplicamos el método
cuadrático para detectar tendencias de cáncer cervical inusualmente diferentes en
mujeres blancas en los Estados Unidos, durante el periodo 1969 a 1995.

Conclusiones

Una metodoloǵıa estad́ıstica apropiada es necesaria para la vigilancia en salud
pública. Durante la pasada década, el uso de técnicas espaciales y espacio-temporales
ha sido cada vez más común gracias a los avances en computación y a la disponibili-
dad de bases de datos georreferenciadas. En esta tesis tratamos varios aspectos rela-
cionados con el análisis de datos de salud georreferenciados y desarrollamos métodos
estad́ısticos que pueden ser usados para ayudar en la práctica de la vigilancia.

Estimación de valores faltantes en datos de mortalidad basada en modelos

En el Caṕıtulo 4 presentamos un modelo para estimar los valores faltantes en los
datos de mortalidad debidos a cualquier causa y de neumońıa y gripe (P&I) de las
122 ciudades operadas por los Centros de Control y Prevención de Enfermedades
(CDC). Este trabajo fue desarrollado bajo la supervisión de Al Ozonoff en la Har-
vard School of Public Health, y como resultado un art́ıculo está en preparación.
En este caṕıtulo proponemos diferentes especificaciones que modelizan el número
de muertes semanales por ciudad, semana y año de calendario y grupo de edad,
y seleccionamos el mejor modelo evaluando la media y la varianza de los errores
de predicción de los modelos mediante un procedimiento de validación cruzada. El
modelo seleccionado usa información de los cinco anteriores y los cinco posteriores
años, semanas y grupos de edad, y de las tres ciudades más cercanas. En nuestros
cálculos no incluimos ciudades con más de 70% de valores faltantes ya que el modelo
funciona mal en ciudades con un gran número de valores faltantes. Calculamos la
mortalidad y el exceso de muertes usando un conjunto de datos donde los valores
faltantes han sido imputados con el modelo propuesto, y un conjunto de datos en el
que los valores faltantes se asumen como ceros. La comparación de los resultados
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obtenidos con ambos procedimientos refleja algunas diferencias en la mortalidad y
en las tendencias temporales. Estos resultados nos llevan a concluir que es nece-
sario algún procedimiento para tratar los datos faltantes y no basta con imputarles
un valor cero, porque los análisis podŕıan producir estimaciones imprecisas y con-
clusiones incorrectas. El modelo presentado es simplemente una de las posibles
alternativas para imputar los valores faltantes, pero es un procedimiento útil para
mejorar las inferencias en situaciones con un número moderado de valores faltantes.

Mixtura de componentes Gaussianas (GCM) y modelos CAR en mapas
Bayesianos de enfermedades

En el Caṕıtulo 5, presentamos dos posibles estructuras para modelizar la hetero-
geneidad correlada en modelos jerárquicos Bayesianos: los modelos GCM y CAR.
Explicamos sus respectivas propiedades en situaciones univariantes y en situaciones
multivariantes en las que se modeliza el riesgo de múltiples enfermedades. Llevamos
a cabo un estudio de simulación en ambas situaciones para comparar el compor-
tamiento de estas estructuras cuando se usan para ajustar varios modelos simulados
que abarcan un amplio rango de situaciones que pueden encontrarse en la realidad.
Los resultados del estudio univariante sugieren que en la mayoŕıa de las situaciones
las estructuras GCM y CAR modelizan de forma similar. Observamos que en mu-
chos modelos los patrones del riesgo relativo y de los efectos UH y CH son muy
similares, y que los criterios de bondad del ajuste indican un ajuste similar de los
datos. Uno de los objetivos del estudio persegúıa analizar el comportamiento de los
diferentes modelos ajustados al estimar los efectos de las covariables. Concluimos
que diferentes patrones de covariables proporcionan diferentes resultados, y que para
algunas covariables GCM y CAR producen estimaciones similares. Del mismo modo,
los resultados del estudio multivariable indican un comportamiento comparable de
las estructuras MGCM y MCAR, con tan sólo pequeñas diferencias en los patrones
de riesgo relativo y la bondad del ajuste. Este trabajo puede encontrase también en
Moraga and Lawson (2012).

Las estructuras CAR son muy populares en modelos jerárquicos para la esti-
mación en áreas pequeñas, y ofrecen un mecanismo robusto y flexible para modeli-
zar la heterogeneidad correlada. Sin embargo, este trabajo muestra que no son los
únicos modelos ni necesariamente los óptimos para este tipo de datos. Los estudios
de simulación llevados a cabo muestran que las estructuras GCM y CAR tienen un
comportamiento comparable en un amplio rango de situaciones, e incluso identifican
algunos tipos de situaciones donde las estructuras GCM aventajan a las CAR. Estos
resultados nos llevan a concluir que los modelos GCM son una buena alternativa a
los modelos CAR.
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Detección de clusters de enfermedad con funciones LISA

El método para la detección de clusters en estudios caso-control presentado en el
Caṕıtulo 6 puede encontrarse en Moraga and Montes (2011). El método se basa en
funciones indicadores locales de asociación espacial (LISA) de la densidad producto
del patrón puntual de los casos, y detecta los casos que forman parte de una zona
de aglomeración. Tiene la ventaja que no necesita especificación a priori de la
forma del cluster y es capaz, por tanto, de detectar clusters de cualquier forma. Los
resultados del método dependen del tamaño muestral, el tamaño del cluster y de la
densidad de casos dentro del cluster. Es importante destacar que es necesario un
número considerable de controles para que las estimaciones de las funciones LISA
sean buenas y el método funcione. Una importante desventaja del método LISA
cuando lo comparamos con el método de escaneo es que el error de tipo I puede ser
grande cuando el número de casos es grande. Concluimos que el método LISA es
muy útil en situaciones donde existen clusters ya que es capaz de detectar clusters
de cualquier forma y con una alta sensibilidad y especificidad.

Variaciones espaciales en tendencias temporales (SVTT)

En el Caṕıtulo 7 presentamos el método SVTT cuadrático para la detección de áreas
con tendencias temporales de enfermedades inusualmente diferentes. Este método
ha sido desarrollado bajo la supervisión de Martin Kulldorff en la Harvard Medical
School, y ha sido implementado en el software SaTScan, www.satscan.org. El método
SVTT cuadrático está basado en estad́ısticos de escaneo espacial, y es una versión
modificada del método SVTT lineal porque se cambia el procedimiento de estimación
de la tendencia. Usando varios ejemplos observamos que el método cuadrático es
capaz de detectar áreas con tendencias diferentes en situaciones en las que el método
lineal falla, produciendo también mejores estimaciones de las tendencias reales. Se
ha llevado a cabo un estudio de simulación para comparar el comportamiento de los
métodos cuadrático y lineal. Los métodos se han aplicado a la detección de áreas
con tendencias temporales diferentes en conjuntos de datos simulados, generados de
tal manera que abarquen un amplio rango de situaciones que pueden encontrarse
en la realidad. Los resultados indican un comportamiento comparable de ambos
métodos en situaciones con tendencias lineales. Sin embargo, cuando las tendencias
no son lineales, el método cuadrático es mejor que el método lineal y presenta
mayor sensibilidad, especificidad y valores predictivos positivos (PPV). El método
cuadrático es muy útil para la evaluación de las medidas de control y prevención.
Cuando se aplica para detectar áreas con tendencias inusualmente diferentes de
cáncer cervical en mujeres blancas de Estados Unidos durante el periodo de 1969
a 1995, se observa que globalmente la mortalidad disminuye pero no de la misma
manera en todas las áreas. Espećıficamente, se detectan tres áreas de interés donde
el comportamiento de la tendencia del riesgo es significativamente diferente del resto.
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Futuras ĺıneas de investigación

Detección de clusters espacio-temporales con funciones LISA

No solo los clusters espaciales de enfermedades son de gran interés, también los clus-
ters espacio-temporales son importantes y pueden presentarse a menudo. El método
LISA espacial descrito en el Caṕıtulo 6 puede ser fácilmente adaptado para buscar
clusters espacio-temporales si consideramos los casos y los controles como puntos
tridimensionales con coordenadas representando las localizaciones y las fechas aso-
ciadas a cada individuo, y calculando las distancias en R3. Adaptaremos el método
espacial LISA al marco espacio-temporal. Para ello, debemos transformar primero
la región de estudio y los puntos del conjunto de datos de tal manera que estén
en un sistema de coordenadas en el que las distancias entre puntos tridimension-
ales tengan sentido. Espećıficamente, deberemos tener un sistema de coordenadas
donde las distancias geográficas y temporales signifiquen lo mismo, en términos de
proximidad y lejańıa de los puntos. Después de llevar a cabo la transformación de
la región de estudio y del conjunto de datos, los pasos del método espacio-temporal
serán los mismos que los pasos del método espacial pero considerando los puntos y
las distancias en R3.

En este trabajo llevaremos a cabo un estudio de simulación para evaluar el com-
portamiento del método LISA cuando es aplicado para detectar clusters espacio-
temporales. Aunque muchos clusters de enfermedades pueden tener una forma re-
gular, es muy común encontrar clusters con forma irregular en situaciones reales,
como concentraciones de enfermedad a lo largo de las orillas de ŕıos y océanos, v́ıas
de transporte o focos de contaminación atmosférica. Además, algunos clusters se
identifican en un punto fijo en el espacio, mientras que en otros el foco espacial se
desplaza en el tiempo (Duczmal and Assunçao, 2004; Duczmal et al., 2006; Biggeri
et al., 1996; Katsouyanni et al., 1991; Xu et al., 1989). En el estudio de simu-
lación será importante usar zonas de cluster con caracteŕısticas similares a las zonas
que puedan encontrarse en situaciones reales. Aśı, algunas de las zonas de cluster
construidas deberán tener formas irregulares o crecer o desplazarse en el tiempo.

Detección de clusters de enfermedades basada en modelos

Las técnicas existentes para la detección de clusters de enfermedades tienen varias
limitaciones: no pueden tratar algunos tipos de datos, no modelizan adecuadamente
situaciones con exceso de ceros, o no tratan factores de confusión o el sesgo. Por lo
tanto, un procedimiento basado en modelos seŕıa de interés para explorar la inciden-
cia de la enfermedad y los posibles factores de riesgo. Desarrollaremos un método
para detectar y evaluar clusters espaciales, temporales, y espacio-temporales que ex-
tienda las técnicas existentes y supere sus limitaciones. Para este fin, usaremos un
método flexible basado en Modelos Lineales Generalizados (GLMs) que permita la
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incorporación de información sobre covariables y efectos aleatorios. Espećıficamente,
el método deberá considerar un gran número de posibles clusters en la región de es-
tudio y construir variables binarias asociadas con cada uno. La colección de posibles
clusters que el método contrastará no está compuesta de todas las configuraciones
posibles de zonas agregadas en la región de estudio. En el marco espacial, por ejem-
plo, los clusters serán definidos como ćırculos o elipses de tamaño geográfico entre
cero y un ĺımite superior definido en base a un porcentaje de la población en riesgo o
en términos de la extensión geográfica de la enfermedad. Después, para cada uno de
los posibles clusters, se ajustará un modelo relacionando la incidencia, mortalidad
u otra medida de la enfermedad y la variable binaria. La selección de los mejores
modelos se hará usando técnicas generales de selección de modelos como el AIC.
Los modelos seleccionados indicarán los clusters más probables y su significación.
Este método ofrece varias ventajas sobre los existentes ya que los modelos pueden
especificarse usando diferentes distribuciones para la variable respuesta y pueden in-
cluir efectos fijos y aleatorios. Espećıficamente, pueden considerarse diferentes tipos
de variables como Poisson o Binomial. Los factores de confusión puede tratarse
incluyendo covariables en el modelo. Además, la incorporación de efectos aleatorios
hace posible tratar la sobredispersión y el sesgo de la medida.

Este método será implementado en un nuevo paquete de R llamado DClusterm

usando técnicas que son descritas en Zhang and Lin (2009b), Zhang and Glaz (2008)
(GLMs), Zhang and Lin (2009a) (modelos mixtos), y Gómez-Rubio and López-
Qúılez (2010) (modelos inflados de ceros). Este trabajo fue iniciado durante el
programa Google Summer of Code 2011 en el cual participé bajo la supervisión de
Virgilio Gómez-Rubio y Barry Rowlingston.

Trabajo aplicado

También estamos trabajando en dos proyectos aplicados que buscan entender la
dinámica del sarampión en Europa y la incidencia de la leptospirosis en una favela
de Salvador de Bah́ıa, Brasil. Estos análisis ayudaran a los responsables a tomar
decisiones para asignar recursos y dirigir las intervenciones de una manera efectiva.
El Centro Europeo de Prevención y Control de Enfermedades (ECDC) busca fortale-
cer las defensas de Europa contra las enfermedades infecciosas. Con la erradicación
del sarampión como objetivo, uno de sus proyectos estudia la distribución espacio-
temporal del sarampión en Europa. Mapas de enfermedades, tendencias temporales
y métodos para la detección de clusters están siendo de utilidad para evaluar la
distribución de la enfermedad.

El proyecto sobre leptospirosis se sitúa en Pau da Lima, un barrio pobre que
creció a las afueras de la parte urbana de Salvador de Bah́ıa. Pau da Lima alberga
una comunidad densamente poblada caracterizada por un alta incidencia anual de
leptospirosis. Desde 2003, el Centro de Pesquisa Gonçalo Moniz, Fiocruz, efectúa
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estudios de cohorte sobre lepstospirosis para entender la dinámica de transmisión de
la enfermedad en esta comunidad. En el grupo CHICAS de la Universidad de Lan-
caster se está colaborando con el análisis de los datos. Métodos espaciales y espacio-
temporales están siendo de utilidad para identificar los determinantes medioambien-
tales y sociales de la infección, aśı como para entender la estructura espacio-temporal
latente del proceso.

Comentarios finales

La simple recopilación y el análisis de datos de salud tiene poco impacto. Sin em-
bargo, programas de vigilancia efectivos permiten difundir los resultados e informan
sobre los descubrimientos y estrategias (M’ikanatha et al., 2007). Una ventaja par-
ticular de las técnicas espaciales y espacio-temporales es que los resultados pueden
visualizarse a través de mapas, facilitando una comunicación efectiva (Pfeiffer et al.,
2008). A pesar de claros avances en algunos aspectos de la vigilancia, todav́ıa existe
una necesidad urgente de tratar eficazmente cuestiones éticas, poĺıticas y legales
relacionadas con el fácil acceso a información detallada de personas individuales que
puede restringir el acceso a datos de importancia para la salud pública (Teutsch
and Thacker, 1995). La atención a estos asuntos, aśı como el desarrollo de métodos
anaĺıticos apropiados y el avance de las herramientas de recopilación y diseminación,
pueden facilitar la planificación, la implementación y el crecimiento de programas
de vigilancia en salud pública.
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