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FUNCTIONS OF RUBISCO 
 

The Calvin (or Calvin-Benson-Bassham) cycle was the first autotrophic 

carbon fixation pathway to be recognized. It was worked-out in the late 1940s 

and the 1950s by Melvin Calvin, Andrew Benson, James Bassham, and others 

(Wildman and Bonner, 1947; Calvin and Benson, 1948, 1949; Benson et al., 

1951). This metabolic route is found in most autotrophic organisms, ranging from 

prokaryotes (cyanobacteria and other phototrophic and chemoautotrophic 

bacteria) to eukaryotes (various algae and higher plants). The incorporation of 

carbon (as CO2) into the cycle is catalyzed by the Ribulose-1,5-bisphosphate 

carboxylase oxygenase (EC.4.1.1.39, RubisCO). RubisCO catalyzes the fixation of 

one molecule of CO2 to the pentose-bisphosphate sugar ribulose-1,5-

bisphosphate (RuBP), yielding two molecules of the 3-carbon 3-phosphoglyceric 

acid (PGA). PGA undergoes reduction to glyceraldehyde 3-phosphate (thereby 

consuming NADPH and ATP, which have been generated by the light reactions of 

photosynthesis) and then, it is reshuffled in a series of reactions regenerating 

RuBP but saving some carbon for the net synthesis of carbohydrates (fig. 1). This 

metabolic scheme constitutes the Calvin Cycle.  

 

 
Fig.1. RuBP metabolism: RubisCO catalyzes both the carboxylation reaction and the 

oxygenation of RuBP, being the starting point of two opposing processes: photosynthesis and 
photorespiration [Taken from Maurino and Peterhansel (2010)]. 
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In addition, RubisCO catalyzes also the oxygenation of RuBP to form one 

molecule each of 2-phosphoglycolate and PGA (fig.1) (Bowes et al., 1971).  The 

latter is streamed into the Calvin cycle. Phosphoglycolate, however, is more 

difficult to recycle and has to circulate from chloroplast to the peroxisomes and 

then to the mitochondria, undergoing a number of reactions that consume ATP 

and reducing power, while losing CO2, before it is converted to PGA and returns 

to the Calvin Cycle (fig.1). This sequence of reactions, started by the oxygenase 

activity of RubisCO, is the photorespiratory pathway. The net balance of 

photorespiration is opposed to photosynthetic carbon assimilation. Therefore, in 

contrast to RuBP carboxylation, the oxygenation of RuBP is regarded as a 

wasteful reaction of the RubisCO enzyme (Andrews and Lorimer, 1987). It would 

appear that eliminating or reducing the RubisCO oxygenase activity would 

potentially increase carbon assimilation, thereby rising photosynthetic efficiency 

significantly (Long et al., 2006).  

Besides its involvement in the Calvin cycle and photorespiration, RubisCO 

is also active in some non-photosynthetic tissues (such as the oil seeds of 

Brassica napus) contributing to a metabolic pathway that increases the efficiency 

of carbon use during the synthesis of fatty acids (Schwender et al., 2004a). In 

these tissues, where the Calvin cycle is not functional, CO2 fixation by RubisCO 

contributes to the metabolic flux that converts carbohydrates into fatty acids 

(Schwender et al., 2004b) (Fig. 2). This is achieved in three stages: first, hexose 

phosphates are converted to ribulose-1,5-bisphosphate by the enzymes of the 

non-oxidative reactions of the pentose phosphate pathway together with 

phosphoribulokinase; second, ribulose-1,5- bisphosphate and CO2 (most of which 

is produced by pyruvate dehydrogenase) are converted to PGA by RubisCO; and 

third, PGA is metabolized to pyruvate and acetyl-CoA through the terminal 

reactions of glycolysis thereby connecting with the fatty acids synthesis (FAS) 

pathway (fig. 2).  Thus, RubisCO, together with phosphoribulokinase and the non-

oxidative enzymes of the pentose phosphate pathway, allows the conversion of 

carbohydrate into 20% more acetyl-CoA (and oil) than does the direct glycolytic 

path, with 40% less carbon lost as CO2.  

Other cellular functions of RubisCO are related to its remarkable 

abundance, being usually present inside the cell at a much higher concentration 

than any other protein. This is especially true in higher plants, where it amounts 

up to 50% of the total soluble protein content of the leaves and other 

photosynthetic tissues, reaching a millimolar concentration inside the chloroplast 

stroma (Pickersgill, 1986). Because of its high concentration and its widespread 

distribution in the biosphere, it was arguably considered a plausible candidate to 
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       Fig.2. Metabolic Transformation of sugar into fatty acids: Conversion of hexoses 
phosphate to pentose phosphate through the non-oxidative steps of the pentose phosphates pathway 
and subsequent formation of PGA by RubisCO bypasses the glycolytic enzymes glyceraldehyde-3-
phosphate dehydrogenase and phosphoglycerate kinase while recycling half of the CO2 released by 
pyruvate dehydrogenase (PDH). PGA is then further processed to pyruvate (Pyr), acetyl-coenzyme A 
(Ac-CoA) and fatty acids [Taken from Schwender et al., (2004a)]. 
 

“the most abundant protein in the world” (Ellis, 1979). It is usually assumed that 

the abundance of RubisCO compensates for the low efficiency of the enzyme and 

its slow catalytic activity (Ellis, 1979; Spreitzer and Salvucci, 2002). In any case, 

photosynthetic organisms are forced to invest a significant portion of its nitrogen 

and sulfur content to synthesize large amounts of RubisCO. Thus, for example, 

leaves of higher plants typically allocate in RubisCO about one fourth of the total 

nitrogen found in these tissues (Mae et al., 1983; Evans and Seeman, 1989). It 

has been repeatedly observed that, when photosynthetic organisms are faced 

with adverse conditions, the specific degradation of RubisCO acts as a source of 

nitrogen, sulfur and carbon for the rapid synthesis of an enzyme complement and 

other components that are essential to overcome stress. Moreover, during natural 

senescence of higher plants, proteolysis of RubisCO in mature organs contributes 

a significant fraction of the nutrients allocated in the growing new tissues 

(Friedrich and Huffaker, 1980; Kang and Titus, 1980; Mae et al., 1983). 

Therefore, RubisCO acts as a nutrient-storage protein in many species of higher 
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plants (Huffaker and Peterson, 1974; Millard, 1988). Because most 

photosynthetic organs undergo senescence and abscission as a final step of 

development, the specific degradation of RubisCO and the subsequent reuse of its 

nutrients through the mobilization of its amino acids to growing tissues, play a 

crucial role in the nutritional balance of plants (Ferreira et al., 2000).  

Besides this nutrient storage functions, it has been proposed that RubisCO 

could act also as a metabolic buffer in the chloroplast stroma of algae and higher 

plants (Ashton, 1982).  Because of the high concentration of RubisCO active sites 

and their ability to bind sugar phosphates, adenosine phosphates and NADPH, it 

has been suggested that sequestration of these compounds by RubisCO may have 

a physiological function modulating the availability of these metabolites in free 

form (Ashton, 1982). 

 

FORMS AND PHYLOGENY OF RUBISCO 

 

All RubisCO enzymes are multimeric. Two different types of subunits may 

occur: a large subunit (L) of 50-55 kDa and a small subunit (S) of 12-16 kDa. On 

the basis of the number of subunits and their structural arrangement, as well as 

the corresponding sequence divergence, RubisCOs found in nature can be 

classified into four different forms, which integrate the RubisCO super family. 

These are called forms I to IV. Table 1 summarizes the characteristics of the 

different forms of RubisCO. 

 

Table.1. Main features of the different forms of RubisCO 

 Form I Form II Form III Form IV 

Holoenzyme 

composition 

L8S8 
 

(L2)n L2 and (L2)5 L2 
 

RubisCO 

activity 

+ + + -- 

Function Calvin Cycle Calvin Cycle RuPP 

pathway (?) 

Methionine 

salvage  (a.o.) 

 

 

These four different RubisCO holoenzyme forms have often unique 

features, yet the fundamental structural unit, common to all forms, is the 

catalytic large subunit dimer (Tabita et al., 2008). 
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FORM I AND II RUBISCO 

Form I RubisCO is the most abundant. It is found in higher plants, algae, 

and many autotrophic bacteria (including all cyanobacteria) (Tabita, 1999). The 

holoenzyme is a hexadecamer, denoted as RbcL8S8, containing eight large  

subunits and eight small subunits. The ca 550 kDa oligomer has a cylindrical 

shape with a diameter of ~110 Å and a height of 100 Å, letting an axial channel 

accessible to the solvent. The molecule exhibits local 4:2:2 symmetry and 

consists of a core of four L2 dimers arranged around a four-fold axis, capped at 

each end by four small subunits (Knight et al., 1990) (fig. 3).While RubisCOs 

classed as forms II to IV lack S-subunits, containing only L-subunits arranged into 

L2 dimers or (L2)n complexes, form I enzymes assemble four S-subunits, placed 

in between the four L2 dimers that constitute the central core, at each of the two 

poles of the molecule (fig. 3). Albeit not strictly required for CO2 fixation, the S-

subunits are thought to be essential, providing the structural stability needed to 

maximize carboxylation efficiency within this structural framework (Andersson 

and Backlund, 2008).  

 
Fig.3. Representative structures of different forms of RubisCO: All forms are 

comprised of dimers of catalytic large subunits. Form I is comprised of four dimers with small subunits 
decorating the top and bottom of the L8 octomeric core. Only form I has small subunits. Form II is 
comprised of dimers of L, ranging from L2–L8 depending on the source. Form III is found only in some 
archaea and is comprised of dimers of L in either an L2 or (L2)5 arrangement. Form IV (the RubisCO-
like Protein or RLP) appears thus far always to have an L2 structure [from Li et al.(2005); Tabita et 
al.(2007)]. 
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Analysis of amino acid sequence divergence has revealed two distinct 

phylogenetic branches of the form I RubisCOs (fig. 4). Accordingly, a distinction 

has been made between green-type enzymes (forms I A and B from 

cyanobacteria, green algae and higher plants) and red-type enzymes (forms I C 

and D from non-green algae and phototrophic bacteria) (Delwiche et al., 1996 

and Tabita et al., 1999). Form II RubisCO is a dimer of large subunits (fig. 3) 

which is structurally very similar to any of the dimers integrating the core large 

subunit octamer of form I. Indeed, the main structural differences with form I are 

related to the absence of small subunits. Form II RubisCOs are primarily present 

in chemoautotrophs, phototrophic proteobacteria, and dinoflagellates (Tabita 

1999). An interesting feature of form II RubisCO is that it is often found in 

organisms that also contain form I. It has been suggested that form II enzymes 

are adapted to low-O2 and high-CO2 environments (Badger and Bek, 2008).  

 

     
Fig.4. Phylogenetic tree illustrating the three classes of RubisCO and the six clades 

of RLP: The tree was constructed from a CLUSTALW alignment of a non-redundant set of RubisCO 
and RLP sequences taken from publicly accessible sequence databases, primarily GenBank. The 
nonredundant set was selected such that each sequence was no more than 76% identical at the amino 
acid level to any other sequence in the alignment. The tree was produced by Neighbor–Joining in the 
MEGA 4.0 software suite using the p-distance model and pair wise gap deletion. Bootstrap values are 
the percentage of 1000 trials in which a given node was present [Taken from Tabita et al.(2008)].  
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FORM III RUBISCO 

Studies carried out during the last two decades have described form III 

RubisCO in anaerobic archaea growing at high temperatures, such as 

Methanococcus jannaschii, and some mesophilic heterotrophic methanogens (Bult 

et al., 1996; Klentk et al., 1997; Mueller-Cajar and Badger, 2007; Tabita et al., 

2008). Sequences of these proteins are phylogenetically well separated from 

known RubisCO forms I and II (fig. 4). In all these cases RubisCO is found to 

assemble in L2 homodimers. Moreover, in the Form III RubisCO purified from the 

hyperthermophilic archaebacterium Thermococcus (formerly Pyrococcus) 

kodakarensis (Ezaki et al., 1999) large subunit dimers are arranged in a 

pentameric structure (L2)5  (fig. 3). It has been shown that these form III 

enzymes are capable of catalyzing RuBP-dependent CO2 fixation in vitro (Watson 

et al., 1999) and are active in vivo (Finn and Tabita, 2003) under anaerobic 

conditions, displaying an extremely high affinity for O2 (Kreel and Tabita 2007). 

However, form III RubisCOs probably do not contribute to net carbon fixation 

since archaebacteria lack phosphoribulokinase (which catalyzes the formation of 

RuBP from ribulose-5-phosphate) (Watson and Tabita 1999 and Sato et al., 2007) 

and therefore, cannot regenerate RuBP through the Calvin cycle. It is assumed 

that archaeal form III RubisCOs probably fulfil a catabolic role removing RuBP 

produced during purine/pyrimidine metabolism. Thus, RuBP is produced from 5-

phospho-D-ribose-1-pyrophosphate (RuPP), as shown in the methanogenic 

archaeon Methanoccocus jannaschii (Finn and Tabita 2004), and further 

metabolized by form III RubisCO as a catabolic step in the RuPP pathway.  

Form III RubisCOs differ among themselves in their optimal temperature 

for activity, as well as their degree of sensitivity to O2 (Finn and Tabita, 2003). 

The study of these special features of form III presents several additional points 

of interest. For example, a comparative study with RubisCOs from aerobic species 

may illuminate the evolutionary changes associated with the increased presence 

of O2. Furthermore, the ability to catalyze RuBP carboxylation at extreme 

temperatures is a structural adaptation that could provide relevant information 

about the structure-function relationship in the catalytic site of RubisCO (Finn and 

Tabita, 2003). Although the classification of RubisCO enzymes into forms I, II, 

and III is generally supported by sequence phylogenies, quaternary structures, 

and functional properties together, there may be exceptions as in the structural 

and biochemical properties of the RubisCO enzyme from the archaeon 

Methanococcoides burtonii, which correlate to form III despite close sequence 

identity to form II RubisCOs (Alonso et al., 2009). 
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FORM IV RUBISCO 

Form IV is also called the RubisCO-like protein (RLP) because this protein 

does not catalyze RuBP carboxylation or oxygenation (Hanson and Tabita 2001). 

Yet, there are similarities in the primary (Hanson and Tabita 2001) and tertiary 

(Li et al., 2005; Imker et al., 2007) structures of these proteins that clearly 

indicate that RLPs are homologues of carboxylating RubisCOs and are derived 

from some common ancestor (Tabita et al., 2007). Sequence analysis suggests 

six different clades of RLPs (fig 4). Structural information is scarce but indicates 

that this form may be a L2 dimer. RLPs do not possess RubisCO activity because 

they have nonidentical residues at positions where key conserved residues of the 

active site of RubisCO are normally found.  

It is known that the Bacillus subtilis (Ashida et al., 2003) and Geobacillus 

kaustophilus (Imker et al., 2007) RLPs, the cyanobacterial RLP from Microcystis 

aeruginosa (Carre-Mlouka et al., 2006) and RLPs from the photosynthetic bacteria 

Rhodospirillum rubrum and Rhodopseudomonas palustris participate in a 

methionine salvage metabolic pathway by catalyzing the enolization of the 2,3-

diketo-5-methylthiopentyl-1-phosphate. This substrate is a RuBP analogue, and 

the enolization reaction is very similar to one of the steps of the RubisCO 

carboxylation/oxygenation reaction mechanism (see below). On the other hand, 

physiological results indicate that RLP from the green sulphur bacterium 

Chlorobium tepidum is involved in thiosulphate oxidation (Hanson and Tabita 

2001, 2003); even if the precise reaction catalyzed by the RLP has not been 

identified. Other clades of RLP molecules from different organisms have not yet 

been assigned a function. Interestingly many of these latter RLP genes do not 

complement RLP-knockout strains from organisms with defined functions, 

suggesting different physiological roles (Singh and Tabita 2009).  

Only one archaeon, A. fulgidus, and one eukaryote, the alga Ostreococcus 

tauri, have thus far been shown to contain an RLP gene (Tabita et al., 2007). 

Additionally, each of these organisms contains a functional CO2-fixing RubisCO, a 

form III enzyme in A. fulgidus (Watson et al., 1999) and a form I enzyme in O. 

tauri (Robbens et al., 2007). It has been suggested that photosynthetic RubisCOs 

may have evolved from an ancestral RLP that was functional in the methionine 

salvage pathway (Ashida et al., 2005). Diversification of RuBP-carboxylating 

RubisCO forms may have occurred later, driven by changes in atmospheric 

composition and adaptation to particular habitats. A plausible outline of this 

process is presented in fig. 5.  
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Fig.5. Hypothetical profiles of RubisCO phylogeny: the evolutionary timelines of 

different photosynthetic organisms, and the variation in atmospheric CO2 (thicker line) and O2 levels 
during earth’s history. Hypothetical atmospheric CO2 and O2 levels prior to 0.6 billion years ago are 
represented by dotted lines. Quaternary structures of each RubisCO were drawn with Pymol using 
Protein Data Bank coordinates for the spinach (Spinacia oleracea) (L2)4S8 (8RUC), R. rubrum L2 
(5RUB), Pyrococcus horikoshii (L2)4 (2CWX), and Thermococcus kodakaraensis (L2)5 (1GEH) 
enzymes. Structures for larger form II (L2)n RubisCOs are unavailable. Encircled images depict types 
of organisms where the different RubisCO forms are found [Adapted from Tabita et al., (2008) and 
Badger et al., (2002)]. 
 

SYNTHESIS AND ASSEMBLY OF RUBISCO 

 

GENE ORGANIZATION 

Genetic studies of RubisCO began in earnest after Wildman and coworkers 

investigated large and small subunit tryptic peptide differences in interspecific 

crosses of tobacco (Chan and Wildman 1972; Kawashima and Wildman 1972; 

Kung et al., 1974). The large subunits were transmitted uniparentally and small 

subunits were transmitted biparentally. The uniparental inheritance of the large 

subunit implied that its gene (called rbcL) would reside in the chloroplast DNA. 

Gene cloning and sequencing confirmed this assumption for the maize chloroplast 

(McIntosh et al., 1980). The rbcL gene in higher plants and green algae is present 

as a single copy per chloroplast genome, but because many copies of the genome 

are present in each plastid, the actual rbcL copy number per chloroplast can be 

high. With rare exceptions, rbcL does not contain introns and encodes ~ 475 

amino acids (Gutteridge and Gatenby, 1995). In higher plants and green algae, 

the small subunit is encoded by a multigene family (rbcS genes) in the nuclear 

genome (Dean et al., 1989; Clegg et al., 1997). This gene family may consist of 2 

to 22 members (or even more in wheat), depending on the species (Sasanuma, 

2001; Spreitzer, 2003). The model green alga C. reinhardtii contains only two 
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rbcS genes (Goldschmidt-Clermont and Rahire, 1986). Almost all rbcS genes have 

introns in highly conserved positions (Spreitzer, 2003) and encode a polypeptide 

of some 123 residues. Members of an rbcS gene family are generally more similar 

to each other than to members of a family in a different species, resulting in only 

a few amino acid differences in the small subunits within a family (Spreitzer, 

2003). Some photosynthetic eukaryotes, other than higher plants and green 

algae, have a different location for the RubisCO genes. The chloroplast genome of 

brown (Chromophyte) and red (Rhodophyte) algae holds the genes encoding both 

the large and the small RubisCO subunits. On the other hand, dinoflagellates, 

which lack rbcS genes because they only have the form II of the enzyme in their  

chloroplasts, encode rbcL in the nuclear genome. When RubisCO subunit genes 

are encoded together in the same genome, as in bacteria and non-green algae 

(where both subunits are encoded in the chloroplast), they are often part of a 

much larger operon regulated by a single promoter (Tabita, 1999) (fig. 6).  The 

proteobacterial operon encoding RubisCO genes contains also structural genes for 

other enzymes of the Calvin-Benson-Bassham cycle (hence termed cbb operon).  

       
Fig.6. Organization of microbial RubisCO genes from proteobacteria, cyanobacteria, 

archaea, and eukaryotic rhodophytes, chromophytes, and dinoflagellates. Arrows refer to the 
direction of transcription, with the arrowhead delimiting the various gene clusters comprising 
individual operons; encircled P’s indicate promoter sequences controlling transcription. In the 
proteobacteria, the form I RubisCO genes (cbbLS) are located in an operon with other Calvin cycle 
structural genes, as is the form II RubisCO gene (cbbM). These include fructose 1,6/sedoheptulose 1,7 
bisphosphatase (cbbF), phosphoribulokinase (cbbP), aldolase (cbbA), phosphoglycolate phosphatase 
(cbbZ), transketolase (cbbT), glyceraldehyde phosphate dehydrogenase (cbbG), pentose 5-phosphate 
3-epimerase (cbbE), phosphoglycerate kinase (cbbK) and genes of unknown function (cbbX, cbbY, 
cbbA, and cbbB). In all cases, transcription of the cbb operons is controlled by the product of the 
divergently transcribed cbbR gene. In Synechococcus 7942, the rbc genes are not cotranscribed with 
the ccm genes, but ccmK is cotranscribed with rbcLS in marine cyanobacterial WH strains. A cbbZ 
sequence is invariably found downstream from the form I rbcLS genes of eukaryotic nongreen algae 
[Taken from Tabita (1999)]. 
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BIOSYNTHESIS OF RUBISCOS SUBUNITS 

Under natural conditions, the regulation of the expression of RubisCO 

genes in higher plants and red algae is carried out at both at the transcriptional 

and post-transcriptional level. The transcription of the chloroplastic rbcL gene, 

driven by a strong promoter, is significantly increased during light periods 

although part of this effect may not be under the direct control of light but of the 

circadian clock (Misquitta and Herrin, 2005). In addition, control is also exerted at 

the level of transcript stability. The half-life of rbcL transcripts is known to be 

about 15 times lower in the light than in the dark (Salvador et al., 1993). Hence, 

light promotes the degradation of the rbcL transcript and this effect is mediated 

by a redox signal since inhibition of photosynthetic chain increases the stability of 

the transcripts in illuminated cultures (Salvador and Klein, 1999). It appears that 

some sequences in the 5' UTR may be crucial for stabilizing the rbcL transcript in 

the dark or under non-reducing conditions (Salvador et al., 2004; Suay et al., 

2005). The expression of rbcS is also regulated by light at the level of 

transcription (Thompson and White 1991). In gymnosperms and green algae, 

however, the rbcS mRNA and its translational product have been reported to be 

accumulated in the dark (Yamamoto et al. 1991, Goldschmidt-Clermont and 

Rahire 1986, Malnoe et al., 1988).  

Translation of the rbcS transcript on cytosolic ribosomes of higher plants 

and green algae produces a precursor polypeptide. Translocation across the 

chloroplast envelope removes the N-terminal plastid-targeting peptide, and 

releases the mature form in the stroma of chloroplasts. On the other hand, the 

synthesis of the large subunit polypeptide occurs entirely on chloroplast 

ribosomes of higher plants and green algae. The biosynthesis of large and small 

subunits is carried out in a regulated manner. It was previously reported that 

silencing of rbcS expression by introducing antisense RNA (Rodermel et al., 1996) 

or by a gene knockout (Khrebtukova and Spreitzer, 1996) prevented the 

accumulation of the L-subunit. Similarly, when the translation of the rbcL 

transcript was inhibited by a nonsense mutation or by chloramphenicol, the S-

subunit was rapidly degraded, indicating that it cannot accumulate in its free and 

unassembled form (Schmidt and Mishkind, 1983; Spreitzer et al., 1985). In 

higher plants and in green algae, expression of subunits that are part of large 

protein complexes is highly coordinated by chloroplast encoded subunits (Choquet 

et al., 1998, 2001). The basis for this control system is that elimination of one 

subunit reduces the expression of the other subunits in the complex by their 
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translational arrest, or by degradation of unassembled subunits (Cohen et al., 

2006). 

In bacteria and non-green algae, RubisCO genes are usually expressed as 

components of an operon, In proteobacteria, which encode RubisCO together with 

other Calvin cycle components in the same operon, it is noteworthy that, even if 

all operon genes are co-transcribed, the intracellular level of RubisCO far exceeds 

that of the other Calvin cycle enzymes (Gibson et al., 1991; Meijer et al., 1991; 

Schaferjohann et al., 1995) indicating a different post-transcriptional processing 

of the different cistrons. 

 

HOLOENZYME ASSEMBLY  

In photosynthetic eukaryotes, the assembly of RubisCO from its 

constituent subunits takes place in the chloroplast. Early experiments revealed 

that a binding protein (Cpn60) was associated with newly synthesized RubisCO in 

chloroplasts (Barraclough and Ellis 1980; Bloom et al., 1983; Roy et al., 1988).  

Although at that time the exact role of this protein was not known, it was 

hypothesized that it could aid RubisCO folding by avoiding unwanted non-covalent 

interactions of the unstructured polypeptides, somehow acting as a scaffold to 

bring about the right conformation of the enzyme.  

Indeed, the term “chaperone”, which was first coined for this function 

(Gatenby and Ellis, 1990), was rapidly extended to a growing family of proteins 

that help the folding of other proteins in different ways. It was later demonstrated 

that a certain subset of chaperones, the chaperonins, were required to obtain 

assembled RubisCO folding in a bacterial host system (Goloubinoff et al., 1989b) 

and for in vitro refolding of form II RubisCO (Goloubinoff et al., 1989a). These are 

special chaperones that isolate polypeptides restricting them to closed 

environment and assist their folding in a process that consumes ATP.  

Chloroplast chaperonins Cpn60 and Cpn21, which are homologues of the 

components of the bacterial GroEL/GroES system (Hemmingsen et al., 1988), 

facilitate the correct folding of the L-subunits which assemble in an octamer core. 

Afterwards, the S-subunits join the L-subunit core to form the final L8S8 

holoenzyme in an ATP-independent manner (Gatenby and Ellis 1990; Hartman 

and Harpel 1994). It is likely that the assembly of the whole holoenzyme requires 

several types of chaperones, as suggested by the fact that the bacterial 

DnaK/DnaJ/GrpE chaperone system aids in folding of recombinantly expressed 

RubisCO (Checa and Viale 1997), but the chaperonins are still found to be 

essential for the initial steps of folding and assembly of RubisCO large subunits 

under all circumstances.  
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Form II RubisCO and prokaryotic form I RubisCO can be recombinantly 

expressed and assembled in E.coli (Gatenby et al., 1985; Somerville and 

Somerville 1984). However, it has not been possible to assemble eukaryotic form 

I RubisCO outside of the chloroplast hitherto, even in the cases in which 

chloroplast chaperonins were also coexpressed in E. coli (Cloney et al., 1993). It 

appears that further specific folding or assembly factors that occur in the 

chloroplast (and are missing in E. coli) are necessary for building the correct 

holoenzyme structure. 

POST-TRANSLATIONAL MODIFICATIONS 

Both the large subunit and the small subunit of RubisCO are extensively 

modified either during or after translation (Houtz and Portis, 2003). Evidence for 

these amino acid modifications comes primarily from structural analyses of the 

mature forms of the polypeptides and subsequent comparison with the known 

DNA sequences. Most of these post-translational modifications have unknown 

function, but they are supposed to be involved in the regulation of enzyme 

interactions with other proteins or in maintaining the stability of the enzyme. 

The large subunit of RubisCO of higher plants, algae and cyanobacteria 

undergoes post-translational modifications such as acetylation, N-methylation, 

phosphorylation and possibly transglutamination (Hartman and Harpell, 1994, 

Houtz and Portis, 2003). The tri-methylation of the Lys 14 residue is found in 

RubisCOs of some higher plants (tobacco, tomato, pea, soybean, potato) but not 

in others (spinach, wheat) (Houtz et al., 1992). In the particular case of C. 

reinhardtii, X-ray crystallography revealed also the methylation of cysteines 256 

and 369, and the hydroxylation of prolines 104 and 151 (Taylor et al., 2001; 

Mizohata et al., 2002).  

Before small subunits are imported into the chloroplast, the N-terminal 

transit sequence is phosphorylated (probably at Ser-21) as part of a process that 

regulates import (Su et al., 2001). During or immediately after import, the transit 

sequence is removed by a stromal processing peptidase in what appears to be a 

two-step proteolytic process (Oblong and Lamppa 1992; Su et al., 1993, 1999; 

Robinson and Ellis 1984a,b). The final processing exposes a conserved Met 

residue, which is methylated to form an αN-methylmethionine (Grimm et al., 

1997; Whitney and Andrews 2001). This is a widespread modification found in the 

small subunit of RubisCOs from a number of species (Grimm et al., 1997; 

Mizohata et al., 2002; Taylor et al., 2001; Ying et al., 1999). The enzyme 

responsible for this modification, the RubisCO S-subunit αN-methyltransferase 

(SSMT) (Ying et al., 1999), is related to the L-subunit εN-methyltransferase 
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(LSMT) which catalyzes the methylation of Lys-14 in the L-subunit (Houtz et al., 

1991).  

The carbamylation of Lys 201, which is crucial for conforming the 

catalytically competent active site, as well as the oxidative modifications of 

certain amino acid residues, which occur usually under stress or senescence 

conditions and are marking steps of the enzyme catabolism, will be specifically 

discussed in later sections. 

 
 

RUBP CARBOXYLATION/OXYGENATION ACTIVITY OF RUBISCO 

 

This section and subsequent ones will concentrate on the activity and 

characteristics of the most studied type of RubisCO: the green-like form I from 

cyanobacteria, green algae and higher plants. 
 

RUBISCO ACTIVATION 

RubisCO must be activated to carry out carboxylation or oxygenation. The 

catalytically competent form of RubisCO is a complex of enzyme-CO2-Mg2+, in 

which the molecule of CO2 is different from the substrate. The first step in the 

activation process is carbamylation by CO2 at an uncharged amine of a lysine 

residue (Lys201, in the spinach enzyme numbering) located near the active site 

of RubisCO. The carbamylated Lys201 is stabilized by coordinating a Mg2+ ion at 

the active site in concert with residues Asp203 and Glu204 (Cleland et al., 1998; 

Kellogg and Juliano 1997).  

Formation of the carbamate at Lys201 with CO2 is spontaneous in vitro 

(Houtz and Portis 2003). However, RuBP can bind to RubisCO before 

carbamylation creating a dead-end enzymatically-inactive complex (fig.7). 

Additionally, other naturally occurring sugar phosphate analogs, such as 2-

carboxy-arabinitol-1-phosphate (CA1P), D-xylulose-1,5-bisphosphate (XuBP), and 

D-glycero-2,3-pentodiulose-1,5-bisphopsphate (PDBP), can also bind tightly to 

the active site thereby inhibiting RubisCO catalytic activity (Lorimer et al., 1977; 

Parry et al., 2003; Parry et al., 2008). The removal of tightly bound inhibitors 

from the catalytic site of the carbamylated and decarbamylated forms of RubisCO 

requires an ancillary enzyme, RubisCO activase, and the hydrolysis of ATP. 

(fig.7). RubisCO activase is a AAA+ protein that releases inhibitor substrates from 

the active site of RubisCO in an ATP-dependent manner and allows the 

reactivation of RubisCO (Kellogg and Juliano 1997). 
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Fig.7. (A) Decarbamylated RubisCO, E, can bind substrate, EI, and become inhibited. 

Carbamylated RubisCO, E.CO2 .Mg2+, can also become inhibited when bound with substrate 
analogues, E.CO2 .Mg2+.I*. RubisCO activase is needed in both of these conditions to remove the 
inhibitory sugar-phosphate compound. (B) Carbamylated RubisCO can be inhibited by 2-carboxy-
arabinitol-1- phosphate (CA1P) or D-glycero-2,3-pentodiulose-1,5-bisphosphate (PDBP) in the dark 
and reversibly activated by RubisCO activase in the light [Taken from Parry et al., (2008)]. 

 

RubisCO activase is regulated by the ratio of ATP to ADP (being inhibited 

by high concentrations of ADP), therefore RubisCO is activated by RubisCO 

activase in response to light due to the increase in ATP concentrations from the 

light-dependent reactions during the day (Graciet et al., 2004; Parry et al., 

2003). In addition, the pumping of protons into the thylakoids driven by the 

photoelectronic transport chain promotes alkalization and release of Mg2+ ions in 

the stroma, thereby favouring RubisCO carbamylation. In this way, these 

regulatory effects ensure that, immediately after the onset of light, the RubisCO 

active site is freed from inhibitors, becomes carbamylated, and is ready to 

participate in catalysis (Parry et al., 2008).  

 

CATALYTIC MECHANISM 

Carboxylation of ribulose-1,5-bisphosphate yields an unstable 

phosphorylated six-carbon intermediate (2-carboxy-3-keto-arabinitol-1,5-

bisphosphate), which decays while still bound to the enzyme into two molecules 

of glycerate-3-phosphate. As a first step of the reaction mechanism, a proton is 

abstracted from C-3 of the ribulose 1,5-bisphosphate bound to the enzyme to 

create a 2,3-enediolate intermediate which is highly reactive. The nucleophilic 

enediolate attacks CO2 producing the 2-carboxy-3-ketoarabinitol 1,5-

bisphosphate, which is subsequently hydrated to an unstable gem diol 
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intermediate. The C-2-C-3 bond of this intermediate is immediately cleaved, 

generating a carbanion and one molecule of 3-phosphoglycerate. Stereospecific 

protonation of the carbanion yields a second molecule of 3-phosphoglycerate, 

thereby concluding the catalytic cycle (fig.8).  
 

 
Fig.8. Catalytic cycle of carboxylation and oxygenation of RuBP by RubisCO [Adapted 

from Hartman and Harpel (1994)]. 
 

In the competing reaction of oxygenation, the RubisCO-RuBP enediolate complex 

captures O2 and through similar steps of hydration and cleavage yields only one 

PGA molecule and one molecule of 2-phosphoglycolate (fig. 8). After elucidation 

of the carboxylation mechanism of RubisCO, it became clear that there was no 

specific mechanism for oxygenation. The latter reaction takes place as an 

unavoidable side-reaction of carboxylation due to the fact that the enediolate 

intermediate is reactive to O2 as well as to CO2 (Andrews and Lorimer 1987). 

Because neither of the alternative substrates (O2 or CO2) binds to the enzyme 

before reacting, the enzyme cannot control the access of O2 and the subsequent 

production of the useless 2-phosphoglycolate.  To retrieve the carbons in 2-

phosphoglycolate, a complicated process of photorespiration takes place, 

incurring a net loss of CO2 (about one CO2 molecule per two captured O2 

molecules) and, therefore, reducing the net photosynthetic carboxylation rate. 

Thus, the opposing oxygenase activity is an intrinsic characteristic of RubisCO due 

to a catalytic mechanism failure (probably reflecting the fact that the CO2-fixing 

activity of RubisCO was evolutively established when there was no substantial 

amount of oxygen in the atmosphere to compete), and the photorespiratory 
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pathway is likely to have evolved subsequently to avoid 2-phosphoglycolate 

accumulation and to recycle three-fourths of its carbon at the price of losing the 

other fourth. 
 

STRUCTURAL CHARACTERISTICS OF THE CATALYTIC SITE 

The characteristics of the catalytic mechanism are directly dependent on 

the structural details of the active site. X-ray crystallography has been used to 

elucidate the folding of a number of RubisCO enzymes. The three-dimensional 

structure of the form II RubisCO from Rhodospirillum rubrum was the first to be 

solved (at 2.9Å resolution) (Somerville and Somerville, 1984, Schneider et al., 

1986), followed by the structures of the form I enzymes from spinach (Andersson 

et al., 1989; Knight et al., 1989; Knight et al., 1990), tobacco (Curmi et al., 

1992; Schreuder et al., 1993a; Schreuder et al., 1993b). Synechococcus 

(Newman et al., 1993, Newman and Gutteridge, 1993; Newman and Gutteridge, 

1994) and, later, many others including representatives of forms III and IV. 

Despite apparent differences in amino acid sequence and function (in the case of 

the RLPs) of the various forms, the tertiary structure of the large (catalytic) 

subunit is extremely well conserved throughout the different forms of RubisCO 

(reviewed in Andersson and Taylor, 2003; Andersson and Backlund, 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

α/β barrel

C-terminal 
 domain 

N-terminal domain 

Fig.9. Folding of the large subunit of RubisCO of C. reinhardtii: (A). β strands are 
shown in yellow and α helices in red. Each subunit consists of a small N-terminal domain and large C-
terminal domain, containing a central α/β barrel structure. The position of some cysteine residues is 
indicated. (B). Structural unit of the enzyme, comprising a dimer of antiparallel large subunits. The 
active site is conformed with residues of the α/β barrel located in the C-terminal domain of one 
subunit, and with residues of the N-terminal domain of the other subunit. Each subunit is in one color 
(yellow and blue). CABP and Mg2+ bound to the one active site are indicated. Cys247 residues 
maintaining the dimer linked by a disulfide bridge are highlighted in green. Taken from García-Murria, 
(2006). 
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The overall fold of the large (catalytic) subunit is composed of a smaller 

amino-terminal domain consisting of a four-to-five-stranded mixed β sheet with 

helices on one side of the sheet, and a larger carboxy-terminal domain 

(Andersson and Taylor 2003). The carboxy-terminal domain consists of eight 

consecutive βα-units linked by loops of varying length and arranged as an eight-

stranded parallel α/β barrel structure. The active site is located at the carboxy-

terminal end of the β-strands, with the loops connecting the βα-units contributing 

several residues involved in catalysis and substrate binding. Residues from the 

amino-terminal domain of the adjacent large subunit in the dimer complete the 

active site. Thus, the functional unit structure of RubisCO is an L2 dimer of large 

subunits harbouring two active sites (fig.9). 

The determination of the structure of RubisCO with the RuBP-analogue 

inhibitor CABP (2-carboxy-D-arabinitol-1,5-bisphosphate) bound to the enzyme 

facilitated the identification of the specific residues involved in catalysis. The 

substrate binds in an extended conformation across the opening of the α/β barrel 

and is anchored by two distinct phosphate-binding sites at opposite locations of 

the α/β barrel, and in the middle by the magnesium-binding site (fig. 10). 

      

Fig.10. Schematic representation of the active site of spinach RubisCO in an empty 
state (right) or occupied by the substrate-analogue CABP (left): The left picture shows the 
hydrogen bonds between the active site residues and CABP. CABP is shown in dark blue. Procedence 
of each residue is indicated by the loop where it resides (loops connecting the βα-units of the α/β 
barrel are numbered from the N-terminal end). Residues are numbered relative to spinach RubisCO 
(Adapted from Li et al., (2005)). 

Residues involved in CABP binding can be divided into four groups: those forming 

hydrogen bonds with (1) P1 phosphate, (2) P2 phosphate, and (3) the 

carboxyarabinitol backbone; and those (4) coordinating the metal ion (Knight et 

al., 1990). P1 binding residues are located at loops 7 (Gly381) and 8 (Gly403, 
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Gly404) of the C-terminus and at the N-terminus (Thr65) of the adjacent subunit. 

Binding of phosphate P2 is accomplished by residues of the loops 5 (Arg295) and 

6 (His327) of the C-terminal domain (Knight et al., 1990).  

The Mg+2 ion is coordinated by the carboxyl group of the carbamylated 

Lys201 and the hydroxyl groups of Asp203 and Glu204 (from loop 2). The 

remaining coordination sites are occupied by water molecules and the hydroxyl 

groups at C2 and C3 from the sugar phosphate (Knight et al., 1990). 

Crystallographic data together with mutagenesis and computational studies over 

the last three decades have contributed to dissect the catalytic mechanism, 

assigning precise functions to specific residues. Thus, the carbamylated Lys201 is 

crucial for starting the reaction by acting as a base that abstracts the proton in 

the enolization step, while Lys 334 (from loop 6) stabilizes the carboxylated 

intermediate and His294 (from loop 5) seems to have a wider role, being involved 

in hydration and C2-C3 bond scission (Kannappan and Gready, 2008). 

The loop 6 (connecting β-strand 6 with α-helix 6 in the large subunit 

carboxy-terminal α/β –barrel) is loosely bound to the rest of the structure acting 

as a mobile flap that alternates between an open and a closed active site 

conformation. The open conformation lets the sugar substrate and products 

diffuse in and out of the active site while the closed conformation appears to be 

necessary for catalytic competence. Thus, in every catalytic cycle, loop 6 should 

change conformation, switching from open (to let RuBP in) to closed (in order the 

reaction to proceed) and back to open (to let the products out) again. Two strictly 

conserved glycine residues, Gly333 and Gly337, maintain flexibility in the hinge of 

loop 6. The other strictly conserved residue is Lys334 which, in the closed 

conformation, extends its side chain into the active site interacting with one of 

the two oxygen atoms of the six-carbon intermediate (Knight et al., 1990; 

Andersson, 1996) (fig. 10).  

 

CARBOXYLATION vs OXYGENATION: THE RELATIVE SPECIFICITY FACTOR 

Due to the competitive cross-inhibition between CO2 and O2, the rates of 

carboxylation (vc) and oxygenation (vo) by RubisCO are defined by the product of 

an intrinsic factor of the enzyme (Ω) and the concentration ratio of CO2 to O2 at 

the active site: 

(vc/vo)  = Ω · ([CO2]/[O2] 

Hence, carboxylation may be favoured over oxygenation by increasing the 

CO2 (or decreasing the O2) concentration in the environment surrounding 

RubisCO. This has been accomplished by many algae by pumping water-dissolved 

bicarbonate inside compartments containing RubisCO and carbonic anhydrase (to 
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release CO2 from excess bicarbonate). While this procedure is not amenable to 

non-aquatic organisms, two special pathways have evolved to the same end in 

some land plants: the C4 and the crassulacean acid (CAM) metabolisms. Both 

pathways are additional to the Calvin cycle and increase the supply of CO2 to 

RubisCO, thereby reducing the oxygenation reaction and the flux to the 

photorespiratory pathway. In C4 plants such as maize (Zea mays) and sugarcane 

(Saccharum officinarum), CO2 is taken up in mesophyll cells by an oxygen-

insensitive carboxylase and released by specific decarboxylases in bundle sheath 

cells (which are internal cells around veins) where RubisCO is located (reviewed 

by Drincovich et al., 2010). Similarly, crassulaceans capture CO2 at night through 

a transient organic acid acceptor, and release it near RubisCO during the day with 

closed stomata to avoid CO2 and water escape. 

On the other hand, the intrinsic preference of the RubisCO enzyme for 

carboxylation over oxygenation is measured by Ω, known as the relative 

specificity factor, and defined as: 

Ω = (VC · KO / VO · KC) 

Where VC and VO are, respectively, the maximum rates of carboxylation and 

oxygenation, while KC and KO are the respective Michaelis constants for CO2 and 

O2 (Laing et al., 1974). Thus Ω equals the ratio of the catalytic to Michaelis 

constants relation for carboxylation and oxygenation. The relative specificity 

values of RubisCO enzymes from different origins were found to differ 

substantially (Jordan and Ogren, 1981). Higher values of Ω reflect a biased 

propensity of the enzyme for carboxylation. Indeed, comparison of the kinetic 

parameters of RubiCOs from different species (fig. 11) shows adaptive trends 

suggesting that selection pressure must play a role in shaping RubisCO catalytic 

performance. For example, the specificity factor of the RubisCO from R. rubrum 

(a bacterium living in O2 deprived media) is much lower (Ω = 12.3) than that of 

the spinach enzyme (Ω = 80). Yet the structural features of the catalytic sites are 

highly similar in both species offering no straightforward explanation for the 

sequence or conformation changes that may support the different specificity 

(Schneider et al., 1990).  

Changes in Ω have been proposed to result from the differential 

stabilization of the carboxylation and oxygenation transition states (Chen and 

Spreitzer, 1991). By assuming this hypothesis, it can be calculated that the 

seven-fold factor between the Ω of the R. rubrum and the spinach enzymes 

corresponds to an increase of about 1 kcal/mol in the differential activation 

energies of the two transition states (Lorimer et al., 1993). This is less than the 

energy usually involved in a single hydrogen bond. Thus, the key to the efficiency 
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of any particular RubisCO enzyme lies hidden in the fine details of its three-

dimensional structure, and this has motivated intense research with the ultimate 

aim of boosting carboxylation and improve crop yields through genetic 

engineering (reviewed in Spreitzer and Salvucci, 2002; Parry et al., 2003). 

Phylogenetic and structural comparisons of variant RubisCOs have identified 

candidate L- and S-subunit residues that could benefit catalytic specificity. 

Several of these sites and regions have been explored experimentally in C. 

reinhardtii, identifying important roles for loop 6 and Asp-473 in the L-subunit 

and for the loop between β-strands A and B of the S-subunit (Chen and Spreitzer, 

1989; Satagopan and Spreitzer, 2004; Karkehabadi et al., 2005; Karkehabadi et 

al., 2007). 

 

  

 

 
Fig.11. Four kinetic parameters of 28 RubisCOs from 27 species: the effective 

Michaelis–Menten (MM) constant for CO2 (KC); the carboxylation turnover rate (vC); the relative 
specificity factor (S); and the effective MM constant for O2 (KO). KC and S are known for all 28 
RubisCOs, KO has been measured for 25 of the enzymes, while all of the kinetic parameters are 
available for 16 RubisCOs. All enzymes in the dataset belong to the more widespread form I, except 
for the form II RubisCOs from R. rubrum and R. sphaeroides [Taken from Savir et al.(2009]. 
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There might be, however, some limitations to the catalytic improvements 

that can be engineered in RubisCO. Correlations among the kinetic parameters of 

enzymes from various organisms, in particular, the negative Ω versus Vc 

correlation (Jordan and Ogren 1981, 1983; Zhu et al., 2004) provide evidence for 

an interplay between constraints and selection, and support an  underlying  

structural mechanism (Tcherkez et al., 2006).  For example, improvements in CO2 
fixation rate for forms I and II RubisCOs generally come at the expense of a 

lower affinity for CO2. Therefore, photosynthetic organisms that live under high 

CO2 and low O2 (e.g. proteobacteria such as R. rubrum) or that have evolved 

energy-expensive CO2-concentrating mechanisms around RubisCO possess 

enzymes with lower CO2 affinities (i.e. higher Kc) but higher carboxylation 

rates (vc) (fig.12 A, B). This is usually accompanied by lower specificity 

factors (fig. 12 C). In contrast, non-C4 land plants have higher CO2 

affinities, better specificity factors, but slower carboxylation rates (Whitney 

et al., 2011).  

 

 
 

Fig.12. Comparative catalytic features of different RubisCO forms measured at 250C: 
Individual dashes in each column represent separate catalytic measurements for each RubisCO. Yellow 
circles indicate the catalytic measurements for green algal RubisCO. Specificity factor (SC/O) values are 
calculated as (VC/KO)/(VO/KC), where VC and VO are the maximum rates of RuBP carboxylation and 
oxygenation and KO  and KC are the apparent Km values for O2 and CO2, respectively [Taken from 
Whitney et al. (2011)]. 

 

Nevertheless, the high specificity factor displayed by form I RubisCOs of the red-

like type (present in non-green algae) (fig. 11) and, furthermore, the 

extraordinarily high activity and specificity measured in some form III enzymes 

(Ezaki et al., 1999) suggest that the catalytic features of the green-like form I 

RubisCOs (which include those of crop plants) could have been superior if they 

had evolved from a different sequence and/or enzyme architecture. 
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REDOX REGULATION AND CATABOLISM OF RUBISCO 

 

REDOX REGULATION IN THE CHLOROPLAST  

Redox states of atoms or molecules may act as signals to regulate a wide 

variety of biological phenomena (Pfannschmidt et al., 2001; Buchanan and 

Balmer 2005; Foyer and Noctor 2009). In eukaryotes, redox reactions derived 

from photosynthesis and respiration are compartmentalized in chloroplasts and 

mitochondria, respectively. In chloroplasts, light-driven electrons flow through the 

intermediaries of the photosynthetic transport chain (which includes 

plastoquinone) reaching ferredoxin (Fd) which transfers electrons to NADP+ and 

thioredoxins (Trx) (fig. 13). NADPH is partly consumed at the reductive steps of 

assimilatory metabolism, but also regenerates glutathione (GSH) and ascorbate, 

which constitute the main redox buffers in the chloroplast. Thioredoxins are small 

(approximately 12 kD), ubiquitous oxidoreductases that mediate the dithiol-

disulfide exchange of cysteine residues, thereby modulating the function and 

stability of their target proteins (Schürmann and Buchanan, 2008). 

 

 
Fig.13. Distribution of light-generated reducing power inside the chloroplast: 

Photosynthetic electron flow driven by light  reduces the plastoquinone (PQ) pool and reaches 
ferredoxin (Fd). From ferredoxin reducing power is distributed to NAPH and thioredoxins (Trx). In its 
turn, NADPH powers the reductive anabolic reactions and sustains the glutathione (GSH) and 
ascorbate pools, which are the main redox buffers of the chloroplast. The electron transport chain and 
photochemical reaction centers may also generate reactive oxygen species (ROS), which are 
neutralized by the redox buffers and specialized quenchers such as superoxide dismutase (SOD), 
ascorbate peroxidase/glutathione reductase (AP/GR), peroxiredoxin, tocopherols and carotenoids 
[Adapted from Moreno et al. (2008)]. 

 

Redox regulation inside the chloroplast may be directly exerted by the 

redox buffers (the NADPH, glutathione and ascorbate pools) or through a series of 

signalling effectors. Glutathione can directly combine with proteins through S-

thiolation. The glutathionylated proteins may be reduced back through the activity 
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of glutaredoxins, specialized oxidoreductases of the thioredoxin superfamily 

(Zaffagnini et al., 2012) that get their reducing power either from ferredoxin or 

directly from glutathione. The main signalling effectors inside the chloroplast are 

thioredoxins, plastoquinone and ROS. Several chloroplast proteins (including 

Calvin cycle enzymes) are regulated by thioredoxins through disulfide exchange. 

Target proteins usually contain vicinal dithiols whose redox state (either free 

sulfhydryls or an internal disulfide) functions as an activity switch (Schürmann 

and Buchanan, 2008).  

The redox state of the plastoquinone pool has also been reported to 

control the expression of some chloroplast genes (Pfannschmidt et al., 1999; 

Pfannschmidt, 2003). Reactive oxygen species (ROS) are usually generated by 

the escape of electrons from the photosynthetic redox chain when damaged or 

overloaded. ROS can be quenched or converted to less harmful species by several 

detoxifying mechanisms, including superoxide dismutase, the ascorbate 

peroxidase/glutathion reductase system, peroxiredoxins, tocopherol, and 

carotenoids (fig.13) (Halliwell and Gutteridge, 2007) . Nevertheless, ROS may act 

also as intracellular signals inducing the expression of genes through redox-

sensing factors which are not yet well characterized in plants (Mittler et al., 

2011). 

 

REDOX REGULATION OF RUBISCO  

Several aspects of RubisCO synthesis and activity have been proposed to 

be regulated by redox poise under physiological conditions. For instance, the 

stability of the chloroplastic rbcL mRNA (encoding the large subunit of RubisCO) 

has been shown to decrease as a result of the daily dark-to-light transition in a 

redox dependent manner (Salvador and Klein, 1999). This effect is thought to be 

mediated by redox-sensitive protein factors which detect the rise of reducing 

potential at the start of the photosynthetic electron flow, subsequently binding to 

mRNAs. Besides, it has been proposed that the nascent RubisCO large subunit 

polypeptide may itself block its own translation under oxidative conditions by 

exposing a domain that binds to RNA when oxidized (Yosef et al., 2004). In this 

case, the response seems to be directly triggered by a rise of the 

oxidixed/reduced ratio of the glutathione pool (Yosef et al., 2004).   

The enzymatic activity of RubisCO may also be affected by redox balance 

in some species through the activity of the thioredoxin-dependent large isoform 

of the RubisCO activase (Zhang et al., 2002). Here, the auxiliary enzyme that 

releases tightly-binding natural inhibitors from the catalytic site of RubisCO would 

be activated by the light signal (through the ferredoxin/thioredoxin system), 
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thereby allowing the carbon fixation activity to be resumed. Besides, both 

subunits of RubisCO have been identified as targets of thioredoxins in 

comprehensive screenings among chloroplast proteins (Motohashi et al., 2001; 

Balmer et al., 2004). Proteomic studies have detected RubisCO also as a target of 

glutaredoxins (Rouhier et al., 2005). These reports suggest that RubisCO is 

subjected in vivo to physiological control focused on the redox state of cysteine 

residues. Nevertheless, this evidence might not be taken as conclusive because 

these global proteomic studies rely always on a step of selective “fishing” of the 

targets in which RubisCO (due to its notorious abundance) could be an unwanted 

contaminant. In any case, the potential regulatory effects derived from these 

modifications under habitual physiological conditions are yet to be described.  

 

OXIDATIVE MODIFICATIONS RELATED TO RUBISCO CATABOLISM 

While usually a very stable protein, RubisCO is rapidly degraded at the 

onset of natural senescence or imposed stress. As mentioned above, due to its 

extraordinary abundance RubisCO acts habitually as a store of nitrogen and sulfur 

in higher plants and their mobilization from senescing or declining organs is 

crucial for nutrient economy (Feller et al., 2008). The enhanced turnover of 

RubisCO takes place after experiencing a number of modifications of oxidative 

nature which are thought to be part of a catabolic program leading to a controlled 

degradation of the enzyme (Ferreira et al., 2000). The oxidative modifications 

described in different species include thiol oxidation (Garcia-Ferris and Moreno, 

1994), formation of carbonyl adducts at certain residues (Eckardt and Pell, 1995; 

Junqua et al., 2000), acidification and multimerization mediated by an enzymatic 

oxidase system (Ferreira and Davies, 1989; Ferreira and Shaw, 1989), S-

nitrosylation (i.e. the reaction of cysteine sulfhydryls with nitric oxide) (Abat and 

Deswal, 2009) and non-enzymatic fragmentation caused by ROS (Ishida et al., 

1998; Nakano et al., 2006). Moreover, as a result of these modifications, a 

temporally increasing fraction of RubisCO becomes cross-linked to high molecular 

weight polymers (Ferreira and Shaw, 1989, Marin-Navarro and Moreno, 2006), 

and associated to membranes (Mehta et al., 1992; Garcia-Ferris and Moreno, 

1994).  

All these modification processes are thought to underlie the fast and 

selective degradation of RubisCO that takes place habitually under senescence or 

stress conditions (Albuquerque et al., 2001; Ferreira et al., 2000). For example, 

the oxidation of cysteine residues is known to alter the conformation of the L-

subunits as to expose a loop (between Ser61 and Thr68 in C. reinhardtii) to 

proteases. Proteolytic cuts at both L-subunits integrating one of the four core 

 27



                                                                                               INTRODUCTION 
 
 
dimers forces holoenzyme disassembly and subsequent full degradation of the 

entire protein (Marín-Navarro and Moreno, 2003). RubisCO degradation may take 

place in the chloroplast and some candidate proteases have been advanced 

(Feller et al., 2008; Prins et al., 2008). On the other hand, proteolysis of RubisCO 

in some species has been shown to take place in the vacuolar compartment after 

transport of the enzyme in small vesicles budding from the chloroplast and finally 

fusing with vacuoles (Ishida et al., 2007). It is likely that the oxidative cross-

linking of RubisCO to membranes is a previous step to vesicle engulfment. 

However, because not all types of modifications are detected under different 

stresses or in different species, RubisCO catabolism may follow different courses 

depending on the nature of the stress and the specific conditions. Indeed, the co-

existence of different catabolic routes for RubisCO turnover seems to be a 

reasonable assumption in view of the divergent experimental evidence on 

RubisCO degradation found under different conditions (Hörtensteiner and Feller, 

2005). 

 

ROLE OF SINGULAR CYSTEINE RESIDUES IN RUBISCO CATABOLISM 

Cysteine-thiol oxidation is a widely encountered mechanism for modifying 

the activity of enzymes in redox changing environments. Besides, it is also 

frequent as a marking step for protein turnover (Stadtman, 1990). Thiol groups 

may undergo progressive degrees of oxidation, from the mild disulfide (a 

reversible S–S bond established with another thiol) to the sulfenic (–SOH), sulfinic 

(–SO2H), and sulfonic (–SO3H) acid derivatives. The lower oxidation states of 

disulfide and sulfenic acid can be reverted again to the sulfhydryl state. Disulfides 

can be regenerated by disulfide exchange with free thiols, while sulfenic acid can 

be reduced by thioredoxins and glutaredoxins (Hancock et al., 2006).  

RubisCO activity was early described as sensitive to thiol-directed reagents 

such as p-chloromercuribenzoate (Sugiyama et al., 1968) or the affinity label N-

bromoacetylethanolamine phosphate (Schloss et al., 1978). It was later found 

that the activity of RubisCO can be modified by mild oxidative treatments 

affecting cysteines (Tenaud and Jacquot, 1987; Penarrubia and Moreno, 1990) 

including those restricted to disulfide exchange (Garcia-Ferris and Moreno, 1993). 

Spontaneous exchange with a small disulfide such as cystamine (2-

mercaptoethylamine disulfide) leads to complete inactivation of RubisCO and also 

to conformational alterations that render the holoenzyme more prone to 

proteolytic attack and disassembly (Marín-Navarro and Moreno, 2003). It is 

noteworthy that the cysteine-dependent inactivation and proteolytic sensitization 
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of the enzyme is widely extended, having been described in RubisCOs from 

cyanobacteria (Marcus et al.,  2003), photosynthetic protists (Garcia-Ferris and 

Moreno, 1993; 1994), green algae (Mehta et al., 1992; Moreno and Spreitzer, 

1999), diatoms (i.e. non-green algae of the red-like type) (Marín-Navarro et al., 

2010), and higher plants (Peñarrubia and Moreno, 1990; Marín-Navarro and 

Moreno, 2003). It appears that this is a highly conserved trend which is aimed to 

trigger the first stages of the catabolism of the enzyme under natural senescence, 

environmental stress or other circumstances generating oxidative conditions 

(Moreno et al., 2008). 

Changes brought forth by disulfide exchange rely in the oxidation of critical 

cysteines that, acting as redox sensors, operate the switch that turn the enzyme 

to the inactive and protease-sensitive conformation. The identity of these critical 

residues has not been clearly established to date. It is however known that more 

than one cysteine must be implied because the inactivation and the proteolytic 

sensitization of the enzyme occur at a different redox potential, the latter 

requiring a more oxidizing environment (García-Ferris and Moreno, 1993; Moreno 

et al., 2008). Because critical redox-sensor residues are likely to be conserved, 

the physiological effect of substituting some of the conserved cysteines of 

RubisCO have been studied in organisms (such as C. reinhardtii and 

Synechocystis) that allow the transformation with a site-directed mutagenized 

RubisCO gene.   

The first substitution to be studied was the replacement of Cys172 by 

serine in C. reinhardtii (Moreno and Spreitzer, 1999). Exchange of this residue did 

not affect the oxidative inactivation of RubisCO, but the conversion to a protease-

susceptible form in vitro required a more oxidizing environment than the wild type 

enzyme, and the stress-induced degradation of RubisCO was delayed in vivo 

(Moreno and Spreitzer, 1999; Moreno et al., 2008). Furthermore, these effects 

were later confirmed substituting the same residue by alanine in the 

Synechocystis enzyme (Marcus et al., 2003). In contrast, the substitution of the 

vicinal Cys192 apparently did not alter the proteolysis of RubisCO but sensitized 

the enzyme to inactivation under milder oxidative conditions (García-Murria, 

2006).  

On the other hand, the substitution of both of the Cys449-Cys459 vicinal 

pair of residues in C. reinhardtii produced an enzyme which could not be totally 

inactivated in vitro, retaining about 20% of the activity under extreme oxidizing 

conditions. The same mutant experienced enhanced aggregation and association 

to membranes in vivo during stress-induced catabolism (Marín-Navarro and 

Moreno, 2006). The substitution of only one of the two vicinal residues (i.e. either 
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Cys449 or Cys459) produced a less intense phenotype of the same characteristics 

indicating that, in this case, the contribution the residues appears to be additive 

(Marín-Navarro and Moreno, 2006). The only other cysteine residue potentially 

involved in internal disulfide bonding, Cys247, has been also mutagenized to 

alanine in the Synechocystis RubisCO with no apparent effect on its catabolism 

(Marcus et al., 2003). The evidence accumulated hitherto suggests that different 

cysteine residues from RubisCO are likely contribute to the catabolism of the 

enzyme to variable extent, and they might do so in an additive, cooperative or 

redundant way (Moreno et al., 2008). Therefore, this group of critical residues 

would be able to encode a complex but plastic response. It appears that a 

systematic screening of all conserved cysteines through site-directed mutagenesis 

could be a first step to analyze this redox signalling network. 
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OBJECTIVES 
The present works aims to continue the research on the modulation of RubisCO 

activity by disulfides and thiols. In particular, efforts will be directed to solve the 

following open questions: 

 

A. The role of glutathione in the redox regulation of RubisCO activity. 

As a preliminary step, experiments will be devised to determine which common 

disulfides and thiols are able to modify RubisCO activity, and to confirm that 

inactivation/reactivation of RubisCO occurs via disulfide exchange, as has been 

long assumed to be. In addition, because glutathione constitutes the major 

thiol/disulfide pool in the chloroplast stroma, it seems worth to investigate if 

Rubisco activity can be specifically controlled by glutathione, either by a direct 

disulfide exchange or through intermediaries such as other thiols, ascorbate or 

glutaredoxins. 

 

B. The identity of the critical cysteine residues of RubisCO. 

Due to the sensitivity of RubisCO to disulfides and cysteine-directed reagents, it 

has been postulated that the catalytic activity of RubisCO is affected by the redox 

state of some of its cysteines (the so called “critical” residues). It is assumed 

that, upon oxidation or chemical modification, these cysteines may induce long 

range conformational effects reaching the catalytic site. The identity of these 

cysteines has not been established yet. To that end, a site-directed mutagenesis 

scanning of the conserved cysteines of the C. reinhardtii RubisCO has already 

been started and will be completed with the present work. Besides, the sequential 

order of cysteine modification as the environment turns progressively more 

oxidizing will also be determined by differential labelling of the reduced and 

oxidized residues and mass spectrometry analysis. 

   

C. The mechanism by which thiols increase the inhibitory effect of 

arsenite on RubisCO activity. 

It has been described that arsenite produces a partial inactivation of Rubisco and 

that the inhibitory effect of arsenite can be notably enhanced by the presence of 

thiols. Although the reduction of a previously existing disulfide (releasing a dithiol 

that could subsequently react with arsenite) has been advanced as a plausible 

explanation, the actual mechanism, as well as its reversibility and effectiveness in 

vivo, will be investigated in the present work. 

 

Thereafter, results will be organized in chapters according to the three objectives. 
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INTRODUCTION 

 

Chloroplasts of plants and algae contain a highly organized thylakoid membrane 

system, harboring the light-harvesting complexes, the photosynthetic reaction center 

and the water splitting apparatus, which furnishes with electrons a chain of 

acceptors/donors (Blankenship, 2002). The light-driven electron transfer process 

involves a complex sequence of redox reactions leading to the reduction of final 

acceptors (like ferredoxin and NADPH) with highly negative standard redox 

potentials. Reducing power is subsequently distributed between driving assimilatory 

metabolic reactions (basically the reduction of oxidized carbon, nitrogen and sulfur 

compounds), anti-oxidant protection and redox signaling. While, under most 

circumstances, the major consumer of reducing equivalents is the metabolism (in 

particular, the Calvin cycle), antioxidant protection is crucial to shield the 

photosynthetic machinery from reactive radicals generated by uncontrolled escapes 

from the electron transfer activity itself (Noctor and Foyer, 1998). The chloroplast 

stroma contains a large pool  (1-5 mM) of glutathione (GSH), and even larger (10-30 

mM) of ascorbate (As), which buffer oxidant activity by giving away electrons, 

thereby switching to glutathione disulfide (GSSG) and dehydroascorbate (DHA), 

respectively (Foyer and Noctor, 2011). DHA is reduced back to ascorbate by GSH in 

a process catalyzed by the DHA reductase, while GSSG is reduced to GSH by NADPH 

through the activity of the glutathione reductase. Therefore, the redox state of the 

As/DHA and GSH/GSSG pairs is directly linked to that of NADPH/NADP+. During light 

hours, most of the chloroplastic glutathione pool is maintained in the reduced state 

(GSH) by NADPH, which in its turn is reduced by ferredoxin, the final acceptor of the 

photosynthetic electron chain. In the dark (and also during stress conditions 

impairing photosynthestic electron flow) the GSH/GSSG and As/DHA ratios may 

decrease moderately, but the redox status is usually prevented to turn very oxidative 

by arresting the processes that act as electron sinks (such as the Calvin cycle) and 

generating reducing equivalents through the metabolization of starch (Baier and 

Dietz, 2005). 

 

Many environmental changes affect, directly or indirectly, the efficiency of the 

photosynthetic transport, thereby shifting the redox potential (i.e. the 

oxidized/reduced ratio) of components of the electron transport chain as well as of 

the pools of photosynthesis-coupled redox pairs. The cell may use these shifts as 
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regulatory cues. For example, the expression of many chloroplastic genes is known 

to be modulated by the redox state of an electron chain carrier, the plastoquinone 

(Pfannschmidt et al., 1999). In other instances, the redox signals are distributed by 

specialized intermediary proteins, such as thioredoxins and glutaredoxins. 

Thioredoxins catalyze reversible thiol-disulfide exchange reactions between their own 

pair of vicinal cysteine thiol groups and a disulfide from a target protein (Schürmann 

and Jacquot, 2000). When oxidized, chloroplastic thioredoxins are reduced back by 

ferredoxin through the activity of the ferredoxin-dependent thioredoxin reductase. 

Light-dependent modulation of some Calvin cycle enzymes by disulfide/thiol 

switching of critical cysteine residues is a well established mechanism of redox 

regulation that involves thioredoxins (Crawford et al. 1989, Scheibe 1991).  On the 

other hand, glutaredoxins catalyze specific deglutathionylation of protein cysteine 

residues that have established a mixed disulfide bond with glutathione (Rouhier et 

al., 2008). Glutathyonylation (i.e. the disulfide bonding of a protein cysteine to 

glutathione) may happen spontaneously as a result of local oxidative conditions 

habitually promoted by oxygen radicals (ROS), but in some instances it can also be 

catalyzed by specific glutaredoxins (Starke et al., 2003; Beer et al., 2004).  

 

The mechanism of glutaredoxins involves also thiol-disulfide exchange and their 

oxidized forms are reduced back inside the chloroplast either by GSH or by 

ferredoxin (Rouhier et al., 2008). Glutathionylation of chloroplastic proteins may 

have protective, regulatory or signaling functions (Zaffagnini et al., 2012). Besides, 

reversible S-nitrosylation of sulfhydryl groups is but another mechanism of regulation 

of protein function based on the modification of critical cysteine residues. Nitric oxide 

production and signalling are well established in plants (Wilson et al., 2008). The 

modification of target proteins takes place usually through transnitrosation by S-

nitrosothiols, which act as nitric oxide stores inside the cell. Inside the chloroplast, 

the main S-nitrosothiol is expected to be S-nitrosoglutathione (GSNO), a reactant 

that alternatively may also produce glutathionylation of protein sulfhydryls 

(Giustarini et al., 2005). 

 

Ribulose-1,5-bisphosphate carboxylase/oxygenase, (RubisCO) is the key enzyme of 

the Calvin cycle, the metabolic pathway that incorporates inorganic carbon to 

phosphorylated sugars. The three-dimensional structure of RubisCO from the 

unicellular green alga Chlamydomonas reinhardtii (Taylor et al., 2001; Mizohata et 
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al., 2002), and several other species has been solved and the conformation of the 

catalytic site is well known. Even if RubisCO cysteine residues do not appear to play 

a direct role on the catalytic mechanism, it has been shown that the enzymatic 

activity of RubisCO is lost when the purified protein is treated with some thiol-

directed reagents (Sugiyama et al., 1968, Schloss et al., 1978). Moreover, RubisCO 

inactivation takes place also when exposed to mild oxidative conditions that may 

affect specifically sulfhydryl groups from cysteine residues (Tenaud and Jacquot 

1987, Peñarrubia and Moreno 1990). Cysteine sensitivity of RubisCO may be 

exemplified by its full inactivation by cystamine (i.e. 2-mercaptoethylamine disulfide) 

in vitro (García-Ferris and Moreno, 1993; Moreno and Spreitzer, 1999, Moreno et al., 

2008), which is thought to result from disulfide exchange with critical cysteines.  

Accordingly, this effect can be reversed, recovering full activity through a treatment 

with the cysteamine (2-mercaptoethylamine) thiol (García Ferris and Moreno, 1993). 

It has been hypothesized that this feature may constitute in vivo a physiologically 

relevant redox-controlled switch (Peñarrubia and Moreno, 1990; Moreno et al., 

2008). In the last decade, several proteomic studies have identified RubisCO as a 

potential target of thioredoxins (Balmer et al., 2003; Lemaire et al., 2004), 

glutaredoxins (Rouhier et al., 2005) and S-nitrosoglutathione (Abat et al., 2008; 

Abat and Deswal, 2009), reinforcing the notion of a physiological regulation of 

RubisCO activity through the redox state of critical cysteine residues.  

 

In order to be physiologically meaningful, RubisCO inactivation should be connected 

somehow to the redox conditions of the chloroplast stroma, perhaps through its 

major thiol/disulfide buffer, the GSH/GSSG pool. The detection of glutathionylated 

forms of RubisCO (Rouhier et al., 2005) appears to support this view. However, it 

has been reported in some instances that GSSG was unable to inactivate RubisCO in 

vitro (García-Ferris and Moreno, 1993; Moreno and Spreitzer, 1999). In this work, 

the effect of disulfides and thiols on RubisCO has been reexamined. The modification 

of RubisCO activity by several disulfide and thiol compounds has been tested in order 

to gain insight on the chemical nature and peculiarities of this enzymatic switch. 

Besides, the feasibility of RubisCO activity being regulated by the GSH/GGSG pool, 

either directly or indirectly through intermediary redox-active metabolites, has been 

investigated. 

 

 



CHAPTER A 

 36

MATERIALS and METHODS 

 

Chemicals. Analytical grade sodium ascorbate (C6H7NaO6), cysteamine (2-

mercaptoethylamine) (CSH), cystamine (cysteamine disulfide) (CSSC), reduced 

(GSH) and oxidized (GSSG) glutathione, 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB), 

tris (2-carboxyethyl) phosphine (TCEP), and S-nitrosoglutathione (GSNO) were 

purchased from Sigma. Cysteine and dithiothreitol (DTT) were obtained from Merck. 

Oxidized DTT was from Calbiochem. NaHl4CO3 (51.7Ci/ mol) was supplied by Perkin-

Elmer. Solutions used in oxidative inactivation experiments were made with highly 

purified water (Milli Q from Millipore). 

 

C. reinhardtii strain and growth conditions. The culture medium used for growth 

and maintenance of the C. reinhardtii strain was based on the TAP medium (Harris, 

2009) with modified concentrations of K2HPO4 and K2HPO4, which were 0.1434 g/l 

and 0.0725 g/l respectively, and with sodium acetate (0.95 g/l) as the source of 

carbon. This medium is referred to as (liquid) acetate medium. Solid acetate medium 

was made adding 15 g of Bacto-agar (Difco) per liter of liquid medium and plating in 

Petri dishes after sterilization in an autoclave. 

The wild type Chlamydomonas reinhardtii strain used was 2137 mt + (Spreitzer and 

Mets, 1981), maintained in solid acetate medium at 25 º C in the dark. For RubisCO 

purification, this strain was grown in liquid acetate medium at 28 °C under 

continuous light (provided by 3 white-light tubes of 30W at 30 cm of the cells) and 

orbital stirring (100 rpm) to a cell density of about 107 cells / ml. Approximately 3-4 

g of wet cells were harvested from each liter of culture.  

 

Purification of the RubisCO of C. reinhardtii. C. reinhardtii cells grown in liquid 

acetate medium were sedimented by centrifugation (3000g x 5min), washed with 

distilled water and frozen in liquid nitrogen and stored at -80 ° C until use. Except 

where noted, all steps in the purification of RubisCO were carried out at 4 °C. About 

6-10g of frozen cells were suspended in homogenization buffer (100 mM Tris-sulfate, 

10 mM MgSO4, 20 mM β-mercaptoethanol, pH 8.0) containing a protease inhibitor 

cocktail (Complete, Roche) using a ratio of 5 ml of buffer per g of cells. The cell 

suspension was sonicated (Sonics Vibracell) through 30s-pulses of 75W, separated 

30s, (until extensive rupture of cells as monitored by optical microscopy) in an ice 

bath. Then, 2% (w/v) insoluble polyvinyl-polypyrrolidone was added to the crude 
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extract and the mixture was stirred for 5 min. After a centrifugation step (35000g x 

10min), the supernatant was subjected to fractional precipitation with (NH4)2SO4 

between 35 and 60% saturation. The final precipitate (15000g x 15min) was 

dissolved in 2.5 ml of buffer A (10 mM Tris-H2SO4, 10 mM MgSO4, 10 mM NaHCO3, 

1mM β-mercaptoethanol, pH 8) and was applied to a desalting column of Sephadex 

G - 25 (GE Healthcare, PD-10), previously equilibrated with buffer A, and eluted with 

3.5ml of the same buffer. The eluate was divided between two polycarbonate tubes, 

each of them containing 16ml of a linear gradient of sucrose (0.2-0.8 M) in buffer A. 

Then, the tubes were centrifuged at 132000g x 4h in a fixed angle rotor (Ti 55.2, 

Beckman). Afterwards, the gradient was fractionated while monitoring absorbance at 

280nm (UV-1 model, Amersham Pharmacia). The peak containing RubisCO was 

collected between 1 and 5 ml from the bottom of the tube and stored frozen at -20 

ºC. The partially purified extract (diluted to an approximate volume of 25 ml) was 

further resolved by FPLC on a 6ml anion-exchange column Resource Q (Amersham 

Pharmacia), previously equilibrated with 20mM Tris-HCl pH 7.5 and eluted with 120 

ml of a linear NaCl gradient (0 to 0.42 M in 20mM Tris-HCl pH 7.5) at a flow rate of 

6ml/min at room temperature. RubisCO was collected directly as an intense 280 nm 

absorbance peak eluted around 0.15 M NaCl. The final protein preparation contained 

>95% RubisCO (ascertained by densitometry of Coomassie Blue-stained gels after 

SDS-PAGE) and was essentially free of nucleic acids (A280/A260nm > 1.7). Purified 

RubisCO was activated by gel filtration through a Sephadex G-25 column (GE 

Healthcare PD-10) equilibrated with 10 mM MgCl2, 10 mM NaHCO3, 100 mM Tris-

HCl, pH 8.2 (activation buffer), and further diluted with the same buffer as needed.  

RubisCO carboxylase activity assay. Carboxylase activity was determined 

following essentially the procedure of Lorimer et al. (1977). The enzyme (about 4 

µg) in 200 µl of activation buffer was kept in plastic vials (Biovial, Beckman) at 30°C 

for 10min. Then, the reaction was started by the addition of 50 µl of radioactive 

mixture [55 mM [l4C]-NaHCO3 (about 1·109 dpm/mmol), 2.3 mM RuBP, 10 mM 

MgC12, 100mM Tris-HCl pH 8.2]. The reaction was stopped after 5 min with 50 µl of 

2 M HCl and the excess NaHl4CO3 was eliminated drying the samples in a vacuum 

oven at 80 °C (twice, after redissolving the dry material with 200 µl of water). The 

final residue was dissolved in 200 µl of water, suspended in 3 ml of scintillation 

mixture (Cocktail 22 Normascint, Scharlau), and counted for radioactivity. To 

determine precisely the specific radioactivity of the CO2/bicarbonate used as 

substrate, in each experiment 50 µl of the radioactive mixture were directly counted 
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by adding 3 ml of an alkaline scintillation cocktail [57:50:5:3 (v/v) of toluene/ 

phenylethylamine/water/methanol containing 8.52 g/l of PPO and 0.174 g/l of 

POPOP] which retained the bicarbonate.  

 

Inactivation/reactivation of RubisCO 

All inactivation /reactivation treatments were carried out with the RubisCO dissolved 

in 10 mM MgCl2, 10 mM NaHCO3, 100 mM Tris-HCl, pH 8.2 (activation buffer). The 

presence of bicarbonate and Mg2+ ions in the medium ensured that the enzyme 

adopted the catalytically competent conformation. Both inactivating and reactivating 

reagents were prepared immediately before use as fourfold-concentrated solutions in 

activation buffer readjusting the pH (8.2) after dissolving them. Inactivating reagents 

were mixed with purified RubisCO preparations (at a final enzyme concentration 

about 0.2 mg/ml) in open Eppendorf tubes and placed at 30°C in a vacuum oven 

which was twice evacuated and refilled with nitrogen to prevent uncontrolled 

spontaneous oxidation. 20µl samples of the incubated solutions were periodically 

taken, diluted to 200µl with activation buffer and assayed for carboxylase activity. 

For reactivation assays, RubisCO (0.45 mg/ml) was previously inactivated with 20 

mM CSSC at 30 ºC for 2h in under nitrogen atmosphere. Afterwards, CSSC was 

eliminated by desalting in a Sephadex G-25 column (GE Healthcare, PD-10). Aliquots 

(0.48 ml) of the desalted inactive RubisCO preparation were mixed with 0.16 ml of 

(4x) reactivating reagents and kept at 30 ºC in a vacuum oven under nitrogen. 

Aliquots of 20µl were taken periodically for carboxylase activity assay. All 

inactivation/reactivation assays were carried out as independent triplicate runs. 

 

Spectrophotometric assay of disulfide reduction by ascorbate. 

Disulfide to thiol reduction was monitored determining the appearance of sulfhydryl 

groups using the Ellman’s reagent (DTNB). Reducing activity was determined from 

the slope of the time course of the optical density at 412 nm assuming an extinction 

coefficient of 1.4·104 M-1·cm-1 for the TNB monomer (Russo and Bump, 1988). 
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RESULTS 

 

Inactivation of RubisCO by various disulfides  

 

Exposure of purified RubisCO from C. reinhardtii to different disulfides resulted in 

enzyme inactivation to a variable extent (fig. A1).  
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Fig. A1. Time course of RubisCO inactivation by disulfides. RubisCO (0.2 mg/ml) from C. reinhardtii 

was incubated with 20 mM GSSG, 20 mM CSSC, 20 mM oxidized DTT, 1 mM cystine or 0.5 mM DTNB in 

activation buffer at 30 ºC under a nitrogen atmosphere. At given times, samples (0.02 ml) from triplicates 

were taken and assayed for carboxylase activity. Values are expressed as a percentage of the activity of a 

non-treated (control) sample incubated in parallel. Bars represent ± SEM from triplicates. 

 

RubisCO was completely inactivated by some disulfides (CSSC and DTNB) and 

partially inactivated by others (oxidized DTT and GSSG). Cystine at 1 mM (close to 

its solubility limit) was ineffective contrasting with DTNB, which produced a fast 

inactivation at 0.5 mM concentration (fig. A1).  

The rate of RubisCO inactivation was also dependent on the disulfide concentration. 

Treatment with CSSC led to extensive inactivation within 90 minutes at all tested 

concentrations (in the range of 5 to 20mM) (fig. A2, panel A). In contrast, increasing 

concentration of GSSG (from 10 to 40 mM), while slightly enhancing the rate of 

activity loss, still resulted in a very restricted inactivation within 6 hours (fig. A2, pa 

nel B).  
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Fig. A2. Time course of RubisCO activity in the presence of CSSC (A) or GSSG (B) at various 

concentrations. The 20 mM CSSC time course is included also in B for comparison. RubisCO (0.2 mg/ml) 

in activation buffer was incubated with CSSC or GSSG at 30 ºC in a nitrogen atmosphere. At given times, 

samples from triplicates were taken and assayed for carboxylase activity. Values are expressed as a 

percentage of the activity of a non-treated (control) sample incubated in parallel. Error bars represent ± 

SEM. 

 

Because of the specificity and limited chemical reactivity of the disulfide reagents, 

the most likely hypothesis is that inactivation occurred through oxidation of critical 

Cys residues of RubisCO establishing mixed disulfides with the reactants: 

 

 

-Cys-SH   +   XSSX     <=========>   -Cys-SSX   +   XSH   

  active                                                                       inactive 

 

 

Accordingly, inactivation with CSSC took place faster at pH 8.2 than at pH 7.0 (figure 

A3), suggesting that the modification of the critical cysteines was mediated by the 

thiolate ion, which is known to be an obligatory intermediate for disulfide exchange 

(Torchinsky, 1981). Alternatively, these substances could inactivate RubisCO by non-

covalent binding to the enzyme, thereby interfering somehow with the structural 

conformation required by the catalytic mechanism. 
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Fig. A3. Time course of RubisCO inactivation by 20 mM CSSC at pH 7.0 and pH 8.2. RubisCO (0.2 

mg/ml) in activation buffer (either at pH 8.2 or pH 7.0) was incubated with 20 mM CSSC at 30 ºC. At 

given times, samples (0.02 ml) from independent triplicates were taken and assayed for carboxylase 

activity. The assay took place at pH 8.2 for all samples. Values are expressed as a percentage of the initial 

activity. Bars represent ± SEM from triplicates. 

 

If inactivation takes place through the disulfide exchange mechanism, it might be 

assumed that disulfides failing to inactivate RubisCO (GSSG, cystine, oxidized DTT) 

do not exchange with the critical cysteine residues. Limited inactivation of RubisCO 

by some disulfides may be due to a premature approach to equilibrium because of a 

remarkable stability of the reagent in the disulfide form, as is known to be the case 

of oxidized DTT (Torchinsky, 1981).  In other cases there might be kinetic barriers 

that hinder disulfide exchange, as may happen with GSSG, which seems to produce 

a steady inactivation at a very slow rate (figs. A1 and A2 panel B). It is also 

conceivable that these disulfides could indeed react with the critical Cys residues but 

the resulting mixed disulfides do not (or not fully) inactivate RubisCO. In the case of 

glutathione, this latter possibility deserves to be considered further because, if true, 

the glutathionylation of RubisCO cysteines could play a physiological role in vivo 

protecting against oxidative inactivation of the enzyme. 

 

Reactivation of CSSC-oxidized RubisCO 

 

After full inactivation of RubisCO with 20 mM CSSC and removal of the disulfide in a 

desalting column, the inactive enzyme preparation was treated with different 

sulfhydryl compounds to investigate a possible recovery of activity through disulfide 

exchange. Reactivation of CSSC-treated RubisCO was indeed achieved by a variety 

of thiols (fig. A4). 
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Fig. A4. Time course of the reactivation of CSSC-oxidized RubisCO by different reductants. A 

time course of unaided recovery (without reductant) is also included (Control). RubisCO. which had been 

inactivated with 20 mM CSSC for 2h at 30 ºC under a nitrogen atmosphere, was desalted afterwards to 

eliminate CSSC. Reductants at a final concentration of 40 mM (CSH, GSH, Cys, NAC, EtSH ) or 20 mM 

(DTT, TCEP) were added to the desalted RubisCO aliquots (0.3 mg/ml) in activation buffer and kept at 30 

ºC under nitrogen atmosphere. Samples were taken at the given times for activity assay.  Activity is given 

as [nmol CO2 fixed/(min · mg of RubisCO)]. Bars represent ± SEM from triplicates. 

 

DTT and CSH produced a fast and complete recovery. Cys and EtSH were somewhat 

slower but also led to full (or almost full) recovery. NAC (N-acetyl cysteine) and GSH 

achieved only partial reactivation. NAC restored about half of the activity whereas 

GSH achieved a very limited recovery (about 10 % of the initial activity).  No 

reactivation of the CSSC-oxidized RubisCO was observed in the absence of 

reductants (control in fig. A4) or in the presence of 20 mM tris (2-carboxyethyl) 

phosphine (TCEP), a non-thiol reagent that potentially can reduce disulfides 

according to the following scheme: 

 

-CysSSC + P (CH2CH2COO-)3 + H2O  <===>  -CysSH  + CSH + O= P(CH2CH2COO-)3 

 

 Disulfide             TCEP                                          Thiols                  TCEP oxide          
 

 

To investigate the possibility (considered above) of a spontaneous glutathionylation 

of the critical Cys residues of RubisCO that would not affect the catalytic activity of 

the enzyme, the inactive RubisCO was also incubated with 20 mM GSSG in the 
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presence of a low concentration (1 mM) of GSH (which was introduced to ensure the 

presence of thiolate ions to promote disulfide exchange). Under these conditions, 

disulfide exchange with GSSG would be expected to recover RubisCO activity if the 

mixed disulfides of the critical cysteines with glutathione do not compromise the 

catalytic competence of the enzyme. However, treatment of the oxidized enzyme 

with GSSG did not reactivate RubisCO (fig. A5). Thus, the hypothesis of a 

spontaneous protective glutathionylation of the critical residues by a direct disulfide 

exchange with GSSG is not supported by in vitro observations. 
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Fig. A5. Time course of the reactivation of CSSC-oxidized RubisCO by GSSG. RubisCO. which had 

been inactivated with 20 mM CSSC for 2h at 30 ºC under a nitrogen atmosphere, was desalted afterwards 

to eliminate CSSC. Aliquots of the oxidized RubisCO (0.3 mg/ml) were incubated at 30 ºC under nitrogen 

atmosphere with 20 mM GSSG + 1mM GSH to attempt reactivation. The time course of activity was 

compared to that in the absence of redox agents (control). In parallel, other aliquots were incubated with 

either 20 mM GSSG, 1 mM GSH or 40 mM CSH, as further control treatments. Samples were taken from 

each treatment at the given times for activity assay. Activity is given as [nmol CO2 fixed/(min · mg of 

RubisCO)]. Bars represent ± SEM from triplicates. 

 

The fact that all thiols reactivate (to some extent) RubisCO (fig. A4) strongly 

supports the initial hypothesis that CSSC inactivation results from oxidation of critical 

cysteines to reversible disulfides (against other alternatives, such as non-covalent 

CSSC binding to the RubisCO affecting the catalytic site). The partial reactivation 

provided by GSH (fig. A3) and the partial inactivation produced by GSSG (figs. A1 

and A2), cannot be justified by equilibrium constraints in both cases (since the 

GSH/GSSG redox pair cannot have both too low and too high standard redox 

potential with regard to the critical cysteines). Moreover, the final effect of GSSG 
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(and perhaps GSH) on RubisCO activity appears not to be actually restricted but 

shows a (very slow) progress on a much longer time scale. In addition, because 

GSSG does not reactivate RubisCO (fig. A5), the hypothesis of protective 

glutathionylation (that could have been achieved by GSSG through disulfide 

exchange) is not supported by the data. Therefore, results in figures A1 and A4 

suggest that access of GSH and GSSG to the critical Cys was hindered by kinetic 

barriers, perhaps related to the bulky nature of both of these reagents (GSH and 

GSSG) compared to those that were effective (CSH, Cys, NAC, EtSH, DTT). 

Nonetheless, GSH (being half the size of GSSG) may still reduce without hindrance a 

limited number of relevant Cys, which would be responsible for the slight reactivation 

achieved by this reagent (fig. A4). 
 

RubisCO modification by GSSG/GSH through intermediary thiols 
 

The fact that RubisCO is neither significantly inactivated by GSSG nor reactivated by 

GSH in vitro appears to rule out a direct control of RubisCO activity by the 

glutathione pool in vivo. Nevertheless, the following experiments were designed to 

test if the glutathione pool may affect RubisCO activity indirectly by 

reducing/oxidizing intermediary molecules (such as the small thiol/disulfide 

compounds that proved effective in figures A1 and A4). 
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Fig. A6. Time course of reactivation of CSSC-oxidized RubisCO through CSH driven by GSH. 

RubisCO which had been inactivated with 20 mM CSSC for 2h at 30 ºC under a nitrogen atmosphere, was 

desalted afterwards to eliminate CSSC. Aliquots of the oxidized RubisCO (0.3 mg/ml) were incubated at 30 

ºC under nitrogen atmosphere with 40 mM GSH + 4mM CSSC to attempt reactivation. The time course of 

activity was compared to that in the absence of redox agents (control). In parallel, other aliquots were 

incubated with either 40 mM GSH, 4 mM CSSC or 40 mM CSH, as further control treatments. Samples 

were taken from each treatment at the given times for activity assay. Activity is given as [nmol CO2 

fixed/(min · mg of RubisCO)]. Bars represent ± SEM from triplicates. 



CHAPTER A 

 45

 

Full reactivation of a CSSC-inactivated RubisCO was achieved by GSH in the 

presence of CSH as an intermediary thiol (introduced in the experiment as a small 

amount of the disulfide CSSC to discard a possible direct reduction) but not in the 

absence of it (fig. A6). This result confirms that GSH can drive the reduction of the 

CSSC-oxidized RubisCO. Therefore, the inability of GSH to reactivate RubisCO 

directly (without intermediaries) must be of kinetic nature, as postulated above. 

RubisCO inactivation by means of GSSG in the presence of a small concentration of 

thiols has also been attempted. Nevertheless, in this case the addition of thiols did 

not appreciably accelerate activity loss (fig. A7). 
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Fig. A7. Time course of RubisCO inactivation by 40 mM GSSG in the presence of different thiols 

at 4mM concentration. RubisCO (0.2 mg/ml) in activation buffer was incubated with the redox agents at 

30 ºC under a nitrogen atmosphere. At given times, samples from triplicates were taken and assayed for 

carboxylase activity. Values are expressed as a percentage of the activity of a non-treated (control) 

sample incubated in parallel. Bars represent ± SEM. 

 

The fact that GSH was able to reactivate RubisCO rapidly in the presence of CSSC 

(fig. A6) but GSSG failed to inactivate the enzyme after addition of CSH or other 

thiols (fig. A7) could be explained considering the intermediary reactions involved: 

When GSH (40 mM) is mixed with CSSC (4 mM) the ensuing sequential reactions of 

disulfide exchange may take place: 

CSSC + GSH   <======>  CSSG + CSH 

CSSG + GSH   <======>  GSSG + CSH 
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Both reactions produce CSH and, moreover, both reactions are likely to be displaced 

to the right due to the great excess of GSH (40 mM). Consequently, CSSC is almost 

fully converted to CSH, which is known to be able to reactivate RubisCO (fig. A4). 

On the other hand, when GSSG (40 mM) is mixed with CSH (4 mM) the expected 

disulfide exchanges are: 

GSSG + CSH   <======>  GSSC + GSH 

GSSC + CSH    <======>  CSSC + GSH 

 

Here the first reaction may be displaced to the right due to the excess GSSG (40 

mM), but the second is not (because the accumulation of GSSC + CSH is limited to 4 

mM at most). Therefore, most of the CSH will probably be converted to GSSC, not to 

CSSC (which is the form known to inactivate RubisCO, as shown in fig. A1). If the 

access to the critical cysteines is hindered for GSSC as for GSSG, then the addition of 

CSH to GSSG would have little effect on RubisCO inactivation as seen in fig.A7. 

The above explanation is based on the assumption that the mixed disulfide GSSC 

cannot inactivate RubisCO. To check this postulate, the kinetics of RubisCO 

inactivation by CSSC was also tested in the presence of a low amount of GSH or CSH 

(concentrations at a thiol:disulfide ratio of 1:5).  
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Fig. A8. Time course of RubisCO inactivation by 10 mM CSSC in the presence of 2 mM GSH or 

CSH. Disulfide/thiol mixtures were allowed to equilibrate for 2 h at 30 ºC in a nitrogen atmosphere before 

adding to RubisCO. RubisCO (0.25 mg/ml) in activation buffer was incubated with the redox mixtures at 

30 ºC under nitrogen atmosphere. At given times, samples from triplicates were taken and assayed for 

carboxylase activity. Values are expressed as a percentage of the initial activity. Bars represent ± SEM 

from triplicates. An exponential trend line has been fit to the experimental points. 
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The rationale of this experiment was that the addition of GSH to CSSC would 

generate a GSSC mixed disulfide, thereby diminishing the total concentration of 

CSSC. This would slow down RubisCO inactivation if (as postulated) GSSC cannot 

oxidize the critical cysteines. Fig. A8 shows that the rate of RubisCO inactivation was 

indeed slower in the presence of GSH when compared to the control in which GSH 

has been replaced by CSH. This result suggests that the mixed disulfide GSSC has 

limited access to the critical cysteines that are responsible for the inactivation of 

RubisCO. 

 

RubisCO modification by GSSG/GSH through DHA/ascorbate 

 

Ascorbate/dehydroascorbate (DHA) is a redox pair which is highly concentrated in 

the chloroplast stroma (about 10-30 mM) and is naturally connected to the 

GSH/GSSG pair (Foyer and Noctor, 2011). Electron exchange between these two 

redox pairs is catalyzed by the GSH-dependent dehydroascorbate reductase (DHAR).  

 

 

                   

  

 

However, this reaction may also take place spontaneously (without enzyme) at a 

noticeable speed, especially at a basic pH (Jocelyn, 1972) as in the chloroplast 

stroma. This possibility was tested experimentally (in the reverse direction) by 

incubating ascorbic acid with GSSG and DTNB (to monitor the production of thiols 

from disulfides driven by ascorbic acid) in activation buffer (pH 8.2) (fig. A9). 

Results demonstrated that the reduction of GSSG by ascorbate takes place in the 

absence of enzyme at a measurable rate (see legend of fig. A9). Besides, 

spontaneous cleavage of protein-thiol mixed disulfides by ascorbate has also been 

reported to occur (Giustarini et al., 2008). 

To test if ascorbate could also reactivate RubisCO by reducing the disulfides at 

critical cysteines generated by a previous treatment with CSSC, we incubated the 

inactive RubisCO with ascorbate in the presence and absence of GSH (fig. A10). 
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Fig. A9. Time course of the optical density (OD) at 412 nm in 1 ml solutions of 0.4 mM DTNB 

alone (orange), with 32 mM GSSG (green), with 40 mM ascorbate (blue) or with 32 mM GSSG + 

40 mM ascorbate (red) in activation buffer. OD monitoring (against an activation buffer blank) began 

0.5 min after mixing the reagents and took place for a further 10 min. Slopes were calculated from the 

total ΔOD after 5 min. Slopes were almost constant except for some late decay in the Ascorbate + GSSG 

+ DTNB mix. OD increase in the GSSG + DTNB mixture was most likely due to slow disulfide exchange 

(probably activated by traces of GSH from GSSG impurities). OD increases in the ascorbate + DTNB mix 

demonstrate that ascorbate can directly reduce the DTNB disulfide. Further increase in the GSSG + DTNB 

+ ascorbate mix indicates reduction of GSSG also by ascorbate. From the net slope increase (net ΔOD/min 

= 0.0316 – 0.0195 – 0.0023 ≈ 0.01) and knowing that ε412 of TNB = 1.36·104 M-1·cm-1 (Russo & Bump, 

1988), a concentration increase of ≈ 7 · 10-7 M/min (corresponding to 7 · 10-10 mole of GSH/min in 1 ml 

volume) can be calculated. 
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Fig. A10. Time course of the reactivation of CSSC-oxidized RubisCO by different potential 

reductants. RubisCO which had been inactivated with 20 mM CSSC for 2h at 30 ºC under a nitrogen 

atmosphere, was desalted afterwards to eliminate CSSC. Inactive RubisCO aliquots (0.3 mg/ml) were 

treated with either 40 mM CSH, 40 mM GSH, 40 mM ascorbate, 4 mM ascorbate, or 4 mM ascorbate + 40 

mM GSH (final concentrations), and kept at 30 ºC under nitrogen atmosphere. A time course of a control 

recovery (without reductant) is also included. Samples were taken at the given times for activity assay. 

Activity is given as [nmol CO2 fixed/(min · mg of RubisCO)]. Bars represent ± SEM from triplicates. 
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Results indicated that ascorbate was unable to reactivate RubisCO, even at a 

concentration as high as 40 mM (fig. A10). Thus, in contrast to what happened with 

small thiols (fig. A6), GSH could not drive RubisCO reactivation using ascorbate as 

intermediary and, accordingly, the presence of 4 mM ascorbate did not enhance the 

limited reactivation achieved by 40 mM GSH alone (fig. A10).  

The possibility of RubisCO inactivation by DHA, which could be generated through 

ascorbate oxidation by GSSG, was also tested. DHA seems to be able to oxidize 

some protein sulfhydryl groups directly. Indeed, studies on the mechanism of the 

DHAR support a cysteine thiohemiketal intermediate as a result of spontaneous 

reaction of DHA with a Cys residue of the enzyme (Shimaoka et al., 2003): 

 

 

 

             DHA                                     thiohemiketal 
 

 

Thus, DHA could inactivate RubisCO through thiohemiketal derivatives at isolated 

critical cysteines or even progress to complete the two-electron oxidation (as with 

the conversion of GSH to GSSG by DHAR) by internal disulfide bonding of vicinal 

cysteine pairs. 

To probe if DHA could act as an intermediary oxidant between GSSG and RubisCO, 

the enzyme was incubated with 40 mM GSSG in the presence of 4 mM ascorbate. 

Under these conditions the high concentration of GSSG should increase the 

DHA/ascorbate ratio significantly. However, after 6 hours, RubisCO inactivation was 

not promoted by the presence of DHA at any appreciable rate (fig. A11). The slight 

decrease of activity after 6 hours of exposure to GSSG plus ascorbate took place also 

with GSSG alone (fig. A11), and it was due to the slow oxidizing effect of GSSG 

directly on RubisCO (also appreciated in figs. A1, A2 and A7). This indicates that 

GSSG cannot drive a faster oxidation of the critical cysteines of the enzyme through 

the intermediation of DHA.  
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Fig. A11. Time course of RubisCO activity in the presence of 40 mM GSSG, 4 mM Ascorbate, or a 

mixture of 40 mM GSSG + 4 mM Ascorbate. RubisCO (0.2 mg/ml) in activation buffer was incubated 

with the redox agents at 30 ºC under nitrogen atmosphere. At given times, samples from triplicates were 

taken and assayed for carboxylase activity. Values are expressed as a percentage of the activity of an 

untreated sample incubated in parallel. Bars represent ± SEM. 

 

Inactivation of RubisCO by S-nitrosoglutathione (GSNO)  
 

Protein sulfhydryls are also susceptible to combine with nitric oxide (NO) yielding S-

nitroso thiol derivatives. Nitric oxide generated in the chloroplast may react first with 

the abundant GSH pool to give S-nitrosogluthathione (GSNO) which, in its turn, may 

transfer the NO to a protein thiolate (P-S-) according to the following exchange 

reaction: 

 

P-S-  +  GSNO    →   P-SNO  +  GS- 

 

In order to test if GSNO may act directly as a NO-donor for the S-nitrosylation of 

RubisCO cysteines, the purified enzyme was incubated with GSNO at different 

concentrations. Exposure of purified RubisCO to GSNO produced a fast but partial 

inactivation of the enzyme (fig. A12). Indeed, GSNO produced a faster inactivation of 

RubisCO than CSSC at equal (5 mM) concentration, but GSNO activity loss was 

limited to a 30 to 40 % activity loss (fig. A12) whereas CSSC persevered to a slow 
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but extensive inactivation (figs. A2 and A12 panel A). S-nitrosylation is a reversible 

modification in most cases (Paige et al., 2008). Accordingly, a previous inactivation 

of RubisCO by 5 mM GSNO during 29 minutes could be reverted through a further 

addition of an excess reductant (10 mM DTT or 20 mM GSH) (fig. A12 panel B).  

 

  

 

 

Fig. A12. Time course of RubisCO inactivation by different concentrations of GSNO (A) and 

reactivation by thiols (B). Time courses corresponding to a Control (no addition) and a 5 mM CSSC 

treatments are also included in A for comparison.  RubisCO (0.2 mg/ml) in activation buffer was incubated 

with the redox agents at 30 ºC. Reductants (DTT and GSH at 10 and 20 mM final concentration, 

respectively) were added in B after 29 minutes of inactivation with 5 mM GSNO (orange arrow). At given 

times, samples from triplicates were taken and assayed for carboxylase activity. Values are expressed as 

a percentage of the initial activity. Bars represent ± SEM. 

 

 

DISCUSSION 

 

In vitro inactivation of RubisCO through reagents that modify cysteine thiol groups 

has been demonstrated for the enzymes of spinach (Sugiyama et al. 1968; Schloss 

et al., 1978), Lemna (Ferreira and Shaw 1989), orange tree (Peñarrubia and Moreno 

1990), Euglena (García-Ferris and Moreno, 1993), Chlamydomonas (Mehta et al., 

1992; Moreno and Spreitzer, 1999) and diatoms (Marín-Navarro et al., 2010) 

suggesting that this is a conserved trait among RubisCOs from photosynthetic 

eukaryotes. The present work focuses specifically on the inactivating effect of 

disulfides on RubisCO as has been previously shown using CSSC in several instances 

(García-Ferris and Moreno, 1993; Moreno and Spreitzer, 1999; Marín-Navarro and 
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Moreno, 2006). In particular, and in view of the reports of a possible RubisCO 

glutathionylation in vivo (Rouhier et al., 2005), the aim was to test the possibility of 

a strict control of RubisCO activity by glutathione, the major disulfide/thiol redox pair 

in the chloroplast, either by direct action or by indirect means. In previous reports, 

the inactivating effect of CSSC has been implicitly assumed to proceed through 

disulfide exchange leading to the oxidation of critical cysteine residues (Moreno et 

al., 2008). Alternatively, CSSC could bind (non-covalently) to the enzyme at a 

specific site interfering with the catalytic mechanism. However, the dissimilar 

chemical structure of the inactivating disulfides (such as CSSC and DTNB) makes this 

option unlikely. In addition, the pH dependence of the inactivation rate (fig. A3) and 

the fact that miscellaneous thiols can reverse the inactivation by CSSC (fig.A4), 

strongly supports the hypothesis that inactivation results indeed from disulfide 

exchange.  

Not all disulfides had the same effect on RubisCO and some of them (GSSG, cystine 

and oxidized DTT) failed to achieve full activity loss (fig. A1). While in the case of 

DTT this is likely to result from a strongly displaced equilibrium, disulfide exchange 

of GSSG with the critical cysteines of RubisCO appears to be hampered by kinetic 

barriers which slow down the process as to make it physiologically irrelevant. 

Similarly, some disulfide reducing agents such as GSH, TCEP and, to a lesser extent, 

NAC had difficulties in recovering the activity of CSSC-treated RubisCO (fig. A2). It is 

noteworthy (although perhaps coincidental) that reagents that achieve full activity 

recovery from CSSC-inactivated RubisCO are either positively charged (CSH) or near 

neutral (EtSH, DTT, Cys), while those that fail to reactivate or lead only to limited 

reactivation (GSH, NAC, TCEP) carry negative charge at physiological pH. It might be 

speculated that the net charge of the reducing agent could be crucial for gaining 

access to the critical cysteines. If true, Cys residues located close to negatively 

charged groups in the native structure of RubisCO would be good candidates for 

being critical residues. A survey of the charge environment of Cys residues in the C. 

reinhardtii RubisCO points to Cys 53, 192 and 247 from the large subunit and Cys 41 

and 96 fom the small subunit as those surrounded by a higher negative charge 

density. Alternatively, the inability to inactivate/reactivate RubisCO may have 

different causes for the different compounds and, in particular, the access of the 

GSH/GSSG pair to the critical residues may be restricted by steric reasons due to the 

bulky nature of these reagents (compared, for example, to the CSH/CSSC pair). 
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The fact that RubisCO is neither inactivated by GSSG (fig. A1) nor significantly 

reactivated by GSH (fig. A4) at a physiologically significant speed in vitro appears to 

rule out a direct control of RubisCO activity by the glutathione pool. However, small 

intermediary thiols present in the stroma at a low concentration may serve to reduce 

back and reactivate the oxidized protein at high GSH/GSSG ratios (as shown in fig. 

A4). Nevertheless, if the GSH/GSSG ratio drops temporarily to a low value (as a 

result of prolonged darkness or stress, for example), RubisCO will not be oxidized 

through the small thiol intermediaries because these will be mostly engaged in mixed 

disulfides with glutathione and these heterodisulfides (such as GSSC) do not affect 

RubisCO (fig. A5). This unidirectional effect may help to maintain the RubisCO in the 

reduced (active) state in vivo under a variety of redox environments. However, it 

might be expected that the small thiol intermediaries will indeed oxidize RubisCO at 

a low GSH/GSSG ratio if their concentration rise to levels similar to those of 

glutathione because, under these circumstances, a sufficient amount of 

homodisulfides (such as CSSC) of these small thiols would be generated at 

equilibrium. Since the total concentration of non-glutathione thiols plus disulfides 

have been shown to increase under different stress conditions (reviewed in Moreno 

et al., 1995), this might be a mechanism for triggering RubisCO catabolism, as has 

been previously proposed (Moreno et al., 1995). 

RubisCO was also partially inactivated by the NO-donor GSNO (fig. A12). Inactivation 

by S-nitrosylation has been reported already for the Kalanchoe pinnata (Abat et al., 

2008) and Brassica juncea (Abat & Deswal, 2009) RubisCOs. It is noteworthy that 

both enzymes displayed a higher sensitivity to GSNO than the RubisCO of C. 

reinhardtii, losing about 50 % of their activity around a 0.25 mM concentration of 

GSNO (to be compared with figure A12 where 5 mM GSNO attains only 40 % 

inactivation). In case of the C. reinhardtii enzyme, it is possible that GSNO does not 

reach all critical Cys residues or, alternatively, that S-nitrosylation of those Cys does 

not affect the performance of the catalytic site as much as the disulfide exchange 

with CSSC. However, because the extent of inactivation produced by GSNO was 

dependent on its concentration, achieving ~30% of activity loss at 1 mM and ~40% 

at 5 mM after long-term incubation (fig. A12), it appears that the S-nitrosylation of 

the critical cysteines might be feasible and actually inactivate the enzyme but the 

reaction between GSNO and the protein sulfhydryls does not progress further 

because reaches equilibrium prematurely. Thus, the fact that the inactivation of the 

C. reinhardtii RubisCO needs a higher concentration of GSNO reflects the lesser 
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tendency of its critical cysteines to exchange NO with GSNO (i.e., NO is more stable 

combined to GSH than to the critical protein sulfhydryls). It is likely that the stability 

of the S-nitroso derivatives depends on subtle interactions with the chemical 

environment surrounding the critical sulfhydryl groups. S-nitrosylation of RubisCO 

and its subsequent inactivation has been assumed to occur in vivo and has been 

justified as a mean to stop carbon fixation under certain stress conditions (Abat and 

Deswal, 2009). If this happens to be the case also in C. reinhardtii, GSNO does not 

seem to be an adequate NO-donor for the S-nitrosylation of RubisCO since it would 

need to accumulate to an unfeasibly high concentration in order to produce a 

significant inactivation of the enzyme. 

The DHA/ascorbate pool, which is the most abundant redox buffer inside the 

chloroplast, could also potentially control the activity of RubisCO. Indeed, ascorbate 

has been reported to reduce some small molecular weight disulfides (such as GSSG) 

and even protein mixed disulfides (Giustarini et al., 2008). In this regard, we have 

experimentally verified the spontaneous reduction of GSSG by ascorbate (fig. A9). 

However, our results indicate that ascorbate cannot reactivate the CSSC-oxidized 

RubisCO (neither directly nor as an intermediary agent for GSH) (fig. A10) while DHA 

is also unable to drive the oxidative inactivation of the enzyme (fig. A11). The 

existence of kinetic barriers impeding direct disulfide exchange between critical 

cysteines of proteins and the main cellular redox pools is not uncommon. Some 

chloroplastic proteins are known to be regulated by redox through critical cysteines 

while staying out of equilibrium with the glutathione pool (Clancey & Gilbert, 1987). 

Indeed, non-equilibrium with the environmental redox ambient appears to be a 

required feature for a specific redox control mediated by thiol/disulfide exchange 

(Kemp et al.,2008). In that instance, regulation can be kinetically exerted allowing 

the redox signal to travel only via specific catalyzed pathways (Danon, 2002). In 

view of the recent reports supporting the mixed disulfide bonding of GSH to RubisCO 

in vivo (Rouhier et al., 2005), the existence of kinetic barriers that prevent 

spontaneous oxidation of RubisCO by GSSG under most physiological circumstances 

suggests the possibility of a directed regulation of the enzyme by glutathionylation 

and deglutathionylation of critical residues catalyzed perhaps by specific 

glutaredoxins.  
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INTRODUCTION 

 

The net CO2-fixing enzyme, ribulose 1,5-bisphosphate carboxylase/oxygenase 

(RubisCO), from green algae and higher plants is an extraordinarily abundant 

protein which accumulates in the stroma of chloroplasts at a concentration (about 

0.5 mM) which is close to that a pure protein crystal (Pickersgill, 1986). In some 

green algae (such as Chlamydomonas reinhardtii) it may concentrate even further 

in specialized structures of the chloroplast, called pyrenoids, composed mainly by 

dense deposits of RubisCO (Borkhsenious et al., 1998). The amount of nitrogen 

invested in the synthesis of this enzyme is substantial, reaching about one fourth of 

the total content of a typical C3 higher plant leaf (Evans and Seeman, 1989). While 

RubisCO accumulates usually in actively growing cells with little turnover, the 

enzyme is degraded rapidly and selectively in senescent or decaying tissues in a 

process which is usually understood as a remobilization of nutrients (Ferreira et al., 

2000) and which has been shown to play a decisive role in the nutritional economy 

of different organisms ranging from higher plants (Kang and Titus, 1980; Friedrich 

and Huffaker, 1980; Mae et al., 1983) to unicellular photosynthetic protists (García-

Ferris and Moreno, 1994). Under natural or stress-induced senescence conditions, 

RubisCO is degraded in vivo following different pathways depending on the 

organism as well as type and intensity of stress (reviewed in Feller et al., 2008). 

However, there is a general consensus in that RubisCO catabolism begins with 

changes of oxidative nature affecting the structure and activity of RubisCO itself 

(Ferreira et al., 2000; Moreno et al., 2008). These changes include cysteine thiol to 

disulfide oxidation (Garcia-Ferris and Moreno, 1994), carbonylation at certain amino 

acids (Eckardt and Pell, 1995; Junqua et al., 2000), acidification and 

multimerization mediated by an enzymatic oxidase system (Ferreira and Davies, 

1989; Ferreira and Shaw, 1989), S-nitrosylation (Abat and Deswal, 2009) and non-

enzymatic fragmentation caused by reactive oxygen species (Ishida et al., 1998; 

Nakano et al., 2006). Coincidentally with these oxidative modifications, RubisCO 

begins to aggregate and to associate with membrane fractions (Ferreira and Shaw, 

1989; Mehta et al., 1992; García-Ferris and Moreno, 1993; Marín-Navarro and 

Moreno, 2006) as further steps in the catabolic pathway (Ferreira et al., 2000). 

RubisCO oxidation by a disulfide such as cystamine (CSSC, 2-mercaptoethylamine 

disulfide) is a convenient procedure to induce reversible oxidative changes in 

RubisCO. These changes result in full inactivation of the enzyme and structural 

shifts that render the enzyme more sensitive to proteolysis upon oxidation (García-

Ferris and Moreno, 1993). The progressive transition of the enzyme to the oxidized 

form may be followed by equilibrating the enzyme with redox buffers made by 
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mixing CSSC with 2-mercaptoethylamine (CSH) at different ratios (García-Ferris 

and Moreno, 1993, Moreno and Spreitzer, 1999; Marín-Navarro and Moreno, 2006). 

When C.reinhardtii RubisCO is incubated with CSSC/CSH mixtures at different 

disulfide/thiol ratios, the enzyme inactivates progressively (as the fraction of the 

oxidant disulfide increases) until total activity loss (fig. B1).  
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Fig.B1. Inactivation (○) and proteolytic sensitization (●) of wild type RubisCO incubated in 

redox buffers at different disulfide/thiol ratios. Purified RubisCO (ca 0.3 mg/ml) was incubated 

with mixtures of the disulfide cystamine (CSSC) and the thiol cysteamine (CSH) at different ratios in 

activation buffer (50 mM Tris HCl, 10 mM Mg Cl2, 10 mM NaHCO3, pH 8.2) . Constant monomeric 

concentration (i.e. [CSH] + 2·[CSSC]) was kept constant and equal to 40 mM for all ratios. Incubation 

took place in a nitrogen chamber at 30 ºC for 2 hours. The residual carboxylase activity, represented as 

a percentage of that of the fully reduced enzyme, is shown on the left axis. The amount of intact large 

subunit remaining after 20 minutes of proteolysis with subtilisin (0.5 g/ml) determined by SDS-PAGE 

densitometry is indicated on the right axis as a percentage of that obtained with fully reduced RubisCO 

in the same conditions. Error bars indicate SEM from triplicates. Figure taken from Moreno et al. (2008). 

 

As discussed in chapter A, under these mild conditions, inactivation is expected to 

occur through disulfide exchange with critical cysteines. The CSSC/CSH ratio at 

which inactivation takes place should reflect the propensity to oxidation (i.e. the 

redox potential) of these critical residues. Under the experimental conditions 

described in the legend of figure B1, the transition from active to inactive enzyme 

takes place around a CSSC/CSH ratio of 1.5. On the other hand, under the same 

conditions, the conformational change that renders RubisCO sensitive to proteases 

occurs around a CSSC/CSH ratio of 4 (fig. B1). This fact has been the main support 

of the hypothesis that changes induced in RubisCO by disulfide exchange are 

carried out by the oxidation of several (i.e. more than one) cysteine residues 

displaying different redox potentials (García-Ferris and Moreno, 1993; Moreno et 

al,. 2008). Thus, the cysteines which are crucial for inactivation appear to be more 
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easily oxidizable than those bringing forth the structural changes that facilitate 

proteolysis. 

In an attempt to identify the critical residues, some of the conserved cysteines of 

the C. reinhardtii RubisCO large subunit have been changed to serines through site-

directed mutagenesis and chloroplast transformation. Substitution of Cys 172 

produces an enzyme that is somewhat more resistant to proteolysis when oxidized 

in vitro, and shows delayed turnover in vivo under stress conditions (Moreno and 

Spreitzer, 1999). This phenotype was later confirmed when the same residue was 

replaced by alanine in a cyanobacterial RubisCO (Marcus et al., 2003). In contrast, 

the substitution of the vicinal Cys 192 in the C. reinhardtii enzyme did not change 

proteolytic susceptibility but shifted oxidative inactivation to a lower CSSC/CSH 

ratio (fig. B2) (García-Murria, 2006).  

 

                       
 

Fig.B2. Inactivation of C172S, C192S and wild type RubisCO in cystamine/cysteamine redox 

buffers at different disulfide/thiol ratios. Purified RubisCO (ca 0.3 mg/ml) was incubated with 

mixtures of the disulfide cystamine (CSSC) and the thiol cysteamine (CSH) at different ratios in 

activation buffer (50 mM Tris HCl, 10 mM Mg Cl2, 10 mM NaHCO3, pH 8.2). Constant monomeric 

concentration (i.e. [CSH] + 2·[CSSC]) was kept constant and equal to 40 mM for all ratios. Incubation 

took place in a nitrogen chamber at 30 ºC for 2 hours. The residual carboxylase activity is represented 

as a percentage of that of the fully reduced enzyme. Error bars indicate SEM from triplicates. Figure 

taken from García-Murria (2006). 

 

Substitution of the vicinal Cys 449 and 459 resulted in enzymes that retain residual 

activity at high CSSC/CSH ratios (fig. B3), but experience enhanced aggregation 

and membrane association under stress (Marín-Navarro and Moreno, 2006). 

 

 61



CHAPTER B 

                          
 
Fig.B3. Inactivation of C459S and wild type RubisCO in cystamine/cysteamine redox buffers at 

different disulfide/thiol ratios. Redox treatment and assay of the purified RubisCO took place as 

explained in the legend of fig. B2. Figure taken from Marín-Navarro (2004). 

 

In this work, the search for the critical cysteines has been restricted to a set of 

conserved residues. Moreover, the sequential order in which these residues are 

oxidized by CSSC has been determined, and the scanning of RubisCO cysteine 

mutants has been completed by analyzing the site-directed mutants of the relevant 

cysteines that had not been characterized previously.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 62



CHAPTER B 

 

MATERIALS and METHODS 

 

Chemicals. References for most chemicals are given in chapter A. Analytical grade 

guanidinium chloride (GdCl), N-ethylmaleimide (NEM), iodoacetamide (IAM) and 4-

vinylpyridine (VP) were obtained from Sigma. Phenylmethylsulfonyl fluoride (PMSF) 

was purchased from Boehringer.  Trypsin and chymotrypsin for protein digestion 

were from Promega and Roche respectively. 

 

C. reinhardtii strains and culture. The culture medium and maintenance 

conditions for Chlamydomonas reinhardtii have been described already in chapter 

A. Wild type C. reinhardtii strain was 2137 mt + (Spreitzer and Mets, 1981). 

RubisCO cysteine to serine site-directed mutant strains C459S (Marín-Navarro and 

Moreno, 2006), C84S, C247S, C284S, C427S, sC41S and sC83S (Marín-Navarro, 

2003) have already been characterized. 

 

RubisCO purification and assay. Purification of the C.reinhardtii RubisCO was 

carried out as previously reported in chapter A. Spinach and rice leaves were 

obtained from local crops, brought to the laboratory under refrigeration, and 

extracted immediately. Leaves were weighed and minced before being ground with 

pestle and mortar in 4 ml/(g of fresh weight) of extraction buffer (100 mM Tris-

sulfate, 10 mM MgSO4, 20 mM β-mercaptoethanol, pH 8.0). Further purification of 

RubisCO through ammonium sulphate precipitation, sucrose gradient centrifugation 

and anion exchange FPLC was carried out as for the C. reinhardtii enzyme.  

Carboxylase activity assay, using 14C-bicarbonate, in the presence of effectors 

(CSSC or NEM) has been already described in full detail (chapter A). Exceptionally, 

the spinach and rice RubiCOs were assayed only for 1 minute to minimize activity 

decay due to blocking of the catalytic site (“fallover”) to which higher plant 

enzymes are prone when assayed in vitro. All inactivation treatments were carried 

out with the RubisCO dissolved in 10 mM MgCl2, 10 mM NaHCO3, 100 mM Tris-HCl, 

pH 8.2 (activation buffer). 

 

RubisCO proteolysis. In vitro proteolysis of RubisCO with subtilisin has been 

already described in detail (Marín-Navarro and Moreno, 2003). Briefly, the purified 

RubisCO (0,3 mg/ml) in activation buffer was incubated with subtilisin (0.5 μg/ml) 

at 30 ºC in a water bath. Proteolysis was stopped at different times by adding PMSF 

(at 2 mM final concentration) and chilling on ice. Afterwards, the samples were run 
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in SDS-PAGE and stained with Coomassie blue as previously reported (Marín-

Navarro and Moreno, 2003). 

 

Differential labeling of oxidized and reduced RubisCO cysteines, protein 

digestion and mass spectrometry analysis. Aliquots (0.8 ml) of purified 

RubisCO (1.25 mg/ml in activation buffer) were incubated under a nitrogen 

atmosphere for 2h at 30 ºC with CSSC/CSH mixtures at different ratios but total 

monomeric concentration (i.e. CSH + 2CSSC) equal to 40 mM in all cases. 

Afterwards, 0.2 ml of 1M IAM in activation buffer was added to each sample and 

the mixture was left for 30 minutes a 30 ºC. Then, 0.8 ml were transferred to an 

Eppendorf vial containing 575 mg of solid guanidinium chloride (GdCl), which was 

dissolved (final concentration 5.2 M) and the solution was left for a further 30 

minutes at 30ºC. After this, 1 ml of the solution was passed through a Sephadex G-

25 column (GE Healthcare, NAP 10) equilibrated with 5.2 M GdCl in activation 

buffer. The protein was recovered in 1.5 ml. Further 30μl of 1M dithiothreitol (DTT) 

were added to reduce disulfides and the mixture was incubated at 30 ºC for 2 h. 

Finally, 35 μl of 4-vinylpyridine were mixed in and this was followed by a 30 minute 

incubation at 20 ºC and storage at 4 ºC overnight. 

The derivatized RubisCO was recovered by precipitation in chloroform:methanol 

(4:1) and redissolved in 25 mM ammonium bicarbonate before being treated either 

with trypsin (25 μg at 37 ºC for 12h) or chymotrypsin (25 μg at 28 ºC for 2 h). The 

digestion products were dried in a vacuum centrifuge and resuspended in 0.1% 

trifluoracetic acid. Peptides were analyzed by liquid chromatography and double 

mass spectrometry (LC-MS/MS) using an Ultimate nano-LC chromatographic 

system and a QSTAR XL-QTOF hybrid mass spectrometer. Samples (5 μl) were 

delivered to the system using a FAMOS autosampler at 30 μl/min and the peptides 

were trapped onto a PepMap C18 precolumn. Peptides were then eluted onto an 

analytical PepMap C18 column and separated using a 15-35% acetonitrile gradient 

at 200 nl/min. The QSTAR XL was operated in the information-dependent 

acquisition mode in which a 1s TOF MS scan from 400 to 2000 m/z was followed by 

3s product ion scans from 60 to 2000 m/z on the two most intense double or triple 

charged ions. Quantitation of the mass spectrometer detector signals was done 

using the Progenesis software. Values for the carbamidomethylated peptides were 

normalized as fractions of the signal obtained for the same peptide in a sample of 

totally reduced RubisCO. Similarly, pyridylethylated peptides were expressed as 

fractions of the homologous signals recorded for a fully CSSC-oxidized enzyme. 
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RESULTS 

 

Inactivation of RubisCO from rice and spinach through disulfide exchange 

 

As shown in figure B1, RubisCO from C.reinhardtii becomes inactive when incubated 

in redox buffers of a CSSC/CSH ratio above 1.5. A similar experiment carried out 

with the RubisCOs of spinach and rice demonstrated that these enzymes inactivate 

in the same manner, although the rice RubisCO does so at a slightly lower 

CSSC/CSH ratio (fig. B4). 
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Fig.B4. Inactivation of spinach and rice RubisCOs in disulfide/thiol redox buffers. RubisCOs 

(about 0.2 mg/ml) were incubated with mixtures of the disulfide cystamine (CSSC) and the thiol 

cysteamine (CSH) at different ratios in activation buffer (50 mM Tris HCl, 10 mM Mg Cl2, 10 mM 

NaHCO3, pH 8.2). Constant monomeric concentration (i.e. [CSH] + 2·[CSSC]) was kept constant and 

equal to 40 mM for all ratios. Incubation took place in a nitrogen chamber at 30 ºC for 2 hours. 

Afterwards, the carboxylase activity of the RubisCOs was assayed for 1 minute. Activity values are 

represented as a percentage of that of the RubisCO incubated with 40 mM CSH (CSSC/CSH ratio = 0).  

 

The fact that spinach, rice and C. reinhardtii RubisCOs, all of them, experience 

cysteine-dependent inactivation (through CSSC) suggests that critical cysteines 

(those that contribute to carboxylase activity loss upon oxidative modification) are 

conserved residues. According to the sequence of the genes, the RubisCO of C. 

reinhardtii contains 16 cysteines per heterodimer, 12 in the large subunit and 4 in 

the small subunit. Table BI lists the cysteine residues of both the large and small 

subunit of the C. reinhardtii RubisCO and the corresponding amino acid residues 

located at the same position in spinach and rice. 
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Table BI. Cysteines of the C.reinhardtii RubisCO large (LS) and small (SS) subunits 

and amino acid residues (one letter code) found at homologous positions in the 

RubisCOs of spinach and rice. 

Species 
 C. reinhardtii Spinach Rice 

Cys residue 
       

LS                53 
 C A A 

                    84 
 C C C 

                  172 
 C C C 

                  192 
 C C C 

                  247 
 C C C 

                  256 
 C (methyl)a F F 

                  284 
 C C C 

                  369 
 C (methyl)a V V 

                  399 
 C V V 

                  427 
 C C C 

                  449 
 C T C 

                  459 
 C C C 

SS               41 
 C P/Cb C 

                   65 
 C (P)c (P)c 

                   83 
 C G/Cb C 

                   96 
 C V A 

 
a These cysteines are found methylated (thus, redox inactive) in the native C.reinhardtii RubisCO 
b Different residues are found in the products of the various rbcS genes. 
c Cys 65 of the small subunit has no actual homologous residue in rice and spinach because it is included in a sequence 

stretch which is deleted in higher plants. Proline occupies the numerical position of Cys 65 but in a different 

conformational context. 

 

Table BI shows that cysteines which are conserved between the RubisCOs of the 

three species are residues 84, 172, 192, 247, 284, 427 and 459 of the large 

subunit and 41 and 83 of the small subunit (in the C. reinhardtii RubisCO 

numbering). These residues constitute a highly conserved set of cysteines among 

eukaryotic green-like RubisCOs (Table BII) with the exception, perhaps, of Cys247 

which is only moderately conserved in green algae. 
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Table BII. Percentage of species for which a cysteine residue is present at a 

homologous position for each of the cysteine residues of the C. reinhardtii RubisCO. 

Sequences (taken from the Gene Data bank) of 495 higher plant and 121 green algae 

species were tested for the large subunit, and 63 higher plants and 8 green algae for the 

small subunit. (Number of species in which the particular Cys is present/number total of 

species in which the sequence at this position is available) is indicated in parentheses. 

Conserved Cys are indicated in red. Data collected by Dr. Julia Marín-Navarro. 

 

LARGE SUBUNIT 

CYS HIGHER PLANTS GREEN ALGAE 

53 0%       (0/495)       77.5%      (93/120) 

84 98.8%  (489/495)       99.2%      (119/120) 

172 100%   (495/495)       99.2%      (119/120) 

192 99.4%  (492/495)       99.2%      (119/120) 

247 96.4%  (477/495)       53.7%      (65/121) 

256 3.0%    (15/495)       65.3%      (79/121) 

284 99.4%  (492/495)       100%       (121/121) 

369   0%     (151/495)       66.7%      (16/24) 

399 0%       (0/495)       100%        (24/24) 

427 99.4%  (492/495)       100%        (24/24) 

449 30.5%  (151/495)       66.7%       (16/24) 

459 98.9%  (417/422)       100%        (14/14) 

SMALL SUBUNIT 

CYS HIGHER PLANTS GREEN ALGAE 

41 100%        (63/63) 87.5%       (7/8) 

65 0%            (0/63) 25             (2/8) 

83 96.8%       (61/63) 100%        (8/8) 

96 27%          (17/63) 87.5%       (7/8) 

 

It is likely that the cysteine-dependent redox properties displayed by RubisCO 

reside in some of the cysteines of this group of conserved residues. Other cysteines 

are much less conserved. Cys 449 which is present in the enzymes of C. reinhardtii 

and most green algae (but absent in spinach) is potentially relevant to redox 

regulation because is close to the conserved Cys 459, at a disulfide bonding 

distance (Taylor et al., 2001). 
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Specific activity of the C. reinhardtii RubisCO cysteine mutants 
 

In order to clarify the individual contribution of the conserved Cys residues to 

oxidative inactivation, site-directed RubisCO mutants replacing each of the 

conserved Cys (one at a time) by serine have been constructed (Moreno and 

Spreitzer, 1999; Marín-Navarro, 2004; Marín-Navarro and Moreno, 2006; García-

Murria et al., 2008). Because mutants C172S, C192S and C459S have already been 

characterized, this work focuses on the cysteine mutants at the remaining 

conserved residues, namely C84S, C247S, C284S and C427S among the large 

subunit substitutions, and sC41S and sC83S among those from the small subunit. 

All these mutants grew autotrophycally (i.e., in minimal medium) at a rate that was 

similar to the wild type. A survey of the intrinsic specific carboxylase activity of the 

purified RubisCOs showed that some of the mutant enzymes (in special, C84S, 

C247S and C427S) had a somewhat lower activity than the wild type (table BIII).  
 

Table BIII. Intrinsic specific carboxylase activity of the mutant RubisCOs with single 

cysteine replacement. Activity values are given ± SEM from five determinations. 
 

Mutant Activity  
[µmol CO2 fixed((min·mg)] 

C84S 1.10 ± 0.04 

C247S 1.41 ± 0.16 

C284S 1.93 ± 0.08 

C427S 1.25 ± 0.28 

sC41S 1.75 ± 0.11 

sC83S 1.63 ± 0.12 

Wild type 1.86 ± 0.06 
 

 

The specific activity of C84S was particularly low (60 % of the wild type) and this 

mutant had also a reduced content of RubisCO per cell ( one third of the wild type). 

Further information was sought by analyzing the properties of the purified mutant 

RubisCOs in vitro. Each mutant was assayed for thermal stability, activity remaining 

after equilibration with redox buffers at different CSSC/CSH ratios, and kinetics of 

inactivation by several thiol-directed reagents. In the following sections, the main 

results showing differences between mutant and wild type enzymes are presented.  
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Thermostability and structure changes of the cysteine mutant RubisCOs 

 

To check possible structural roles of the conserved cysteines, the thermal stability 

of all mutants RubisCOs was tested by measuring the carboxylase activity of 

samples that had been previously incubated at different temperatures for 30 

minutes. Noticeable changes of stability were detected in the C84S, C284S and 

C427S mutants. C284S and C427S denatured around 54 ºC, some 2 ºC below the 

wild type (fig. B5). The highest thermal sensitivity was displayed by the C84S 

RubisCO, which experienced thermal denaturation around 51 ºC, about 5 ºC lower 

than the wild type (fig. B5). 
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Fig.B5. Thermal inactivation of the wild type and the C84S, C284S and C427S mutant 

RubisCOs. Purified wild type and mutant RubisCO samples (ca 0.2 mg/ml in activation buffer) were 

incubated for 30 minutes at the given temperatures, Afterwards, they were chilled on ice for 5 min, 

transferred to a water bath at 30 ºC and, after a further 10 min, assayed for carboxylase activity at 30 

ºC. Activity values are given as a percentage of that of the sample incubated at 48 ºC. Error bars 

indicate ± SEM from triplicates. 

 

Furthermore, the C84S mutation caused a remarkable conformational distortion 

which could be detected by a change in the fragmentation pattern resulting from 

the treatment of the native holoenzyme with subtilisin (fig. B6).  

The C84S mutant was, in general, more intensely degraded that the wild type 

enzyme treated in parallel and displayed a new and characteristic proteolytic band 

of about 47 kDa (fig. B6). All these features of the C84S mutant suggest a 

significant alteration of the three-dimensional structure which is likely to be the 

cause of its low specific carboxylase activity (table BIII).  
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Fig.B6. SDS-PAGE electrophoregrams showing the fragmentation of the large subunit (ca 55 

kDa) of the wild type (wt) and C84S mutant RubisCOs after incubation of the purified native 

holoenzyme with subtilisin for the indicated times. Mass of molecular markers (MM) is indicated on 

the left. The C84S mutation promotes a distinctive 47 kDa fragmentation band (indicated by the red 

arrow on the right). 

 

 

 

Inactivation of the mutant RubisCOs by cysteine-directed reagents 

 

In order to check the redox properties of the purified mutant RubisCOs in vitro, 

each mutant was assayed for activity remaining after equilibration with redox 

buffers at different CSSC/CSH ratios. Besides, the kinetics of RubisCO inactivation 

by CSSC and by the thiol-directed reagent N-ethyl maleimide (NEM) was also 

determined. Significant differences between the wild type enzyme and the mutants 

will be presented in this section. Full details for all mutants are given in the 

Supplementary Information section at the end of the chapter. 

All of the studied mutants were fully inactivated by CSSC. Scanning the progressive 

inactivation with CSSC/CSH redox buffers for differences between wild type and 

mutants revealed only a slight shift to a lower CSSC/CSH ratio in the case of the 

C427S mutant, which showed a transition midpoint around a CSSC/CSH ratio of 1 

(fig. B7). 
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Fig.B7. Inactivation of C427S and wild type RubisCO in cystamine/cysteamine redox buffers at 

different disulfide/thiol ratios. Purified RubisCO (ca 0.3 mg/ml) was incubated with mixtures of the 

disulfide cystamine (CSSC) and the thiol cysteamine (CSH) at different ratios in activation buffer (50 mM 

Tris HCl, 10 mM Mg Cl2, 10 mM NaHCO3, pH 8.2). Constant monomeric concentration (i.e. [CSH] + 

2·[CSSC]) was kept constant and equal to 40 mM for all ratios. Incubation took place in a nitrogen 

chamber at 30 ºC for 2 hours. The residual carboxylase activity is represented as a percentage of that of 

the fully reduced enzyme. Error bars indicate ± SEM from triplicates. 

 

The kinetics of inactivation by CSSC was also somewhat faster for the C427S 

mutant than for the wild type (fig. B8, panel A). 
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Fig.B8. Time course of the carboxylase activity decay for the C427S and wild type RubisCOs 

incubated with 20 mM CSSC (A) or 0.1 mM NEM (B). Activity is expressed as a percentage of the 

initial value. Error bars indicate ± SEM from triplicates. 

 

Similarly, inhibition by NEM was faster in the C427S mutant when compared to the 

wild type enzyme (fig. B8, panel B). These results suggest an increased 

accessibility to the critical residues in the mutant enzyme. Remarkably, no single 

cysteine substitution suppressed the sensitivity of RubisCO to any of these 

reagents, reaching always full inactivation in all mutants. 
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Sequential oxidation of RubisCO cysteines followed by mass spectrometry 

 

Inactivation and proteolytic sensitization of RubisCO is known to take place by the 

progressive oxidation of cysteines with different redox potential (García-Ferris and 

Moreno, 1993; Moreno et al., 2008) (fig. B1). To attempt the identification of the 

cysteines involved in those changes, a chemical labelling protocol has been followed 

to react free sulfhydryl cysteines with iodoacetamide (IAM) and disulfide cysteines 

(after reduction) with vinylpyridine (VP). This protocol has been applied to purified 

RubisCO samples that had been exposed to five different CSSC/CSH ratios (0.01, 

1.5, 2.8, 4, and 80). The enzyme was simultaneously denatured and treated with 

IAM to carbamidomethylate the cysteines remaining as free sulfhydryls after the 

redox treatment. Then, the potential disulfides were reduced with dithiotreitol and 

the newly reduced cysteines were pyridylethylated with VP. Afterwards, the 

modified RubisCO was subjected to proteolytic fragmentation (either by an 

extensive treatment with trypsin or a time-limited partial proteolysis with 

chymotrypsin) and the resulting peptides were separated by liquid chromatography 

and analyzed by mass spectrometry. Mass determination of identified peptides that 

contained one cysteine indicated the type of derivatization (carbamidomethylation 

or pyridylethylation) suffered by that residue. Full details of the identified peptides 

are given as Supplementary Information at the end of the chapter.  

Among the group of conserved cysteine residues, no pyridylethylated peptides were 

found for cysteines 284 from the large subunit and 83 from the small subunit  

implying, perhaps, that these residues are internal and not engaged in redox 

exchanges (therefore, being always carbamidomethylated at the first step of 

denaturation and treatment with IAM). On the other hand, no carbamidomethylated 

peptide for Cys 247 from the large subunit was detected either, suggesting that this 

residue is almost always found as a disulfide. Indeed, disulfide bonding between 

Cys247 residues from adjacent large subunits has been reported to take place 

spontaneously during purification of RubisCO (Ranty et al., 1991). All other 

conserved cysteines were found in both modifications revealing a certain degree of 

redox modulation. 

Representing the fraction of oxidized residue against the oxidation state 

(corresponding to the different CSSC/CSH ratios tested) showed the progression of 

the modification for each of the residues (fig. B9).  
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Fig.B9. Fraction of RubisCO cysteine residues that became oxidized after equilibration with 

different CSSC/CSH ratios at a fixed 40 mM total monomeric (CSH + 2 CSSC) concentration of 

redox agents. The fraction of oxidized residues was calculated from the signals of carbamidomethylated 

and pyridylethylated peptides containing the corresponding cysteine as described in Matherias and 

Methods 

 

Most of the residues experienced a clear transition from reduced to oxidized at a 

CSSC/CSH ratio near 1.5. Only Cys172 displayed a distinctly delayed transition. Cys 

84 and 427 progressed only to partial oxidation (about half of the residues) even at 

the highest CSSC/CSH ratios (fig. B9). These cysteines showed, however, a definite 

stepwise increase of oxidation around the same CSSC/CSH ratio of 1.5 as most 

other residues. A plausible explanation for this result would be that the oxidation of 

certain cysteines taking place around that particular CSSC/CSH ratio promotes 

conformational changes that hinder further oxidation of Cys 84 and 427 in the same 

or a neighboring subunit of the holoenzyme. Other cysteines (41 from the small 

subunit and 172, 192 and 459 from the large) experienced extensive oxidation and, 

among these, an ordered sequence of oxidation can be tentatively read from figure 

B9. The sequence runs sCys 41 - Cys 459 - Cys 192 - Cys 172 from most to least 

easily oxidizable. 

It is noteworthy that Cysteines 172 and 192, integrating one of the vicinal pair of 

residues, showed a dissimilar oxidation course. Cys 172 became abruptly oxidized 

at high CSSC/CSH ratios (above 4) while Cys 192 displayed a more progressive 

oxidation with a lower transition midpoint (fig. B10).   
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Fig.B10. Fraction of oxidized Cys172 and Cys192 residues after equilibration with different 

CSSC/CSH ratios. Oxidation states marked 1 to 5 correspond to CSSC/CSH ratios of 0.01, 1.5, 2.8, 4 

and 80, correlatively. Data are singled out from fig. B9. 

 

Some conclusions can be drawn from this result. First, these vicinal cysteines do 

not appear to engage in an internal disulfide bond when oxidized (otherwise, the 

oxidation of the two residues would have run parallel). This was already predicted 

from the unfavourable orientation of the thiol groups in the structural model 

obtained by X-ray crystallography (Taylor et al., 2001; García-Murria et al., 2008). 

Second, the late oxidation of Cys172 is coincident with the conformational changes 

that trigger the proteolytic susceptibility of the enzyme (fig. B1). Thus, the 

oxidation of Cys172 could contribute to the induction and/or stabilization of these 

changes, as might also be expected from the proteolysis-resistant phenotype 

displayed by the RubisCO mutants in which this specific residue has been 

substituted (Moreno and Spreitzer, 1999: Marcus et al., 2003).  

 

DISCUSSION 

 

While the redox state of RubisCO cysteines is known to regulate the activity and 

conformation of the enzyme (Moreno et al., 2008), the precise identity of the 

residues that promote the functional changes has remained elusive hitherto. The 

fact that redox regulation is present in several species (fig.B4) suggests that the 

relevant changes are carried out by the oxidation of conserved residues. To 

investigate the role of the individual residues, a set of C. reinhardtii RubisCO 

mutants has been constructed in which conserved cysteines have been replaced, 

one at a time, by serine. This is a very conservative substitution that abolishes 
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redox activity by exchanging a single atom (sulfur for oxygen). Although the 

mutant RubisCOs display some differences in specific carboxylase activity in vitro 

(table BIII), all single cysteine mutants grow autotrophically without noticeable 

difficulties at a rate similar to the wild type, suggesting that these cysteines do not 

play a prominent role in catalysis and, therefore, may be highly conserved because 

of additional advantages. 

A possible role for these residues could be to establish interactions that contribute 

to the structural stability of the holoenzyme. This might be the case of Cys247 

linking the two large subunits that integrate the catalytic homodimer through a 

disulfide bond. This residue is deeply buried in the holoenzyme structure and does 

not apparently participate in redox exchange with the surrounding aqueous 

environment while the enzyme remains in the native folding (Ranty et al. 1991). In 

addition, results presented here indicate a remarkable structural role for Cys 84 

from the large subunit, whose replacement by serine produced thermosensitivity 

(fig.B5) and structural shifts which were detected by a change of the subtilisin 

fragmentation pattern (fig.B6). Cys 284 and 427 appear to play also a modest role 

in structural stability, their replacement being only noticeable as a decrease of a 

few degrees in the critical denaturation temperature (fig.B5). 

The other obvious role for the cysteines is to participate in the redox modulation of 

RubisCO activity and conformation related to the catabolism of the enzyme. The 

main result of this work in this respect is that none of the single cysteine 

replacements eliminated the sensitivity of RubisCO activity to disulfide exchange 

with CSSC. Similarly, inactivation through sulfhydryl-directed modification with NEM 

could also not be abolished by single substitutions. This strongly suggests that 

oxidative inactivation is the result of a cooperative effort of a set of cysteine 

residues with highly redundant roles. 

It might be noted that the simultaneous oxidation of the different cysteines may 

create interferences between them. The close transitions of cysteines s41, 84, 192, 

427 and 459 around a CSSC/CSH ratio of 1.5 (fig.B9) can lead to structural 

changes which affect each other accessibility to disulfide exchange. This may 

explain why cysteines 84 and 427 do not progress to the full oxidation of all 

residues even at high CSSC/CSH ratios (fig.B9). Moreover, the substitution of two 

of the conserved residues, Cys 192 (García-Murria, 2006) and Cys 427 (described 

in this work), results in an increased sensitivity of the enzyme to oxidation, shifting 

the inactivation curves to lower CSSC/CSH ratios (figs. B2 and B7). Thus, Cys 192 

and Cys 427 appear to protect the enzyme against oxidation. In order to explain 

this result one has to assume that these “protective” residues oxidize without 

inhibiting the carboxylase activity, but their oxidation impedes a further disulfide 
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exchange by other critical residues, thereby postponing inactivation. Cys 172, being 

the last to oxidize in the wild type enzyme and at a distinctly high CSSC/CSH ratio 

(fig. B9), is the most likely residue to experience a delayed transition. The 

interfering action could be exerted through long range conformational effects but 

also through direct obstruction of the access to a neighbor residue. This might be 

the case with Cys192 which is vicinal to Cys 172.  When Cys 192 is present, its 

disulfide exchange with CSSC may easily restrict a further mixed disulfide with Cys 

172 because of steric or charge (since cysteamine is positively charged) 

constraints. Therefore, Cys172 could only oxidize after substantial conformational 

changes at a high CSSC/CSH ratio (fig.B9). In the absence of Cys192 (i.e. in the 

C192S mutant), the open access to Cys 172 could lead to a premature inactivation 

of RubisCO (fig. B2) if the disulfide exchange of Cys 172 with CSSC inhibits the 

enzyme, as has been shown to occur when this particular residue is specifically 

modified by an affinity label (Schloss et al., 1978). In the case of Cys 427, the 

protective effect is more difficult to explain since this residue does not appear to 

complete its oxidation (fig.B9), even at high CSSC/CSH ratios. Nevertheless, it is 

possible that a partial oxidation of Cys 427 (i.e oxidation of this residue only at 

some of the large subunits integrating RubisCO) may block the access to other 

critical cysteines in the whole holoenzyme because of the cooperative interactions 

between subunits. 

Summarizing published and present observations, a tentative role may be assigned 

to every conserved cysteine regarding the redox properties of RubisCO (table BIV).  
 

Table BIV. Presumed roles for the conserved cysteine residues of RubisCO in 

structural support and redox regulation by disulfide exchange. 

 

Residue Role 

Cys 84 Weighty structural. Absence produces gross conformational distortions 

Cys172 Critical for inducing proteolytic susceptibility and probably for activity 

Cys192 Protective and structural 

Cys247 Secluded by spontaneous oxidation without affecting activity 

Cys284 Not accessible. Does not exchange disulfides 

Cys427 Protective and structural 

Cys459 Critical for redox regulation of activity. Needed for full inactivation 

sCys41 Probably critical for redox regulation of activity 

sCys83 Not accessible. Does not exchange disulfides 

 

Three residues appear not to be involved redox regulation: Cys 84 has a definite 

structural function (figs. B5 and B6) and does not reach full oxidation (fig.B9), 
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while Cys284 and sCys83 do not engage in disulfide exchange with CSSC remaining 

always reduced. Cys 247 oxidizes spontaneously without activity loss and thereafter 

becomes isolated from the redox environment (Ranty et al., 1991). Therefore, this 

one must also be discarded as critical. Two residues, Cys 192 and Cys 247, appear 

to protect the enzyme from premature inactivation (fig. B2 and B7) as discussed 

above. The three remaining cysteines, sCys 41, Cys 172 and Cys 459 are the most 

likely to be involved in redox regulation of RubisCO. Cys 172 is clearly related to 

conformational changes leading to enhanced proteolytic susceptibility (Moreno and 

Spreitzer, 1999). While the oxidation of this residue might perhaps cause RubisCO 

inactivation when the protective Cys192 is absent (fig.B2), its oxidation (about at 

CSSC/CSH ratio of 4) occurs much too late to contribute to the inactivation 

transition seen in the wild type (about a CSSC/CSH ratio of 1.5) (fig.B9). In 

contrast, Cys 459 is definitely involved in RubisCO inactivation since its absence 

prevents full activity loss (fig.B3) (Marín-Navarro and Moreno, 2006). Accordingly, 

Cys 459 oxidizes around a CSSC/CSH ratio of 1.5 (fig.B9), which is coincident with 

wild type RubisCO inactivation (fig.B1). However, because there is still a very 

substantial activity loss when Cys 459 is absent (fig.B3), another Cys residue 

oxidizing at a similar CSSC/CSH ratio must be responsible for the transition to the 

inactive state of the C459S mutant. This is likely to be sCys41. Therefore, the 

simplest hypothesis that fits the currently accumulated experimental facts is that 

inactivation of the wild type RubisCO by CSSC results from the oxidation of sCys 41 

and Cys459 by disulfide exchange. Oxidation of any of these residues produces 

extensive inactivation (indeed full inactivation for Cys 459 and almost full for 

sCys41), thereby playing redundant roles. Further oxidation of Cys 172 at higher 

CSSC/CSH ratios fulfils conformational changes that render the enzyme sensitive to 

proteases.  Only when one of the protective residues, Cys 192 or Cys 427, is 

absent, inactivation may result from the premature oxidation of other residues 

(such as Cys 172) which become unprotected. In this manner, the interacting 

network of critical and protective cysteines ensure a robust and fine-tuned 

switching of RubisCO activity in response to a changing redox environment. 
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SUPPLEMENTARY INFORMATION 

 

A. Redox Inactivation of the cysteine mutants of RubisCO 

 

 

INACTIVATION IN CSSC/CSH REDOX BUFFERS 
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INACTIVATION WITH 20mM CSSC 
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INACTIVATION WITH 0.1mM NEM 
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B. RubisCO peptides identified by mass spectrometry for each of the 

conserved cysteine residues 
 

Subunit Cysteine Digestion1 Derivatization2 Identified peptide 

Large Cys 84 Chym CAM LS 81-100 

  Chym PE LS 81-100 

 Cys 172 Tryp CAM LS 168-177 

  Tryp PE LS 168-177 

 Cys 192 Tryp CAM LS 188-194 

  Tryp PE LS 188-194 

 Cys 247  CAM Not found 

  Tryp PE LS 237-252 

 Cys 284 Chym CAM LS 281-290 

   PE Not found 

 Cys 427 Tryp CAM LS 422-431 

  Tryp PE LS 422-431 

  Chym CAM LS 425-437 

  Chym PE LS 425-437 

 Cys 459 Tryp CAM LS 451-463 

  Tryp PE LS 451-463 

Small sCys41 Chym CAM SS 39-60 

  Chym PE SS 39-60 

 sCys83 Tryp CAM SS 78-84 

  Chym CAM SS 81-90 

   PE Not found 
 

                                                 
1 Chym = chymotrypsin; Tryp = trypsin 
2 CAM = carbamidomethylated; PE = pyridylethylated 
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CHAPTER C 

INTRODUCTION 

 

The net fixation of CO2 is the crucial event recycling carbon into the biosphere. In 

higher plants, algae, cyanobacteria and most chemiosynthetic bacteria, carbon 

assimilation proceeds through a unique metabolic pathway known as the Calvin 

cycle. The actual fixation of CO2 is carried out by the catalytic activity of the 

ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO, EC 4.1.1.39). It has 

been estimated that the worldwide CO2 fixation by RubisCO introduces 1011 tons of 

carbon per year into the biosphere (Field et al., 1998). The activity of RubisCO is 

known to be regulated in vivo by different mechanism, including reactivation of the 

catalytic site (which requires a subservient enzyme, the RubisCO activase) after 

spontaneous deactivation and blocking by specific inhibitors (reviewed by Parry et 

al., 2008). Moreover, under conditions that promote oxidation of sulfhydryl groups 

the activity of RubisCO is also lost because of oxidation of cysteine residues to 

disulfides. This modification leads to conformational changes that promote enzyme 

inactivation but also facilitate holoenzyme disassembly and proteolysis (Marín-

Navarro and Moreno, 2003). Therefore, cysteine-dependent oxidative modification 

of RubisCO has been related to the catabolism of the enzyme during natural or 

stress-induced senescence (Ferreira et al., 2000; Moreno et al., 2008). 

Arsenite salts (such as sodium arsenite, AsO2Na) and other trivalent arsenic 

compounds react specifically with vicinal dithiols (i.e. two sulfhydryl groups in close 

proximity) to form cyclic dithioarsenites (Scheme 1): 

 

 +     O = As - O
-
                                As - O

-
   +   

H2O 

S

SSH 

SH 

           dithiol                     arsenite                                cyclic dithioarsenite 

 
Scheme 1. Reaction of arsenite with vicinal dithiols. 

 

Arsenite may also react with one or two monothiol molecules to form (non-cyclic) 

mono- or dithioarsenites, but these are usually unstable and easily hydrolyzable 

(Torchinsky, 1981). Therefore, arsenite is considered a specific reagent for dithiols. 

The stability of the cyclic dithioarsenites depends on its geometry. When the two 

sulfhydryl groups are on adjacent C atoms (such as in 2,3-dimercaptopropanol) the 

resulting five-membered ring is specially stable. 7-membered rings are also stable, 

more than 6-membered (Jocelyn, 1972; Torchinsky, 1981). In the case of 
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conformationally vicinal thiols (as in sulfhydryls from Cys residues that are closely 

positioned within a protein structure), the stability of the cyclic dithioarsenite may 

vary widely depending on subtle geometric details and it is difficult to predict. 

Arsenicals (including arsenite) are well known poisons (Jomova et al., 2011). 

Inactivation of different key enzymes upon reaction of protein sulfhydryls with 

arsenite have been advanced as a possible justification of the toxic effects of this 

compound. In plants, arsenite is known to inhibit carbon fixation (Anderson and 

Avron, 1976; Marques and Anderson, 1986), decrease growth (Shri et al., 2009), 

and cause oxidative stress which induces the the upregulation of antioxidants (Shri 

et al., 2009), phytochelatins  (Mishra et al., 2011) and components of the 

ubiquitin/proteasome pathway (Santos et al., 2006). 

Incubation of purified RubisCO with arsenite in vitro has been shown to produce a 

partially inactive (retaining about 60 to 70 % activity) form of the enzyme when 

tested at millimolar concentration (García-Ferris and Moreno, 1993; Moreno and 

Spreitzer, 1999). RubisCO from C. reinhardtii is known to contain 3 pairs of Cys 

residues which are structurally vicinal (Taylor et al., 2001). These are the Cys172-

Cys192, the Cys449-Cys459 and the Cys247-Cys247 (from adjacent subunits) 

pairs, all of them located in the large subunit (numbering of the C.reinhardtii 

enzyme). Because a RubisCO C172S site-directed mutant (in which the Cys172 

residue was replaced by serine) proved insensitive to arsenite, it was suggested 

that the partial inactivation of the wild type enzyme caused by arsenite was 

exclusively due to reaction with the Cys172-Cys192 pair (Moreno and Spreitzer, 

1999). Furthermore, it was subsequently found that the inactivating effect of 

arsenite could be increased in the presence of thiols (García-Murria, 2006). This 

effect was tentatively explained assuming that the thiol would reduce a pre-existing 

disulfide (presumably between Cys172 and Cys192), releasing a dithiol that would 

be subsequently targeted by arsenite (García-Murria, 2006). In this work, the 

inhibition of RubisCO by arsenite has been reconsidered. The results advanced here 

demonstrate that, while arsenite alone produces a partial inactivation of RubisCO at 

a relatively high concentration, it can also eliminate the carboxylase activity 

completely at a much lower concentration when combined with monothiols (which 

do not affect RubisCO activity by themselves) and RubisCO in a ternary complex. 

Moreover, this arsenite-monothiol synergism represents a new mode of enzyme 

inhibition which targets protein vicinal dithiols and allows full (but reversible) 

suppression of CO2 fixation both in vitro and in vivo, under very mild conditions. 
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MATERIALS and METHODS 

 

Chemicals  

Analytical grade sodium arsenite (AsO2Na), cysteamine (2-mercaptoethylamine) 

(CSH), reduced glutathione (GSH), N-acetylcysteine (NAC), and tris (2-

carboxyethyl) phosphine (TCEP) were purchased from Sigma. Cysteine and 

dithiothreitol (DTT) were obtained from Merck.  NaHl4CO3 (51.7Ci/ mol) were from 

Perkin-Elmer. All other common chemicals were also analytical grade. Solutions 

used in oxidative inactivation experiments were made with highly purified water 

(Milli Q from Millipore). 

 

C. reinhardtii strains and growth conditions 

The culture medium and growth and maintenance conditions for Chlamydomonas 

reinhardtii have already been described in chapter A. Wild type C. reinhardtii strain 

was 2137 mt + (Spreitzer and Mets, 1981). RubisCO cysteine to serine site-directed 

mutant strains C172S (Moreno and Spreitzer, 1999), C192S, C172S/C192S 

(García-Murria et al. 2008), C449S, C459S (Marín-Navarro and Moreno, 2006), 

C84S, C247S, C284S, C427S, sC41S, sC83S (Marín-Navarro, 2003) as well as a 

wild type revertant of the mutant strain used for hosting the mutations (García-

Murria, 2006) have already been described. 

 

Purification and assay of RubisCO.  

Purification of the C.reinhardtii, spinach and rice RubisCOs was carried out as 

previously reported in chapters A and B. Carboxylase activity assay, using 14C-

bicarbonate, in the presence of effectors (thiols and/or arsenite, in this case) has 

been already described in full detail (chapter A). All inactivation/reactivation 

treatments were carried out with the RubisCO dissolved in 10 mM MgCl2, 10 mM 

NaHCO3, 100 mM Tris-HCl, pH 8.2 (activation buffer). RubisCO reactivation after 

arsenite inhibition was performed by passing the inactive enzyme through a 

Sephadex G-25 (GE Healthcare, NAP-5) desalting column equilibrated with the 

adequate activation buffer solution to eliminate either arsenite, either the 

potentiating monothiol, or both. Afterwards, the carboxylase activity was 

periodically monitored to follow the time course of enzyme recovery. 

 

In vivo CO2 fixation assay 

Cell cultures of C. reinhardtii used for in vivo fixation experiments were grown in 

minimal medium (i.e modified TAP medium as described in chapter A, without 

acetate) for several days under constant light at 28-30 ºC. Cultures were kept at 
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the logarithmic growth phase by periodic dilution and, in particular, they were 

diluted two hours before the assay to about 2·106 cells/ml. 0.5 ml of minimal 

medium containing the inhibiting chemicals (3x concentrated) were delivered to 

glass tubes in a water bath at 30 ºC under constant light (100 W white light bulb 

placed at 20 cm from the tubes). Each treatment was assayed in three independent 

tubes. Then, 0,9 ml of a growing culture of cells (about 1.8·106 cells) were added to 

each tube. After exactly 10 min of pre-incubation, the fixation assay was started by 

adding 100 μl of 40 mM 14C-bicarbonate (specific radioactivity ca 650 dpm/nmol) 

dissolved in water. The tubes were sampled periodically by transferring 200 μl 

aliquots of the fixing culture to a vial with 50 μl of 2% SDS in 2 M HCl. Vials were 

then evaporated twice before counting. Tubes containing the fixing cultures were 

periodically stirred and permuted as to being placed equal times at equivalent 

positions (with regard to the light source) in between two consecutive samplings. 

 

 

 

RESULTS 

 

 

Inactivation of RubisCO by arsenite and enhancement through monothiols 

 

Arsenite at 4 mM concentration induced partial (about 30-35%) activity loss of the 

purified C.reinhardtii RubisCO, as has been already reported in other instances 

(García-Ferris and Moreno, 1993; Moreno and Spreitzer, 1999). However, at the 

same concentration, arsenite achieved full inactivation of the enzyme in the 

presence of all tested monothiols [cysteamine (CSH), cysteine (Cys), N-

acetylcysteine (NAC), 2-mercaptoethanol (EtSH)] except for reduced glutathione 

(GSH), which did not potentiate the inactivating effect of arsenite alone (fig.C1). 

Activity loss took place rapidly (within 20 minutes) with all other monothiols except 

for NAC, which produced full inactivation only after 2 hours of treatment (not 

shown). In contrast to most monothiols, dithiotreitol (DTT; a dithiol with vicinal 

sulfhydryl groups) did not enhance activity loss but, on the contrary, appeared to 

protect RubisCO from arsenite inactivation (fig.C1). 

Because thiols do not inactivate RubisCO by themselves but rather reactivate the 

oxidized enzyme (see Chapter A), arsenite and monothiols appear to inhibit the 

carboxylase in a synergic manner.    
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Fig.C1 Time course of RubisCO inactivation by 4 mM sodium arsenite alone and in the 
presence of several thiols at 20 mM concentration of sulfhydryl groups. RubisCO (0.3 mg/ml) 
was incubated with the indicated reagents at 30 ºC in a nitrogen atmosphere (inside a N2 purged oven) 
and assayed at indicated times. Activity is represented as percentage of the initial value [2.0 μmol CO2 
fixed/(min·mg RubisCO)]. Error bars indicate ± SEM from triplicates. 
 
The synergic effect of arsenite and certain monothiols on RubisCO was not a 

particular feature of the C. reinhardtii enzyme, as witnessed by the inhibition of 

RubisCOs from other species, such as rice and spinach, under the same conditions 

(fig. C2). The sequences of the rice, spinach and C. reinhardtii enzymes share only 

a core of 10 Cys residues which are conserved in all form I green-like RubisCOs 

(see Chapter B). These are Cys 84, 172, 192, 247, 284, 427, 449 and 459 from the 

large subunit and Cys 41 and 83 from the small subunit (C. reinhardtii numbering). 
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Fig.C2.Time course of inactivation of spinach and rice RubisCO by arsenite. RubisCO (0.2 mg/ml 
in activation buffer) was incubated either with 2 mM sodium arsenite or 2 mM sodium arsenite + 40 mM 
CSH at 30 ºC. At given times, samples (0.02 ml) from triplicates were taken and assayed for 
carboxylase activity during 1 minute. Values are expressed as a percentage of the initial activity. Error 
bars indicate ± SEM. 

 87



CHAPTER C 

 
Inactivation appears to result from a specific interaction with the Cys172-Cys192 

pair of vicinal residues because mutant RubisCOs with any (or both) of these Cys 

replaced by Ser resisted the combined effect of arsenite and a monothiol (fig. C3).  

 
Fig.C3. Effect of arsenite on wild type and cysteine-mutant RubisCOs.  Purified RubisCOs from a 
wild type revertant strain (Rev) and from mutants C172S, C192S and doble mutant C172S/C192S 
(DM79), were incubated with 2 mM sodium arsenite with either 40 mM CSH (As + CSH) or 2 mM Cys (As 
+ Cys) in activation buffer at 30 ºC under a nitrogen atmosphere. The activity remaining after 2h is 
represented as a percentage of the activity of an untreated sample. Error bars represent ± SD from 
triplicates. [Figure taken from García-Murria (2006)].  
 
Moreover, Cys172 and Cys192 were the only residues (among cysteines that are 

conserved in eukaryotic green-like RubisCOs) that prevented arsenite inactivation 

upon replacement by serine (fig. C4). 

 
Fig.C4. Effect of arsenite and CSH on different cysteine-mutant RubisCOs. Total cell extracts from C. reinhardtii 
mutants [in which one (or two) of the conserved RubisCO cysteines have been replaced by serine through site-directed 
mutagenesis] were assayed for RuBP carboxylase activity after 1 hour of incubation with 2 mM sodium arsenite and 40 
mM CSH in activation buffer at 30 ºC. The remaining activity is represented as a percentage of that of an untreated 
sample incubated in parallel. A wild type revertant (Rev) of the mutant strain hosting the mutations was used as a 
control. Error bars represent ± SD from 6 replicas. [Figure taken from García-Murria (2006)] 
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Because arsenite is usually considered a reagent against vicinal dithiols, these 

result strongly support the notion that RubisCO inactivation by the combined effect 

of arsenite and a monothiol is exclusively due to reaction with the highly conserved 

Cys172-Cys192 pair, thereby discarding other residues which are known to be 

conformationally vicinal such as Cys247-Cys247 (from adjacent large subunits) and 

Cys449-Cys459. 

 

 

The mechanism of the monothiol enhancement of RubisCO inhibition by 

arsenite 

 

Does the monothiol reduce an internal disulfide bond of RubisCO? 

 

The potentiation of the inactivation by arsenite through the addition of a free thiol 

has been observed in a number of different enzymes. In most instances this has 

been justified by the need of reducing an internal disulfide of the enzyme to 

generate a vicinal dithiol group that would afterwards react with arsenite. However, 

in other cases the explanation is not so straightforward and some previous complex 

between arsenite and the free thiol has been postulated to overcome an undefined 

kinetic barrier (Fluharty and Sanadi, 1961; Bagui et al., 1996). In order to 

distinguish between these two alternatives (in the first CSH would act 

independently of arsenite and before it, while in the second both reagents would act 

simultaneously) RubisCO was treated with arsenite before and after being reduced 

by incubating it with 20 mM CSH for 2 hours and removing the excess thiol 

(through a desalting column). Results in figure C5 show that the previous reduction 

of the RubisCO had no effect on arsenite inactivation once the CSH had been 

removed. This suggests that CSH (or another monothiol) must be present together 

with arsenite to potentiate its inhibitory effect, discarding the possibility that the 

thiols might solely reduce an internal disulfide bond of RubisCO thereby releasing 

vicinal cysteine dithiols that could be subsequently targeted by arsenite alone. 
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Fig.C5. Carboxylase activity of arsenite and/or CSH-treated RubisCO before (blue) or after 
(magenta) reduction of the enzyme with 20 mM CSH for 1 hour and desalting in a NAP-10 
column. Purified RubisCO was incubated with activation buffer (Control) 20 mM CSH (CSH), 20 mM 
sodium arsenite (AS), or  20 mM sodium arsenite + 20 mM CSH (AS + CSH) in activation buffer for 1 h 
at 30 ºC under nitrogen. Afterwards, an aliquot (20 μl ) of each mixture was assayed for activity. Next, 
the sample treated with CSH was passed through NAP-10 equilibrated with activation buffer. Then, the 
eluted RubisCO (desalted from CSH) was again incubated with activation buffer (Control), 20 mM CSH 
(CSH), 20 mM arsenite (AS) or 20 mM arsenite + 20 mM CSH (AS + CSH) in activation buffer at 30 ºC. 
After 10 minutes, each mixture was assayed again for carboxylase activity. Activity is given as a 
percentage of that of the CSH-treated sample. Error bars indicate ± SEM from triplicates. 
 
 

 

Dependence of the degree of inhibition on arsenite and thiol concentration  

 

Inactivation by arsenite alone took place over wide range of concentrations 

(between 0.6 and 600 mM) following a biphasic transition until total activity loss 

(fig.C6). Inhibition at concentrations below 100 mM were probably caused by 

specific binding of arsenite to RubisCO, apparently leading to a partially inactive 

enzyme. On the other hand, arsenite produced further inactivation above 100 mM, 

as experienced also with other similar salts (such as nitrite and acetate) at the 

same concentration (fig.C6). This second step appears to result from a nonspecific 

inhibitory effect of high ionic concentration on RubisCO as has been already 

reported to occur with the enzyme of a higher plant species (Peñarrubia and 

Moreno, 1988). 
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Fig.C6. Dependence of RubisCO inactivation on the concentration of sodium arsenite and 
other sodium salts (nitrite and acetate): Purified RubisCO (0.16 mg/ml) was incubated with the 
salts for 2h at 30 ºC under a nitrogen atmosphere. Immediately afterwards triplicate 20 μl aliquots vere 
assayed for RuBP carboxylase activity. Activity is represented as a percentage of that of a non-treated 
sample. Error bars represent ± SEM. 
 
RubisCO inactivation by arsenite at concentrations below 100 mM may occur as a 

result of a single equilibrium step of arsenite reaction with the Cys172-Cys192 

dithiol leading to a partially inactive RubisCO-Arsenite complex: 

 

                                        K 

RubisCO + Arsenite   <=====> RubisCO-Arsenite complex 

 

 

If so, the following relation might be expected between the fraction of active 

enzyme (f) and the arsenite concentration (see Appendix): 

 

 

f = (1 + a·K·[Arsenite])/(1 + K·[Arsenite])                   Eq.1 

 

 

where a is the fraction of carboxylase activity retained by the RubisCO when 

complexed with arsenite, and K is the association equilibrium constant. Eq. A1 can 

be written also as: 

 

 

(1-f)/[Arsenite] = K·f – a·K         Eq.2 
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Therefore, a plot of (1-f)/[Arsenite] against f should yield a straight line. Indeed, 

experimental points below 100 mM from the inactivation curve by arsenite in fig.C6 

fit eq. 2 reasonably well (fig. C7). 
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Fig.C7. Plot of (1- f)/[Arsenite] against f for points below 100 mM arsenite:  f is the fraction of 
RubisCO activity remaining at each arsenite concentration. Data were taken from the inactivation curve 
by arsenite alone (fig. C6). The experimental points were adjusted to a straight line with values of 0.674 
and -0.135 for slope and intercept, respectively. Correlation coefficient (R2) is also given. 
 
 
The slope of the straight line (fig.C7) gives an estimate of the equilibrium constant 

(K ≈ 0.67 mM-1), while the fraction of RubisCO activity remaining when bound to 

arsenite can be determined from the ratio between ordinate intercept and slope to 

be a ≈ 0.20. Therefore, it might be concluded that the specific binding of arsenite 

to RubisCO that takes place at concentrations below 100 mM eliminates 80% of the 

enzymatic activity. 

 

Inactivation of RubisCO by arsenite in the presence of 40 mM CSH occurs at a 

range of arsenite concentration (around 0.06 mM) which is about three order of 

magnitude lower than in the absence of the thiol (fig. C8). Moreover, in the  

presence of CSH, RubisCO appears to be completely inactivated by arsenite above a 

10 mM concentration (fig. C8).  

 

The effect of CSH concentration on RubisCO inactivation by 40 mM arsenite has 

also been studied (fig. C8). The transition from active to inactive RubisCO takes 

place around a CSH concentration near 0.6 mM, which is one order of magnitude 

higher than the midpoint arsenite concentration for the symmetric titration (i.e. 

varying arsenite at constant 40 mM CSH concentration) (fig. C8). 
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Fig.C8. Dependence of RubisCO inactivation on the concentration of arsenite (at a constant 40 
mM concentration of CSH) or of CSH (at a constant 40 mM concentration of arsenite). For 
comparison, inactivation of RubisCO at different concentrations of arsenite alone (green points taken 
from fig.C6) is also represented. Purified RubisCO (0.16 mg/ml) was incubated with the reagents at 30 
ºC for 2h under a nitrogen atmosphere. Afterwards triplicate 20 μl aliquots were assayed for RuBP 
carboxylase activity Activity is represented as a percentage of that of a sample incubated with 40 mM 
arsenite (red), or 40 mM CSH (blue), or without treatment (green). Error bars represent ± SEM. 
 
 
A model for RubisCO-arsenite-monothiol interaction 

 

Because CSH must be integrated in the final complex and cannot simply act as a 

catalyst facilitating the arsenite-RubisCO adduct (otherwise changes in CSH 

concentration would not displace equilibrium as seen in fig. C8), all the above 

results suggest that arsenite, CSH and the RubisCO Cys172-Cys192 dithiol 

assemble in a stable ternary complex. The presence of CSH could shift the 

equilibrium by transforming the RubisCO-arsenite complex in a more stable 

RubisCO-arsenite-CSH ternary adduct, thereby allowing arsenite to be associated to 

RubisCO at much lower concentrations. 

 

A plausible model scheme would be the following: 

 

                  K1 

RubisCO + Arsenite   <=====>  partially active RubisCO-Arsenite complex 

    

                 K2 

RubisCO-Arsenite  + CSH   <=====>   inactive RubisCO-Arsenite-CSH complex   

                                                                                                                                                  

 

 93



CHAPTER C 

On the other hand, it is known that arsenite and thiols can loosely combine as 

dithioarsenites (Torchinsky, 1981): 

 

                K0 

2 CSH + Arsenite     <=====>   (CS)2-dithioarsenite + H2O 

 

A model that takes into account the above three equilibria (see Appendix) predicts 

changes in RubisCO activity (when scanning CSH or arsenite concentrations) which 

fit the experimental points (from fig. C8) in an apparently unbiased manner (fig. 

C9) and with a global determination coefficient of 0.985 (i.e. the model explains 

98.5% of the observed variability). Moreover, adjusting the model to the 

experimental points delivers values for the relevant constants (a = 0.20, K1 = 0.63 

mM-1, K2 = 3.45 mM-1, K0 = 0.0035 mM-1). Values for a and K1 are close to those 

independently determined from the inactivation curve for arsenite alone (fig. C7). 

Comparison of the values obtained for K1 (= 0.63 mM-1) and K2 (= 3.45 mM-1) 

supports the view that the binding of CSH to the RubisCO-arsenite complex results 

in a remarkable stabilization of the interaction.  
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Fig.C9. Fitting of the model of RubisCO-arsenite-CSH interaction to the experimental data. The 
model assumes a stable ternary complex in competition with CSH-dithioarsenite (see a detailed 
description in the Appendix). Model predictions (closed circles) were adjusted to experimental data 
(open circles) taken from figure C8 after eliminating points above 100 mM arsenite or CSH concentration 
to avoid unspecific inhibitory effects of ionic strength not considered in the model. Error bars on 
experimental points represent ± SEM 
 
 
In order to assess the general validity of the model, the inhibition of RubisCO by 

arsenite combined with another thiol was also addressed. When EtSH was used as 

the potentiating thiol instead of CSH, synergic inhibition took place at even lower 
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concentrations of arsenite and thiol. Representative activity titration curves were 

obtained scanning arsenite concentrations at 5 mM EtSH or EtSH concentrations at 

1 mM arsenite (fig. C10). A preliminary fit showed that experimental points did not 

unbiasedly follow the model proposed above for CSH. Rather it was necessary to 

assume a trivalent arsenic complex with EtSH:  

 

                 K0’ 

3 EtSH + Arsenite     <=====>   (EtS)3-arsenic + H2O + OH- 

 

 

in order to fit the data to the model (see Appendix) (fig. C10). This suggests that 

EtSH can combine with arsenite with a 3:1 stoichiometry, as has been also shown 

to happen with other monothiols such as glutathione (Han et al., 2007). Otherwise, 

the model postulated again binary RubisCO-arsenite and ternary RubisCO-arsenite-

EtSH complexes with equilibrium constants K1 and K2’, as in the case of CSH (see 

Appendix). Fitting of the data to the final model attained a global determination 

coefficient of 0.98 and produced estimates for the relevant equilibrium constants 

(K1 = 0.68 mM-1 ; K2’ = 176 mM-1; K0’ = 0.15 mM-1). The elevated value of K2’, 

compared to the K2 (3.45 mM-1) obtained with CSH, denotes that the stability of 

the RubisCO-arsenite-thiol complex is much higher with EtSH than with CSH.  
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Fig.C10. Fitting of the model of RubisCO-arsenite-EtSH interaction to the experimental data. 
The model assumes a stable ternary complex in competition with EtSH-trithioarsenic compound (see a 
detailed description in the Appendix). Model predictions (closed circles) were adjusted to experimental 
data (open circles) of arsenite inhibition (green points taken from figure C8, but eliminating those above 
100 mM arsenite concentration to avoid unspecific inhibitory effects of ionic strength not considered in 
the model) or obtained by determining RubisCO activity in the presence of 5 mM EtSH and given 
concentrations of arsenite (blue points) or, conversely, in the presence of 1 mM EtSH and indicated 
concentrations of EtSH (red points). An experimental point showing activity recovery at high EtSH 
concentration is indicated by a red arrow. Error bars on experimental points represent ± SEM. 
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It is noteworthy that the models predict a recovery of RubisCO activity at high 

concentrations of thiol when the arsenite concentration is kept fixed (figs. C9 and 

C10). This is because, under these conditions, almost all arsenite is sequestered as 

a di- or tri-thioarsenite complex with the excess thiol, leaving only a reduced 

amount of arsenite to combine with RubisCO. This prediction could be tested in the 

case of EtSH (since the concentrations were unfeasible high for CSH) and the result 

(100 mM point in fig. C10, maked by an arrow) fully confirmed the hypothesis. This 

fact supports the assumption of the model that RubisCO and the free monothiol 

compete for arsenite binding.    

 

Reversibility of the arsenite inhibition of RubisCO 

 

Arsenite inactivation of RubisCO proved fully reversible. Indeed, the activity of 

RubisCO was spontaneously recovered upon elimination of the inactivating reagents 

by desalting in a Sephadex G-25 column (fig. C11). 
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Fig.C11. RubisCO activity recovery after inhibition with 4 M sodium nitrite (dark blue), 4M 
sodium arsenite (red) or 40 mM sodium arsenite + 40 mM CSH (all other samples) and 
desalting in a Sephadex G-25 column. Purified RubisCO (0.3 mg/ml) was incubated with the 
inactivating reagents at 30 ºC for 2h under a nitrogen atmosphere. Afterwards, it was passed through a 
desalting column, equilibrated with activation buffer (dark blue, red and yellow points), 40 mM arsenite 
in activation buffer (light blue points) or 40 mM CSH in activation buffer (magenta ponts). At given times 
(counting from the moment that the sample finished to enter the desalting column) triplicate 20 μl 
aliquots were assayed for RuBP carboxylase activity Activity is represented as a percentage of the 
maximum value obtained after total recovery. Trend lines were drawn by fitting the points to logarithmic 
functions. Error bars represent ± SEM. 
 
Reactivation after treatment with sodium arsenite alone was relatively fast (average 

time of 10 minutes), and proceeded at a similar rate than the recovery from salt 

inhibition with sodium nitrite (fig. C11). Recovery after inhibition with arsenite plus 
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CSH was slower. Eliminating both arsenite and CSH, or only CSH, had almost the 

same effect on the kinetics of RubisCO reactivation. In these cases, the enzyme 

regained activity in an average time of about 35 minutes (fig. C11). This may 

represent the mean time interval needed for CSH release from the complex. In 

contrast, if arsenite was withdrawn but CSH remained in the medium, reactivation 

was much slower (average time of 105 minutes) (fig. C11). Thus, the presence of 

CSH substantially delayed arsenite exchange from the complex with RubisCO 

increasing its average residence time from 10 to 105 minutes. These results 

support the view that CSH binding stabilizes the RubisCO-arsenite complex both 

thermodynamically and kinetically. 

In the case of EtSH (fig. C12), reactivation was much slower (average recovery 

time of about 3 hours) than with CSH. Thus, here again, a higher thermodynamic 

stability (higher K2’) was accompanied by a slower kinetic exchange. Besides, as in 

the case of CSH, the recovery of activity was faster when the thiol was present than 

when it was absent from the medium (fig. C12). 
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Fig.C12. RubisCO activity recovery after inhibition with 1 mM sodium arsenite + 5 mM EtSH 
and desalting in a Sephadex G-25 column. Purified RubisCO (0.3 mg/ml) was incubated with the 
inactivating reagents at 30 ºC for 2h under a nitrogen atmosphere. Afterwards, it was passed through a 
desalting column, equilibrated with activation buffer (dark blue points), 1 mM arsenite (yellow points), 5 
mM EtSH (red points) or 1 mM arsenite + 5 mM EtSH (light blue points) in activation buffer. At given 
times (counting from the moment that the sample finished to enter the desalting column) triplicate 20 μl 
aliquots were assayed for RuBP carboxylase activity Activity is represented as a percentage of the 
maximum value obtained after total recovery. Trend lines were drawn by fitting the points to logarithmic 
functions. Error bars represent ± SEM. 
 
 
Arsenite inhibition of CO2 fixation in vivo 

 

Fixation of CO2 by illuminated cell cultures of wild type C. reinhardtii in minimal 

medium was totally inhibited by arsenite at a relatively high (40 mM) concentration 
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(fig. C13). However, at 1 mM concentration, arsenite inhibition was not longer 

noticeable (fig. C13a). On the other hand, 5 mM EtSH produced only a very slight 

decrease of the fixation rate of the cells (fig. C13a). However, when both 1 mM 

arsenite and 5 mM EtSH were present in the medium, CO2 fixation by the cells was 

strongly inhibited (fig. C13).  
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Fig. C13. Effect of arsenite and EtSH on the14CO2 fixation rate by an illuminated culture of the 
wild type (a) or a C172S/C192S RubisCO double mutant strain (b) of C.reinhardtii growing in 
minimal medium. Cell cultures in logarithmic growth phase were diluted with minimal medium 
containing EtSH, arsenite or both (at the indicated final concentrations) and 2 mM 14C-bicarbonate 
(about 650 dpm/nmol) to a cell density of about 1.5 · 106 cells/ml. Cultures were placed at 30 ºC under 
constant light and aliquots of it were harvested at the given times to determine the carbon fixation 
(represented as acid-stable radioactivity in dpm). A control treatment (without arsenite or EtSH) was run 
in parallel. The initial slope is representative of the fixation rate of the cells. The progressive decline of 
the slope with time results from specific radioactivity loss due to unavoidable exchange of CO2 with the 
atmosphere. Error bars represent ± SEM from triplicate independent cultures. 
  
 
On the other hand, when the experiment was repeated with C172S/C192S mutant 

cells, containing RubisCO which is not inactivated by arsenite-thiol mixtures in vitro 

(see fig. C3), the in vivo CO2 fixation was nevertheless blocked by the arsenite-

EtSH combination as in the case of the wild type cells (fig. C13b). This suggests 

that in vivo CO2 fixation is controlled by another factor which can sense the 

synergic effect of arsenite and EtSH as well as RubisCO. 

A scanning of the in vivo effect of different concentrations of arsenite at a constant 

(5 mM) concentration of EtSH revealed that all tested strains (the wild type and the 

RubisCO mutants at the Cys 172 and/or Cys 192 residues) showed a similar 

sensitivity, displaying half-inhibition of CO2 fixation around 0.06 mM of arsenite 

(fig. C14). This was somewhat lower than the concentration of arsenite needed for 

half-inactivation of RubisCO in vitro under the same conditions (i.e. in the presence 

of 5 mM EtSH) (reproduced in the same figure C14 for comparison). Therefore, the 

apparent binding affinity of arsenite-EtSH for the putative sensor that arrests 

carbon fixation in vivo seems to be slightly higher than the one for RubisCO. 
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Fig.C14. Effect of arsenite concentration on CO2-fixation activity of various C. reinhardtii 
strains in the presence of 5 mM EtSH in the medium. In vivo carbon fixation activity was 
determined for illuminated cultures of the wild type, as well as of the C172S, C192S and C172S/C192S 
(DM) RubisCO mutant strains, grown at 30 ºC in minimal medium by labeling with 14C-bicarbonate 
(about 650 dpm/nmol) and determining the initial slope of acid-stable radioactivity accumulation. Data 
are represented as a percentage of the initial slope displayed by an untreated (control) culture run in 
parallel. In vitro fractional activity points (obtained with purified wild type RubisCO) are taken from fig. 
C10 and are plotted here (joined by a red line) for comparison. 
 
Besides, after removing arsenite and EtSH (through centrifugation of the cells and 

replacement of the supernatant by fresh medium) the cells recovered full CO2 

fixation activity (Fig. C15) demonstrating that the inhibition was reversible in vivo, 

as has been shown to be in vitro (Fig. C12). 

 

 
 
Fig.C15. Time course of radioactivity fixed by wild type C. reinhardtii cells exposed to 5 mM 
EtSH, 1 mM arsenite or both, before and after washing the cells and resuming growth in 
regular minimal medium. An untreated (control) culture was run in parallel. All cultures were kept 
illuminated at 30 ºC in minimal medium. At time 0 (start of the treatments),14C-bicarbonate was given 
to the cells and the fixed radioactivity was monitored up to 40 min. Immediately afterwards, the cells 
were washed by centrifuging the cultures and resuspending the cells twice in fresh minimal medium 
(without EtSH, arsenite or radioactivity). At 125 minutes, 14C-bicarbonate was given again to the cells 
and fixation was monitored for a further 65 minutes. Error bars represent ± SEM from triplicate 
independent cultures. 
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DISCUSSION 

 

The potentiation of arsenite toxicity by dithiols is well documented (Jan et al., 

2006) although not always well understood. For example, the uncoupling effect of 

arsenite on oxidative phosphorylation in rat liver mitochondria respiring citrate or 

malate has long been know to be potentiated by dithiols, while monothiols are 

ineffective (Fluharty and Sanadi, 1961). In that case, it was assumed that the final 

product was a cyclic dithioarsenite formed with two vicinal cysteines at a functional 

site of the target protein, but a previous complex with the potentiating dithiol was 

needed in order to have arsenite transported across an undefined barrier (Fluharty 

and Sanady, 1961). Adenosine kinase has also been reported to be inhibited by 

arsenite and 2,3-dimercaptopropanol acting together, but not separately, on a pair 

of conformationally vicinal cysteines (Bagui et al., 1996). Here again it was 

suggested that a previous arsenite-dithiol complex could neutralize the charge of 

arsenite allowing it to penetrate a hydrophobic barrier. Potentiation of arsenite by 

monothiols is much less frequent and should lead to a different molecular 

organization of the protein-arsenite complex. In the case of RubisCO, it might be 

envisaged that the monothiol could reduce a hypothetical internal disulfide bond 

between a pair of vicinal cysteines that would subsequently react with arsenite to 

produce an inactive enzyme. However, the evidence presented here (fig. C5) does 

not support this assumption. Moreover, because the thiol concentration displaces 

the equilibrium of the inactive RubisCO (fig. C8), it appears that the potentiating 

monothiol does not play merely a catalytic role but rather it is incorporated in the 

final inhibitory complex. Results are consistent with a model in which monothiols 

combine to a previous arsenite-RubisCO adduct (most likely a cyclic dithioarsenite 

with the 172 and 192 cysteine residues of the large subunit) thereby stabilizing the 

arsenite-RubisCO interaction. However, our equilibrium model cannot resolve 

binding priority. Therefore, it cannot distinguish between a sequential binding of 

arsenite and CSH to RubisCO, and a previous arsenite-CSH complex binding the 

enzyme, both possibilities being plausible. The final ternary complex is suggested to 

be a trithioarsenic adduct in which the trivalent arsenic atom is bonded to the sulfur 

atoms from the three thiolates (the two RubisCO cysteines and the potentiating 

monothiol) (scheme 2).  
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Scheme 2. Proposed sequence of reactions involved in RubisCO inactivation by arsenite and a 

monothiol. In the first step, the sulfhydryl groups from the vicinal Cys172 and Cys192 of RubisCO large 

subunit react with arsenite to form a cyclic dithioarsente producing a partially inactive enzyme. In a 

second step, a monothiol (M-SH) combines with the dithioarsenite as a trithioarsenic adduct that renders 

RubisCO fully inactive. A previous combination of arsenite with the monothiol before reacting with 

RubisCO is also plausible. 

 

These triothioarsenic compounds are known to be spontaneously formed by 

arsenite with GSH (Han et al., 2007). For some monothiols (or combinations of 

them), these complexes might be thermodynamically favoured over the labile mono 

or dithioarsenite alternatives. In contrast, vicinal dithiols (such as in DTT) usually 

bind to arsenite with high affinity as stable dithioarsenites (Jocelyn, 1972; 

Torchinsky, 1981) and, therefore, would not be able to engage in a ternary complex 

with RubisCO and arsenite. Indeed, in the presence of competing DTT at a relatively 

high concentration, the amount of free arsenite available to react with RubisCO 

would be severely diminished and this could be the reason why DTT protects 

RubisCO from arsenite inactivation (fig. C1).  

While the binary arsenite–RubisCO adduct is already partially inactive, the 

incorporation of the potentiating monothiol to the ternary complex may further 

distort the enzyme structure near the catalytic site resulting in total inactivation of 

the enzyme. Cys 172 resides in the β1 strand of the α/β barrel that scaffolds the 

active site of RubisCO. Subtle mutations of this residue are known to affect the 

kinetic parameters of the enzyme remarkably (García-Murria et al. 2008), while 

substitutions in the neighboring 171 and 173 positions render a fully inactive 

enzyme (Spreitzer, 1993). Thus, it appears that arsenite binds at a site which is 

critical for maintaining the functional structure of the catalytic center of RubisCO. 

The stability of arsenite binding to dithiols is known to be strongly dependent on 

the geometry and relative orientation of the two sulfhydryls (Jocelyn, 1972; 

Torchinsky, 1981). It is likely that the same happens with the trivalent thio-arsenic 

adducts. Thus, the sensitive binding of arsenite to RubisCO may be a highly specific 

feature. Moreover, the nature of the potentiating monothiol is also remarkably 

relevant. In this study the cases of CSH and EtSH have been compared showing 

that EtSH binds to arsenite-RubisCO with a much (two orders of magnitude) higher 

affinity than CSH. Nevertheless, other proteins which are relevant for 
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photosynthetic carbon assimilation may also have appropriate sites for binding 

arsenite and a monothiol. In fact, it should be so because in vivo inhibition of CO2 

fixation appears to be driven by an undetermined sensor which is sensitive to the 

synergic effect of arsenite and a monothiol with an even higher affinity than 

RubisCO for these agents (fig. C14). It might be assumed that this sensor 

possesses also vicinal dithiols, similar to the Cys172-Cys192 pair of RubisCO. 

Candidates include regulatory thioredoxins as well as thioredoxin-regulated Calvin 

cycle enzymes. In fact, the analysis of the levels of chloroplastic metabolites 

suggest that these enzymes are the targets of the inhibition of carbon fixation when 

pea chloroplasts are treated with 0.5 mM arsenite (Marques and Anderson, 1986). 

At any rate, the identification of this sensor would shed light on the potential 

targets for the toxicity of arsenite in photosynthetic organisms and the mechanisms 

that regulate CO2 fixation through redox stress perception. 

In summary, we have uncovered a chemical mechanism for inhibition of CO2 

fixation of a new type, involving a ternary binding between arsenite, a free 

monothiol and a vicinal dithiol from a target protein. This can be used as a tool for 

specific RubisCO inhibition in vitro or photosynthetic studies in vivo, whenever CO2 

fixation should be reversibly inhibited under relatively mild chemical conditions (i.e. 

with no general effects on proteins or not triggering extended chemical stress 

responses). Moreover, it has been recently proposed that a periodic and reversible 

inhibition of CO2 fixation by RubisCO could be an efficient strategy to boost 

hydrogen production by C. reinhardtii under illuminated anaerobic conditions 

(Marín-Navarro et al., 2010). The sensitivity and specificity of the arsenite-thiol 

synergism, as well as its reversibility, offer an ideal choice to attempt that goal. 

Finally, after the early report of the sensitivity of the mitochondrial activity to the 

combination of arsenite with dithiols (Fluharty and Sanadi, 1961) and the present 

communication, it might be noted that two of the most fundamental biochemical 

processes sustaining life on Earth (namely, oxidative phosphorylation and 

photosynthetic carbon fixation) are now known to be targets of the toxic effects of 

arsenite-thiol synergisms. 
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APPENDIX 

 

Reaction of RubisCO with Arsenite 

 

Assuming a 1:1 stoichiometry in the bonding of arsenite to RubisCO (to form a 

cyclic dithioarsenite with residues Cys172 and Cys 192), the reaction reads: 

                                                  K 

RubisCO (R) + Arsenite (A)  <=====> RubisCO-Arsenite complex (C) 

 

where K is the equilibrium constant. 

If C is partially active as catalyst (by a factor a of the activity of the untreated 

enzyme), the fractional activity (f) of RubisCO at equilibrium will be: 

 

f = ([R] + a·[C])/([R] + [C])       Eq. A1  

 

and since 

 

[C] = K·[R]·[A]         Eq. A2  

 

substituting Eq. A2 in Eq. A1 yields 

 

f = (1 + a·K·[A])/(1 + K·[A])       Eq. A3 

  

which is Eq.1 in the main body of the chapter. Here A is the free-arsenite 

concentration but, in practice, this equals the total initial concentration of arsenite 

because the total RubisCO concentration is much smaller (in the µmolar range) and 

we are assuming that only one arsenite molecule will react per RubisCO 

heterodimer, thereby inactivating one catalytic site 

 

 

Reaction of RubisCO with arsenite and CSH 

 

In this case, the presumed reaction scheme would be: 

                        K1 

RubisCO (R) + Arsenite (A) <==> partially active RubisCO-Arsenite complex (C) 

         (activity factor = a) 

                                                  K2 

RubisCO-Arsenite (C) + CSH (S) <=> inactive RubisCO-Arsenite-CSH complex (I) 
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where K1 and K2 are the equilibrium constants of the two consecutive steps.                                   

Besides, CSH may compete with RubisCO for arsenite combining as a 

dithioarsenite: 

                            K0 

2 CSH (S) + Arsenite (A)    <=====>   (CS)2-dithioarsenite (D) + H2O 

 

While this global reaction could also be split in two sequential steps (i.e. the 

reaction of the first CSH molecule to form a monothioarsenite, followed by the 

reaction of the second), there was no substantial increase of the model fitness by 

considering this decomposition. Therefore, the two reactions were lumped into one, 

neglecting the amount of intermediary monothioarsenite and reducing the number 

of adjustable parameters of the model by introducing a single global equilibrium 

constant K0. 

 Under these conditions the fractional activity (f) is expected to be: 

 

f = ([R] + a·[C])/([R] + [C] + [I])      Eq. A4           

 

and since, at equilibrium, 

 

[C] = K1·[R]·[A]         Eq. A5 

  

[I] = K2·[C]·[S] = K2· K1·[R]·[A]·[S]      Eq. A6 

       

the substitution of Eqs. A5 and A6 into Eq. A4 leads to 

 

f = (1 + a·K1·[A])/(1 + K1·[A] + K2· K1·[A]·[S])    Eq. A7 

 

On the other hand, 

 

[S] = S0 – 2·[D] – [I] ≈ S0 – 2·[D]      Eq. A8 

 

[A] = A0 – [D] – [C] – [I] ≈ A0 – [D]      Eq. A9 

     

because the total concentration of RubisCO is low (in the micromolar range) and, 

therefore, [C] and [I] are negligible compared to the initial (i.e total) 

concentrations of CSH (S0) and arsenite (A0) (both in the millimolar range).  

Besides, at equilibrium, 
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[D] = K0·[A]·[S]2                 Eq. A10 

 

Eliminating [D] and [A] from Eqs. A8 to A10, yields 

 

[S]3 + (2·A0 – S0)·[S]2 + (1/K0)·[S] = S0/K0             Eq. A11 

 

This cubic equation can be solved (analytically or numerically) for [S]. Once [S] is 

known, [A] can also be obtained by solving from Eqs. A9 and A10: 

 

[A] = A0 /(1 + K0·[S]2)                 Eq. A12 

 

After determining the values of [S] and [A], f can be calculated from Eq. A7. 

The adjustable constants of the model (K0, K1, K2 and a) were determined by 

fitting the theoretical f to the experimental values (at known A0 and S0) minimizing 

square deviations. 
 

Reaction of RubisCO with arsenite and EtSH 

 

As in the former case with CSH, the RubisCO-Arsenite-EtSH complex is presumed to 

result from two sequential reactions: 

                        K1 

RubisCO (R) + Arsenite (A) <==> partially active RubisCO-Arsenite complex (C) 

         (activity factor = a) 

                                                  K2’ 

RubisCO-Arsenite (C) + EtSH (E) <> inactive RubisCO-Arsenite-EtSH complex (I) 

 

where K1 and K2’ are the equilibrium constants of the two consecutive steps.                                  

However, in contrast with the case of CSH, EtSH is assumed to react with 

arsenite to form a trivalent thioarsenic compound: 

 

                            K0’ 

3 EtSH (E) + Arsenite (A)    <=====>   (EtS)3-arsenic (T) + H2O + OH- 

 

Here again the intermediaries are neglected by considering a single equilibrium with 

a global constant K0’ (including, in this case, not only the water but also the OH- 

concentration, which should be nearly constant in a pH-buffered medium). 

 105



CHAPTER C 

 106

 

 Under these conditions, Eq. A4 still holds for the fractional activity (f) and, 

considering the equilibrium mass law relations as above, it can be rewritten as: 

 

f = (1 + a·K1·[A])/(1 + K1·[A] + K2’· K1·[A]·[E])           Eq. A13 

 

Here 

 

[E] = E0 – 3·[T] – [I] ≈ E0 – 3·[T]              Eq. A14 

 

[A] = A0 – [T] – [C] – [I] ≈ A0 – [T]             Eq. A15  

 

and     

 

[T] = K0’·[A]·[E]3                 Eq. A16 

 

Eliminating [T] and [A] from Eqs. A14 to A16, gives 

 

[E]4 + (3·A0 – E0)·[E]3 + (1/K0’)·[E] = E0/K0’             Eq. A17 

 

This quartic equation can be solved for [E]. Thereafter, [A] may be obtained from 

Eqs. A15 and A16: 

 

[A] = A0 /(1 + K0’·[E]3)                 Eq. A18 

 

After determining the values of [E] and [A], f can be calculated from Eq. A13. 

Fitting f to the experimental values (at given A0 and E0) yields the unknown 

constants of the model (K0’, K1, K2’ and a). 
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The main conclusions of the present work are:  

 

A. Regarding the role of glutathione in the redox regulation of RubisCO 

activity. 

 

1. RubisCO can be inactivated by disulfide exchange with several disulfides, and 

subsequently reactivated by several thiols. However, neither reduced nor oxidized 

glutathione are able to modify RubisCO activity through direct disulfide exchange 

because of the existence of kinetic barriers. 

 

2. Ascorbate cannot mediate the redox modulation of RubisCO activity by 

glutathione in vitro. Nevertheless, reduced glutathione can drive the reactivation 

of oxidized RubisCO by means of a limited amount of small intermediary thiols 

(such as cysteamine or cysteine). The reverse reaction (i.e., the inactivation of 

RubisCO by oxidized glutathione using small disulfides as mediators) does not 

progress if the intermediaries are kept at a lower concentration than glutathione. 

 

3.  S-nitrosoglutathione can act as a nitric oxide donor to inactivate RubisCO by 

transnitrosation of cysteine residues. However, in the case of the enzyme from 

Chlamydomonas reinhardti, S-nitrosoglutathione is not an efficient donor for this 

reaction, needing an exceedingly high concentration (not plausible in vivo) to 

achieve extensive inactivation of RubisCO. 

 

 

B. Regarding the identity of the critical cysteine residues of RubisCO. 

 

4. The sensitivity to cystamine displayed by RubisCOs obtained from C. 

reinhardtii, rice and spinach suggests that enzyme inactivation results from 

disulfide exchange with cysteines which are among the common conserved 

residues. These are cysteines 84, 172, 192, 247, 284, 427 and 459 from the 

large subunit, and cysteines 41 and 83 from the small subunit. 

 

5. None of the single cysteine site-directed substitutions of the conserved 

residues abolishes RubisCO inactivation by disulfide exchange with cystamine. 

This result suggests that inactivation results from the oxidation of several 

cysteines with redundant contributions to Rubisco inhibition. 
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6. The single replacement of cysteine 427 (or of cysteine 192, which has been 

already described) renders a mutant RubisCO which is more sensitive to oxidative 

inactivation. This suggests that these two residues play a protective role 

interfering with the modification of critical residues, or with the structural changes 

induced by them, thereby delaying inhibition. 

 

7. A review of all available data indicates that cysteines 172 and 459 from the 

large subunit and 41 from the small subunit are the most likely candidates to 

drive RubisCO inactivation and proteolytic sensitization upon oxidation of these 

residues to mixed disulfides. 

 

C. Regarding the mechanism by which thiols increase the inhibitory 

effect of arsenite on RubisCO activity. 

 

8. Arsenite alone inhibits up to 80% of Rubisco activity at concentrations above 

the millimolar range. However, when combined with certain monothiols (such as 

cysteamine, cysteine, 2-mercaptoethanol, N-acetylcysteine, but not reduced 

glutathione) arsenite achieves full inactivation of Rubisco at submillimolar 

concentration. In contrast, dithiols such as dithiothreitol do not enhance arsenite 

inhibition. 

 

9. The monothiol does not reduce a previous disulfide or play a catalytic role but 

rather integrates a ternary complex with arsenite and RubisCO which inhibits the 

enzyme. In the final complex the arsenic atom is suggested to bind three sulfur 

atoms belonging to the monothiol and the vicinal cysteines 172 and 192 from the 

large subunit of RubisCO. 

 

10. The stability of the ternary complex is highly dependent on the particular 

monothiol involved, the association equilibrium constant with 2-mercaptoethanol 

being two orders of magnitude higher than with cysteamine. In any case, the 

association is fully reversible and the complex can be easily dismantled by 

desalting to eliminate the free forms of arsenite, monothiol or both. 

 

11. The combination of arsenite and a monothiol can also suppress carbon 

fixation by photosynthesizing cultures of C. reinhardtii in a fully reversible 

manner. However, the in vivo inhibition does not occur through RubisCO 

inactivation but affects an undetermined sensor that is even more sensitive than 

RubisCO to the arsenite-thiol synergism. 
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Tema: La actividad del enzima fijador de carbono en eucariotas fotosintéticos, la 

ribulosa 1,5-bisfosfato carboxilas/oxigenasa (Rubisco), puede regularse in vitro por 

efectores redox. Esta capacidad existe en los enzimas de todas las especies 

eucarióticas ensayadas y se supone que reside en un número relativamente 

reducido de residuos de cisteína conservados, cuyo estado redox influye en la 

conformación del sitio catalítico a través efectos estructurales a larga distancia. 

Este mecanismo de regulación parece hayarse implicado en el control del 

catabolismo de la Rubisco durante procesos de senescencia natural e inducida por 

situaciones ambientales adversas que generan condiciones oxidantes. Sin embargo, 

se desconocen detalles acerca de los posibles efectores redox que pudieran modular 

la actividad del enzima in vivo, así como de los residuos de cisteína implicados. 

Para clarificar el papel que juega cada uno de los residuos conservados de cisteína 

en este mecanismo de regulación se ha iniciado la obtención y el estudio de 

mutantes del alga unicelular Chlamydomonas reinhardtii en los que se ha sustuido 

algún residuo conservado de cisteína de la Rubisco por serina. Previamente se han 

estudiado ya los mutantes en los residuos 172, 192, 449 y 459, habiéndose 

encontrado que las mutaciones producen alteraciones fenotípicas como el retraso 

en la degradación del enzima (caso del mutante Cys 172) o su agregación en 

condiciones oxidativas (caso de los mutantes en las Cys 449 y 459). Estos 

resultados abren la posibilidad de una posible manipulación biotecnológica de la 

degradación de la Rubisco durante la senescencia, un proceso de enorme 

importancia nutricional para las plantas superiores ya que el catabolismo de esta 

abundante proteína proporciona hasta un 50 % del nitrógeno y azufre movilizado 

desde las hojas a los nuevos tallos, flores y frutos en fases de crecimiento. 

 

Objetivos: El objetivo de la tesis es continuar la elucidación del mecanismo redox 

que controla la actividad y estabilidad de la Rubisco, identificando y caracterizando 

el papel de los diferentes residuos críticos de cisteína implicados en la regulación, 



determinando la naturaleza de los efectores redox que pueden controlar la actividad 

del enzima (revisando especialmente el papel del glutatión, que es el tampón redox 

más importante del cloroplasto) e investigando el mecanismo de inhibición del 

enzima pot arsenito.  

 

Metodología: En los experimentos se ha utilizado la Rubisco del alga unicelular 

Chlamydomonas reinhardtii, un organismo modelo para estudios del cloroplasto, y 

que, en la actualidad, es uno de los pocos que admite la transformación del genoma 

cloroplástico.  

 

El estudio se ha llevado a cabo mediante varios abordajes distintos: 

1) Análisis de mutantes con sustitución de cisteínas de Rubisco en C. reinhardtii. 

Se ha analizado el fenotipo de mutantes ya obtenidos (con sustituciones simples de 

las cisteínas 84, 247, 284 y 427 de la subunidad grande y 41 y 83 de la subunidad 

pequeña) y las propiedades del enzima purificado de ellos con objeto de 

caracterizar la contribución de cada residuo al mecanismo de regulación. Para ello 

se han purificado las Rubiscos de cada uno de los mutantes y se han sometido a 

incubación con tampones redox y tratamientos con agentes modificadores de 

cisteína, para detectar diferencias en los efectos de estos agentes sobre la actividad 

en comparación con el enzima silvestre. 

2) Estudio de la secuencia temporal de oxidación de cisteínas 

Se ha realizado un marcaje químico diferencial de las cisteínas reducidas y oxidadas 

de la Rubisco a lo largo de un barrido de condiciones redox (logrado mediante 

equilibrado del enzima con un mezcla de un oxidante y un reductor en distintas 

proporciones) y se ha analizado el progreso de la oxidación de cada uno de los 

residuos mediante fragmentación tríptica y análisis de los fragmentos por 

espectrometría de masas. El objeto de este experimento es establecer una 

secuencia temporal de oxidación de cisteínas, tal como puede ocurrir in vivo 

cuando, en condiciones de senescencia, el entorno del enzima se vuelve 

progresivamente más oxidante.  

3) Estudio de la inactivación de la Rubisco por distintos efectores redox.  

Se ha probado la inactivación y reactivación del enzima por diferentes disulfuros y 

tioles y otros reactivos específicos de cisternas. Específicamente se ha estudiado la 

posibilidad de que el glutatión pueda controlar la actividad de la Rubisco 

directamente por intercambio de disulfuros o de forma indirecta, a través de 

efectores redox mediadores. Se ha investigado también el mecanismo de inhibición 



de la Rubisco por arsenito y el efecto potenciador que producen los tioles en este 

proceso. 

 

Conclusiones: 

A. Respecto al papel del glutatión en la regulación redox de la actividad de 

la Rubisco: 

 

1. La Rubisco puede inactivarse por intercambio de disulfuros mediante diversos 

compuestos disulfuros y, posteriormente, puede ser reactivada por diversos tioles. 

Sin embargo, ni el glutatión oxidado ni el reducido puede afectar a la actividad de 

la Rubisco por intercambio directo de disulfuros debido a la existencia de barreras 

cinéticas. 

 

2. El ascorbato no puede mediar la modulación redox de la Rubisco por el glutatión 

in vitro. Sin embargo, el glutatión reducido puede impulsar la reactivación de la 

Rubisco oxidada mediante una pequeña cantidad de pequeños tioles intermediarios 

(como la cysteamina o la cisteína). El proceso contrario (la inactivación de la 

Rubisco por el glutatión oxidado utilizando pequeños disulfuros como mediadores) 

no progresa si los intermediarios se mantienen a una concentración inferior a la del 

glutatión. 

 

3. El S-nitrosoglutatión puede actuar como donante de óxido nítrico inactivando a la 

Rubisco por transnitrosación de sus residuos de cisteína. Sin embargo, en el caso 

del enzima de Chlamydomonas reinhardtii, el S-nitrosoglutatión no es un donador 

eficiente para esta reacción ya que se necesita una concentración demasiado alta 

(no esperable in vivo) para producir una inactivación mayoritaria de la Rubisco. 

 

B. Respecto a la identidad de las cisteínas críticas de la Rubisco: 

 

4. La sensibilidad a cistamina que muestran las Rubiscos de C. reinhardtii, espinaca 

y arroz sugiere que la inactivación ocurre por intercambio de disulfuros con 

cisteínas que se encuentran entre los residuos comunes conservados. Estas son las 

cisteínas 84, 172, 192, 247, 284, 427 y 459 de la subunidad grande, y las cisteínas 

41 y 83 de la subunidad pequeña. 

 



5. Ninguna de las sustituciones simples de las cisteínas conservadas 

pormutagénesis elimina la inactivación de la Rubisco por intercambio de disulfuros 

con cistamina. Esto sugiere que la inactivación se produce por oxidación de varias 

cisteínas que contribuyen de forma redundante a la inhibición de la Rubisco. 

 

6. La sustitución de la cisteína 427 (o de la cisteína 192 que ya se ha descrito 

anteriormente) produce una Rubisco mutante que es más sensible a la inactivación 

oxidativa. Esto sugiere que estos dos residuos juegan un papel protector, 

interfiriendo con la modificación de las cisteínas críticas (o con las cambios 

conformacionales a los que dan lugar) y, de esta manera, retrasando la inhibición. 

 

7. Una revisión de todos los datos actualmente recogidos indica que las cisteínas 

172 y 459 de la subunidad grande y 41 de la subunidad pequeña son los candidatos 

más probables a impulsar la inactivación y susceptibilización proteolítica de la 

Rubisco cuando se oxidan por intercambio de disulfuros. 

 

C. Respecto al mecanismo por el que los tioles incrementan el efecto 

inhibitorio del arsenito sobre la Rubisco: 

 

8. El arsenito por sí solo inhibe el 80% de la actividad de la Rubisco a 

concentraciones que se hallan por encima del rango milimolar. Sin embargo, 

cuando se combina con ciertos monotioles (como cisteamina, cisteína, N-

acetilcisteína y 2-mercaptoetanol, pero no glutatión reducido) alcanza una 

inhibición completa a concentraciones en el rango submilimolar. En cambio, ditioles 

como el ditiotreitol no potencian la inhibición del arsenito. 

 

9. El monotiol no actúa reduciendo un disulfuro previo ni juega un papel catalítico 

sino que se integra con el arsenito y la Rubisco en un complejo ternario que 

inactiva al enzima. Se sugiere que, en el complejo final, el átomo de arsénico está 

enlazado a tres átomos de azufre correspondientes al monotiol  y a las cisteínas 

vecinas 172 y 192 de la subunidad grande de la Rubisco. 

 

10. La estabilidad del complejo ternario es muy dependiente del monotiol particular 

que lo integre, siendo la constante de asociación dos órdenes de magnitud mayor 

cuando el tiol es mercaptoetanol que cuando es cisteamina. En cualquier caso, la 



asociación es totalmente reversible desmantelándose el complejo al desalar para 

eliminar las formas libres de arsenito, monotiol o ambos. 

 

11. La combinación de arsenito y un monotiol puede también suprimir la fijación de 

carbono por parte de un cultivo fotosintetizante de C. reinhardtii de forma 

totalmente reversible. Sin embargo, la inhibición in vivo no es causada por la 

inactivación de la Rubisco sino que afecta a un sensor indeterminado que es todavía 

más sensible que la Rubisco al sinergismo entre arsenito y monotiol. 
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	GENE ORGANIZATION
	Genetic studies of RubisCO began in earnest after Wildman and coworkers investigated large and small subunit tryptic peptide differences in interspecific crosses of tobacco (Chan and Wildman 1972; Kawashima and Wildman 1972; Kung et al., 1974). The large subunits were transmitted uniparentally and small subunits were transmitted biparentally. The uniparental inheritance of the large subunit implied that its gene (called rbcL) would reside in the chloroplast DNA. Gene cloning and sequencing confirmed this assumption for the maize chloroplast (McIntosh et al., 1980). The rbcL gene in higher plants and green algae is present as a single copy per chloroplast genome, but because many copies of the genome are present in each plastid, the actual rbcL copy number per chloroplast can be high. With rare exceptions, rbcL does not contain introns and encodes ~ 475 amino acids (Gutteridge and Gatenby, 1995). In higher plants and green algae, the small subunit is encoded by a multigene family (rbcS genes) in the nuclear genome (Dean et al., 1989; Clegg et al., 1997). This gene family may consist of 2 to 22 members (or even more in wheat), depending on the species (Sasanuma, 2001; Spreitzer, 2003). The model green alga C. reinhardtii contains only two rbcS genes (Goldschmidt-Clermont and Rahire, 1986). Almost all rbcS genes have introns in highly conserved positions (Spreitzer, 2003) and encode a polypeptide of some 123 residues. Members of an rbcS gene family are generally more similar to each other than to members of a family in a different species, resulting in only a few amino acid differences in the small subunits within a family (Spreitzer, 2003). Some photosynthetic eukaryotes, other than higher plants and green algae, have a different location for the RubisCO genes. The chloroplast genome of brown (Chromophyte) and red (Rhodophyte) algae holds the genes encoding both the large and the small RubisCO subunits. On the other hand, dinoflagellates, which lack rbcS genes because they only have the form II of the enzyme in their 
	chloroplasts, encode rbcL in the nuclear genome. When RubisCO subunit genes are encoded together in the same genome, as in bacteria and non-green algae (where both subunits are encoded in the chloroplast), they are often part of a much larger operon regulated by a single promoter (Tabita, 1999) (fig. 6).  The proteobacterial operon encoding RubisCO genes contains also structural genes for other enzymes of the Calvin-Benson-Bassham cycle (hence termed cbb operon). 
	BIOSYNTHESIS OF RUBISCOS SUBUNITS
	Under natural conditions, the regulation of the expression of RubisCO genes in higher plants and red algae is carried out at both at the transcriptional and post-transcriptional level. The transcription of the chloroplastic rbcL gene, driven by a strong promoter, is significantly increased during light periods although part of this effect may not be under the direct control of light but of the circadian clock (Misquitta and Herrin, 2005). In addition, control is also exerted at the level of transcript stability. The half-life of rbcL transcripts is known to be about 15 times lower in the light than in the dark (Salvador et al., 1993). Hence, light promotes the degradation of the rbcL transcript and this effect is mediated by a redox signal since inhibition of photosynthetic chain increases the stability of the transcripts in illuminated cultures (Salvador and Klein, 1999). It appears that some sequences in the 5' UTR may be crucial for stabilizing the rbcL transcript in the dark or under non-reducing conditions (Salvador et al., 2004; Suay et al., 2005). The expression of rbcS is also regulated by light at the level of transcription (Thompson and White 1991). In gymnosperms and green algae, however, the rbcS mRNA and its translational product have been reported to be accumulated in the dark (Yamamoto et al. 1991, Goldschmidt-Clermont and Rahire 1986, Malnoe et al., 1988). 
	Translation of the rbcS transcript on cytosolic ribosomes of higher plants and green algae produces a precursor polypeptide. Translocation across the chloroplast envelope removes the N-terminal plastid-targeting peptide, and releases the mature form in the stroma of chloroplasts. On the other hand, the synthesis of the large subunit polypeptide occurs entirely on chloroplast ribosomes of higher plants and green algae. The biosynthesis of large and small subunits is carried out in a regulated manner. It was previously reported that silencing of rbcS expression by introducing antisense RNA (Rodermel et al., 1996) or by a gene knockout (Khrebtukova and Spreitzer, 1996) prevented the accumulation of the L-subunit. Similarly, when the translation of the rbcL transcript was inhibited by a nonsense mutation or by chloramphenicol, the S-subunit was rapidly degraded, indicating that it cannot accumulate in its free and unassembled form (Schmidt and Mishkind, 1983; Spreitzer et al., 1985). In higher plants and in green algae, expression of subunits that are part of large protein complexes is highly coordinated by chloroplast encoded subunits (Choquet et al., 1998, 2001). The basis for this control system is that elimination of one subunit reduces the expression of the other subunits in the complex by their translational arrest, or by degradation of unassembled subunits (Cohen et al., 2006).
	In bacteria and non-green algae, RubisCO genes are usually expressed as components of an operon, In proteobacteria, which encode RubisCO together with other Calvin cycle components in the same operon, it is noteworthy that, even if all operon genes are co-transcribed, the intracellular level of RubisCO far exceeds that of the other Calvin cycle enzymes (Gibson et al., 1991; Meijer et al., 1991; Schaferjohann et al., 1995) indicating a different post-transcriptional processing of the different cistrons.
	HOLOENZYME ASSEMBLY 
	In photosynthetic eukaryotes, the assembly of RubisCO from its constituent subunits takes place in the chloroplast. Early experiments revealed that a binding protein (Cpn60) was associated with newly synthesized RubisCO in chloroplasts (Barraclough and Ellis 1980; Bloom et al., 1983; Roy et al., 1988).  Although at that time the exact role of this protein was not known, it was hypothesized that it could aid RubisCO folding by avoiding unwanted non-covalent interactions of the unstructured polypeptides, somehow acting as a scaffold to bring about the right conformation of the enzyme. 
	Indeed, the term “chaperone”, which was first coined for this function (Gatenby and Ellis, 1990), was rapidly extended to a growing family of proteins that help the folding of other proteins in different ways. It was later demonstrated that a certain subset of chaperones, the chaperonins, were required to obtain assembled RubisCO folding in a bacterial host system (Goloubinoff et al., 1989b) and for in vitro refolding of form II RubisCO (Goloubinoff et al., 1989a). These are special chaperones that isolate polypeptides restricting them to closed environment and assist their folding in a process that consumes ATP. 
	Chloroplast chaperonins Cpn60 and Cpn21, which are homologues of the components of the bacterial GroEL/GroES system (Hemmingsen et al., 1988), facilitate the correct folding of the L-subunits which assemble in an octamer core. Afterwards, the S-subunits join the L-subunit core to form the final L8S8 holoenzyme in an ATP-independent manner (Gatenby and Ellis 1990; Hartman and Harpel 1994). It is likely that the assembly of the whole holoenzyme requires several types of chaperones, as suggested by the fact that the bacterial DnaK/DnaJ/GrpE chaperone system aids in folding of recombinantly expressed RubisCO (Checa and Viale 1997), but the chaperonins are still found to be essential for the initial steps of folding and assembly of RubisCO large subunits under all circumstances. 
	Form II RubisCO and prokaryotic form I RubisCO can be recombinantly expressed and assembled in E.coli (Gatenby et al., 1985; Somerville and Somerville 1984). However, it has not been possible to assemble eukaryotic form I RubisCO outside of the chloroplast hitherto, even in the cases in which chloroplast chaperonins were also coexpressed in E. coli (Cloney et al., 1993). It appears that further specific folding or assembly factors that occur in the chloroplast (and are missing in E. coli) are necessary for building the correct holoenzyme structure.
	POST-TRANSLATIONAL MODIFICATIONS
	Fig.9. Folding of the large subunit of RubisCO of C. reinhardtii: (A). β strands are shown in yellow and α helices in red. Each subunit consists of a small N-terminal domain and large C-terminal domain, containing a central α/β barrel structure. The position of some cysteine ​​residues is indicated. (B). Structural unit of the enzyme, comprising a dimer of antiparallel large subunits. The active site is conformed with residues of the α/β barrel located in the C-terminal domain of one subunit, and with residues of the N-terminal domain of the other subunit. Each subunit is in one color (yellow and blue). CABP and Mg2+ bound to the one active site are indicated. Cys247 residues maintaining the dimer linked by a disulfide bridge are highlighted in green. Taken from García-Murria, (2006).
	The overall fold of the large (catalytic) subunit is composed of a smaller amino-terminal domain consisting of a four-to-five-stranded mixed β sheet with helices on one side of the sheet, and a larger carboxy-terminal domain (Andersson and Taylor 2003). The carboxy-terminal domain consists of eight consecutive βα-units linked by loops of varying length and arranged as an eight-stranded parallel α/β barrel structure. The active site is located at the carboxy-terminal end of the β-strands, with the loops connecting the βα-units contributing several residues involved in catalysis and substrate binding. Residues from the amino-terminal domain of the adjacent large subunit in the dimer complete the active site. Thus, the functional unit structure of RubisCO is an L2 dimer of large subunits harbouring two active sites (fig.9).
	The determination of the structure of RubisCO with the RuBP-analogue inhibitor CABP (2-carboxy-D-arabinitol-1,5-bisphosphate) bound to the enzyme facilitated the identification of the specific residues involved in catalysis. The substrate binds in an extended conformation across the opening of the α/β barrel and is anchored by two distinct phosphate-binding sites at opposite locations of the α/β barrel, and in the middle by the magnesium-binding site (fig. 10).
	Fig.10. Schematic representation of the active site of spinach RubisCO in an empty state (right) or occupied by the substrate-analogue CABP (left): The left picture shows the hydrogen bonds between the active site residues and CABP. CABP is shown in dark blue. Procedence of each residue is indicated by the loop where it resides (loops connecting the βα-units of the α/β barrel are numbered from the N-terminal end). Residues are numbered relative to spinach RubisCO (Adapted from Li et al., (2005)).
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