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1.1. PROSTATE CANCER 

 

1.1.1. Introduction  

Worldwide, cancer is the second most common cause of death exceeded only 

by heart diseases. Cancer death rates are higher in men than in women. The 

most common cancers in man are prostate, lung and bronchus, colon and 

rectum, pancreas, liver, leukemia, non-Hodgkin lymphoma, kidney and 

bladder cancers while the most common cancers in woman are breast, colon 

and rectum, lung and bronchus, cervix uteri, stomach and ovary cancer. About 

12.7 million cancer cases and 7.6 million cancer deaths are estimated to have 

occurred in 2008 worldwide, with 56% of the cases and 64% of the deaths in 

the economically developing world 
1
. 

In economically developed countries, the incidence rates (the number of 

newly diagnosed cases each year) for all types of cancers are twice as high as 

in economically developing countries in both males and females. However 

mortality rates (number of cases or deaths per 100.000 persons per year) in 

developed countries are only 21% higher in males and 2% higher in females
2
. 

Incidence and mortality rates were estimated in GLOBOCAN
*3, 4

 by country, 

using the most recently available data collected at the IARC or available in 

routine reports from the registries themselves.  

Breast cancer is the most frequently diagnosed cancer and the leading cause of 

cancer death in females worldwide, accounting for 23% (1.38 million) of the 

total new cancer cases and 14% (458.400 of the total cancer deaths in 2008. 

Half the breast cancer cases and 60% of the deaths are estimated to occur in 

economically developing countries. In developed countries, breast cancer 

death rates have been decreasing during last 25 years as a result of early 

detection through mammography and improved treatment. In contrast in many 

African and Asian countries incidence and mortality rates have been rising. 

Changes in reproductive patterns, physical inactivity and obesity are the main 

contributory factors in the increased breast cancer
1
.   

                                                           
*
GLOBOCAN 2008 data are updated every year. A new set of estimates for 2012 will 

be made available in 2013 after the publication of CI5 Vol. X.   
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Lung cancer was the most commonly diagnosed cancer as well as the leading 

cause of cancer death in males in 2008 globally. Among females, it was the 

fourth most commonly diagnosed cancer and the second leading cause of 

cancer death. Lung cancer accounts for 13% (1.6 million) of the total cases 

and 18% (1.4 million) of the deaths in 2008
1
 (Table 1.1. 1). Lung cancer rates 

are 2 to 5 times higher in developed countries compared with developing 

countries. The main risk factor of this cancer is the consumption of tobacco.  

Prostate cancer is in men the second most frequently diagnosed cancer and 

the sixth leading cause of cancer death in males, accounting for 14% 

(903.500) of the total new cancer cases and 6% (258.400) of the total cancer 

deaths in males in 2008
1
 (Table 1.1. 1).  

Table 1.1. 1 Estimated new cancer cases and deaths worldwide in 2008.

Estimated New cases  Estimated Deaths  

Male Female Male Female 

Lung & bronchus 

1.095.200 

Breast    

 1.383.500 

Lung & bronchus 

951.000 

Breast 

458.400 

Prostate 

903.500 

Colon & rectum 

570.100 

Liver 

478.300 

Lung & bronchus 

427.400 

Colon & rectum 

663.600 

Cervix Uteri 

529.800 

Stomach 

464.400 

Colon & rectum 

288.100 

Stomach 

640.600 

Lung & bronchus 

513.600 

Colon & rectum 

320.600 

Cervix Uteri 

257.100 

Liver 

522.400 

Stomach 

349.000 

Esophagus 

276.100 

Stomach 

273.600 

Esophagus 

326.600 

Corpus uteri 

287.100 

Prostate 

258.400 

Liver 

217.600 

Urinary bladder 

297.300 

Liver 

225.900 

Leukemia 

143.700 

Ovary 

140.200 

Non-Hodgk lymph 

199.600 

Ovary 

225.500 

Pancreas 

138.100 

Esophagus 

130.700 

Leukemia 

195.900 

Thyroid 

163.000 

Urinary bladder 

112.300 

Pancreas 

127.900 

Oral Cavity 

170.900 

Non-Hodgk lymph 

156.300 

Non-Hodgk lymph 

109.500 

Leukemia 

113.800 

All sites but skin 

6.629.100 

All sites but skin 

6.028.400 

All sites but skin 

4.225.700 

All sites but skin 

3.345.800 
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The highest incidence rates worldwide correspond to the developed countries 

of Oceania, Europe, and North America (Figure 1.1 1) due to the wide 

utilization of prostate-specific antigen (PSA) testing that detects early stage of 

prostate adenocarcinoma. In contrast, males of African have the highest 

prostate cancer mortality rates in the world, which is thought to reflect partly 

difference in genetic susceptibility
2
. Older age, race (black), high dietary fat 

and family history remain the well-established risk factors and there are no 

established preventable risk factors for prostate cancer. Death rates
5
 for 

prostate cancer have been decreasing in last decades in many developed 

countries, including Australia, Canada, the United Kingdom, the United 

States, Italy, and Norway in part because of the improved treatment with 

curative intent
6
 and the use of PSA

7
 test which help to detect an early prostate 

cancer stage and consequently the tumor can be treated and cured with higher 

possibilities than in an advanced stage. However in western countries, 

incidence and mortality rates are rising in several Asian and Central and 

Eastern European countries, such as Japan
1
. Also cancer death rates for 

metastatic diseases have been not changed during last years. 

 

Figure 1.1. 1 Age-Standardized Prostate Cancer Incidence and Mortality 

Rates by World Area (adapted from Globocan 2008
1
). 

Prostate cancer at early stage covers multiple, very small primary tumors 

within the prostate where the disease is often curable with rates of more than 
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90% of men diagnosed, involving treatments such as surgery or radiation and 

could be disease-free after five years.  

Unfortunately, early prostate cancer stage produces few or no symptoms 

difficulting an early diagnosis and consequently early treatment. Prostate 

cancer at an advanced stage is mostly metastasized and therefore, the cure is 

more difficult if not impossible. In most cases, prostate cancer represents a 

slow growing tumor, taking years to be large enough to be detectable, and 

even longer to spread beyond the prostate. However, some patients experience 

aggressive forms of prostate cancer.  Unfortunately, up to now it is difficult to 

predict the aggressively of prostate tumors and many researchers are devoting 

their work in order to identify biomarkers to achieve this goal. The prostate 

cancer can be metastases outside the prostate such as the seminal vesicle, 

lymph nodes, the rectum and the bones with the possibility also to reach other 

organs such as the lungs and liver. Recent approaches such as sentinel node 

diagnosis throughout PET chemistry are helping to identify metastatic tumor 

nodes (http://www.oncovision.es).  

Apart of PSA test, digital rectal exam (DRE) is the second easiest and fastest 

test to diagnose this disease. However, in order to confirm the presence of a 

prostate tumor, different tests such as biopsy, computed tomography (CT) and 

bone scans may be performed. Current treatment for prostate cancer includes 

surgery, radiation therapy, hormonal therapy, chemotherapy, cryosurgery and 

high intensity focused ultrasound (HIFU) used alone or in combination. 

Depending on the stage of the tumor and personal conditions the doctors will 

offer different treatments. During last decades, the most used treatments for 

early stage of prostate cancer have been surgery to remove the testicles 

(orchiectomy) or the use of anti-androgens, GnRHs antagonists or oestrogens 

as hormono-therapy, which consist on the reduction of testosterone effects, 

the main factor to stimulate prostate cancer growth. For example one of the 

synthetic estrogens classically used in hormonal therapy is diethylstilbestrol 

(DES). Other antiandrogens such as ketoconazole and megestrol are also used. 

Nowadays there is no effective treatment for advanced and/or metastatic 

prostate cancer. Normally chemotherapy with docetaxel (Taxotere, made by 

Aventis Pharmaceuticals, Inc) (www.taxotere.com) is the anticancer 

chemotherapy drug in routine 1
st
 line clinical used

8
 approved by FDA in 2004. 
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Docetaxel is also used in combination with the steroid prednisone (standard 

treatment) or with estramustine to treat metastatic prostate cancer. Docetaxel 

in combination with estramustine improve the survival 20 percent longer than 

similar patients receiving the standard therapy. However, most patients go off 

docetaxel due to the poor drug tolerability, limited efficacy and the 

development of drug resistance. A novel nanoparticle formulation for the 

delivery of docetaxel named Cellax
9
 has been studied and exhibits increased 

tumor delivery, reduced toxicity and enhanced efficacy in multiple preclinical 

models, showing promise results
9, 10

 for metastatic tumors such as bone 

metastatic cancer. Bisphosphonates appear to be helpful for many men, whose 

cancer has spread to the bones
11

, reducing pain and even slowing cancer 

growth. 

The recurrent prostate cancer (when cancer prostate has not been cured or has 

come back after initial treatment) also seems not to respond to other 

treatment. Usually is not a good option to use the same treatment used as first 

therapy. If prostatectomy was the first treatment, radiation therapy may be the 

best option. If the initial treatment was radiation, radical prostatectomy should 

be the therapy chosen. Cryosurgery may be an option in both cases. However 

if metastasis are already present, hormone therapy alone or in combination 

with chemotherapy is probably the most effective treatment also studies. 

When cancer is no longer responding to hormone therapy is considered a 

hormone-refractory prostate cancer (HRPC). Several chemotherapeutics as 

docetaxel (used as well for metastatic prostate cancer) seems to improve 

survival by several months. However when tumors have become resistant to 

docetaxel, the antimitotic Jevtana (cabazitaxel) injection 

(www.jevtana.com) approved by the FDA in September 2010, is a treatment 

of option, also used together with prednisone.  

Finally it is important to mention PROVENGE® (sipuleucel-T) 

(www.provenge.com), a vaccine for hormone resistant prostate cancer 

approved by the FDA in April 2010 as an autologous cellular immunotherapy. 

Provenge® uses the body's own immune system to fight the disease and can 

extend survival by several months. 
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1.1.2. Prostate cells 

Prostate gland 

The prostate
12

 is a male sex gland of the male mammalian reproductive 

system (Figure 1.1. 2). The prostate is a muscular organ that helps produce 

and store the major components of the seminal fluid and it is mixed with the 

sperm produced by the testes. It also produces a protein called prostate-

specific antigen (PSA) that turns the semen into liquid. The size of the 

prostate varies with age. In adult men the prostate is about three centimeters 

long and weighs around twenty grams, similar in size to a walnut, but it can 

be much larger in older men
13

. It is located in the pelvis and lies at the base of 

the urinary bladder in front of the rectum and surrounding the urethra. Often 

the inner part of the prostate keeps growing as men get older and can lead to a 

common condition called benign prostatic hyperplasia (BPH). In BPH
14

, the 

prostate tissue can press on the urethra making difficult in urinating, 

ejaculating and in rare cases defecation. BPH is not cancer and does not 

develop into cancer but can reach serious medical problem for some men. The 

treatment then will be the use of medicines, e.g. combination of GHRH 

antagonist with LHRH antagonist
15

, to shrink the size of the prostate or to 

relax the muscles within it for helping the pass of the urine and semen. 

Sometimes some type of surgery, such as a transurethral resection of the 

prostate (TURP) may be needed. 

 
Figure 1.1. 2 Illustration showing the prostate and the nearby organs (Images 

formed in www.anatomy.tv).  
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For the correct function of the prostate gland, androgens
16

 such as testosterone 

(Figure 1.1. 3), are required. Testosterone is mainly secreted in the testes, but 

adrenal glands can also produce it in small amounts. 

 

Figure 1.1. 3 Molecular structure of testosterone. 

Testosterone is essential for health and well-being
17

 as well as the prevention 

of osteoporosis
18

. In adult human female bodies this steroid hormone is also 

produced but typically ten times less than in males. On the other hand, 

females are more sensitive to this hormone. Androgens are also responsible 

for hair growth
19

, the muscle volume and bone mass, and for controlling the 

development of male features. Androgens are also the original anabolic 

steroids and the precursor of all estrogens, the female sex hormones. However 

one of the major risk factors
17

 to cause prostate cancer is the amount of 

testosterone which helps on prostate cancer growth. Androgen ablation is 

then, the more effective therapy in prostate cancer
20

. 

1.1.3. Origin of Prostate Cancer 

In normal prostate cells the androgen receptors, localized in the nucleus, are 

waiting for testosterone or dihydrotestosterone, DHT, to cause cell growth and 

divide itself. The production and use of testosterone is the only one of several 

hormones that the body manufactures that affects the prostate. In prostate 

cancer, cells require the presence of testosterone or DHT to promote growth 

and reproduction, playing an important role in all phases of prostate cancer. 

Laboratory and clinical studies indicates that prostate cancer is the result of a 

combination of mainly three factors: genetics, carcinogens and testosterone. 

Many men present a genetic predisposition for having prostate cancer caused 

by a hereditary factor or because the presence of carcinogens in the 

environment (heavy metals, such as lead, arsenic and mercury in the water 

H

OH

O

H H
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supply). But it is unlikely that these factors alone would be enough without 

the presence of testosterone.  

Prostatic Intraepithelial Neoplasia (PIN)
21

 is believed to be the first sign of 

prostate cancer. When PIN appears in prostate cells it is possible to 

distinguish differences between healthy cells and those that have PIN. 

However, PIN does not exhibit uncontrolled cells growth and reproduction 

but if the presence of genetics
22

 or carcinogens combined with testosterone 

continues, they trigger a mutation process from PIN to prostate cancer. 

Mutation is a disturbance in the genetic material
23

 of the cells, from chemical 

actions of carcinogens or hereditary defects from the parents, thus leading to 

an abnormal growth and uncontrolled reproduction, which ultimately results 

in prostate cancer. Once prostate cancer starts the mutations can continue 

develop to advance stages and even metastases to other parts of the body, but 

usually the development of prostate cancer takes many years as this disease is 

considered to be a slow growing tumor type. Metastasis occurs during 

advanced prostate cancer and it refers to prostate cancer cells that have left the 

prostate gland to reach other organs of the body, (Figure 1.1. 4) usually, bones 

and lymph nodes but also, lung and liver are the second most common organs 

to be associated with metastasis of prostate cancer. 

 

Figure 1.1. 4 Illustration showing the different organs where usually prostate cancer 

cells can metastasize. Picture provided and adapted from the Office Online Clip Art 

and Media.  
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1.1.3.1. Biosynthesis of the testosterone 

Testosterone is derived from cholesterol
24

 (Figure 1.1. 5). In the first step in 

the biosynthesis of testosterone, a mitochondrial cytochrome P450 (CYP11A) 

oxidize cholesterol loses six atoms of carbon to produce pregnenolone. Then 

two more carbon atoms are eliminated by an endoplasmic reticulum enzyme 

(CYP17A) to yield different steroids of nineteen carbons.
25

 The 3-hydroxyl 

group is then oxidized by 3- β-HSD to obtain androstenedione which in last 

step is reduced by 17-β hydroxysteroid dehydrogenase  to yield testosterone. 

 

 Figure 1.1. 5 Biological process of steroids synthesized from cholesterol 

(Picture taken from Walter
26

 et al. Medical Physiology: A Cellular and 

Molecular Approach, 2003). 
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Therefore, the products generated by human steroidogenesis include 

androgens (testosterone), estrogens, progesterone and corticoids (cortisol and 

aldosterone). Testosterone is produced in Leyding cells also called interstitial 

cells of Leyding in the testicles, which produce testosterone in presence of 

luteinizing hormone (LH). LH regulates the expression of 17-β 

hydroxysteroid dehydrogenase
27

. 

1.1.3.2. Metabolism of the testosterone 

Testosterone metabolism involves the reduction of approximately 7% of the 

testosterone to 5α-dihydrotestosterone (DHT) by the cytochrome P450 enzyme 

5α-reductase, and then 0.3% converted into estradiol by aromatase enzyme 

(CYP19A1)
28

  expressed in the brain, liver, and adipose tissues
19

.  

DHT is produced in the adrenal cortex and is a more potent metabolite than 

the parent testosterone due to its greater affinity for the androgen receptor. 

A feedback loop involving the testicles, the hypothalamus, the pituitary, the 

adrenal, and the prostate glands regulates the blood levels of testosterone and 

DHT (Figure 1.1. 6). Low levels of DHT triggers the production of 

gonadotropin releasing hormone (GnRH) by the hypothalamus. GnRH then 

stimulates the pituitary gland to produce follicle-stimulating hormone (FSH) 

and luteinizing hormone (LH), which stimulate the testicles to produce 

testosterone. Testosterone from the testicles and dehydroepiandrosterone from 

the adrenal glands stimulate the prostate to produce more DHT.  

High levels of testosterone suppress the release of GnRH and FSH/LH from 

the hypothalamus and pituitary glands thus providing a negative-feedback 

control of hormone levels.  Hormonal therapy in prostate cancer patients can 

decrease the levels of DHT by disrupting this pathway at any point.  
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Figure 1.1. 6 Scheme of the feedback loop involving the testicles, the 

hypothalamus, and the pituitary glands. Estrogen forms a negative feedback 

loop *by inhibiting the production of GnRH in the hypothalamus and **by 

inhibition of LH or FSH production in the pituitary gland. 

 

Different factors are involved in the released levels of testosterone. Loss of 

dominance, advance age
29

, zinc deficiency, alcohol consumption, 

hypogonadism (deficiency of functional activity of the gonads decrease 

testosterone levels but rapid eye movement in sleep (REM sleep) resistance 

training and power motivation are some of the factors which produce an 

increase in testosterone levels. 

1.1.3.3. Androgen receptor (AR) and pathways involved in 

proliferation and apoptosis 

The AR pathway is a well-established target for treating prostate cancer. To 

improve its ability to treat advanced prostate cancer it is very important to 

perfectly understand the pathways involved in AR signaling and their 

capability of being activated during the androgen insensitive state.  
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The AR, also known as NR3C4 (nuclear receptor subfamily 3, group C, 

member 4), is a 110 kD nuclear receptor. AR is very important for the 

maintenance of male reproductive organs
30

 as for the prostate gland. AR is 

activated by binding testosterone or DHT
31

 present in the cytoplasm and 

translocating them into the nucleus. Once there, the T-receptor or DHT-

receptor complex binds directly to specific nucleotide sequences of the 

chromosomal DNA. The areas of binding are called hormone response 

elements (HREs), and influence transcriptional activity of some genes, 

triggering androgen effects. The androgen receptor is very similar to the 

progesterone receptor; even at high doses of progestins
32, 33 

the androgen 

receptor can be blocked. 

AR activation occurs by three main mechanisms (Figure 1.1. 7):  

(1) By the non-genomic pathway
34

, androgen (testosterone or DHT) freely 

passes through the membrane bi-layer and binds to the cytoplasmic AR
35, 

36
. Bound AR translocates to the nucleus, then binds to a DNA response 

element on a promoter of an androgen responsive gene and stimulates 

transcription.  

(2) Bound AR interacts with the SH3 domain of the tyrosine kinase c-Src to 

activate the MAPK pathway and influence AR-mediated transcription via 

phosphorylation
37

 of coactivator/receptor complexes.  

(3) Androgen bound to the steroid hormone binding globulin (SHBG) can 

activate the SHBG receptor (SHBGR) and lead to an increase in PKA 

activity. PKA may influence AR-mediated transcription via alteration of 

phosphorylation status of AR and AR co-regulators.  
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Figure 1.1. 7 Molecular pathways of androgen action adapted from Foradoni 

et al 
38

. 

Androgens can also interact with intracellular calcium regulatory 

mechanisms, via a rapid change in [Ca
2+

] i. Calcium modulation is a rapid 

response, occurring within seconds to minutes, where the androgen binds to a 

receptor at the surface of the cell to achieve this (Figure 1.1. 8). Not all cell 

types that demonstrate a rapid androgen response express the classic nuclear 

AR or are blocked by AR antagonists. Therefore, it is not yet known whether 

the receptor located at the cell surface is the classic intracellular AR coupled 

to signal transduction machinery located in the membrane or, by a unique 

protein, capable of binding androgen and initiating signal transduction 

cascades. 
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Figure 1.1. 8 Non-genomic androgen actions via changes in intracellular ion 

concentrations and membrane fluidity. Figure adapted from Foradoni et al.
38

  

From Figure 1.1. 9 it is possible to observe the actions of androgens via 

changes in ion concentrations in the membrane and its fluidity
38

. 1) Androgen 

interacts with a membrane associated androgen receptor (mAR) leading to the 

activation of L-type calcium channels through some type of inhibitory g-

protein (GP). This increase in intracellular calcium can lead to activation of 

PKC, and via calmodulin (CAM) activates PKA and MAPK pathways, 

ultimately influencing gene transcription through phosphorylation
38

. 2) 

Androgen interacts with a membrane associated androgen receptor (mAR) 

leading to modulation of g-protein activity and subsequent activation of 

phospholipase C (PLC). These resulting increases in IP3 lead to the release of 

intracellular calcium stores from the sarcoplasmic reticulum (SR), and 

consequently the activation of the RAS/MEK/ERK pathway
38

. 3) DHT 

metabolite (3α-Diol) may interact with the GABAA receptor and lead to 

increases in intracellular calcium and thus membrane potential. 4) 

Testosterone and its metabolites can interact with phospholipids in the 
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membrane bilayer to change membrane flexibility and subsequently alter the 

function of sodium/potassium ATPase and calcium ATPase
38

. 

1.1.3.4. Examples of therapeutic targets in the AR pathway 

and the site of action of different drugs to treat 

prostate cancer
39

 . 

Therapeutic targets of the AR
40

 pathway are shown in Figure 1.1. 9, 1) AR 

bind chaparonin HSP90 molecule to avoid AR degradation caused by the 

presence of 17-AAG, HSP90 inhibitors, decreasing AR levels. 2) Men treated 

with LHRH agonists may reduce testosterone levels but still some androgens 

can be synthesized by adrenal glands and intratumorally. Both can be 

inhibited by ketoconazole (synthetic estrogen) a non-specific p450 inhibitor 

and abiraterone (LHRH agonist), a 17-lyase inhibitor. 3) Testosterone (by the 

action of the enzyme 5α-reductase) is converted to DHT, which has a greater 

affinity for AR than testosterone. Finasteride and dutasteride (anti-androgenic 

drugs) can inhibit 5α-reductase. 4) DHT-AR ligands can be inhibited by 

antiandrogens such as bicalutamide and novel agents MDV-3100
41

 and 

BMS641988. Mutation of AR as well as AR over expression can convert 

endogenous steroids (progestins, estrogens, corticosteroids, etc.) and some 

antiandrogens into agonists. MDV-3100 was designed to suppress AR 

function even when AR is over expressed. 5) Activation of receptor HER2 

tyrosine kinases to activate AR. Two kinases directly phosphorylate AR on 

tyrosine, Ack1 and SRC. Other pathways of receptor tyrosine kinases, 

including AKT and Mitogen-activated protein (MAP) kinase pathways are 

also implicated. Antibodies such as trastuzamab and pertuzumab and small 

molecular TKI inhibitors such as erlotinib and lapatinib target HER2. 

Dasatinib target SRC. 6) The transcription of AR target genes requires the 

chromatin state. This transcription can be inhibited by HDAC inhibitors 

through the disruption of the chromatin structure and inhibition of recruitment 

of coactivators and RNA polymerase II. 
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Figure 1.1. 9 Molecular pathways of androgen action. Adapted from Ref. 40. 

Around 200 compounds are currently being tested in clinical trials for 

treatment of advanced prostate cancer. These drugs could be used alone or in 

combination with cytotoxic agents
42

. The identification and knowledge of new 

pathways is essential for progress in developing efficient and suitable 

treatments for disease. The compounds show the efficacy of targeting prostate 

cancer cells. They include inhibition of pathways by kinases (phosphatidyl 

inosytol 3-kinase (PI3K), Akt, mTOR) and epidermal growth factor receptor 

(EGFR), platelet-derived growth factor receptor (PDGFR), insulin growth 

factor receptor (IGFR), Her2/Her3), immunological approaches, novel 

cytotoxic compounds and targeting of important cellular processes such as 

angiogenesis, apoptosis, vitamin D metabolism, differentiation and stem cell 

biology
43

. 
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1.1.4. Diagnosis of prostate cancer and stage determination 

Due to the absence of symptoms it is very difficult to diagnose an early-stage 

prostate tumor.  Possible symptoms to consider are burning urination, 

dysfunction erectile, or pain or stiffness in the lower back, hips or upper 

thighs or a general bone pain. However, these symptoms can also indicate the 

presence of other male disorders.  As it was said above, DRE and PSA are 

considered routine biomarkers to allow early prostate cancer diagnosis and 

therefore are recommended an annual exam in men over 50. PSA is a specific 

type of protein which in the presence of prostate cancer, increases in the blood 

levels and makes it a valuable tool in detecting early stage prostate cancer. 

PSA levels provide information about the tumor size and aggressiveness 

depending on PSA value changes with time. However, high PSA levels does 

not necessarily indicate the presence of cancer because it could be caused by 

other diseases such as prostate inflammation, urinary retention, prostate 

infection, benign prostatic hypertrophy (BPH) or prostate manipulation. 

Therefore, in order to avoid a false positive, biopsies and x-ray analysis are 

also performed. Once prostate cancer is diagnosed it is crucial to determine 

the cancer stage. There are three main parameters to determine the extent and 

severity of cancer Grade (Gleason Score
44

), Stage and PSA (mentioned above) 

in order to select the best therapy for a patient.  Aggressive tumors will have a 

higher Gleason score and consequently a worse prognosis To determine the 

Gleason Score, the pathologist identifies with a grade the most common tumor 

pattern (for example grade 2) and the next common tumor pattern with a 

second grade (for example 3). These two grades will indicate the Gleason 

score (2+3=5) also called Gleason sum
45

. The Gleason grade ranges from 1 to 

5 (Figure 10). Bigger grades are associated with cells that have spread out, 

losing their glandular architecture and therefore, corresponding to the worst 

prognosis.  

The Gleason Score (Figure 1.1. 10) shows the degree of abnormal 

microscopic appearance of the prostate cells helping in the selection of an 

adequate therapy depending on the grade of the tumor.  
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Figure 1.1. 10 An updated version of Dr. Gleason’s simplified drawing of the 

five Gleason grades of prostate cancer
46

. 

Early prostate cancer with a Gleason Grade of 1 or 2 is not believed to be very 

dangerous. Tumors tend to grow slowly and tend to remain in or around the 

prostate. But in prostate cancer, cells mutate until possible invasion of other 

tissue in the body acquiring a Gleason Grade of 4 or 5. High-grade tumors 

tend to grow quickly and are more likely to spread beyond the prostate.  

Other current diagnosis parameters to classify the tumor is the TNM Staging, 

evaluation of the tumor (T), evaluation of the regional lymph nodes (N), and 

evaluation of distant metastasis (M) described in detail in appendix 1. 

1.1.5. Current Prostate Cancer Treatments  

There are a wide variety of treatments of prostate cancer available depending 

on the stage of the disease at the time is diagnosed. Treatments include either 

single therapy or combinations of surgery, radiation therapy, hormone therapy 

and/or chemotherapy. However, the type of treatment given is influenced by 

different factors for example the patient’s age and its general health of the 

patient
47

. There are different treatments options which are currently in the 

market, such as: active surveillance, surgery, radiotherapy, cryotherapy, 

ultrasound, hormonal therapy, chemotherapy and other treatments as treating 

bone pain, angiogenesis inhibitors and prostate cancer vaccines. 

 

    1             2               3              4          5 
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In Figure 1.1. 11 is shown the most accepted protocol to follow with prostate 

cancer patients. 1) When prostate cancer is found to be localized in the 

prostate gland, the first possible treatment is radical prostatectomy
48, 49

 and/or 

radiation therapy (external beam, radioactive seeds or combination of both). 

2) However, 20-40% of cancers relapse
50

 and it may be coming back. Then, 

hormone therapy would be the best option to reduce PSA levels. 3) If PSA 

levels start to rise it could be that cancer is hormone refractory and does not 

respond to hormone treatment or gets worse while being treated with hormone 

therapy. In addition, if the cancer has spread outside the prostate gland, 

metastatic or already considered advanced tumor can reach other parts of the 

body, preferentially bones. If the patients have few or no prostate cancer pain-

related symptoms, the therapy chosen could be immunotherapy such as 

PROVENGE. But patients who have significant cancer-related pain, 

chemotherapy should be an option. 4) If last treatments are not effective, after 

one type of chemotherapy, different chemotherapeutic agents or different 

endocrine therapy (e.g. androgen deprivation) are then the options. 

 

Figure 1.1. 11 Treatments usually administered in the progression of prostate 

disease. 

1.1.5.1. Active surveillance 

Active surveillance
51

 (no treatment) is the best option when the tumor presents 

a slow growth and the patient is of advanced age or suffer from other life-

threatening conditions. This is often called active monitoring or watchful 

waiting, which involves monitoring the prostate cancer for signs of any 

variation in the tumor.  

.  
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1.1.5.2. Surgery  

It is the most successful strategy for healthy men (usually, those under 70) 

with localized disease. The most common technique is a radical 

prostatectomy
52

. From the 1980s a better understanding of the 

periprostatic anatomy has unleashed an improvement on the surgical 

technique. The preservation of the cavernous nerves made possible to 

maintain the sexual function (40%-65% of men). 

1.1.5.3. Radiation therapy for advanced or recurrent Prostate 

Cancer 

This therapy uses radiation to destroy cancer cells and can be very 

effective as primary treatment for localized prostate cancer. Radiation 

therapy
52

 is the preferred treatment when cancer has spread to adjacent 

tissue and is also used in advanced cases to relieve pain from the spread of 

cancer to bones. Incontinence and impotence also occur with radiation and 

some studies have shown similar results to surgery. Recent advances 

allow doctors to target prostate cancer cells more precisely and with a 

higher dose of radiation and lower side effects while improving 

effectiveness.  

1.1.5.4. Cryotherapy  

Cryotherapy involves freezing the prostate with liquid nitrogen or argon 

gas in order to destroy cancer cells. This treatment may be used when the 

prostate cancer is refractory or recurrent
53

 but has not been widely adopted 

because freezing can damage the rectum or the urethra. Sexual function is 

also more affected than with other treatments.  

1.1.5.5. High-intensity focused ultrasound (HIFU)  

HIFU destroys cancer cells by heating them with highly focused 

ultrasonic beams. This treatment
54

 is not commonly used in the United 

States but is a technique frequently used in Europe. After treatment, most 

men experience a degree of incontinence but usually regain complete 

urinary control and/or impotence.  
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1.1.5.6. Hormonal Therapy 

 As it has been mentioned above, in most cases prostate cancer 

progression depends on male hormone levels, such as testosterone. 

Therefore, endocrine therapy is typically the treatment employed in 

advanced prostate cancer, but it can also be used to shrink larger tumors 

thus facilitating the effect of some treatments such as radiation. The most 

common side effects when using hormones as treatment are nausea, 

diarrhea, loss of sexual interest, impotence, and fatigue. Hormone 

therapies are also increasingly used in combination with radiation therapy 

or surgery
55

 (for more detailed information about combination therapy see 

introduction chapter 5).  

As it was already mentioned, testosterone is the most important factor 

involved in prostate cancer growth. Bearing this in mind, there is a clear 

rationale to treat prostate cancer even before it occurs. It is possible to 

reduce testosterone levels by altering the diet, reducing the consumption 

of raw animal fat (e.g. in red meat) or by increasing the consumption of 

phyto-estrogens (available from vegetables as soy products), which mimic 

the activity of the female hormones. Different forms of hormonal therapy 

are currently being administered, namely: orchiectomy (surgical 

castration), anti-androgens, LHRH agonists
56

 and antagonists, and the use 

of estrogens as androgen-suppressing drugs (Figure 1.1. 12). 
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Figure 1.1. 12  Different mechanisms showing how hormonal therapy 

works in order to destroy prostate cancer cells. 

There are mainly two objectives in working with hormones, 1) Reducing 

further mutations of the cancer cells, and 2) Stopping their growth and 

duplication.                                            

1.1.5.6.1. Orchiectomy
57

  

Orchiectomy
57

 involves the pharmacological removal of the testicles used 

as the standard hormone therapy for prostate cancer. Because 

orchiectomy is an efficient, cost-effective and convenient method of 

reducing testosterone it is still an option for certain patients, particularly 

men at advanced age. Diethylstilbestrol (DES) was the first drug used as 

an alternative to surgical orchiectomy. 

1.1.5.6.2. Anti-androgens 

They block the production of any androgen in the body, even from 

adrenal glands after orchiectomy or during treatment with LHRH 

analogs. Flutamide (Eulexin®), bicalutamide (Casodex®)
58

, and 

nilutamide (Nilandron®) (www.nilutamide.com) (Figure 1.1.13), are 

known as anti-androgens
59

 and are orally taken daily for a duration of 
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three years. Normally they are used in combination with surgery or other 

hormonal therapies, typically orchiectomy or an LHRH analog. This type 

of therapy can also be used as radiation therapy sensitizer by giving it 

approximately two months before. BMS-641988 (Figure 1.1. 13) is a 

small anti-androgen molecule that binds to the AR, inhibiting its 

transcriptional activity. This drug showed an increased potency 

compared with the standard bicalutamide.  MDV3100 (Figure 1.1. 13) is 

another experimental AR antagonist currently in Phase 3 clinical trials
60

. 

As opposed to bicalutamide, MDV3100 does not promote translocation 

of AR to the nucleus and avoids binding AR to DNA and AR to 

coactivator proteins
61

.  

 

Figure 1.1. 13 Anti-androgens molecules used for the treatment of 

Prostate Cancer (PCa). The anti-androgen sits in the AR and prevents the 

interaction of testosterone (T) and DHT with the AR (target). 

Finasteride (Proscar® or Propecia®) and Dutasteride (Avodart®) (Figure 

1.1. 14) are also anti-androgenic drugs but in this case they inhibit the 

enzyme 5-α reductase, blocking the conversion of testosterone to its 

more biologically active form, DHT. Dutasteride inhibits both isoforms 

of 5-α reductase, Type I and Type II, whereas finasteride only inhibits 

Type II. Both drugs decrease prostate volume similarly with greater 

improvements in symptom score for dutasteride but not statistically 

significant. 

 

     

      Flutamide (Eulexin®) 

 

        Bicalutamide (Casodex®) 

 

Nilutamide (Nilandron®) 

                                          

                                      BMS-641988                                                      MDV-3100 
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Figure 1.1. 14 Anti-androgens molecules used for the treatment of PCa 

inhibiting the enzyme 5-α-reductase. 

 

1.1.5.6.3. Luteinizing hormone-releasing hormone (LHRH) 

agonists or LHRH analogs  

This is a therapy chosen for most men as an alternative to the 

orchiectomy. LHRH (Figure 1.1. 15) agonists also known as 

gonadotropin releasing hormone (GnRH), block the release of LHRH, 

through the process of downregulation after an initial stimulation effect. 

These drugs reduce testosterone levels similar to the orchiectomy, and 

for this reason are considered as a chemical castration. The most 

common way of administering LHRH agonist is a subcutaneous implant 

such as polymeric depots that allow controlled release of the hormone.  

 

Figure 1.1. 15 Luteinizing hormone molecule (Glp-His-Trp-Ser-Tyr-

Gly-Leu-Arg-Pro-Gly-NH2). 

LHRH analogs (Figure 1.1. 16) include leuprolide (Lupron®, Viadur®, 

Eligard®), goserelin (Zoladex®, described below), triptorelin 

 

 

                      Finasteride (Proscar®) 

 

               Dutasteride (Avodart®) 
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(Trelstar®), and histrelin (Vantas®) and are administered by regular 

injections ranging from once a month to once a year. If these treatments 

are used instead of surgery, these drugs must be administered regularly 

for life. A disadvantage of this therapy is that it causes a testosterone 

spikes during several days before the suppression takes effect, this 

phenomenon is called flare effect (also it can be called hormone flare or 

tumor flare). This effect can be extremely dangerous in patients who 

have advanced stages of prostate cancer and bone metastasis. 

Zoladex
®
 is one of the most successful anticancer drug delivery system. 

It is used for the treatment of prostate cancer presenting a polymer depot 

formulation for GnRH (LHRH) analogues
62

. Currently is also being 

studied to treat other cancers as breast adenocarcinoma. AstraZeneca 

(ICI) workers in 1971 isolated the peptide hormone GnRH (discovered in 

1968) and began  analogue synthesis. Those GnRH analogues resulted to 

be more resistance to degradation and could block the action of the 

hormone. Originally, Zoladex
®
 was thought to promote fertility, however 

it was observed that Zoladex inhibited the estrogen and androgen 

secretion acting as GnRH antagonist, and therefore with possibility to act 

as a potent antitumor agent. 
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Figure 1.1. 16  LHRH analogs administered to treat PCa.  

Zoladex
®
 was found then 100-200 more potent than the natural hormone 

due to the high affinity for its receptor and resulted to be more stable in 

vivo due to the increased residence time, t1/2 for Zoladex was 4.5h in 

contrast to GnRH which is degraded rapidly with t1/2 of 10 min. GnRH 

was released in small pulses every 90 min causing permanent receptor 

down regulation. For this reason a depot formulation was study and a rod 

system with 1cm length and 1mm of diameter (Figure 1.1. 17) was 

designed, which also reduced the need of repeated injection and allow 

local delivery. The effective dose of Zoladex
®
 administration was 3.6mg 

and the depot last 28days obtaining a significant effect on PCa prostate 

cancer growth.  

 

Figure 1.1. 17  A. Dimensions of the rod polymer depot formulation of 

Zoladex
®
 and B. schematically representation of drug delivery once is 

diffused into the cell. 

The polymers used to synthesize this small rod were poly D, L lactide-

co-glycolide, PLGA, (50:50), chosen as it is a FDA approved polymer, 

therefore clinically safe (as biodegradable sutures). 

1 cm

1mm

A. B.
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This polymer was designed to internalize and deliver the drug by 

controlled diffusion. This polymer depot formulation for local delivery 

presents some advantages, as it can be positioned after surgery and used 

as a controlled release (CR) depot, offering good patient compliance. 

However, this type of technology also presents limitations in case of 

metastatic disease, the drug loading is low, therefore it is necessary a non 

immunogenic potent drug entrapped in a biodegradable polymer. 

Abiraterone (Figure 1.1. 18) is a new drug, a steroidal cytochrome P450 

17alpha-hydroxylase-17,20-lyase inhibitor (CYP17), and is currently 

undergoing phase II clinical trials as a potential drug for the treatment of 

androgen-dependent prostate cancer. CYP17
63

 enzyme is necessary in the 

body to secrete many hormones such as androgens including 

testosterone. In preclinical studies, Abiraterone has demonstrated the 

ability to selectively inhibit the target enzyme (IC50=4nM for 

hydroxylase), resulting in inhibition of testosterone production in both 

the adrenals and the testes shrinking the tumors and also lowering PSA 

levels. Clinical studies demonstrated that CYP17 blockage by abiraterone 

acetate is safe and has significant antitumor activity in CRPC (castration-

resistant prostate cancer).  

 

Figure 1.1. 18  Molecule of Abiraterone, a LHRH analog used for the 

treatment of PCa by blocking the enzyme CYP17 which secretes 

testosterone.  

LHRH agonists and anti-androgens are often prescribed together, as a 

combination therapy. 
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1.1.5.6.4. Luteinizing hormone-releasing hormone (LHRH) 

antagonists 

LHRH antagonists suppress the production of LH directly. These drugs 

are able to reduce testosterone levels more rapidly than LHRH agonists 

and do not cause the flare effect. However, those drugs are less often 

prescribed because they can cause a severe allergic reaction in some men. 

Abarelix (Plenaxis®) (Figure 1.1. 19) was the first antagonist to be 

described although was removed from the market in 2005. Degarelix 

(Firmagon®) (Figure 1.1. 19) is another LHRH antagonist, which also 

reduces testosterone levels and was approved by the FDA in 2008 to treat 

advanced prostate cancer. It is monthly administered subcutaneously. 

 

Figure 1.1. 19 LHRH antagonists administrated to treat PCa.  

1.1.5.6.5. Combination Therapy Strategies 

In the treatment of PCa, the most common method of treatment is to 

administer one, two or three drugs in combination, e.g. an LHRH agonist 

or antagonist with an anti-androgen, which may also be combined with a 

5-Alpha-Reductase Inhibitor. The drug combinations reduce the levels of 

testosterone from the normal range of 200 ng/ml to less than 20 ng/ml. In 

normal prostate cells, the human body controls the production of 

testosterone as it was shown in Figure 1.1. 6 where is possible to observe 

the different and possible steps for blocking the pathway for testosterone 

production. 

However, cancer cells can induce resistance to the first line of hormone 

therapy (Figure 1.1. 20A) and can survive on very low levels. Then, a 
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second line tactic (Figure 1.1. 20B) should be employed, using androgen 

blockade or estrogens.  

        

Figure 1.1. 20  Mechanism of action of different drugs in order to reduce 

the production of testosterone as First (A) and as Second (B) Line of 

Hormone therapy. Figure adapted from Thornton
21

. 

Total androgen blockade (TAB). In the body, 90-95% of testosterone is 

produced by the testes and only 5-10% by the adrenal glands. For this 

reason, these medications are generally used only in combination with 

other methods that can block 100 percent of the testosterone present in 

the blood stream. These combined methods are called total androgen 

blockage. 

Examples of TAB are ketoconazole and aminoglutethimide which block 

the production of adrenal androgens such as 5-Dehydroepiandrosterone 

(DHEA), a natural steroid hormone. DHEA (Figure 1.1. 21A) is 

produced from cholesterol through two cytochrome P450 enzymes 

(Figure 1.1. 21B). Cholesterol is converted to pregnenolone by the 

enzyme P450 through side chain cleavage; then another enzyme, 
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CYP17A1, converts pregnenolone to 17 α-Hydroxypregnenolone and 

finally to DHEA. 

    

Figure 1.1. 21 A. Molecule of Dehydroepiandrosterone (DHEA). B. 

Production of DHEA from Cholesterol. 

Ketoconazole (Nizoral®) (Figure 1.1. 22), was originally sold as a 

systemic anti-fungal medication. It is taken orally (e.g. 400 mg 3x/day), 

and it should be accompanied by a small dose of cortisone to replace the 

natural cortisone no longer produced by the adrenal glands. 

Ketoconazole
64

 blocks androgen production from the testes but also from 

the adrenal androgen biosynthesis, thus reducing testosterone levels in 

the body. It inhibits cytochrome P450
65

 and 17,20-lyase, which are 

involved in the synthesis and degradation of steroids, including the 

precursors of testosterone. Ketoconazole has been used as a treatment for 

androgen-dependent prostate cancer due to its efficacy to reduce 

systemic androgen levels. This drug has also been used as androgen 

receptor antagonist, competing with testosterone and DHT to bind 

androgen receptors. 

 

Figure 1.1. 22  Molecule of ketoconozole, an estrogen used for the 

treatment of PCa by blocking the enzyme 17, 20-lyase which secretes 

testosterone.  
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Ketoconazole can be toxic to the liver, for this reason is very important to 

monitor the liver function during the course of medication. It can cause 

side effects such as anorexia and a condition called sticky skin. 

1.1.5.6.6. Other androgen-suppressing drugs 

An example of these types of drugs is the estrogen, which is the female 

sex hormone. Estrogens are considered an alternative to orchiectomy in 

advanced prostate cancer because it cannot feed the prostatic tissue, and 

the hypothalamus mistakes estrogen as testosterone and stops GnRH 

production. Due to the side effects of administering estrogens they are 

now replaced by LHRH analogs and anti-androgens. 

Diethylstilbestrol (DES) (Figure 1.1. 23) is a synthetic, non-steroidal 

estrogen, which has been used since the 1940s as a medication for PCa 

(taken orally, at 3 mg/d). DES has been found to cause certain types of 

cancer in women whilst taking the medication as an estrogen replacement 

therapy and can lead to teratogenic birth defects in pregnant women. 

DES has potent estrogenic abilities, capable of reaching sufficient blood 

levels to suppress LH release. DES suppresses serum T to levels 

comparable with castration. For this reason, oral DES is the most 

commonly used form of estrogen therapy for metastatic prostatic cancer. 

In many cases, after the failure of a normal hormone treatment, DES is 

administered.   

HO

OH

 

Figure 1.1. 23  Molecule of the Diethylstilbestrol, the most well known 

synthetic estrogen used to treat PCa. 

DES can interfere with other medications, such as bosentan, calcium 

salts, thyroid or growth hormone therapies, tricyclic antidepressants and 

cyclosporine. DES will generally be administered regularly to a patient 

until the tumor begins to shrink, or until a different medication is chosen.  
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DES was the first drug to be used as an alternative to surgical 

orchiectomy. Orchiectomy, DES or both together were used as a standard 

initial treatment for symptomatic advanced prostate cancer for over forty 

years. This changed when the GnRH agonist leuprolide was also found to 

have an efficacy similar to DES (without estrogenic effects) although it 

was much more expensive. General DES side effects include: changes in 

sexual desire and activity, mild digestion, skin rash, weight gain and 

fatigue. It also causes blood clots, called deep vein thrombosis, which 

were alleviated using anti-clotting agents as coumadin.   

In addition to DES, there are other oral estrogens available. For example, 

at the appropriate dose, the oral estrogens premarin, provera (i.e., 

medroxyprogesterone acetate), and ethinyl estradiol are as effective as 

DES. Chlorotrianisene (TACE) (tri-p-anisylchloroethylene) has clinical 

responses but does not completely suppress LH or T levels.  

The following Table 1.1. 2 describes the dosage and toxicities of the 

most common hormonal agents used to treat PCa..  

Table 1.1. 2 Hormonal agents commonly used in the treatment of PCa. 

Table taken from Swain SM et al., 1990
66

. 

 

Agent Dosage* Toxicities 

LHRH agonists  

Leuprolide (Lupron) 7.5 mg/mo–22.5 mg/3mo 

(IM) 

Hot flashes, decreased libido, 

impotence, gynecomastia, fatigue, 

edema,muscle waning, osteoporosis, 

anemia, disease flare 

Goserelin (Zoladex) 3.6 mg/mo–10.8 mg/3mo 

(SC) 

 

Antiandrogens  

Flutamide (Eulexin) 250 mg tid Decreased libido, gynecomastia, hot 

flashes, hepatotoxicity, diarrhea, 

Bicalutamide (Casodex) 50 mg daily  

Nilutamide (Nilandron) 50 mg tid Nilandron-impaired night vision 
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where IM= intramuscular; SC= subcutaneous; tid= three times daily; 

qid= four times daily; HC= hydrocortisone; DVT= deep venous 

thrombosis. 

 

1.1.5.7. Chemotherapy  

Chemotherapy is not particularly effective for PCa. This is considered a 

systemic treatment and involves the use of chemical agents capable of 

stopping the growth of cancer cells. More than half of all people 

diagnosed with cancer receive chemotherapy, particularly those with 

metastatic diseases. Chemotherapy can be administered orally or 

intravenously (i.v). Chemotherapeutics can target different cell growth 

patterns depending on their mechanism of action. The most common 

chemotherapeutics used in treating PCa are doxorubicin (brand name 

Adriamycin), paclitaxel
67, 68

 (brand name Taxol), platinates (i.e. cisplatin) 

or carboplatin (brand name Paraplatin), 5-fluorouracil (5-FU) and 

different drug cocktails especially when metastasis is already present.  

Some common side effects of chemotherapy are: low white blood cell 

count, low red blood cell count, low platelet count, nausea, vomiting, hair 

loss, and/or fatigue. But one of the most serious potential side effects in 

Agent Dosage* Toxicities 

Adrenal enzyme inhibitors  

Aminoglutethimide 

(Cytadren) 

250 mg qid + HC 30 mg 

qday 

Lethargy, dizziness, nausea, rash, 

weight gain, hypoaldosteronism, 

hypothroidism, nausea, vomiting, 
requires acidic pH 

Ketoconazole (Nizoral) 400 mg tid + HC 30 mg 
qday 

 

Miscellaneous agents  

Diethylstilbesterol (DES) 1 mg daily 40 mg qid DVT, stroke, cardiac ischemia (more 

common at higher doses), 

gynecomastia, fluid retention, weight 

gain, DVT, impotence, gynecomastia, 

loss of libido, decreased HDL, side 

effects associated with hypercortisolism 

Megesterol acetate (Megace) 40mg qid  

Cyproteron acetate (CPA) dose varies 50–100 mg tid  

Prednisone 7.5–10 mg daily  
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this therapy is the neutropenia, a hematological disorder where the 

number of white blood cells (specifically neutrophils) is considerably 

diminished. Neutropenia can interrupt your chemotherapy schedule as it 

induces susceptibility to bacterial infections. This scenario results in a 

very serious, life-threatening disease (neutropenic sepsis).  

Cisplatin (Figure 1.1. 24) is a platinum-based chemotherapy drug used to 

treat various types of cancers, including sarcomas, small cell lung cancer, 

ovarian cancer, lymphomas, and germ cell tumors. It was the first member 

of a class of anti-cancer drugs which now includes carboplatin and 

oxaliplatin. These platinum complexes react in vivo, binding to and 

causing crosslinking of DNA which ultimately triggers apoptosis.  

 

Figure 1.1. 24  Molecule of cisplatin. 

Paclitaxel (Figure 1.1. 25) is a chemotherapeutic drug commonly known 

as Taxol
®
.. The drug comes from the bark of one particular type of yew 

tree. Paclitaxel works by stiffening the microtubules that make up the 

inner skeleton of a cell. Once the microtubules are locked into place, the 

cells, which require malleability to divide successfully, crumble and die 

during cell division, stopping cancer cell growth. 
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Figure 1.1. 25  Molecule of Paclitaxel. 
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Paclitaxel inhibits microtubule disassembly and freezes cells during 

mitosis. Speicher et al.
69

 evaluated the combined effect of estramustine 

and paclitaxel on human prostate carcinoma cell, based on the 

complementary mechanisms of action. It was discovered that the 

synergistic effect of the two had the desired cytotoxic effect. Paclitaxel 

was approved by the Food and Drug Administration (FDA) to treat 

ovarian and breast cancer and AIDS-related Kaposi sarcoma. Normally it 

is taken in combination with other anti-cancer drugs. It is also approved to 

be used together with cisplatin to treat advanced ovarian cancer, non-

small cell lung cancer (NSCLC) and advanced or recurrent PCa. 

Nowadays it is also being studied in the treatment of other types of cancer.  

The most common side effects of paclitaxel treatment include headaches, 

aching muscles, coughing, a sore throat, pain whilst passing urine or 

feeling cold and shivery  (because of an increased risk of getting an 

infection from a drop in white blood cell count). Other common 

symptoms are tiredness and breathlessness, nosebleeds, and having blood 

spots or bruises on the arms and legs. These symptoms are related to a 

drop in the number of platelets in the blood and a drop in the number red 

blood cells (anaemia). In this case a blood transfusion is necessary. Some 

of these side effects can be life threatening, particularly infections. Others 

side effects are fatigue, vomiting, hair loss (alopecia), numbness and 

tingling in the hands and feet (peripheral neuropathy), diarrhoea, mouth 

sores and ulcers. 

Paclitaxel induced cell death or apoptosis by activation of caspase-7 but 

not caspase-3. In addition, there is parallel, but not apparent 

interdependent, activation of extracellular signal-regulated kinase (ERK), 

p38, and Jun N-terminal Kinases (JNKs) which are members of the 

Mitogen-Activated Protein Kinase (MAPK) pathway
68

. These kinases are 

activated in response to growth factors, cellular and environmental stress, 

and cytokines
70

. These kinases play roles in a variety of biological 

processes, including cell division, survival, differentiation, and 

metabolism. 

ERK activation is dependent upon Ras and an unknown MEK family 

member (Figure 1.1. 26). Ras is a protein family called small GTPase 
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which are involved in the cellular signal transduction. Ras took the name 

from the first protein family discover in a Rat sarcoma. When Ras is 

activated by incoming signals, it activates other proteins which finally 

turn on genes involved in cell growth, differentiation and survival. Ras 

regulates diverse cell behaviors. 

 

Figure 1.1. 26 Schematic representation of paclitaxel-induced effects 

upon signal transduction pathways. Figure adapted from Okano et al in 

2001
68

. 

Docetaxel (Taxotere®) the chemotherapy taxane drug, semi-synthetic 

analogue of paclitaxel (Taxol
®
) is mainly used towards the treatment of 

breast, prostate and other non-small cell cancers. Docetaxel binds to 

tubulin, promotes the assembly of tubulin into stable microtubules and 

inhibits microtubule depolymerization. Microtubules formed in the 

presence of docetaxel are of a larger size than those formed in the 

presence of paclitaxel, which may result in improved cytotoxic efficacy. A 

greater and more slowly reversible degree of polymerization has been 

demonstrated for docetaxel than for paclitaxel. The cytotoxic effect of 

docetaxel is then mediated by disruption of the microtubular network 

essential for mitotic and interphase cellular functions
71

 . In addition, 

docetaxel appears to have a higher affinity for tubulin than for paclitaxel 

and is a more potent inducer of microtubule assembly. 
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Preclinical Investigations of Docetaxel
71

. Several preclinical studies have 

demonstrated the potential activity of docetaxel in PCa. In tissue culture, 

docetaxel is more active than paclitaxel against established prostate cell 

lines. Recently, the combination of docetaxel and estramustine (Emcyt) 

was shown to exert significant cytotoxic effects in PC-3 prostatic cell 

lines. Docetaxel has been shown to have an effect on topoisomerase II 

enzyme, nuclear matrix proteins, and modulators of apoptosis (or 

programmed cell death). Several pro- and antiapoptotic pathways have 

been identified in androgen-independent (PC3) prostate cancer cell lines 

and tissues. The antiapoptotic protein bcl-2 was expressed in 

approximately 65% of androgen-independent human prostate cancer 

specimens. In vitro analyses suggest that docetaxel’s mechanism of action 

may involve inactivation of bcl-2 by phosphorylation (which causes 

apoptotic cell death) demonstrating greater potency that paclitaxel
72

. Other 

different pathways for docetaxel-induced apoptosis between the androgen-

responsive (LNCaP) and androgen-independent (PC-3) prostate cancer 

cell lines are been studying. These findings will assist researchers in 

choosing distinct therapies with activity against localized versus advanced 

prostate cancer. 

1.1.5.8. Other therapeutic strategies 

1.1.5.8.1. Prostate cancer vaccines 

Vaccines have been developed based on the hypothesis that 

immunotherapies can harness the immune system to fight cancer. It 

works by stimulating the immune response of the body to attack PCa 

cells.Those vaccines can target a unique cancer cell antigen, i.e. PSA 

which can be found in the blood, rarely present on normal cells. Research 

has been used healthy human prostate tissue inserted into a mutated virus 

to stimulate lymphocytes to attack cancer cells.  

In 2010, the FDA approved the first cancer treatment vaccine, sipuleucel-

T (Provenge®, manufactured by Dendreon). It is approved for use in 

some men with metastatic prostate cancer and designed to stimulate an 

immune response to prostatic acid phosphatase (PAP), an antigen that is 

found on most prostate cancer cells. In a clinical trial, Provenge increased 

the survival of men by about 4 months. PROSTVAC® is also a 
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therapeutic cancer vaccine in Phase 3 clinical development. This vaccine 

also extends significantly the lives of men with advanced prostate cancer 

without affecting their quality of life. This vaccine is intended to move 

into patients in earlier stages of the disease or whose disease has recurred 

after surgery or radiotherapy. 

1.1.5.8.2. Angiogenesis inhibitors 

Angiogenesis is a normal and vital process in growth and development of 

new blood vessels from pre-existing vessels by secreting various growth 

factors such as vascular endothelial growth factor (VEGF). Cancers are 

very hard to treat when they stimulate the growth of a large number of 

vessels. New drugs are being studied to prevent new blood vessels from 

forming to stop prostate cancer growth.  

One of the anti-angiogenic drugs currently tested in clinical trial is 

thalidomide, approved by the FDA to treat patients with multiple 

myeloma and in combination with chemotherapeutic agents to treat men 

with advanced prostate cancer.  Bevacizumab (Avastin®) is another 

FDA-approved drug and is being tested in combination with hormone 

therapy and chemotherapy to treat advanced prostate cancer.It has been 

also studied a combination therapy which involve radiotherapy and a 

prostate specific antigen (PSA)- based vaccine and the National Cancer 

Institute (NCI) has promoted to Phase II trial to evaluate it
73

. The design 

was based on the patient´s immune system stimulation, which enhances 

the radiotherapy effect. Indeed, based on preclinical observations, it was 

demonstrated that the radiation therapy can alter tumor cells and make 

them more susceptible to the action of the body’s immune system.  

1.1.5.8.3. Treating bone pain 

One of the most unpleasant side effects in metastatic advanced prostate 

cancer is bone pain. Apart from classical analgesia combined with the 

anticancer treatment, radiofrequency ablation (RFA) is also being 

studied. RFA consists of using computed tomography (CT) or ultrasound 

to guide a small metal probe into the tumor and then a high frequency 

pass through the probe that heats the tumor and destroys cancer cells. 
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RFA has been used to treat tumors in the liver and other organs but is 

very new for the treatment of bone pain. Still, early results are promising. 

1.1.6. Prostate cancer cells models 

The cell lines most commonly used in the study of PCa are: LNCaP (lymph 

node cancer of the prostate), PC-3 (bone cancer of the prostate cancer) and 

DU-145 (brain cancer of prostate cancer).  

LNCaP cells
74

 (Figure 1.1. 27) are androgen-

sensitive human prostate adenocarcinoma 

cells derived from the left supraclavicular 

lymph node metastasis from a 50-year-old 

Caucasian male in 1977. They are adherent 

epithelial cells growing in aggregates and as 

single cells. LNCaP cells are epithelial cells 

with adherent qualities.  

                                                                      ..      Figure 1.1. 27 LNCaP cell line.                           

Highly sensitive androgen receptors are present in the cytosol of LNCaP both 

in culture and in tumors, making LNCaP a highly androgen-dependent cell 

line
75

 (androgen receptor positive, AR+). Therefore it is sensitive to hormones 

(estrogen and androgen) which can be used to modulate growth. In vitro, 

LNCaP cells grow in culture as aggregates or as individual cells with the 

possibility to acidify the medium, but not resulting in confluence. They are 

resistant to human fibroblast interferon. The cells also have cytosolic estrogen 

receptors and 5-alpha-dihydrotestosterone that modulate cell growth and 

stimulates acid phosphatase production (the cells are sensitive to 5-alpha-

DHT). This cell line does express PSA and Human Prostatic Acid 

Phosphatase (hPAP), which indicate the presence of active cytosolic androgen 

receptors in prostate cells. LNCaP is the only commercially available cell line 

that expresses hPAP, making it the only line available with which to study 

transcriptional regulation in the hPAP gene. The cell line is stable and the 

malignant qualities of the cells are well maintained, making LNCaP very 

useful for the study of PCa. LNCaP is a good model for studying 

transcriptional regulation in genes of the prostate. This is because so many 
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gene products in prostate cells are prostate-specific and the result of 

androgen-dependent processes. 

PC-3 and DU-145 human prostate cancer cell lines
76, 77

 are also classical 

cell lines of prostatic cancer. Both cells lines are epithelial cells. PC-3 (Figure 

1.1. 28) and DU-145 (Figure 1.1. 29) are human prostatic adenocarcinoma 

and metastatic to bone and to brain, respectively. PC-3 cells have high 

metastatic potential compared to DU-145 cells which have a moderate 

metastatic potential. The proliferation of PC-3 and DU-145 cells is androgen-

independent (AR -). Advanced prostate tumours present an elevation of AR 

expression and express PSA upon androgen treatment. But androgens also 

inhibit the proliferation of these androgens-independent prostate cancer cells.  

PC-3 cell line
77

 (Figure 1.1. 28) presents a 

grade 4 of prostatic adenocarcinoma derived 

from the bone metastasis from a 62 year old 

caucasian male. PC-3, are unable to express 

hPAP but it could be due to that they are 

androgen sensitive, and are functionally 

differentiated. PC-3 cells have low 

testoterone-5-alpha reductase activity and 

low acid phosphatase.  

 

Figure 1.1. 28 PC-3 cell line. 

 

 

DU-145 cells
77

 (Figure 1.1. 29)  are 

hypotriploid human prostate cancer cells 

derived from a brain metastasis of a 69-year-

old Caucasian male. DU-145 was isolated by 

Stone et al This cell line is not detectably 

hormone sensitive, and is only weakly 

positive for acid phosphatase and the isolated 

cells form colonies in soft agar. These cells 

do not express PSA.                               

                                                                          Figure 1.1. 29 DU-145 cell line.   
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In Figure 1.1. 30 it is possible to observe in detail the appearance of each 

prostate cancer cell line (PC3, LNCaP and DU 145) when they are treated 

with antibodies against microtubules. 

 

Figure 1.1. 30 Prostate cancer cell lines, PC-3 (a), LNCaP (b), and DU-145 

(c) immunostained for α-tubulin (green). DNA was stained with Hoechst dye 

(blue). Image taken from Gloria R. et al.
78

 in Cytoskeleton Differentially 

Localizes the Early Growth Response Gene-1 Protein in Cancer and Benign 

Cells of the Prostate. 
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1.2. POLYMER THERAPEUTICS AS NANOSIZED 

MEDICINES FOR TREATING CANCER 

 

1.2.1. Introduction  

 

As it was mentioned above, PCa is second most common cause of cancer 

death in men over fifty years old. Nowadays any effective therapeutic is 

available to treat PCa, survival is only achieved in approximately 35% of 

cases diagnosed indicating that obviously PCa therapy needs to be improved 

and new approaches developed
79

. One approach involves genomics and 

proteomics research used to identify new tumor-specific molecular targets. 

The second and complementary approach is the design of innovative drug-

delivery systems (DDS), which guide the drug precisely to tumor cells, 

decreasing non-specific toxicity and maintaining the drug/s at a therapeutic 

concentration over long periods of time. 

 

First-generation DDS include liposomes, for example DaunoXome 

(www.daunoxome.com), (daunorubicin citrate for the treatment of Kaposi's 

Sarcoma in people with acquired immune deficiency syndrome (AIDS)) and 

Doxil/Caelyx (www.doxil.com)(pegylated liposomal doxorubicin to treat 

progressed or recurred ovarian cancer), antibody–drug conjugates, for 

example Mylotarg
80

 (gemtuzumab ozogamicin to treat acute myelogenous 

leukemia), the first therapeutic nanoparticles (albumin-entrapped paclitaxel 

(Abraxane) (www.abraxane.com) for the treatment of metastatic breast cancer  

and also several polymer conjugates carrying either low-molecular-weight 

drugs or proteins. All those examples evidence that nanotechnology applied to 

medicine will bring huge advances in the diagnosis and treatment of cancer.  

Nanomedicines are considered new nano-sized complex systems of at least 

two components (one should be a bioactive agent), designed for improving 

diagnostics, preventative medicines and efficacy disease treatments
81

. It is 

important to note that over last 20 years more than 40 nanomedicines have 

been approved for routine human use and many more and currently in clinical 

trial. Pharmaceutical nanotechnologies are designed for a specific 

administration route and a particular disease for this thesis Prostate Cancer is 

the disease of study, and Polymer Therapeutics
81-84

 the type of 

nanopharmaceutics chosen.  
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1.2.2. Polymer Therapeutics: from origins to current 

development 

 

In the 1920s Hermann Staudinger was the first to demonstrate the existence of 

macromolecules and defined them as polymers. For this work he was awarded 

the first Nobel Prize in polymer chemistry in 1953. At first the majority of 

Staudinger’s colleagues refused to accept the possibility that small molecules 

could link together covalently to form high-molecular weight compounds. 

This is due in part to the fact that molecular structure and bonding theory were 

not fully understood in the early 20th century. However, during the second 

half of that century, the polymers found their place in every-day life in many 

diverse materials. Today they form an “indispensable contribution to the 

comfort, safety and expansion of our society from astronautic to medicine”
85, 

86
. Polymers have become extensively used as biomedical materials such as 

sutures
87

, hip prostheses
88, 89

 contact lenses
90, 91

, and scaffolds for tissue 

engineering
92

. In the pharmaceutical industry, they were commonly used as 

excipients for formulation preparation
93

 and as controlled release systems 

such as matrices and gels
94, 95

. 

A step forward in the field of polymer chemistry, biology, physics and 

medicine was the development of novel, water-soluble Polymer 

Therapeutics (as defined by Duncan and Connors
96

), synthetic polymer-

based systems man-made for improved diagnostics and treatment of disease, 

particularly in cancer
84, 97, 98

 Polymer Therapeutics can be considered as the 

first polymeric nanomedicines
83, 99

. Polymer therapeutics are not conventional 

DDSs which only entrap, solubilize and control drug release. These can be 

considered new chemical entities (NCEs)
99

 and are designed to improve drug, 

protein or gene delivery by resorting of chemical conjugation.  

 

Polymer therapeutics reviewed by Duncan
99

 enclose five big families (Figure 

1.2. 1), active polymeric drugs
100

, polymer-drug conjugates
101, 102

, polymer-

protein conjugates
103

, polymeric micelles
104

 (to which drug is covalently 

bound)
105

 and multi-component polyplexes developed as non-viral vectors for 

gene interfering ribonucleic acid (siRNA) delivery
106-108

. All these
 
families are 

nano-sized macromolecules (conjugates 2–25 nm; block copolymer 

micelles/polyplexes 10–200 nm) and contain a water-soluble polymer either 
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as an inherently bioactive polymer per se or as a part of a covalent conjugate. 

All of them are described in detail in section 1.2. 4. 

  

 

 
 

Figure 1.2. 1 Schematic representation of polymer therapeutics (adapted from 

Duncan
99

). 

The field of polymer therapeutics has exponentially grown in the last decades 

(Figure 1.2. 2) with several polymer-protein conjugates already launched in 

the market and more than 16 polymer-drug conjugates introduced into routine 

clinical trials (Table 1.2. 1)
83

.Although they were first thought to develop for 

parenterally administered anticancer agents
81

  it was extended to more 

therapeutic goals and routes of administration. For example polymer 

therapeutics have been studied for treating infectious diseases (e.g. PEGIntron 

and PEGASYS protein-conjugates already in market), oral polymeric 

sequestrants (phosphate Renagel and cholesterol Welchol binders
100

), topical 

microbiocidal agents (e.g. VivaGel (polymeric-drug in clinical trial, phase II) 

and to promote tissue regeneration and repair (e.g. Macugen polymer-aptamer 

(market)). Most of the polymer–protein
103

 and polymer–aptamer
109

 conjugates 

Polymers as drugs Polymer-drug conjugates

Polymer-protein conjugates

DNA fragment

Polyplexes 

Polymeric micelles

Polycation

Protein

- -

-

-

-- ++

+

+

+ +

+

+

-
-

Targeting moiety

Solubilizing moiety

Degradable linker

Drug

Hidrophilic block

Hidrophobic block

Drug



       Chapter 1                                                                                                                                                                                                                                                                                           

-46- 

 

transferred into clinical development have used PEGs, whereas most 

anticancer drug conjugates have involved N-(2-hydroxypropyl) 

methacrylamide (HPMA) copolymers, PEG or most recently polyglutamic 

acid (PGA)
81, 99, 103

 as the polymer component. 

 

 

 
 

Figure 1.2. 2 Time-scale tracking the developments of polymers and their 

uses in nanomedicines adapted from
81

 Duncan, R. in Polymer conjugates as 

anticancer nanomedicines.  

 

The most advanced polymer drug conjugate is Opaxio®
110

, poly-L-glutamic 

acid (PGA)-paclitaxel conjugate formerly known as Xyotax® from Cell 

Therapeutics Inc. currently in Phase II-III clinical trials in NSCLC, ovarian, 

glioblastoma and esophageal carcinoma as single agent or in combination 

therapy
111,112

. Opaxio
®
 is the first example of personalized nanomedicine with 

Polymer Therapeutics as it has been shown that requires cathepsin B 

degradation to activate the conjugate. The levels of this enzyme seem to 

correlate oestradiol levels in women, and therefore this marker has been used 

to guide patient selection for recent clinical trials (need for plasma free 

oestradiol (E2) value >30 pg/mL
111

).  
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Table 1.2. 1 Examples of polymer therapeutics in the market and clinical 

trials
83

. 

 

Trade Name 
Description/route  of 

administration 
Clinical use Stage 

    

Polymeric Drugs    

Copaxone® 
Copolymer of Glu Ala,Tyr 

Multiple Sclerosis Market (2000) 
(subcutaneous injection) 

Renagel® Phosphate binding polymer (oral) End Stage Renal Failure Market (1999) 

Welchol® Cholesterol binding polymer (oral) Reduce LDL/Type 2 diabetes Market (2000/2008)

VivaGel® Lysine-based dendrimer (topical) Microbiocide Phase II 

   

Polymer-Protein Conjugates   

Zinostatin Stimaler 

Styrene Maleic Anhydride-

Neocarzinostatin (SMANCS) 

(intrahepatic artery) 

Hepatocellular carcinoma 
Market Japan 

(1990) 

Adagen® 
PEG-adenosine deaminase 

(intramuscular) 

Severe Combined Immune 

Deficiency Syndrome 
Market (1990) 

Oncospar® 
PEG-asparaginase (intravenous or 

intramuscular) 

Acute Lymphocytic Leukaemia 

Chronic hepatitis C 
Market (1990) 

PEGINTRON® 
PEG-interferon alfa-2b 

(subcutaneous) 
Chronic hepatitis C Market (2001) 

PEGASYS® 
PEG-interferon alfa-2ª 

(subcutaneous) 
Hepatitis C Market (2002) 

Neulasta® PEG-human G-CSF (subcutaneous) 
Chemotherapy-induced 

neutropenia 
Market (2002) 

Somavert® 
PEG-HGH antagonist 

(subcutaneous) 
Acromegaly Market (2003) 

Mircera® 
PEG-EPO (intravenous or 

subcutaneous) 

anaemia associated with 

chronic kidney disease 
Market (2007) 

Cimzia® PEG-antiTNF Fab (subcutaneous) 
Rheumatoid arthritis/ Crohn’s 

Disease 
Market (2008/9) 

Krystexxa® ( Puricase®, 

Pegloticase) 
PEGylated uric acid- (intravenous) Chronic Gout Market (2010) 

    

Polymer-aptamer 
 

  

Macugen® 
PEG-aptamer (aptanib) 

(intravitrea) 
AMD Market (2004) 

   

Polymer-drug conjugate  
 

CT-2103; XYOTAX
TM

; 

OPAXIO® 

Polyglutamic acid (PGA)-paclitaxel 

(intravenous) 

Cancer-NSCLC, ovarian, various 

other cancers and 

combinations 

Phase II/III 

Prolindac® 
HPMA-copolymer-DACH platinate 

(intravenous) 
Cancer-melanoma, ovarian Phase II 

NKTR-102 PEG-irinotecan (intravenous) Cancer-metastatic breast Phase II 

PEG-SN38 
Multiarm PEG-camptothecan 

derivative (intravenous) 
Cancer-various Phase II 

NKTR-118 PEG-naloxone (oral) Opioid-induced constipation Phase II 

XMT-1001 (Fleximer® 

technology) 

Polyacetal-camptothecin 

conjugate (intravenous) 
Cancer-various Phase I 
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1.2.3. The Rational behind the design of Polymer 

Therapeutics 

1.2.3.1. Enhanced Permeability and Retention (EPR) effect as 

passive tumour targeting 

 

        The enhanced permeability and retention (EPR) effect is the unique 

phenomenon of solid tumors or inflammation sites related to their anatomical 

and pathophysiological differences from normal tissues
112

. It was described by 

Maeda and colleagues
113

 in the late 80s. This passive targeting effect is mainly 

based on two facts
99, 114-116

: (i) The hyperpermeability and “leakiness” of the 

angiogenic tumor vessels that allows after intravenous administration, a 

selective extravasations of the macromolecule in tumor or inflamed tissue and 

(ii) a lack of an effective lymphatic drainage, which subsequently promote 

retention in damage tissue. The combination of these factors leads to an 

accumulation of the macromolecule in the tumor tissue (Figure 1.2. 3). This 

EPR effect served as a basis for development of macromolecular anticancer 

therapy. 

 

Figure 1.2. 3 The EPR effect (adapted from Duncan(2003)
99

). 
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The EPR-effect is even more enhanced by many pathophysiological factors 

involved in enhancement of the extravasation of macromolecules in solid 

tumor tissues. Peroxynitrite, nitric oxide (NO), tumor necrosis, 

prostanglandins, vascular endothelial growth factor (VEGF), bradykinin and 

collagenase among others factors, facilitate the EPR effect. 

Although most polymer therapeutics rely on the enhanced vascular 

permeability of angiogenic tumour vessels for tumor targeting not all tumour 

types display EPR-mediated targeting and the process can be tumour-size 

dependant.   Thus, Maeda was working on the enhanced of the EPR effect 

artificially in clinical to deeply understand and develop this effect depending 

of the relation tumor/conjugate. In order to enhance the EPR effect, Maeda 

was working on two factors, the bradykinin (which facilitates vascular 

leakage) and the nitric oxide (NO) (which facilitates vascular blood flow). 

Bradykinin is a peptide that causes blood vessels to dilate, and therefore 

causes blood pressure to lower and consequently enhances the EPR effect. It 

is known that bacterial proteases could activate the bradykinin-generating 

cascade called kallikrein-kinin cascade. As human plasma contains no 

effective inhibitors of bacterial proteases, when bradykinin (kinin family) is 

presented in the plasma causes very potent pain and induced vascular 

permeability (edema). It was found similar enhanced vascular permeability in 

both normal inflammatory and tumor tissue, but the faster clearance rates 

from normal tissue than in the tumor tissue clarify the evidence of enhanced 

EPR effect of macromolecules in tumor tissue
117

. 

The other strategy was focus on the increase of the systemic blood pressure by 

controlling the nitric oxide (NO) levels. The NO-releasing agent used was 

topical nitroglycerin, which releases nitrite and then it is converted to NO
117, 

118
. NO is more selectively in the tumor tissues and leads to a significantly 

increased EPR effect, improved drug delivery and consequently enhanced 

antitumor drug effects
117

. It was shown the same effect in cardiac tissues in 

the presence of angina pectoris
119

.The use of nitroglycerin, did enhanced 

therapeutic efficacy in a more ubiquitous manner, that is, for solid tumors in 

general, such as hypovascular tumors (metastatic liver cancer and pancreatic), 

tumors refractory to radiotherapy and most of chemotherapy
119, 120

 and in 

minute tumor nodules as small of 100µm metastatic tumor foci in the liver
121, 

122
.  
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The conformations in solution (size and shape) together with the architecture 

of the polymer therapeutic are of essential importance in time of an adequate 

enhanced EPR effect. These factors play an important role as they are well 

related with vascular permeability and cellular uptake of the 

macromolecules
83, 123, 124

. The molecular weight (Mw) of the conjugates is also 

important because it has been shown that by increasing Mw above the renal 

threshold led to significantly improved plasma circulation times, tumor 

accumulation and unable cleared from the circulation by the kidney. Normally 

the macromolecules renal threshold appears between 30.000-70.000g/mol
125

.  

1.2.3.2.  Intracellular Trafficking. Lysosomotropic Drug Delivery 

concept for Polymer-Drug Conjugates 

 

In 1954, Jatzkewitz described the synthesis of a mescaline-N-vinylpyrrolidine 

conjugate attached via non-degradable or enzymatically degradable (glycyl-L-

leucine) side chains
126

. However, was not until 1975 when the first theoretical 

model describing the current idea of a water-soluble-polymer conjugated to a 

drug was reported by Ringsdorf (Figure 1.2. 4). This novel approach to 

deliver therapeutics promoted cross-disciplinary discussions and 

collaborations in different fields such as polymer chemistry, biology, physics 

and medicine.  

 
Figure 1.2. 4 Ringsdorf’s model of polymer-drug conjugates (adapted from).  

Where:  is a water-soluble synthetic polymer, is the drug,  is the 

degradable linker, is a targeting moiety and  is a solubilising moiety. 

 

In parallel, De Duve firstly observed that DNA could be used as carrier 

delivering drugs such as daunorubicin intracellularly uniquely by 

endocytosis
127

 (Figure 1.2. 4).  In contrast, low molecular weight compounds 

easily biodistribute via passive diffusion across cell membranes. This was the 

basis for the key concept of “lysosomotropic drug delivery” 
128

 that notes the 
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possibility to deliver the drug through lysosomes after endocytosis (Figure 

1.2. 5). In the endocytic
129

 process cells internalize molecules and 

macromolecules via deformation of the membrane and generation of 

membrane-bound carriers.  

 

The endocytic pathways include clathrin-mediated, caveolae/lipid raft-

mediated, clathrin-, and caveolae-independent endocytosis, fluid-phase 

endocytosis
130

, and phagocytosis. Phagocytosis involves the processing of 

large foreign particles by specialized cells such as macrophages, which form 

part of the reticuloendothelial system (RES). However, clathrin-dependent 

endocytosis represents the most studied form of endocytic internalization. The 

clathrin-mediated endocytosis consists first in the formation of endocytic 

vesicles (early endosomes) to trap the macromolecule. Depending on surface 

signals of membrane proteins to which nanostructures may be non-covalently 

linked, some may be trafficked along retrograde transport pathways for 

example via the Golgi apparatus and endoplasmic reticulum. Others may be 

carried through late endosomes to lysosomes where they may be degraded. 

 

 

Figure 1.2. 5 Possible endocytosis pathways for cellular uptake of 

nanostructures. 
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Then, the nanostructures, after pinching off the plasma membrane and 

trafficking, get fusion with endosomal/lysosomal compartments which can be 

extravasated for any of the different compartments depending of its nature. 

Once the macromolecules are internalized they are transferred via endosomes, 

which has a pH around 6.0 - 6.5, to lysosomal compartments which contain 

proteolytic enzymes and a lower pH of 5.0-5.5
99

. 

Conjugation of therapeutic agents to macromolecules through a bioresponsive 

linker that only degrades when exposed to these specific lysosomal conditions 

would allow intracellular release of the drug, which would then passively 

diffuse through the lysosomal membrane to reach its pharmacological target 

in the cytosol. 

 

Figure 1.2. 6 Lysosomotropic drug delivery of polymer conjugates (adapted 

from Duncan
81

). 

The EPR effect together with the lysosomotropic drug delivery concept 

provides the fundamental basis to design polymer-drug conjugates but is 

perhaps an over simplification when considering the complexity of whole 

body distribution, cell biology and cellular trafficking. These effects are 

currently the most important strategy to improve the delivery of low-
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molecular-weight chemotherapeutic agents to tumors by reducing toxicity and 

improving activity in chemotherapy-refractory patients. 

All classes of polymer therapeutics are now extensively studied and have been 

comprehensively reviewed elsewhere
125, 131

.  

1.2.4. Current status of Polymer Therapeutics  

1.2.4.1. Polymeric drugs 

Polymeric drugs
100

 (Figure 1.2. 7) (5000-40000 g/mol) can be defined as 

polymers with inherent therapeutic activity. 

 

 Figure 1.2. 7 Polymeric drug structures. 

The first polymeric drugs were natural polymers extracted from plants, 

animals and seaweed (particularly the polyanions and polysulphates) which 

possess antiviral and antitumour activity
132

. One of the first synthetic 

polyanionic medicine was DIVEMA (pyran copolymer), reported by Breslow 

in 1976
133

 ,  used as a polymeric drug carrier of antitumor drugs in numerous 

in vitro and in vivo experiments in the form of Na salt. The preliminary 

results have shown DIVEMA reduce side effects and enhance the antitumor 

activity of the drugs being active against adenocarcinoma 755, Lewis lung 

carcinoma, Friend leukemia virus and Dunning ascites leukemia. But although 

it induced apoptosis, interferon release and activated macrophages promoting 

tumor cells death, DIVEMA was found to be very toxic and was dismissed in 

early clinical trials. Anticancer activity of other maleic anhydride copolymers 

with ethylene, acrylic acid, cyclohexyl-1,3-dioxane, dihydropyran, 

dihydrofuran, vinyladenine or styrene was studied, but those did not reach the 

performance of DIVEMA. 

Modified polysaccharides, synthetic polypeptides and synthetic polymers 

have resulted in a number of successful and marketed products as polymeric 

drugs. For example one of the most significant compounds is the random 
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copolymer, Copaxone
®
 (glatiramer acetate) (Mw 5 - 11,000 g/mol), of four 

amino acids (L-glutamic acid, L-alanine, L-lysine, and L-tyrosine) approved 

for the treatment of multiple sclerosis (MS) where it reduces both the 

frequency of relapse and disease progression when given subcutaneously 

(s.c.)
134

 and the polysaccharide analogue, dextrin-2-sulphate 

(Mw=25000g/mol) intraperitoneally admininstrated (i.p.)
135

 daily for 28 days 

was well tolerated up to the maximal daily dose of 150 mg, and in Phase III 

clinical trials it reduced replication of HIV-1 in patients with AIDS. Although 

such polyanionic drugs have yet to yield a marketed product, Starpharma are 

developing a dendrimer, VivaGel®, as a topical, vaginal/penis virucide as a 

preventative to HIV-1 infection
135

. 

Some other examples
100

 of these marketed products include Renagel® is 

a phosphate binding polymer (oral administration) for the treatment of end 

stage of renal failure and Welchol® is a cholesterol binding polymer (oral) to 

reduce high low density lipoprotein (LDL) and reduce high glucose. 

1.2.4.2. Polymeric micelles 

Polymeric Micelles
104

 (Figure 1.2. 8) (10-200 nm) are based on 

amphiphilic block copolymers with a drug covalently linked to the polymer 

backbone triggering in aqueous solutions at concentrations above the critical 

micellar concentration (CMC) nano-sized, colloidal particles which have been 

investigated for drug delivery in cancer therapy during the past years
136

.  

In aqueous solution, the hydrophobic segment forms the core
137

 which can 

contain the hydrophonic therapeutic drugs and the hydrophilic block forms the 

external micellar shell and provides the necessary interactions with the solvent 

to make the nanoparticles stable in the liquid. That’s why micelles typically 

have a so-called core-shell structure. Micelle carrier’s diameter plays an 

important role in the biodistribution and tumor accumulation of cancer drugs. 

The size of these polymeric micelles depends on the molecular characteristics 

and molecular weight of each amphiphilic block.  
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Figure 1.2. 8 Polymeric Micelles structure. 

Kataoka et al demonstrated
138

 that different micelle sizes, between 30-100nm 

due to the self-assembling of their structure, readily extravasate from 

circulation through vascular irregularities in highly permeable tumors due to 

ongoing angiogenesis
139

, where they can then deliver encapsulated cytotoxic 

agents to tumor tissue, which explains their clinical success. But only the 

30nm micelles could penetrate poorly permeable pancreatic tumors to achieve 

an antitumor effect. They also showed that the enhanced of efficacy of the 

larger micelles by using a transforming growth factor-b inhibitor to increase 

the permeability of the tumors
139

. 

Micellar-based drugs containing doxorubicin
140-143,144-146 

 paclitaxel
147

, or 

cisplatin
148

 are in various stages of clinical trials. While the use of micelles
149

 

in cancer therapy
136

 seems promising, obstacles associated with drug transfer 

from these nanocarriers to tumor cells within the tumor site remain 

particularly challenging.  

To cure prostate cancer, Chandran et al.
150

 coupled a PSA (prostate specific 

antigen)-activated peptide prodrug to pHPMAm based copolymers. The 

prodrug showed antitumor activity in vivo, but its low solubility was dose-

limiting. Then, it was coupled to pHPMAm forming stable micelles and 

allowing targeting to tumor tissue by the EPR effect. Once in the tumor site 

the active lipophilic drug was rapidly partitioned into tumor cells. 

Further examples of the progress in the development of copolymer 

micelles include the metal complex formation of ionic block copolymers.  

Simply mixing cisplatin with PEG-PAsp yielded polymer-metal complexed 

micelles which displayed 14 times higher levels in tumours compared with 

free drug and reduced nephrotoxicity
151

. 

Hidrophilic block

Hidrophobic block

Drug
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1.2.4.3. Polymer-based non-viral vectors for gene delivery 

(polyplexes) 

Polyplexes
106-108

 (Figure 1.2. 9) (90-160 nm) are formed by polymers 

capable of interacting with DNA/RNA. .  

 

Figure 1.2. 9 Polyplexes structures. 

Many modifications can be made to the polymer to improve the gene delivery 

system, composition of a multi-component construct (feed ratio of 

DNA/polycation), molecular weight and architecture of the polymer (linear, 

branched, block or graft copolymers, dendrimers). This field of "non-viral 

vectors" for cytosolic delivery of genes, proteins and most recently, small 

interfering ribonucleic acids (siRNAs) have been reviewed
106, 107

.  

Research
152

 has been conducted to develop carrier systems with high efficacy 

and minimum toxicity to deliver siRNA therapeutics. The cationic 

polyaspartamide derivatives with a regulated number and spacing of 

positively charged amino groups in the side chain were prepared from a single 

platform polymer of poly(β-benzyl l-aspartate) to assess their availability as 

siRNA carriers through polyion complex (PIC) formation
153

 It has been 

reported
154-155

 the evaluation of several polyplex-based gene delivery systems 

with respect to their effectiveness, toxicity, and cell type dependence in vitro. 

P123-g-PEI(2K), a cationic graft block copolymer, was demonstrated to 

successfully deliver genetic material to murine liver following systemic 

delivery. The introduction of target-specific moieties together with 

understanding thermodynamics and kinetics of these complexes plays an 

important role for the design of efficient non-viral polymer-based gene 

vectors
156

.  
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Despite global effort over > 20 years trying to design synthetic vectors poor 

transfection efficiency, complexity
157

 of product and toxicity has limited 

progress towards clinical development. As for example vectors based on 

cationic polymers such as polyethylenimine (PEI), poly-L-lysine (PLL), and 

PAMAM dendrimers which were widely studied but apart of being safe and 

immunogenic showed highly toxics and presented rapid capture by the liver 

due to their cationic charge. A polyplex system with the adequate clinical 

risk-benefit ratio is still needed. 

 

1.2.4.4. Polymer conjugates 

Polymer conjugates (2-25nm) are polymer-based systems conjugated to a 

protein or to a drug, polymer-protein conjugates and polymer-drug 

conjugates, respectively.  

The advantage of conjugating polymer to protein is the improvement of the 

overall properties and stability of the protein. In fact, the solubility, stability, 

and half-life of the protein in plasma is improved and additionally conjugation 

results in a decreased renal clearance, reduced immunogenicity and greater 

protection against degradative enzymes
158

. Apart from this properties when a 

small drug is conjugated to a polymer carrier a complete pharmacokinetic 

change is achieved
 81,99

. 

It is important to emphasise that polymer-drug and -protein conjugates tested 

clinically typically are composed of three main parts; (i) the polymer, (ii) a 

linker, and (iii) the bioactive agent (Figure 1.2. 10), although (iv) an optional 

component such as cell-specific targeting ligands and imaging agents can also 

be formed part in the polymer conjugate structure as some that have been 

already tested clinically. 

 

Figure 1.2. 10  Polymer conjugates structure. 

Water-soluble synthetic 
polymer (i)

Degradable Linker (ii)

Bioactive agent (iii)

Targeting moiety (iv)
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 (i)       The polymer backbone 

The polymer carrier is a water-soluble platform capable of solubilising a 

hydrophobic drug making a more convenient formulation to administer 

intravenously. Also it should be multifunctional, biocompatible (i.e. non-toxic 

and non-immunogenic), with a low polydispersity, preferably monodisperse, 

and ideally biodegradable. If non-degradable, this polymer should have a 

molecular weight less than 40000Da allowing excretion via the porous 

glomerular membrane of the kidneys
99

 from the body. The presence of 

functional pendant groups or end groups on the polymer backbone is 

necessary to allow conjugation of active molecules (e.g. drug, targeting 

moieties). Finally it should be suitable for large scale manufacture in terms of 

reproducibility, characterization and cost. 

So far, some of the polymers found the most used in clinics (Figure 1.2. 11) 

are mostly non-biodegradable such as, poly(N-(2-hydroxypropyl) 

methacrylamide) (PHPMA)
114, 159

 and poly(ethylene glycol) (PEG)
131, 144

. 

However, there is a trend towards the use of biodegradable polymers, such as; 

poly(glutamic acid) (PGA), cyclodextrin (CD),  poly (1-hydroxymethylene 

hydroxylmethyl formal) (PHF, Fleximer), hyaluronic acid or sialic acid 
160, 161

. 
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Figure 1.2. 11 Common polymers and dendrimers used as potential macro-

molecular carriers in the field of polymer therapeutics. 

PEG and HPMA copolymers are non-degradable synthetic polymers which 

have been extensively studied as polymer conjugates with particular emphasis 

on the treatment of cancer. HPMA is derived from methacrylamides and was 

originally obtained by free radical polymerization and later by atom-transfer 

radical polymerization (ATRP)
162

 to control the molecular weight and give 

narrow molecular weight distributions more suited to biological applications 

PHPMA has been shown to be non-toxic up to 30g/kg and biocompatible
163

.  

Further studies were carried out to ensure a reproducible polymer synthesis 

with potential drug attachment sites, and further to this oligopeptide side 

chains were synthesized to promote lysosomal drug release
164

.   

PEG is a polyether compound with many applications in the pharmaceutical 

industry. It is also known as polyethylene oxide (PEO) or polyoxyethylene 

(POE), depending on its molecular weight. PEG is the reference for the 

material existing as oligomers and polymers with a molecular mass below 
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20,000 g/mol, PEO to polymers with a molecular mass above 20.000 g/mol, 

and POE to a polymer of any molecular mass. PEGs are prepared by 

polymerization of ethylene oxide and are commercially available over a wide 

range of molecular weights from 300 g/mol to 10.000.000 g/mol and also 

commercially produced with various end group functionality.  

PEG presents very narrow polydispersities being synthesized commercially 

with a Mw/Mn between 1.02 and 1.10, allowing much better characterization 

of the conjugates.  However, the polymer mainchain is not biodegradable and 

linear PEG conjugates have the disadvantage that drug loading is restricted to 

conjugation at the terminal end group.  PEG has a low toxicity and 

PEGylation mainly to proteins
103,165

 can show several significant 

pharmacological advantages over the unmodified form due to the increasing 

in the Mw, enhancement of stability and reducing of immunogenecity. These 

good characteristics for PEG have led to a number of compounds PEGylated 

with drugs
131

 that have been approved for clinical use. Examples of marketed 

polymer conjugates are Neulasta®, PegIntron®, PEGASYS® and Cimzia®. 

(ii)       The linker 

The linker connects the drug/protein to the polymer backbone. All the 

components of the conjugate are very important in the design of an effective 

delivery system but the linker has an especially important role in the system in 

order to release the drug in the adequate site for optimal therapeutic effect and 

must be stable during transportation to the site e.g. a tumor
99

. As most drug 

conjugates prepared to date are designed for lysosomotropic delivery, two 

broad classes of pendent chain linkers have emerged as the most applicable 

types of linkers for this delivery pathway: (i) pH labile and (ii) enzyme 

susceptible linkers, peptidyl linker. 

Peptidyl linkers, which are designed to be stable in the bloodstream and 

other biological fluids but are degraded when exposed to specific lysosomal 

enzymes
125

. Studies in vitro using tritosomes (or lysosomal hepatic enzymes) 

and in vivo
125, 166

 showed that the rate of release highly depends on the nature 

and chemical composition of the linker. Both, steric factors (length of the 
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linker) and structural factors (sequence of the amino acids) affect the cleavage 

of the drug from the polymer backbone. 

Acid labile linkers (Figure 1.2 12) are stable during blood circulation at a 

neutral pH (pH 7.4) but are hydrolyzed under the acidic environment of the 

endocytic pathway (pH 4-6.5) (e.g. acetal, hydrazone and hydrazine) 
167

. 

 

Figure 1.2. 12 Acid labile linkers used to conjugate drugs to the polymer 

backbone
125

. Where: represents the drug and  the polymer backbone. 

In case of proteins designed should be different as many time released is not a 

key issue to achieve therapeutic efficiency, in particular when the molecular 

target is extracellular, peptidic linkers are the preferred in this situation. In 

case of the requirement of an intracellular delivery, the endosomotropic route 

is required in order to avoid arrival to the lysosomes. Disulfide bonds are the 

most commonly used in this case
81,99,103,170

. 

1.2.4.4.1. Polymer-drug conjugates 

Polymer-drug conjugates
83, 101, 168

  are nano-sized hybrid constructs that 

covalently combine a bioactive agent with a polymer to ensure not only 

its efficient delivery to the required intracellular compartment but also its 

availability within a specific/desired period of time. These 

multicomponent constructs have already been transferred to clinics as 

anticancer agents, either as single agents or as elements of combinations. 

The first polymer-drug conjugate to be transferred to the clinics was 
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designed by Duncan, Kopeček and co-workers 
99,169

 in the 1980s. Prague-

Keele 1, known as PK1 (FCE 28068) (Figure 1.2. 13A), a N-(2-

hydroxypropyl) methacrylamide (HPMA) copolymer-Doxorubicin (Dox) 

conjugate. Dox was linked to the polymer through glycine-phenylalanine-

leucine-glycine or Gly-Phe-Leu-Gly peptidyl linker and is susceptible 

degradation by Cathepsin B, a lysosomal thiol protease. Then PK2 (FCE 

28069) (Figure 1.2. 13B), HPMA copolymer Gly-Phe-Leu-Gly -

doxorubicin (Dox) conjugate containing galactosamine residues as a 

targeting moiety, was designed and remains the only targeted polymer-

anticancer drug conjugate to enter clinical trial to-date
170

. 

                     
 

Figure 1.2. 13 Structures of (A) PK1 and (B) PK2
81

.  

Nowadays, after the design and introduction of PK1 and PK2, up to 16 

polymer-drug conjugates are in advanced clinical trials 
81, 123, 171

 see table 

1.2 1 in first section. 

 

1.2.5. Challenges and future trends for Polymer-Drug 

Conjugates 

Current state of art polymer therapeutics relies on strong foundations coming 

from 30 years of interdisciplinary research from the bench to the bedside, they 

can be considered amongst the most successful polymeric nanomedicines. 

There are a growing number of polymer therapeutics that are products and 
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also entering clinical development as both novel treatments and imaging 

agents. They are used as Nano-sized Medicines in the form of individual 

agents or conjugates or as components of complex, self-assembling 

nanoparticles and micelles.  Consequently, an exponentially growing 

industrial pipeline is currently available in big pharmaceutical companies as 

well as in small biotechnologies devoted to specific nanoconjugates. 

However, in order to move this platform technology further, there are still 

some challenges to overcome
102,125,171

. It is accepted that future challenges and 

opportunities to move this platform technology forward are based on: (i) 

delivery of new anticancer agents focusing on novel molecular targets and (ii) 

their combination, (iii) development of both new and exciting polymeric 

materials with well defined architectures and (iv) treatment of diseases other 

than cancer although cancer treatments are the most exciting and promising 

treatment disease.  

There is a need to improve the control of molecular weight, polydispersity and 

most importantly architecture of the polymer
83,124, 172, 173

. Biopersistent carriers 

as polyethylenglycol (PEG) or N-(2-hydroxypropyl)methacrylamide (HPMA) 

copolymers, can present disadvantages if chronic parenteral administration 

and/or high doses are required as there is the potential to generate 'lysosomal 

storage disease' syndrome. Preclinical evidence of intracellular vacuolation 

with certain PEG-protein conjugates is raising awareness of the potential 

advantage of biodegradable polymers regarding safety benefit apart from the 

possibility to use higher molecular weight (Mw) carriers allowing PK 

optimization, by enhancing the enhanced permeability and retention (EPR)-

mediated tumor targeting
120,124

. Biodegradable polymers such as dextrins 

polypeptides, polyesters or polyacetals could be considered as promising 

candidates to be used as carriers for targeted drug delivery
102,125

. 

Furthermore, there is a need to move towards a better defined polymer 

structures, avoiding heterogeneous, random-coiled polymeric carriers that can 

be the cause of future problems and side-effects. New architectures under 

evaluation include dendrimer (monodisperse structures) or dendronized 

polymers, hyperbranched polymer, block copolymers and stars polymers 

(Figure 1.2. 14)
125

. 
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Figure 1.2. 14 New polymer architecture for the development of better 

polymeric carrier adapted by Vicent, 2008
123

. 

1.2.6. Polyacetals as biodegradable drug carriers 

Looking for high Mw, biodegradable and pH-responsive polymeric carriers, 

polyacetals
174

  could be defined as one of the most appropriate polymers 

together with polyesters. Polyacetals have been prepared by the reaction of 

diols and divinyl ethers using an acid catalyst (Scheme 1.2. 1) which had been 

previously been used in the development of bioerodible implants intended for 

contraceptive use
174

. 

The polymerization occurs under mild conditions and can be adapted to 

include monomers with functionalities for the conjugation of therapeutic 

agents. The first family of hydrolytically labile water-soluble polyacetals was 

developed at 2002 by Tomlinson et al.
175

. 
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Scheme 1.2. 1 Synthesis of Polyacetal 1 using the polymerization technique 

described by Heller and Tomlinson
175

. 

Synthesis of high molecular weight polymers containing the acetal moiety as 

the degradable element affords the possibility of pH-dependent degradation.  

These hydrolytically labile polymers can be prepared so as to degrade quickly 

at the lysosomal pH, which results in the release of preferable monomeric 

components or short polymer chains which can be effectively cleared so 

avoiding the possibility of deleterious lysosomal accumulation. This would 

allow the synthesis of anti-cancer polyacetal-drug conjugates at molecular 

weights above the renal threshold of the polymer to enhance tumor specific 

uptake via the EPR effect without the subsequent undesirable accumulation at 

other sites in the body.  Furthermore, these biodegradable polyacetals could 

conceivably be assessed as candidates for the chronic treatment of 

inflammatory disease which display hyperpermeable vasculature or as a 

degradable component of polymer-protein systems. 

These polyacetals show a clear pH-dependent degradation being relatively 

stable at pH 7.4 but degrade significantly faster at the acidic pH that is 

encountered in endosomes and lysosomes, adequate for a lysosomotropic drug 

delivery (Figure 1.2. 15). In vitro and in vivo studies confirmed that the 

polyacetals are not toxic (for the polymer itself and its degradation 

subproducts), they are not taken up extensively by the liver or spleen, and are 

also long circulating
177,178

. Moreover, the polyacetal–Dox conjugate (Mw 86 

KDa) displayed significantly prolonged plasma circulation time and enhanced 

tumor accumulation compared to the HPMA copolymer-Dox conjugate 

(CF28068, known as PK1, Mw 30 KDa) in Phase II clinical trials
177

.  
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Figure 1.2. 15 pH-dependent degradation profile of polyacetal 1. 

To move a step further on this design in our laboratory we synthesized 

polyacetals incorporating a drug with bis-hydroxyl functionality into the 

polymer backbone
179

. Degradation of the polymer backbone in the acidic 

environment of the lysosome or the extracellular fluid of some tumors would 

then trigger drug release eliminating the need for a biodegradable linker. For 

this purpose, we used the tert-polymerization process developed for the 

synthesis of the functionalized polyacetals in combination with the model 

drug diethylstilbestrol (DES) 
176

 (Figure 1.2. 16), an anticancer synthetic 

estrogen which possesses phenolic hydroxyl groups suitable for using the 

mentioned acetalic technique. 

OH

HO  

Figure 1.2. 16 DES molecule.  

As described earlier, DES is a synthetic non-steroidal estrogen and its 

administration was a classic form of androgen deprivation therapy (ADT), 

standard approach to the treatment of advanced prostate cancer for more than 

50 years. Its use, however, has been severely limited by a poor water 

solubility and wide ranging dose-related toxicities, mainly cardiovascular side 

effects and in particular thromboembolic events. DES can be considered as an 
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‘old’ treatment, however, is taken renewed consideration as very recently has 

been demonstrated that low-dose DES is safe and effective in castrate-

resistant prostate cancer (CRPC) patients when used before the initiation with 

chemotherapy. Also, a combination of DES to chemotherapeutics such as 

docetaxel was found to produce a significant level of antitumor activity in 

patients with metastatic, androgen independent prostate cancer (AIPC). It is 

hypothesized that, apart from clearly reducing DES toxicity by means of the 

EPR-mediated tumor targeting, the conjugation of DES to polymeric carriers 

would more easily allow a low-dose clinical regime as a controlled release of 

the drug could be achieved for a prolonged period of time. Also, polymer 

multivalency would allow the synthesis of polymer-based combination 

conjugates that could better exploit the synergism observed already with, i.e. 

docetaxel. 

Previous research with DES-polyacetals already demonstrated that DES 

solubility can be greatly enhanced upon polymerization. And more 

interestingly, the conjugates underwent degradation that was clearly pH-

dependent, with greater DES release at acidic pHs. Additionally, the active 

isomerism of the estrogen was maintained (trans-DES)
179

 and the conjugates 

displayed enhanced in vitro cytotoxicity compared to free DES. These tert-

DES polyacetals (Figure 1.2. 17) could therefore be defined as the first water-

soluble anticancer polymeric drugs designed for acidic pH-triggered release 

where the drug is incorporated into the polymer mainchain
179

. Ratifying the 

utility of this synthetic strategy, another recent example has been reported 

using curcumin as a diol-functionalized anticancer drug
177

. The polyacetal-

based polycurcumins showed a clear antitumor effect in vitro and in vivo in 

ovarian cancer models 

 

Figure 1.2. 17 DES-Polyacetal polymer structure.  
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 Taking into account the data described above it is possible to conclude that 

DES-Polyacetalic structures present then, some advantages such as; (1) EPR-

mediated tumour targeting, (2) pH-triggered polymer backbone degradation to 

release DES locally in the tumour and excreting easily the polymer carrier, (3) 

tumour-specific uptake decreases toxicity and (4) backbone incorporation 

eliminates the need for pendent chain conjugation.  

1.2.7. Physico-chemical characterization 

A better understanding of the physicochemical properties and structural 

characteristics of the conjugates including solution conformation
178

, plays an 

essential role in the design and tailoring of the therapeutic applications of 

these macromolecular compounds. This information is crucial for synthetic 

chemists to understand and therefore solve the most important challenges such 

as solubility, half-life, tolerability, toxicity, immunogenicity and antigenicity 

for polymer therapeutics. 

 

A variety of biophysical techniques allow studying many different properties 

in polymer-drug conjugates. Also, analytical techniques make it possible to 

study drug release processes in vitro and in vivo, as for example high 

performance liquid chromatography, HPLC. Liquid chromatography was 

defined in the early 1900s by the work of the Russian botanist, Mikhail S. 

Tswett
179

. His pioneering studies focused on separating compounds, extracted 

from plants using a solvent, in a column packed with particles. Nowadays, 

liquid chromatography has become one of the most powerful tools in 

analytical chemistry. Column liquid chromatography and in particular HPLC, 

is the most powerful and has the highest capacity for sample
180

. HPLC has the 

ability to separate, identify, and quantitate the compounds that are present in 

any dissolved sample. HPLC components are shown in a simplified diagram 

in Figure 1.2. 18.  It has a high-pressure pump to generate the flow required, 

an injector, the column, the detector. The mobile phase exits the detector and 

can be sent to waste, or collected, as desired. Different types of detectors can 

be used such as UV or fluorescence, but if the sample does not absorb 

ultraviolet light or it is not fluorescence, an evaporative-light-scattering 

detector (ELSD) is used. Also it is possible to combine multiple detectors or 

to combine with a mass spectrometer (MS), in this second case the system is 

called LC/MS. 
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Figure 1.2. 18 Schematic representation of the HPLC with a gradient elution 

mode. 

 

Essential information in polymer drug conjugates is the knowledge about their 

molecular weight (Mw) and polydispersity index (Mw/Mn), which can be 

obtained from gel permeation chromatography (GPC). GPC is also known as 

size exclusion chromatography (SEC) and it involves size separation of the 

sample through a column packed with beads of a porous gel. Smaller 

molecules can permeate through the beads of gel; the smaller they are, the 

greater their retention is
181

 (Figure 1.2. 19). The resulting separation reaches 

its limit and the volume required is known as the total permeation volume, 

VT. The interstitial volume VI is defined as followed (Equation 1.2. 1): 

  

€ 

VI = VT −VV        (Eq. 1.2. 1) 

The most important pieces of information obtained from GPC are the number-

average molecular weight (Mn), the weight-average molecular weight (Mw) 

and the polydispersity indices (Mw/Mn). Equations 1.2. 2 to 1.2. 4 define 

those numbers. 

€ 

Mn =

N iM i

i

∑

N i

i

∑
        (Eq. 1.2. 2) 
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N i M i

2
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∑

N iM i

i

∑
       (Eq. 1.2. 3) 

€ 

PDI =
Mw

Mn

               (Eq. 1.2. 4) 

Where Ni represents the number of polymer of a mass Mi. 

Vh is dependent on the molecular weight of the analytes and on their 

conformation in solution, which is directly linked to the solvent used as 

eluant. GPC gives a relative Mw. For example a protein will have a smaller 

Vh than a random coil polymer of the same molecular weight. Thus longer 

retention times will be observed for a globular-shaped protein, giving a 

smaller apparent molecular weight than seen for a random-coil polymer of the 

same molecular weight. 

 

Figure 1.2. 19 Schematic representation of the GPC system and its separation 

principle where molecules are separated on the basis of their size in solution 

(Vh) and are detected by a concentration detector such as RI. The smaller Vh, 

the longer the molecules will take to permeate and hence the later the signal 

will appear on the chromatogram. 
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Properties related to the size can be derived from laser diffraction analysis 

such as dynamic light scattering (DLS) or electron microscopy studies such as 

transmission electron microscopy (TEM) (for more detail information see 

chapter 4 part II). The determination of the attachment of the drug to the 

polymer is usually obtained by using nuclear magnetic resonance (NMR), 

UV/Vis or Infrared (IR) techniques and the volume median aerodynamic 

diameter from time-of-flight (TOF). Matrix assisted laser desorption 

ionization time-of-flight (MALDI TOF) is a mass spectrometry method to 

determine polymer Mw distribution and for endgroup analysis in polymers. 

Each peak in the spectrum represents different degree of polymerization and 

the peak to peak distance reflects the mass of the repeating unit. Scanning 

electron microscopy (SEM) shows us the surface of the polymer. Small angle 

X-ray scattering (SAXS) and small angle neutron scattering (SANS) are used 

to clarify the conformational properties of polymers in solution
124, 182, 183

. Both 

techniques tell us the average radius of gyration (Rg) in solution but SANS 

also gives information about the internal structure of the polymers. In these 

scattering techniques, solution conditions such as temperature, pH and salt 

concentration can be adjusted to mimic a physiological environment. The 

solutions may also be modified to mimic extreme non-physiological 

conditions, for example in the studies of conjugate degradation (Table 1.2. 2). 

 

Table 1.2. 2 Examples of techniques used to characterize polymer–drug 

conjugates123
. 

Property investigated Techniques employed 

Covalent attachment of the drug to the 

polymer 

NMR, FT-IR, MALDI-TOF 

Total drug content HPLC, UV, NMR 

Free drug content HPLC, UV, NMR 

Molecular weight/ Polydispersity GPC, MALDI-TOF, Light Scattering  

Size/ Conformation of the conjugate in 

solution 

SANS, SAXS, DLS, TEM, SEM, 

PGSE-NMR 

Formation of supramolecular 

assemblies 

SAXS, NMR, Light Scattering (DLS) 

 

NMR is the most widely used technique to characterize macromolecular 

structures and their intermolecular interactions with high spatial and temporal 
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resolution. NMR spectroscopy techniques (more detail information in chapter 

4 part II) can provide information such as drug loading, sample heterogeneity 

and purity, molecular size, aggregation or binding state. 
1
H NMR and 

13
C 

NMR are the most common techniques used for routine analysis to confirm 

the presence of the desired compound. However, there are other special 

selective irradiations of particular resonances or the use of more complex 

pulse sequences e.g. Diffusion-Ordered Spectroscopy (DOSY), COrrelation 

SpectroscopY (COSY), TOtal Correlation Spectroscopy (TOCSY) or pulse-

dradient spin echo-NMR (PGSE-NMR).  These techniques can provide yet 

further analysis of polymer conjugates. PGSE-NMR experiments in which 

compounds in solution diffuse and the degree of diffusion is proportional to 

the Mw/size of the component. From this, the diffusion coefficients (D) can 

be determined. The signal of each component decays with different diffusion 

rates either when varying the gradient strength applied to the sample or when 

increasing the diffusion time. The signal decay allows the construction of a 

bilinear NMR data set for the component and it is possible to obtain a two-

dimensional chemical shift, whilst yields the range of diffusion coefficients.  

Combining this information provided by the diffusion experiments with the 

Stokes-Einstein equation, an estimation of hydrodynamic radii (Rh) can be 

obtained. 
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AIMS OF THE RESEARCH 

This thesis is focused on the design of novel pH-responsive polymer-drug 

conjugates to be used as single agents or in combination therapy for the 

treatment of hormone-dependent cancer, in particular prostate cancer. These 

systems will be based on previously developed polyacetalic systems with the 

drug incorporated in the polymer mainchain.  

In the acidic tumor microenvironment or after the cellular uptake by 

endocytosis the drop in pH encountered in endosome-lysosomal compartment 

triggers polymer degradation releasing consequently the drug cargo that 

diffuses out to the cytosol. In this design, the need to optimized linking 

chemistry is therefore overpassed. The synthetic estrogen diethylstilbestrol 

(DES) was used as drug as is clinically relevant in the treatment of prostate 

cancer and possess an adequate diol functionality to be incorporated in the 

polymer mainchain. A clear pH-dependent degradation an in vitro proof of 

concept was achieved with the first generation polyacetals. However this 

polymer presented some limitations, which include; a non-unique structure, 

heterogeneity in composition, low drug capability and high polydispersity, 

which can affect the pharmacological behavior and reproducibility of the 

therapeutic outcome of this polymer-based nanoconjugate.  

The primary focus of this thesis is therefore to move a step further towards a 

second generation polyacetalic conjugates for the treatment of prostate cancer 

as single agents, modifying and understanding polymer chemistry/solution 

conformation (Chapter 4) and as polymer-based combination conjugates 

(Chapter 5) in order to achieve a possible clinical candidate. 

Firstly, a controlled synthesis of DES-based polyacetals with improved 

properties, such as narrower Mw distributions and higher drug loading will be 

performed. Main interest will be centered in understanding if slight structural 

modifications could significantly influence conjugate therapeutic output. 

These second generation polyacetals will be obtained using a block-co-

polymer methodology.  

Tert-DES and block-DES will be then tested in selected prostate cancer cell 

models. In order to explain the differences encountered once biologically 

evaluated, an exhaustive characterization of the conformation in solution for 
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both polyacetalic systems will be carried out by means of different techniques, 

such as: transmission electron microscopy (TEM), dynamic light scattering 

(DLS), pulsed-gradient spin-echo NMR (PGSE-NMR) and small-angle 

neutron scattering (SANS) which have recently been used to good effect for 

understanding the solution conformation of polymer-conjugates (Chapter 

4.II). This will be done in collaboration with Dr. Alison Paul and Dr. Peter 

Griffiths group at Cardiff University, UK. 

Biophysical characterization will be also performed looking at cellular 

trafficking, molecular mechanism of tert- vs. block- (in collaboration with Dr. 

Ana Armiñán from our laboratory) and finally in vivo proof of concept (in 

collaboration with CIBBIM-Nanomedicine group at Hospital Vall d’Hebron, 

Barcelona) will be pursued (Chapter 4.III). 

Due to the importance of combination therapy, Chapter 5 will then be focused 

on improving the polyacetalic constructs by implementing this strategy 

looking at drug synergism based on the simultaneous administration of 

endocrine + chemotherapy, wide expertise of the laboratory in this field. To 

achieve this, an additional monomer will have to be synthesized and 

incorporated into the polymer to offer the possibility of conjugating a second 

drug (paclitaxel has been selected here). As with single conjugates exhaustive 

physicochemical and biophysical characterization, together with preliminary 

in vivo studies including biodistribution, tumor accumulation and antitumor 

activity of the polyacetals will be performed.  

Finally, Chapter 6 and 7 will provide a general discussion and conclusions 

respectively on the main results achieved in this project. 
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3. MATERIALS AND METHODS 
 

3.1. Instruments  

 

Nuclear Magnetic Resonance Spectroscopy: proton and carbon (
1
H and 

13
C, respectively). Nuclear Magnetic Resonance (NMR) analysis was 

performed using a BRUKER ADVANCE AC-300 (300 MHz) and NMR data 

was processed using the program Topspin (Bruker GmbH, Karlsruhe, 

Germany). The different chemical shifts are reported as s (singlet), d 

(doublet), t (triplet), q (quartet) or m (multiplet) and expressed by  (ppm) 

taking as an intern reference the tetramethylsilane signal (TMS) 0.00 ppm, 

and the intermediate signal in the quintuplet (49.86 ppm) in the carbon 

spectra. The J-coupling constants are expressed in hertzs (Hz). 2D-NMR 

spectroscopy including Correlation spectroscopy (COSY), total correlation 

spectroscopy (TOCSY) and Diffusion-ordered spectroscopy (DOSY) to 

remove spectral overlap, facilitates spectral assignment, and conformational 

information related to interproton distances available from resonance 

intensities and the diffusion coefficient of the polymers we obtained. Pulsed 

Gradient Spin-Echo NMR (PGSE-NMR) was used to determine the diffusion 

coefficient of the polymers.  Gel Permeation Chromatography (GPC). Gel 

permeation chromatograms were obtained either in THF, DMF or in 

Phosphate buffer solution (0.1% NaN3) using a Waters 717 plus autosampler 

with two Waters Styragel 7.8x300mm Columns (HR3 and HR4) for THF or 

DMF and two TSK-Gel Columns (G2500 and 3000pWXL) for samples in 

PBS and a Viscotek TDA 302 triple detector Array model 2501, with 

refractive index (RI), Small Angle Light Scattering, Right Angle Light 

Scattering, viscosimeter and a UV detector model 2501. OmniSec4.1 software 

was used to calculate polymer polydispersity and molecular weight. Reverse 

Phase-High Performance Liquid Chromatography (RP-HPLC). Reverse 

phase (RP) chromatography was performed with a Shimadzu analytical HPLC 

system using 717plus autosampler and a LIChroCART®, Cat.1.50943 

LIChrospher® 100, RP-18 (125 x 4 mm, 5 µm) column (Lot. L 56118817 No. 

721869) purchased from Waters Ltd. (Hertfordshire, UK). Dynamic Light 

Scattering (DLS). DLS measurements were performed using a Malvern 

Zetasizer NanoZS (Malvern Instruments Ltd, Malvern, UK) in Instituto de 

Ciencia Molecular (ICMOL) in Paterna,Valencia. Transmission Electron 



                                                                                                                                                            Materials and Methods__ 

-95- 

 

Microscopy (TEM). TEM was performed with a Tecnai Spirit G2 FEI and a 

digital camera Olympus, Soft Image System, model Morada. Scanning 

Electron Microscopy (SEM). SEM technique was carried out using a JEOL 

JSM 5410 microscope, at an accelerating voltage of 15 KV at different 

magnifications in the Department of Biomaterials in University of Valencia. 

Critical Micelle Concentration (cmc). Cmc studies were determined in a 

Jasco FP-6500 spectrofluorometer, using Band width (excitation and 

emission) of 3nm, Scanning speed of 100nm/nm and data pitch 0.5nm. Small 

Angle Neutron Scattering (SANS) was performed at the Institute Laue-

Langevin, ILL in Grenoble (France) and at the ISIS Facility in Oxford (UK) 

in order to determine the size and shape of the polymers. Cell studies. The 

cell culture work was carried out in a Class II Bio air biological safety cabinet 

from Telslar. General cell viability assessment was studied using MTT (3-

(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide), the 

measurements were performed using a Victor
2
 Wallac 1420 Multilabel HTS 

Counter Perkin Elmer plate reader (Northwolk, CT, USA). Live cell confocal 

fluorescence microscopy studies were carried out at the confocal microscopy 

service at CIPF (Valencia, Spain) and were performed using a Leica confocal 

microscope from Leica Microsystems GmbH (Wetzlar, D) equipped with a l-

blue 63 oil immersion objective and handled with a TCS SP2 system, 

equipped with an acoustic optical beam splitter (AOBS). Excitation was with 

an argon laser (548, 476, 488, 496 and 514 nm) and blue diode (405 nm). 

Images were captured at an 8-bit gray scale and processed with LCS software 

Version 2.5.1347 (Leica, Germany) containing multicolor, macro and 3D 

components. ECL Western blotting detection system (Amersham Pharmacia 

Biotech, UK) for western blot analysis and the relative protein levels were 

quantified by densitometry with Scion Image Software. 

 

3.2. Materials 

 

Tri(ethylene glycol) divinyl ether (TEGDVE), poly(ethylene glycol) (PEG) 

Mw 4000Da, p-toluenesulfonic acid monohydrate (p-TSA), diethylstilboestrol 

(DES), 2-amino-1,3-propanediol (Serinol), 9-Fluorenylmethyloxycarbonyl 

chloride (Fmoc-Cl),  succinic anhydride, dioxane, tetrahydrofuran anhydrous 

(THF) toluene anhydrous, 4-(Dimethylamino)pyridine (DMAP) purum 

≥98.0%, N,N-Diisopropylethylamine (DIEA) reagent plus, N-

hydroxysuccinimide 98% (NHS) and N-hydroxysulfosuccinimide sodium salt 
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(sulfo-NHS) ≥98.5% were used as supplied from Sigma-Aldrich (Dorset, 

UK). Before use, PEG, p-TSA and DES were dried in a vacuum oven 16h at 

80 ºC and THF was distilled from sodium-benzophenone THF solution. 

Diisopropilcarbodiimide (DIC), 1-ethyl-3-(3dimethylaminopropyl) 

carbodiimide hydrochloride (EDAC), 1-hydroxybenzotrialzole monohydrate 

99.7% (HOBT) were supplied by IRIS Biotech GmbH (Germany). 

Triethylamine and N,N-dimethylformamide (DMF) were from Fluka Chemika 

(Masserschmittstr, D). The solvents used to obtain 
1
H NMR and 

13
C NMR 

spectra were deuterated methanol-d 99.8%D (MeOD) from MERCK (U.K.), 

deuterated chloroform-d 99.8 atom %D (CDCl3), deuterium oxide 99.8 atom 

%D (D2O) from Carlo Erba Réactifs-SDS (France), and Dimethyl sulfoxide-

D6 99.8% (DMSO-d6) from MERCK (U.K.) which was dried and stored over 

molecular sieves (4Å).  Dichlorometane (CH2Cl2) synthesis grade with 

approx. 50ppm of amylene, Ethanol (EtOH) absolute GR for analysis, 

Methanol (MeOH) HPLC grade and acetonitrile (AcCN) HPLC grade were 

from Scharlau (Spain) and used as supplied.    AppliChem (Germany) 

supplied 2,2’-dihydroxy-(2,2’-bi-indan)-1,1’,3,3’-tetrone (Hydrindantin 

dihydrate).  Ninhydrin GR for analysis was from MERCK (Germany).  Resins 

for liquid chromatography Sephadex LH-20 and Sephadex G-10 and pre-

packet PD-10 columns were from GE healthcare (U.K.).  n-Hexane analytic 

grade were  purchased from VWR (Germany). All other reagents were of 

general laboratory grade and were purchased from Aldrich or Sigma unless 

otherwise stated. PC3 and LNCap prostate cancer cell line were ATCC. 

Tissue culture grade dimethylsulfoxide (DMSO), L-glutamine, 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Trypan-blue. 

(St Louis, MO, USA). 0.25% Trypsin-EDTA was from Gibco BRL Life 

Technologies (Paisley, UK). Heat-inactivated fetal bovine serum and heat-

inactivated neonatal bovine serum were from Seromed GmbH (Wien, 

Austria). F12 and RPMI 1640 medium, Dextran-Texas Red and Oregon green 

were from Invitrogen (Carlsbad, CA, USA). Fluorescence dye Oregon Green 

cadaverine (OG-cad) and Oregon green carboxylic acid (succinimidyl ester) 

(OG-NHS) were from Molecular Probes. Fluroescence dye Cyane 5.5-

cadaverine (Cy-cad) was obtained from Shabat and Cyane 5.5-

monofunctional succinimidyl ester (Cy-NHS) was from GE Healthcare 

(Buckinghamshire, UK). Antibodies for western blot analysis: b-Actin 

(Sigma), p21 (Cell Signaling), caspase 3 (Cell Signalling), Bax (Santa Cruz 

Biotechnology), and Bcl2(Dako).  
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3.3.  Synthesis and Characterisation of PEG-based DES-

polyacetalic systems. 

3.3.1. Synthesis of Terpolymer (or Tert-DES) (1). 

A) Strategy 1. Classical methodology. 

Ter-DES was synthesised by tert-polymerization of vinyl ethers and alcohols 

in THF by optimisation of a previous reported protocol
1, 2

. Briefly, first all 

solid reagents were previously dried in a vacuum oven at 80
o
C for 16 hrs. 

Then, to a solution of poly(ethylene glycol) (PEG) (Mw=4.000 g/mol, 2 g, 0.5 

mmol), p-toluene sulfonic acid monohydrate (p-TSA) (Mw= 190.22 g/mol , 

0.003 g, 0.015 mmol) and diethylstilbestrol (DES) (Mw= 268.34 g/mol ,0.135 

g, 0.5 mmol) in distilled THF (6 ml) was slowly added TEGDVE (Mw= 

202.25 g/mol, 0.202g, d=0.99, 0.2mL, 1.07 mmol) using a syringe to preserve 

anhydrous conditions. The reaction was vigorously stirred for 3 hrs. in the 

dark at RT. Triethylamine (Et3N) (0.2ml) was then added to neutralise p-TSA 

catalyst and after rapidly stirred for 30 minutes it was poured into a cold, 

rapidly stirring mixture of hexane: ether (4:1)  (100ml) and then stirred for a 

further 30 mins to precipitate the polyacetal as a white solid. Then the product 

was isolated by filtration and the residual solvent was removed by vacuum at 

RT.  An extraction in chloroform with saturated solution of NaHCO3 

(3x20ml) was done to remove any residual pTSA. The organic phases were 

combined, washed with sat. NaCl (20ml), dried over Na2SO4 and filtered. The 

solvent was removed under vacuum and the residue redissolved in MilliQ 

water and lyophilised to obtain the desired compound. The polyacetal was 

again collected and then dried under vacuum for 24h to yield Ter-Des as a 

white solid (87%yield). 

B) Strategy 2.  Novel methodology. 

PEG (1000 mg, 0.250 mmol) and DES (100 mg, 0.373 mmol) were added to a 

50 ml Schlenk tube equipped with a stirrer bar and a glass stopper. The flask 

was evacuated under high vacuum (10
-2

 bar) for 15 minutes and then refilled 

with Nitrogen gas. Whilst purging the Schlenk tube with nitrogen, dioxane 

(anhydrous, sure-seal, 5 ml) was added via syringe and then stirred with 

gentle heating (~60 
o
C) until the reagents were fully dissolved. Following this, 
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p-TSA (2 mg, 0.106 mmol, taken from a stock solution of 1 mg/ml in 

dioxane) was added to the polymer solution and the solution stirred for a 

further 2 minutes. Whilst purging the flask with nitrogen DEGVE (182 µl, 

1.12 mmol) was introduced via Gilson pipette and the Schlenk tube was 

sealed. The reaction mixture was stirred in the dark for 1 hour before sodium 

hydroxide solution in ethanol (2 ml, 0.1 M) was added directly to quench the 

catalyst and stirring continued for a further 5 minutes. The sample was 

purified by precipitation over hexane (100ml) and after make a decantation of 

much of the solvent it was centrifuged to completely decant the hexane. The 

residue was dried over nitrogen flux and redissolved in tetrahydrofurane 

(4mL) and again precipitated over hexane (100mL), centrifuging the solution 

to decant the solvent and dry the residue over nitrogen flux, repeating this 

washing manner 3 times to ensure a proper purification. After dried the 

samples at high vacuum during 4hours the samples were stored in sealed tubes 

at -20
o
C to be stable. 

Tert-DES polyacetal 1: 
1
H NMR (CDCl3, 300 MHz): 0.77 (t, J=7.5 Hz, DES 

CH3), 1.33 (d, J=3.9 Hz, PEG-acetal CH3), 1.53 (d, J=5.4 Hz, DES-acetal 

CH3), 2.13 (dd, J=7.5 Hz, J=15.3Hz, DES CH2), 3.59 (m, PEG CH2), 4.80 (q, 

J=3.9 Hz, PEG-acetal CH), 5.46 (q, J=5.4 Hz, DES-acetal CH), 7.0-7.2 (m, 

DES ArH). 
13

C NMR (CDCl3, 75 MHz): 13.40, 19.55, 20.16, 64.09, 64.59, 

70.55, 99.64, 99.82, 116.82, 129.66, 130.73, 136.20, 138.69, 151.74, 155.24.  

3.3.2. Synthesis of Block-copolymer (or Block-DES) (2). 

A) Strategy 1. Procedure A based on the classical methodology. 

Block-DES
2
 was synthesised by co-polymerisation in THF. In a flask 

previously dried in a vacuum oven, lyophilised PEG (Mw=4000g/mol, 2g, 

0.5mmol) and p-TSA (Mw=190.22g/mol, 0.003g, 0.015mmol) and were 

dissolved in distilled THF (4ml). Then, TEGDVE (Mw=202.23g/mol, 

0.5mmol, 0.22ml) was added and the mixture was vigorously stirred for 3h in 

the dark at RT. Afterwards, DES (Mw=268.34g/mol, 0.134g, 0.5mmol) was 

slowly added to the reaction using a syringe to preserve anhydrous conditions 

and stirred for 3h more in the dark at RT. Triethylamine (0.2ml) was then 

added to neutralize p-TSA catalyst.  After stirring for 30 min. the solution was 

poured into a cold mixture of hexane: ether (4:1) (100ml) to precipitate the 

polyacetal 2 under stirring. After additional 30 min. the polymer was collected 
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and place into a fresh solution of hexane: ether (4:1) and stirred for a further 

30 min to achieve an exhaustive wash. The polyacetal was again collected and 

then dried under vacuum for 24h to obtain Block-Des as a white solid 

(1,5985g, 0.9562 mmol, 85% yield).  

B) Strategy 2. Procedure B based on the novel methodology. 

PEG (1000 mg, 0.250 mmol) was added to a 50 ml Schlenk tube equipped 

with a stirrer bar and a glass stopper. The flask was evacuated under high 

vacuum (10
-2

 bar) for 15 minutes and then refilled with Nitrogen gas. Whilst 

purging the Schlenk tube with nitrogen, dioxane (anhydrous, sure-seal, 4 ml) 

was added via syringe and then stirred with gentle heating (~60 
o
C) until PEG 

was fully dissolved. Following this, p-TSA monohydrate (2 mg, 0.106 mmol, 

taken from a stock solution of 1 mg/ml in dioxane) was added to the solution 

and stirred for a further 2 minutes. Whilst purging the flask with nitrogen 

DEGVE (60 µl, 0.37 mmol) was introduced via Gilson pipette and the 

Schlenk tube was sealed. The reaction mixture was stirred in the dark for 45 

minutes before more DEGDVE (122 µl, 0.75 mmol) was added and after 

15min DES (100 mg, 0.373 mmol) was also added and stirred during 1hour 

more. Then sodium hydroxide solution (0.5 ml, 0.1 M) was added directly to 

quench the catalyst and stirring continued for a further 5 minutes. The sample 

was purified by precipitation over hexane (100ml) and after make a 

decantation of much of the solvent it was centrifuged to completely decant the 

hexane. The residue was dried over nitrogen flux and redissolved in 

tetrahydrofurane (4mL) and again precipitated over hexane (100mL), 

centrifuging the solution to decant the solvent and dry the residue over 

nitrogen flux, repeating this washing manner 3 times to ensure a proper 

purification. After dried the samples at high vacuum during 4hours the 

samples were stored in sealed tubes at -20
o
C to be stable.  

Block-DES Polyacetal 2: NMR (CDCl3, 300 MHz): 0.7–0.8 (t, DES –CH3), 

1.2–1.3 (d, PEG–acetal –CH3), 1.5–1.6 (d, DES–acetal –CH3), 2.1–2.2 (q, 

DES –CH2–), 3.4–3.9 (m, PEG –O–CH2–), 4.7–4.8 (q, PEG–acetal –CH–), 

5.4–5.5 (q, DES–acetal –CH–), 7.0–7.2 (m, DES Ar–H). 
13

C NMR (CDCl3, 

75 MHz): 13.44, 19.53, 20.15, 28.51, 64.04, 64.55, 70.52, 99.59, 99.78, 

114.42, 114.98, 116.78, 129.64, 130.69, 134.06, 136.35, 138.35, 138.93, 

154.97, 155.16, 155.20. 
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3.3.3. Synthes of N-Fmoc protection of serinol co-monomer (or Fmoc-

Serinol) (3). 

This is a well known reaction applied to the synthesis of 

hidroximethylaziridines
3
 and it was first reported by Tomlinson, 2002

4
.  

Serinol-Fmoc was synthesised by condensation between the acyl group in 

Fmoc and the amine group in Serinol to form an amide bond by elimination of 

HCl.  Serinol (Mw=91,06g/mol, 1.0g, 11mmol) was dissolved in 26.5ml of a 

solution 10%   Na2CO3 (8g Na2CO3 in 80ml distilled water). Then, 15ml of 

dioxane was added and the mixture was stirred in an ice water bath.  

Fluorenylmethyloxycarbonyl chloride (Fmoc-Cl) (Mw= 260,72mg/mol, 

2,86g, 11mmol) was carefully added to the mixture and stirred for 4h at 4ºC.  

After 2h, 15ml of dioxane was added to decrease the viscosity. The mixture 

was then stirred overnight at RT (ca. 16h). After that time, 100ml of distilled 

water was added and the product extracted with ethyl acetate (2x100ml). 

Organic phases were combined and dried over Na2SO4 anhydrous. After 

filtration the solvent was removed under vacuum to obtain a white solid. Then 

the solid was redissolved in 40ml dioxane and recrystallized in 150ml hexane. 

84% yield. 

Serinol-Fmoc 3:
1
H NMR (300 MHz, DMSO-d): 3.3-3.4 (m, Serinol-CH2), 

4.1-4.2 (t, Fmoc ArCH2-CH), 4.4-4.5 (t, J=3.2 Hz, Fmoc ArCH2-CH), 7.2-7.9 

(m, Fmoc ArH). 
13

C NMR (75 MHz, DMSO-d): 51.3, 47.34, 64.2, 68.35, 

126.7, 127.1, 128.7, 156.2.  

3.3.4. Synthesis of DES-Serinol-polyacetal, Tert-DES-Serinol (or Tert-

DES-Ser) (4). 

A) Strategy 1. Procedure A based on the classical methodology. 

Tert-DES-Ser
2
 (4) was synthesised by co-polymerisation in THF. PEG4000, p-

TSA and Fmoc-Serinol were dried in separate containers at 80°C under high 

vacuum overnight. The compounds PEG (Mw=4000g/mol, 1g, 0.25mmol), p-

TSA (Mw=190.22g/mol, 0.0002g, 0.009mmol), Fmoc-Serinol 

(Mw=213,13g/mol, 0,053g, 0,25mmol) and DES (Mw=268.34g/mol, 0.062g, 

0,25mmol) were added together in a 2-neck round bottomed flask, previously 

purged with nitrogen and the reagents were dissolved in distilled THF (4ml). 

The reaction mixture was stirred for 20min. Then, TEGDVE 
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(Mw=202.23g/mol, 0.75mmol, 0.33ml) was directly added to the reaction and 

after stirring for 3 hours,  triethylamine (0.2 ml) was added until pH 8 and the 

reaction was stirred for 45min more. Finally, the reaction mixture was poured 

into a cold hexane: diethyl ether mixture 4:1 for 15 minutes to form a 

precipitate that was then filtered giving polyacetal 4. 77% yield.  

B)  Strategy 2. Procedure B based on the novel methodology. 

PEG (1 g, 0.250 mmol), DES (100 mg, 0.373 mmol) and Fmoc-Serinol (120 

mg, 0.56 mmol) were added to a 50 ml Schlenk tube equipped with a stirrer 

bar and a glass stopper. The flask was evacuated under high vacuum (10
-2

 bar) 

for 15 minutes and then refilled with Nitrogen gas. Whilst purging the 

Schlenk tube with nitrogen, dioxane (anhydrous, sure-seal, 5 ml) was added 

via syringe and then stirred with gentle heating (~60 
o
C) until the reagents 

were fully dissolved. Following this, p-TSA (2 mg, 0.106 mmol, taken from a 

stock solution of 1 mg/ml in dioxane) was added to the polymer solution and 

the solution stirred for a further 2 minutes. Whilst purging the flask with 

nitrogen DEGVE (182 µl, 1.12 mmol) was introduced via Gilson pipette and 

the Schlenk tube was sealed. The reaction mixture was stirred in the dark for 1 

hour before sodium hydroxide solution (0.5 ml, 0.1 M) was added directly to 

quench the catalyst and stirring continued for a further 5 minutes. The sample 

was purified by precipitation over hexane (100ml) and after make a 

decantation of much of the solvent it was centrifuged to completely decant the 

hexane. The residue was dried over nitrogen flux and redissolved in 

tetrahydrofurane (4mL) and again precipitated over hexane (100mL), 

centrifuging the solution to decant the solvent and dry the residue over 

nitrogen flux, repeating this washing manner 3 times to ensure a proper 

purification. After dried the samples at high vacuum during 4hours the 

samples were stored in sealed tubes at -20
o
C to be stable. 

Tert-DES-Ser 4: 
1
H NMR (CDCl3, 300 MHz): 0.77 (t, J=7.5 Hz, DES CH3), 

1.33 (d, J=3.9 Hz, PEG-acetal CH3), 1.50-1.52 (d, J=5.4 Hz, DES-acetal CH3), 

2.13-2.3 (dd, J=7.5 Hz, J=15.3Hz, DES CH2), 3.4-3.6 (m, PEG CH2, m, 

Serinol-CH2), 4.1-4.2 (t, Fmoc Ar CH-CH2-), 4.3-4.4 (t, J=3.1 Hz, Fmoc Ar-

CH-CH2-) 4.80 (q, J=3.9 Hz, PEG-acetal CH), 5.46 (q, J=5.4 Hz, DES-acetal 

CH), 7.0-7.2 (m, DES ArH) 7.3-7.8 (m, Fmoc ArH). 
13

C NMR (CDCl3, 75 

MHz): 13.42, 19.59, 20.43, 63.97, 64.39, 70.45, 100.21, 100.43, 114.82, 
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116.82, 129.46, 130.70, 136.70, 138.76, 151.93, 155.14, 51.3, 47.34, 64.2, 

68.76, 126.7, 127.7, 128.7, 156.5.  

3.3.5. Synthesis of Block-DES-Serinol (or Block-DES-Ser)(5). 

A) Strategy 1. Procedure A based on the classical methodology. 

Block-DES-Ser
2
 (5) was synthesised by a co-polymerisation in THF. PEG4000 

((Mw=4000g/mol, 0,61g, 0,15 mmol), p-TSA (Mw=190.22g/mol, 0.0001g, 

0.004mmol and Fmoc-Serinol (Mw=  213,13g/mol, 0,064g, 0,3mmol) were 

dried in separate vessels at 80°C under high vacuum overnight. PEG and p-

TSA were weighed together in a double- necked flask and purged with 

nitrogen. THF was added and the mixture heated gently to improve the 

solubility of the reactants. After cooling down, TEGDVE (Mw=202.23g/mol, 

0.85mmol, 0.375ml) was directly added to the reaction and after 3h stirring, p-

TSA dissolved in THF and TEGDVE were also added. After 30min DES 

(Mw=268.34g/mol, 0.062g, 0,25mmol) (0,3mmol) and Fmoc-Serinol were 

dissolved together in THF and added to the reaction and left stirring for 3h. 

Then, triethylamine was added to stop the reaction (pH 8).  t The reaction 

mixture was precipitated into a cold hexane: diethyl ether mixture 4:1 for 

15min. and after filtration polyacetal 5 obtained in a 34 % yield.  

B)  Strategy 2: Procedure B based on the novel methodology. 

PEG (1 g, 0.250 mmol) was added to a 50 ml Schlenk tube equipped with a 

stirrer bar and a glass stopper. The flask was evacuated under high vacuum 

(10
-2

 bar) for 15 minutes and then refilled with Nitrogen gas. Whilst purging 

the Schlenk tube with nitrogen, dioxane (anhydrous, sure-seal, 4 ml) was 

added via syringe and then stirred with gentle heating (~60 
o
C) until PEG was 

fully dissolved. Following this, p-TSA monohydrate (2 mg, 0.106 mmol, 

taken from a stock solution of 1 mg/ml in dioxane) was added to the solution 

and stirred for a further 2 minutes. Whilst purging the flask with nitrogen 

DEGVE (60 µl, 0.37 mmol) was introduced via Gilson pipette and the 

Schlenk tube was sealed. The reaction mixture was stirred in the dark for 45 

minutes before more DEGDVE (122 µl, 0.75 mmol) was added and after 

15min DES (100 mg, 0.373 mmol) and Fmoc-Serinol (120 mg, 0.56 mmol) 

were also added and stirred during 1hour more. Then sodium hydroxide 

solution (0.5 ml, 0.1 M) was added directly to quench the catalyst and stirring 
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continued for a further 5 minutes. The sample was purified by precipitation 

over hexane (100ml) and after make a decantation of much of the solvent it 

was centrifuged to completely decant the hexane. The residue was dried over 

nitrogen flux and redissolved in tetrahydrofurane (4mL) and again 

precipitated over hexane (100mL), centrifuging the solution to decant the 

solvent and dry the residue over nitrogen flux, repeating this washing manner 

3 times to ensure a proper purification. After dried the samples at high 

vacuum during 4hours the samples were stored in sealed tubes at -20
o
C to be 

stable. 

Block-DES-Ser 5: NMR (CDCl3, 300 MHz): 0.7–0.8 ((t, J=7.4 Hz, DES CH3), 

1.2–1.3 (d, J=3.8 Hz, PEG-acetal CH3), 1.4–1.5 (d, J=5.5 Hz, DES-acetal 

CH3), 2.1–2.2 dd, J=7.6 Hz, J=15.4Hz, DES CH2),  3.5-3.9 (m, PEG CH2, m, 

Serinol-CH2), 4.1-4.2 (t, Fmoc Ar CH-CH2-), 4.3-4.4 (t, J=3.1 Hz, Fmoc Ar-

CH-CH2-) 4.7-4.8(q, J=3.9 Hz, PEG-acetal CH), 5.4–5.5 (q, J=5.4 Hz, DES-

acetal CH ), 7.0–7.2 (m,DES ArH) 7.3-7.9 (m, Fmoc ArH). 
13

C NMR (CDCl3, 

75 MHz): 13.34, 19.54, 20.16, 28.51, 64.04, 64.55, 70.52, 99.61, 99.79, 

114.52,115.12, 116.69, 116.78, 129.74, 130.68, 134.12, 136.25, 138.45, 

138.95, 154.68, 155.34, 155.19. 51.32, 47.03, 64.24, 68.3, 126.57, 127.31, 

129.3, 156.52.  

3.3.6. N-Fmoc deprotection of the polyacetals, Tert-DES-SerNH2 (6) 

and Block-DES-SerNH2
2
 (7). 

The polymers Tert-DES-Ser 4 and Block-DES-Ser 5 were dissolved 

independently in two different reactions in a 20% piperidine/acetonitrile 

solution (10 ml) and stirred for 1 h. The reaction was monitored by TLC 

(100% ethyl acetate, Rf = 0.7). The reaction mixture was washed with hexane 

(3 x 15ml) and the acetonitrile removed under vacuum at RT. Then, the 

residual solid was redissolved in 15ml of hexane and stirred for 2h to yield 

polyacetals 6 and 7 (90% and 89% respectively).  

Tert-DES-SerNH2 6: 
1
H NMR (CDCl3, 300 MHz): 0.79 (t, J=7.3 Hz, DES 

CH3), 1.29 (d, J=3.6 Hz, PEG-acetal CH3), 1.48-1.51 (d, J=4.8 Hz, DES-acetal 

CH3), 2.11-2.2 (dd, J=7.6 Hz, J=14.9 Hz, DES CH2), 3.58-3.91 (m, PEG 

CH2), 4.1-4.2 (t, Fmoc Ar CH-CH2-), 4.3-4.4 (t, J=3.1 Hz, Fmoc Ar-CH-CH2-

)  4.81 (q, J=3.9 Hz, PEG-acetal CH), 5.45 (q, J=5.3 Hz, DES-acetal CH), 6.9-

7.1 (m, DES ArH). 
13

C NMR (CDCl3, 75 MHz): 13.43, 19.58, 20.16, 28.62, 
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47.56, 64.11, 65.01, 67.51, 70.56, 99.66, 99.82, 114,41, 114, 89, 116, 57, 

116.82, 128.92, 130.73, 135.60, 138.71, 138, 89, 151.72, 156.24, 155.81. 

Block-DES-SerNH2 7:
 1

H NMR (300MHz, CDCl3): 0.7–0.8 (t, J=7.4 Hz DES 

CH3), 1.2–1.3 (d,  J=3.7 Hz, PEG-acetal CH3), 1.5–1.6 (d, J=5.1 Hz DES-

acetal CH3), 2.1–2.2 (dd, J=7.5 Hz, DES CH2), 3.49–3.9 (m, PEG CH2) 4.1-

4.2 (t, Fmoc Ar CH-CH2-), 4.3-4.4 (t, J=3.1 Hz, Fmoc Ar-CH-CH2-), 4.7–4.8 

(q, J=4.1 Hz PEG acetal CH), 5.4–5.5 (q, J=5.5 Hz DES-acetal CH), 7.0–7.2 

(m, DES ArH). 
13

C NMR (CDCl3, 75 MHz): 13.45, 19.8, 19.98, 28.58, 47.5, 

64.21, 64.56, 67.1, 71.42, 99.69, 99.79, 114.52,114.88, 116.53, 116.79, 

129.74, 130.74, 134.45, 136.66, 138.95, 138.99, 154.77, 155.15, 155.21.  

3.3.7. Synthesis of Fluorescently-labeled conjugates (Oregon green 

and Cyane 5.5 conjugation). 

The conjugation to these fluorescence dyes is carry out in order to study the 

cellular uptake and trafficking in prostate cancer cell lines and to develop in 

vivo studies to determine biodistribution and tumour accumulation of the 

conjugates.   

These conjugates were synthesizing using two different strategies. Strategy 1; 

a fluorescence probe, OG or Cy5.5, both as carboxylic acid, was conjugated to 

Polyacetals Tert-DES-SerNH2 6 and Block-DES-SerNH2 7 through the reaction 

between the free amine group in the polyacetal and the carboxylic group in 

the fluorochromes after removing NHS group. Strategy 2 is focus first on the 

succinoylation of the polymers Tert-DES-SerNH2 6 and Block-DES-SerNH2 7 

and then to conjugate to OG and Cy5-5, through the carboxylic group in the 

polyacetals and the free amine groups in the fluorescence dyes. 

A)  Strategy 1. Fluorescence-label conjugates through free amine groups 

in the polyacetals.  

A.1) Synthesis of OG-carboxylic acid labeled conjugates
2
, Tert-DES-

Ser-OGNHS (8) and Block-DES-Ser-OGNHS (9). 

Tert-DES-SerNH2 6 (0,300 g, 0,030mmol) or Block-DES-SerNH2 7 (0.300g, 

0,022mmol) were dissolved in anhydrous THF in two independent reactions. 

DIEA was added to adjust the pH until 8-9. Oregon green-carboxylic acid 

(0.0002 g, 0.0008 mmol) was dissolved in CH2Cl2 and added to the reaction 
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mixture. The reaction was monitor by TLC (Ethyl acetate: hexane, 1:1 as 

mobile phase, Rf= 0.5). When the reaction was completed (16 hours), the 

solvent was evaporated under vacuum at RT. The residual product was 

redissolved in MilliQ H2O and purified by two different ways, (i) by PD10 

column eluted with water collecting fractions of 1 mL or (ii) by pouring into 

stirred cold hexane:diethyl ether (4:1)  for 1h to precipitate the conjugated 

polyacetals. In procedure (i), 2 μL were taken from each fraction of 1 mL and 

added to 998 μL of MeOH and measured spectrophotometrically using a 

Victor2Wallac station, in order to identify the fractions containing Polyacetal-

OG conjugates and also to quantify the amount of conjugated OG. OG 

loading was determined to be quantitative.  

Then, both polymer OG-carboxylic acid conjugates, Tert-DES-Ser-OGNHS 8 

and Block-DES-Ser-OGNHS 9 were isolated by water removed in freezer drier. 

A.2) Synthesis of Cy5.5-carboxylic acid labeled conjugates Tert-DES-

Ser-CyNHS (10) and Block-DES-Ser-CyNHS (11). 

Tert-DES-SerNH2 6 (0.100 g, 0.010mmol) or Block-DES-SerNH2 7 (0.100g, 

0.0073mmol) were dissolved in anhydrous THF in two independent reactions. 

DIEA was added to adjust the pH until 8-9. Cyane5.5 carboxylic acid mono 

dye (0.0002 g, 0.0008 mmol) was dissolved in CH2Cl2 and added to the 

reaction mixture. When the reaction was completed (around 16 hours), the 

solvent was evaporated under vacuum at RT. The residue was redissolved in 

MilliQ water and purified by PD10 column eluted with MilliQ water, 

collecting fractions of 1 mL. From each fraction, 2 μL were taken and added 

to 998 μL of MeOH and measured spectrophotometrically using a 

Victor2Wallac station, in order to identify the fractions containing the 

Polyacetal-Cy conjugates and also to quantify the amount of conjugated 

Cyane.  Cy loading was determined to be quantitative. Then, both polymers 

Tert-DES-Ser-CyNHS 10 and Block-DES-Ser-CyNHS 11 were isolated by water 

remove in freezer drier. 

B) Strategy 1. Fluorescence-label conjugates through free carboxylic 

groups in the polyacetals. 

B.1) Succinoylation of polyacetals Tert-DES-SerNH2 6 and Block-DES-

SerNH2 7 to obtain Tert-DES-SerCOOH 12 and Block-DES-SerCOOH 13. 
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Deprotected polyacetal 6 (0.60g, 0.058 mmol NH2 equiv) and 7 (0.60g, 0.058 

mmol NH2 equiv) were dissolved in anhydrous THF (13mL) as two 

independent reactions, then succinic anhydride (0.0560g, 0.560mmol) and 

dimethyl amino pyridine (DMAP, 0.102g, 0.835mmol) were added, pH was 

adjust to 8 with triethylamine (Et3N, 100μL).  The reaction mixture was 

stirred 24h at RT, then, the reaction mixture was poured drop by drop over 

100 mL of diethyl ether and it was stirred for 30min further in order to 

precipitate Succinoylated polyacetals SerCOOH-Ter-Des 12 and SerCOOH-Block-

Des 13.  The precipitates were isolated by centrifugation-decantation 

procedure Tert-DES-SerCOOH 12 (yield 0.64g, 0.20mmol, 89%, 28.7 % COOH 

as determined by 
1
H NMR) and Block-DES-SerCOOH 13 (yield 0.55g, 

0.17mmol, 76%, 24.6 % COOH as determined by 
1
H NMR).  Mw range= 

61235-15387 g/mol; Mw/Mn=1.2-1.4 as determined by aqueous GPC.  

Tert/Block-DES-SerCOOH 12 and 13, respectively:
 1

H NMR (300MHz, 

CDCl3): 1.244-1.148ppm (18H, d, J=5.4Hz acetal-CH3); 2.542ppm (4H, m, 

Succ NCO-CH2-CH2-COOH); 3.575ppm (924H, m, PEG-CH2-O), 4.754 – 

4.700ppm (6H, q, J=5.4Hz, acetal-CH-).  

Three different methods were used to purify this product: 

a) Size Exclusion Liquid Chromatography (SEC) using a PD10 column (G25 

Sephadex resine).  A PD10 column (1x5cm) was previously washed and 

equilibrated with ddH2O as eluent, then, the crude (0.06g,) was dissolved in a 

maximum of 2mL of ddH2O.  25 fractions of 1mL each were collected and 

freeze dried to analyze by 1H NMR. Products were confirmed and 

recollected, SerSucc-Ter-Des 12 (0.021g, 37%) and SerSucc-Block-Des 13 

(0.028g, 51%). 

b) SEC by sephadex LH20 column.   LH20 column (17.5x3cm) was 

equilibrated with HPLC grade MeOH, previously filtered and sonicated, also 

used as eluent.  In this case , the crude (0.016g) was dissolved in MeOH 

(3ml).  15 fractions were collected (10mL each) and concentrated with a 

stream of N2 until dryness.  All of them were analyzed by 
1
H NMR. Product 

12 (0.04g, 72%) and 13 (0.034g, 61%). 

c) Dialysis through a Spectra Por membrane.  A membrane with a Mw cutoff 

of 3500g/mol was used. The crude (0.12g) was dissolved in 15ml ddH2O 
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introduce in the membrane (previously hydrated) and dialyzed at 4ºC against 

ddH2O (4X5L) for 24 h.  The solution was lyophilized to yield the purified 

conjugates, 12 (0.032g, 58%) and 13 (0.03g, 54%). Products identities were 

confirmed by 
1
H NMR. 

All products were characterized by 1H NMR before and after purification to 

compare results, and stored under N2 at -20ºC. 

B.2)  Synthesis of OG-cadaverine labeled conjugates Tert-DES-Ser-

OGcad (14) and Block-DES-Ser-OGcad (15). 

Succinoylated polyacetal Tert-DES-SerCOOH 12 or Block-DES-SerCOOH 13 

(0.1g, 0.008 mmol COOH equiv) was dissolved in 0.5mL of anhydrous THF, 

under N2 atmosphere. Diisopropylcarboimide (DIC, 6.2μL, 0.040mmol) was 

added and after 5 min 1-hydroxybenzotriazole hydrate (HOBT, 0.0103g, 

0.076mmol) was also added as solid, followed 10min later of the OG-

cadaverine (0.0002g, 0.0008mmol, dissolved in 0.01mL anhydrous DMF). 

The pH was adjusted to 8-9 with DIEA and when the reaction was completed 

after 24hours, the solvent was evaporated under vacuum at RT.  The product 

was isolated by removing the solvent under vacuum and in order to remove 

completely any trace of un-reacted compounds or reaction subproduct, the 

residue was redissolved in MilliQ H2O and purified by PD10 column eluted 

with MilliQ water, collecting fractions of 1 mL. From each fraction, 2 μL 

were taken and added to 998 μL of MeOH and measured 

spectrophotometrically using a Victor2Wallac station, in order to identify the 

fractions containing the Polyacetal-OG conjugates and also to quantify the 

amount of conjugated OG.  Then, both polymers OG-cad conjugates, Tert-

DES-Ser-OGcad 14 and Block-DES-Ser-OGcad 15 were isolated by removal of 

water in a freezer dryer and by confirmed by H NMR the presence of the 

polyacetal-OG conjugates. 

B.3) Synthesis of Cy5.5-cadaverine labeled conjugates Tert-DES-Ser-

Cycad (16) and Block-DES-Ser-Cycad (17). 

Succinoylated polyacetals 12 or 13 were conjugated with Cyane 5.5-

cadaverine using the same procedure as that described for 14 and 15. The 

polymers 16 and 17 (0.050g, 0,030mmol) were dissolved independently as 2 

reactions, in anhydrous THF (10ml). Diisopropylcarboimide (DIC, 6.2μL, 
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0.040mmol) was added and after 5 min 1-hydroxybenzotriazole hydrate 

(HOBT, 0.0103g, 0.076mmol) was also added as solid, followed 10min later 

of the Cy-cadaverine (0.0002g, 0.0008mmol, dissolved in 0.01mL anhydrous 

DMF). The pH was adjusted to 8-9 with DIEA and when the reaction was 

completed after 24hours, the solvent was evaporated under vacuum at RT.  

The product was isolated by removing the solvent under vacuum and in order 

to remove completely any trace of un-reacted compounds or reaction 

subproducts, the residue was redissolved in MilliQ water and purified by 

PD10 column eluted with MilliQ water, collecting fractions of 1 mL. From 

each fraction, 2 μL were taken and added to 998 μL of MeOH and measured 

spectrophotometrically using a Victor2Wallac station, in order to identify the 

fractions containing the Polyacetal-Cy conjugates and also to quantify the 

amount of conjugated Cyane.  Cy loading was determined to be quantitative. 

Then, both polymers Cy-cadaverine conjugates, Tert-DES-Ser-Cycad 16 and 

Block-DES-Ser-Cycad 17 were isolated by removal of water in a freezer dryer. 

3.3.8. Synthesis of Paclitaxel-DES conjugates , novel conjugates used 

for Combination Therapy. 

In Strategy 1, a second drug, paclitaxel (PTX) was conjugated
5
 to the 

succinoylated polyacetals, Tert-DES-SerCOOH 12 and Block-DES-SerCOOH 13. 

In the other hand, using the strategy 2, the succinoylated form of Paclitaxel 

(PTXCOOH) was conjugated to the polyacetals Tert-DES-SerNH2 6 and Block-

DES-SerNH2 7. 

 A)  Strategy 1.  Synthesis of Tert-DES-Ser-PTX (18) and Block-DES-Ser-

PTX (19). 

Succinoylated polyacetal Tert-DES-SerCOOH 12 or Block-DES-SerCOOH 13 

(0.1g, 0.008 mmol COOH equiv) were dissolved in 0.5mL of anhydrous THF, 

under N2 atmosphere as two different reactions.  

 Diisopropylcarboimide (DIC, 6.2μL, 0.040mmol) was added and after 5 min 

1-hydroxybenzotriazole hydrate (HOBT, 0.0103g, 0.076mmol) was also 

added as solid, followed 10 min later of the Paclitaxel (PTX, 0.022g, 0.026 

mmol, dissolved in 0.5mL of anhydrous THF). The pH was adjusted to 8-9 

with DIEA and when the reactions were completed after 24 hours, the solvent 

was evaporated under vacuum at RT.  The product was isolated by removing 
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the solvent under vacuum and the residue was washed with hexane (30min 

stirring) and centrifuged. The supernatant was evaporated by N2 stream and 

the crude was purified by SEC using an LH20 column eluted by methanol 

(HPLC grade) in order to remove completely any trace of un-reacted 

compounds or reaction subproducts. The solvent of all the fractions was 

evaporated and the product was analyzed by 
1
HNMR confirming the presence 

of the PTX-conjugates, Tert-DES-Ser-PTX 18 and Block-DES-Ser-PTX 19 in 

some of the fractions. The paclitaxel conjugates were stored at -20ºC.  Mw 

47682g/mol, and Mw/Mn=1.4 as determined by aqueous GPC.  

Tert-DES-Ser-PTX 18 and Block-DES-Ser-PTX 19: 
1
H-NMR (300MHz, 

CDCl3): 6.27 (s, C10-H), 6.20 (t, C13-H), 5.79 (dd, C3’-H), 5.66 (d, C2-H), 5.51 

(d, C2’-H), 4.95 (d, C5-H), 4.42 (broad, C7-H), 3.61 (OCH2CH2O), 2.77 (m, 

COCH2CH2CO2), 1.66 (s, C19-H), 1.21 and 1.12 (s, C16,17-H). 

B) Strategy 2. Paclitaxel-DES conjugates using 2’-succinyl-paclitaxel.  

B.1) Synthesis of 2’-succinyl-paclitaxel
5
 (PTXCOOH) (20). 

2’-succinyl-paclitaxel 20 was prepared dissolving 50 mg paclitaxel (Mw = 

853.906g/mol, 0.06 mmol) and 73 mg succinic anhydride (0.56 mmol) react 

in 3 mL anhydrous pyridine at room temperature for 3 h. The pyridine was 

then evaporated and the residue was treated with 5 mL water, stirred for 20 

min and filtered. The precipitate was recrystallized from acetone and water to 

yield 2’-succinyl-paclitaxel (PTXCOOH) (20 mg). Yield: 46%. The structure 

was confirmed by 
1
H-NMR. The  for C2’-H shifted from 4.79 to 5.51 

indicating esterification at C2’ position. 

B.2)  Synthesis of Tert-DES-Ser-PTXCOOH (21) and Block-DES-Ser-

PTXCOOH (22). 

2’-succinyl-paclitaxel 20 (Mw= 925.93 g/mol, 14 mg, 0.0015 mmol) was 

dissolved in 1.5 ml of anhydrous DMSO or THF. 1-Ethyl-3-(3-

dimethylaminopropyl) carbodiimide, 3.14 mg EDC (Mw = 155.24 g/mol, 0.02 

mmol) was then added and the mixture was stirred at room temperature for 

10min. N-hydroxysulfosuccinimide, 4.93 mg Sulfo-NHS (Mw = 217,1g/mol, 

0.02 mmol) was carefully added and stirred for 45 min at RT. Finally, Tert-

DES-SerNH2 6 or Block-DES-SerNH2 7 was added (to obtain 21 or 22, 

respectively) to the reaction mixture and the pH adjusted to 8 with DIEA. 
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Then the mixture was stirred during 16 h more a RT. Reactions were 

monitored by TLC (ethyl acetate as mobile phase) which showed complete 

conversion of 2’-succinyl-paclitaxel (R f = 0.28) to its corresponding polymer 

conjugate (Rf = 0). Conjugates were extracted from the reaction mixture by 

precipitation into hexane and purified by dialysis against distilled water 

during 16 h. The conjugates with paclitaxel were obtained and confirmed by 
1
H-NMR.  

Tert-DES-Ser-PTXCOOH 21 and Block-DES-Ser-PTXCOOH 22: 
1
H-NMR 

(300MHz, CDCl3): 6.27 (s, C10-H), 6.20 (t, C13-H), 5.79 (dd, C3’-H), 5.66 (d, 

C2-H), 5.51 (d, C2’-H), 4.95 (d, C5-H), 4.42 (broad, C7-H), 3.61 (OCH2CH2O), 

2.77 (m, COCH2CH2CO2), 1.66 (s, C19-H), 1.21 and 1.12 (s, C16,17-H). 

3.3.9. Synthesis of Fluorescence-labeled PTX-conjugates. 

Following the strategy 1, paclitaxel (PTX) or 2’-succinyl-paclitaxel 

(PTXCOOH) was conjugated to OG or Cy-polyacetals. In the other hand the 

strategy 2 is based on the conjugation of the fluorescence dye, OG or 

Cyane5.5 (both as carboxylic acid form) to polyacetals Tert-DES-Ser-

PTXCOOH 21 and Block-DES-Ser-PTXCOOH 22. 

A) Strategy 1.  Synthesis of fluorescence-labeled-PTX conjugates I. 

A.1) Synthesis of Tert-DES-Ser-PTXCOOH-OGNHS (23), Block-DES-

Ser-PTXCOOH-OGNHS (24), Tert-DES-Ser-PTXCOOH-CyNHS (25) and 

Block-DES-Ser-PTXCOOH-CyNHS (26). 

As starting compound can be any of the fluorescence-labeled polyacetals 

synthetised as: Tert-DES-Ser-OGNHS 8, Block-DES-Ser-OGNHS 9, Tert-DES-

Ser-CyNHS 10 and Block-DES-Ser-CyNHS 11. To these polyacetals 2’-succinyl-

paclitaxel (PTXCOOH) was conjugated through the free amine groups in the 

polyacetal. 

The procedure used is the same described above to obtain these polyacetals 8, 

9, 10 and 11, were the polyacetals are dissolved in anhydrous THF and DIEA 

was added to adjust the pH until 9. Then PTXCOOH (0.0002 g, 0.0008 mmol) 

was dissolved in 0.01mL anhydrous DMF and added to the reaction mixture. 

When the reaction was completed (24hours), the solvent was evaporated 

under vacuum at RT and the residue was redissolved in MilliQ water to purify 
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by PD10 column. It was eluted with MilliQ water, collecting fractions of 

1mL. The fractions were dried with the freezer drier and analyzed by HNMR. 

The fractions with the conjugate were recollected to obtain: Tert-DES-Ser-

PTXCOOH-OGNHS 23, Block-DES-Ser-PTXCOOH-OGNHS 24, Tert-DES-Ser-

PTXCOOH-CyNHS 25 and Block-DES-Ser-PTXCOOH-CyNHS 26. 

A.2)  Synthesis of Tert-DES-Ser-PTX-OGcad (27), Block-DES-Ser-

PTX-OGcad (28), Tert-DES-Ser-PTX-Cycad (29) and Block-DES-Ser-

PTX-Cycad (30). 

The fluorescence-labeled polyacetals synthetised as: Tert-DES-Ser-OGcad 14, 

Block-DES-Ser-OGcad 15, Tert-DES-Ser-Cycad 16 and Block-DES-Ser-Cycad 

17 were employed to conjugate paclitaxel (PTX) through the carboxylic group 

in the polyacetal. 

Fluorescence-labelled polyacetals 14, 15, 16 or 17 (0.1g, 0.008 mmol COOH 

equiv) were dissolved in 0.5mL of anhydrous THF, under N2 atmosphere as 

four different reactions. Diisopropylcarboimide (DIC, 6.2μL, 0.040mmol) was 

added and after 5 min 1-hydroxybenzotriazole hydrate (HOBT, 0.0103g, 

0.076mmol) was also added as solid, followed 10 min later of the Paclitaxel 

(PTX, 0.022g, 0.026 mmol, dissolved in 0.5mL of anhydrous THF). The pH 

was adjusted to 8-9 with DIEA and when the reactions were completed after 

24 hours, the solvent was evaporated under vacuum at RT.  The residue was 

washed with hexane (30min stirring), centrifuged and the supernatant was 

evaporated by N2 stream. In order to remove completely any trace of un-

reacted compounds or reaction subproducts, the crude was purified by SEC 

using an LH20 column eluted by methanol (HPLC grade) and recollecting 

fractions of 1mL. Then the solvent of the fractions was evaporated under 

vacuum at RT and analyzed by 
1
HNMR confirming the presence of the 

desired compound in some of them isolating, Tert-DES-Ser-PTX-OGcad 27, 

Block-DES-Ser-PTX-OGcad 28, Tert-DES-Ser-PTX-Cycad 29 and Block-DES-

Ser-PTX-Cycad 30. 

B)  Strategy 2.  Synthesis of fluorescence-labeled-PTX conjugates II. 

B.1) Synthesis of OGNHS/CyNHS-labeled PTXCOOH conjugates, Tert-

DES-Ser-PTXCOOH-OGNHS (31), Block-DES-Ser-PTXCOOH-OGNHS 
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(32), Tert-DES-Ser-PTXCOOH-CyNHS (33) and Block-DES-Ser-

PTXCOOH-CyNHS (34). 

The conjugation of Tert-DES-Ser-PTXCOOH 21 and Block-DES-Ser-PTXCOOH 

22 with OGNHS or CyNHS were done using same procedure described for 8, 9, 

10 and 11. Conjugates 21 (0.300 g, 0.030 mmol) or 22 (0.300 g, 0.022 mmol) 

were dissolved in anhydrous THF and DIEA added until pH 9. OGNHS (0.0002 

g, 0,0008 mmol) or CyNHS (0.002 g, 0.002 mmol) dissolved in 0.01mL 

anhydrous DMF was added and the reaction mixture was stirred during 16 h. 

The reaction was monitor by TLC (Ethyl acetate: hexane, 1:1 as mobile phase, 

Rf = 0.5). After solvent removal under vacuum at RT, the residue was 

redissolved in MilliQ water and purified by PD10 column eluted with MilliQ 

water, collecting fractions of 1 mL. From each fraction, 2 μL were taken and 

added to 998 μL of MeOH, in order to measure the fluorescence and to 

identify the fractions containing the Polyacetal-Cy or OG PTX-conjugates and 

also to quantify the amount of conjugated Cyane or Oregon green. Then, 

polymers Cy or OG PTX-conjugates, Tert-DES-Ser-PTXCOOH-OGNHS 31, 

Block-DES-Ser-PTXCOOH-OGNHS 32, Tert-DES-Ser-PTXCOOH-CyNHS 33 and 

Block-DES-Ser-PTXCOOH-CyNHS 34 were isolated by removal of water in a 

freezer dryer. 

3.4. NMR Spectroscopy 

For samples with low molecular weight such as monomers only 5mg of 

compound was needed to performance 
1
H and 

13
C NMR analysis. The NMR 

tube to use must be clean and dry to obtain the appropriate results for each 

sample. For samples with high molecular weight (polymers conjugates), 

around 30 mg of each compound was needed to analyse them. All the samples 

were dissolved in 0.6ml of the appropriate deuterated solvent (the most used 

was CDCl3). COSY, DOSY and PGSE-NMR were the other experiments used 

in this thesis. COSY is the most simple bidimensional experiment consisting 

in two pulses separate by time t1. Two-dimensional diffusion-ordered NMR 

spectroscopy (DOSY) was performed with a stimulated echo sequence using 

bipolar gradient pulses. The lengths of pulses and delays were held constant 

and 16 spectra of 24 scans each were acquired with the strength of the 

diffusion gradient varying between 5% and 100%. The lengths of the 

diffusion gradient and the stimulated echo were optimized for each sample. 

Typical values were δ = 6–7 ms, Δ = 160–170 ms. PGSE-NMR technique was 
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employed to determine the diffusion coefficient of the polyacetals, which 

were dissolved in MeOD and D2O with a concentration of 1mg drug/mL. The 

experiments were done at 25 ºC and at 37 ºC. 

NMR analysis was operating in frequencies of 300 MHz and processed and 

analysed using the TopSpin® 2.0 software. 

3.5. Determination of the Molecular Weight (Mw) and 

Polydispersity (Pdi) of the polyacetals using Gel 

Permeation Chromatography (GPC), also known as Size 

Exclusion Chromatography (SEC). 

GPC, also known as Size Exclusion Chromatography (SEC), is an important 

analytical tool used to evaluate polydispersity (Pdi) and molecular weight 

(Mw) characteristics of natural or synthetic polymers and proteins. Unlike 

HPLC, GPC relies, under ideal conditions, on a pure physical separation, 

where theoretically no chemical interactions of the sample with the GPC 

column (stationary phase) should be observed
6, 7

. To be more precise, GPC 

separates molecules upon their size in solution, which is directly proportional 

to their hydrodynamic volume (Vh). 

In this thesis, GPC measurements were taken in two different solvents, PBS 

and THF used as mobile phase. The mobile phase preparation, column 

calibration, sample preparation and methods used for both systems are 

described more in detail below.  

PEG standards were chosen as GPC calibrating kit, commercially available. 

They allow a relative comparison of the molecular weight and polydispersity 

of the polymers. 

The SEC equipment consists on a Waters 717 plus autosampler with two 

Waters Styragel 7.8x300mm columns in series (HR3 and HR4) for THF or 

DMF and two TSK-Gel Columns (G2500 and 3000 PWXL) for samples in 

PBS and a Viscotek TDA 302 triple detector Array with refractive index (RI), 

Small Angle Light Scattering, Right Angle Light Scattering, viscosimeter and 

a UV detector model 2501. Polydispersity and molecular weight of the 

polyacetals were determined using the mentioned above software OmniSec 

4.1. Calibration was achieved with well defined poly(ethylene glycol) 



       Chapter 3                                                                                                                                                                                                         

-114- 

 

standards in THF as provided by Polymer Standards Service (PSS)/Mainz, 

Germany.   

Preparation of the mobile phase used 

Aqueous mobil phase. For 1 L of PBS eluent, 5 PBS tablets were dissolved up 

to 1 L with double distilled water. 1 mg of sodium azide was added to the 

solution to prevent bacterial growth in the buffer. The solution was then 

filtered through a nylon membrane filter (0.2 μm) and sonicated for 0.5 h 

before use. 

Organic mobil phase. To a new HPLC grade THF bottle (2.5 L), 625 mg of 

BHT (250 ppm) was added as a solid to stabilise the mobile phase. The 

organic solution was then used without further preparation as the organic GPC 

system was equipped with a degasser. 

Sample preparations and running conditions 

For the GPC measurements, all the polymer samples were prepared in a 

concentration of 3mg/ml dissolved in the previous prepared and stabilised 

mobile phase (THF or PBS). In the case of organic GPC, toluene (20 μL) was 

added and was used as an internal flow marker. Prior injection, the samples 

were filtered through single-use syringe filters (0.2 μm nylon membrane) and 

sonicated for 30 min. Then they were injected (110 μL) into the GPC loop 

(100 μL). The samples were running for 35min. at 25 °C with a GPC flow rate 

of 1 mL/min. The detection of the samples was done by differential refractive 

index and the data were analysed using the OmniSec 4.1 software. 

 

3.6. Determination of total and free DES content in DES-

polyacetal conjugates.  

 

3.6.1. Total drug loading 

 

 Indirect quantification 

 

Total drug loading can be determined by a total hydrolysis of the 

acetal bound heating the sample in an acid pH. The samples were 
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dissolved in 100μL of HCl (pH 2) and then heated in a termo-

block at 80ºC and 400RPM for 30min. After cooling down to RT, 

samples were neutralized and analyzed by RP-HPLC. Flow 

1mL/min, gradient 90:10 ddH2O: AcCN (both solvents had 0.1% 

TFA), run time 35min, column C18RP, UV detector 280 nm. The 

calibration curve was done using free drug from 0.01 to 1mg/mL 

concentration range using the method described in table 3.1. DES 

possesses an absorbance of 280 nm very easy to detect by UV-vis 

and the calibration curve was performance. Oestradiol was used 

as internal standard. 

 

Once the polymer was washed, for example by precipitation over 

hexane, the solvent was evaporated and  re-dissolved in 

acetonitrile to be injected in the RP-HPLC and determine the 

DES which was not conjugated to the polymer. 

 

Table 3. 1 Method employed to make the calibration curve of 

DES in the RP-HPLC. 

t (min) Flow (mL/min) % H2O % ACN 

0 1 70 30 

25 1 10 90 

28 1 10 90 

31 1 70 30 

35 1 70 30 

 

 Direct quantification 

Another method to determine the total drug loading is doing a 

direct quantification using UV. 

Free DES was indirectly calculated by knowing the absorbance of 

the conjugated. Here, a calibration curve of DES in ddH2O at 

280nm was carried out using a concentration range from 0.001 to 

1mg/ml. Then, the absorbance of the conjugates (5mg/ml in 

ddH2O) was measured in the UV-spectrophotometer.  
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3.6.2. Free drug content 

 

In order to determine free drug content, polyacetal-DES conjugate 

solutions (1mg/mL and 3 mg/mL) were directly injected and analyzed by 

RP-HPLC using the same HPLC conditions describe above for the 

determination of total drug content. Oestradiol was added as internal 

standard. 

The same procedures described above to determine free and total DES 

were used to determine total and free paclitaxel content in polyacetal-

PTX conjugates.    

 

3.7. Free amino group quantification by Ninhydrin assay8. 

Ninhydrin reagent was prepared according to a reported methodology by 

Dr.Shih-Wen Sun, adjusting amount of reagents to actual needs.  In general, 

Ninhydrin (0.500g, 2.58mmol) and Hydrindantin (0.075g, 0.23mmol) were 

weighted in a 100ml flask and covered with aluminum paper, because these 

compounds are light sensitive.  Solids were dissolved in 18.75ml DMSO 

anhydrous under a stream of nitrogen gas.  After adding 6.25ml sodium 

acetate buffer (pH=7, 4N) previously prepared (46 ml Acetic acid 

concentrated (99.7%v/v + 16.06g NaOH + dd water up to VT=100ml), the 

mixture was bubbled with nitrogen for at least 2 min, sealed and stored (at -

20ºC).  This reagent only works for three days, after that it is not reliable.  

Free serinol was used as standard.  Calibration curve was calculated with 

serinol like standard and a calibration curve was performed.  A serinol stock 

solution of 10.8mg/mL and a polyacetal stock solution of 102.8mg/mL were 

prepared.  Aliquots were taken to prepared standards at different 

concentration and the same was done with polymer sample, taking two 

aliquots with different volume.    For all analysis final volume was 1.500μL, 

sample M1 was 50μL and M2 was 100μL. 

Calibration curve was made mixing 750µl serinol solution of different 

concentrations (between 0.004-0.04mg/mL) and 750µl ninhydrin solution, in 

brown eppendorfs and heated in a boiling water bath for 30 min.  After 

heating, tubes were immediately cooled down in an ice-bath. Then, 5ml of an 
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EtOH solution 50% in ddH2O was added into each tube and thoroughly mixed 

with a vortex for 15sec.  The absorbance output was measured at 570nm with 

a UV-Visible spectrophotometer. 

3.8. Determination of Critical Micelle Concentration (CMC) of 

the polyacetals synthesised 

In order to determine the CMC of the systems synthesised, two different 

fluorochromes, diphenylhexatriene (DPH) and Pyrene were used. 0.5mg of 

Pyrene was dissolved in 40ml acetone to obtain a 0.0125mg/ml (62.5 µM) 

stock solution.  Then, 0.002µl of this solution was added to an aqueous 

polymer solution in (5mg/ml). Pyrene was sonicated until the acetone solution 

was removed and to induce the formation of the micelles and after 24h 

incubation, the samples were analysed. Alternatively, 4mg DPH was 

dissolved in 1ml THF (6mM). To generate a stock solution the desired final 

concentration was 2mM, therefore, 33.3µl was taken from the 6mM solution 

and then added to 66.6µl THF. 2.5µl of a 0.2mM stock solution was added to 

the polymer solution in phosphate buffer solution (5mg/ml) to analyse the 

samples. 

3.9. Dynamic Light Scattering (DLS) studies 

DLS measurements were performed at 25 ºC using a Malvern Zetasizer 

NanoZS instrument, equipped with a 532-nm laser at a fixed scattering angle 

of 90º. Polymer conjugate solutions (1 mg/ml and 3 mg/ml) were prepared 

using MilliQ H2O and phosphate buffer solution (PBS) at pH 7.4. The 

solutions were sonicated for 10 min and filtered through a 0.22µm cellulose 

membrane filter before analysis. Micelle size distribution by volume (%) was 

measured (diameter, nm) for each conjugate (n≥3). 

3.10. Transmission and Scanning electron microscopy (TEM) 

and (SEM) techniques 

Polymer conjugate solutions, from 0.5 mg/ml to 3 mg/ml, were prepared using 

MilliQ H2O and PBS at pH 7.4. The solutions were sonicated for 10 min and 

filtered through a 0.45µm cellulose membrane filter before analysis. For 

TEM, the sample can be quickly prepared by the deposition of 1µl of a dilute 

sample containing the polymer onto support films. In SEM, also 1µl of a 
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dilute sample is applied on a gold-coated metal disk obtained either by low 

vacuum sputter coating or by high vacuum evaporation.  

3.11. Small Angle Neutron Scattering (SANS) studies 

SANS experiments were doing in collaboration with Dr. Alison Paul in 

Cardiff University, UK. The experiments were carried out in the Institut Laue-

Langevin (ILL)
9
 in Grenoble (France) the most powerful of the reactor 

neutron sources, 57 MW HFR (High-Flux Reactor)) (Figure 3. 1A) with the 

help of Ralf Schweins and at ISIS
10-12

 Facility, Rutherford Appleton 

Laboratory in Harwell Science & Innovation Campus, Didcot, OX11 0QX 

U.K, one of the most known spallation neutron source in the world, which is 

based around a 200 mA, 800 MeV, proton synchrotron (Figure 3. 1B) 

operating at 50 Hz, and a tantalum target which releases approximately 12 

neutrons for every incident proton.  

A. B.

                     

Figure 3. 1 (A) Reactor at ILL, Grenoble (France) (image taken from 

www.ill.eu) and (B) Scheme of a synchrotron such as it could be found at 

ISIS, Oxford (UK) (image taken from ©EPSIM 3D/JF Santarelli).  

SANS experiments were carried out for all the conjugates in two different 

deuterated solvents, D2O and MeOD, to confirm the polymer aggregations 

formed in water but not in organic solvents. The conjugates were dissolved in 

a concentration of 1mg/mL equivalents of drug and at 10mg/mL of polymer 

and the solutions were added to a round small cell of 1mL of capacity which 

was inserted in the rack for SANS measurements. For this study was 

necessary to measure also an empty cell (as a control for all the samples), a 

http://en.wikipedia.org/wiki/Sputter_deposition
http://www.ill.eu/
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cell filled with deuterated methanol (as a control for the samples with MeOD) 

and another cell filled with deuterated water (as a control for the samples with 

D2O).  

3.12. pH-dependent degradation in buffer solution 

Polyacetals (8 mg/mL) were incubated at 37°C in phosphate buffer solution 

(PBS) at pH 5.5, 6.5 and 7.4 for 20 days. 100 μL for HPLC and 50 μL for 

GPC analysis of the sample solutions were taken at various time points 0, 15, 

30 min and 2, 8 and 24 h and every 24 h up to achieve complete degradation. 

Samples were frozen with liquid nitrogen and stored at -80ºC until analyzed.  

Prior to analysis, the pH of acidic samples was neutralized with ammonium 

formate buffer (0.1M, 100 μL for pH 5.5 and 50 μL for 6.5), in order to stop 

any further degradation, to normalized concentrations 100 μL PBS was added 

to the samples of pH 7.4 and 50 μL to the sample of pH 6.5. Next, the samples 

were directly analyzed either by GPC (%Mw Loss, PBS as mobile Phase, 

flow 0.8 mL/min) and by RP-HPLC, using a C18 LiChroSpher 100 column (5 

µm), with the UV detector settled at λ= 280 nm with a flow rate of 1 mL/min. 

The eluent A was H2O and eluent B was MeCN. Oestradiol was used as 

HPLC internal reference standard; 100 μL of a 10 μg/mL stock solution was 

added to each sample. The elution was performed by the following gradient: 

from 30% B to 90% B over 25 min, 3 min isocratic, then from 90% B to 30% 

B over 3 min and keeping these conditions for 4 min. (trans-DES retention 

time (tr)  11min, cis-isomer tr 13 min, oestradiol tr 10 min). A calibration 

curve of DES was used to quantify the total DES release from the conjugates 

by HPLC. 

3.13. Plasma Stability 

Conjugates (8 mg/mL) were incubated at 37°C in freshly extracted serum 

from Wistar rats for up to 24 h. At scheduled times, samples of 100 μL were 

collected; 10 μL of 100 μg/mL solution of oestradiol in MeOH, as internal 

standard, and 135 μL of MeCN were added to each sample in order to 

precipitate serum proteins. Following centrifugation (14000 rpm, 5 min), 

supernatants were analyzed by HPLC as reported above. 
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3.14. Techniques and methods in cell culture  

Cell culture was performed according to the guidelines given by The United 

Kingdom Co-ordinating Committee on Cancer Research
13

. All cell work was 

carried out in a Class II laminar flow hood, pre-sterilised by Klericide® and 

70 % v/v ethanol in double distilled water spray to avoid contaminant 

environments and keep the cells in the best conditions.  

The protocol to follow for working in a culture cell starts in having sterile all 

the material which will be in direct contact with cultures. Some flasks, pipets, 

etc., can be sterile directly from manufacturers but the reusable glassware 

must be washed, rinsed thoroughly, and then sterilized by autoclaving or by 

dry heat before reusing. Everything which goes inside the cabinet, place of 

cellular work, must be sterilized by flushing them with the ethanol solution 

mentioned above.  

In this project two different human prostate cancer cells lines were employed 

to carry out the in vitro experiments, PC3 and LNCaP described in Chapter 1 

(section 1.1.6). Both cell lines were kept under aseptic conditions, without the 

addition of penicillin or streptomycin.  

3.14.1. Thawing and recovering cells 

When cryopreserved cells are needed for study, they should be thawed rapidly 

and plated at high density to optimize recovery. 

Cryogenic vials of frozen cells (1million cells/ml per vial) were kept at -196 

°C in liquid nitrogen until required. Upon use, the frozen vials were defrosted 

in a 37 °C water bath and immediately added to a universal sterile container 

with 9 mL of media. Then, cells were pelleted by centrifugation for 5 min at 

400g and the supernatant was removed. Then, they were re-suspended in 5 

mL of fresh media before being placed into P100plate. Cells were grown for 

24 h in a 37 °C incubator and their growth was checked under the light 

microscope, the culture medium was changed and allowed for growing. Cells 

were passaged when confluence was reached. 
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3.14.2. Cell maintenance and passaging 

PC3 cells were grown in F12 with 5.0mM L-glutamine and 10% (v/v) of fetal 

bovine serum (FCS) and LNCAP cells grown in RPMI with 10% (v/v) FCS. 

The incubator must be at 37°C with 5% of CO2 (Table 3.2).  The medium was 

changed each two days to induce the growth. Once 70-90% cell confluence 

was reached the medium was removed and the cells were washed with 10mL 

PBS. 1mL of trypsin was then added and after 5 min at 37°C (until detached), 

9 mL of free medium was added and cells were collected in a corning to 

centrifuge 5 min at 400 rcf at RT. The medium was carefully removed and the 

cells resuspended in fresh medium.  

Table 3. 2 Conditions for the cell line growth. 

Cell line Medium % SBF Treatment Incubator conditions 

PC3 F12 10% 37ºC with 5% CO2 

LNCaP RPMI 10% 37ºC with 5% CO2 

 

Then, the cells were counted to determine standard culture conditions to 

performance accurate experiments. 

To count cells, aliquots of suspended cells (100 μL) were mixed at a 1:1 v/v 

ratio with trypan blue (0.2 % trypan blue in PBS) in a sterile tube. Trypan 

blue is a blue dye able to penetrate dead cell membranes. Blue-stained cells 

are not viable, thus this method gives an indication of the number of viable 

cells in suspension after being placed in a haemocytometer slide (Neubauer 

Zählkammer). Cells from ten × 0.1 mm
3
 squares (five from the top and five 

from the bottom chamber of the haemocytometer) (Figure 3. 2) were counted 

using a light microscope. 
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Figure 3. 2 Haemocytometer thick glass slide used for counting cells. The 

addition of trypan blue helps to distinguish viable, unstained cells (white 

circles) from non-viable, blue-stained cells (blue circles).  

 The average number of cells per mL of cell suspension was calculated as 

below (Equation 3.1): 

    



Cells /mL  mean 2104  (Eq 3.1) 

Where the mean is the arithmetic mean of the ten values, 2 takes into account 

the trypan blue dilution and 10
4 

accounts for the conversion from 0.1 mm
3
 to 

mL. 

After cells counting, the cell suspension was diluted with the medium in order 

to obtain the appropriate seeding density required for the experiment.  

3.14.3. Freezing cells 

Cell lines may be frozen for long-term storage to preserve cells, avoid 

senescence, reduce the risk of contamination, and minimize effects of genetic 

drift.  

First, cells were trypsinized, centrifuged into pellets and re-suspended in fresh 

medium. After counting, cells were again centrifuged and re-dissolved in the 

appropriate solution for freezing, 900 μl FBS (90 %) and 100 μl sterile DMSO 

(10 %)   to give a final concentration of 10
6
 cells/mL suspension. Aliquots (1 

mL) of this suspension were placed into 1 mL sterile and cryogenic vials, 

placed at -20 °C for 1-2 h, at -80 °C overnight and finally storage at -196 °C 

in liquid nitrogen until use. 
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Without the use of a cryoprotective agent, freezing would be lethal to the cells 

in most cases. Generally, a cryoprotective agent such as dimethylsulfoxide 

(DMSO) is used in conjunction with complete medium for preserving cells at 

−70°C or lower. DMSO acts to reduce the freezing point and allows a slower 

cooling rate. Gradual freezing reduces the risk of ice crystal formation and 

cell damage. 

3.14.4. MTT or MTS assays to assess cell viability: Growth curve 

MTT assay conditions 

20µL MTT of a 5 mg/mL solution in PBS was added to each well of the plate. 

Then, the cells were incubated for a further 4h. After removal of the medium, 

the precipitated formazan crystals were dissolved in optical grade DMSO (100 

µL), and after 30min the optical density of the solution was determined 

spectrophotometrically (in a Perkin Elmer precisely 1420 Victor3TM 

Multilabel Counter) at 570 nm using a microtitre plate reader.  

 

 

MTS assay conditions 

10µL MTS was added to each well, and the incubation was continued for 2h 

more. Mitochondrial dehydrogenase enzymes of viable cells converted MTS 

tetrazolium into a colored formazan product. The optical density of samples 

was measured at 490 nm. 

 

Those assays allow measuring the viability (cell counting), the proliferation of 

the cells (cell culture assays) and also determine and compare the cytotoxicity 

of drugs alone or conjugated to polymers. 

 

Determination of cell growth 

On day 0, cells were seeded into sterile, flat-bottomed, 96-well plates (100 

μL/well, seeding densities of 4∙10
4
 or 10

4
 cells/mL) using a multi-channel 

pipette, and they were then allowed to settle for 24 h. The external well rows 

of the plate were filled with culture media to prevent surrounding wells from 

dehydrating (Figure 3. 3). 
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Control Different Cell 

concentrations

1  2  3 4 5  6 7 8 9 10 11 12

 
Figure 3. 3 Sterile 96-well microtitre plate for carry on a cellular Growth 

study by MTT or MTS assay. From left to right it was increasing the 

concentration of cells. Column 2 was the control data. All the surrounding 

wells were filled with PBS for the best maintenance conditions of the cells.    

 

Normally a cell growth study could be follow during approx. 7days. Each day, 

20µL MTT of a 5 mg/mL solution in autoclaved PBS was added to each well 

of the plate and the cells were incubated for 5h. Then, the medium from the 

wells in this row (n = 6) was aspirated and replaced with optical-grade DMSO 

(100 μL/well) to solubilize the purple formazan crystals. The plates were then 

incubated for a further 30 min to allow the crystals to dissolve. Absorbance of 

the optical density of the solution was determined spectrophotometrically (in a 

Perkin Elmer precisely 1420 Victor3TM Multilabel Counter) using a 

microtitre UV plate reader with an emission wavelength of λ = 550 nm.  

 

The formazan-DMSO mixture was then removed from the wells under local 

exhaust, and replaced with PBS (100 μL/well). Plates were returned to the 

incubator and this process was continued daily over a period of 7 days. 

 

3.14.5. Evaluation of polymer cytotoxicity using the MTT assay 

The MTT assay, described in Section 3.12.4, was also used to establish the 

cytotoxicity of free drugs and drugs conjugated to polymers. Cells were used 

in their exponential phase of growth.  

MTT assay was the most used cell viability assay although MTS assay was 

used as well for some experiments. The studies were carried out after 72h 

incubation against two different prostate cancer cell lines, PC3 and LNCaP. 
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They were seeded on day 0 into a sterile 96-well microtitre plate (Figure 3. 4) 

at a seeding density of 3.2x10
4
 PC3 cell/mL and 5x10

4
 LNCaP cell/mL which 

allow adhering for 24h. P lates were incubated in a humidified atmosphere 

containing 5% CO2 at 37ºC.  

Control Different drug-

equivalent 

concentrations.

1  2  3 4 5  6 7 8 9 10 11 12

 

Figure 3. 4 Sterile 96-well microtitre plate for carry on a cell viability study 

by MTT or MTS assay. The effect of the compounds in causing death or 

changing the metabolism of the cells can be deduced comparing cells treated 

with drug compounds (which produce purple formazan) with the formazan 

produced by untreated control cells. 

On day 1, the medium was replaced by different concentrations of drug (alone 

or conjugated to a polymer dissolved in medium) from 0.01 to 1mg/ml drug-

equivalent (from left (column 3) to right (column 12) the concentration of 

drug equivalents was increasing). Column 2 was fresh medium alone used as 

a control. All the surrounding wells were filled with phosphate buffer solution 

(PBS) for the best maintenance conditions of the treated cells. 

On day 4 (after a 72 h incubation), MTT solution (20 μL; 5 mg/mL in PBS) 

was added and the plates were incubated for a further 5 h. The media was then 

removed, and the formazan crystals dissolved in optical grade DMSO (100 

μL). After incubation at 37 °C for 30 min, the plates were analysed by UV 

absorbance at λ = 550 nm. 

3.14.6. Haemolytic Activity of Free DES and DES-polyacetals 

Freshly prepared DES-Na, DES-polyacetals, dextran Mw = 74.000 g=mol and 

poly(ethyleneimine) (PEI; Mw = 750. 000 g/mol) solutions in phosphate 

buffered saline (PBS) at pH 7.4 and DES 1 (3% DMSO in PBS) (range of 
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concentrations 0–2mg/ml), were plated (100ml) into non-sterile 96-well 

microtitre plates. Blood was taken froman adult male Wistar rat (250 g), by 

cardiac puncture immediately after death (by 4% CO2 asphyxiation) and 

placed in a lithium/heparinised tube (10.0 ml) on ice. Erythrocytes (RBC) 

were isolated by centrifugation at 1500g for 10min at 48C (repeated 3 times). 

Using the final pellet, a 2% w/v RBC solution was preparedwith pre-chilled 

PBS and it was added (100 ml) to the previously prepared microtitre plates 

containing the test compounds. The plate was then incubated for 24 h at 37ºC 

before centrifugation at 1500g for 10min at room temperature. The 

supernatant was then placed in another 96-well microtitre plate and 

haemoglobin (Hb) release measured spectrophotometrically (OD550) using a 

Victor2Wallac station using PBS as the blank. 

Hb release for each sample was expressed as a percentage of the release 

produced by 0.5% w/v Triton X-100, used as a reference control to produce 

100% lysis. PEI and dextran were also used as reference polymers. 

3.14.7. Confocal fluorescence microscopy: live cell imaging  

PC3 and LNCaP cells were seeded at a density of 3.2x10
4
 cell/mL and 5x10

4
 

cell/mL, respectively, on glass bottom culture dishes (10 cm
2
 Petri plate) and 

allowed to seed for 24h. Then, OG-labeled conjugates were added. Pulse and 

chase experiments were performed after 5 min, 15 min and 1 h incubations at 

37°C, the medium was removed, the cells washed twice with PBS 

supplemented with 10% (v/v) of fetal bovine serum  (FBS, 3 mL, 37ºC) and 

the glass removed and fixed on the microscope chamber. In order to capture 

the images, in some samples the lysosomal marker Dextran-Texas red was 

also used to identify possible co-localization and therefore establish an 

endocytic pathway. A volume of 5μl of a Dextran-Texas Red solution 

(1mg/mL) was added and after 1h incubation, the medium was replaced with 

fresh one and the cells incubated for further 5h.  

 

3.14.8. Flow cytometry analysis 

Cellular uptake was studied by the flow cytometry technique. The 

experiments were carried out at 37°C and at 4°C to evaluate if the 

internalization followed an endocytosis or a diffusion mechanism. 

PC3(3.2x10
4
 cell/mL) and LNCAP (5x10

4
 cell/mL) cells were plated and 
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following 24 hours exposed to OG-labeled polyacetals, Ser-OG-Ter-Des and 

Ser-OG-Block-Des diluted in F12 medium (for PC3 cells) and RPMI medium 

(for LNCAP cells) for 0, 5, 15 and 30 minutes and 1, 2 and 5 hours. Cells 

were then washed twice with cold PBS, sorted and analyzed by flow 

cytometry.   

3.14.9. Flow cytometry: Annexin-PI 

In order to study apoptotic processes after treatment with DES-polyacetals, 

PC3 cells were seeded in P35 plates (8 cm²) at density 11000 cell/cm² and 

after 24 hours, the medium was removed and the cells were treated with the 

polymers. The concentration used was the IC50 previously obtained in 

cytotoxicity studies. After 24 hours, the medium was reserved and the cells 

were lifted with Acummax. Cell suspension was centrifuged and the pellet was 

resuspended in 100 µl of 1X binding buffer (BD Pharmigen). 5µl of Annexin antibody 

and/or 5 µl of PI were added in the corresponding tube, the cell suspension was vortexed 

and incubated for 15 min at room temperature in the dark. Then, 400µl of binding buffer 

was added to each tube and analyzed by flow cytometry. The same protocol was used in 

androgen-sensitive human prostate adenocarcinoma cells, LNCAP, derived 

from the left supraclavicular lymph node metastasis. 

3.14.10. Western Blot 

To determine protein levels, cells with and without compounds ( 72 hours) 

were rinsed twice with ice-cold PBS and then lysed with ice-cold lysis buffer 

(50mM TrisHCl pH=8, 150mM NaCl, 0.02% NaN3 azide, 0.1% SDS, 1% 

NP40, 0.5% DOC, Protease inhibitor cocktail tablets 1X). Cell lysates were 

centrifuged at 10000g for 10 minutes at 4ºC; the supernatant was then mixed 

with 5xSDS sample buffer, boiled for five minutes, and separated through 8% 

to 15% SDS-PAGE gels. After electrophoresis, the proteins were transferred 

to PVDF membranes by electrophoretic transfer. The membranes were 

blocked in 5% skim milk for 2 hours, rinsed, and incubated overnight at 4ºC 

with primary antibodies such as b-Actin,  p21, caspase 3, Bax  and Bcl2. The 

excess antibody was removed washing the membrane in PBS/0.1% Tween 20. 

The relative protein levels were quantitied by densitometry with Scion Image 

programme. Results were standardized using b-Actin as the reference. 
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3.14.11. Cell cycle assay  

With the aim to study changes in the cell cycle after treatment with the free 

drug, DES-polyacetals were seeded in P38 plates (8 cm²) at density 11000 

cell/cm² and after 24 hours, the medium was removed and the cells were 

treated with the polymers. The concentration used was the IC50 obtained in 

previous studies of cytotoxicity. After 72 hours of incubation, the cell cycle 

was measured by flow cytometry. The protocol followed is detailed below. At 

first the medium culture was analyze as a control because in the medium there 

are dead cells that must be taken into account. Later, the cells were washed 

twice with PBS 1x and lifted with trypsin 1x. The cell suspension was 

centrifuged and the pellet was fixed adding 1 ml of ethanol 70%. While the 

ethanol was added, it was very important to vortex the sample to prevent the 

formation of cellular aggregates.  

Cells were incubated for 1hour at -20ºC with ethanol. Later the cell 

suspension was centrifuged at 400G for 10 minutes, resuspended in PBS and 

incubated for 30 minutes at 37ºC and again the cell suspension centrifuged at 

400G for 10 minutes more and the pellet was resuspended with Propidium 

Iodade Solution (50 µg/ml Propidium Iodade and 1 mg/ml RNAse in PBS. 

The solution was incubated at room temperature for 1 hour. Finally, the 

sample was analysed by flow cytometry. The same protocol was used in androgen-

sensitive human prostate adenocarcinoma cells, LNCAP, derived from the left 

supraclavicular lymph node metastasis.  

3.14.12. Statistical Analysis 

All results are given as means ± SD (n≥3). When only two groups were 

compared, the Student’s t test for small sample size was used to estimate 

statistical significance. If more than two groups were compared evaluation of 

significance was performed using one way-Analysis Of Variance (ANOVA) 

followed by Bonferroni post hoc test. Graph pad Instant software (Graph Pad 

Software Inc. CA, USA) was used. In all cases, statistical significance was set 

at p <0.05. 
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3.15. Biodistribution and tumor accumulation of the conjugates with 

Cy5.5 in a Xenograft mice  model 

Polyacetal in vivo biodistribution in selected tumor models was measured by 

means of tissue fluorescence (FRI) using the IVIS® Spectrum in The 

Molecular Biology and Biochemistry Research Center for Nanomedicine 

(CIBBIM-Nanomedicine) (Vall d’Hebron Hospital Barcelona, Spain) Simó 

Schwartz Jr. group). Hsd:Athymic Nude-Foxn1nu mice and HT29 luciferasa 

C4 human cell line were used in this experiment t, currently, PC3 and LNCaP 

Xenograph models are being developed in Barcelona. The antitumoral effect 

of the test substance is indirectly measured by means of the tumor volume 

records measured using a caliper and means of the tumor bioluminescence 

(BLI) using the IVIS® Spectrum. Mice receive subcutaneous (s.c.) tumor cell 

injection (0.25x106 cells/100 μl DPBS) in the rear right flank and thereafter 

are treated with the test substance. Tumor volume is measured twice a week 

by caliper measurements and bioluminescence imaging. The volume was 

calculated according to the formula Dxd 2 2, and the bioluminescence signal 

was quantified in photons per second. Polyacetal-cy5.5 conjugates were used 

in this study. 
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4. Tert-DES vs. Block-DES polyacetals 

4.1. SYNTHESIS, CHARACTERIZATION AND IN VITRO 
STUDIES 

4.1.1. Introduction 

The development of better polymeric carriers is an ongoing challenge to 
achieve second generation polymer therapeutics. There is an urgent need to 
develop biodegradable polymers that can better exploit EPR-mediated tumor 
targeting1 and to move away from heterogeneous towards better defined 
polymer structures. Biodegradable polymers such as dextrins2, polyesters3 or 
polyacetals4, 5 could be considered as promising candidates to be used as 
carriers for targeted drug delivery. To allow the use of polymers of higher 
molecular weight, a family of hydrolytically labile, water-soluble polyacetals 
were developed5. These polymers can contain functional groups that allow 
side-chain conjugation, and a doxorubicin conjugate has been already 
reported4. These polyacetals are relatively stable at pH 7.4 (10% loss of 
molecular weight over 72 h), but degrade faster at the acidic pH that is 
encountered in endosomes and lysosomes (40% of the molecular weight is 
lost over 24 h at pH 5.5). In vitro and in vivo studies confirmed that the 
polyacetals are not toxic and also long circulating, i.e. they are not taken up 
extensively by the liver or spleen5. Moreover, the polyacetal–doxorubicin 
conjugate (Mw 86KDa) displayed significantly prolonged plasma circulation 
time and enhanced tumor accumulation compared to the HPMA copolymer 
doxorubicin conjugate PK1 (Mw 30KDa)4. 

Polyacetals can be prepared by a mild polymerization method involving the 
reaction of diols with divinyl ethers7. To move a step further on this design 
Vicent et al. synthesized polyacetals incorporating a drug with bis-hydroxyl 
functionality into the polymer backbone6. Degradation of the polymer 
backbone in the acidic environment of the lysosome or the extracellular fluid 
of some tumors would then trigger drug release eliminating the need for a 
biodegradable linker. For this purpose, the tert-polymerization process 
developed for the synthesis of the functionalized polyacetals was used4,5 in 
combination with the model drug diethylstilbestrol (DES). . The previous 
research with DES-polyacetals already demonstrated that DES solubility can 
be greatly enhanced upon polymerization. And more interestingly, the 
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conjugates underwent degradation that was clearly pH-dependent, with 
greater DES release at acidic pHs. Additionally, the active isomerism of the 
estrogen was maintained (trans-DES)6 and the conjugates displayed enhanced 
in vitro cytotoxicity compared to free DES. These tert-DES polyacetals could 
therefore be defined as the first water-soluble anticancer polymeric drugs 
designed for acidic pH-triggered release where the drug is incorporated into 
the polymer mainchain6. Ratifying the utility of this synthetic strategy, 
another recent example has been reported using curcumin as a diol-
functionalized anticancer drug. The polyacetal-based polycurcumins showed a 
clear antitumor effect in vitro and in vivo in ovarian cancer models8.  

The first synthesized tert-polymer had a drug content of ~4 wt% and a 
polydispersity (Mw/Mn) around 1.8. The initial aim of the current study was 
to synthesize a second generation of DES-based polyacetals with improved 
properties, such as narrower Mw distributions and higher drug loading, and 
more importantly to study with these model systems, if slight structural 
modifications could significantly influence conjugate therapeutic output. 
These second generation polyacetals were obtained using a block-co-polymer 
methodology. Tert-DES and block-DES were then tested in selected prostate 
cancer cell models9.   

 

4.1.2. Synthesis and Characterization of DES-polyacetals 

In this chapter the design of novel DES-polyacetals as block-co-polymers 
systems (block-DES) with amphiphilic character will be described. The 
original Tert-DES will be used as reference conjugate and their biological 
output will be compared. 

Optimization of DES-polyacetals synthetic approach 

The original synthetic polymerization approach presented some limitations 
such as poor batch to batch reproducibility and poor product stability due to 
the presence of unreacted traces of weak acid that could trigger polyacetal 
degradation. Therefore, different conditions were tried in order to optimize the 
synthesis and to control the obtaining of the desired product e.g. different 
reaction times, temperature, monomer equivalents, the way reactants were 
added and different reaction solvents. The different conditions used are shown 
in Table 4.1. 1. 
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The improvements here were made by synthesizing using Schlenk line 
conditions, which provide advantages on the polymerization as the reagents 
could be dried quickly and the anhydrous environment kept during the whole 
process. Also checking the progress of the reaction by 1HNMR the reaction 
times were reduced from between 3-16 hours to just 1 hour at room 
temperature10. The monomers employed were PEG of different including 
2000, 4000 and 6000g/mol. It was determining that the best results obtaining 
were with 4000g/mol, as the one with 6000g/mol resulted in highly 
heterogeneous polymer and when PEG 2000 g/mol was used, a much lower 
DES payload was achieved. Therefore, PEG 4000g/mol was selected for all 
further studies. 

 

Table 4.1. 1 Conditions tested during polyacetal synthesis optimization.  

Tª 
(ºC)

Reaction 
time

Co-
monomers 
Mw(g/mol)

DVE Catalyst Base Reaction 
solvent

Solvent 
Conditions

Reactants 
conditions

Method to 
add reactants

25

4
36

3, 4, 24

and 36 h

5, 7, 9 days

PEG 2000

PEG 4000

PEG 6000 

DES 268

Serinol-F 315

TEGDVE

DEGDVE

p-TSA

La-sulph

Triflic ac

Et3N

Py

DIEA

NaOH

THF

Dioxane

DCM

Toluene

DMF

Distilled with Na

Anh. Bottle

HPLC grade

HPLC grade with 

molecular sieves

Dried 16h  

(v.o.,37,80
,100ºC)

No dried 
(rt)

In solution 

(same reactant 
solvent)

Direct from 
the purchased 

bottle

 

Where; F: Fmoc group, sulph.: sulphonate, Py: pyridine, Na: sodium,  rt: 
room temperature, anh: anhydrous and v.o.: vacuum oven. 

 

Different solvents were tested and dioxane was the best option as a clear 
product with almost no presence of impurities or subproducts from polymer 
degradation was achieved before purification (Figure 4.1. 1). 
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Figure 4.1. 1 1HNMR of Tert-DES synthesized in different solvents; (A) 
THF, Toluene, Dichloromethane (DCM), Dimethylformamide (DMF); (B) 
Dioxane. 

The acid catalyst (p-TSA) was quenched more easily using a small quantity of 
sodium hydroxide in place of the previously used triethylamine, which was 
subsequently easily removed during the purification step. Different 
purification approaches were taken, mostly based on precipitation over hexane 
or different mixtures of hexane and diethyl ether (4:1, 3:1, 2:1, 1:1), but also 
ultrafiltration was studied, where poor water soluble polymers were dissolved 
in a mixture water/acetone. It was found that precipitation worked better than 
ultrafiltration for DES-polyacetals. The purification, which takes 
approximately 2 hours therefore yields the resulting materials (after freeze-
drying) in good quantity after just 24 hours. Then, the polyacetals were 
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purged under nitrogen and different storage conditions were evaluated (4ºC 
(fridge), -20ºC (freezer) and at RT (desiccator) being -20ºC the best found.  

Summarizing, the final selected conditions for all reactions were: PEG 4000, 
DES and Serinol-Fmoc as co-monomers, pTSA as catalyst, the reaction 
solvent was anhydrous dioxane and the base used to quench the reaction was 
NaOH. The reaction was carried out in schlenk conditions at 25ºC during 1h. 
The precipitation of the polyacetals over hexane was employed as purification 
method. It is important to note that, in the case of Block-DES, these changes 
clearly impact the efficiency of the reaction; in particular reaction time was 
reduced from 6h with the original conditions to 1.5h with the optimized 
method.  
 

Tert-DES-polyacetal 1 (Tert-DES)  

A family of Tert-DES-polyacetals 1 (tert-DES) was synthesized following the 
tert-polymerization technique previously described (Scheme 4.1. 1) and using 
1H-NMR in order to confirm the presence of the drug in the polymer 
mainchain. 1H-NMR allowed quantification of DES loading as for the 
presence of two distinct sets of acetal peaks, which correspond to the two 
possible mainchain acetals; from PEG at 1.25–1.3(d) and 4.7–4.8(q)ppm and 
from DES at 1.5–1.6(d) and 5.4–5.5(q)ppm (Figure 4.1. 2).  
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O
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O
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O
O

H
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x
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O
O

*

3
O

O O
O

x 3
O
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p-TSA

Terpolymer 1     

Scheme 4.1. 1 Synthesis of DES-polyacetal 1 (Tert-DES). 
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Water-soluble tert-DES polyacetals obtained had Mw range from 34000 
g/mol to 38000 g/mol and with Mw/Mn from 1.5 to 1.7 as determined by 
size exclusion chromatography (GPC) (THF, 0.8 ml/min). DES total 
loading in the different water-soluble tert-polyacetals varied from 3 to 6 
wt% with a free drug content always < 0.5 wt% of total drug (Table 4.1. 
2). A DES loading greater than 6 wt% yielded non-water soluble materials.
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Figure 4.1. 2 
1H-NMR spectra of DES-polyacetal 1 (Tert-DES). 

 

Block-co-polymers 2 (Block-DES)  

In parallel, a family of amphiphilic block-co-polymers, Block-DES-
polyacetal 2 (block-DES), was also synthesized. The synthetic strategy 
was based on the same polymerization technique described above but 
using a sequential approach.  

The main synthetic differences for the tert- and block- polymers were 
based on the DES addition time point. When DES was added at the 
beginning of the reaction together with poly(ethylenglycol) (PEG) and 
tri(ethylene glycol) divinyl ether (TEGDVE) (in a one-pot polymerization 
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approach) a tert-polymer was formed. In contrast, if DES incorporation 
was performed in a second step after PEG block formation an amphiphilic 
block-co-polymer could be achieved (Scheme 4.1. 2). The DES loading 
was confirmed by 1H-NMR in all cases (Figure  4.1. 3 ; integration o* vs 
q* and p** vs r**).  

PEG TEGDVE
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O
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H
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+

    

Scheme 4.1. 2 Synthetic approach followed to obtain Block-DES 2. 
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Figure 4.1. 3 Example of 1H-NMR spectrum of Block-DES 2 with 
assigned signals. 
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Block-DES polyacetals with an adequate water solubility were able to be 
obtained with a drug payload greater than that obtained for the tert-DES 
(from 2 to 9 wt%) with a free drug content always < 0.5 wt% of total drug, 
a Mw ranging from 26.000 g/mol to 35.000 g/mol and a moderate Mw/Mn 
from 1.3 to 1.6 as determined by GPC in THF (Table 4.1. 2). 

Table 4.1. 2 Physico-chemical characteristics of the polyacetals 
synthesized. 

(a) Determined by 1H NMR; (b) Determined by HPLC analysis; (c) 
Determined by size exclusion chromatography (GPC, Viscotek TDATM); 
DES: Diethylstilbestrol, Mw: Molecular weight, Mw/Mn: polydispersity 
index. 

 

4.1.3. Kinetics of Drug Release 

 

 pH-dependent Degradation of DES-Polyacetals 1 and 2. 

Essential characteristics for polymer–drug conjugates are stability during 
blood circulation and the capability for drug release from the carrier under 
selected physiological triggers. Therefore, in order to show the applicability of 

Conjugate 

DES 

Loadinga 
(wt%) 

Free DES  

contentb (wt%  

of total drug) 

Mwc 

(g/mol) 

Mw/Mnc 

 

Tert-DES 1a 2.8 ± 0.2 0.2 ± 0.1 35.280 1.70 

Tert-DES 1b 4.0 ± 0.2 0.3 ± 0.1 34.400 1.63 

Tert -DES 1c 5.7 ± 0.3 0.2 ± 0.2 37.607 1.54 

Block-DES 2a 2.0 ± 0.1 0.2 ± 0.1 28.081 1.40 

Block -DES 2b 4.3 ± 0.3 0.1 ± 0.2 28.780 1.27 

Block -DES 2c 7.3 ± 0.3 0.2 ± 0.1 34.300 1.42 

Block -DES 2d 9.5 ± 0.2 0.3 ± 0.2 26.700 1.60 
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this approach, it was essential to determine pH-responsiveness of the 
conjugates under conditions encountered in a biological environment.  

The pH-dependent degradation profile for DES-polyacetals was hypothesized 
to be similar to that previously described for APEG4, 5, however it was already 
demonstrated for tert-DES 1 that the presence of the aromatic groups adjacent 
to the acetal moiety affects polymer degradation rate at acidic pH, being much 
faster when DES was present in comparison to the parent APEG systems6. 

HPLC (at 280 nm) was used as quantitative method to determine the amount 
of DES released from block-DES 2 in comparison to tert-DES 1. As expected, 
a strongly pH dependence on polyacetal degradation was observed for both 
polymers, with % DES released decreasing pH 5.5 >> pH 6.5 > pH 7.4, which 
is an ideal profile file for a lysosomotropic drug delivery route (Figure 4.1. 4 
A,B).  

At acidic pH, block-DES presented a slightly faster drug release rate in 
comparison to its tert-DES counterpart (as example see 1b vs. 2b in Figure 
4.1. 4).. 
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Figure 4.1. 4 pH-Dependent DES release: (A) tert-DES 1b at  pH 7.4, 6.5 and 
5.5; (B) block-DES 2b at  pH 7.4, 6.5 and 5.5. The results show the 
percentage of DES release from total at each time point. Mean values ± SD (n 
= 3). 

Importantly, for both polymers the DES was released predominantly as the 
active isomer of trans-DES (>80%) (Figure 4.1. 5).  
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Figure 4.1. 5  pH-Dependent DES release as cis- and trans-DES forms from 
tert-DES 1b and block-DES 2b at pH 5.5. The results show the percentage of 
DES release from total at each time point. Mean values ± SD (n = 3). 

 

Due to the relative hydrophobic/ hydrophilic ratio depending on polyacetal 
DES loading, it is clear that the different DES content could affect conjugate 
conformation and consequently also influence drug release kinetics. In fact, as 
it can be seen in Figure 4.1. 6 A.B., a greater DES loading yielded to a slower 
drug release rate in both designs, being more important for block-DES family. 

Block-DES showed what could be considered a ‘biphasic release profile’ 
typically observed in biodegradable nanoparticulate systems. This biphasic 
pattern in block-DES can more clearly be seen in those polyacetals with 
greater drug loading (2c > 2b > 2a) (Figure 4.1. 6 B).   

 

As these systems are designed for intravenous (i.v.) administration it is 
important to explore conjugate stability in plasma trying to mimic 
physiological conditions. Both, tert-DES and block-DES showed non-
significant drug release up to 24 h incubation (See next section 4.1.4). 
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Figure 4.1. 6 pH-Dependent DES release DES from: (A) tert-DES 1a-c at pH 
5.5, (B) block-DES 2a-c at pH 5.5. The results show the percentage of DES 
release from total at each time point. Mean values ± SD (n = 3). 

 

4.1.4. Plasma Stability of DES-polyacetals 

The polymers were dissolved and incubated for up to 24 h in plasma at 37ºC. 
Plasma was obtained from the fresh blood of adult male Wistar rats and to 
allow analysis protein precipitation was carried out with acetonitrile (see 
experimental methods chapter 3, for detailed information). DES released was 
then measured as above-described by HPLC.  
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Figure 4.1. 7 Stability in plasma of DES-polyacetal derivatives (mean ± SD, 
n=3). 
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Both, tert-DES and block-DES showed non-significant drug release up to 24 h 
incubation in presence of plasma at 37ºC confirming polyacetal plasma 
stability(see Figure 4.1. 7). 

 

4.1.5. Preliminary biological evaluation in cell models.  

Once the polyacetalic systems were synthesized and characterized, their 
evaluation as anticancer agents were carried out in selected prostate cancer 
cell lines. In vitro antitumor activity of DES should preferably be assessed 
using an estrogen responsive cell line, however, DES also inhibits Bcl-2 
protein12,13, the assembly of microtubular proteins14,15 and even the telomerase 
activity16 and therefore, has been shown to be also cytotoxic in non-estrogen 
responsive cell lines, such as 3T3 fibroblast17, MOP18 or B16F10 melanoma 
cells19. Therefore, the biological evaluation of DES-polyacetals (1) and (2) 
was carried out in two different human prostate cancer cell lines, namely PC3 
(Hormone Independent) and LNCaP (Hormone Dependent). For comparison, 
in cell viability studies, free DES as sodium salt (NaDES) was used.  

 

Techniques such as cell-live confocal fluorescence microscopy (to avoid 
artefacts with fixation) and flow cytometry techniques were employed with 
fluorescence labelled derivative polymers. The fluorescent marker chosen for 
labelling purposes was Oregon green (OG) as has been reported to be stable 
against changes in pH. The fluorescent analogue conjugates were employed to 
carry out biophysical studies such as cell binding (at 4ºC and 37ºC) and cell 
internalization (at 37ºC). Using these techniques gives scope to evaluate the 
endocytic route the conjugates follow by the incubation of them along with 
fluorescent markers of specific organelles. In this study a lysosomal marker 
was used, Texas Dextran red. Normally, polymer–drug conjugates are 
internalized by endocytosis, circulating to the appropriate cellular 
compartment and free drug is released enzymatically or chemically, which 
causes a significant delay in the onset of action compared to the free drug.  

Specific experiments were also designed to elucidate the mechanism of action 
of the different systems including drug release mechanisms20, their ability to 
trigger and block specific cell process (e.g. apoptosis21, or angiogenesis22) 
(See Chapter 4.2). 
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Finally, it is important to note that the influence of the polymer 
architecture on biological properties is not well described in the 
literature. Therefore, one of the most important goals in this chapter was 
to understand the effect of architecture on conjugate biological output, 
normally anticancer activity and cell trafficking.  

 

4.1.5.1. Amino-pendant polyacetals (APEG).   

It was planned to study the differences between tert- and block-DES on 
cell trafficking and in vivo biodistribution. In order to carry out these 
experiments, fluorescently labeled polyacetal derivatives were required. 
The original structure do not allow any post-polymerization modification, 
therefore, additional co-monomer with side-chain functionality had to be 
employed.  

Based on a previously described synthesis5, an Fmoc-N-protected serinol 
was selected as the amino-functionalised monomer choosen. These 
molecules contains the diol functionality required for  polymerization and 
incorporation  into the polymer backbone, and, at the same time contains 
an amino group that allows side-chain post-polymerization modifications. 
NH2 group should be protected to avoid the formation of undesired side-
reactions. The Fmoc protecting group was found to have an advantage as 
it can be easily removed in basic media, preventing the degradation of the 
acetal bonds previously formed5. 

The introduction of the new monomer allowed the introduction of 
fluorescence probes for cell studies (OG), NIR dyes for in vivo analysis 
(Cy5.5) and also offered the opportunity for second drug incorporation 
yielding polyacetals designed for combination therapy combining 
endocrine therapy plus chemotherapy20 (further details in Chapter 5). 

 

Synthesis of Fmoc-protected serinol 3 

First, serinol protected with fmoc group was synthesized to have the new 
co-monomer ready to incorporate in the polyacetalic systems, tert and 
block-DES. Fmoc-protected serinol 3 was synthesized (Scheme 4.1. 3) as 
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reported by Tomlinson et al5. The structure was confirmed by 1H-NMR 
(Figure 4.1. 8).  
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Scheme 4.1. 3 Synthesis of Serinol-Fmoc monomer 3.  
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Figure 4.1. 8 1H-NMR spectrum of Serinol-Fmoc monomer 3. 

 

Synthesis of APEG-DES-polyacetals derivatives. 

Subsequently, a family of APEG-DES-polyacetals were synthesized using 
the same procedure described for Tert-DES 1 and Block-DES 2 but adding 
Serinol-Fmoc 3 as a co-monomer with DES yielding Tert-DES-Ser 4 
(Scheme 4.1. 4) and Block-DES-Ser 5 (Scheme 4.1. 5). 1H NMR 

O

HO OH
HN O
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confirmed the presence of the Fmoc-Serinol 3 with a new set of polyacetal 
signals at 4.3ppm and the aromatic signals from Fmoc group 7.3, 7.4, 7.6 
and 7.8 ppm (Figure 4.1. 9 and 4.1. 10) for 4 and 5 respectively), which 
allowed for the calculation of the drug loading. 
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Scheme 4.1. 4 Synthesis of Tert-DES-Ser 4.  
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Scheme 4.1. 5 Synthesis of Block-DES-Ser 5. 
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Figure 4.1. 9  

1H NMR spectra of Tert-DES-Ser 4. 
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Figure 4.1. 10 1H NMR spectra of Block-DES-Ser 5. 
 

Afterwards, Tert-DES-Ser 4 and Block-DES-Ser 5 were deprotected using 
piperidine in order to obtain Tert-DES-Ser 6 and Block-DES-Ser 7, ready 
for further side-chain compound conjugation. The absence of the aromatic 
peaks from the Fmoc group and the maintenance of the two distinct sets of 
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acetal peaks in the 1H-NMR spectra (Figure 4.1. 11) confirmed that the 
deprotection had been successful and that serinol was present in the 
polyacetal.  
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Scheme 4.1. 6 Synthesis of Tert-DES-Ser 4 or Block-DES-Ser 5 with 
Fmoc group deprotected, yielding 6 or 7 respectively. 
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Figure 4.1. 11 An example 1HNMR spectra showing successful Fmoc-
deprotection and preservation of DES and serinol in the APEG conjugate 
polymers.  

 



                                                                                                                    Synthesis, Characterization and In Vitro Studies__ 

-149- 

 

Determination of amine groups 

In order to determine the total quantity of amino groups present in the 
deprotected polyacetals, a quantitative method using ninhydrin (mentioned 
in chapter 3) was carried out. According to literature, this method offered a 
linear relationship (R2>0.98) of absorbance versus the amino acid 
concentration up to 50µg/mL for all amino acid tested23 (Figure 4.1. 12). 
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Figure 4.1. 12 Calibration curve use to quantify the pendant amino groups 
in the polyacetals. 

Using this calibration curve, polymers were measured to quantify the 
existing amine group from serinol (-NH2) (Table 4.1. 3). 
 

Table 4.1. 3 Physico-chemical characteristics of DES-Serinol polyacetals. 
                                                                                                                                                                   

a.Determined by 1H NMR; b.Determined by HPLC analysis; c.Determined 
by nynhidrine assay; d.Determined by size exclusion chromatography 

Conjugate 

DES 

Loadinga 
(wt%) 

Free DES 
contenta,b,c 

(wt% of 
total drug) 

Serinola,c 

Loading 
(wt%) 

                                    
Mwd 

(g/mol) 

 

Mw/Mnd 

Tert -DES-Ser 4a 4.5 ± 0.3 0.2 ± 0.1 3.0 ± 0.3 37.801 1.63 

Tert -DES-Ser 4b 4.9 ± 0.2 0.4 ± 0.1 7.0 ± 0.1 41.451 1.69 

Block-DES-Ser 5a 4.7 ± 0.4 0.4 ± 0.2 3.0 ± 0.2 30.768 1.50 

Block -DES-Ser 5b 4.8 ± 0.2 0.1 ± 0.2 6.1 ± 0.2 31.373 1.55 
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(GPC, Viscotek TDATM); DES: Diethylstilbestrol, Ser: Serinol, Mw: 
Molecular weight, Mw/Mn: polydispersity index. 

Conjugation of APEG-DES polyacetals with different fluorochromes.  

Using a carbodiimide-mediated coupling, the conjugation of Tert-DES-Ser 
4 and Block-DES-Ser 5 with Oregon Green yielded Tert-DES-Ser-OG 8, 
Block-DES-Ser-OG 9 and with Cy 5.5 Tert-DES-Ser-Cy 10 (scheme 4.1 7) 
and Block-DES-Ser-Cy 11 (scheme 4.1 8) were achieved. All DES-
polyacetals conjugated with Cy5.5 or OG are compiled in table 4.1.4. 

 

 Table 4.1. 4 Physico-chemical characteristics of the polyacetals with 
serinol synthesized. 

 
 

a. Determined by Fluorimetry (Victor2 Wallac Station); b. Determined by 
HPLC analysis; *synthesized from Tert -DES-Ser 4a and * from Block-
DES-Ser 5a. Serinol and DES loading are described in Table 4.1. 3. 

 

To synthesize OG- or Cy5- labeled- tert- and block-DES-Ser, another 
procedure was tested (as it was described in chapter 3). After deprotection, 
the Polyacetals were  succinoylated to obtain tert- and block- DES-SerCOOH 
(12 and 13, respectively) and amino-fluorochromes ( cadaverine in the 
case of OG) attached yielding tert-DES-Ser-OGcad 14, block- DES-Ser-
OGcad 15, block-DES-Ser-Cycad 16 and block-DES-Ser-Cycad 17. However, 
with this second procedure polymer degradation was observed along each 
step diminishing conjugate stability.  For this reason the first procedure 
(Scheme 4.1. 7 and 4.1. 8) was selected for polyacetal labeling.   

Conjugate OregonGreena,b 
content (wt%) 

Cyane 5.5a,b  

content (wt%) 
Tert -DES-Ser-OG 8a (*) 0.8 ± 0.2 - 

Tert -DES-Ser-Cy 10a (*) - 0.6 ± 0.1 

Block -DES-Ser-OG 9a (*) 0.8 ± 0.2 - 
Block -DES-Ser-Cy 11a (*) - 0.6 ± 0.1 
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Scheme 4.1. 7 Scheme to synthesize OG- or Cy5.5- Tert-DES-Ser. 
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Scheme 4.1. 8 Scheme to synthesize OG- or Cyane5.5-Block-DES-Ser. 

In order to purify and determine the total fluorescent loading, the OG 
(λem: 535, λexc: 485) and Cy5.5 (λem: 694, λexc: 675) labeled conjugates 
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were purified by SEC (Sephadex G25, PD10 column) and the total 
fluorescence of each aliquot (1 ml) quantified by a fluorimetry. An 
adequate filter In the NIR area was required for Cy5.5  In both cases 
conjugation efficiency was >80% (Figure 4.1. 13). 

         A. Tert-DES-Ser-Cy 10                   B. Tert-DES-Ser-OG 8 
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         C. Block-DES-Ser-Cy 11                D. Block-DES-Ser-OG 9 
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Figure 4.1. 13 Representative images of the elution profile of labeled 
conjugates used to quantify Cy5 (A, C) and OG- (B, D) polymer loading  

 

The compounds labeled with OG were used in cell experiments in order to 
study cell trafficking mechanisms in prostate cancer cell lines. Polyacetals 
labeled with Cy5.5 were used for the in vivo studies described chapter 5 
(IVIS Spectrum®). 

 

4.1.5.2. In vitro studies in prostate cancer cell lines. 

Ethical and economical considerations are essential to develop new 
therapies, for this reason in vitro pre-screening is favorable for making the 
first studies and determine if continue the study to in vivo models. 
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In most cases, cells must be grown in culture for days to obtain sufficient 
cell density to carry out the different studies. Maintenance of cells in long-
term culture requires strict adherence to aseptic technique to avoid 
contamination and potential loss of valuable cell lines. Cell biology 
studies require several special skills in order to be able to preserve the 
structure, function, behavior, and biology of the cells in culture. 
Techniques such as cell passaging (trypsinization), freezing and storaging 
were carried out. An important factor influencing the growth of cells in 
culture is the use of the appropriate media for covering all the necessities 
of the cells to get a proper growth.The media provides all the nutrients for 
growing cells but sometimes is complemented with antibiotics, fungicides, 
or both to inhibit contamination. In the case of LNCaP (lymph node 
cancer of the prostate) androgen-sensitive and PC-3 (bone cancer of the 
prostate cancer) androgen independent human prostate adenocarcinoma 
cells, any of those supplements were add in order to avoid any possible 
interaction in the internalization or uptake studies with our conjugates. 

One of the media used was the Roswell Park Memorial Institute medium, 
commonly referred to as RPMI which it was traditionally been used for 
growth of Human lymphoid cells. This medium contains a great deal of 
phosphate and is formulated for use in a 5% carbon dioxide atmosphere. 
Other of the media used was a nutrient mixture designed to cultivate a 
wide variety of mammalian and hybridoma cells, called F12.PC3 cells 
were grown in F12 supplemented by addition of 5.0mM L-glutamine and 
10% (v/v) of fetal bovine serum (FCS). LNCaP cells were grown in RPMI 
with 10% (v/v) FCS. 

 

4.1.5.2.1. Cell model characterization: Cell Growth Curve 

To generate a growth curve is very useful in order to understand the 
behavior of the cell line and therefore, to be able to design experiments in 
the adequate cell growth phase. Generally, cell growth can be modeled 
with four different phases: lag phase, exponential (or log phase), 
stationary phase (or plateau), and death phase (Figure 4.1. 14). 
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Figure 4.1. 14 Schematic representation of the four different phases in a 
growth curve. 

In lag phase, the cells are adapted to growth conditions and the individual 
cells are maturing. During the exponential phase (also called the 
logarithmic phase) the cell is divided (cell doubling). This type of 
exponential growth based on plotting the natural logarithm of cell number 
against time produces a straight line. The growth rate depends upon the 
growth conditions, which affect the frequency of cell division events and 
the probability of  both daughter cells surviving. The stationary phase has 
a constant value as the rate of cell growth is equal to the rate of cell death. 
At death phase, cells probably die as a result of accumulation of toxic 
products, contaminations and contact inhibition. However, cancerous 
cells typically lose this property of contact inhibition and thus grow in an 
uncontrolled manner even when in contact with neighboring cells. 

It is important to remark that MTT or MTS assays (n> 4) were the 
techniques employed (see chapter 3 methodologies on cell culture) to 
carry out the growth studies. And all cells were used in their exponential 
growth phase. 

MTT assay and MTS assays 

The MTT assay was initially introduced by Mosmann in 198324 as a 
method to assess cell viability. The yellow tetrazole MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) or MTS (3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxy methoxyphenyl)-2-(4-sulfopheyl) 2H-
tetrazolium) colorimetric assay are used for measuring the activity of 
enzymes24. That is to say, viable cells can reduce the yellow solution of 
the substrate into purple insoluble formazan crystals by a redox reaction 
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mediated by the mitochondrial respiration products NADH and 
NADPH24-29 (Figure 4.1. 15). 
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Figure 4.1. 15  A) Mitochondrial reductase reduces MTT or MTS (in the 
presence of phenazine methosulfate (PMS)) to purple formazan dyes. This 
conversion is used to measure viable (living) cells. B) Microtitre plate before 
(yellow) and after (different tones of purple) an MTT assay. Increasing the 
amounts of cells the purple coloring is proportionally increased. 

 

MTS needs the presence of phenazine methosulfate (PMS) to produce 
formazan products. The MTS assay could be described as a 'one-step' 
MTT assay, avoiding the intermittent steps of the MTT assay. However 
this convenience makes the MTS assay susceptible to colormetric 
interference as the intermittent steps in the MTT assay remove traces of 
colored compounds, whilst these remain in the microtitre plate in the 
one-step MTS assay. Precautions are needed to ensure the results 
obtained by this method which can be complemented using qualitative 
observations under a microscope. 

The growth curves obtained for both selected cell lines, LNCaP and PC3 
at different seeding densities are shown in the following figures (Figure 
4.1. 16 and 4.1. 17, respectively). 
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Figure 4.1. 16 Growth curve for optimizing the LNCaP cell seeding 
density. 

Each profile shape obtained from the different concentrations of LNCaP 
cells is showing clearly the four phases (lag, exponential, stationary and 
death phase). But the most consistent shape is that obtained with the 
seeding density of 4000cells/well in the case of LNCaP. 
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Figure 4.1. 17 Growth curve to optimize PC3 cell seeding density. 

In the case of PC3 cells, only the shape profile from the density of 3200 
cells/well shows the four phases related to the optimum growth curve, 
and therefore this seeding density was selected for the experiments. In 
both selected seeding values, the exponential growth phase occurs 
between day 1 and 4, the best conditions for in vitro experiments. 
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4.1.5.2.2. Cell Viability Studies 

The IC50 value is defined as the polymer concentration at which cell 
growth is inhibited by 50 % and computer generated IC50 values were 
compared with the values directly read on the graphs at 50 % of cell 
viability. Cell viability is usually expressed as a percentage of the viable 
cells (equation 4.1. 1) and as mean ± standard error of the mean.  

Cell Viability (%) =  
  

Abs550x ×100
Abs550Control

 (Eq 4.1. 1) 

Where,  Abs550x is the absorbance measured for the compound at a 
polymer concentration x and Abs550Control is the absorbance measured for 
control cells. 

The concentration-response curves generated from this data were then fit 
to the logarithmic function derived from the Hill Equation (Equation 4.1. 
2). 

   y = Rmin + Rmax − Rmin( )/(1+ (x /IC50)P )   (Eq 4.1. 2) 

Where Rmax was fixed at 100 and Rmin was fixed at 030. 

Different concentrations of drug alone (DES or its salt Na-DES) or 
conjugated to a polymer (Tert-DES and Block-DES with different drug 
equivalents), were evaluated by MTT assays after 72h in both cell lines 
PC3 and LNCaP cell lines. The IC50 obtained are shown in Table 4.1. 5. 

The free drug DES was also evaluated as a salt, DES-Na, because the 
poor water solubility of the DES. 

 

Table 4.1. 5 IC50 of the drug and polyacetals evaluated by MTT after 
72h in PC3 and LNCaP prostate cancer cell lines.  

IC50 (mg/mL DES eq) PC3 LNCaP 

NaDES 0.060 0.044 

Tert-DES 1b 0.172 0.070 

Block-DES 2b 0.052 0.049 
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Probably due to the androgen-dependent character, DES derivatives 
displayed greater cytotoxicity against LNCaP than against PC3 cell line 
(Figure 4.1. 18). Block-DES displayed greater cytotoxicity than the tert-
polymer and the free drug in both cell lines. This could be explained by 
the difference in conformation adopted in solution. As seen in the 
degradation studies, the faster kinetics of DES release from Block-DES 
compared with Tert-DES could be one of the reasons for the observed 
cytotoxicity increase. Also, the amphiphilic character of the block-co-
polymer could result in a polymeric micelle formation with consequently 
different cell internalization mechanism.  

Encouragingly, Block-DES IC50 values were non-significantly different 
from those obtained with NaDES (IC50 value for 2b = 0.052 and 0.049 
mg/mL, DES-equiv. IC50 value for NaDES = 0.060 and 0.044 mg/mL, 
DES-equiv. against PC3 and LNCaP, respectively), even following a 
different cell pharmacokinetics (endocytosis for Block-DES vs. diffusion 
for free DES) (Figure 4.1. 18). 
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Figure 4.1. 18 Cytotoxicity of DES derivatives measured by MTT assay 
after 72 h incubation. Tert-DES vs block-DES in (A) PC3 cells and (B) 
LNCaP cells. Data are expressed as mean ± SD (n ≥ 3). * p< 0.05. 

 

This could be due to the enhancement of DES water solubility prior to its 
intracellular release following endocytic uptake. More importantly, 
block-DES 2 showed greater cytotoxicity than tert-DES 1 in both cell 
lines (IC50 value for 2b = 0.052 and 0.049 mg/mL, IC50 value for 1b = 
0.172 and 0.070 mg/mL, DES-equiv. against PC3 and LNCaP, 
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respectively). The combination of the two key features already described, 
a slightly faster and biphasic drug release profile at acidic pH from block-
DES (Figure 4.1. 4B). 
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Figure 4.1. 19 Cytotoxicity of DES derivatives measured by MTT assay 
after 72 h incubation. DES content influence on cytotoxicity against PC3 
cells (A) tert-DES 1a-c vs (B) block-DES 2a-c. Data are expressed as 
mean ± SD (n ≥ 3). * p< 0.05. 

The inherent cytotoxicity of the DES-polyacetals not only depend on 
monomer arrangement, but also on total DES content, being significantly 
different when loadings  below 3 wt% are compared with those above.  
This effect seems to be more important in the androgen-independent PC3 
cells (Figure 4.1. 19) than in the hormone-dependent LNCaP cells, 
indicating the complexity of DES molecular mechanisms of action.  

 

4.1.5.2.3. Haemocompatibility studies 

The primary purpose of giving intravenous (i.v.) medications31 is to 
initiate a rapid systemic response to medication. The i.v. route for 
medication administration is one of the fastest ways to deliver the drug 
which once is injected is immediately available to the body. Other 
advantatge of using i.v. is the control of amount of drug deliver in the 
body and it is able to maintain drug levels in the blood for therapeutic 
response. The i.v. administration should be used if the drug to be 
delivered would be destroyed by digestive enzymes, is poorly absorbed 
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by the tissue, or is painful or irritating when given by intra-muscular (im) 
or subcutaneous (sc) injection. The drugs which are i.v. administered 
should not be compatible with i.v. fluids or other drugs but the mean of 
being incompatible is a risk to cause drug crystallization which can clog 
the i.v. line or to cause an embolus effect on the patient31. 

The drug delivery rate is an important factor when medication is i.v. 
administered. Some drugs are delivered rapidly over several minutes to 
obtain therapeutic effect. However drugs are most effective when 
delivered slowly and intermittently throughout the day. Each drug acts 
different and it is needed to find its best conditions to be administrated 
(amount per day) to achieve the therapeutic effect desired.  

It is important to note that, as already described for tert-DES6, block-

DES-polyacetals also displayed much lower hemolytic activity than their 
free counterpart (3%, 4% and 90% Hb released in 1 h; 5%, 4% and 100% 
Hb released in 24 h for 1, 2 and NaDES, respectively, at 2 mg/ml DES-
equiv.) (Figure 4.1. 20). This proofs the suitability of these 
nanoconjugates for i.v. injection in subsequent in vivo studies. 
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Figure 4.1. 20 Haemolytic activity of DES, NaDES and DES-polyacetals at 
24h. Data expressed as mean ± SEM (n=3). 

 

4.1.5.2.4. Confocal fluorescence microscopy: live-cell imaging 

As complementary studies to the previous described above, confocal 
fluorescence microscopy experiments were carried out to permit better 
observation of the cell trafficking for the conjugates. Live cell imaging 
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was used to avoid any fluorescence artifact induced by fixation 
protocols32-35. 

A. LNCaP cell line 

1. Tert-DES-Ser-OG 8a 

 

2. Block-DES-Ser-OG 9a 
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B. PC3 cell line 

1. Tert-DES-Ser-OG 8a  

 

2. Block-DES-Ser-OG 9a  

 

Figure 4.1. 21 Kinetics of cell trafficking with polyacetals 8a and 9a in 
prostate cancer cell lines (A) LNCaP and (B) PC3. 
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A.
Tert-DES-Ser-OG

Block-DES-Ser-OG

 

B. 

Tert-DES-Ser-OG

Block-DES-Ser-OG

 

Figure 4.1. 22 Confocal microscopy images were taken from live: (A) PC3 
cells, (B) LNCaP cells after 2 h incubation with tert-DES-Ser-OG 8a and 
block-DES-Ser-OG 9a. Dextran-Texas Red was employed as lysosomal 
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marker (in red) and polymers were labeled with OG (in green, left panel). 
Co-localization is seen in yellow (central panel). 

Cell trafficking  studies were done for the polyacetals with 4wt% DES, Tert-
DES-Ser-OG (8a) and Block-DES-Ser-OG (9a), in LNCaP and PC3 cell 
lines. (Figure 4.1. 21 and Figure 4.1. 22)).  

Low membrane-associated fluorescence was observed in all cases studied at 
the different incubation times. Both conjugates enter the cell by the 
endocytic route as demonstrated by the observed co-localization with the 
lysosomal marker dextran-texas red (Figure 4.4. 22). In general, LNCaP 
cells seems to have slightly higher uptake rate compared with PC3 cells; and 
even more interestingly, the percentage of block-DES inside the cells is 
greater than that observed for tert-DES in both cell lines (Figure 4.4. 22). 
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4.2. INVESTIGATING CONFORMATION IN SOLUTION OF 
DES-POLYACETALS 

4.2.1. Introduction  

In order to better explain the results obtained in the cell models  used it was 
hypothesized that the conformation adopted by the polyacetals in solution 
could be responsible for the differences observed in drug-release kinetics, cell 
uptake and therefore cell viability.  The size and shape of nanoconjugates in 
solution are critical aspects for cellular internalization and on drug release 
kinetics from the polymer carrier36,37. Amphiphilic block copolymers in 
aqueous solution are known to form aggregates or self-assemble into 
nanosized particles (e.g., micelles or polymersomes). This is an important 
feature to take into account for biomedical applications as subtle differences 
in size and/or shape could significantly alter conjugate therapeutic value.  
Therfore, aside from obtaining polyacetal information solely from NMR and 
GPC, further exhaustive characterization of polyacetal solution conformation 
in physiological environment was considered crucial to understand the 
therapeutic potential of these novel nanopharmaceuticals.  

To allow better comparison, only polyacetals containing ~4 wt% DES loading 
(namely, tert-DES 1b and block-DES 2b) were selected to carry out the 
experiments described in this section. 

Due to presence of hydrophobic moieties within the structures, systems, 
characterization of any concentration dependent aggregation behavior was 
first carried out.   

 

4.2.2. Determination of Critical micelle concentration (cmc) of 
the conjugates. 

Different methods have been employed in order to determine the critical 
aggregation concentrations (CAC), (akin to the critical micelle concentration 
(CMC) of conventional small-molecule surfactants), of these nanoconstructs, 
such as dye solubilization and surface tension studies. These methods are 
tedious and time-consuming and require large volume of surfactant solution. 
CMC is defined as the concentration of polymer above which micelles are 
spontaneously formed. 
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Surface tension.  Different concentrations of the polymers in distilled water 
(from 10-4 to 10mg/mL) were necessary to determine the polyacetal CMC 
using a tensiometer taking into account the bubble pressure (Figure 4.2. 1). In 
this method a capillary tube is immersed in the liquid sample. A constant flow 
of gas is passing through the tube forming small bubbles into the liquid. The 
pressure needed to form a bubble is measured and the surface tension of the 
sample is calculated from the pressure difference between inside and outside 
the bubble and the radius of the bubble. 
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Figure 4.2. 1  CMC determination for (A) Tert-DES and (B) Block-DES. 

In Tert-DES two different critical micelle concentrations were determined at 
0.1 and 1mg/ml and cmc for Block-DES were found as 0.1, 0.7 and 2 mg/ml. 

Other manner to identify the cmc of a compound is by dye solubilization 
procedures. 
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Dye solubilization procedures. The measurements were done in a 
spectrofluorometer using two different fluorochromes, diphenylhexatriene 
(DPH) and pyrene. Upon the introduction of diphenylhexatriene (DPH) or 
pyrene (surface active materials) into the systems they will initially partition 
into the interface, reducing the system free energy by i) lowering the energy 
of the interface (calculated as area x surface tension) and ii) by removing the 
hydrophobic parts of the surfactant from contact with water. Subsequently, 
when the surface coverage by the polymer increases and the surface free 
energy (surface tension) has decreased, the polymer chains start aggregating 
into micelles, thus again decreasing the system free energy by decreasing the 
contact area of hydrophobic parts of the surfactant with water. Upon reaching 
CMC, any further addition of polymers will just increase the number of 
micelles (in an ideal case). 

There are several theoretical definitions of CMC. One well-known definition 
is that the CMC is the total concentration of surfactants (equation 4.2.1). If C 
= CMC, 

                                               (d3F/dCt3) = 0      (eq. 4.2.1)   

where Ct is the total concentration and F is the function of surfactant solution; 
F = a[micelle] + b[monomer] (a and b are proportional constants).  

Therefore, the CMC depends on the method of measuring the samples, since a 
and b depend on the properties of the solution such as conductance and 
photochemical characteristics. 

When the degree of aggregation is monodisperse, the CMC is not related to 
the method of measurement. On the other hand, when the degree of 
aggregation is multidisperse, the CMC is related to both the method of 
measurement and the dispersion.  

The CMC is an important characteristic of an amphiphilic polymer. Before 
reaching the CMC, the surface tension changes strongly with the 
concentration of the polymer. After reaching the CMC, the surface tension 
stays more constant. 

Tert-DES and Block-DES dissolved in Pyrene and DPH solutions were 
analyzed by fluorimetry (Table 4.2. 1) in order to obtain their CMC.  
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Table 4.2. 1 Parameters used in the fluorimeter to measure the cmc of the 
polyacetals. 

Spectrofluorimeter Jasco FP-6500 

Emission 400-500nm DPH &  380-410 Pyrene 

Excitation 340nm DPH & 394nm Pyrene 

Band width (Ex) 3nm 

Band width (Em) 3nm 

Scanning speed 100nm/nm 

Data pitch 0.5nm 

Sensitivity Manual 

PMT Voltage 300v DPH & 200v Pyrene 
 

In Figure 4.2. 2 is shown the cmc for Tert-DES and for Block-DES in both 
solutions. As it can be seen,  in both cases multiple CACs were found, with 
that obtained for block-DES CAC much lower than for tert-DES in all cases 
(i.e. first tert-DES 1b CAC= 0.7 mg/mL; first block-DES 2b CAC= 0.1, 
mg/mL).     
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Figure 4.2. 2 CMC determination for Tert-DES 1b and Block-DES 2b in 
DPH and Pyrene solution. 
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All subsequent studies were carried out at solution concentrations above the 
previously determined CAC value, and under conditions designed to mimic 
physiological environment (salt buffer, pH and temperature).  

4.2.3. Transmission and Scanning Electron Microscopy, 
TEM and SEM. 

Electron microscopy (EM) allows the visualization of objects that are as small 
as 1 nm. Here the specimen is not illuminated with light but bombarded by 
electrons to produce an image. Globally, a distinction is made between 
transmission electron microscopy (TEM) to study the inner structure of 
objects (tissues, cells, viruses) and (scanning electron microscopy SEM) to 
visualize the surface of tissues, macromolecular aggregates and materials.  

A B

C D

                                                   

Figure 4.2. 3  Scanning electron microscopy images for Tert-DES 1b (A and 
B) and for Block-DES 2b (C and D) at concentration above CAC. 
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In SEM, 1µl of a dilute sample is applied on a gold-coated metal disk 
obtained either by low vacuum sputter coating or by high vacuum 
evaporation. The image is produced where primary electrons from the source 
bombard the sample according to a scanning pattern and cause emission of 
secondary electrons. Therefore, in SEM an image of the surface of the object 
is made (examples shown in Figure 4.2.3). 

Using SEM, there was a clear difference in the materials, Block-DES 
appeared to have a more particulated surface (Figure 4.2. 3C-D) when 
compared with Tert-DES (Figure 4.2. 3A-B). This could indicate a more 
homogeneous structural composition for Block-DES that could be beneficial 
for cellular internalization kinetics . 

A B

C D

 

Figure 4.2. 4 Transmission electron microscopy for Tert-DES 1b (A and B) 
and for Block-DES 2b (C and D). 
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TEM was used in order to achieve more detailed information on polyacetal 
conformation and size. For TEM, the sample can be quickly prepared by the 
deposition of 1µl of a dilute sample containing the polymer onto support 
films. TEM is usually applied on materials of <1 µm of size to visualize also 
aggregates of macromolecules (Figure 4.2. 4). 

By TEM it was possible to observe well-defined particles of approximately 
120 nm diameter and in high abundance for the Block-DES polyacetal (Figure 
4.2. 4 D). This was more noticable when a solution of 1 mg/ml of Block-DES 
was studied (Figure 4.2. 4 C). However, the same nanoparticles were difficult 
to find with the Tert-DES system even at the same concentration. In fact the 
Tert-DES system seemed to present a different conformation (Figure 4.2. 4 
B). 

4.2.4. Dynamic Light Scattering, DLS technique. 

This technique is also known as Photon Correlation Spectroscopy or Quasi-
Elastic Light Scattering. This technique determines the size distribution 
profile of small particles in solution. Particles, emulsions and molecules in 
suspension undergo Brownian motion, induced by the bombardment of 
solvent molecules that themselves are moving due to their thermal energy. If 
particles or molecules are illuminated with a laser, the intensity of the 
scattered light fluctuates at a rate that is dependent upon the size of the 
particles (Figure 4.2.5). 

Smaller particles are “kicked” further by the solvent molecules and therefore 
move more rapidly than larger particles. Analysis of these intensity 
fluctuations yields the velocity of the Brownian motion and hence the particle 
size by using the Stokes-Einstein relationship (see equation 4.2. 2). This 
equation is used for calculating diffusion of spherical particles through liquid 
with low Reynolds number. 

      (eq. 4.2. 2) 

Where D is the diffusion constant, kB is Boltzmann’ constant, T is the 
absolute temperature, η is viscosity and r is the radius of the spherical 
particle. D is often used to calculate the hydrodynamic radius of a sphere 
using this equation. It is important to note that the size determined by dynamic 
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light scattering is the size of a sphere that moves in the same manner as the 
scatterer. So, if the scatterer is a random coil polymer, the radius of gyration is 
not the same if static light scattering is used. Size determination includes other 
molecules or solvent molecules that move with the particle.  
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Figure 4.2. 5 Hypothetical Dynamic light scattering of large particles (on the 
top) and small particles (on the bottom). 

Dynamic Light Scattering analysis corroborates a narrow size distribution of 
approx. 120 nm for Block-DES (128±20 nm in MilliQ water and 139±31 nm 
in PBS). However, a lack of reproducibility on Tert-DES distribution reflects 
the poor stability of this polyacetal in solution. Therefore, both polymers 
clearly have a different conformational structure in solution that could 
influence their therapeutic output when evaluated in biological conditions 
(Figure 4.2.6). 

The results obtained by DLS for the Block-DES are in good agreement with 
the data obtained from TEM images. 
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Figure 4.2. 6 DLS profiles for (A) Block-DES and (B) Tert-DES in PBS. 

  

4.2.5. Pulsed-Gradient Spin-Echo NMR (PGSE-NMR) 
experiments to determine solution behavior of DES-
polyacetals 1b and 2b. 

 

4.2.5.1. Introduction 

The thermal motion, or diffusion, of a molecule is its most basic form of 
transport and is characterized by the self-diffusion coefficient, Ds. The 
Diffusion coefficient can be related to molecular size by using the stokes-
Einstein equation, as was mentioned in section 4.4.4,   Ds=KBT/f    where f 
is the friction factor, which for a particle of hydrodynamic radius Rh in a 
solvent of viscosity η is given by  f = 6πηRh.  This relationship introduces 
the possibility of indirectly calculating particle size via direct 
measurements of Ds which can be done though the technique of pulsed 
gradient spin echo NMR. 
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Pulsed Spin Echo- NMR 

In 1950, Pulsed spin echo NMR was first described by E Hahn who, after 
refocusing the decaying magnetic spins of a sample using a 180o rf pulse, 
observed a secondary NMR signal which he called a spin echo. A sample 
is placed in a magnetic field which produces a net magnetization in the z 
direction, Mz. This net magnetization is then rotated from the z plane into 
the xy-plane by a 900 (π/2) rf pulse. When this pulse has finished the net 
xy-magnetization created will undergo exponential free induction decay as 
the spins de-phase via T2

* relaxation (a combination of true T2 spin-spin 
relaxation but also relaxation from any non-uniformity in the magnetic 
field) (Figure 4.2. 7). A second rf pulse of 1800 (π) after time τ completely 
reverses the phases of the decaying spins and any non-uniformities in the 
magnetic field act to rephrase the spins and net magnetization is then 
regained, producing a signal called spin echo. With this the problem of 
non-homogeneous magnetic fields is eliminated. The spin echo has a 
slightly smaller maximum signal than the original free induction decay 
(FID) as T2 relaxation has occurred. T2 can be calculated after measuring 
the attenuation of the spin echo. 

 

 Figure 4.2. 7 Diagram showing the process occurred in a standard pulsed 
spin echo-NMR experiment where the free induction decay (F.I.D) signal 
is refocused using a π rf pulse, producing a spin echo, S.E.  (Figure taken 
from38).  

 

Pulsed Gradient Spin Echo- NMR 

In PGSE-NMR, the diffusion coefficient is measured instead of measuring 
T2. For this two gradient pulses, with a duration of δ and a magnitude of g, 
are introduced (Figure 4.2. 8). The gradient pulse tries to label the spins 
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with phase angles dependent on their position in space39,40. The first of 
these gradients occurs shortly after the first 90o rf pulse cause the spins to 
experience the phase shift, which is reversed upon the application of the 
second gradient at t1+ ∆. If no diffusion occurs, the reversing of the phase 
shift by the second gradient will restore the signal. However if diffusion 
has occurred the amplitude of the returned signal will be decreasing 
causing further attenuation of the spin echo which can be measured. The 
sequence has some disadvantages; the long period of time of 
magnetization is in the transverse, xy-plane where if T2 is large there can 
be a severe loss of signal40. This problem is overcome by using a 
stimulated echo sequence (STE). STE PGSE-NMR experiments have 
replaced the 180o pulse with two of 90o (Figure 4.2. 9). 

 

Figure 4.2. 8 Diagram showing the pulse sequence for a PGSE-NMR 
experiment. Taken from Price, W.S.38.  

 

                    

Figure 4.2. 9 Diagram showing the pulse sequence for a stimulated echo 
PGSE-NMR experiment. Modified from Price, W.S.387. 
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The first pulse moves the magnetization into the xy-plane where it 
experiences the first gradient as it was before. This magnetization is then 
stored by the second 900 pulse which moves the y-components into the z 
direction. After time, τ2, the third pulse will bring the magnetization back 
into the yz-plane where it produces the STE signal. The advantage of this 
sequence is that while stored in the z direction the magnetization only 
experiences T1 relaxation. This means that, as T1 is generally longer than 
T2, the time between the two gradient pulses, ∆, can be longer, allowing 
any eddy currents (currents produced when a conductor go through a 
magnetic field) that may have been produced by the heat of the gradient 
coils to dissipate.  

Pulsed magnetic gradients of length δ and magnitude g first encode and 
then decode the positions of spin active nuclei within the sample. In the 
presence of diffusion, the decoding process will not perfectly mirror the 
encoding process and an attenuation of the spin echo occurs. Thirty-two 
1D spectra are run where δ is progressively increased and the self-
diffusion coefficient, Ds obtained from fitting the attenuation of the signal 
over the 32 spectra (see Figure 4.2.10 Ds) allows the size of the particles to 
be calculated as well as their chemical environment (i.e. aggregated or 
not). 

 

Figure 4.2. 10 Diagram showing the thirty-two 1D spectra on a 2D plot 
showing the signal attenuation.(Modified from Price, W.S.38.) 

 

Extracting the self-diffusion coefficient  

The self-diffusion coefficient is calculated by fitting the attenuated 
integrals obtained from the spectrometer to equation 4.2.3: 
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Where A0  is the signal amplitude in the absence of the field gradient,  

( )∆,,GA δ  the signal amplitude in the presence of the field gradient, γ is 

the magnetogyric ratio, ∆ the diffusion time, σ the gradient ramp time, δ 
the gradient pulse length and G the gradient field strength. 

Equation 4.2.4 shows that the gradient field strength, G, is dependent on 
the power that the gradient is set to, I, multiplied by the maximum 
percentage of I that the gradient can actually reach, DACmax, multiplied by 
a constant giving the rate of change of G with I called the coil constant, 

dI

dG
.                                    max.. DACI

dI

dG
G =           (eq. 4.2. 4) 

 

Results of PGSE-NMR obtained for DES-Polyacetals 

An indication of the relative particle sizes was obtained by PGSE-NMR 
measurements, which have the benefit of being non-perturbative, ensuring 
any structures formed by the Tert-DES conjugate are not disrupted by the 
measurement.  Figure 4.2. 12 shows PGSE-NMR data for 10 mg/mL 
solutions of Tert-DES and Block-DES, plotted according to equation 4.2.3 
(see materials and methods section), using the normalized signal intensity.  
Presented in this manner, the difference in slopes indicates a clear 
difference in the obtained self-diffusion rates between the two conjugates, 
with the Tert-DES conjugate (Ds=2.72x10-11 m2 s-1) moving more slowly 
than the Block-DES counterpart (Ds=5.87x10-11 m2 s-1) indicating clearly 
that different solution structures are formed in each case. 

In order to further elucidate the structure of the aggregates or nanoparticles 
that are formed, tert- 1b and block-copolymer 2b conjugates containing a 
fixed DES content of 4 wt% were also studied by Small-Angle Neutron 
Scattering (SANS). 
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Figure 4.2. 11 Normalized PGSE-NMR data from 1wt% conjugate 
solutions at 25ºC; Tert-DES in D2O (filled circles) and methanol (open 
circles); Block-DES in D2O (filled squares) and methanol (open squares). 

 

4.2.6. Determination of solution behavior of DES-polyacetals 
by SANS. 

Small angle neutron scattering is a neutron technique able to analyze 
structures at length scales from 1 nm to more than 100 nm. It has a wide range 
of applications from studies of polymers and biomolecules to nanoparticles to 
microemulsions and liposomes used for cosmetics and drug delivery. 

Introduction to neutron radiation 

Small angle scattering (SAS) is the name given to techniques using small 
angle neutron (SANS), X-ray (SAXS) and light (SALS, or LS) scattering. In 
these techniques radiation is scattered by a sample and the resulting scattering 
pattern is analyzed to provide information about the size, shape and 
orientation of some component of the sample. 

Neutron Sources
41

 

There are two different sources for the production of neutrons in sufficient 
quantities for worthwhile experiments. The most obvious is to use a nuclear 
reactor where neutrons are released by the fission of uranium-235. Each 
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fission releases 2 - 3 neutrons, although one of these is needed to sustain the 
chain reaction. Nowadays, the most powerful reactor (also called "steady-
state" or "continuous") neutron sources in the world is the 57 MW HFR 
(High-Flux Reactor) at the Institute Max von Laue - Paul Langevin (ILL) in 
Grenoble, France42. The ILL is jointly operated by Austria, France, Germany, 
Spain, Switzerland and the United Kingdom. The facility commenced 
operation in 1972.  

The second approach to neutron production is when an accelerator or 
synchrotron source uses high energy proton beams to chip away neutrons 
from high molecular weight elements. This is called spallation. The most 
powerful spallation neutron source in the world is the ISIS Facility41,43,44 in 
Oxfordshire (UK). It is based around a 200 m A, 800 MeV and the proton 
synchrotron operate at 50 Hz. ISIS is operated by the United Kingdom but 
also receives funding from Australia, France, Germany, India, Italy, Japan, the 
Netherlands and Sweden. The facility commenced operation in late 1984.  

Today there are some 37 neutron sources in 21 countries45; of these, 23 are in 
continental Europe, including Russia and Scandinavia, 10 are in North 
America (including Canada), 2 are in Japan with 1 in each of Australia and 
India. Five of the sources are spallation sources, the remainder are generally 
aging reactors, although some, such as the ILL, have undergone recent 
refurbishment to extend their useful lifetimes. The total number of SANS 
instruments at these sources is 32; of which 18 are to be found at the 
European facilities42. Despite this apparent glut of facilities and instruments, 
the demand for SANS beam time typically outstrips the time actually 
available by a factor of 2 or 3. 

Small angle neutron Scattering. Theorecal basis used in this work.  

In small angle neutron scattering, the scattering intensity of a particle, I (Q) is 
dependent upon the number of scattering bodies within the sample solution, 
Np, the volume of those scattering bodies, Vp, is the difference in scattering 
length density between the scattering body and the solvent it is in (∆ρ). The 
form factor describes the particle size and shape, P (Q), the structure factor 
describes interactions between different scattering bodies, S (Q) and the 
background incoherent scattering, Binc (equation 4.2.5). 

                ( ) ( ) ( ) ( )
incPP

BQSRQPVNQI +∆= ,
22 ρ       (eq. 4.2.5) 
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The radius of gyration of all the polyacetals was calculated using the Guinier 
approximation where for dilute systems, at low Q values the scattering 
intensity is dependant only upon the overall particle size (equation 4.2.6). 
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Scattering data was also analyzed using the modeling program FISH8 which 
contains numerous models for P(Q), S(Q) and contrast steps which can be 
combined to create suitable models to fit scattering data. FISH uses a least-
squares iterative fitting process in which the parameters of a fitting model 
may be turned on or off, i.e. the program is either allowed to change the value 
of a parameter to achieve a better fit, or not. This means that known values 
such as scattering length densities can be entered and turned off, and unknown 
values such as ellipticity or length parameters can be turned on.  

The Scattering Vector 

In neutron scattering experiments, instruments count the number of scattered 
neutrons as a function of wave vector Q, which depends on the scattering 
angle θ and wavelength λ. The quantity referred to the scattering vector (Q) is 
the modulus of the substract between the incident, ki, and the scattered, ks, 
wavevectors, (Figure 4.2. 12), and is given by equation 4.2.7. Q has 
dimensions of (length)-1 (nm-1 or Å-). 

2
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4
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θ
λ
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=== (eq. 4.2.7)
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Figure 4.2. 12 Shematic representation of a SANS experiment. The distance 
between the sample to the detector is usually 1 – 20 m and the scattering angle 
θ < 10°. 
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The Contrast Term 

The contrast is the square of the difference in neutron scattering length 
densities ρ values between the scattering interested part of the sample, d p, 
and the surrounding medium or matrix, d m (equation 4.2. 8). 

                                         (∆ρ)2 = (ρ p - ρ m)2.        (eq. 4.2. 8) 

If (∆ρ)2 is zero then Equation 1 is also zero and there is no SANS and it is 
said that the scattering bodies are at contrast match. This technique of contrast 
matching can be used to dramatically simplify the scattering pattern of a  
multi-component sample where the contrast-weighted summation of SANS 
from each individual component are measured.  Solvents, polymers and 
substrates present different neutron scattering length densities, the most 
common solvents and polymers are shown in Table 4.2. 2 and some common 
substrates in Table 4.2. 3. 
 

Table 4.2. 2 Scattering length densities of some common solvents and 
polymers. 

Solvent d (h form) 
(1010cm-2) 

d (d form) 
(1010cm-2) 

Polymer d (h form) 
(1010cm-2) 

d (h form) 
(1010cm-2) 

Water -0.56 +6.38 PB -0.47 +6.82 
Octane -0.53 +6.43 PE -0.33 +8.24 

Cyclohexane -0.28 +6.70 PS +1.42 +6.42 
Toluene +0.94 +5.66 PEO +0.64 +6.46 

Chloroform +2.39 +3.16 PDMS +0.06 +4.66 
Carbon Tet. +2.81 +2.81 PMMA +1.10 +7.22 

 

Table 4.2. 3 Scattering length densities of some common substrates. 

Substrate d (1010cm-2) Substrate d (1010cm-2) 

Silicon +2.07 SiO2 +3.15 
Quartz +3.47 TiO2 +2.57 

 

The scattering length density of a molecule is very sensitive to the value of the 
density used in its calculation and so a reliable knowledge of the latter is a 
pre-requisite for a successful contrast matching experiment. 



            Chapter 4 - Tert-DES vs Block-DES. Part II                                                                                                                                              

-182- 

 

The Form Factor 

The form factor describes how (ds / dW )(Q) is modulated by interference 
effects between radiation scattered by different parts of the same scattering 
body. Consequently it is very dependent on the shape of the scattering body.  
The general form of P(Q) is given by Van de Hulst’s equation 4.2. 947. 

( )[ ]∫=
V

P

P

dVQif
V

QP
0

2
exp

1
)( α (eq. 4.2.9)

 

This factor represents a shape parameter, which gives information about 
length or a radius of gyration. Analytic expressions exist for some common 
shapes (Table 4.2. 4) from which other topologies more complex48 can be 
deduced.  

 

Table 4.2. 4 Analytic expressions for the most common shapes. 
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The Structure Factor 

The structure factor describes how (ds / dW )(Q) is modulated by interference 
effects between radiation scattered by different scattering bodies. 

( ) ( )[ ] ( )∫
∞

−+=
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1 drQrrrg
QV

N
QS

pπ
(eq. 4.2.10)

 As this is dependent on the ordering of structures in the solution, it can be 
investigated to give information about relative positions of the scattering 
bodies. The position of scattering bodies is usually obtained from the radial 
distribution function term, G(r): 

        

( ) ( )rg
V

rN
rG

p

24π
= (eq. 4.2.11)

 

where r is the radial distance. 

An alternative procedure involves one of the many approximate forms of S(Q) 

that have been developed (to describe particular types of systems) to calculate 
the expected shape of (ds / dW)(Q). This may then be model-fitted to the 
observed scattering data. Unfortunately, as Np is 0, the concentration of 
scattering bodies becomes more dilute, so S(Q) is 1, meaning that this type of 
insight into the microscopic structure can only be obtained in concentrated 
and/or strongly interacting samples49. 

 

Results from SANS obtained for DES-Polyacetals 

a) Tert-DES and Block-DES with similar DES loading. 

SANS measurements were performed at the ISIS spallation neutron source, 
mentioned above, using the time-of-flight diffractometer, LOQ.  ISIS offers a 
pulsed neutron source, where neutrons are produced by bombarding a 
tantalum target with synchrotron-accelerated protons. Approximately 12 
neutrons are released per incident proton and there are approximately 50 
proton-tantalum collisions per second. In these pulsed sources the neutron 
detector is in a fixed geometry and the Q value is varied by using the variety 
of neutron wavelengths produced (wavelengths which can be sorted from their 
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time-of-flight). The ISIS LOQ site can produce Q values ranging from, 
approximately 0.008- 0.34 Å-1. 

The conjugates tert-DES 1b and block-DES 2b (4wt%DES) were dissolved at 
1 wt% concentration of polymer in D2O (Figure 4.2. 13A) and MeOD (Figure 
4.2. 13B) at 37 ºC, conditions mimicking those experienced during cellular 
uptake. The solvents used must be deuterated in order to provide contrast due 
that the scattering from hydrogen is distinct from that of deuterium. Hydrogen 
is one of the few elements that has a negative scatter, which means that 
neutrons deflected from hydrogen are 180° out of phase relative to those 
deflected by the other elements. These features are important for the technique 
of contrast variation. All experiments were performed in 2mm quartz cells 
with typical measuring times of 1 hour per sample. 

The scattering data for polyacetals was fitted to form factors for polydiperse 
Gaussian coils, spherical and rods; the fits are shown in appendix 1 and the 
values obtained are presented in Table 4.2.5 The scattering data was corrected 
for the scattering and transmission of the solvent and quartz cell and 
normalized by placing on an absolute intensity scale with a well characterized 
standard. 

 

Table 4.2. 5 Data obtained from analysis of scattering data using Guinier and 
Zimm approximations and FISH computer modeling (where Rg = radius of 
gyration, dnf = did not fit, R = rod spherical radius, L = rod length). 

               

Polyacetal 

wt% 
DES/ 

Serinol Guinier Zimm 
Gaussia

n coil Rod model 
Spherical 

model 
    Rg / Å Rg / Å Rg / Å L / Å R / Å R / Å  

1b 
 4.3/ - 80  75  0  20  0  0  50  

2b 
 5.5/ - 60 60 dnf  - 2  60  80  

4 4.6/ 3.4 10 20 05  10 0  65   70 

5 5.3/3.7  20 10   -      70 75  
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Figure 4.2. 13 SANS from 1wt% conjugates solutions in (A) D2O. Lines are 
best-fits to the data as described in the text. (B) MeOD. Solid lines are best-
fits to a rod model.  Tert-DES (triangles), Block-DES (squares), dilute block-
DES solution (circles).   
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In aqueous solution a significant difference between scattering profiles from 
the two conjugates is evident, suggesting a difference in particle morphology 
between the two conjugates in this solvent.  For the tert-polymer, the 
modeling analysis indicates the presence of a single species in solution, which 
was best fitted by a model for a solid disk (diameter 20 nm, thickness 2.5 nm). 
This indicates that there is some aggregation of the tert-DES, as indicated by 
the fluorescence studies. By comparison it was not possible to model the 
block-copolymer data for the PBS solution using a single species, rather the 
analysis suggests that two sets of co-existing rods are present in solution, one 
comparatively long and thin (approximately 100 nm in length, 2 nm in 
diameter), the other more disk-like (80 nm diameter, 10 nm thick) being the 
second one more abundant and consistent with the size of the structures 
observed by TEM and DLS, and significantly larger than the structures 
indicated by SANS for the tert-DES. A second solution of the block-DES in 
PBS was studied at a concentration below the CAC (0.008 wt%), and this was 
accurately described by a single rod model, with the same dimensions as those 
present in the sample at C>CAC (100nm length, 2nm diameter).   

These characterization data indicate that the molecular structure of the 
conjugate has a significant effect on the solution behaviour; even at the same 
overall acetal and DES contents i.e. the segregated arrangement of the DES 
units can induce sufficient amphiphilic nature in the molecule to induce the 
formation of large aggregate structures.  This is further indicated by a parallel 
study in methanol rather than PBS as shown in figure 4.2. 11 (PGSE-NMR) 
and 4.2. 13B (SANS).  The SANS data for the two conjugates in methanol 
were fitted to the same model of a single short rod (1.5nm diameter, 18.5 nm 
in length) with an attractive structure factor required to account for the 
scattering at low Q for block-DES. Both polyacetal and DES are methanol 
soluble, hence the solvent has a similar affinity for both components of the 
conjugate.  From the similarity between data obtained for the two conjugates 
by both PGSE-NMR and SANS data (Fig. 4.2. 11 and 4.2. 13), it is evident 
that the loss of the solvophobicity of the block-DES on switching from PBS to 
methanol is sufficient to remove the driving force for aggregation of the DES-
rich region of the molecule observed in D2O/PBS, and with it the large 
difference in solution structures observed between the block-DES and tert-
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DES conjugates.  Hence the solution behavior in aqueous media is driven by 
the hydrophobicity of the DES. 

It was thus determined that, compared to the tert-DES polymer, block-DES 
presents a more stable and better defined particulate conformation in the 
nanosized range, that could explain its different biological behavior in 
prostate cancer cell models. 

Table 4.2. 6 Size and shape of the polyacetals after analysis of scattering 
SANS data. 

Polymer SANS characterization 

(shape, size) 

Tert-DES 1b       Solid disk: thick 2.5nm, diameter 20nm 

Block-DES 2b Rod: length 100nm, diameter 2nm 

Disk: thick 10nm, diameter 80nm 

b) Drug influence in solution conformation. 

In order to identify any effect of polyacetal drug loading on polymer solution 
conformation; Block-DES and Tert-DES of different DES loadings were also 
compared. 

b.1) Tert-DES with different DES loading 

Significant changes in the scattering profile were observed in d-water (Figure 
4.2 14 A) when DES loading was varied. The tert-polymer with a drug 
loading of 2 and 6wt%DES are more similar than the one with 4wt%DES, 
which the curve indicates a shape similar to a rod conformation contrary for 
Block-DES with 4wt%DES which has a more flat curve indicating a more 
spherical morphology. In d-methanol (Figure 4.2. 14 B) an increase in drug 
loading from 2 to 6 wt% had a little effect on the scattering profiles and 
therefore little effect on the polymer size and shape.   

In any case, the scattering curves do not fit to random coil or spheres, so we 
can clearly state that there are defined structures present in solution, and that 
they are non-spherical. 
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Figure 4.2. 14 SANS from 1wt% conjugates solutions of Tert-DES at 
different drug concentrations (T-DES 1a, 1b and 1c with 2,4 and 6wt%DES 
respectively) in (A) D2O and (B) MeOD. T-DES 1a (triangles), T-DES 1b 
(squares), T-DES 1c (circles).   

 

b.2) Block-DES with different DES loading 

As expected in d-methanol (Figure 4.2. 16 B) an increasing in the drug 
capacity from 2 to 4wt%DES had a little effect on the scattering profiles and 
therefore little effect on the size and shape. However at 6 wt% DES loading 
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there was a change in the scatter profile indicating a possible change polymer 
conformation.  
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Figure 4.2. 15 SANS from 1wt% conjugates solutions of Block-DES at 
different drug concentrations (Block-DES 2a, 2b and 2c with 2,4 and 
6wt%DES respectively) in (A) D2O and (B) MeOD. Block-DES 2a 
(triangles), Block-DES 2b (squares), Block-DES 2c (circles).   
 

In d-water (Figure 4.2. 15 A) drug loading effect is even more significant, 
already from  2 to 4 wt% DES a significant change in the scattering was 
observed. This change in scattering was even more visible at 6 wt% loading.  
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From the scattering curves there is clearly a more significant effect of drug 
loading as block-copolymer than as tert-DES.   

Comparing to the fitted parameters for the Block-DES 2b data, it was 
observed that Block-DES 2c sample is fitted only by a two rod model, 
indicating a disk-like structure which is smaller than the Block-DES 2b, co-
exisiting with a small approximately spherical structure (65/55).   

SANS data indicate a change in solution behavior as drug loading changes, 
and from the fits we used a constant Q-n background to fit the low Q data, and 
the mid-high Q range data reflects a consistent rod-like structure of radius 40-
45Å with an increasing rod length 2<4<6 wt% DES: 300<550<820 Å. 

c) Polymer concentration influence on solution conformation. 

Different polymer concentrations (1.5, 0.8 and 0.4 wt%) of Block-DES and 
Tert-DES were also studied in order to understand the influence of polymer 
concentration on solution conformation (Figure 4.2. 16). 

From the fitting, Block-DES 2b at 1.5wt% of polymer clearly contains some 
large structures that are at the limit of accurate description by SANS.   
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Figure 4.2. 16 SANS from conjugates solutions of Block-DES 2b (A) and 
Tert-DES 1b (B) at different polymer concentrations (1.5 triangles), 0.8 
(circles) and 0.4 (squares) wt% Polymer in D2O.  
 

Table 4.2. 7 Size and shape of the polyacetals after analysis of scattering 
SANS data. 

Polymer 
Block-DES 2b 

SANS characterization 
radius/length or thickness (Å) 

1.5wt%polymer Rod: 2/100 
Disk: 80/10 

0.8wt%polymer 
 

Rod: 250/320 
Thin Disk: 1000/85 

0.4wt%polymer 
 

Rod: 30/120 
Disk: 880/220Å 
Disk: 500/260 

Polymer 
Tert-DES 1b 

SANS characterization 
radius/length or thickness (Å) 

1.5wt%polymer Long Rods: 800/100 and 20/1000   
0.8wt%polymer 

 
Small Rod: 125/320  

Disk: 880/220 
0.4wt%polymer Thin Disk: 1000/ 85 
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 The data can only be fitted with the two rod model, and the fitted parameters 
imply there are large disk-like structures present in solution. At 0.8 wt% the 
solution structure seems to be a single thin disk-like structure with a very 
large radius of 1000Å and thickness 85Å.  This data also fitted well to a single 
rod of smaller dimensions 125Å radius, 320Å length in the presence of a Q-n 
term where n=2.  At 0.4wt% the solution structure was difficult to pin-down 
as there were comparable fits for different models: (i) A disk of 880Å radius 
and 220Å thickness coexisting with a short rod of 30Å, 120Å length; (ii) the 
best fit is from a disk radius 500Å thickness 260Å with a Q-n term at n=3. 
Table 4.2. 7 summarized all these data. 

Clearly, the solution structure for Block-DES 2b is concentration dependent, 
with evidence for rod and disk-like structures present in solution. 
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4.3. MECHANISM OF ACTION AND IN VIVO STUDIES 
WITH DES-POLYACETALS 

 

4.3.1. Introduction 

The synthetic estrogen Diethylstilbestrol was first administered to woman as 
natural supplement estrogen production. But in 1971, the Food and Drug 
Administration (FDA) issued a drug bulletin advising physicians to stop 
prescribing DES to pregnant women due to its involvement in a rare vaginal 
cancer in female offspring. However, the use of DES in prostate cancer 
patients was maintained. As seen, DES is a very old drug, but its mechanism 
of action is still not completely elucidated. A mode of action via a hormonal 
imbalance or uncontrolled stimulation of target cell proliferation is the most 
commonly considered, but a mechanism of metabolic activation of estrogens 
and subsequent alteration of DNA or other important cellular targets may also 
apply due to its impaired side effects. 

To understand the molecular basis of prostate cancer or any prostate cancer 
treatment it is important to face a number of issues concerning the 
heterogeneity of the disease or the resistance to prevailing therapies. 
Estrogens such as DES, diffuse into their target cells and interact with the 
estrogen receptor. Target cells include the female reproductive tract, the 
mammary gland, the hypothalamus, and the pituitary. Estrogen binding 
triggers the hepatic synthesis of sex hormone binding globulin (SHBG), 
thyroid-binding globulin (TBG), and other serum proteins and suppress 
follicle-stimulating hormone (FSH) from the anterior pituitary. The 
combination of an estrogen with a progestin suppresses the hypothalamic-
pituitary system, decreasing the secretion of gonadotropin-releasing hormone 
(GnRH). 

Several oncogenic activations, through genomic or non-genomic pathways, to 
neoplastic progression of prostate cancer cells have been studied. These 
oncogenes confer metabolic and growth promoting advantages to tumor cells. 

Molecularly, prostate cancer cells are capable to survive with an uncontrolled 
growth able to cause invasion-metastasis to other organs. These alterations 
can be triggered by the activation of growth factors, signaling proteins (kinase 



      Chapter 4 - Tert-DES vs Block-DES. Part III                                                                                                                                                                                                 

-194- 

 

transcription factors and co-regulators) and multiple proteases required for the 
disease progression (Figure 4.3.1). 

 

Figure 4.3. 1 An overview of major signal transduction pathways. The figure 
shows examples of pathways for proliferation (Ras/MAPK), STAT signaling 
(STAT’s) and survival/metabolism (PI3K/Akt). (Picture taken from Reece, J., 
200250). 
 

Growth factor receptors 

Insulin growth factors (IGF), (ii) the Wnt signaling pathway, (iii) the 
epithelium growth factor receptor (EGFR), (iv) the human epidermal growth 
factor receptor 2, Her-2/neu (ERBB2) and (v) the critical mediator of multiple 
oncogeneic signaling pathway, phosphoinositide-3 kinase (PI3K/AKT) have 
been shown to be implicated in prostate cancer development and progression. 

(i) Insulin growth factor 

Insulin-like growth factor (IGF) is mainly secreted by the liver as a result of 
stimulation by the growth hormone (GH) and it is important for the regulation 
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of normal and cancer physiology. The IGF has been shown to be involved in 
the promotion of cell proliferation and the inhibition of cell death (apoptosis). 
IGF-1 expression is required to achieve maximal growth.  

Insulin-like growth factor 1 (GF-1)51 binds the receptor tyrosine kinase 
(IGF1R) which has been shown to be very important in prostate 
adenocarcinogenesis, where there is a significant correlation between high 
IGF1R activity and prostate cancer. At the same time there is a decreased of 
tumor growth when the pathway is inhibited51. When IGF is decreased 
subsequent to the down-regulation of IGF-1 receptor expression there is an 
association with advanced, metastatic disease. This decrease in IGF-1 receptor 
may confer a survival advantage to prostate cancer cells that have entered the 
circulation by making them resistant to the differentiative effects of IGF-1 at 
metastatic sites such as bone. The molecular mechanisms that affect IGF-1 
receptor down-regulation seem to be involved with novel actions of the 
androgen receptor52. It has been also shown that both IGF1R protein and 
mRNA are upregulated in primary prostate adenocarcinoma, as opposed to 
benign prostatic hyperplasia53. Reducing the expression of IGF1R via 
antisense RNA retards tumor growth of prostate cancer cells53. 

On the other hand, Insulin-like growth factor 2 (IGF-2) is thought to be a 
primary growth factor required for early development and also essential for 
the function of organs such as the brain, liver and kidney.  

IGF availability in the serum is regulated in vivo by IGF binding protein 3 
(IGFBP3)55. The prostate cancer cell line, PC3 decrease in growth after 
treatment with 5-FU, attributable to a decreased bioavailability of IGF1, 
although IGFBP3 may play an important role later in prostate adenocarcinoma 
migration and cell-matrix adhesion in an IGF1 independent mechanism56. It 
can also promote apoptosis in a poorly understood mechanism independent of 
IGF57.. 

Both IGFs, IGF1 and IGF2, bind the receptor tyrosine kinase, IGF1R (Figure 
4.3. 2). Through the receptor’s tyrosine kinase activity58 several downstream 
signaling pathways are activated, including the phosphatidylinositol 3-kinase 
(PI3K), AKT, TOR, S6 kinase, and mitogen-activated protein kinase (MAPK) 
pathways, by which the antiapoptotic and proneoplastic effects of IGF-1 
work. 
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Figure 4.3. 2 IGF1 and IGF2 signaling pathway involved in prostate cancer. 
(Figured adapted from Fürstenberger, G. et al. 200259). 

IGF pathway is capable of inducing activation of the androgen receptor in the 
absence of androgens60. The IGF pathway via its action on the PI3K/AKT 
pathway phosphorylates the androgen receptor inhibitor Foxo161.  

Finally it is important to mention that, IGF1 signaling pathway can also be 
modulated by the stimulation of the metalloprotease MT1-MMP62 triggering 
actin rearrangements in the cytoskeleton that may activate integrins and lead 
to the promigratory cell bahaviour63. 

 

(ii) The protooncogenic protein, Wnt. 

The molecular name Wnt is derived from Wingless, the Drosophila 

melanogaster segment-polarity gene, and Integrase-1, the vertebrate 
homologue. Wnt signaling has been shown to regulate T cell development and 
activation, and dendritic cell maturation.  
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As Wnt pathway is important in the natural development of the prostate64, the 
Wnt signalling pathway is considered other of the major oncogenic signaling 
pathways involved in the carcinogenesis of prostate cancer. The inhibition of 
the pathway with WIF1 reduce the tumor size in addition to reducing MMP2 
and 9 in PC3 cells65. Wnt family protein, Wnt11, increase invasiveness for 
both LNCaP and PC3 cell lines66. 

The central molecule of the pathway67 is -catenin (Figure 4.3. 3), which acts 
as a coactivator of the androgen receptor. Catenin exists in three cellular 
pools—at the membrane (associated with E-cadherin, -catenin and other 
molecules, involved in cell adhesion), cytoplasm and nucleus.  
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Figure 4.3. 3 The Wnt signaling pathway showing some influences of other 
signaling pathways and factors (picture adapted from He et al. 200368). 

It is possible to observe the molecular differences in the absence or presence 
of a Wnt ligand (Figure 4.3. 3). In the absence of a Wnt signal, -catenin is 
sequestered in a multiprotein degradation complex containing the scaffold 
protein Axin, the tumor suppressor gene product adenomatosis polyposis coli 
complex (APC), kinases CKI and GSK3b, among others. When Wnt signaling 
is inactive, the APC phosphorylates -catenin, which is ubiquitinated by the 
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-TrCP–E3-ligase complex and subsequently degraded by the proteasome 
machinery. There is no transcription of Wnt target genes. In Figure 4.3. 3B, 
Wnt ligand associates with Fz and LRP5/6 co-receptors. This in turn can lead 
to translocation of Axin to the plasma membrane through interaction with 
LRP5/6 and Dsh/Fz. Translocation results in Axin degradation and/or 
dissociation of the multiprotein complex. GSK3  also might be displaced 
from this complex through Dsh action. -catenin is then released from the 
multiprotein complex, accumulates in the cytoplasm in a non-phosphorylated 
form, and subsequently translocates into the nucleus where by association 
with TCF/LEF factors it promotes transcription of Wnt target genes. 

It is important to note that, intracellular signaling pathways69 are frequently 
interconnected. For instance, IGF-1 receptor stimulation facilitates 
dissociation of -catenin at the cell membrane into the cytoplasmic pool in 
colorectal cells and potentiates -catenin –TCF/LEF transcription in 
hepatoma cells. The expression of -catenin and GSK3 is diminished in 
prostate cancer cell lines of greater invasive potential70 and in bone metastases 
appears downregulated, compared with that seen in corresponding primary 
tumors in patients with untreated prostate cancer71. 

 

(iii) Epidermal growth factor receptor 

Epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase 
receptor that plays a central role in regulating cell division and death. EGFR 
belongs to the HER family of receptors which comprise four related proteins 
(EGFR(HER1/ErbB1), ERBB2(HER2), ERBB3(HER3) and ERBB4(HER4)). 

EGFR participates in several signaling cascades (Figure 4.3. 4) including Akt, 
MAPK and STAT and others that affect gene transcription, which in turn 
results in cancer cell proliferation, reduced apoptosis, invasion and metastasis 
and also stimulates tumor-induced angiogenesis. Higher association of EGFR 
was correlated with higher serum PSA.   

EGFR involves three important signaling pathways.  

• The RAS-RAF-MAPK pathway, where phosphorylated EGFR 
recruits the guanine-nucleotide exchange factor via the GRB2 and 
Shcadapter proteins, activating RAS and subsequently stimulating 
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RAF and the MAP kinase pathway to affect cell proliferation, tumor 
invasion, and metastasis.  

• The PI3K/AKT pathway, which activates the major cellular survival 
and anti-apoptosis signals via activating nuclear transcription factors 
such as NFKB, described below. 

• The JAK/STAT pathway which is also implicated in activating 
transcription of genes associated with cell survival. EGFR activation 
may also lead to phosphorylation of PLCG and subsequent hydrolysis 
of phosphatidylinositol 4,5 biphosphate (PIP2) into inositol 1,4,5-
triphosphate (IP3) and diacylglycerol (DAG), resulting in activation 
of protein kinase C (PRKC) and CAMK. 
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Figure 4.3. 4 The EGFR signaling pathway encountered in the treatment of 
prostate cancer (picture adapted from McDonagh, E.M. et al. 200772). 
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 (iv) Her-2/neu (ERBB2) 

Her2/neu is a transmembrane tyrosine kinase important in differentiation and 
cell growth. This proto-oncogene, has been implicated particularly in breast 
cancer but plays as well an important role in understanding prostate 
adenocarcinoma oncogenesis. It has been shown a correlation between higher 
levels of serum Her/Neu in patients with advanced and also metastatic 
prostate cancer but not with non-metastatic or localized disease patients. 

Her/Neu is capable of activating the androgen receptor in the androgen 
independent stage51. It can promote survival of LNCaP cells through the Akt 
pathway even in the absence of androgens. The interaction between Her-Neu 
and the androgen receptor is regulated by a miRNA, miR-331-3p73, which can 
inhibit the PI3K/Akt signalling (Figure 4.3. 5), in addition to reduce the AR-
regulated PSA expression. However, the relation between Her/neu and AR 
does not occurred in LNCaP cells, where a decreased AR mRNA in addition 
to decreased AR and AR regulated PSA could be found74. 
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Figure 4.3. 5 A model of  HER-2/neu activation of the Akt-AR pathway that 
promotes survival and proliferation of androgen-dependent prostate cancer 
cells upon androgen deprivation (Figure adapted from Feldman, B.J. et al, 
200179).  



                                                                                                                              Mechanism of Action and In Vivo Studies__ 

-201- 

 

Her/neu has been found to be important in bone metastasis of prostate cancer 
and the over-expression of this protein has a direct correlation with a poor 
prognosis75. Orthotopic transfection of Her2/Neu facilitates metastasis, and as 
demonstrated with PC3 cell line transfected with Her2/neu. After inoculation, 
these cells trigger metastasis all over the abdomen, in the retroperitoneum and 
in the kidneys76. Molecularly, the Her2/Neu receptor is part of a signaling 
cascade that involves the downstream enhancement of Akt and MMP-9, 
whereby the cancer cell is allowed to penetrate the matrix and facilitate 
angiogenesis77,78.   

 

(v) Phosphoinositide-3/AKT  

Phosphoinositide-3 Kinase (PI3K) is a critical mediator of multiple 
oncogeneic signaling pathways. PI3K is activated by the receptor tyrosine 
kinases generating PI(3,4)P(2) and PI(3,4,5)P(3) (PIP3). 

Most important PI3K downstream targets include Akt family of serine-
threonine kinases, recruited by PIP3 to the plasma membrane and 
phosphorilated by PDK1 kinase.  

Akt interacts with these phospholipids, causing its translocation to the inner 
membrane, where it is phosphorylated and activated by PDK1 and PDK2. 
Activated Akt modulates the function of numerous substrates involved in the 
regulation of cell survival, cell cycle progression and cellular growth.  

In recent years, it has been shown that PI3K/Akt signaling pathway 
components are frequently altered in human cancers. Cancer treatment by 
chemotherapy and γ-irradiation kills target cells primarily by the induction of 
apoptosis. 

The negative regulator of PI3K-Akt pathway (Figure 4.3. 6) includes a 
phosphatase PTEN that presents a high specificity for lipid substrates80. In 
prostate cancer, PTEN is usually lost resulting in hyperactive PI3K/akt 
pathway promoting prostate cancer progression. PTEN alterations are more 
common in metastatic cancers and studies have identified biallelic loss of 
PTEN in ~50% of metastatic hormone-refractory prostate cancer81. 

 



      Chapter 4 - Tert-DES vs Block-DES. Part III                                                                                                                                                                                                 

-202- 

 

 

Figure 4.3. 6 PI3K/Akt signaling pathway involved in prostate cancer. 
(Photo: Cell Signaling Technology(R)).  

Targeting PI3K-Akt pathway to treat prostate cancer patients is a very 
promising area of research. Currently, some small inhibitors82 are undergoing 
clinical trials for prostate cancer therapy, as for example mTOR inhibitor 
RAD001 (everolimus) alone or in combination with gefitinib83. PI3K and Akt 
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are also attractive drug targets for prostate cancer therapy, but despite serious 
efforts inhibitors targeting the kinase activity lack specificity84.  

All the molecular targets described are involved in key prostate cancer 
mechanisms of survival, proliferation (cell cycle) or autophagy. Therefore, in 
this chapter we described DES-polyacetals molecular mechanism based on 
such pathways and targets. 

 

Mechanism of action of Diethylstilbestrol 

The mechanism of action of this important human carcinogen is still 
unknown; however, the most widely discussed mechanisms for DES, looking 
at the most recent contemporary clinical trials, are related to the hormonal 
action to treat advanced prostate cancer. There is an evidence to support the 
ability of DES to achieve complete testosterone blockade by blocking LH 
leaving FSH unaffected. DES also inhibits dihydroepiandrosterone sulfate 
serum levels85. 

The Veterans Administration Cooperative Urological Research Group 
(VACURG) I study86 showed that the endocrine treatment delays progression 
and also the time to progression increased in non-metastatic disease.  Because 
of the switch of the majority of patients from the placebo arm to the endocrine 
treatment arm at the time of progression, the findings do not exclude the 
possibility of an effect of endocrine treatment on survival87. However, it has 
been found that DES also presents anti-tumor properties and clinical 
effectiveness in prostate cancer resistant to first-line hormonal therapy88. The 
side-effects at high DES dose (e.g. 5 mg dose) were associated with increased 
mortality from cardiovascular causes compared with castration86,89. However, 
low-dose DES has shown anti-tumor efficacy with limited cardiovascular side 
effects and it should be considered for secondary hormone manoeuvres. 

Relevant clinical studies indicate that 1 mg of DES in castrate-resistant 
prostate cancer (CRPC) produced a biological response (change in PSA level) 
and improved the median survival of patients when used as a second-line 
hormone therapy after standard androgen deprivation with bicalutamide and 
LHRH analogues88. These findings were for low doses of DES. The 1 mg 
dose is associated with a reduced toxicity, including fewer thromboembolic 
and cardiovascular events. It produces a decrease cancer-related death per 
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year in high risk patients. Low-dose DES appears to be safe and effective for 
CRPC before initiating chemotherapy. The cost/efficiency ratio may 
encourage physicians to consider DES as a therapy option before 
chemotherapy in non-symptomatic CRPC88. To avoid the cardiovascular 
complication, a combination of prophylactic aspirin (100mg once daily) with 
1mg oral DES (three times daily or 2 mg twice daily) was administrated to the 
patients90. Of 18 patients, 66% had PSA levels reduced to, 0.6 or at least up to 
a 50% reduction. Gynaecomastia was noted in 2 of 18 patients. No 
thromboembolic complications were noted.  

Estrogenic therapies induce secondary responses in patients with an androgen-
independent state of prostate cancer, which suggests an additional mechanism 
of action besides that of suppression of the pituitary–gonadal axis. Several 
studies91 suggest that DES can produce PSA responses in a significant 
proportion of patients in an androgen-independent state of prostate cancer. 
The mechanism is yet unclear but may represent a direct cytotoxic effect on 
the cells, probably by apoptotic mechanisms as it was mentioned above92.  

 

4.3.2. Useful in vitro techniques to determine the mechanism of 
action of DES-polyacetals. 

 

Apoptosis or Programmed Cell Death  

Apoptosis is defined as a highly regulated cellular pathway responsible for the 
elimination of cells in the organism that are no longer needed or extensively 
damaged (Figure 4.3. 7). This process is characterized by the loss of plasma 
membrane, asymmetry and attachment, condensation of the cytoplasm and 
nucleus, and internucleosomal cleavage of DNA. Apoptosis can be initiated 
by different stimuli, including infectious, anticancer or toxic agents, but also 
by growth factor withdrawal, heat shock, ischemia or degenerative processes. 

There are several pathways resulting in apoptosis, all of which involve 
cysteine aspartyl-specific proteases (caspases). Depending on the nature of 
these stimuli, two different apoptotic pathways can be activated: the extrinsic 
and the intrinsic pathways, although they are connected in different steps of 
the process. 
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Figure 4.3. 7 Extrinsic and intrinsic apoptosis pathways (Figure adapted from 

G.S. Salvesen and C.S. Duckett, 200293). 

 

The extrinsic apoptotic pathway94 is triggered by ligand binding to cell-
surface receptors, resulting in the recruitment of various proteins to form the 
death-inducing signaling complex (DISC). This complex promotes activation 
of caspase-8, which in turn activates caspase-3. Caspase-3 then induces the 
cellular changes that characterize apoptosis. The intrinsic pathway94,95, in 
contrast, is triggered by cytotoxic stress, which induces the translocation of 
pro-apoptotic Bcl-2 family members, such as Bax, to the mitochondria. This 
leads to the release of mitochondrial cytochrome c into the cytosol, where it 
promotes the oligomerization of the pro-apoptotic factor Apaf-1 into a 
complex called the "apoptosome". The aptoptosome recruits and activates 
caspase-9, which in turn promotes the activation of caspase-3. This process is 
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further regulated by X-linked inhibitor of apoptosis (XIAP) protein, which 
inhibits the activity of both caspase-9 and caspase-3. Both extrinsic and 
intrinsic pathways are shown in figure 4.3. 7.  

In normal cells (Figure 4.3. 8, left diagram), the distribution of phospholipids 
is asymmetric, with the inner membrane containing anionic phospholipids 
(such as phosphatidylserine) and the outer membrane having mostly neutral 
phospholipids. In apoptotic cells (Figure 4.3. 8, right diagram), the amount of 
phosphatidylserine (PS) on the outer surface of the membrane increases, 
exposing PS to the surrounding liquid. Annexin-V, a calcium-dependent 
phospholipid-binding protein, has a high affinity for PS. Although it will not 
bind to normal living cells, Annexin-V will bind to the PS exposed on the 
surface of apoptotic cells. Thus, Annexin-V has proved suitable for detecting 
apoptotic cells. Roche Applied Science supplies a number of products for the 
detection of PS translocation by Annexin-V, which is typically used in 
conjunction with a vital dye such as propidium iodide (PI) to identify early 
apoptotic cells. 
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Figure 4.3. 8 Detection of surface morphology changes during apoptosis. 
During apoptosis, the distribution of neutral phospholipids (black symbols) 
and anionic phospholipids such as phosphatidylserine (red symbols) in the cell 
membrane changes (picture adapted from96).  
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Cell Cycle Analysis 

In an organism, the rate of cell division is a tightly regulated process that is 
intimately associated with growth, differentiation and tissue turnover. 
Generally, cells do not undergo division unless they receive signals that 
instruct them to enter the active segments of the cell cycle. Resting cells are 
said to be in the G0 phase (quiescence) (Figure 4.3. 9). The signals that induce 
cells to divide are diverse and trigger a large number of signal transduction 
cascades. A thorough discussion of the types of signals and the variety of 
responses they can elicit are beyond the scope of this chapter. Generally, 
signals that direct cells to enter the cell cycle are called growth factors, 
cytokines, or mitogens. 
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Figure 4.3. 9 Cell cycle: A schematic overview. Mammalian cell cycle 
regulation by CDK/cyclin holoenzymes and CKIs. The cell cycle consists of 
four distinct phases: G1, S (DNA replication), G2, and M (mitosis). 
Activation of specific CDK/cyclin complexes drives progression through 
these cell cycle phases. CKIs of the Cip/kip and the INK4 families interact 
with and inactivate CDK/cyclin holoenzymes, thereby blocking cell cycle 
progression and cell proliferation. 
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Control on the Cell Cycle
96

 

Once the cell is instructed to divide, it enters the active phase of the cell cycle, 
which can be broken down into four segments: 

• During G1 (G = gap), the cell prepares to synthesize DNA. In the 
latter stages of G1, the cell passes through a restriction point (R) and 
is then committed to complete the cycle. 

• In S phase the cell undergoes DNA synthesis and replicates its 
genome. 

• During G2 the cell prepares to undergo division and checks its 
replication using DNA repair enzymes. 

• In M phase, the cell undergoes division by mitosis or meiosis and 
then re-enters G1 or G0. 

In most instances, the decision for a cell to undergo division is regulated by 
the passage of a cell from G1 to S phase. Progression through the cell cycle is 
controlled by a group of kinases called cyclin-dependent kinases (CDKs), 
(Figure 4.3. 8). CDKs are activated by associating with proteins, called 
cyclins, whose levels of expression change during different phases of the cell 
cycle. Once associated with cyclins, CDKs are activated by phosphorylation 
via CDK-activating kinase (CAKs) or by dephosphorylation via a phosphatase 
called CDC25. D-types cyclins are the primary cyclins that respond to 
external cellular factors. Their levels are low in G1, but increase towards the 
G1/S. Cyclin D regulates CDK4 and CDK6. Cyclin E is expressed during the 
G1/S transition and is degraded in S. Cyclin E regulates CDK2 and perhaps 
CDK3.When S phase begins, cyclin A increase and activate CDK2. The 
cyclin A/CDK2 complex is thought to have a direct role in DNA replication. 
The progression through mitosis is regulated by the presence of cyclin B. 
association of Cyclin B with CDC2 forms the primary kinase present during 
mitosis (MPF=M-phase/maturation promoting factor). Cyclin B is degraded 
during anaphase and regulates the cell’s progression out of mitosis and into 
G1. 
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Key protein expression analyzed by Western Blot 

The western blot also named the protein immunoblot is an analytical 
technique used to detect specific proteins. It uses gel electrophoresis to 
separate native proteins by 3-D structure or denatured proteins by the length 
of the polypeptide. The proteins are then transferred to a membrane (typically 
nitrocellulose or PVDF), where they are detected using antibodies specific to 
the target protein97,98. Figure 4.3. 10 shows an example of western blotting of 
apoptosis-related proteins. 

 

Figure 4.3. 10  Example of protein immunoblotting/western blotting of 
apoptosis-related proteins. In this example, the protein-expression study show 
upregulation of Tp53, Caspase-3, and Bax but downregulation of Bcl-2. 

 

4.3.3. Results 
 

4.3.3.1. Cell death studies by Flow Cytometry: Annexin V-PI 

The apoptotic processes after cell treatment with Block-DES and Tert-DES 
was studied by Flow cytometry using Annexin V and PI (Figure 4.3. 8). 

When Annexin is used combined to propidium iodide (PI) it is possible to 
differentiate early apoptotic from late apoptotic or necrotic cells (Table 4.3. 
1). 
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Table 4.3. 1 Distinguishing apoptosis from necrosis using Annexin-V and 
propidium iodide (PI). 

 Normal 
cells 

Early 
Apoptotic cells 

Late 
Apoptotic cells 

Necrotic 
cells 

Annexin-V  - + + - 
Propidium Iodide  - - + + 

 

Typical histograms from FACS analysis are shown below (Figure 4.3. 11, 
Figure 4.3. 12 and Figure 4.3.13) after AnnexinV-PI test using DES-
polyacetalic systems in PC3 and LNCaP cell lines. Data from these 
histograms were analyzed and represented in Figure 4.3. 14.   

Control T ert-DES 1a Block-DES 2a

Go/G1

G2/M

S

G2/M

G2/MSS

Go/G1 Go/G1

PC3

Control

Go/G1

G2/MS
G2/M G2/MSS

Go/G1 Go/G1

LNCaP

T ert-DES 1a Block-DES 2a  

Figure 4.3. 11 Typical flow cytometric profile of the DNA content in PC3 
and LNCaP cell lines stained with AnnexinV and PI. A prominent subG1 
peak (between 100 and 200) should appear in apoptotic cells but not in normal 
cells.  

Looking at Figure 4.3. 12 is possible to observe that flow cytometric analysis 
clearly differentiates normal cells (quadrant E3) with low Annexin and low PI 
staining, apoptotic cells (quadrant E4) with high Annexin and low PI staining, 
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late apoptotic (quadrant E2) with high Annexin and high PI staining and 
necrotic (quadrant E1). 

Normal Apoptotic

Late Apoptotic

P
I

ANNEXIN

E2E1

E4E3

 

Figure 4.3. 12 Typical histogram from FACS analysis after AnnexinV-PI test. 
Single parameter histograms are shown at the top (Annexin) and on the right 
side (PI) of the diagram. Two parameter histograms are shown in quadrants 
E1-E4.  

 

Herein, cell death analysis for Block-DES and Tert-DES in PC3 and in 
LNCaP cells was carried out Figure 4.3. 13 shows an example of the 
histograms obtained for the control, free DES and the Tert-DES 1a in both 
prostate cancer cell lines. 

All molecular mechanism studies were performed using the corresponding 
IC50 concentration determined for all DES derivatives (IC50, 0.060 mg/ml for 
Na DES, 0.052 mg/ml for Block-DES and 0.172 mg/ml for Tert-DES against 
PC3 cells; 0.044 mg/ml for NaDES, 0.049 mg/ml for Block-DES and 0.070 
mg/ml for Tert-DES against LNCaP cells).  
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Figure 4.3. 13 Example of obtained histogram from FACS analysis after 
AnnexinV-PI test. PC3 and LNCaP Cell lines were cultivated with the drug 
alone and DES-polyacetals. Cells were stained with Annexin-V and PI, then 
incubated and analyzed.  
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Figure 4.3. 14  Annexin-PI test with Tert-DES and Block-DES polyacetals in 
PC3 (A) and LNCaP (B) cell lines. Data are expressed as mean ± SD (n ≥ 3). 
* p< 0.05. Cell death (%) expressed as Annexin V-positive cells (quadrants 
E2+E4) 

DES-Polyacetals induced slightly more cell death in LNCaP (Figure 4.3.14B) 
than in PC3 (Figure 4.3.14A) cells, probably due to the hormone-dependent 
property presented in the LNCaP line vs. the androgen independence in PC3. 
These differences were not observed for free DES. 

 

Table 4.3. 2 Annexin V-PI studies at 24h for Tert-DES and Block-DES. Data 
are expressed as mean ± SEM (n ≥ 3). 

 Annexin/PI (%cd)  Control       NaDES            Tert-DES              Block-DES  
                                                                             1a           1b            2a        2b       .         

PC3                7.76± 0.4      60 ± 8.8        48±6.5   35±6.9     40± 5.1    33±5.2 
LNCaP          4.27± 0.8      60 ± 4.1        62± 5     46±3.3     55± 6.9   60±5.8 

 

Where %cd is the percentage of Annexin V positive cells (1a 2.8wt%DES, 1b; 
4wt%DES, 2a; 2wt%DES and 2b; 4.3wt%DES). 

Regarding drug loading influence, whereas Tert-DES behavior was clearly 
dependent on loading independently on the cell line used with greater 
percentage of cell death with the lowest DES loaded conjugate (1a), Block-
DES pattern was influenced by the cell line tested as no significant differences 
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in activity with polyacetal 2a (2 wt%DES) vs. 2b (4.3 wt% DES) were 
observed in LNCap cells (Figure 4.3.14B and Table 4.3.1)  

 

4.3.3.2 Cell cycle analysis  

Cell cycle analysis after 24h treatment with the DES derivatives showed to be 
highly dependent on the cell line used and in the polyacetal conformation.  

In the PC3 cell line, Block-DES (2a and 2b) seemed to modulate proteins 
involve in the regulation of the S phase. However, Tert-DES (1a and 1b) 
arrested cells at the G2/M phase (Table 4.3.3 and Figure 4.3. 15). On the 
hand, in LNCaP cells (Table 4.3.4 and Figure 4.3. 16) no significant 
differences were observed within the polyacetals as in all cases cells were 
arrested in G0/G1 phase. In any case no significant differences were 
encountered if different DES loadings were compared.  

This data clearly reflected the importance of cell line selection together with 
the treatment to be analyzed, the major differences could be triggered due to 
the endocrine character of DES and the different androgen dependence of the 
two cell lines studied. 

 

Table 4.3. 3 Cell cycle in PC3 cell line for Ter-DES (1a and 1b) and Block-
DES (2a and 2b). Data are expressed as mean ± SEM (n ≥ 3). 

G0/G1 S G2/M 
DES 41.4 ±10.0 43.7 ±14.8 14.7 ± 4.8 
Tert-DES 1b 22.5  ± 0.1 18.2 ±12.2 55.8 ±12.3 
Tert-DES 1a 21.4  ± 8.7 27.8 ± 7.8 50.7 ± 4.5 
Block-DES 2b 33.9  ± 6.1 39.9 ± 5.5 26.1 ± 2.9 
Block-DES 2a 32.7  ± 7.4 43.4 ± 8.7 23.8 ± 10.5  
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Figure 4.3. 15  Cell cycle study for Tert-DES and Block-DES polyacetals in 
PC3 cell line. Data are expressed as mean ± SD (n ≥ 3). * p< 0.05. 

 

Table 4.3. 4 Cell cycle in LNCaP cell line for Ter-DES (1a and 1b) and 
Block-DES (2a and 2b). Data are expressed as mean ± SEM (n ≥ 3). 

G0/G1 S G2/M 
DES 66.8 ± 1.8 15.1  ± 0.9 18.1 ± 0.9 

Tert-DES 1b 71.7  ± 4.2 14.5 ± 3.1 13.7 ± 1.1 

Tert-DES 1a 61.9  ± 10.3 28.4 ± 11 9.7  ± 1.2 

Block-DES 2b 65.9 ± 1.9 9.5  ± 4.2 24.6 ± 2.2 

Block-DES 2a 71.2  ± 6.2 14.5 ± 6..9 12.4 ± 4.0
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Figure 4.3. 16 Cell cycle in LNCaP cell line for Tert-DES and Block-DES. 

 

Complementary studies focused on the Akt route were carried out in order to 
fully understand the differences encountered so far by trying to evaluate the 
relation of this pathway with autophagy, apoptosis and cellular cycle. Western 
Blot was used to analyze the level of expression of key proteins in these three 
molecular machineries. 

 

4.3.3.3. Determination of Akt, Autophagy and Apoptosis-Related 
Proteins by Protein Immunoblotting. 

Protein immunoblotting of apoptosis-related proteins was studied using four 
specific markers, namely: caspase-3, Bcl2, p53 and Bax. To determine the 
possible involvement of an autophagy signaling pathway the protein LC3B 
was also studied (Figure 4.3.17). In all cases, 40µg extracted protein was 
upload and β-actine was used as loading control. 
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Figure 4.3. 17 Protein immunoblotting/western blotting of Akt pathway, 
autophagy and apoptosis-related proteins in PC3 prostate adenocarcinoma cell 
line. The treatment was done with Tert-DES (1a,1b) and Block-DES (2b,2b). 

Akt pathway. Akt will be activated after phosphorilation (p-Akt). The control 
sample showed that p-Akt was highly expressed while in those cells treated 
with DES derivatives the p-Akt expression was downregulated, being this 
effect more important with the Block-DES. Block-DES 2a, with less than 
3wt%DES showed less p-Akt protein expression than Block-DES 2b with 
more than 3wt%DES showing the influence of drug loading on Akt pathway. 
Probably due to the different DES release kinetics and therefore a different 
DES dose present after 24 h in each case. It is clear that protein expression is 
time- and concentration-dependent.   

Autophagy. Looking the protein-expression study for autophagy, Block-DES 
showed upregulation of LC3B. Contrary to Block-DES, Tert-DES showed 
downregulation of LC3B, which can be observed for both LC3B component 
proteins, LC3B-I and LC3B-II. The fact of observing both proteins could be 
explained by a slower process for Tert-DES in the conversion from LC3B-I 
into LC3B-II (Figure 4.3. 17). 

Apoptosis. Protein immunoblotting results indicated that compared with 
controls, the expression of p53, Caspase-3 and Bax proteins was higher in 
PC3 cells treated with Block-DES than with Tert-DES. However, Bcl-2 was 
downregulated in the treatment of PC-3 cells with Block-DES, this could 
indicate the proapoptotic character of this nanoconjugate. Tert-DES showed 
upregulation of Bcl2 and p53 together with a downregulation for Bax and 
Caspase-3 protein. Bcl2 and Bax are part of the mitochondrial apoptotic cell 
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death pathway, thus when Bcl2 is expressed, Bax should be downregulated, 
this is in good agreement with our results.  

Cell cycle. P21 is a protein highly involved in cell cycle and clearly correlated 
with p53 that could show correlation with apoptosis. Therefore the expression 
of these two proteins were studied in presence of our DES derivatives (Figure 
4.3. 18) 

p-Akt (Ser473) 24kDa

Cell cycle

p21

p53

β- actin

53kDa

21kDa 

β- actin

B-DES        T-DES
2b       2a      1b     1a     DES CNTRL

 

Figure 4.3. 18 Protein immunoblotting of cell cycle-related proteins in PC3 
cell line upon incubation in presence of free DES, Tert-DES 1 and Block-DES 
2. 

The western blotting results compared with controls showed that the 
expression of p21 was higher in PC3 cells treated with Tert-DES than with 
Block-DES, being even greater for 1b with more than 3wt% of DES than with 
Tert-DES 1a. P21 is a protein involved in G2 and Mitosis phases in cell cycle. 
It indicated that the cell cycle stopped between G2/M by inhibition of cycline 
B and Cdk1 production, taking place an accumulation in G2 phase (Figure 
4.3. 19). This data was in good agreement with the previous data obtained in 
the cell cycle studies by FACS (Figure 4.3. 15).  

P53 was up-regulated with both Block- and Tert-DES treatment indicating cell 
death induction. 
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Figure 4.3. 19  Schematic representation of the relationship of the protein p21 
involved in cell cycle. 

Protein immunoblotting of apoptosis-related proteins was also performed in 
the androgen sensitive LNCaP prostate adenocarcinoma cell line. The proteins 
used involved in apoptosis were p53, Bax and caspase-3 (Figure 4.3. 20). 
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Figure 4.3. 20 Western blotting of proteins related with apoptosis in LNCaP 
cell line. Cells were incubated in absence and presence of DES, Tert-DES and 
Block-DES polyacetals for 24 h. 
 
Protein immunoblotting study showed that the expression of p53, Caspase-3 
and Bax proteins was higher in LNCaP cells treated with Block-DES and Tert-

DES with DES loading lower than 3wt% probably due to a faster DES 
released and therefore greater free DES content after 24 hours incubation. 
Summarizing, cell studies based in cytometry and western blotting assays 
demonstrated that both polymer behave similarly following akt pathway in 
both prostate cancer cell lines although the property of being hormono 
sensitive for LNCaP makes slightly different results which better results for 
the block-DES and with higher drug loading. Further experiments will be take 
place in order to elucidate if DES provokes autophagy in the cells. 
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4.3.4. In vivo studies in xenograft mice models. 

It is important to note here that all the in vivo studies were performed by our 
collaborators at CIBBIM-Nanomedicine Vall d’Hebron Hospital, Barcelona, 
Dr. Ibane Abasolo, Dr. Yolanda Fernández and Dr. Simó Schwartz Jr. 

4.3.4.1. Body weight studies 

Preliminary in vivo studies were carried out using Tert-DES 1b and Block-

DES 2b to determine in a first stage polymer toxicity after their i.v. 
administration (Figure 4.3. 21). 

 

 

Figure 4.3. 21 Body weight control for CD1 mice after polyacetal i.v. 
administration. 

 

It was found that a single i.v. dose of 10 mg/kg of DES polymers did not 
induce any significant loss of weight in CD1 mice and they did not alter the 
blood levels of 10 different biological parameters regarding kidney, liver and 
muscle functionality (BILT, total proteins, AST, ALT, CK, LDH, Alb, 
creatinin and urea) (Table 4.3. 4). 
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Table 4.3. 4 Biochemical parameters for CD1 mice after polyacetal i.v. 
administration. 

 

 

4.3.4.2. In vivo biodistribution and tumor accumulation in a 
xenograft mouse model. 

Biodistribution studies allow following the compound of interest into the 
body once it is i.v. administrated through the vein tail. To carry out the 
biodistribution experiment optical image was used and therefore Cy5 labeled 
conjugates were synthesized see detailed information in chapter 4.2). NIR 
properties of Cy5.5. dye allow better tissue penetration than a normal 
fluorescence probe, such as OG. At different intervals of time, the animals 
were euthanized and dissected to take the organs of interest (usually blood, 
liver, spleen, kidney, pancreas, brain, bone, stomach, and upper and lower 
large intestine).  Quantification of Cy5.5. in each organ was also performed 
and expresses as µgdye/g tissue. NIR scanner was used to quantitatively 
assess Cy5.5 signal at 21 micrometer resolution. Each tissue was imaged 
using the IVIS-100 (Xenogen Co., Alameda, CA).  

To carry out preliminary information on  in vivo polymer fate, HT-29 Firefly 
luciferase (Fluc)-C4 human colon cancer cells (0.25x106 cells/100µl DPBS) 
were injected s.c. in the rear right flank in female athymic nu/nu mice to gain 
a well- vascularized xenograft model. 

Tert-DES-Ser-Cy5.5 10a (4.3 wt% DES loading) was administered to 3 mice 
intravenously (i.v.) once a week at different doses: 3.5, 5 and 7 mg/Kg in 
order to determine the effective dose to be used in exhaustive biodistribution 
and activity experiments (Figure 4.3. 22). Tumor volume was measured twice 
a week by caliper measurements and bioluminescence imaging. The volume 
was calculated according to the formula Dxd2/2 and the bioluminescence 
signal was quantified in photons per second. 
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Figure 4.3. 22 Tumor accumulation; In vivo fluorescence imaging of 
subcutaneous Xenograft models after 3 days of intravenous injection of 3.5, 5 
and 7 mg/kg Tert-DES-Ser-Cy5.5 polyacetal 10a. 

As expected, the conjugate was accumulated into the tumor in a dose-and 
time-dependent manner, being the highest dose used (7 mg/kg) much more 
efficient in inducing compound tumor accumulation. Then, bolus injection of 
high doses of the compounds may be favoring tumor accumulation in good 
agreement with previously reported preclinical studies with polymer-drug 
conjugates98. Therefore, 7 mg/kg was selected for further studies. 

 

 

Figure 4.3. 23 Tissue accumulation; Cyane fluorescence detected into tumor, 
kidneys, liver and urine by in vivo fluorescence imaging after 3 days of i.v. 
injection of 7 mg/kg 10a. 
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It was also observed that Tert-DES-Ser-Cy5.5 10a was accumulated mainly in 
the kidneys and in the liver, apart from the tumor. Thus, the polymer small 
fragments might be being eliminated by renal excretion, and the large 
fragments (aggregates as determined by SANS) through the hepatic excretory 
system, however this hypothesis should be still fully demonstrated (Figure 
4.3. 23). 

To corroborate the above observations, a longer study was carried out up to 
two weeks with the selected 7 mg/kg dose (Figure 4.3. 24).  

 

 A.

B.

 

Figure 4.3. 24  Tert-DES-Ser-Cy5.5 tumor accumulation results. A.  In vivo 
fluorescence imaging of subcutaneous HT-29 colon bearing mice after i.v. 
injection of 7 mg/kg of Cy5.5-labelled-Tert-DES 10a polyacetal. The tumor 
accumulation can be easily visualized at 6h-17days (D=day) postinjection. B. 
The fluorescence intensity was recorded and quantified as Efficiency over 
time. 

 

The Tert-DES-Ser-Cy5.5 (7 mg/kg) tumor accumulation started at 6 h, being 
maximum after 4 or 5 days, and was maintained for up to 17 days post-
injection. Tert-DES-Ser-Cy5.5 was again detected mainly in the tumor, 
kidneys and in the liver.  
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Once demonstrated an efficient tumor accumulation also a preliminary 
antitumor activity with Tert-DES andBlock-DES was performed in a PC3 
xenograft model stablished at CIBBIMM_Nanomedicine. It was proposed to 
carry out the dose-dependent Tert- and Block-DES-Ser-Cy5.5 biodistribution 
assay using prostate cancer cells (PC3) trying to increase the dose from 
7mg/Kg to 10 and 30mg/Kg, once at week using Cy5.5 and PBS as controls 
and taking time-course at 1, 4, 5, 6 ,7 and 8 days. FRI quantification and BLI 
quantification were the selected techniques to quantify the compound 
accumulation and the tumor growth inhibition respectively.   

 

4.3.4.3.  Antitumoral effect on subcutaneous PC-3 tumors in Athymic nu/nu 

mice. 

In this case the mice were male Hsd:Athymic Nude-Foxn1nu and the cell line 
to be injected subcutaneously was the PC-3 Fluc human prostate cancer. As 
the previous experiment, mice received a subcutaneous (s.c.) tumor cell 
injection (in this case 5x106 cells/100µl DPBS) in the rear right flank and 
thereafter were treated with the test substance.   

For tumor growth inhibition studies Tert-DES 1b and Block-DES 2b, (drug 
loading of 4wt%DES) were used. 

• Tumor volume and tumor growth studies 

The treatment consisted in the oral gavage administration in mice of 1mg/kg 
of DES once at day during 5days (binary representation; 1111100) and i.v. 
administration of 5mg/kg of the DES-polyacetals once at week (binary 
representation; 01000000) (Figure 4.3. 25).  

The volume (Figure 4.3. 25A) and growth (Figure 4.3. 25B) of the tumor were 
measured during 32 days.. Unfortunately, the results showed that DES-
polyacetalic systems do not show a tumor growth delay. It could due to the 
need of a greater dose However, the water solubility of these polyacetals, at 
this point, was limited and thus, other alternatives were sougth, from the 
synthetic protocols (Chapter 3) to the use f combination therapy (Chapter 5).    
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A. 
 

 
B.  

 
Figure 4.3. 25 Tumor growth inhibition. Comparative analysis of the 
localized subcutaneous growth of PC3-Fluc prostate cancer cells treated with 
the DES, Tert-DES and Block-DES in athymic nude mice by external 
measurements of tumor volume (A), and by tumor bioluminescent signals (B). 

It is important to note that DES-polyacetals did not show any sign of toxicity 
and were very well tolerated by mice. To get a closer look to tumor 
progression last day of the experiment (day 32) tumors were extracted and 
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weighted (Figure 4.3. 26). Non-significant differences between Tert-DES and 
the Block-DES were observed. 

 

A.  

 
B.  

 
 

Figure 4.3. 26 Effect of the DES-polyacetals (tert-DES 1b and block-DES 2b) 
on Tumor Weight (A) and Tumor Volume (B) at the end of the experiment.  
Scatter plots show all values with the median values represented by a bar. 
Statistical analysis was done using a Dunn´s Multiple Comparison test. 
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A correlation study between tumor volume and bioluminescence  (Figure 4.3 
27) corroborated the conclusions previously obtained. 

 

Figure 4.3. 27 Correlation between tumor volume and bioluminescence. The 
correlation  r2 value was 0.5793 (p=0.0002), 0.5436 (p=0.0007), 0.6384 
(p<0.0001) and 0.5610 (p<0.0001) for vehicle, DES, Tert-DES-Ser-Cy 10a 
and Block-DES-Ser-Cy 11a, respectively. 

Figure 4.3. 28 shows the images of in vivo monitoring of subcutaneous 
PC3.Fluc tumor growth after 29 days DES-polyacetals treatment. 

Vehicle DES
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Tert-DES-Ser-Cy 10 Block-DES-Ser-Cy 11

 

 

Figure 4.3. 28 Representative images of the mice at day 21 after treatment 
with DES 1mg/kg or Tert- or Block-DES (1b and 2b resp.) at 5mg/kg for 
29days. Images were set at the same pseudocolor scale to show relative 
bioluminescent changes over time. 

 

Body weight was also taken (Figure 4.3. 29) to ensure the DES-polyacetals 
does not make any variance in mice weight and to rule out any possibility of 
damage from DES-polyacetals to mice.   

  

Figure 4.3. 29 Body weight profiles of treated mice. 
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The body weight gain of DES and both DES-polyacetals were monitored at 
administration day along the experiment and was not observed any change in 
the mice´s weight1. 

 

Summarizing, the dose of 1mg/kg of DES during five days a week, and the 
5mg/kg of the DES-polyacetals, Tert-DES 1b and Block-DES 2b, once at 
week did not induce tumor growth delay. Importantly, it was shown that either 
DES or DES-polyacetals induced animal body weight loss. 

 

Due to the results obtained it was proposed to move a step further in order to 
improve the system and develop advanced conjugates by means of 
combination therapy approach to treat prostate cancer. The design, synthesis, 
characterization and biological evaluation in vitro and in vivo of DES-based 
combination polyacetals is described in Chapter 5. 

                                                           
1 During the experiment some events, including deaths at different days ocurred. In the control 

group, 1 animal was put down at day 7 of treatment due to penis prolapsed, in DES group at 
day 14, 1 animal was found death and other was put down due also to penis prolapsed and in 
the Tert-DES group, 1animal was put down due to lesions produced by a fight between the 
animals. However in the group of Block-DES was not found any animal death. 
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5.1 Introduction 

5.1.1 Combination Therapy 

Combination therapy is referred when more than one drug or type of therapy 
(i.e. Chemotherapy, radiotherapy, etc.) is simultaneous administrated to treat 
a disease. One of the advantages of using combination therapy is the 
capability to modulate different signaling pathways in diseased cells, 
maximizing the therapeutic effect and possibly overcoming mechanisms of 
resistance1.  It is believed that the future of cancer therapy will mainly rely 
on specific targets and in most cases in their combination, in order to obtain 
more selectivity, efficacy and lower toxicity.  

In last decades combination therapy has been more used and in particular 
further advances have been obtained for cancer treatment. Sometimes 
combination chemotherapy is used not to cure but to reduce symptoms and 
prolong life, useful for people with advanced cancers not suitable for 
radiotherapy or surgical treatment. To determine which of the treatments, a 
single or a combination therapy is best, it is important to know the stage and 
size of the tumor and the risk of recurrence.  

For some cancers, the combination therapy includes surgery, radiation 
therapy and chemotherapy. Surgery or radiation therapy kills cancer cells 
locally in a specific site however chemotherapy also destroys cancer cells 
that have spread to different sites. Sometimes radiation therapy or 
chemotherapy is given before surgery in order to shrink a tumor to achieve a 
complete removal of the tumor and is given after to help to kill any 
remaining cancer cells.  

The design of combination therapy involves the knowledge of several issues 
such as the tumor cell kinetics, biochemical synergy, tumor cell kinetics, 
fractional cell kill; dose scheduling, intensity and total dose, non-overlapping 
toxicity; active agents, tumor cell resistance, non-cross resistant agents and 
host rescue. In addition, these principles are considered the bases for 
adjuvant and neoadjuvant approaches2.  
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Four main types of combination therapy are routinely used in clinic: 

1) Combination of different types of therapy. 

Combination of surgery, radiotherapy and chemotherapy3 are routinely 
used in the clinics as different cycle phases. More recently, a new 
therapy which combines radiation with a prostate specific antigen 
(PSA)-based vaccine has been transfer to phase II for patients with 
prostate cancer4. Based on preclinical observations, it was 
demonstrated that the radiation therapy increased the stimulation of 
immune system altering tumor cells and making  them more 
susceptible3. Hormone therapies are sometimes also used in combination 
with radiation therapy or surgery to improve survival time for men with 
aggressive tumors. In fact, combination therapy improves survival time for 
men with aggressive cancers as it was demonstrated in 2009 in a study 
realized at the Mount Sinai Medical Center in New York. Combination 
therapy involving radioactive seed implants, external beam radiation, and 
hormonal therapy were given to 181 men with a Gleason score of 8 or higher 
(see annex 1). And after eight years, the prostate cancer survival rates were 
87% with this combined therapy. 

2) Chemotherapy combinations. 

Since the 1940s, the combination of different chemotherapeutic agents has 
been developed allowing for remarkable survival improvement, particularly 
in childhood leukaemia and Hodgkin’s disease2. This progression was based 
on biochemical synergy, tumor cell kinetics, non-overlapping toxicity, an 
increase of fractional cell kill, non-cross-resistant agent and tumor cell 
resistance2. The action mechanism of the drugs consists on causing DNA 
damage, acting as topoisomerase I including camptothecins: irinotecan and 
topotecan, or topoisomerase II such as amsarine, etoposide and etoposide 
phosphate. For example, in colorectal cancer before to administer 5-
fluorouracil (5-FU), is   given leucovorin (LV) which enhance the fixation of 
5-FU and consequently its therapeutic effect. Several traditional treatments 
based on anthracycline combination2, 5 have been reported for cancer therapy 
such as AC (anthracycline and cyclophosphamide) and CAF 
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(cyclophosphamide, adryamicin and 5-FU) and also, methotrexate containing 
combinations are CMF (cyclophosphamide, methotrexate and 5-FU), and 
CMFVP (cyclophosphamide, methotrexate, 5-FU, vincristine and 
prednisone6). Currently, new possibilities are being explored in order to 
increase response, reduce side effects, and maximize therapeutic benefit. 
Combinations based on paclitaxel (PTX) are7, 8 also studied to achieve an 
increase on the therapeutic index of the drug alone. For example research on 
PTX in combination with carboplatin for ovary9 and lung cancer or with 
vinorelbine for non-small lung cancer10 have been reported and a novel 
combination of PTX, 5-FU, folinic acid and cisplatin in Phase II have 
showed promising results in patients with advanced gastric cancer. This 
combination therapy improves also the single PTX administration’s time, 
changing from three times per week to once a week getting the same 
therapeutic effect and a reduction of side effects11. On the other hand, small 
molecule chemotherapy combinations can also be used as palliative 
treatment by decreasing the symptoms and prolonging the life expectancy12; 
as well as adjuvant therapy pre- or post surgery, in order to decrease the 
tumor mass in advanced and metastatic cancer previously at the operation or 
eradicating the undetectable micro-metastasis in a post surgical treatment13. 

Recent studies have evaluated the efficacy and tolerance of PTX and 
carboplatin combination in patients with castration-resistant prostate cancer. 
It was demonstrated that this combination shown an active and well-tolerated 
regimen, which merits to be further evaluated in the context of salvage 
treatment. Genistein-topotecan combination is another example which has 
been studied to demonstrate their potential anticancer efficacy in prostate 
models. Genistein is very similar to 17β-estradiol (estrogen) which can 
compete with it and bind to estrogen receptors and topotecan is a water-
soluble chemotherapeutic agent that is a topoisomerase inhibitor derived of 
camptothecin. The combination of both agents were tested in LNCaP 
prostate cancer cells showing that this cocktail could be a very attractive 
phytotherapeutic alternative or adjuvant therapy for prostate cancer14.  

Genistein has been also combined with selenium as in 200615 selenite was 
reported as a novel chemotherapeutic agent for prostate cancer. Then, the 
combination genistein-selenium was found to have chemopreventive value 
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and/or may be adjuvant to standard therapy for prostate tumors independent 
of hormonal status16. 

3) Combinations based on endocrine therapy 

Hormone-dependent cancers such as prostate and breast carcinoma6 can be 
treated with surgery, radiotherapy, chemotherapy or any of their 
combinations in order to enhance treatment efficiency. Indeed, clinical 
studies combining endocrine and chemotherapy have been reported already 
since the 1980s 17.   

The endocrine therapy is focus in the inhibition of estrogen production (using 
estrogen receptor modulator agents, SERM6, which block the estrogen 
receptor), but the use of another therapy (for example aromatase inhibitors18) 
can improve the survival rate of a patient. 

Recently, to treat breast cancer, the combination of endocrine therapy with 
adjuvant bisphosphate therapy (zoledronic acid) has been described for bone 
protection. The estrogen suppression induced by aromatase inhibitors is 
related with the bone loss and consequently prevent future chronic disease 
and fracture19. Clinical trials were carried out to confirm the anti-tumor 
activity of zoledronic acid20. Then, a study with 1805 pre menopausal 
woman with hormone-responsive breast cancer who were treated with 
endocrine therapy was performance, and some of them were combining the 
therapy with zoledronic acid. Data shows that after 5 years of endocrine 
therapy with zoledronic, patients displayed significant prolonged disease free 
survival and relapse free survival. These positive results were attributing to 
the antimetastatic properties of zoledronic acid and highlight the importance 
of such combination20, 21. Similar results were also obtained in the CALGB 
79809 trial21. 

In prostate cancer, different type of hormone therapy have been studied to 
block testosterone and therefore, tumor growth22. The agent acting on the 
luteinizing-hormone-releasing-hormone (LH-RH) pro- or anti-LHRH 
(analogues or antagonist)23 and anti-androgens (AAs)24 are the main 
endocrine therapeutics reported. 
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In contrast with breast cancer, hormonal therapy in prostate cancer is mainly 
used for an application pre- and post radiotherapy in order to decrease the 
tumor weigh and to ensure the tumor overcome after the radiation25. A 
particular study with androgen ablation, LHRH analogues, prescribed with 
external irradiation described an increases clinical and biochemical relapse-
free survival in patients with advanced prostate cancer25. 
 
4) Combinations based on monoclonal antibodies. 

In recent years, antibody therapies have played important roles in cancer 
treatment either alone or in combination with other therapeutic agents. The 
monoclonal antibody trastuzumab (Herceptin®) is routinely used in 
combination with a chemotherapeutic agent in the treatment of HER2 breast 
cancer26. Other monoclonal antibodies such as rituximab (Rituxan®)10 or 
bevacizumab (Avastin®)27, are used for metastatic treatment in colorectal 
cancer or non small cell lung and esophageal cancer (NSCLC) and they in 
combination of chemotherapy are used for the treatment of advanced breast 
cancer28, 29. Currently, bevacizumab, the first antiangiogenic drug to be 
granted US FDA approval to market in February 2004, is combined with 5-
FU based chemotherapy, carboplatin or PTX for the treatment of metastatic 
colorectal cancer, NSCLC and metastatic breast28 cancer respectively. More 
multi-agent therapies are currently in clinical trials using the same rationale, 
targeting different molecular pathways to maximize the efficacy. Several 
antiangiogenic drugs in combination with chemotherapy and with inhibitors 
of specific molecular pathways, such as erlotinib (Tarceva), had arrived to 
Phase III. However they did not improve the patient survival30 being the lack 
of a deep understanding of the molecular pathways in cancer disease the 
main problem for these bad results. 

In summary, combination therapy plays an important role in cancer treatment 
and an improvement in the knowledge and understanding of the molecular 
pathways will allow to better solve any problem when designing 
combination therapy, reducing side effects and enhancing the anticancer 
agent’s penetration and therefore their efficacy. 
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5.1.2 Rationale to develop Polymer-based combination Therapies 

 The application of drug delivery systems (DDS) has been mainly restricted 
to the delivery of single agents; however, their use to deliver “cocktails” of 
therapeutics is still largely unexplored.31 This might seem unusual since 
combination therapy is routinely used in cancer treatment and indeed the 
combination of different therapeutic agents often improves therapeutic 
profile. In the last ten years, a number of pioneering studies have been 
carried out that highlight the suitability of different DDS to deliver drug 
combinations. In fact, Celator Technologies Inc. has developed CombiPlex® 
technology, a novel approach that identifies a synergistic ratio of two or 
more drugs and locks the ratio in a drug delivery vehicle, to deliver and 
maintain the synergistic ratio through pharmacokinetic control in patients32. 
Combiplex® has already led to two liposome-based products in Phase II 
clinical development, namely CPX-1 (irinotecan : floxuridine) for the 
treatment of colorectal cancer32 and CPX-351 (cytarabine : daunorubicin)32 
for patients diagnosed with acute myeloid leukemia (AML).Although at 
much earlier stages, the promising approaches offered by combination 
therapy has been also identified in the case of polymer-drug conjugates This 
chapter is focused on combination therapy using polymer drug conjugates. 

As it was explained before in Chapter 1, section 1.2, polymer drug 
conjugates are nanosized drug delivery systems in which the drug is 
covalently bound to a polymer carrier and the main benefits compared to the 
parent free drug are: (a) passive tumour targeting by the enhanced 
permeability and retention (EPR) effect 33, (b) decreased toxicity 34, (c) 
increased solubility in biological fluids 35 (d) ability to overpass some 
mechanisms of drug resistance 36 and (e) ability to elicit immunostimulatory 
effects 37, 38. After, the success of the first generation of polymer-drug 
conjugate are having in market and clinical trials, a second generation 
appeared based on combination therapy 39.The term “polymer-drug 
conjugates for combination therapy” involved at least four types of systems 
(Figure 5. 1). 

Type I is already in clinical trials, and families II to IV are mainly in 
preclinical status and few of them are under in vivo evaluation. 
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1. Type I: polymer-drug conjugate plus free drugs. This concept is 
developed based on the combination of a polymer-drug conjugate 
carrying a single drug administered with a low molecular weight 
drug or different types of therapy (e.g. radiotherapy). 

2. Type II: polymer-drug conjugate plus polymer-drug conjugate. In 
this second family, two different polymer-drug conjugates, each 
carrying a single therapeutic agent. 

3. Type III: single polymeric carrier carrying a combination of drugs. 
The third type involves two or more drugs attached to a single 
polymer carrier. 

4.  Type IV: polymer-directed enzyme prodrug therapy (PDEPT) and 
polymer enzyme liposome therapy (PELT). PDEPT relies on the 
combination of polymer-drug conjugate with a polymer-enzyme 
conjugate responsible of the selective release of the drug at the tumor 
site. PELT is a comparable strategy where a polymer enzyme 
conjugate is administered in combination with the liposome to 
induce its degradation allowing the drug release encapsulated inside. 

 

+
+ +

Clinical

(Phase I, II or III)

Pre-clinical

(In vitro or in vivo)

Pre-clinical

(In vivo)

Pre-clinical

(In vitro)

Type I                         Type II                        Type III                        Type IV

 

Figure 5. 1 Schematic representation of the four different types of polymer-
based combination therapy for targeted drug delivery by the EPR effect12.  

Examples of each system are described below and all of the examples are 
classified in Table 5. 1. 
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1. Type I: Polymer drug conjugate + low molecular weight drugs. 

The use of drug combinations for cancer treatment is well established 40. 
Therefore, the use of polymer-drug conjugates in combination with free 
drugs can be considered as a reasonable idea. 

Clinical Trials 

-PGA-paclitaxel + cisplatin (Phase I)/ PGA-paclitaxel + carboplatin (Phase 

III):  Clinical studies were developed with PGA-PTX conjugate, Opaxio®, in 
combination with platinates. Phase I studies have been performed in order to 
determine the toxicity, maximum tolerated dose (MTD) and 
pharmacokinetics of PGA-PTX. For instance a phase I study was assessed on 
43 patients with advanced solid tumors combining a fixed dose of cisplatin 
(75mg/m2) with increasing doses of PGA-PTX, demonstrating that this 
combination showed good activity in refractory patients 41. A second phase I 
study carried out on 22 patients with advanced solid tumors, the combination 
of Opaxio with carboplatin42 was tested and the previous three partial 
responses were observed being the MTD 225mg/ml. Besides, partial 
responses were observed in patients who had previously failed paclitaxel 
therapy. After those promising results with phase I trials, a Phase III clinical 
trial named STELLAR 3 was developed on 400 patients with NSCLC cancer 
and poor performance status to assess and compare PGA-PTX plus 
carboplatin against PTX plus carboplatin. However no improvement in 
patient´s survival was observed, although the combination containing the 
conjugate was less toxic 42. 

Furthermore, based on previous results suggesting that the anticancer activity 
of Opaxio® might be affected by estrogen levels, a new clinical trial 
developed by Cell Therapeutics Inc., is currently being developed in female 
patients with advanced NSCLC and baseline estradiol greater than 25pg/ml, 
again comparing carboplatin plus PGA-paclitaxel or plus paclitaxel 43. 
Nevertheless, since no comparisons were done against the conjugates alone, 
the added therapeutic value of such combination compared to mono-therapy 
became complicate to quantify. 



 

 

 

Table 5. 1 Examples of the four different types of polymer-based combination therapy for targeted drug delivery 

.

Status Name Family  Carrier Drugs Drug types 
In Vitro CPT-PEG-LHRH + CPT-PEG-BH3 II PEG CPT Chemotherapeutic 
    LHRH Targeting residue 
    BH3 Proapoptotic protein 
 HPMA-Dox-DEX III HPMA copolymer Dox Chemotherapeutic 
    DEX Antiinflammatory 
 PEG-poly(aspartate hydrazide) block 

Copolymer-Dox-WOR  
III PEG-poly(aspartate hydrazide) Dox 

WOR 
Chemotherapeutic 
Phosphotidylinositol-3kinase inhibitor 

Preclinal  HPMA-A GM-Dox III HPMA copolymer AGM  Endocrine therapy 
(In vivo)    Dox Chemotherapeutic 
 HPMA copolymer-Dox + HPMA copolymer 

mesochlorin e6 
II HPMA copolymer Dox 

Mscl e6 
Chemotherapeutic 
Phototherapy 

 PEG-(ZnPP) + PEG-(DAO) II PEG ZnPP Hemeoxigenase inhibitor enzyme 
    DAO oxidative chemotherapeutic type 
 PEG-NO-EPI III PEG NO signalling molecule 
    EPI Chemotherapeutic 
 CPT-PEG-LHRH-BH3 III PEG branched CPT Chemotherapeutic 
    LHRH Targeting residue 
    BH3 Proapoptotic protein 
 HPMA-TNP-470-ALN III HPAM copolymer ALN Bone targeting and antiangiogenic agent 
    TNP 470 Anti angiogenic agent 
 HPMA-PTX-ALN III HPMA copolymer PTX Chemotherapeutic 
    ALN Bone targeting and antiangiogenic agent 
 HPMA-Gem-Dox III HPMA copolymer Gem Chemotherapeutic 
    Dox Chemotherapeutic 
 HPMA copolymer-Dox + HPMA copolymer-

cathepsin B 
IV HPMA copolymer Dox 

Cathepsin B 
Chemotherapeutic 
Proteolytic enzyme 

 HPMA copolymer-Dox + HPMA copolymer-β-
lactamase 

IV HPMA copolymer Dox 
Β-lactamase 

Chemotherapeutic 
Proteolytic enzyme 

Clinical       
Phase I           PGA-PTX + cisplatin  I PGA  PTX Chemotherapeutic 
    Cisplatin Chematherapeutic 
Phase II PGA-PTX + radiotherapy I PGA  PTX Chemptherapeutic 
    Radiotherapy Radiotherapy 
Phase III PGA-PTX + carboplatin  I PGA  PTX Chemotherapeutic 
    Carboplatin  Chemotherapeutic 
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-PGA-paclitaxel + radiotherapy (Phase II): .Chemotherapy plus radiotherapy 
are a common combination of therapies in clinical practice and particularly in 
cancer therapy the use of polymer-drug conjugates combined with 
radiotherapy are been a promising approach. Polymer-drug conjugates are 
known to passively accumulate in the tumor tissue as a result of the leaky 
tumor vasculature (EPR effect) 33. As radiotherapy impacts on tumor 
vasculature magnifying the EPR effect, the combination of polymer-drug 
conjugate and radiotherapy combination is extremely interesting. An example 
of this combination in Phase II is PGA-paclitaxel and radiotherapy. First, the 
study was assessed on 21 patients with esophageal and gastric cancer and it 
was established the safety and the MTD in 80mg/m2. Besides, additional 
analysis included a complete clinical response in 33% of patients with loco-
regional disease 44. And recently, phase II studies in glioblastoma ratified the 
higher efficiency of PGA-PTX after radiotherapy45.  

Recently, Lammers et al. has demonstrated the synergistic interaction between 
radiotherapy and chemotherapy46. The study involved two polymer-drug 
conjugate, HPMA copolymer-Dox and HPMA copolymer-Gem and it was 
proved that radiotherapy could enhance the tumor accumulation of both 
anticancer agents and that selective drug delivery increased the therapeutic 
index of the active agent. 

 

2. Type II: Polymer drug conjugates + polymer-drug conjugate. 

Pre-clinical in vitro 

-CPT-PEG-LHRH + CPT-PEG-BH3:    Minko et al. developed a system 
based on the combination of the proapoptotic chemotherapeutic drug 
campthotecin (CPT), the hormone therapy with LHRH and the target BH3 
(proapoptotic peptide) domain peptide47. In order to evaluate the best 
combination, the author tested free CPT, CPT-PEG, CPT-PEG-BH3 or CPT-
PEG-LHRH conjugate and mixture of CPT-PEG-LHRH and CPT-PEG-BH3 
in human ovarian carcinoma cells. The result of this study lead to an increase 
of the proapoptotic activity when the combination CPT-PEG-LHRH plus 
CPT-PEG-BH3 was employed 48.  
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Pre-clinical in vivo 

-HPMA copolymer-DOX + HPMA copolymer-mesochlorine 6: The 
combination of HPMA copolymer-Dox with HPMA copolymer-mesochlorin 
e6 showed more activity than either conjugate alone with an enhancement of 
the activity when the antibody OV-TL16 was added for active targeting 49. It 
was demonstrated that in mice N2A neuroblastoma tumors, this combination 
lead to a total regression of the tumor. On the contrary, each single conjugate 
or free drugs were not able to achieve any effect.50. Furthermore, in a very 
recent study, the same authors demonstrated the efficacy of this strategy by 
exposing an ovarian carcinoma cell line to sequential administration of two 
polymer conjugates, namely HPMA copolymer-SOS (i.e. 2,5-bis(5-
hydroxymethyl-2-thienyl)furan), followed by HPMA copolymer-mesochlorin 
e6 monoethylenediamine and observed a synergistic effect 51. 

-PEG-(ZnPP) + PEG-(DAO): Treatment PEG-zinc protoporphyrin (ZnPP, a 
heme oxigenase inhibitor) followed by PEG-D-amino acid oxidase (DAO)/D-
proline induced a significantly inhibited tumour growth in animal models, 
contrary of each single conjugate52. 

3. Type III: Single polymeric carrier carrying a combination of drugs. 

This family has not to be confused to polymer-drug conjugate with a targeting 
residue 53. Two or more drugs covalently linked to the same polymer have a 
specific therapeutic action whereas when a targeting moiety is conjugated, it 
is only used to address the conjugate to a target site, described as a first 
polymer drug conjugate generation. 

Pre-clinical in vitro 

-HPMA-Dox-DEX: In 2008, a combination copolymer based on HPMA was 
selected to carry the anticancer agent Dox and a well-known corticosteroid 
with anti-inflammatory properties, dexamethasone (DEX)54. Using a library of 
conjugates containing the single agents, Dox and DEX or the combination of 
both, the authors studied the physicochemical properties of the newly 
generated two-drug containing copolymer, its stability in aqueous solutions of 
pH, and its release rates upon activation with carboxiesterases. No differences 
were observed between the copolymers containing only one, and the 
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copolymer containing both pharmacologically active agents, indicating that 
Dox and DEX can be co-conjugated to the same HPMA copolymer without 
affecting their release profiles54. 

-PEG-poly(aspartate hydrazide) block copolymers-Dox-WOR: In another 
example, Kwon and collaborators developed an interesting system based on 
polymer-drug conjugates and polymeric micelles. An amphiphilic polymer 
constituted by poly(ethylene glycol)-poly(aspartate hydrazide) (PEG-PAH) 
block copolymers was prepared, and Dox and the phosphatidylinositol-3 
kinase inhibitor wortmannin (WOR) were attached alone or in combination, at 
different drug ratios. Physicochemical studies confirmed that the conjugates 
assembled to form micellar structures. It was observed that the delivery of 
both agents via the micellar system reduced the amount of drug necessary to 
elicit biological activity 55. 

Pre-clinical in vivo 

- HPMA copolymer-AGM-Dox: Vicent et al. developed HPMA copolymer-
AGM-Dox, combination conjugate in which the aromatase inhibitor 
aminoglutethimide (AGM) and the chemotherapeutic agent Dox were 
simultaneously conjugated to the same polymeric backbone. AGM’s 
mechanism of action is the inhibition of aromatase enzyme, responsible for 
estrogen production, in consequence blocking estrogen activity. This 
conjugate carrying both drugs was more active than the combination of two 
polymer conjugates each carrying a single drug56-58. Preliminary mechanistic 
studies suggested that such increased activity could be due to a variety of 
factors, including drug release rate, conjugate conformation in solution and 
activation of certain molecular pathways, in particular, induction of apoptosis 
by downregulation of Bcl-2 protein 58. Recently, studies in vivo has been 
shown for this combination conjugate and it was demonstrated higher activity 
for HPMA-AGM-Dox than for HPMA-Dox in 4T1 breast cancer model59.  

- HPMA-Gem-Dox: As in the case of HPMA-AGM-Dox, when tested in vivo 
in a tumor rat model, the combination conjugate HPMA-Gemcitabine (Gem)-
Dox was more active than the combination of two polymer conjugates each 
carrying a single drug, and even more than the combination of the free drugs. 
This activity enhancement was due to a more strongly apoptosis induction 
than in the controls and a marked angiogenesis inhibition 60. 
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- PEG-NO-EPI: In cancer cells, anthracyclines such as epirubicin (EPI) and 
the diffusible messenger nitric oxide (NO) can act synergistically 61. By 
modulating the presence of reactive oxygen species (ROS), NO can controlled 
the pro- and anti-apoptotic properties of chemotherapeutic agents. It has been 
already demonstrated with PEG-EPI-NO conjugates that, in cardiomyocytes 
as well as in an in vivo mouse model, NO counterbalances EPI induced 
cardio-toxicity 61, 62. In vivo studies in a model for colon adenocarcinoma 
confirmed that the PEG-NO-EPI conjugate displayed anticancer activity but 
was less cardio-toxic 62. Conjugation of both agents onto a single chain 
ensures that they undergo the same body distribution, thus maximizing the 
benefits of this combination.  

- HPMA-TNP470-ALN/ HPMA-PTX-ALN: Taking advantage of the concept 
of combination therapy12, caplostatin has been recently combined with the 
aminobisphosphonate alendronate (ALN) (HPMA copolymer-ALN-TNP-470 
conjugate) for the treatment of calcified neoplasm and osteosarcoma. TNP-
470, a synthetic analog of fumagillin, is known to be an anti-angiogenic agent 
and an inhibitor of tumor growth63.  In this combination, ALN has the double 
function of targeting moiety (to promote bone targeting) and of 
pharmacologically active agent. In vitro evaluation confirmed its 
antiangiogenic and antitumor properties and the in vivo assessment further 
strengthened these positive results with almost complete tumor regression 
observed in a human osteosarcoma model64. In the same line, and considering 
that the efficacy of ‘metronomic chemotherapy’ (chemotherapy administered 
at low and frequent doses) can be significantly increased when administered 
in combination with anti-angiogenic drugs 65, Satchi-Fainaro et al. developed 
the successful idea of combining PTX and alendronate on the same HPMA 
polymeric carrier (HPMA-PTX-ALN conjugate). In this study, ALN showed 
clear anti-angiogenic properties in addition to its well-known bone targeting. 
This conjugate seemed to be a good candidate for the treatment of 
osteosarcomas and bone metastasis 66. 

-CPT-PEG-LHRH-BH3: Minko et al performed a branched PEG polymer 
building on the proapoptotic BH3 based PEG conjugate previously described 
and the promising data from the combination of different conjugates47. They 
synthesized a six-branched conjugate containing equimolecular amounts of 
CPT, BH3 and LHRH. In vitro studies showed that such multicomponent 
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conjugate was almost 100 times more cytotoxic than the single conjugates and 
displayed enhanced antitumor activity in vivo when compared with 
monotherapy 48. 

4. Type IV: Polymer-directed enzyme prodrug therapy (PDEPT) and 
polymer enzyme liposome therapy (PELT). 

Polymer-directed enzyme prodrug therapy is a two components strategy based 
on polymer conjugates. In this approach, a polymer-drug conjugate is 
combined with a polymer-enzyme conjugate with the aim of achieving 
selective release of the drug at the tumor site. Indeed, the linker binding the 
drug to the polymer in the first conjugate has to be designed to be degraded by 
the enzyme of the second conjugate. 

Pre-clinical in vivo 

-HPMA copolymer-Dox + HPMA copolymer-Cathepsin B:  This novel 
design is commonly named polymer enzyme prodrug therapy (PDEPT) and it 
is based on the combination of one polymer drug-conjugate (e.g. HPMA 
copolymer-Dox) which needs a polymer enzyme-conjugate (e.g. HPMA 
copolymer-Cathepsin B) to reach a drug control release in the tumor site. The 
HPMA copolymer-Dox has shown anticancer activity reaching phase II 
clinical trial. In this polymer drug-conjugate, Dox is linked to the polymer via 
an enzyme (cathepsin B) labile linker and its efficacy depended of its 
exposure to the lysosome enzyme cathepsin B, its cellular uptake rate and 
obviously to the enzyme amount. The idea of this combination is to assure the 
rate of cathepsin B and when both conjugates are present in the tumor 
lysosome, the in situ cathepsin B enhanced by the HPMA copolymer-
cathepsin B achieved the degradation of the linker and the drug release. 
Preclinical study confirmed that the HPMA-cathepsin B was able to trigger 
Dox release in animal models, with an area under the curve (AUC) almost 4 
fold higher than that obtained with HPMA copolymer-Dox alone.67 

-HPMA copolymer-Dox + HPMA copolymer-ββββ-lactamase: With the 
combination of HPMA copolymer-Dox with HPMA copolymer-β-lactamase, 
the same principle of PDEPT is developed. Here Dox is linked to HPMA via a 
GlyGly-cepholosporin linker sensitive to the non-mammalian β-lactamase but 
not to the cathepsin B 68. In this study, mice treated with the combination 
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increased survival and decreased tumor growth compared to the control. 
While non toxicity was determinate, immune response could be an issue due 
to the use of non-human protein. Polymer-protein conjugate is a well known 
strategy to prolonging circulation time of protein in blood stream and 
decreasing their immunogenicity69, which suggests that after optimization, 
PDEPT has a great therapeutic potential and further studies with catalytic 
antibodies have demonstrated its value.  

 

5.1.3 Challenges to develop the most efficient conjugated systems 
for combination therapy. 

The presence of two or more therapeutic agents on a single polymeric chain 
opens new therapeutic possibilities. In order to design a proper and efficient 
polymer-drug conjugates for combination therapy it is important to take into 
account some basic parameters: 

           (i) One of the first aims is to identify the appropriate drug 
combinations and drug ratios. Most drug combinations are based on the 
assumption that by targeting different cellular pathways there is an 
enhancement in the therapeutic benefit and a decrease in the toxicity. 
However no all the studies have reach this statement 70. It is important to 
understand that two combined drugs in the same system will release together, 
so it is important then the selection of the drugs, if they will follow the same 
internalization pathway and the optimal ratio of drug between each of them. 
In this context, as mentioned before, the Canadian company, Celator 
Technologies Inc. has developed a methodical approach to asses different 
drug ratios within their liposomal technology32, which has lead to different 
liposomal formulation already in Phase II clinical trials. It will be very 
interesting to have further studies with the similar approach applied to the 
development of combination polymer-drug conjugate. 

           (ii) The kinetics of drug(s) release. In a polymer-drug conjugate the 
drug release rate is essential to reach its activity then the linker by which the 
drug is linked should be enzymatic or chemically labile at the target site, 
furthermore stable in blood. In the 80s, HPMA-GFLG-Dox 71 was developed 
based on the study of release kinetics of different peptidyl linkers for selective 
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cleavage in the lysosomal compartment. It was observed that different linkers 
displayed different release rate and that the biodegradability of the linker 
depend on the drug carried on. Indeed, the linker –GlyGly- is non 
biodegradable when it is designed in the conjugate HPMA-GlyGly-Dox 
however when it is used in the conjugate HPMA-GlyGly-melphalan, the drug 
released is achieved 72. In addition when more than one drug is linked to the 
carrier, the drug release could be affected by the presence of the second agent 
even when both drugs were linked by the same linker.57  

           (iii) The loading capacity. This is a limited parameter in the design of a 
system, so first it is necessary to well known the polymer capacity for having 
the higher drug loading to lead a higher therapeutic effect always keeping the 
water solubility 71, 73, 74. 

           (iv) The correlation of in vitro studies with behavior in vivo. Before in 

vivo studies are performed, preliminary in vitro screening is carried out 
against cells using standard cell viability assays. However, such in vitro 
studies are usefulness due to the accumulation of the conjugates in the tumor 
tissue is via the EPR effect, which can be only observed in vivo models. 
Normally the free drug is more active in vitro than the conjugate but in vivo 

studies show opposite trends. However ethical considerations and cost are 
reasonable issues in favor of in vitro pre-screening. In the case of polymer 
based combination therapy in vitro assays are very convenient because it 
allows a comparison of the relative activity of different polymer-drug 
conjugates, as well as testing different drug ratios and gives the possibility to 
carry out experiments to determine the mechanism of action of the systems 
including their ability to trigger the drug or the blockade of specific cell 
process.  

 And, (v) finally, last issue to consider is the physico-chemical 
characterization39. Compared to small molecules, polymer-drug conjugates are 
relatively complex systems to fully characterize. Then, the attachment of a 
second drug to the same carrier complicates the matter even further. For all 
the compounds to be developed into medicines an exhaustive characterization 
is needed to understand perfectly their biological behavior. A variety of 
techniques to characterize polymer-drug conjugates include NMR, HPLC, 
GPC, DLS, SANS, etc. as it has been already mentioned in Chapter 1. 
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5.1.4 Combination Index75, 76 

The Combination Index (CI) allows calculation of n chemical interactions 
(synergism, additive effect, antagonism) at all effect levels simultaneously. 
Knowledge of mechanisms of action is not needed. The toxicity of a mixture 
depends on the toxicity of the components and how the components interact 
with each other in a dose-dependent way. 

Chemicals in a mixture may show zero interaction or may interact in two 
ways: 

• Synergistically: The effect of the combination is greater than that 
expected from the sum of their individual effects (more than an 
additive effect) 

• Antagonistically: The effect of the combination is less than that 
expected from the sum of their individual effects (less than an 
additive effect) 

Synergism and antagonism may be defined as departures (deviations) from 
zero interaction additive effect) between chemicals in a mixture (Equation 
5.1). 

[D1/ (Dm)1]+[ D2/(Dm)2] =1        (Eq. 5. 1) 

Where D1 and D 2 are the doses of drugs 1 and 2 that in combination produce 
some specific effect (i. e. 50% inhibition of luminescence) and (Dm) 1 and 
(Dm) 2 are the doses of the drugs that when applied singly also have the same 
effect (50% inhibition of luminescence). An isobologram can graphically 
display chemical interactions (Figure 5. 2), the x and y axes representing the 
doses of drugs 1 and 2. The lines of the isobologram show dose combinations 
of the two chemicals, 1 and 2, that yielded the same effect (Figure 5. 2): 

• A straight line connecting dose of chemical 1 (D1) and dose of 
chemical 2 (D2) on the respective x and y axes that yield 50% effect 
(D m, EC 50, ED 50) represents ZERO INTERACTION OR 
ADDITIVE EFFECT (Isobologram equation = 1). 
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• When the line connecting both doses lie below and to the left of the 
line of additivity (concave-up line) gives a SYNERGISM EFFECT 
(Isobologram equation < 1). 

• When the line connecting both doses lie above and to the right of the 
line of additivity (concave-down) represents an ANTAGONISM 
EFFECT (Isobologram equation > 1). 
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Additive effect
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Drug 2 ED50
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50

 

Figure 5. 2 Isobologram graph representing synergism and antagonism effect 
combining two different drugs76. 

The isobologram is a dose-oriented graphic that can give information on the 
interaction of two drugs at any effect level (EC 10, EC 20, EC 50….) but has 
some practical limitations as it is designed for two-three drugs76. Chou77 
generalizes the isobologram equation for n drugs, is independent of the 
mechanism of action but takes into account both the potency of each drug and 
combinations of these drugs and the shapes of their dose-effect curves. 

5.1.5 Paclitaxel as second chemotherapeutic drug in the 
polyacetalic system. 

Paclitaxel (Figure 5. 3) is a costly compound to develop as a drug because its 
lack of aqueous solubility and its very difficult isolation from a limited 
biological source. However and fortunately for cancer patients it was 
continued a research with paclitaxel in animal models for various tumors 
showing excellent activity against B16 Melanoma, P1534 leukemia and MX-1 
mammary xenograft78, 79. Based on this, the National Cancer Institute in 1977 
took the decision to proceed with full-scale preclinical development and 
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clinical trials of paclitaxel. In 1979 an important discovery from Dr. Susan 
Horwitz created a great interest on this drug, she discovered that paclitaxel 
promoted the assembly of tubulin into stable microtubules80 operating as 
antimitotic drug. Paclitaxel is still the only naturally occurring drug that acts 
by promoting the assembly of tubulin. 

O
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OH O
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O  

Figure 5. 3 Molecule of Paclitaxel (already mentioned at chapter 1). 

There is an interest of using PTX as anticancer agent for the treatment of 
prostate cancer81 because it was demonstrated by in vitro studies an 
enhancement in the therapeutic effect. This effect can be improved using more 
anticancer drugs as for example DES. Currently in the clinics for prostate 
cancer docetaxel (DCX), drug from the same family as PTX, is used as 
Montgomery et al82 reported using a combination of those both drugs, DES 
and DCM or by Rubenstein and collaborators  reporting an study with DES 
and PTX83. 

The present project aims to improve the therapeutic effect of the already 
reported DES-polyacetals by combining in the same carrier a second drug in 
combination, paclitaxel (endocrine + chemotherapy). and also looking at drug 
synergism. 

The design of a successful prodrug requires a reasonably quickly conversion 
after injection or infusion but chemical stability prior to administration. When 
PTX is orally administered it is poorly absorbed for its low solubility, this 
drug is mainly used iv. In PTX, chemical derivatization at either the C 2’ or 
the C 7’ position appeared to offer the best prospects for achieving the best 
prodrug. The majority of the strategies to improve the parenteral delivery 
properties of poorly soluble drugs, involve the esterification of the alcohol 
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groups at these positions of the parent compound. 2’ester derivatives of PTX 
were synthesized to increase aqueous solubility and permit paclitaxel release 
under physiological conditions.  

Paclitaxel is involved in numerous anticancer conjugates which are currently 
in advanced phase of clinical trials84. The most advanced PTX-conjugated 
system is Opaxio® (poly-L-glutamic acid (PGA)-paclitaxel conjugate 
(formerly Xyotax®) as potential treatment for ovarian, non-small cell lung,  
esophageal cancer and glioblastoma 85, 86. And for the treatment of prostate 
cancer have been studied micellar-based drugs containing paclitaxel87 or used 
as a combination of several anticancer agents, such as estramustine plus 
paclitaxel88 or docetaxel plus paclitaxel89, all of them were already mentioned 
in Chapter 1. 

 
5.2 Synthesis and Characterization of novel Paclitaxel-DES conjugates 
used for Combination Therapy. 
 
To synthesize the novel combination therapy systems the same polyacetal-
based synthesis explained in previous chapters were employed. Then, both 
durgs, PTX and DES were incorporated as a random distribution, to form tert-
polymers, or as a sequential approach to form block-co-polymers.  

Both drugs were linked into the polymer but in a different manner, DES 
forming part of the main chain of the polymer and PTX attached in the 
polymer side chain through serinol moieties.  

5.2.1. Strategy 1: Synthesis of Tert-DES-Ser-PTX (18) and Block-
DES-Ser-PTX (19). 
 Succinoylated polyacetals, Tert-DES-SerCOOH 12 and Block-DES-SerCOOH 13 

(see scheme 5. 1) were conjugated with a second drug, Paclitaxel. 

Paclitaxel was conjugated to succinoylated polyacetals Tert-DES-SerCOOH 12 
or Block-DES-SerCOOH 13 in basic conditions to obtain Tert-DES-Ser-PTX 18 
and Block-DES-Ser-PTX 19 (see scheme 5. 2); their identities were confirmed 
by 1HNMR (Figure 5. 4). Paclitaxel conjugates were stored at -20ºC.  Tert-
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DES-Ser-PTX 18 Mw 49.618 g/mol, Mw/Mn=1.5 and Block-DES-Ser-PTX 19 
Mw 47.682 g/mol, Mw/Mn=1.4 as determined by aqueous GPC. 

Tert-DES-SerCOOH  12    or    Block-DES-SerCOOH 13
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Scheme 5. 1 Synthesis of Tert-DES-SerCOOH 12 or Block-DES-Ser-COOH 13. 
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Figure 5. 4 1HNMR spectrum of Tert-DES-SerCOOH 12 or Block-DES-Ser-

COOH 13 
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Scheme 5. 2 Synthesis of Tert-DES-Ser-PTX 18 or Block-DES-Ser-PTX 19. 

The 1HNMR spectrum of Tert-DES-Ser-PTX 18 or Block-DES-Ser-PTX 19 
(Figure 5. 5) confirmed the formation of the ester bond between the DES-
SerinolNH2-polyacetal and the paclitaxel. 
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Figure 5. 5 1HNMR spectrum of Tert-DES-Ser-PTX 18 or Block-DES-Ser-
PTX 19. 
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5.2.2. Strategy 2: Synthesis of Tert-DES-Ser-PTXCOOH (21) and 
Block-DES-Ser-PTXCOOH (22). 

Polyacetals Tert-DES-SerNH2 6 and Block-DES-SerNH2 7 were conjugated with 

the succinoylated form of Paclitaxel (PTXCOOH). 

First, 2’-succinyl-paclitaxel (PTXCOOH ) 20 (Scheme 5. 3) confirmed by 
1HNMR (Figure 5. 6) was prepared according to Deutsch et al

90. PTX was 
chemically modified by succinoylation to introduce carboxylic acid functional 
groups to which the primary amines present in Tert-DES-SerNH2 6 and Block-
DES-SerNH2 7 could be bound to, using a simple carbodiimide coupling 
reaction with EDC and Sulfo-NHS to form Tert-DES-Ser-PTX 21 and Block-
DES-Ser-PTX 22, respectively (Scheme 5. 4). The conjugates with PTX were 
obtained and their identity also confirmed by 1H-NMR (Figure 5. 5) and 
signals schematically represented in Figure 5. 7.  
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Scheme 5. 3 Synthesis of 2’-succinyl-paclitaxel 20. 

Evidence for the site of esterification for 2’-succinyl-paclitaxel (PTXCOOH ) 20 
was obtained from 1HNMR (Figure 5. 6), where the  C2´ proton of the non-
succinylated paclitaxel at 4.8 ppm appeared as a doublet at 5.54 ppm. And 
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also it was possible to observe the new sets of peaks of 4 protons that 
corresponded to the succinyl molecule at 2.64 and 2.76ppm. 
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Figure 5. 6 1HNMR spectrum of 2’-succinyl-paclitaxel 20. 
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Scheme 5. 4 Synthesis of Tert-DES-Ser-PTX 21 or Block-DES-Ser-PTX 22. 
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Figure 5. 7 1HNMR spectrum with assigned signals fobtaned from Tert-DES-
Ser-PTX 21 or Block-DES-Ser-PTX 22. 

The 1HNMR spectrum of Tert-DES-Ser-PTX 21 or Block-DES-Ser-
PTX 22 (Figure 5. 7) also confirmed the formation of an ester bond between 
the DES-SerinolNH2-polyacetal and the 2´-succynil-paclitaxel 20. 

5.2.3 Synthesis and Characterization of Fluorescence-labeled 
paclitaxel conjugates, Tert-DES-Ser-PTX-OG and Block-DES-Ser-PTX-
OG and Tert-DES-Ser-PTX-Cy and Block-DES-Ser-PTX-Cy. 

5.2.3.1 Strategy 1. Synthesis of fluorescence-labeled-PTX 
conjugates I. 

a) Synthesis of Tert-DES-Ser-PTXCOOH-OGNHS (23), Block-
DES-Ser-PTXCOOH-OGNHS (24), Tert-DES-Ser-PTXCOOH-CyNHS (25) and 
Block-DES-Ser-PTXCOOH-CyNHS (26). 

As starting compound can be any of the fluorescence-labeled polyacetals 
synthesized: Tert-DES-Ser-OGNHS 8, Block-DES-Ser-OGNHS 9, Tert-DES-Ser-
CyNHS 10 or Block-DES-Ser-CyNHS 11. To these polyacetals 2’-succinyl-
paclitaxel (PTXCOOH) was conjugated through the free amine groups from the 
serinol moiety. The residue was purified by PD10 column and analyzed by 
1HNMR. The fractions with the conjugate were recollected to obtain: Tert-
DES-Ser-PTXCOOH-OGNHS 23, Block-DES-Ser-PTXCOOH-OGNHS 24 (see 
Scheme 5. 5), Tert-DES-Ser-PTXCOOH-CyNHS 25 and Block-DES-Ser-
PTXCOOH-CyNHS 26 (see Scheme 5. 6). 
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Scheme 5. 5 Synthesis of Tert-DES-Ser-PTXCOOH-OGNHS 23 or Block-DES-
Ser-PTXCOOH-OGNHS 24. 
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Scheme 5. 6 Synthesis of Tert-DES-Ser-PTXCOOH-CyNHS 25 or Block-DES-
Ser-PTXCOOH-CyNHS 26. 
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b) Synthesis of Tert-DES-Ser-PTX-OGcad (27), Block-DES-
Ser-PTX-OGcad (28), Tert-DES-Ser-PTX-Cycad (29) and Block-DES-Ser-
PTX-Cycad (30). 
 
As starting compound any of the already fluorescently-labeled polyacetal 
synthesized could be used, such as: Tert-DES-Ser-OGcad 14, Block-DES-Ser-
OGcad 15, Tert-DES-Ser-CyNH2 16 or Block-DES-Ser-CyNH2 17. To these 
polyacetals PTX was conjugated through the free carboxylic group in the 
polyacetal succinoylated serinol-side chain. The residue was washed with 
hexane and the crude was purified by LH20 column the fractions were 
analyzed by 1HNMR confirming the presence of the desired compounds, Tert-
DES-Ser-PTX-OGcad 27, Block-DES-Ser-PTX-OGcad 28 (see Scheme 5. 7), 
Tert-DES-Ser-PTX-CyNH2 29 and Block-DES-Ser-PTX-CyNH2 30 (see Scheme 
5. 8). 
 

Tert-DES-Ser-OGCad    14  or
 
Block-DES-Ser-OGCad 15

O
O

3
O

O O O
x 3

m
n

O
3

O
O

NH
O

O
O

X

1) THF, DiC, 5min 

2) HOBT 10min

3) PTX

4) DIEA
    
   16h, rt

Tert-DES-Ser-PTX-OGCad    27  or
 
Block-DES-Ser-PTX-OGCad 28

O
O

3
O

O O O
x 3

m
n

O
3

O
O

NH
O

O
O O

X
3

O
O

NH
O

X

OO
OH

HO

O

F
F

O

O

O
O

OH

HO
O

F
F O

HN
O

O

O

O

HO

O

HO
O

O

O
O

O

O
O

O

O

O

O
O

O
3

O
O

NH
O

XO

HO

O

 
Scheme 5. 7 Synthesis of Tert-DES-Ser-PTX-OGcad 27 or Block-DES-Ser-
PTX-OGcad 28. 
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Scheme 5. 8 Synthesis of Tert-DES-Ser-PTX-Cycad 29 or Block-DES-Ser-
PTX-Cycad 30. 

 
5.2.3.2 Strategy 2. Synthesis of fluorescently-labelled-PTX 

conjugates II. 
 

 a) Synthesis of OGNHS/CyNHS-labeled PTXCOOH conjugates, 
Tert-DES-Ser-PTXCOOH-OGNHS (31), Block-DES-Ser-PTXCOOH-OGNHS 
(32), Tert-DES-Ser-PTXCOOH-CyNHS (33) and Block-DES-Ser-PTXCOOH-
CyNHS (34). 
 
The conjugation of Tert-DES-Ser-PTXCOOH 21 and Block-DES-Ser-PTXCOOH 

22 with OGNHS or CyNHS were done using same procedure described for 8, 9, 
10 and 11. Then Cy5.5 or OG PTX-conjugates were obtained, Tert-DES-Ser-
PTXCOOH-OGNHS 31, Block-DES-Ser-PTXCOOH-OGNHS 32 (Scheme 5. 9), Tert-
DES-Ser-PTXCOOH-CyNHS 33 and Block-DES-Ser-PTXCOOH-CyNHS 34, 
(Scheme 5. 10). 
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Scheme 5. 9 Synthesis of Tert-DES-Ser-PTXCOOH-OGNHS 31 or Block-DES-Ser-
PTXCOOH-OGNHS 32. 
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Scheme 5. 10 Synthesis of Tert-DES-Ser-PTXCOOH-CyNHS 33 or Block-DES-
Ser-PTXCOOH-CyNHS 34. 
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The second strategy resulted to be the most efficient, thus all the compounds 
were finally obtained using this procedure. The quantification of the 
fluorescent dyes were done by fluorescent measurements using a Fluorimetry 
Victor 2 Wallac station as it was reported in Chapter 4.1 (section 4.1.5. 1 (4)). 
The physicochemical characteristic of all combination conjugates synthesized 
are summarized in Table 5. 2.  

 
 
Table 5. 2 Physico-chemical characteristics of the synthesized polyacetals for 
combination therapy. 

a.Determined by 1H NMR; b.Determined by HPLC analysis; c.Determined by 
nynhidrine assay; d.Determined by size exclusion chromatography (GPC, Viscotek 
TDATM; DES: Diethylstilbestrol, Ser: Serinol, PTX: paclitaxel, Mw: Molecular 
weight, Mw/Mn: polydispersity index). 

 

 

Conjugate 
DES 

Loadinga 
(wt%) 

Free DES 
contenta,b,c 

(wt% of 
total drug) 

PTX 

Loadinga  
(wt%) 

Free PTX 
contentb 

(wt% of 
total drug) 

                                    
Mwd 

(g/mol) 

 
Mw/Mnd 

T-DES-Ser-
PTX 21 a 

0.3± 0.3 0.1 ± 0.1 0.7 ± 0.1 0.2 ± 0.1  27.546 1.60 

T-DES-Ser-
PTX 21b 

1.5 ± 0.3 0.2 ± 0.1 0.8 ± 0.1 0.2 ± 0.1  29.331 1.60 

T-DES-Ser-
PTX 21c 

2.0 ± 0.2 0.2 ± 0.1 1.7 ± 0.1 0.4 ± 0.1  30.124 1.62 

B-DES-Ser-
PTX 22a 

0.5 ± 0.2 0.1 ± 0.1 0.7 ± 0.1 0.2 ± 0.1  27.210 1.54 

B-DES-Ser-
PTX 22b 

2.0 ± 0.2 0.2 ± 0.1 1.8 ± 0.1 0.3 ± 0.1  28.200 1.55 

B-DES-Ser-
PTX 22c 

2.1 ± 0.2 0.1 ± 0.1 2.6 ± 0.1 0.4 ± 0.1  28.230 1.55 
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5.3 Physicochemical characterization: SANS and PGSE-NMR studies. 

As it was explained already in Chapter 4.2, the size and shape of a 
nanoconjugate in solution is critical for understanding cellular internalization 
and ultimately therapeutic output. For this reason, PFG-NMR and SANS 
experiments were also performed with the polyacetal-based combination 
conjugates prior to any biological studies. 

As already reported above, in order to incorporate PTX or a fluorescent dye in 
the polyacetalic system the monomer serinol had to be incorporated in the 
polymer main chain. Therefore, the precursors with serinol bearing Fmoc-
protected amine group were analyzed by SANS in order to determine if the 
presence of serinol could influence Tert- or Block-polyacetal solution 
conformation.    

a) Influence of Serinol in polyacetal conformation.  
Polyacetals bearing Fmoc-protected serinol, Tert-DES-Ser and Block-DES-Ser 
with similar DES loading were studied. The comparison between Tert- and 
Block with and without serinol was performed to facilitate any possible 
conformational influence due to the presence of the serinol monomer (Figure 
5 8.) 
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Figure 5. 8 SANS data from (A) Tert-polymers and (B) Block-polymers in  
D2O and MeOD solutions at fixed DES content (4wt%) concentrations. (A) 
Tert-DES (blue triangles, D2O (filled), MeOD (open)); Tert-DES-Ser (black 
squares, D2O (filled), MeOD (open)); (B) Block-DES (blue triangles, D2O 
(filled), MeOD (open)); Block-DES-Ser (black square, D2O (filled), MeOD 
(open)). Error bars are shown. Where shown, lines are best model fits to the 
data as described in the text. 
  
Figure 5.8 A shows Tert-DES 1b vs. Tert-DES-Ser 4b and Figure 5.8B Block-
DES 2b vs. Block-DES-Ser 5b. In both graphs the scatter obtained from the 
conjugates in two different solvents, d-water and d-methanol, has been 
represented. 
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Figure 5. 9 (A) SANS data from Tert-DES-Ser, 3.7wt%DES and 
3.1wt%Serinol, (black squares) and block-DES-Serinol, 3.6wt%DES and 
3.2wt%Serinol, (blue triangles) polymer solutions in D2O (filled figures) and 
MeOD (open figures). (B) SANS data from Tert-DES (black squares) and 
Block-DES-Serinol (blue triangles) polymer solutions in D2O (filled figures) 
and MeOD (open figures) both at same DES concentration 4wt%. Error bars 
are shown. 
 

After serinol incorporation, when analyzed in d-methanol, the scattering 
profiles at high and low Q seemed to be identical for tert and block systems. 
However, when the polyacetals were studied in d-water, whereas the 
scattering profiles for the tert-polymers looked similar, the profiles for the 
block-polyacetals were very different. This fact confirmed that serinol induced 
a more dominant effect on solution conformation with the block distribution.  

In Figure 5. 9 A. the comparison between both polymers with serinol, Tert-

DES-Ser (black squares) and Block-DES-Ser (blue triangles) in d-water and d-
methanol is shown. To allow better comparison with the original polyacetals 
those are again represented in Figure 5. 9 B (previously reported in chapter 
4.2).  

Looking the scattering profiles in Figure 5. 9 A, in d-methanol, at high Q the 
profiles were very similar. On the other hand, at low Q differences were 
encountered which could indicate a different polymer conformation. 
However, these differences in d-water were much less pronounced if 
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compared with the polyacetals 1b and 2b (Fig 5. 9B), without serinol 
moieties. The scattering profiles were of similar shape but just a change in 
intensity was observed. These results could indicate that the serinol triggered 
a more dominant effect on the conjugate solution conformation than the fact 
of being block-or tert-.  

Summarizing, the addition of serinol dramatically changed the scattering 
shape and the differences seen between Tert-DES and Block-DES polymers 
were significantly diminished. 

b) Solution conformation of polyacetal-based combination conjugates. 

Influence of the presence of paclitaxel in DES-polyacetals. 

 
In Figure 5. 10, Tert-DES-Ser-PTX and both parent single conjugates, one 
without PTX (Tert-DES-Ser) and the other without DES (Tert-Ser-PTX) have 
been represented in order to detect and compare any effect on solution 
conformation due to the incorporation of each component.  
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Figure 5. 10 SANS data from 1wt% Tert-polymer solutions in D2O. Tert-

DES 1b (squares); Tert-DES-Ser-PTX 21a (inverted triangles); Tert-Ser-PTX 
Ia (triangles). Error bars are shown. Where shown, lines are best model fits to 
the data as described in the text. 
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Significant scattering profile differences could be observed when compare 
Tert-DES-Ser with the synthesized polyacetals containing PTX, Tert-DES-
Ser-PTX 21b and Tert-Ser-PTX Ia, both with profiles similar in shape but not 
in intensity. This fact clearly demonstrated that the incorporation of PTX is 
one of the major driven forces regarding solution conformation. 

Finally, after the analysis of scattering data coming from Guinier and Zimm 
approximations, the FISH computer modeling was used in order to get the 
conformation of the conjugates. All modeling was done in collaboration with 
Dr. Alison Paul at Cardiff University.  

Summarizing the main results of this approach it could be said that, the Tert-

Ser-PTX sample was best fitted to a thin rod of radius 10Å, length 300Å, with 
a Q-n term with n= 3.5. It was also shown that the scattering was dominated by 
a Q-4 term with the addition of PTX to Tert-DES-Ser yielding Tert-DES-Ser-
PTX; this could indicate the presence of extremely large structures that are out 
of the resolution for a SANS experiment.  The same was true for the Block-

DES-Ser-PTX. This experiment clearly confirmed that PTX is the one driven 
solution conformation of the polyacetals probably due for its high 
hydrophobicity that could induce significant differences in aggregation 
parameters. 

PGSE-NMR studies with DES-Serinol Polyacetals 

Again, as it was done for Tert-DES and Block-DES in chapter 4, the 
relative particle sizes of the conjugates were obtained by PGSE-NMR 
measurements.  Figure 5. 11 shows PGSE-NMR data for 10 mg/mL solutions 
of Tert-DES-Ser and Block-DES-Ser, plotted according to equation 4.2.3 (see 
chapter 4.II section), using the normalized signal intensity.  Presented in this 
manner, the difference in slopes indicated a clear difference in the obtained 
self-diffusion rates between the two conjugates, with the Tert-DES-Ser 
conjugate, Ds=4.50x10-11 m2 s-1 (for tert-DES, Ds=2.72x10-11 m2 s-1) moving 
more slowly than the Block-DES-Ser counterpart Ds=5.17x10-11 m2 s-1 (for 
block-DES, Ds=5.87x10-11 m2 s-1) similar to that found for the polyacetals 
without serinol (1b and 2b). The diffusion coefficient values obtained clearly 
indicated that different solution structures were formed in each case.  
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Figure 5. 11 Normalized PGSE-NMR data from 1wt% conjugate solutions at 
25ºC; Tert-DES-Ser in D2O (filled circles) and methanol (open circles); 
Block-DES-Ser in D2O (filled squares) and methanol (open squares). All of 
them are fitted to stretch diffusion coefficients. 
 
 
5.4 Biological evaluation of Polyacetal-DES-Ser-PTX combination 
conjugates1. 

5.4.1 Evaluation of DES-PTX derivatives in Breast and prostate 
human cell models 

5.4.1. 1 In vitro Efficacy of DES-Polyacetals conjugates in 
breast cancer cell models. 

Single (Tert-DES 1b and Block-DES 2b) and combination polyacetals (Tert-
DES-Ser-PTX 21a and Block-DES-Ser-PTX 22a) were tested against MDA-
MB-4355.eGFP breast cancer cells to evaluate their cytotoxic effect in this 
hormone-independent cell line (Figure 5. 12A and B). 

                                                           
1
 To Note all these experiments have been performed at Dr- Schwartz Jr. Lab. 

at CIBBIMM-Nanomedicine, Hospital Vall d’Hebron, Barcelona. 
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A. B.

 

 Figure 5. 12 In vitro MTT cell viability assays after 72 h incubation of DES 
derivatives againstMDA-MB-4355.eGFP breast cancer cell line; (A) at 
concentrations of DES equivalents; (B) at concentrations of PTX equivalents 
used. T-DES= Tert-DES 1b; B-DES= Block-DES 2b; T-DES-PTX=Tert-

DES-Ser-PTX 21a ; B-DES-PTX=Block-DES-Ser-PTX 22a. 

 

In MDA-MB-4355.eGFP cells the IC50  (Table 5. 3) value encountered for the 
combination conjugate Tert-DES-PTX was twice as lower as its Block-DES-
PTX analogue (0.006 µg/ml vs. 0.012 µg/ml PTX-equiv., respectively) and 
more importantly, even lower than the parent free drug (0.006 vs. 0.009 
µg/ml, PTX-equiv.). 

Table 5. 3 IC50 values for DES-PTX polymers compared with free PTX (n=3). 

 

5.4.1. 2 In vitro Efficacy of DES-Polyacetals conjugates in 
prostate cancer cell models. 

In vitro cell viability assays (72h MTT assay) were carried out in the two 
prostate cancer cell lines already mentioned in Chapter 4, PC-3 cells 
(androgen independent) and LNCaP cells (androgen sensitive).  
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a) In vitro efficacy of DES-PTX-polyacetals conjugates 

DES derivatives were tested in PC-3 cell line (Figure 5. 13 A,B) and LNCaP 
cells (Figure 5. 13 C,D) to obtain the in vitro efficacy of the polymers.  

 A.  B.

 

 
C. D.

 
Figure 5. 13 In vitro MTT cell viability assays of the polyacetals and of the 
single drugs, at concentrations of DES-equivalents (A, C) and at 
concentrations of PTX-equivalents (B, D), in PC3 (A, B) and in LNCaP (C, 
D) prostate cancer cells. 

 

Looking at the Figure 5. 13 and Table 5. 4 it was clearly observed that in PC3 
cell line, DES was active only at high concentrations and the DES-PTX 
combination polymers were not more active than the single PTX. In LNCaP 
was possible to observe that DES was as well active at high concentrations 
and the polyacetal Block-DES-PTX was more active than PTX alone. 
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Table 5. 4 IC50 values of the single drugs and the polyacetals at 
concentrations of DES (A, C) and at concentrations of PTX (B, D), in PC3 
(A, B) and LNCaP (C, D) prostate cancer cells. 

  A. B.

 

  C. D.

 

b) In vitro free drug combination efficacy with DES-Polyacetals. 
To optimize drug ratio for combination conjugates, MTT assays were 
performed to compare drug combinations (single drugs DES+PTX, PTX+ 
Tert-DES and PTX+ Block-DES polymers) in PC-3 and LNCaP prostate 
cancer cell lines (Figure 5. 14).  

A. B.

 
A. B.

PC3 cell line

LNCaP cell line

 

C.

C.

 
Figure 5. 14 In vitro MTT cell viability assays after 72 h of the single drugs, 
the combination of single drugs and the combination of PTX with DES-



                                                                                                                                                           Combination Therapy__ 

-281- 

 

polymers, at fixed concentration of PTX in a concentrations range of DES (A) 
and at fixed concentrations of DES in a concentrations range of PTX (B) and 
cell death percentage at concentrations indicated with an arrow in cell 
viability graphs (C). 

The experiments were carried out fixing the concentration of one of the drugs 
but trying a concentration range of the other drug. For example if PTX was 
fixed, a test with a range of DES concentrations was performed. And also 
fixing the concentration of DES and trying a test with a concentration range of 
PTX. The fixed PTX concentrations were 0.0025 and 0.005 µg/mL and the 
fixed DES concentrations were 0.3 and 3 µg/mL. 

It was showed that the best results were obtained with high DES doses in both 
prostate cancer cell lines. DES and PTX may have clear synergism in LNCaP 
cells at 3µg/mL of DES and 0.005 µg/mL of PTX. 

c) In Vitro Efficacy of PTX-polyacetal conjugates, single vs. combination. 

The compound Tert-DES-PTX was compared with PTX alone and with PTX 
conjugated only to the polymer Tert-PTX (or T-PTX), in both prostate cancer 
cell lines as Figure 5.15 shows below. 

A. B. LNCaP Cell line

V V

T-DES-PTX     T-DES-PTX     

T-PTX

DES

T-PTX

DES

VV

 

 Figure 5. 15 In vitro MTT cell viability assays of PTX, T-PTX (Tert-PTX) 
and T-DES-PTX (Tert-DES-Ser-PTX) compounds. PC-3 (A) and LNCaP (B) 
cells. Assays were performed in triplicates and mean and SEM are represented 
for each concentration point tested. 

As already described in chapter 4, the polymers and the single drug were more 
active in LNCaP cell lines, due to DES is a estrogen and this cell line presents 
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androgen-sensitivety (Table 5. 5). And more importantly, the combination 
conjugate showed a significantly greater activity then the single PTX 
conjugate in both cell lines. 

Table 5. 5 IC50 values for PTX, Tert-PTX (Tert-Ser-PTX or T-PTX) and Tert-
DES-PTX compounds in PC-3 (A) and LNCaP cell lines (B).  

A. B.
VVPTX              T-PTX       T-DES-PTX PTX              T-PTX       T-DES-PTX

 

 

d) Evaluation of the combined DES-PTX polyacetals to determine 
synergistic, additive or antagonistic effect.  

As it was mentioned in the introduction the combination index, CI indicates if 
the combination of several drugs, in this case PTX and DES, presents an 
additive, synergistic or an antagonistic effect after administration of both 
drugs using the same carrier system. CI is obtained by using the equation 5.1; 
[D1/ (Dm)1]+[ D2/(Dm)2] =1 (1 and 2 are the different drugs; D1 and D2= doses 
of the drugs that in combination produce 50% inhibition of luminescence; 
(Dm)1 and (Dm)2 correspond to the doses of the drugs when applied singly 
causing as well 50% inhibition of luminescence). 
 
In this case is represented; 1=DES and 2=PTX: 
 

• For Tert-polyacetals (Tert- represented as well as T-) conjugates: 
 D1=IC50 T-DES-Ser-PTX and D2= IC50 T-DES-Ser-PTX  
(Dm)1=IC50 T-DES and (Dm)2= IC50 T-PTX 

• For Block-polyacetals (Block- represented as well as B-) conjugates: 
 D1=IC50 B-DES-Ser-PTX and D2= IC50 B-DES-Ser-PTX  
(Dm)1=IC50 B-DES and (Dm)2= IC50 B-PTX 
 
The IC50 of T-DES and B-DES were already reported in the Table 4.1.6 
(Chapter 4.1) for PC3 and LNCaP cell lines. However, we summarize all data 
here to allow better understanding (Table 5. 6).  
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Table 5. 6 IC50 for Tert-DES, Block-DES and their analogues in combination 
with PTX (DES-PTX-poyacetalic-based) systems. 

IC50  PC-3(µµµµg/mL 
DES eq) 

PC-3(µµµµg/mL 
PTX eq) 

LNCaP(µµµµg/mL 
DES eq) 

LNCaP(µµµµg/mL 
PTX eq) 

T-DES 1b 172 - 70 - 
B-DES 2b 52 - 49 - 

T-PTX  - 0.764 - 0,152 
B-PTX - - - - 

T-DES-Ser-PTX 21b 0.019 0.258 0.015 0.020 
B-DES-Ser-PTX 22b 0.280 0.204 0.017 0.012 

 

Combined polyacetals: [IC50((Tert or Block)-DES-Ser-PTX)/ IC50((Tert or 

Block)-DES)]+[IC50((Tert or Block)-DES-Ser-PTX)/ IC50((Tert or Block)-
PTX)]. Tert-DES-Ser-PTX conjugate presents a CI=0.2 µg/mL in LNCaP and 
CI=0.4 µg/mL in PC3. Block-DES-Ser-PTX system has the same CI=0.3 
µg/mL in both cell lines. 

All the data are below one, then as it was mentioned above when the 
isobologram equation <1, the effect of combining DES and PTX in the same 
polymeric carrier yielded a clear synergistic effect against prostate cancer cell 
lines PC3 and LNCaP.  

Looking at all those experiments performed in PCa cell lines, it was possible 
to conclude that: 

- The single therapy with the Tert- and Block -DES and the free DES 
were active at concentrations higher than 3µg/mL.  

- The combination therapy with Tert- and Block-Ser-DES-PTX 
polyacetals showed similar activity than free PTX.  

- Both drugs, DES and PTX, demonstrated a synergistic effect in PCa 
cells, being the androgen-dependent LNCaP slightly more sensitive. 
In addition, Tert-DES-PTX conjugates presented slightly better 
results than the Block-DES-PTX polyacetals. 

- Tert-DES-PTX polyacetals showed higher in vitro efficacy than the 
Tert-PTX, in particular in LNCaP cells. 
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5.4.1. 3 Evaluation of cellular internalization of DES-Polyacetals by 
flow cytometry in prostate cancer cell models. 

In order to elucidate possible differences in the cell internalization mechanism 
between Tert-DES-Ser-PTX and Block-DES-Ser-PTX, flow cytometry studies 
were carried out in both prostate cancer cell models.  
 
The combination polymers labeled with OG were used for these studies (Tert-
DES-Ser-PTX-OG and Block-DES-Ser-PTX-OG) and their cellular uptake 
analyzed by flow cytometry at 37°C (total uptake) and at 4°C (cell binding) in 
order to determine whether the main cell internalization mechanism was 
energy-dependent. Figure 5. 16 shows a representative example of the 
internalization profiles of conjugates at 37°C and at 4°C in PC3 (Figure 5.16 
A and B) and LNCaP (Figure 5. 18 A and B) cell lines. The time-dependent 
profiles indicated an energy-dependent uptake mechanism and significant 
differences between 37ºC and 4ºC.  

In order to observe better the different behavior of these two conjugates have, 
both conjugates, Tert-DES-Ser-PTX-OG and its Block analogue, were 
represented in the same graph at 37ºC (Figure 5. 17). Both systems were 
rapidly internalized by the PC3 cells in a time dependent manner and through 
an energy-dependent mechanism as could be observed by the cell associated 
fluorescence differences at 4ºC and 37ºC (Figure 5. 16 B and 5. 17 B). 
However, Tert-polyacetal was much faster internalized by PC3 cells 
comparing with its Block- analog but the total uptake after 5 hours was much 
greater for the Block-DES-PTX combination conjugate. 

The same studies were carried out in LNCaP prostate cancer cells (Figure 
5.18A,B). Figure 5.19 compare uptake of both combination conjugates at 
37ºC in order to easily observe the differences between them. 
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Figure 5. 16  Flow cytometry internalization studies for the combined 
polyacetals, (A) Tert-DES-Ser-PTX  and  (B) Block-DES-Ser-PTX. Both 
conjugates done at 4ºC and at 37ºC in PC3 cell line. Graphical view of the 
geometric mean. 
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Figure 5. 17 Flow cytometry studies for Tert-DES-Ser-PTX (blue) and  
Block-DES-Ser-PTX (red) at 37ºC in PC3 cell line. 
 

In LNCaP cell line, the greatest uptake was registered with Tert-DES-PTX-
OG. But both polyacetalic systems internalize rapidly by the cells in a time 
dependent manner and also through an energy-dependent mechanism as could 
be observed by the cell associated fluorescence differences at 4ºC and 37ºC 
(Figure 5.18A and B). Contrarily to PC3 cells, The uptake of Tert-DES-PTX 
was greater than that observed for Block-DES-PTX in LNCaP cell line. 
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Figure 5. 18 Flow cytometry studies for the combined polyacetals, (A) tert-
DES-Ser-PTX   and  (B) Block-DES-Ser-PTX. Both conjugates done at 4ºC 
and at 37ºC in LNCaP cell line. 
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Figure 5. 19 Flow cytometry studies for the combined polyacetals, tert-DES-
Ser-PTX (blue) and Block-DES-Ser-PTX (red) at 37ºC in LNCaP cell line. 
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5.4.2 Evaluation of DES-polyacetals in vivo breast model 

5.4.2. 1 In vivo & ex vivo biodistribution of Tert- and Block-Ser-DES-PTX 
polymer-Cy5.5 in mice MDA-MB-435S xenografts. 

The compound tumor accumulation and whole-body biodistribution study was 
carried out in 8 week-old female (Hsd:Athymic Nude-Foxn1nu/nu) Athymic 
nude mice carrying a subcutaneous tumor in the right dorsal flank. As in 
chapter 4.3, the compounds tissue-accumulations were measured non-
invasively by means of in vivo and ex vivo fluorescence reflectance imaging 
(FLI) from the lateral, ventral and dorsal views using the IVIS® Spectrum. 
The fluorescence signal was quantified in Radiant Efficiency. In addition, at 
different end time-points, compound tissue-accumulations were determined 
by ex vivo FLI. The polyacetals loaded with both drugs, DES and PTX ,and 
labeled with Cy5.5 NIR dye, were chosen to carried out the in vivo tumor-
accumulation and whole-body biodistribution assays. 

 

In vivo studies. Tert- and Block-Ser-DES-PTX-polymer Cy5.5 tumor-
accumulation. 

In vivo Cy5.5 tumor accumulation of Tert- and Block-Ser-DES-PTX-Cy5.5 
(25a and 26a, resp.) conjugates were analyzed at 0, 3, 6 and 24 h (Figure 5.20 
and 5.21). 

Mice were scanned from the dorsal side to monitor renal excretion (A), lateral 
view for tumor accumulation (B) and ventral view for hepatic excretion (C). 
However, due to the auto fluorescence from some parts of the mouse, the 
entire animal except the subcutaneous tumor was shielded to facilitate the 
tumor-accumulation detection and quantification. 
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A.
 

B.

  

C.

 
Figure 5. 20 Whole-body biodistribution of Tert- and Block-Ser-DES-PTX-
Cy5.5 polyacetals measured by the means of in vivo FLI from the dorsal (A), 
lateral (B) and ventral (C) views using the IVIS® Spectrum. 
 

In Figure 5. 21 the tumor-accumulation of the Cy5.5-labelled polyacetals at 
different times post-treatment is represented. As control, untreated mice with 
tumor, and treated mice without tumor were used as control. It was possible to 
determine after this in vivo study that, Tert- and Block-Ser-DES-PTX-Cy5.5 
present the maximum tumor-accumulation after 3 h of polyacetals 
administration. From 3 h up to 24 h post-administration the tumor 
accumulation of the combination polymers was decreased indicating mostly 
renal excretion. 
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 A.

B.

 

Figure 5. 21 In vivo MDA-MB-435S subcutaneous tumor-accumulation after 
a single administration of 6 mg polymer/mouse of Tert-Ser-DES-PTX-Cy5.5 
25a (A, right pannel) and Block-Ser-DES-PTX-Cy5.5 26a (A, left pannel). 
(B) Cy5.5 tumor-accumulation quantified by Radiant Efficiency. 
 

 

Ex vivo studies: Tert- and Block-Ser-DES-PTX-Cy5.5 polymer tumor-
accumulation and excretion. 

 

Compound tissue-accumulation was determined by ex vivo FLI using the 
IVIS® Spectrum at 24 h after administration (Figure 5. 22).  
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C. D.
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F.E.

Heart AccumulationLung Accumulation

 
Figure 5. 22 Tissue accumulation of T-DES-PTX-Cy5.5 and B-DES-PTX-
Cy5.5 in different organs: tumor (A), liver (B), kidneys (C), spleen (D), lungs 
(E) and heart (F). The compounds are measured non-invasively by FLI and 
the fluorescence signal is quantified in Radiant Efficiency.  
 

Tert- and Block-DES-PTX-Cy5.5 polyacetals reached and accumulated in 
MDA-MB-453S subcutaneous tumors, being tumor-accumulation maximum 
at 3h post-administration. The accumulations were also detected in the liver 
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and kidneys which indicated the polyacetals excretion is throughout the 
hepatic and renal excretion routes without any sign of organ toxicity. 

Ex vivo Tert- and Block-Ser-DES-PTX-Cy5.5 tissue-accumulations had been 
detected mainly in tumor, liver and kidneys as it observed in Figure 5.22 A-C.  

Lung-accumulation was also observed for both DES-PTX polyacetals as it 
observed in Figure 5.22 E. The presence of Cy5.5 in lungs could be related 
with aggregates formed in the injection solution. The non bearing-tumor mice 
that received the DES-PTX-Cy5.5 polyacetals showed similar Cy5.5 tissue-
accumulations than the bearing-tumor mice (Figure 5. 23). 
 

 

Figure 5. 23 Tissue distribution and excretion of polyacetals with DES and 
PTX labeled with Cy5.5. The compounds are measured non-invasively by FLI 
and the fluorescence signal is quantified in Radiant Efficiency. 

Future and Ongoing Perspectives in Biological studies 

After analyzing the reported preliminary results, ongoing experiments not able 
to be concluded due to time constrains are being devoted to study the in vivo 
tolerability and therapeutic efficacy of Tert-PTX vs Tert-DES-PTX in the 
breast cancer xenograft model and in a non-invasive NOD-SCID LNCaP 
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orthotopic prostate tumor with spontaneous metastases mouse model LNCaP 
(Figure 5. 24) in order to achieve in vivo proof of concept for drug synergism 
(DES + PTX). 

 

Figure 5. 24 Illustration of ex vivo BLI images of prostatic tumor and 
spontaneous metastasis. 
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Prostate Cancer is the second worldwide leading cause of death in men over 

fifty years old
1
. Nowadays, there is no effective treatment against advanced or 

metastatic prostate cancer stages. Thus, there is a need to enhance the 

therapeutic armory in order to increase survival rates and improve prostate 

cancer patient life-style. For this reason, one of our objectives in the Polymer 

Therapeutics laboratory and in this thesis in particular, has been devoted to 

achieve an effective therapeutic platform capable to diminish prostate cancer. 

Rationally designed polymer conjugates
2-4

, as single conjugates and in 

combination therapy, have been developed for this purpose.  

During the past decade, the importance of polymeric anticancer drug delivery 

systems has exponentially grown
2-5

. The fast evolution of polymer chemistry 

and bioconjugation techniques, and a deeper understanding of cell biology 

have opened up exciting new challenges and opportunities within polymer 

therapeutics field
7
. Four main directions have to be considered to develop 

polymer conjugate 'platform technology' further: the control of the synthetic 

process, the exhaustive characterization of the conjugate architectures, the 

conquest of combination therapy and the disclosure of new therapeutic 

targets
4,6,8

. 

Following the Ringsdorf model
6
, polymer–drug conjugates are constituted by 

three components: i) the hydrophilic polymer backbone that acts as a carrier, 

ii) the linker to attach the polymer to the bioactive agent and iii) the low-

molecular weight biologically active molecule  which are covalently bound to 

the polymer through a bioresponsive linker to be delivered. The main 

objective of these conjugates is not only to enhance the solubility of the 

hydrophobic drug but also to improve drug pharmacokinetic profile at 

systemic and at cellular level; polymer conjugation increases drug plasma 

half-life and volume of distribution and it reduces clearance
7
 by the kidneys or 

liver. The polymer could also enhance drug stability in plasma if necessary. 

The ideal spacer should be stable in the blood stream but able to release the 

drug payload at an optimum rate upon arrival to the specific cellular target
7
. 

The linker becomes active by triggering drug release under certain conditions, 

such as a change in pH 
8
 or in the presence of enzymes

9
, such as esterases, 

lipases or proteases.  Clinical proof of concept for polymer drug conjugates 

has been already achieved mainly as efficient anticancer therapy, as single 

agents or as elements of combinations. They have the potential to improve 

pharmacological therapy of a variety of solid tumours mainly due to two 

mechanism: (i) Polymer-drug conjugation promotes passive tumour targeting 
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by the enhanced permeability and retention (EPR) effect
10

 and (ii) allows for 

lysosomotropic drug delivery
11

 following endocytic
12

 capture
3, 13

. 

 

Biopersistent carriers as polyethylenglycol (PEG) or N-(2-

hydroxypropyl)methacrylamide (HPMA) copolymers, can present 

disadvantages if chronic parenteral administration and/or high doses are 

required as there is the potential to generate 'lysosomal storage disease' 

syndrome. Preclinical evidence of intracellular vacuolation with certain PEG-

protein conjugates is raising awareness of the potential advantage of 

biodegradable polymers regarding safety benefit apart from the possibility to 

use higher molecular weight (Mw) carriers allowing PK optimization, by 

enhancing the enhanced permeability and retention (EPR)-mediated tumor 

targeting
13

. Biodegradable polymers such as polyacetals, firstly described by 

Heller et al. 
17

, could be considered as promising candidates to be used as 

carriers for targeted drug delivery. To allow use of polymers of higher 

molecular weight (Mw), a family of hydrolytically labile water-soluble 

polyacetals was developed
14

. These can be functionalized to allow side-chain 

conjugation to a drug payload such as doxorubicin (Dox)
15

. These polyacetals 

show a clear pH-dependent degradation being relatively stable at pH 7.4 but 

degrade significantly faster at the acidic pH that is encountered in endosomes 

and lysosomes. In vitro and in vivo studies confirmed that the polyacetals are 

not toxic, they are not taken up extensively by the liver or spleen, and are also 

long circulating
15

. Polyacetals can be prepared by a mild polymerization 

method involving the reaction of diols with divinyl ethers
17

. To move a step 

further Vicent et al.
18

 synthesized polyacetals incorporating a drug with bis-

hydroxyl functionality into the polymer backbone. Degradation of the 

polymer backbone in the acidic environment of the lysosome or the 

extracellular fluid of some tumors would then trigger drug release eliminating 

the need for a biodegradable linker. For this purpose, the tert-polymerization 

process developed for the synthesis of the functionalized polyacetals
15

 in 

combination with the drug diethylstilbestrol (DES) was used
18

. DES is a 

synthetic non-steroidal estrogen and its administration was a classic form of 

androgen deprivation therapy (ADT), standard approach to the treatment of 

advanced prostate cancer for more than 50 years. Its use, however, has been 

severely limited by a poor water solubility and wide ranging dose-related 

toxicities, mainly cardiovascular side effects and in particular 

thromboembolic events. DES can be considered as an ‘old’ treatment, 

however, is taken renewed consideration as very recently has been 
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demonstrated that low-dose DES is safe and effective in castrate-resistant 

prostate cancer (CRPC) patients when used before the initiation with 

chemotherapy
16

. Also, a combination of DES to chemotherapeutics such as 

docetaxel
17

 was found to produce a significant level of antitumor activity in 

patients with metastatic, androgen independent prostate cancer (AIPC). It was 

hypothesized that, apart from clearly reducing DES toxicity by means of the 

EPR-mediated tumor targeting, the conjugation of DES to polymeric carriers 

would more easily allow a low-dose clinical regime as a controlled release of 

the drug could be achieved for a prolonged period of time. Also, polymer 

multivalency would allow the synthesis of polymer-based combination 

conjugates that could better exploit the synergism observed already with 

taxols
17

.  

The group previous research with DES-polyacetals already demonstrated that 

DES solubility could be greatly enhanced upon polymerization. And more 

interestingly, the conjugates underwent degradation that was clearly pH-

dependent, with greater DES release at acidic pHs. Additionally, the active 

isomerism of the estrogen was maintained (trans-DES)
18

 and the conjugates 

displayed enhanced in vitro cytotoxicity compared to free DES. These tert-

DES polyacetals could therefore be defined as the first water-soluble 

anticancer polymeric drugs designed for acidic pH-triggered release where the 

drug is incorporated into the polymer mainchain
18

. However, the first 

synthesized tert-polymers had a drug content of ~4 wt% and a polydispersity 

(Mw/Mn) around 1.8.  

Therefore, the initial aim of this thesis was to synthesize a second generation 

of DES-based polyacetals with improved properties, such as narrower Mw 

distributions and higher drug loading, and more importantly to study with 

these model systems, if slight structural modifications could significantly 

influence conjugate therapeutic output. These second generation polyacetals 

were obtained using a block-co-polymer methodology (Chapter 4) and 

implementing the concept of polymer-based combination therapy (Chapter 5). 

Different factors have been carefully considered during the rational design of 

such polymer-drug conjugates 1) the selection of the drug carrier polymer; 

which will continue being PEG-polyacetals, 2) the bioresponsiveness of the 

linking chemistry within the polymer mainchin (pH responsive polyacetals) 

and in the polymer side chains (ester bonds) , and 3) the necessity to design a 

system with more controlled architecture to allow higher drug capacity 

maintaining aqueous solubility.   
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The results show in chapter 4 indicate that the conformation of both polymers, 

tert- and block-co-polymers, adopted in solution was different due to the 

amphiphilic character of the block-co-polymer, indicated by a different CAC 

in both systems. Both, tert- and block-DES, showed clear pH-dependent drug 

release kinetics, however drug release profile was significantly different with 

a slightly greater DES release and a ‘biphasic’ mode for block-DES, 

indicative of the presence of particulate assembles
18

.  

 

It has become clear that the Mw and physicochemical properties of the 

polymer is the most important driver governing biodistribution, elimination 

and metabolism of a suitable conjugate. In order to determine the Mw of the 

biodegradable or biostable conjugates the GPC technique was used. The 

conformations adopted by the conjugates in solution (size and shape) were 

studied by transmission and scanning electron microscopy (TEM and SEM, 

resp.), dynamic light scattering (DLS), pulsed-gradient spin echo NMR 

(PGSE-NMR) and small-angle neutron scattering (SANS). Using these 

techniques, marked differences were found between tert-DES and block-DES. 

TEM allowed the observation of well-defined particles of approximately 100 

nm diameter for block-DES in high abundance at a solution concentration of 3 

mg/ml and shows a more glomerular surface by using SEM. The particle size 

and the stability of the aggregates formed were confirmed by DLS 

measurements at different conjugate concentrations (1 mg/mL and 3 mg/mL, 

always above the CAC). In contrast to the block- copolymer, it was not 

possible to obtain an indication of particle size for tert-DES, by either TEM or 

DLS.   

 After exhaustive conformational studies by several techniques including 

SANS and PGSE-NMR (performed in collaboration with Dr Paul at Cardiff 

Univ.), it was demonstrated that the molecular structure of the conjugate has a 

significant effect on the solution behavior; even at the same overall acetal and 

DES contents. Clear evidence has been obtained of significantly different 

conformation in solution for both polymers. In aqueous solution tert-DES is 

present as single system with an approximate diameter of 20 nm with 2 nm 

thickness. On the other hand, for block-DES two sets of coexisting species are 

present, one with similar shape but greater length than tert-DES (100 nm 

length, 2 nm thickness) and a second and more abundant system with a disk-

like conformation (80 nm diameter, 10 nm thickness). being the second one 
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more abundant and consistent with the size of the structures observed by TEM 

and DLS, and significantly larger than the structures indicated by SANS for 

the tert-DES.  It was thus determined that, compared to the tert-DES polymer, 

block-DES presents a more stable and better defined particulate conformation 

in the nanosized range, that could present better biological behavior than the 

tert-DES in prostate cancer cell models.  

 

Next step was to explore differences in cell uptake of those conjugates in the 

most common human prostatic adenocarcinoma, LNCaP and PC3 cell lines. 

LNCaP
19

 takes its name of being isolated from a Lymph Node metastasis and 

is an androgen-dependent cell line (androgen receptor positive, AR+). PC3 

cell line
20

 was isolated from bone metastasis and it is androgen-independent 

(androgen negative, AR-). However, the original tert- or block-DES structures 

do not provide with any extra anchoring positions. Therefore, a functional 

pendent chain suitable for drug or dye conjugation was incorporated following 

the already described approach by Tomlinson et al.
14

. Then, through the novel 

serinol moieties as co-monomers, the conjugates were able to label with 

Oregon Green (OG), a fluorescent marker which allow following the 

compounds into the cells. The polyacetals now named as tert-DES-Ser-OG 

and block-DES-Ser-OG were then tested by confocal fluorescence live-cell 

imaging for better characterization of conjugates cell trafficking by avoiding 

any fluorescence artifact induced by fixation protocols. Low membrane-

associated fluorescence was observed in all cases studied at the different 

incubation times. Both conjugates enter the cell by the endocytic route as 

demonstrated by the observed co-localization with the lysosomal marker 

dextran-texas red. In general, LNCaP cells seems to have slightly higher 

uptake rate compared with PC3 cells; and even more interestingly, the 

percentage of block-DES inside the cells is greater than that observed for tert 

DES in both cell lines.  

The different release kinetics together with a greater cell uptake probably 

induced by a more spherical shape 
21-24

, yielded to an enhancement in 

cytotoxicity for block-DES in LNCaP and PC3 cell lines. Not only monomer 

arrangement but also DES loading showed a significant effect on polyacetal 

cytotoxicity.  

DES-polyacetal molecular mechanism of action was also evaluated trying to 

understand if the differences in polymer solution conformation that induced 

differences in conjugate cytotoxic activity could be also explained by a 
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change in cell signaling pathway (cell death and cell cycle mechanisms). 

These experiments were carried out in collaboration with a postdoctoral 

researcher in our lab, Dr Ana Armiñán.  

Cell studies based in cytometry and western blotting assays demonstrated that 

both polymer behave similarly following akt pathway in both prostate cancer 

cell lines although the property of being hormono sensitive for LNCaP makes 

slightly different results which better results for the block-DES and with 

higher drug loading because of the hormonal agent DES. Nowadays further 

experiments are taking place in order to elucidate if DES provokes autophagy 

in the cells. 

In order to achieve in vivo proof of concept of our promising in vitro results, 

whole body biodistribution on a tumor xenograft mice model (looking at 

tumor accumulation by the EPR effect) and preliminary toxicological studies 

in balb/c mice were also performed.  

The in vivo experiments were carried out by our collaborators from the 

CIBBIMM Nanomedicine lab. at Vall d’Hebron Hospital in Barcelona. In a 

first stage, after i.v. administration through mouse tail vein, polymer toxicity 

was studied. The results showed that a single i.v. dose of 10 mg/kg of DES 

polymers did not induce any significant loss of weight in mice and they did 

not alter the blood levels of 10 different biological parameters regarding 

kidney, liver and muscle functionality (BILT, total proteins, AST, ALT, CK, 

LDH, Alb, creatinin and urea). DES-polyacetals were then labeled through the 

serinol moieties with the NIR dye Cy5.5 allowing in vivo monitoring by non-

invasive optical imaging techniques, by means of IVIS
®
 Spectrum equipment.  

In order to determine the required dose for the biodistribution experiments, 

Tert-DES-Ser-Cy was i.v. administered once weekly at different doses in a 

HT-29 colon tumor xenograft mouse model. As expected, Tert-DES-Ser-Cy 

was accumulated into tumor in a dose-dependent manner, accumulation in 

tumor was directly correlated with the dose given, observing better tumor 

accumulation with greater doses 
25

. A polyacetal concentration of 7 mg/kg 

was the selected dose to proceed with the animal biodistribution and 

anticancer activity experiments. At 7mg/Kg, tumor accumulation started after 

6 h post-treatment, being maximum after 4-5 days and maintained for up to 17 

days post-injection. Apart from compound accumulation in tumors, tert-DES 

was also mainly detected in kidney and liver. Thus, the polymer small 

fragments might be being eliminated by the renal excretory system and the 

large fragments/aggregates through hepatic excretion, 
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 Our collaborators in Barcelona also established a PC3 prostate cancer 

xenograft mouse model in order to evaluate the anticancer activity of the 

DES-polyacetal synthesized. However, non-significant activity was observed 

in any case study. DES-polyacetals as single agents would need greater dose 

or more frequent dose scheduled than that given (not clinically relevant), or 

more interestingly an advanced designed using the concept of polymer-based 

combination therapy.  

Therefore, in a second part of the thesis (Chapter 5) the efforts were devoted 

to identify synergistic drug combinations and design combination polyacetals 

that would allow a potential clinical candidate for prostate cancer treatment. 

Due to previously reported data
17

 DES-Taxol combinations showed clinical 

relevance in advanced prostate cancer patients. Therefore, paclitaxe l was 

selected as chemotherapeutic drug to be combined with our DES endocrine 

therapy. 

One of the advantages of using combination therapy
26

 is on one side 

synergism as both drugs when are conjugated within the same polymer carrier 

will arrive simultaneously to the same damaged cell modulating key signaling 

pathways at the same time. Also, drug combination could diminish the 

development of drug resistance
27

 as a pathogen or tumor has less resistance to 

multiple drugs simultaneously. Other advantage is the possibility of increase 

drug loading to lead higher therapeutic effect, although it is necessary to know 

well the polymer capacity and keeping the water solubility 
28-30

 of the system. 

Other parameters to be taken into account in combination design are: drug 

ratio, drug release kinetics as the presence of a second drug in the same 

carriers could dramatically change drug release kinetics and therefore 

therapeutic output
31  

To synthesize DES-PTX-polyacetal combination conjugates, serinol moieties 

were used again as co-monomer in order to offer the required new anchoring 

positions to incorporate PTX, as in the case of Cy5.5 or OG dyes. Thus, the 

structures of these novel systems consisted on a drug, DES, incorporated in 

the polymer main-chain and a second drug, PTX, conjugated to the polymer 

side-chains, yielding tert-DES-Ser-PTX and block-DES-Ser-PTX 

combination conjugates. 

The conjugates were synthesized and fully characterized before any biological 

evaluation. As for the single conjugates, solution conformation for the 

combination conjugates were also studied by SANS, in collaboration with Dr. 

Alison Paul at Cardiff University. In a first stage model Fmoc-protected 
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serinol conjugates were compared showing that the differences encountered 

for the single Tert- vs. Block- polyacetals were then diminished. This effect 

was even more dramatic when PTX was introduced. The results showed that 

the single Tert-PTX conjugate solution conformation corresponded to a thin 

rod of radius 10Å, length 300Å, with a Q-n term with n= 3.5.  When PTX was 

added to Tert-DES the scattering was dominated by a Q-4 term, indicating the 

presence of extremely large structures that were outside of the resolution of 

the SANS experiment. This experiment clearly showed that the PTX 

dominated the structures formed in solution and in that case monomer 

arrangement was not a major event.   

 In vitro efficacy assays of these synthesized combined conjugates are tested 

in breast cancer and in hormone-dependent and -independent prostate cancer 

cell lines looking at cell viability to determine the half maximal inhibitory 

concentration (IC50) values. It was demonstrated that the combination 

conjugates present lower IC50 than the conjugate with only one drug (DES) in 

the breast and both prostate human cells. 

In MDA-MB-4355.eGFP cells the IC50 value for the combination conjugate 

Tert-DES-PTX was twice as lower as its Block-DES-PTX analogue (0.006 

g/ml vs. 0.012 g/ml PTX-equiv., respectively) and more importantly, even 

lower than the parent free drug (0.006 vs. 0.009 g/ml, PTX-equiv.). 

In PC3, the polyacetal Tert-DES-PTX seemed to be more active than PTX 

alone and slightly more than the Block-analogue conjugated. Contrary, in the 

LNCaP cell line, the polyacetal Block-DES-PTX was more active than PTX 

alone and that its analogue tert-DES.  

The expected synergism was obtained when both drugs, DES and PTX, are 

combined in the same system and it was found the same effect in  both 

prostate cancer cell lines. Tert-DES-PTX presents a CI=0.24g/mL in LNCaP 

and CI=0.45g/mL in PC3. Block-DES-PTX has the same CI=0.37g/mL in 

both cell lines. 

In order to elucidate possible differences in the cell internalization mechanism 

between both combination conjugates, Tert-DES-Ser-PTX and Block-DES-

Ser-PTX, flow cytometry studies were carried out in both prostate cancer cell 

lines. It was found that in PC3 cell line, Block-polyacetal showed greater 

uptake after 5 hours incubation, on the contrary in LNCaP cell lines, the 

greatest uptake was registered with Tert-DES-PTX-OG. Therefore, co 
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significant differences could be directly associated to the conjugate itself 

ratifying the solution conformation results obtained by SANS. 

Whole body in vivo preliminary biodistribution studies with cy5.5. labeled 

combination conjugates were performed in a MDA-MB-435Luc human breast 

cancer athymic nude mouse model by means of non-invasive optical imaging 

techniques. These experiments were also performance in Dr. Schwartz group 

in Barcelona. In vivo and ex vivo tumour-accumulation and whole-body tissue 

biodistribution were carried out based on the acquisition of fluorescence 

emission of the fluorophore Cy5.5 conjugated to the DES-PTX-polyacetals, as 

well as by HPLC quantification of tissue Cy5.5 levels. These studies showed 

that tumor-accumulation was greater at 3h, decreasing for up to 24 h post-

administration. The accumulations were also detected in the liver and kidneys, 

which indicated the polyacetals excretion is throughout the hepatic and renal 

excretion routes without any sign of organ toxicity. The small amount of lung-

accumulation observed could be related with aggregates formed in the 

injection solution. It was observed that both combined conjugates, Tert-

polymer and Block-polymer present similar results in tumor and accumulation 

assays, thus and a bit faster synthesis, Tert-DES-PTX-polyacetal combination 

conjugate was selected to be further evaluated in orthotopic prostate cancer 

animal models.  

In vivo tolerability and therapeutic efficacy studies of Tert-DES-PTX-

polyacetal combination conjugate are currently being performed at 

CIBBIMM-Nanomedicine in an LNCaP orthotopic prostate tumor mouse 

model. The combination conjugate will be compared regarding anticancer 

activity with Tert-PTX-polyacetal single conjugate. If the results are 

successful, the conjugates will be also evaluated in a non-invasive 

intraprostatic PC3 Tumor and Metastasis Growth Studies In Vivo and Ex Vivo 

looking at the prostate Primary Tumor, liver, pancreas and lymph nodes is 

being also studying in Schwartz group at Vall d’Hebron Hospital, Barcelona 

by Dr. Ibane Abasolo, Dr. Yolanda Fernández. 

Our results and others already reported 
18,21, 22, 32-34

 ratify the impact of 

conjugate solution properties and combination therapy on biological behavior 

and therefore nanomedicine therapeutic output. 
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1. DES-polyacetal systems as single conjugates.  

• A novel family of DES-polyacetals, Block-DES, with greater drug 
loading and lower polydispersity than the parent first generation 
(Tert-DES) was developed. Both polymers were exhaustively 
characterized and evaluated not only from a physic-chemical point of 
view but also looking at biophysical characterization parameters. 
Block-DES has an amphiphilic character and therefore different 
conformation in solution. 

• DES-polyacetals showed a clear pH-dependent degradation, with 
faster DES release under acidic environment. Block-DES showed 
faster rate of DES release at acidic pH than the Tert-DES and more 
importantly a bimodal drug release kinetics, indicating a different 
solution conformation. Both systems presented plasma stability. 

• Multiple CACs were found for both polymers, being much lower for 
Block-DES than for Tert-DES (i.e first Tert-DES 1b CAC= 0.7 
mg/mL; first Block-DES 2b CAC= 0.1 mg/mL). PGSE-NMR studies 
indicated a clear difference in the obtained self-diffusion rates 
between the two conjugates, with the Tert-DES conjugate 
(Ds=2.72x10-11 m2 s-1) moving more slowly than the Block-DES 
counterpart (Ds=5.87x10-11 m2 s-1) indicating clearly that different 
solution structures were formed in each case. Other physicochemical 
techniques such as DLS, TEM, SEM and SANS were performed in 
aqueous solution for both polyacetals. SANS experiments 
demonstrated that Tert-DES was present as single system with an 
approximate diameter of 20 nm with 2 nm thickness. Block-DES is 
characterized by two sets of coexisting species; one system is 100 nm 
length, 2 nm thickness (similar shape but greater length than Tert-

DES) and a second and more abundant system of 80 nm diameter, 10 
nm thickness, a disk-like conformation. The second one more 
abundant and consistent with the size of the structures observed by 
TEM and DLS, and significantly larger than the structures indicated 
by SANS for the Tert-DES. 

• Block-DES displayed greater cytotoxicity in PC3 and LNCaP human 
prostate cancer cells than the Tert-DES.           
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• An additional monomer, serinol, was incorporated into the main chain 
of the polyacetal carrier (described first by Tomlinson et al) in order 
to allow a functional pendent chain suitable for drug or dye 
conjugation. The DES-polyacetals were conjugated to Oregon Green 
for Cell Trafficking (Tert-DES-Ser-OG vs. Block-DES-Ser-OG), to 
Cyane 5.5 for in vivo assays (yielding Tert-DES-Ser-Cy5.5 vs. Block-
DES-Ser-Cy5.5) and finally conjugated to Paclitaxel as second 
anticancer drug chosen to form systems for Combination Therapy 
(yielding Tert-DES-Ser-PTX vs. Block-DES-Ser-PTX).  

• Both conjugates, Tert-DES-Ser-OG vs. Block-DES-Ser-OG, enter the 
cell by the endocytic route as demonstrated the confocal studies, 
although the percentage of Block-DES inside the cells is greater than 
that observed for tert-DES in both cell lines. 

• Molecular mechanism studies in prostate cancer cell lines reflected a 
clear dependence on the cell line studied. DES derivatives clearly 
modulates AKT signaling pathway triggering cell death through 
apoptotis (Bcl-2, Bax) and autophagy (LC3 mainly with Block-DES 
in PC3 cells), and also they could influenced cell cycle (p21 
modulation) arresting cells in different stages depending on the cell 
line used. 

• Preliminary in vivo studies were carried out in a xenograft model with 
human colon cancer cells, which showed no toxicity in vivo for DES-
polyacetals up to 10 mg/kg and a clear tumour accumulation up to 17 
days for Tert-DES. Non-significant antitumor activity was observed 
in a PC3 prostate cancer xenograft model with the single conjugates, 
therefore the combination therapy approach was followed. 

 

2. Design of polyacetal-based combination therapy  

• Polyacetal-based combination conjugates were developed based of 
the single DES-polyacetals already synthesized and adding the 
chemotherapeutic Paclitaxel.  

• Those combination conjugates were also fluorescent labelled with OG 
(Tert-and Block- DES-Ser-PTX-OG) and with Cy5.5 (Tert- and 
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Block- DES-Ser-PTX-Cy5.5) to carried out the different in vitro (cell 
trafficking) and in vivo (biodistribution, tumour accumulation) assays 
respectively. 

• In order to study polymer conformation, PGSE-NMR and SANS 
studies were carried out in those conjugates when serinol and then 
paclitaxel were added. Polymers with serinol modified its structure, 
obtaining self-diffusion rates between the two conjugates, with the 
Tert-DES-Serinol conjugate, Ds=4.50x10-11 m2s-1 (without serinol, Ds 

for Tert-DES was 2.72x10-11 m2 s-1) moving more slowly than the 
Block-DES-Serinol counterpart Ds=5.17x10-11 m2 s-1 (for Block-DES, 
Ds was 5.87x10-11 m2s-1) similar data observed for the parent 
polyacetals. Those values in the diffusion coefficient clearly indicate 
that different solution structures occurred in each case. 

• SANS studies confirmed that when serinol was incorporated into the 
system, and as well the drug Paclitaxel, a dominant effect on the 
polymer structure was triggered. Tert-Ser-PTX sample was best fitted 
to a thin rod of radius 10Å, length 300Å, with a Q-n term with n= 3.5. 
When PTX was added to Tert-DES-Ser forming Tert-DES-Ser-PTX, 
the scattering was dominated by a Q-4 term, indicating the presence of 
extremely large structures that were outside of the resolution of the 
SANS experiment. This experiment clearly showed that the PTX 
drove solution conformation. 

• The combination polyacetals were tested in vitro and preliminary in 

vivo in breast and prostate cancer models.   

• In vitro efficacy assays were performed in breast and prostate cancer 
cell lines and showed clear synergism (CI>1) when both drugs,  DES 
and PTX, were combined in the same system as Tert- or Block- 

architectures. In vitro breast cancer cells MDA-MB-453S were used 
and a greater cytotoxicity was found for the DES-PTX polyacetals 
when compared to free PTX. In PC3 androgen-independent prostate 
cancer cells, the polyacetal Tert-DES-Ser-PTX polyacetal seemed to 
be more active than PTX alone. On the contrary, in the LNCaP 
androgen-dependent cell line, Block-DES-Ser-PTX showed greater 
cytotoxicity than free PTX alone or PTX-polyacetal conjugate.  
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• Non-significant differences regarding cell internalization were 
observed with the Tert- vs. Block- combination conjugates; however 
the uptake kinetics was greatly influenced by the cell line used.  

• When the combination polymers where conjugated to Cy5.5, in vivo 
biodistribution studies showed tumor accumulation being maximum 
at 3h post-administration. Accumulation in the liver and kidneys were 
as well detected indicating that the polyacetals excretion is throughout 
the hepatic and renal excretion routes without any sign of organ 
toxicity. 

• In vivo tolerability and therapeutic efficacy of all the systems are on 
ongoing studies using orthotopic prostate cancer (LNCaP androgen-
dependent PCa cells). And as well, studies on non-invasive 
intraprostatic PC3 Tumor and Metastasis Growth Studies in vivo and 
ex vivo are being carrying out to corroborate the preliminary data 
already obtained. 

 

Collaborations 

- PGSE-NMR studies have been performances in collaboration with Alison 
Paul, PhD and Peter Griffiths, PhD at Cardiff University. 

- SANS studies have been performances in collaboration with Alison Paul, 
PhD from Cardiff University at ILL in Grenoble (France) and at ISIS in 
Oxford (UK). 

 - In vivo studies have been carried out by our collaborators Ibane Abasolo, 
PhD and Yolanda Fenandez, PhD from Dr Schwartz Jr. group at Vall 
d’Hebron Hospital in Barcelona. 

-Molecular mechanisms in our lab at CIPF in collaboration with Dr Ana 
Armiñán. 
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Appendix 1  

DEFINITION AND CLASSIFICATION OF TNM STAGING  

-Supporting information of Chapter 1. Introduction: Prostate Cancer 

Stage is a term used to define the size and scope of a cancer. The goal is to 

diagnose the cancer as early as possible, before it has spread beyond the 

prostate region.  Different tests are carried out in order to establish tumor 

progression stage by Digital Rectal Exam (DRE), radiological studies (X-rays, 

CT scans, bone scans, MRI scan or other imaging tests (See Glossary) and 

pathology (inspection of tumor specimens under a microscope after surgery). 

1) Evaluation of the Tumor (T) 

Stage TX: No available information on primary tumor. 

Stage T0: No evidence of primary tumor. 

Stage Tis: Carcinoma in situ. 

Stage T1: The tumor is less than 2cm in diameter, cannot be felt. Stage T1a 

and T1b tumors are diagnosed after surgery to improve urine flow. The part of 

the prostate removed is found to contain cancer. T1c tumors are usually 

diagnosed because the PSA is elevated, prompting a biopsy.  

 

Stage T2: T2 tumors can be felt, it measures between 2-4cm of diameter, but 

are confined to the prostate gland. T2a tumors involve less than one half of 

one lobe of the prostate. T2b tumors involve more than one half of one lobe. 

T2c tumors involve both lobes. 

 

Stage T3: The tumor is greater than 4cm in diameter. T3 tumors extend 

beyond the prostate gland. T3a tumors extend beyond the prostate capsule. 

T3b tumors extend into the seminal vesicle. Patients who are found to have 

disease beyond the prostate after surgery are said to have “surgical T3 disease 

“or “pathologic T3 disease”.  

Stage is what the doctor feels (DRE), or sees (scans). It tells us how far along 

the growth pathway the cancer has progressed. 
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Stage T4: The tumor has spread or invaded tissues next to the prostate (other 

than the seminal vesicles). T4 is classificated as T4a and T4b depending on 

structures involved and resectable (T4a) versus unresectable (T4b) nature 

lesion. T4a tumor has spread to the neck of the bladder, the external sphincter 

(muscles that help control urination), or the rectum. T4b tumor has spread to 

the floor or/and he wall of the pelvis. 

 

2) Evaluation of the regional lymph nodes (N) 

 

NX: cannot evaluate the regional lymph nodes. 

N0:  cancer has not spread to any lymph nodes. 

N1: cancer has spread to a single regional lymph node (inside the pelvis), no 

larger than 2 cm of diameter. 

N2: cancer has spread to one or more regional lymph nodes and it is between 

2-6 cm in diameter.  

N3: Cancer has spread to a lymph node and is larger than 6 cm. 

 

3) Evaluation of distant metastasis (M) 

 

MX: cannot evaluate distant metastasis. 

M0: The cancer has not metastasized beyond the regional lymph nodes. 

M1: The cancer has metastasized to distant lymph nodes, outside of the 

pelvis,bones or other distant organs such as lung, liver or brain. M1a cancer 

has spread to lymph nodes beyond the regional ones. M1b cancer has spread 

to bone. M1c cancer has spread to other sites (regardless of bone 

involvement). 

 

 

 

 

 

 

 

 



 

-326- 

 

 

 

  



  

Appendix 2 

 OBJECTIVES, METHODOLOGY AND 
CONCLUSIONS OF THE PROJECT IN 

SPANISH 
 



           Appendix 2                                                                                                                                                                                                                          

-328- 

 

INDICE 

1. Objetivos................................................................................................... 329 
2. Metodología .............................................................................................. 332 

2.1 Instrumentos ....................................................................................... 332 
2.2 Materiales ........................................................................................... 333 
2.3 Síntesis de los poliacetales con DES y poliacetales para terapia de 
combinación con DES y PTX. .................................................................. 335 

2.3.1 Síntesis del Terpolímero (o Ter-DES) (1). .................................. 335 
2.3.2 Sintesis del Bloque-co-polimero (o Block-DES) (2). .................. 336 
2.3.3 Síntesis de protección del Serinol con el grupo Fmoc (Fmoc-
Serinol) (3). ........................................................................................... 338 
2.3.4 Síntesis de poliacetales con DES y Serinol, Tert-DES-Serinol (o 
Tert-DES-Ser) (4) y Bloque-DES-serinol (o Bloque-DES-Ser) ........... 338 
2.3.5 Desprotección del grupo -Fmoc de los poliacetales, Ter-DES-
SerNH2 (6) y Block-DES-SerNH2

2 (7). ..................................................... 338 
2.3.6 Síntesis de conjugados marcados fluorescentemente con Oregon 
green (OG) o con Cyane 5.5. ................................................................ 339 
2.3.7 Síntesis de Ter-DES-Ser-PTXCOOH (21) y Bloque-DES-Ser-

PTXCOOH (22). ....................................................................................... 340 
2.3.8 Síntesis de conjugados con PTX marcados con OG ó Cyane5.5. 340 

2.4 Estudios de 1H-RMN. ......................................................................... 341 
2.5 Técnica de GPC. ................................................................................. 341 
2.6 Determinación del contenido de fármaco libre y total en los conjugados 
con DES. ................................................................................................... 341 
2.7 Determinación de la Concentración Micelar Crítica (CMC) de los 
polímeros conjugados. .............................................................................. 342 
2.8 Estudios de dispersión dinámica de luz (Dynamic Light Scattering 
(DLS)). ..................................................................................................... 343 
2.9 Técnicas de microscopía de transmisión y muestreo electrónicas  
(Transmission and Scanning electron microscopy (TEM) and (SEM)). .. 343 
2.10 Estudios de dispersion de neutrones de ángulo pequeño   (Small Angle 
Neutron Scattering (SANS)). .................................................................... 343 
2.11 Estudios de degradación dependientes de pH en disolución tampón.
 .................................................................................................................. 344 
2.12 Estabilidad en Plasma ....................................................................... 344 
2.13 Viabilidad celular en células de cáncer de próstata, LNCaP y PC3. 344 
2.14 Biodistribution y acumulación en el tumor y distintos órganos de los 
conjugados poliacetalicos marcados con Cyane5.5 en modelos xenografos 
de ratón. .................................................................................................... 346 

3.Conclusiones.............................................................................................. 347 
 



                                                                                                                                                                              Objetivos____                                 

-329- 

 

1. OBJETIVOS DE LA INVESTIGACIÓN 

Ésta tesis se centra en el diseño de nuevos conjugados polímero-fármaco 
sensibles a pH para usarse como agentes únicos o en terapia de combinación 
para el tratamiento del cáncer hormono-dependiente, en particular cáncer de 
próstata. Éstos conjugados se basan en sístemas poliacetalicos previamente 
desarrollados en los que el fármaco forma parte de la cadena principal del 
polímero.  

En el microambiente tumoral o después de la absorción celular por 
endocitosis, el descenso del pH encontrado en el compartimiento ácido del 
endosoma lisosomal, desencadena la degradación del polímero y como 
consecuencia la liberación del fármaco que se difunde fuera en el citosol. 

 En el diseño de nuestros sistemas, la necesidad de optimizar la química de 
enlace para unir el fármaco al polímero está por lo tanto superada, ya que en 
éstos sistemas poliacetalicos el fármaco forma parte de la cadena principal. El 
dietilestilbestrol (DES), estrógeno sintético que fue utilizado como fármaco y 
es clínicamente relevante en el tratamiento del cáncer de próstata, posee una 
funcionalidad adecuada (grupos dioles) para llevar a cabo dicha incorporación 
a la cadena polímerica base. Una clara degradación dependiente del pH y 
ensayos de prueba de concepto in vitro se obtuvieron con la primera 
generación de poliacetales. Sin embargo presentaron algunas limitaciones, que 
incluyen; una estructura no única, heterogeneidad en la composición, carga de 
fármaco bajo y una alta polidispersidad, afectando el comportamiento 
farmacológico y reproducibilidad de los resultados terapéuticos de este 
nanoconjugado basado en polímero.  

Por lo tanto, el objetivo principal de esta tesis es avanzar un paso más hacia 
una segunda generación de conjugados poliacetalicos para el tratamiento del 
cáncer de próstata como agentes únicos, modificando y entendiendo la 
química del polímero/ conformación en disolución (capítulo 4) y como 
conjugados de combinación a base de polímero (capítulo 5) con el fin de 
lograr un posible candidato clínico. 

En primer lugar, se realizará la síntesis controlada de Poliacetales basada en 
DES con propiedades mejoradas, como distribuciones de Mw más estrechas y 
mayor capacidad de carga de fármaco. El principal interés se centrará en la 
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comprensión de si ligeras modificaciones estructurales podrían influir 
significativamente en el rendimiento del conjugado terapéutico. Ésta segunda 
generación de poliacetales se obtendrá utilizando una metodología de bloque-
co-polímero.  

Ter-DES (primera generación) y bloque-DES (segunda generación) serán 
entonces probados en modelos celulares de cáncer de próstata seleccionados. 
Una vez evaluados biológicamente y con el fin de explicar las diferencias 
encontradas, se llevará a cabo una caracterización exhaustiva de ambos 
sistemas poliacetalicos mediante diferentes técnicas, tales como: microscopía 
electrónica de transmisión (TEM), dispersión de la luz dinámica (DLS), 
estudios de difusión de resonancia magnética nuclear (PGSE-RMN) y 
dispersión de neutrones de pequeño ángulo (SANS), utilizadas para la 
comprensión de la conformación en disolución de los polímeros conjugados a 
buen efecto (capítulo 4.II). Esto se hará en colaboración con el grupo de la Dr. 
Alison Paul y el Dr. Peter Griffiths en la Universidad de Cardiff, Reino 
Unido. 

También se realizará una caracterización biofísica observando internalización 
celular, el mecanismo molecular del ter - vs bloque- (en colaboración con Dr. 
Ana Armiñán de nuestro laboratorio) y finalmente se desarrollarán estudios de 
prueba de concepto in vivo (en colaboración con el grupo del Dr Schwartz Jr., 
Dr. Ibane Abasolo y Dr. Yolanda Fernández, del departamento de 
Nanomedicina CIBBIM en el Hospital Vall d ' Hebron, Barcelona) (capítulo 
4.III). 

Debido a la importancia de la terapia de combinación, el capítulo 5 se centrará 
en mejorar las construcciones poliacetalicas mediante la aplicación de esta 
estrategia analizando el posible sinergismo de fármacos basado en la 
administración simultánea de endocrino + quimioterapia. Para lograrlo, un 
monómero adicional tendrá que ser sintetizado e incorporado en el polímero 
ofreciendo la posibilidad de un nuevo punto de anclaje y así conjugar un 
segundo fármaco (paclitaxel es el que se seleccionó para ser combinado con 
DES). Como se hizo para los conjugados individuales, los sistemas de 
combinación también serán caracterizados de manera exhaustiva, 
fisicoquímica y biofísicamente, junto con estudios preliminares in vivo que 
incluirán ensayos de biodistribución, acumulación de tumor y actividad 
antitumoral de los poliacetales.  
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Por último, los capítulos 6 y 7 proporcionarán una discusión general y las 
conclusiones respectivamente sobre los principales resultados obtenidos en 
este proyecto. 
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2. METODOLOGÍA  

 
2.1 Instrumentos 

 
Los análisis monodimensionales por resonancia magnética nuclear 

(RMN) 1H-RMN, 13C-RMN y los experimentos de dos dimensiones DOSY 
(Diffusion Ordered SpectroscopY)  y COSY (Correlated Spectroscopy) han 
sido realizados con un espectrómetro Bruker Advance AC-300 (300MHz). 
Los datos obtenidos han sido procesados utilizando el programa Topspin 
(Bruker GmbH, Karlsruhe, Alemania).  

Se utilizó cromatografía líquida de alta eficacia en fase reversa (RP-
HPLC, reverse phase-high performance liquid chromatography) con un 
cromatógrafo para el análisis de muestras Shimadzu con auto-muestreador 
717plus. La columna cromatográfica  utilizada fue una RP-18 (125 x 4 mm, 5 
µm), LIChroCART®, Cat.1.50943 LiChrospher® 100, obtenida en Waters 
Ltd (Hertfordshire, Reino Unido). Las fases móviles utilizados fueron filtradas 
previamente a través de membranas de 0.45µm y desgasificadas en un baño de 
ultrasonidos durante 30 min. 

Con el fin de obtener los pesos moleculares (Mw) y la polidispersidad 
(Mw/Mn) de los conjugados y los portadores poliméricos, se utilizó la 
metodología de cromatografía de exclusión molecular o de filtración en gel 
(SEC, GPC). Los análisis se realizaron en un Triple Detector Array (TDATM) 
de Viskotek (TDA3 302) y un detector UV modelo 2501. Las columnas 
empleadas fueron dos columnas TSK-Gel (G2500 y 3000). OmniSec 4.1 fue 
el software utilizado para calcular Mw/Mn y Mw de los polímeros y 
conjugados poliméricos sintetizados. Como fase móvil se utilizó THF, DMF o 
tampón fosfato salino (PBS, Phospate Buffer Saline) (0.1% NaN3) filtrado 
previamente a través de membranas de 0.22µm y desgasificado en un baño de 
ultrasonidos durante 30min. 
Para las medidas del tamaño de partícula se empleó la técnica de dispersión de 
luz DLS (Dynamic Light Scattering). Estas medidas se realizaron en un 
equipo Zetasizer NanoZS (Malvern Instruments Ltd, Marlvern, Reino Unido) 
en el Instituto de Ciencia Molecular (ICMOL) en Paterna, Valencia. Estudios 
con Microscopia de Trasmisión Electrónica (TEM) fueron llevados a cabo 
con un sistema Tecnai Spirit G2 FEI y una cámara digital Olympus, Soft 
Image System, model Morada en el CIPF y la Microscopia de Escaneo 
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Electrónica (SEM) se realizó en un microscopio JEOL JSM 5410 en el 
Departamento de Biomateriales en la Universidad de Valencia. Para estudiar 
las Concentraciones Críticas Micelares (cmc) se empleó un 
espectrofotómetro Jasco FP-6500 usando un ancho de banda (excitación y 
emisión) de 3nm y la velocidad de escaneo era de 100nm. Los experimentos 
con Dispersión de Neutrones de Pequeño Ángulo (SANS) se realizaron en 
el Institute Laue-Langevin, ILL en Grenoble (Francia) y en el ISIS Facility en 
Oxford (Reino Unido) para determinar el tamaño y forma de los conjugados. 
Todos los procesos relacionados con el cultivo celular se llevaron a cabo en 
una cabina de flujo laminar recirculante vertical con seguridad biológica clase 
II (Telstar). Las medidas de viabilidad celular y fluorescencia de los 
compuestos se llevaron a cabo en Victor2 Wallac 1420 Multilabel HTS 
Counter Perkin Elmer (Northwolk, CT, EEUU). Los estudios de 
internalización celular mediante microscopia confocal de fluorescencia 
fueron hechos a través del Servicio de Microscopía Confocal del CIPF 
(Valencia). Las imágenes fueron adquiridas con un microscopio (invertido) 
láser confocal Leica, modelo TCS SP2 AOBS (Leyca Microsystems 
Heidelberg GMBH, Mannheim, Germany) usando un objetivo de inmersión 
de 63X Plan-Apochromat-Lambda Blue 1.4 N.A. La longitud de onda (λ) 
usada para excitar el fluorocromo fue: 488nm para el Oregon Green (OG), 
utilizando para ello un láser de argón. Las aperturas de los canales para la 
detección de la emisión del OG fueron: de 503 a 604nm. Las imágenes fueron 
tomadas bidimensionalmente y en pseudo color (255 niveles de color), con 
una resolución de 1024x1024 pixels. Todas las imágenes fueron adquiridas 
bajo las mismas condiciones y los análisis de distribución de fluorescencia 
fueron hechos mediante el software de Leica “Leica Lite” versión 2.61.  

Los estudios de biodistribución en modelos tumorales in vivo fueron 
medidos por tejido fluorescente (FRI) usando el espectro de IVIS® fueron 
llevados en el CIBBIM-Nanomedicina, en el Hospital Vall d’Hebron de 
Barcelona. 

 
2.2 Materiales 

 
Tri(etilene glicol) divinil éter (TEGDVE), polietilenglicol (PEG) Mw 

4000Da, acido p-toluenesulfonico monohidratado (p-TSA), dietilestilbestrol 
(DES), 2-amino-1,3-propanodiol (Serinol), 9-Fluorenilmetiloxicarnonil de 
cloro (Fmoc-Cl), anhídrido succinico, dioxano, tetrahidrofurano anhídrido 
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(THF) tolueno anhídrido, 4-(Dimetilamino)piridina (DMAP) pureza ≥98.0%, 
N,N-Diisopropiletilamine (DIEA), N-hidroxisuccinimida 98% (NHS) y la sal 
de sodio de N-hidroxisulfosuccinimida (sulfo-NHS) ≥98.5% fueron 
suministradas por Sigma-Aldrich (Dorset, UK). Antes de utilizarse, el  THF 
fue destilado con benzofenona de sodio. Diisopropilcarbodiimida (DIC), 1-
etil-3-(3dimetilaminopropil) carbodiimida hidroclorada (EDAC), 1-
hidroxibenzotrialzole monohidratado 99.7% (HOBT) fueron administradas 
por IRIS Biotech GmbH (Alemania). Triethilamine y N,N-dimethilformamide 
(DMF) se obtuvieron de Fluka Chemika (Masserschmittstr, D). Respecto a los 
disolventes deuterados utilizados en  Resonancia Magnética Nuclear (RMN): 
N,N-dimetilformamida-d6 (DMF-d6), cloroformo-d1 (CDCl3-d1), agua 
deuterada-d2 (D2O), dimetilsulfoxido-d6 (DMSO-d6), metanol-d1 (MeOH-d1).  
Diclorometano (CH2Cl2) con grado síntesis, Etanol (EtOH) absoluto, Metanol 
(MeOH) con grado de HPLC y acetonitrilo (AcCN) también de grado  HPLC 
fueron suministrados por Scharlau (España). AppliChem (Alemania) 
suministró el 2,2’-dihidroxi-(2,2’-bi-indan)-1,1’,3,3’-tetrona (Hidrindantino 
dihidratado).  Ninhidrina GR para análisis se obtuvo de MERCK (Alemania). 
Las resinas para cromatografía liquida tales como Sephadex LH-20 y 
Sephadex G-10 y las columnas pre-empaquetadas PD-10 se obtuvieron de GE 
healthcare (Reino Unido).  n-Hexano de grado analítico se obtuvieron de 
VWR (Alemania). El resto de disolventes de uso habitual en el laboratorio 
como acetona se obtuvieron de Aldrich or Sigma. Las líneas celulares de 
cáncer de próstata PC3 y LNCaP se obtuvieron de American Type Culture 
Collection (ATCC) (Rockville, MD, EEUU). Dimetilsulfóxido de grado 
biotecnológico (DMSO), bromuro de 4-(4,5-dimetil tiazol-2-il)-2,5-difenil 
tetrazolio (MTT), hidrocloruro de leupeptina y Trypan-blue se obtuvieron de 
Sigma-Adrich Co. (St Louis, MO, EEUU). El suplemento de crecimiento 
endotelial (ECGS) fue suministrado por BDTM Biosciences (San Jose, CA, 
USA). 0.25% tripsina-EDTA se obtuvo de Gibco BRL Life Technologies 
(Paisley, Reino Unido). El suero fetal bovino inactivado (FBS), los medios 
F12 y RPMI 1640 y el marcador lisosomal Dextran-Texas Red fueron 
suministrado por Invitrogen (Carlsbad, CA, EEUU). El marcador fluorescente 
Oregon Green cadaverine (OG-cad) y Oregon green acido carboxílico (OG-
NHS) fueron de Molecular Probes. El fluorescente Cy 5.5-cadaverina se 
obtuvo de Shabat y el Cyane 5.5-monofunctional succinimidil éster (Cy-NHS) 
de GE Healthcare (Buckinghamshire, UK). Los anticuerpos para la realización 
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de los análisis de  western blot: b-Actin (Sigma), p21 (Cell Signaling), caspasa 
3 (Cell Signalling), Bax (Santa Cruz Biotechnologi), y Bcl2(Dako).  

2.3 Síntesis de los poliacetales con DES (Ter-DES, Bloque-DES, 
Serinol-Fmoc, Ter-DES-Ser, Bloque-DES-Ser y sus derivados 
marcados con OG y Cyane5.5) y poliacetales para terapia de 
combinación con DES y PTX (Ter-DES-Ser-PTX, Bloque-DES-
Ser-PTX y sus derivados con OG y Cyane5.5). 

2.3.1 Síntesis del Terpolímero (o Ter-DES) (1). 

     A) Estrategia 1. Metodología clásica. 

    Ter-DES se sintetizó mediante tert-polimerización entre vinil éteres y 
alcoholes en THF optimizando el protocolo ya publicado1, 2. Todos los 
reactivos se secaron previamente en un horno a vacío a 80oC durante 16 hrs. 
A una disolución con polietilenglicol (PEG) (Mw=4.000 g/mol, 2 g, 0.5 
mmol), ácido para-toluen sulfónico monohidratado (Mw= 190.22 g/mol , 
0.003 g, 0.015 mmol) y dietilestilbestrol (DES) (Mw= 268.34 g/mol ,0.135 g, 
0.5 mmol) en THF destilado (6 ml), se añadió TEGDVE lentamente (Mw= 
202.25 g/mol, 0.202g, d=0.99, 0.2mL, 1.07 mmol) usando una jeringa que 
conserve las condiciones anhídridas. La reacción fue vigorosamente agitada 
durante 3h a temperatura ambiente y cubierta con papel de aluminio para 
proteger de la luz. Entonces, se añadió trietilamina (Et3N) (0.2ml) para 
neutralizar el catalizador p-TSA y tras 30 minutos de agitación la mezcla de 
reacción se añadió gota a gota sobre una mezcla fría de hexano:éter (4:1)  
(100ml) que se dejó agitando 30 minutos más para que el poliacetal precipite 
como un sólido blanco. Entonces, el producto fue aislado mediante filtración 
y el disolvente se evaporó a vacío y temperatura ambiente. Para eliminar 
posibles trazas de catalizador se realizó una extracción en cloroformo en una 
solución saturada de NaHCO3 (3x20ml). Las fases orgánicas se combinaron, 
lavaron con una disolución saturada de NaCl (20ml) y se secaron con Na2SO4. 
Una vez filtrado el sulfato sódico, los restos de disolvente se evaporaron a 
vacío. El producto se re-disolvió en agua MilliQ y se liofilizó para obtener el 
compuesto deseado. El poliacetal fue de nuevo recolectado y secado bajo 
vacío durante 24h para obtener Ter-DES como un sólido blanco. 

B) Estrategia 2.  Nueva metodología. 
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PEG (1000 mg, 0.250 mmol) y DES (100 mg, 0.373 mmol) se añadieron 
a un tubo Schlenk de 50 ml, equipado con un imán magnético y un tapón de 
vidrio. Se evacuó el tubo bajo condiciones de alto vacío (10-2 bar) durante 15 
minutes y se rellenó con gas Nitrógeno. Mientras el tubo Schlenk se purgaba, 
se añadió dioxano anhídrido (5 ml) mediante una jeringa y se agitó y calentó 
la reacción (~60 oC) hasta la completa disolución de los reactivos. A  
continuación, p-TSA (2 mg, 0.106 mmol, tomado de una disolución madre de 
1 mg/ml en dioxano) fue añadido a la disolución del polímero  y dejándolo 
agitar durante 2minutos más. Mientras seguía purgándose con nitrógeno, 
DEGDVE (182 µl, 1.12 mmol) fue añadido con una pipeta Gilson y el tubo 
Schlenk se selló para conservar las condiciones anhidras. La mezcla de 
reacción fue agitada en la oscuridad durante 1hora antes de añadir una 
disolución de hidróxido sódico en etanol (2 ml, 0.1 M) para quenchear la 
reacción. A continuación la mezcla se añadió gota a gota sobre hexano 
(100ml) para precipitar el polímero conjugado y tras 5 minutos de agitación, 
el disolvente se decantó. Para una completa eliminación del hexano, el residuo 
se centrifugó y una vez aislado el producto, se secó con flujo de nitrógeno y se 
re-disolvió en THF (4ml) para volverlo a precipitar sobre hexano (100ml), 
siguiendo los mismos pasos que anteriormente, decantando el hexano y 
secando el residuo con nitrógeno. Dicha operación se repitió 3 veces para 
asegurarnos una correcta purificación. Después de secar el producto a alto 
vacío durante 4horas las muestras fueron almacenadas en tubos sellados a -
20oC para su estabilidad. 

2.3.2 Síntesis del Bloque-co-polímero (o Bloque-DES) (2). 

A) Estrategía 1. Procedimiento A basado en la metodología clásica. 

Bloque-DES2 fue sintetizado mediante co-polimerización en THF. En un 
matraz Redondo secado previamente en estufa de vacío, se añadió PEG 
liofilizado (Mw=4000g/mol, 2g, 0.5mmol) y p-TSA (Mw=190.22g/mol, 
0.003g, 0.015mmol) y fueron disueltos en THF destilado (4ml). A 
continuación, TEGDVE (Mw=202.23g/mol, 0.5mmol, 0.22ml) fue añadido y 
la mezcla fue vigorosamente agitada durante 3h en la oscuridad y a 
temperatura ambiente. Entonces, DES (Mw=268.34g/mol, 0.134g, 0.5mmol) 
fue añadido lentamente a la reacción usando una jeringa para preservar la 
reacción en condiciones anhidras y agitadas durante 3h más. Transcurrido ese 
tiempo, trietilamina (0.2ml) fue entonces añadido para neutralizar el 
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catalizador p-TSA dejándolo agitar durante 30minutos para entonces añadir la 
disolución gota a gota sobre una mezcla fría de hexano: éter (4:1) (100ml) y 
así precipitar el poliacetal 2. Después de 30 minutos adicionales de agitación, 
el polímero fue recolectado y de nuevo precipitado sobre otra mezcla fresca 
de hexano: éter (4:1) y agitado por 30 min más para lograr un lavado más 
eficiente. El Poliacetal otra vez se recolectó y se secó a vacío durante 24h para 
obtener el bloque-DES como un sólido blanco. 

B) Estrategia2. Procedimiento B basado en la nueva metodología. 

Se añadió PEG (1000 mg, 0.250 mmol) a un tubo Schlenk de 50 ml 
equipado con un imán magnético y un tapón de vidrio. Se evacuó el tubo bajo 
condiciones de alto vacío (10-2 bar) durante 15 minutes y se rellenó con gas 
Nitrógeno. Mientras el tubo Schlenk se purgaba, se añadió dioxano anhídrido 
(5 ml) mediante una jeringa y se agitó y calentó la reacción (~60 oC) hasta que 
el PEG se disolvió completamente. A continuación, p-TSA (2 mg, 0.106 
mmol, tomado de una disolución madre de 1 mg/ml en dioxano) fue añadido a 
la disolución del polímero  y dejándolo agitar durante 2minutos más. Mientras 
seguía purgándose con nitrógeno, DEGVE (60 µl, 0.37 mmol) fue añadido 
con una pipeta Gilson y el tubo Schlenk se selló para conservar las 
condiciones anhidras. La mezcla de reacción se agitó durante 45min antes de 
añadir más DEGDVE (122 µl, 0.75 mmol) y 15 min después el DES (100 mg, 
0.373 mmol)  también se añadió y se agitó durante 1h más. Entonces una 
disolución de hidróxido sódico en etanol (2 ml, 0.1 M) fue añadida para 
quenchear la reacción dejándolo agitando 5minutos. A continuación la mezcla 
se añadió gota a gota sobre hexano (100ml) para precipitar el polímero 
conjugado y tras 5 minutos de agitación, el disolvente se decantó. Para una 
completa eliminación del hexano, el residuo se centrifugó y una vez aislado el 
producto, se secó con flujo de nitrógeno y se re-disolvió en THF (4ml) para 
volverlo a precipitar sobre hexano (100ml), siguiendo los mismos pasos que 
anteriormente, decantando el hexano y secando el residuo con nitrógeno. 
Dicha operación se repitió 3 veces para asegurarnos una correcta purificación. 
Después de secar el producto a alto vacío durante 4horas las muestras fueron 
almacenadas en tubos sellados a -20oC para su estabilidad. 
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2.3.3 Síntesis de protección del Serinol con el grupo Fmoc 
(Fmoc-Serinol) (3). 

  Reacción publicada previamente por Tomlinson, 20024
.  Serinol-Fmoc 

fue sintetizado por condensación entre el grupo acil del grupo Fmoc y el 
grupo amino del serinol para la formación del enlace amida con consecuente 
eliminación de HCl.  Serinol (Mw=91,06g/mol, 1.0g, 11mmol) se disolvió en 
26.5ml de una disolución 10%   Na2CO3 (8g Na2CO3 en 80ml de agua 
destilada). Entonces, se añadieron 15ml de dioxano y la mezcla se agitó sobre 
un baño de hielo. Fluorenilmetiloxicarbonil clorado (Fmoc-Cl) (Mw= 
260,72mg/mol, 2,86g, 11mmol) fue cuidadosamente añadido y la mezcla de 
reacción se agitó durante 4h a 4ºC. Transcurridas 2h, se añadió 15ml de 
dioxano para disminuir su viscosidad.  Tras 16 h de agitación, se añadieron 
100ml de agua destilada para poder extraer el compuesto con etil acetato 
(2x100ml). Las fases orgánicas se combinaron y se secaron sobre Na2SO4 

anhidro. Después de filtrar, el disolvente se evaporó a vacío para obtener un 
sólido blanco, el cual se redisolvió en 40ml de dioxano y se recristalizó en 
150ml de hexano. 

2.3.4 Síntesis de poliacetales con DES y Serinol, Tert-DES-
Serinol (o Tert-DES-Ser) (4) y Bloque-DES-serinol (o 
Bloque-DES-Ser)  

Las síntesis de ambos poliacetales, Ter-DES-Serinol y Bloque-DES-
Serinol, se llevaron a cabo utilizando los mismos procedimientos descritos en 
las estrategias 2 de i y ii respectivamente con la novedad de incorporar el 
nuevo monómero (0.58mmol) a la reacción. Para obtener el ter-DES-Serinol, 
el monómero se añadió junto con el PEG y el DES y para sintetizar el bloque-
DES-Serinol, el serinol se añadió 5minutos después del DES, para tener así 
controlada la formación de los bloques, primero se forma el bloque de 
polímero y a continuación el bloque con DES y serinol. 

2.3.5 Desprotección del grupo -Fmoc de los poliacetales, Ter-
DES-SerNH2 (6) y Block-DES-SerNH2

2 (7). 

Los polímeros Ter-DES-Ser 4 y Bloque-DES-Ser 5 fueron disueltos 
independientemente en dos reacciones diferentes en 10ml de una mezcla 
piperidine/acetonitrile (20%) y se agitaron durante 1 h. La reacción se 
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monitorizó mediante TLC (100% etil acetato, Rf = 0.7). La mezcla de 
reacción se lavó con hexano (3 x 15ml) y el acetonitrilo se eliminó a vacío a 
temperatura ambiente. El residuo se redisolvió en 15ml de hexano y se agitó 
durante 2h para obtener los poliacetales 6 y 7. 

2.3.6 Síntesis de conjugados marcados fluorescentemente con 
Oregon green (OG) o con Cyane 5.5. 

             Los conjugados marcados fluorescentemente con OG se utilizaron 
para llevar a cabo estudios in vitro como internalización celular y marcados 
con Cy5.5 para realizar estudios in vivo y determinar la biodistribución y 
acumulación en tumor de los conjugados.   

Estos conjugados se sintetizaron mediante dos estrategias diferentes. 
Estrategia 1; el marcador fluorescente, OG o Cy5.5, ambos en forma de acido 
carboxílico, fue conjugado a los poliacetales Ter-DES-SerNH2 6 y Block-DES-
SerNH2 7 a través de la reacción entre el grupo amino libre del Poliacetal y el 
grupo carboxilo del fluorocromo una vez se ha eliminado el grupo NHS. 
Estrategia 2 se centra en la succinoilación de los polímeros Tert-DES-SerNH2 
6 y Block-DES-SerNH2 7 y entonces se conjugó el OG y Cy5-5, a través del 
grupo carboxilo en los poliacetales y el grupo amino del marcador. 

Ambas estrategias se obtuvieron con resultados parecidos pero en 
nuestro proyecto escogemos la opción 1 por motivos posteriores, ya que para 
incorporar el segundo fármaco, como estará como paclitaxel succinoilado, se 
conjugará a través del grupo amino del polímero.   

 Procedimiento de la estrategia 2: 

Tert-DES-SerNH2 6 (0,300 g, 0,030mmol) o Block-DES-SerNH2 7 
(0.300g, 0,022mmol) fueron disueltos en THF anhidro. Se añadió DIEA hasta 
ajustar el pH a 9 y a continuación se disolvió Oregon Green (OGCOOH con 
ácido carboxílico) o Cyane 5.5 (Cy5.5COOH con ácido carboxílico) (0.0002 g, 
0.0008 mmol) en CH2Cl2 y se añadió a la reacción. La reacción se monitorizó 
mediante TLC (Etil acetato: hexano 1:1, Rf= 0.5). Tras 16 h de agitación el 
disolvente se evaporó, el residuo se redisolvió en agua MilliQ y se purificó 
mediante columnas PD10 eluyendo con agua MilliQ y recolectando 
fracciones de 1ml. Para identificar qué fracciones estaban conjugadas con el 
marcador, OG o Cy, y posteriormente determinar el porcentaje total 
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conjugado, se tomaron 2 µL de cada fracción y se añadieron a 998 µL de 
MeOH y las disoluciones se midieron en un espectrofotómetro Victor2Wallac. 
Los polímeros conjugados con Oregon Green y Cyane, Ter-DES-Ser-OGNHS 
8, Bloque-DES-Ser-OGNHS 9, Ter-DES-Ser-CyNHS 10 y Bloque-DES-Ser-

CyNHS 11 se liofilizaron para aislar los compuestos. 

2.3.7 Síntesis de Ter-DES-Ser-PTXCOOH (21) y Bloque-DES-Ser-

PTXCOOH (22). 

Paclitaxel succinoilado 20 (Mw= 925.93 g/mol, 14 mg, 0.0015 mmol) 
se disolvió en 1.5 ml de THF anhidro y se añadió 3.14 mg de 1-Etil-3-(3-
dimetilaminopropil) carbodiimida EDC (Mw = 155.24 g/mol, 0.02 mmol) 
agitando la reacción a temperatura ambiente durante 10min. Transcurrido ese 
tiempo, se añadió cuidadosamente N-hidroxisulfosuccinimida, 4.93 mg Sulfo-
NHS (Mw = 217,1g/mol, 0.02 mmol) y se agitó durante 45 min a RT. 
Finalmente, Ter-DES-SerNH2 6 o Bloque-DES-SerNH2 7 fue añadido (para 
obtener respectivamente, 21 o 22) y se ajustó el pH con DIEA. La mezcla de 
reacción fue agitada durante 16 h a temperatura ambiente y los conjugados 
fueron extraídos mediante precipitación sobre hexano y purificado por dialisis 
en agua durante 16 h. 

2.3.8 Síntesis de conjugados con PTX marcados con OG ó 
Cyane5.5. 

2’-Paclitaxel-succinoilado (PTXCOOH) se conjugó a polímeros 
poliacetalicos marcados previamente con OG o Cyane. 

Los polímeros marcados con fluorocromos, sintetizados previamente, tales 
como: Ter-DES-Ser-OGNHS 8, Bloque-DES-Ser-OGNHS 9, Ter-DES-Ser-CyNHS 
10 y Bloque-DES-Ser-CyNHS 11 se disolvieron en THF anhidro y se añadió 
DIEA para ajustar el pH hasta 9. A continuación se añadió paclitaxel 
succinoilado (PTXCOOH) (0.0002 g, 0.0008 mmol) 20 disuelto en 0.01mL 
DMF. Tras 24 h de agitación el disolvente se evaporó a vacío, el residuo se re-
disolvió en agua MilliQ y se purificó mediante columnas PD10 recolectando 
fracciones de 1ml y posteriormente deshidratándolas mediante liofilización 
obteniendo: Ter-DES-Ser-PTXCOOH-OGNHS 23, Bloque-DES-Ser-PTXCOOH-
OGNHS 24, Ter-DES-Ser-PTXCOOH-CyNHS 25 y Bloque-DES-Ser-PTXCOOH-
CyNHS 26. 
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2.4 Estudios de 1H-RMN. Se realizaron espectros de 1H-RMN de cada 
uno de los productos obtenidos utilizando disolventes como D2O, MeOD, 
DMSO, DMF, todos deuterados. Todos los experimentos se llevaron a cabo a 
temperatura ambiente. 

2.5 Técnica de GPC. Los polímeros fueron preparados a una 
concentración de 3mg/ml disueltos en la fase móvil previamente preparada y 
estabilizada (THF o PBS). En el caso del disolvente orgánico, se añadió 
tolueno (20 µL) como markador de flujo interno. Las muestras fueron filtradas 
mediante filtros individuales de nylon (membrana de 0.2 µm) y sonicadas 
durante 3minutos. A continuación las muestras fueron inyectadas (110 µL) 
con un método de 35min de duración, 1 mL/min de flujo y una temperatura de 
25 °C. La detección de las muestras se hicieron con el índice refractivo y los 
datos analizados el software de OmniSec 4.1. 

2.6 Determinación del contenido de fármaco libre y total en los 
conjugados con DES.  

 
Deterinación de la carga de fármaco total 

 
• Cuantificación indirecta  
 
El dietilestilbestrol (DES) posee un máximo de absorbancia de 280nm 

por lo cual es fácil detectarla por UV-vis. Previamente se realizó una curva de 
calibrado de 0.01 a 1mg/mL utilizando como disolvente MeOH en HPLC, 
empleando el método descrito en la tabla 2.6.1. 
 
Tabla 2.6.1 Método empleado para la calibración de DES en HPLC. 

t (min) Flow (mL/min) % H2O % ACN 
0 1 70 30 
25 1 10 90 
28 1 10 90 
31 1 70 30 
35 1 70 30 

 
La carga de fármaco total se determina alanalizar las muestras una vez 

hidrolizado el enlace acetálico mediante una fuente de calor en un ambiente 
de pH ácido. Las muestras se disolvieron en 100µL de HCl 1M (pH 2) y se 
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calentaron a 80ºC durante 30min. A continuación se analizaron las muestras 
mediante HPLC con el mismo método empleado para realizar la calibración 
de DES. Oestradiol se utilizó como patrón interno. 

 
Se determinó la cantidad de DES que no se unió a la cadena 

poliacetálica mediante análisis por HPLC del residuo obtenido tras lavar la 
muestra con hexano y disolverlo en acetonitrilo para inyectarlo en el HPL. 

 
• Cuantificación directa 
 
La carga de fármaco se calcula directamente por la absorbancia en 

UV-vis del conjugado obtenido. Al igual que en el método indirecto, 
previamente se realizó una curva de calibrado de DES en MeOH a 280nm 
empleando concentraciones de 0.001 a 1mg/mL. Los productos se disolvieron 
en ddH2O a una concentración conocida (1-2 mg/mL) y se midió su 
absorbancia a 280nm en cubetas de cuarzo con ayuda de un 
espectrofotómetro.  

 
Determinación de fármaco libre 
 
De 1 a 3mg de cada Poliacetal con DES disueltos en metanol se 

inyectaron en el HPLC utilizando las mismas condiciones anteriormente 
descritas en la tabla 4.3.1. 

 
Los mismos procedimientos descritos previamente para determinar la 

carga total (de forma directa e indirecta) y libre de un fármaco fue empleado 
para la determinar de paclitaxel en los conjugados poliacetalicos.  
 

2.7 Determinación de la Concentración Micelar Crítica (CMC) de los 
polímeros conjugados.  

Dos fluorocromos, difenilhexatrieno (DPH) y Pireno fueron usados para 
determinar la CMC de los compuestos.  

0.5mg de pireno fueron disueltos en 40ml de acetona para obtener 
0.0125mg/ml (62.5 µM) de disolución stock. Entonces, 0.002µl de la 
disolución fueron añadidas a una disolución acuosa del polímero (5mg/ml). A 
continuación, la disolución se sonicó para conseguir la evaporación de la 
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acetona e inducir a la formación de micelas. A las 24h de incubación las 
muestras fueron analizadas. 

Alternativamente, 2.5µl de una disolución stock de 0.2mM de DPH en 
THF fueron añadidos a una disolución polimérica en solución tampón de 
fosfato (5mg/ml) para analizar las muestras. 

2.8 Estudios de dispersión dinámica de luz (Dynamic Light Scattering 
(DLS)). 

Las disoluciones de los conjugados (1 mg/ml y 3 mg/ml) en agua MilliQ 
y solución tampón fosfatada (PBS) a pH 7.4 fueron medidas en un sistema de 
medida de DLS a 25 ºC . Las disoluciones fueron sonicadas durante 10min y 
filtradas mediante un filtro de membrana de celulosa de 0.22µm antes de 
analizar. La distribución micelar celular fue medida por volumen en unidades 
nm de diámetro para cada conjugado (n≥3). 

2.9 Técnicas de microscopía de transmisión y muestreo electrónicas  
(Transmission and Scanning electron microscopy (TEM) and 
(SEM)). 

Disoluciones de conjugados desde 0.5 mg/ml a 3 mg/ml, fueron 
preparadas usando agua MilliQ y PBS a pH 7.4. Las disoluciones fueron 
sonicadas durante 10minutos y filtradas mediante un filtro de membrana de 
celulosa de 0.45µm antes de su análisis. Para analizar por TEM, la muestra se 
prepare rápidamente por deposición de 1µl de la disolución de la muestra en 
un soporte destinado a las medidas de TEM. Para los análisis con SEM 1µl de 
la muestra diluida se aplicó a un disco metálico que se cubrió con carbono 
mediante evaporación a alto vacío.  

2.10 Estudios de dispersion de neutrones de ángulo pequeño   (Small 
Angle Neutron Scattering (SANS)). 

Los experimentos con SANS fueron llevados a cabo con la colaboración 
de la Dr. Alison Paul de la Universidad de Cardiff (Reino Unido) y realizados 
en el Instituto Laue-Langevin (ILL)9 en Grenoble (Francia) por neutrones 
provenientes de un reactor (57 MW HFR (High-Flux Reactor))  y en el 
laboratorio Appleton Rutherford, en el ISIS10-12 Facility, en Osford (Reino 
Unido) mediante una fuente de neutrones provenientes de un sincrotón. 
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Los conjugados se disolvieron en dos diferentes disolventes ambos 
deuterados, D2O and MeOD a una concentración de1 mg/mL equivalentes de 
fármaco y 10mg/mL de polímero. Las disoluciones se añadieron en una celda 
redonda de 1mL de capacidad destinadas para las medidas de SANS, las 
cuales se analizaron también vacías y con los disolventes deuterados 
utilizados para disolver las muestras para tener así los controles positivos.  

2.11 Estudios de degradación dependientes de pH en disolución 
tampón 

Los poliacetales (8 mg/mL) fueron incubados a 37°C en disolución 
tampón de fosfato (PBS) a pH 5.5, 6.5 ay 7.4 durante 30días. 100 µL 
destinados para analizar en el HPLC y 50 µL para estudios de GPC fueron 
tomados de cada muestra a diferentes tiempos, a tiempo cero, 15, 30 min, 2, 8 
y 24 h y cada 24h hasta completar el 100% de liberación del fármaco. Las 
alícuotas se recogieron y congelaron en nitrógeno líquido y almacenadas a -
80ºC hasta su análisis en HPLC con el método previamente descrito (Tabla 
4.3.1). 

2.12   Estabilidad en Plasma 

Los conjugados (8 mg/mL) se incubaron 24h a 37ºC en fresco suero 
extraído de ratas Wistar y se recolectaron 100 µL de las disoluciones a 
distintos tiempos, 0min, 1h y 24 h. A éstos 100 µL se añadió 10 µL de una 
disolución de 100 µg/mL de oestradiol en MeOH utilizado como patrón 
interno y 135 µL de MeCN para precipitar las proteínas del suero. La mezcla 
se centrifuge (14000 rpm, 5 min), analizados los supernadantes mediante 
HPLC con el método previamente descrito (Tabla 4.3.1). 

2.13  Viabilidad celular en células de cáncer de próstata, LNCaP y 
PC3 

 En primer lugar, se optimizó la densidad celular para llevar a cabo los 
posteriores ensayos de MTT mediante curvas de crecimiento a distintas 
densidades.  3200cél/pocillo fue la proporción elegida en la línea celular de 
PC3, en cambio para la línea celular LNCaP se eligió 4000cél/pocillo.  

 La citotoxicidad de los poliacetales fue evaluada mediante MTT. Las 
células fueron sembradas en placas estériles de 96 pocillos 
(2.5x103cél/pocillo) utilizando como medio de cultivo F-12 suplementado 
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con 10%(v/v) de suero bobino fetal (FBS) para las PC3 y RPMI también con 
un 10%(v/v) de FBS para las LNCaP. Las células se incubaron 72h antes de 
la adición de los compuestos  citados, con el fin de alcanzar una absorbancia 
final de 0.3-0.5. Se prepararon distintas concentraciones del producto a 
testar (0-5mg/mL), filtrando previamente antes de disolver el compuesto. 
Tras las 72h, se añadió en cada pocillo 20µL del reactivo MTT (5mg/mL en 
PBS), y se incubaron a 37ºC durante 24 y 72h. Finalizado el tiempo, se 
eliminó el medio y los cristales de formazan se redisolvieron en 100µL de 
DMSO. Las placas se midieron en un lector Victor Wallac a 570nm. Como 
control positivo se empleó dietilestilbestrol (DES). 

La viabilidad celular se calculó como porcentaje de viabilidad de las células 
control no tratadas. 

Mecanismo de internalización celular  

La técnica de microscopía confocal de fluorescencia en célula viva se 
empleó principalmente para detectar de forma cualitativa la forma de 
internalización del polímero y evitar los posibles artefactos que puede 
ocasionar la fijación de las células. Para estos estudios, se emplearon los 
compuestos poliacetalicos marcados con OG en las dos líneas celulares PC3 y 
LNCaP. 

Para poder determinar la posible vía endocítica y  si los poliacetales 
internalizaron en la célula en el compartimento lisosomal, el marcador 
Dextran-Texas red (5µl) fue añadido después de 1h de incubación, el medio se 
reemplazó con medio fresco y las células se incubaron durante 5h más. 

Las células fueron sembradas en placas Petri (10cm2) a la densidad celular 
determinada para cada línea celular, entonces fueron cultivadas durante un 
periodo de 48horas anteriores al experimento. A continuación, se añadieron 
10µL de una disolución 0.5mg/mL del compuesto (0.8%mol/mol OG). Los 
experimentos se realizaron tras periodos de incubación de 5΄,30΄,1h, 2h y 5h a 
37°C. Después, el medio celular se eliminó y las células se lavaron por 
triplicado con PBS 10%(v/v) FBS. El cristal se retiró de la placa Petri y fue 
colocado en la cámara confocal. La planificación horaria de cada experimento 
se realizó siguiendo las instrucciones detalladas a continuación: 
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� t=5 min: el conjugado se incubó durante 5 minutos (tiempo pulse), 
a continuación se eliminó el medio y se reemplazó por medio 
nuevo. Las imágenes se tomaron tras 5 min de incubación (tiempo 
chase). 

� t=30 min: 15min de tratamiento seguido de 30min de chase. 
� t=1 h: 1h de tratamiento y 1h de chase.  
� t= 5 h: 1h de tratamiento seguida de 5h de chase.  

 
2.14 Biodistribution y acumulación en el tumor y distintos órganos de 

los conjugados poliacetalicos marcados con Cyane5.5 en modelos 
xenografos de ratón. 

 
Células tumorales de colon humanas HT-29 Firefly luciferasa (Fluc)-

C4(0.25x106 cells/100µl DPBS) fueron tripsinizadas y resuspendidas en 
matrigel (1:1). Las células fueron inyectadas de forma subcutánea en el flanco 
derecho de ratones atimicos femeninos nu/un (Hsd:Atimicos Nu-Foxn1nu) 
para ganar una buena vascularización del modelo xenográfico. 

 El tamaño de los tumores se medirá con un calibrador y con una frecuencia 
que dependerá del grado de crecimiento de bioluminiscencia (BLI) del tumor 
usando el IVIS® Spectrum (asegurándonos previamente que los tumores no 
exceden del tamaño máximo permitido (1,5 cm de diámetro)). El volumen de 
los tumores se calcula de acuerdo a la siguiente fórmula: (4/3)π r1 

2r2 (r1< r2) 
(1/2 anchura x longitud2). La biodistribución de los poliacetales se determinó 
midiendo la fluorescencia (FRI) usando el sistema IVIS-100 (IVIS® 
Spectrum) con escáner IR cercano en el que la señal de Cy5.5 a 21µm de 
resolución estaba expresado en µg marcador/g tejido.  

 
Estos ensayos fueron llevados a cabo en el grupo del Dr. Simó Schwartz Jr., 
en el centro  de nanomedicina-CIBBIM en el Hospital de la Vall d’Hebron de 
Barcelona, dónde actualmente, modelos xenográfos de células tumorales de 
prostata humana PC3 y LNCaP están siendo desarrollados. 

Los poliacetales conjugados con el marcador cyane5.5 fueron usados en este 
estudio. 
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3. CONCLUSIONES DEL PROYECTO 

1. Sistemas DES-poliacetalicos como conjugados individuales.  

• Se sintetizó una nueva familia de poliacetales con DES llamados,  
Bloque-DES, con mayor carga de fármaco y menor polidispersidad 
que los de primera generación (Ter-DES). Ambos polímeros fueron 
caracterizados exhaustivamente y evaluados no sólo desde un punto 
fisicoquímico sino también analizando los parámetros de 
caracterización biofísicos. Bloque-DES presenta un carácter anfifílico 
por lo que en disolución adopta diferente conformación. 

• Los poliacetales con DES mostraron claramente una degradación 
dependiente de pH, con una liberación del fármaco DES más rápida 
en condiciones acidas. Bloque-DES demostró tener una liberación de 
DES más rápida que el Ter-DES y una cinética de liberación de 
fármaco bimodal indicando así una conformación diferente en 
disolución. Ambos sistemas presentaron estabilidad en plasma. 

• Se encontraron múltiples CACs en ambos polímeros, siendo los 
valores para el Bloque-DES mucho más bajos que para el Ter-DES 
(p.ej. el primer CAC para el Ter-DES 1b fue CAC= 0.7 mg/mL; el 
primero para el Bloque-DES 2b fue CAC= 0.1 mg/mL). Los estudios 
de PGSE-NMR indicaron una clara diferencia en los valores de 
difusion entre ambos conjugados, obteniendo con el conjugado de 
Ter-DES (Ds=2.72x10-11 m2 s-1) un movimiento mucho más lento que 
con el Bloque-DES (Ds=5.87x10-11 m2 s-1), éste resultado demostró 
claramente las diferentes estructuras formadas en disolución de ambos 
conjugados. Otras técnicas fisicoquímicas que se llevaron a cabo 
fueron DLS, TEM, SEM y SANS y en las que ambos poliacetales con 
DES se analizaron en disolución acuosa. Los experimentos con SANS 
demostraron que Ter-DES se trataba de un único sistema de un 
diámetro aproximado de 20nm y un espesor de 2 nm. En cambio 
Bloque-DES se caracterizó como una mezcla en la que coexistían dos 
especies, una de  100 nm de longitud y  2 nm de espesor (presentando 
una forma similar pero más grande en longitud que el Tert-DES) y la 
segunda especie consistía en una conformación tipo disco de 80 nm 
de diámetro y 10 nm de espesor. Se encontró que ésta segunda 
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especie era mucho más abundante que la primera y además mucho 
más consistente con los resultados obtenidos por TEM y DLS. 
Mediante SANS también se demostró la presencia de una especie 
mayor que las estructuras obtenidas para el   Tert-DES. 

• Bloque-DES resultó tener mayor citotoxicidad que el Ter-DES en 
células humanas de cáncer de próstata en las líneas celulares PC3 y 
LNCaP.           

• Un monómero adicional, serinol, se incorporó en la cadena principal 
del sistema poliacetalico (descrito por primera vez por Tomlinson et 
al) de manera que permitía disponer de una cadena funcional lateral 
accesible para la conjugación de otro fármaco o de un marcador 
fluorescente. Los poliacetales con DES fueron conjugados con 
Oregon Green para posteriores estudios de internalización celular 
(Ter-DES-Ser-OG vs. Bloque-DES-Ser-OG), con Cyane 5.5 para los 
correspondientes ensayos in vivo (obteniendo Ter-DES-Ser-Cy5.5 vs. 
Bloque-DES-Ser-Cy5.5) y también conjugados a un segundo fármaco, 
Paclitaxel (PTX) para formar sistemas para Terapia de Combinación 
(obteniendo Ter-DES-Ser-PTX vs. Bloque-DES-Ser-PTX).  

• Ambos conjugados, Ter-DES-Ser-OG vs. Bloque-DES-Ser-OG, 
entran en la célula mediante ruta endocítica como demostraron los 
estudios de microscopia confocal, aunque el porcentaje de Bloque-

DES en el interior de las células es mayor que el que se observa para 
ter-DES en ambas líneas celulares. 

• Estudios de mecanismos moleculares se llevaron a cabo en ambas 
líneas celulares de cáncer de próstata (PC3 y LNCaP)  demostrando 
una clara dependencia en las líneas celulares utilizadas. Derivados de 
DES claramente modulan la vía de señalización Akt resultando 
muerte celular a través de apoptosis ((Bcl-2, Bax) y autofagia 
(principalmente LC3 con el Bloque-DES en células PC3), y también 
podrían influenciar en el ciclo celular (modulación de p21) 
bloqueando las células en diferentes estados del ciclo celular 
dependiendo la línea celular tratada. 

Se llevaron a cabo estudios preliminares  in vivo  en modelos 
xenográficos con células humanas de cáncer de colon, obteniendo una 
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toxicidad negativa para los poliacetales con DES hasta 10 mg/kg y 
una clara acumulación en tumor hasta el día 17 para el Ter-DES. No 
se encontró una significante actividad antitumoral en modelos 
xenográficos de células de cáncer de próstata PC3 con los conjugados 
individuales, por lo que se empezó a estudiar los sistemas de Terapia 
de Combinación. 

 

2. Diseño de nuevos sistemas basados en poliacetales para terapia de 

combinación. 

• Los conjugados de combinación basados en poliacetales fueron 
desarrollados a partir de los sistemas individuales poliacetalicos de 
DES ya sintetizados y con la novedad de incorporar Paclitaxel como 
segundo fármaco quimioterapéutico. 

• Éstos conjugados de combinación fueron marcados fluorescentemente 
con OG (Tert-and Block- DES-Ser-PTX-OG) y con Cy5.5 (Tert- and 
Block- DES-Ser-PTX-Cy5.5) para llevar a cabo los diferentes 
estudios  in vitro (internalización celular) e in vivo (biodistribución, 
acumulación en tejido y tumor) respectivamente. 

• Para poder estudiar la conformación de los polímeros,  se llevaron a 
cabo estudios con PGSE-NMR y SANS  con los conjugados cuando 
serinol y paclitaxel fueron incorporados en los sistemas. Cuando a los 
polímeros se les incorporaba el serinol se podía observar un cambio 
en la estructura debido a los diferentes coeficientes de difusión, con 
presencia de serinol,  el conjugado tiene un coeficiente de Ds Tert-
DES-Serinol =4.50x10-11 m2s-1 ( sin serinol,  Ds Tert-DES= 2.72x10-11 
m2 s-1), el cual se mueve más lentamente que su análogo Block-DES-
Serinol  con un coeficiente de difusión de Ds=5.17x10-11 m2 s-1 (para 
el Block-DES, Ds era 5.87x10-11 m2s-1) resultados muy parecidos para 
los poliacetales iniciales tert- y block-DES. Los valores obtenidos 
indican claramente que diferentes estructuras en disolución ocurren en 
cada caso. 

• Experimentos con SANS confirmaron que cuando serinol fue 
incorporado al sistema poliacetalico, al igual que al añadir elel 
Paclitaxel, provocaba un efecto dominante sobre la estructura del 
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polímero. La muestra de Tert-Ser-PTX encajaba adecuadamente 
como un cilindro delgado de radio 10Å, longitud de 300Å y con el 
termino Q-n  como n= 3.5. Cuando PTX se añadió a Tert-DES-Ser 
formando Tert-DES-Ser-PTX, el término Q-4 fue dominante 
indicando la presencia de estructuras más grandes localizadas fuera 
del alcance de resolución del experimento de SANS. Éste 
experimento demostró claramente que el PTX conducía a una 
diferente conformación en disolución. 

• Los poliacetales para combinación fueron probados in vitro y se 
hicieron ensayos preliminares in vivo en modelos cancerígenos de 
mama y próstata.  

• Los ensayos de eficacia in vitro se realizaron en líneas celulares de 
cáncer de mama y próstata y mostraron un claro sinergismo cuando 
ambos fármacos, DES y PTX, fueron combinados en el mismo 
sistema y con diferentes arquitecturas  Tert- o Block-. Los ensayos in 

vitro en células de cancer de mama MDA-MB-453S dieron una 
mayor toxicidad para los poliacetales con ambos fármacos 
poliacetales-DES-PTX comparandolos con los resultados de PTX a 
solas. En células de cáncer de próstata independientes de andrógenos 
como son las células PC3, el poliacetal Tert-DES-Ser-PTX pareció 
ser más activo que el PTX a solas. Por el contrario en células 
dependientes de andrógeno como la línea celular LNCaP Block-DES-
Ser-PTX mostró mayor citotoxicidad que el PTX solo o el conjugado 
poliacetalico Tert-PTX (sin el fármaco DES).  

• No se observaron diferencias significativas con lo que respecta a los 
estudios de internalización celular con los conjugados de 
combinación. Sin embargo las cinéticas de captación fueron muy 
influenciadas dependiendo la línea celular empleada. 

• Cuando los polímeros de combinación fueron conjugados a Cy5.5, los 
estudios de biodistribución in vivo mostraron acumulación en el 
tumor siendo máximo a las 3 horas de administración del conjugado. 
También se detectó acumulación en los riñones y en el hígado 
indicando que la excreción de los poliacetales se producía a través de 
las rutas hepáticas y renales sin observar ninguna señal de toxicidad 
en los órganos. Actualmente se están llevando a cabo estudios de 
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tolerabilidad in vivo y eficacia terapéutica de todos los sistemas 
usando ortotópicos de cáncer de próstata (células de cáncer de 
próstata dependientes de andrógeno LNCaP). También se están 
realizando estudios no invasivos intraprostáticos con tumores de PC3 
de crecimiento de tumor y metástasis in vivo y ex vivo para confirmar 
los resultados.  
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