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Chapter 1

Introducción-Introduction

1.1 Introducción

El objetivo de este trabajo es clasificar gérmenes de aplicación finitamente
determinados f : (Rn, 0) → (Rn, 0) en los casos n = 2, 3 desde un punto
de vista topológico, es decir, que son diferentes salvo homeomorfismo en el
origen y en la llegada. Esta clasificación en ambos casos se basará en la
construcción de un invariante topológico completo de los links asociados a
un respresentante adecuado de estos gérmenes. Prestaremos también es-
pecial atención a las familias de gérmenes a un parámetro en el caso del
plano (ft : (R2, 0) → (R2, 0)) probando que, bajo ciertas condiciones, son
topológicamente triviales.

Las singularidades estables de aplicaciones del plano en el plano fueron
estudiadas por primera vez por H. Whitney en su famoso art́ıculo [37]. Él
mostró que para una aplicación C∞ genérica f : U ⊂ R2 → R2, el germen
de f en cualquier punto p ∈ U es, o bien regular, o de tipo pliegue o de tipo
cúspide. Esto significa que f es A-equivalente en p a (x, y) 7→ (x, y), (x, y) 7→
(x, y2) o (x, y) 7→ (x, y3 + xy), respectivamente. Más aún, si consideramos
también multigérmenes tenemos que añadir una singularidad estable más,
denominada pliegue doble transversal. En la figura 1.1 tenemos una imagen
t́ıpica que representa una aplicación estable del plano al plano.

Para las aplicaciones estables de R3 en R3, siguiendo las técnicas de clasi-
ficación de Mather (véase por ejemplo [12]) es fácil comprobar que localmente
sólo podemos tener una de las seis situaciones que aparecen en la figura 1.2.

Cuando f : (Rn, 0) → (Rn, 0) no es estable pero es finitamente determi-
nado, el origen es una inestabilidad aislada por el criterio de Mather-Gaffney
(véase [36]). En particular, existe un representante suficientemente pequeño
f : U → V donde U, V son subconjuntos abiertos de Rn tales que f es es-
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Figure 1.1: Singularidades estables de R2 en R2
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Figure 1.2: Singularidades estables de R3 en R3

table en U \ {0}. La estructura topológica de f viene determinada por el
link de f , que se obtiene tomando la intersección de la imagen de f con una
(n − 1)-esfera suficientemente pequeña centrada en el origen Sn−1

ϵ . Usamos
un teorema de Fukuda [5], que asegura que el link de f es una aplicación
estable de Sn−1 a Sn−1 y que f es topológicamente equivalente al cono de su
link. Nuestro trabajo será intentar clasificar topológicamente estas aplica-
ciones estables, y como consecuencia obtener la clasificación de los gérmenes
de aplicación correspondientes.

La clasificación topológica de gérmenes de aplicación finitamente determi-
nados del plano en el plano en el caso anaĺıtico complejo f : (C2, 0) → (C2, 0)
ha sido hecha por Gaffney y Mond en [10, 9], restringiéndose a los polinomios
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casihomogéneos. En el caso anaĺıtico real, J.H.Rieger en [34] completa la
clasificación A-simple de los gérmenes de aplicación del plano en el plano de
corrango 1. También Nishimura estudió en [30] la K-equivalencia topológica
de gérmenes finitos f : (Rn, 0) −→ (Rn, 0) y probó que el valor absoluto del
grado topológico es un invariante topológico completo.

Para el caso equidimensional n = 3 debemos hacer referencia al trabajo de
W.L.Marar y F.Tari([19]) donde estudian laA-clasificación de estos gérmenes
en el caso real.

Las técnicas principales usadas a lo largo de este trabajo ya han sido
empleadas por otros autores([21], [18]) para obtener la clasificación completa
de superficies regladas en R3 en el primer caso y una clasificación parcial de
gérmenes de aplicación finitamente determinados de R2 en R3 en el último
caso.

1.1.1 Organización del trabajo

Este trabajo está dividido en 7 caṕıtulos, incluyendo éste que contiene una
pequeña introducción al problema de estudio y un último donde el lector
puede encontrar las conclusiones finales de los resultados obtenidos en este
trabajo, aśı como algunas problemas abiertos motivadores.

En el caṕıtulo 2 enunciamos algunos resultados preliminares, como la
definición de una aplicación estable o de un germen de aplicación finitamente
determinado, que se creen fundamentales para la correcta comprensión de los
caṕıtulos siguientes.

Los caṕıtulos 3, 4 y 5 están enteramente dedicados al estudio de gérmenes
de aplicación finitamente determinados f : (R2, 0) → (R2, 0). En el primero
introducimos la definición de palabras de Gauss en el caso particular de
estas aplicaciones, probando que son un invariante topológico completo y
también damos una amplia clasificación topológica en el caso de corrango 1.
En el caṕıtulo 5 extendemos esta clasificación a gérmenes de aplicación de
corrango 2 que son del tipo Σ2,0 y en el caṕıtulo 4 consideramos familias a
1 parámetro de gérmenes de aplicación finitamente determinados probando
que bajo ciertas hipótesis son topológicamente triviales.

Finalmente en el caṕıtulo 6 afrontamos la dif́ıcil tarea de tratar de ex-
tender los resultados del caso del plano a gérmenes de aplicación de R3 en
R3. Aqúı probamos que, con algunas restricciones en nuestros gérmenes, las
palabras de Gauss son también un invariante topológico completo para este
tipo de gérmenes y damos como aplicación la clasificación topológica de los
gérmenes que pertenecen a la A2-clase (x, y, xz) en algunos casos particulares
y la clasificación completa de gérmenes de aplicaciones regladas de R3 en R3.
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1.2 Introduction

The aim of this work is to classify finitely determined map germs f : (Rn, 0) →
(Rn, 0) in the cases n = 2, 3 from a topological point of view, that is, they are
different up to homeomorphism in the source and target. This classification
in both cases will be based in the construction of a complete topological in-
variant of the links associated to a suitable representative of this map germs.
We also pay special attention to the 1-parameter families in the planar case
(ft : (R2, 0) → (R2, 0)) proving that, under certain conditions, they become
topologically trivial.

The stable singularities of maps from the plane to the plane were studied
for the first time by H. Whitney in his famous paper [37]. He showed that for
a generic smooth map f : U ⊂ R2 → R2, the germ of f at any point p ∈ U is
either regular, of fold type or of cusp type. This means that f is A-equivalent
at p to either (x, y) 7→ (x, y), (x, y) 7→ (x, y2) or (x, y) 7→ (x, y3 + xy),
respectively. Moreover, if we consider also multigerms, then we have to add
one more stable singularity, namely the transverse double fold. In figure 1.3
we find a typical image which represents a stable map from the plane to the
plane.

cusp

double folds

Figure 1.3: Stable singularities from R2 to R2

For stable maps from R3 to R3, following Mather techniques of classifica-
tion (see for example [12]) is easy to see that locally we can have only one of
the six situations that appear in figure 1.4.

When f : (Rn, 0) → (Rn, 0) is not stable but it is finitely determined, then
the origin is an isolated instability by the Mather-Gaffney criterion ([36]). In
particular, there is a small enough representative f : U → V where U, V
are open subsets of Rn such that f is stable in U \ {0}. The topological
structure of f is determined by the so-called link of f , which is obtained by
taking the intersection of the image of f with a small enough (n− 1)-sphere
centered at the origin Sn−1

ϵ . We use a theorem due to Fukuda [5], which
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Figure 1.4: Stable singularities from R3 to R3

ensures that the link of f is a stable map from Sn−1 to Sn−1 and that f
is topologically equivalent to the cone of its link. Our work will be trying
to classify topologically this stable maps, and as a consequence obtain the
classification of the correspondent map germs.

The topological classification of finitely determined map germs from the
plane to the plane in the complex analytic case f : (C2, 0) → (C2, 0) has
been done by Gaffney and Mond in [10, 9], restricting themselves to weighted
homogeneous polynomials. In the analytic real case, J.H.Rieger in [34] fulfill
the A-simple classification of plane to plane map germs of corank 1. Also
Nishimura studied in [30] the topological K-equivalence of finite map germs
f : (Rn, 0) −→ (Rn, 0) and he obtained that the absolute value of the degree
is a complete topological invariant.

For equidimensional case n = 3 we should refer to the work of W.L.Marar
and F.Tari([19]) where they study the A-classification of these germs in the
real case.

The main techniques used along this work has been already used by other
authors ([21], [18]) to obtain the full classification of ruled surfaces in R3 in
the first case and a partial classification of finitely determined map germs
from R2 to R3 in the last case.
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1.2.1 Organization of the work

This work is divided in 7 chapters, including this one containing a short
introduction to the problem of study and a last one when the reader can
find the final conclusions of the results achieved in this work as well as some
motivating open problems.

In chapter 2 we state some preliminary results as the definition of a stable
map or of a finitely determined map germ that are believed to be fundamental
for the correct understanding of the subsequent chapters.

Chapters 3, 4 or 5 are entirely dedicated to the study of finitely deter-
mined map germs f : (R2, 0) → (R2, 0). In the first one we introduce the
definition of Gauss words for the particular case of these maps, proving that
they become a complete topological invariant and we also give a wide topo-
logical classification in the case of corank 1. In chapter 5 we extend this
classification to map germs of corank 2 that are of type Σ2,0 and in chapter 4
we consider 1-parameter families of finitely determined map germs, proving
that under certain hypothesis they become topologically trivial.

Finally, in chapter 6 we face the difficult duty of trying to extend the
results from the planar case to map germs from R3 to R3. Here we prove that,
with some restrictions in our map germs, Gauss words are also a complete
topological invariant for this kind of germs and we give as an application the
topological classification of the germs that belong to the A2-class (x, y, xz)
in some particular cases and the full classification of ruled map germs from
R3 to R3.



Chapter 2

Preliminaries

In this chapter we remind the basic definitions and results that we are going
to need along this work, including the characterization of stable maps, the
Mather-Gaffney finite determinacy criterion and the link of a map germ.
These results can be found in different books in the bibliography, such as
[12], [13] and [20] for the part of stability and finite determinacy and in [5]
in what concerns to the link of a map germ.

2.1 Stability

Definition 2.1.1. Given two smooth maps f, g between smooth manifoldsX
and Y defined on neighborhoods U and V of x ∈ X respectively, we consider
the equivalence relation given by f ∼ g if there exists a neighborhoodW of x
contained in U ∩ V such that f |W = g|W . The equivalence classes are called
map germs.

Map germs are mainly used to study local properties of maps. We can
locally take adequate charts so that f can be seen as a germ f : (Rn, 0) →
(Rp, 0).

Definition 2.1.2. We define the k-jet of a smooth map germ f : (Rn, 0) →
(Rp, 0), jkf(0), as the Taylor expansion of f of order k at 0. We will denote
by Jk(Rn,Rp) the set of all k-jets.

Definition 2.1.3. Let f : (Rn, 0) → (Rp, 0) be a smooth map germ

• We call rank of f to the rank of the Jacobian matrix of a representative
of the germ.

• If f has maximal rank we call it regular. Otherwise, we call it singular.

13
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• We call corank of f to min {n, p} − r, where r is the rank of f . We
denote the space of map germs with corank k by Σk.

• We denote by S(f) = {x ∈ Rn : rank(Jfx) < min{n, p}} the set of
singular points of f , ∆(f) = f(S(f)) and X(f) = f−1(f(S(f)) \ S(f).

Definition 2.1.4. A map germ f : (Rn, 0) → (Rp, 0) is said to be weighted
homogeneous with weights w1, w2, . . . , wn if

λkifi = fi(λ
w1x1, . . . , λ

wnxn),

for some k1, . . . , kp ∈ N and for all λ, i = 1, . . . , p.

Definition 2.1.5. Let f, g : (Rn, 0) → (Rp, 0) be two smooth map germs.

• We say that f and g are A-equivalent, and we denote it by f ∼A g,
if there are germs of diffeomorphism α : (Rn, 0) → (Rn, 0) and β :
(Rp, 0) → (Rp, 0) such that the following diagram commutes:

(Rn, 0)
f−−−→ (Rp, 0)yα yβ

(Rn, 0)
g−−−→ (Rp, 0)

• In the case that α and β are germs of homeomorphism, we will say that
f and g are topologically equivalent.

Definition 2.1.6. Let f, g : (Rn, 0) → (Rp, 0) be two smooth map germs.
We say that f and g are K-equivalent, and we denote it by f ∼K g if there
are germs of diffeomorphism ϕ : (Rn, 0) → (Rn, 0) and H : (Rn × Rp, 0) →
(Rn × Rp, 0) such that H(Rn × {0}) = Rn × {0} and the following diagram
commutes:

(Rn, 0)
(id,f)−−−→ (Rn × Rp, 0)

πn−−−→ (Rn, 0)yϕ yH yϕ
(Rn, 0)

(id,g)−−−→ (Rn × Rp, 0)
πn−−−→ (Rn, 0)

Definition 2.1.7. Given a map germ f : (Rn, 0) → (Rp, 0), a r-parameter
unfolding of f is a map germ F : (Rn × Rr, 0) → (Rp × Rr, 0) of the form
F (x, t) = (ft(x), t), with t = (t1, t2, . . . , tr), and such that f0 = f .
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Definition 2.1.8. Let F be a r-parameter unfolding of a smooth map germ
f : (Rn, 0) → (Rp, 0). We will say that F is trivial if there are germs of
diffeomorphism Ψ : (Rn×Rr, 0) → (Rn×Rr, 0) and Φ : (Rp×Rr, 0) → (Rp×
Rr, 0) such that they are unfoldings of the identity and F = Φ−1◦(f× id)◦Ψ.

Definition 2.1.9. Let f : (Rn, 0) → (Rp, 0) be a smooth map germ. We will
say that f is stable if any unfolding of f is trivial.

Definition 2.1.10. Let S = {x1, . . . , xr} be a finite subset of Rn. A
multigerm f : (Rn, S) → (Rp, y) is an equivalence class of smooth maps

f̃ : U → Rp, where U is an open neighborhood of S and f̃(S) = {y}, such
that two maps are equivalent if they are equal in an open neighborhood of
S. All the definitions of A-equivalence, trivial unfolding and stability are
generalized without problems to the case of multigerms.

Definition 2.1.11. We say that a smooth map f : Rn → Rp is (locally)stable
if for any y ∈ Rp, S = f−1(y) ∩ S(f) is finite and f : (Rn, S) → (Rp, y) is
stable.

Now, by taking into account Whitney results [37] and Mather techniques
of classification (see for example [12]) we can state the two following theo-
rems, which will give us a characterization of stable maps for our particular
cases of study.

Theorem 2.1.12. (Whitney) Let f : U → V be a smooth proper map, where
U, V ⊂ R2 are open subsets. We have that f is stable if and only if:

1. Its only singularities are folds and cusp points,

2. f |S1,0(f) is an immersion with double transverse points, where we denote
by S1,0(f) the set of fold points of f .

Theorem 2.1.13. (Mather) Let f : U → V be a smooth proper map, where
U, V ⊂ R3 are open subsets. We have that f is stable if and only if:

1. Its only singularities are folds (A1), cusps (A2) and swallowtails (A3).

2. f |S1,0,0(f) is an immersion with double point curves (A2
1) and isolated

triple points (A3
1), f |S1,1,0(f) is an injective immersion and the images

of both restrictions intersect transversally (A1A2), with S1,0,0(f) and
S1,1,0(f) being the set of folds and the set of cusps respectively.
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2.2 Finite determinacy

Definition 2.2.1. Let f : (Rn, 0) → (Rp, 0) be a smooth map germ.

• We say that f is k-determined if for every smooth map germ g :
(Rn, 0) −→ (Rp, 0) such that jkf(0) = jkg(0) we have that f and g
are A-equivalent.

• Our map germ f will be finitely determined if it is k-determined for
some k ≥ 0.

Theorem 2.2.2. (Mather-Gaffney, [36]) Let f : (Rn, 0) → (Rp, 0) be a
finitely determined map germ with n ≤ p. Then, there is a representative
f : U → V , where U ⊂ Rn, V ⊂ Rp are open sets, such that:

1. f−1(0) = {0},

2. f : U → V is proper,

3. the restriction f |U\{0} is stable.

Corollary 2.2.3. (n = p = 2) Let f : (R2, 0) → (R2, 0) be a finitely de-
termined map germ. Then, there is a representative f : U → V , where
U, V ⊂ R2 are open sets, such that:

1. f−1(0) = {0},

2. f : U → V is proper,

3. the only singularities of f |U\{0} are fold points and f |(U\{0})∩S1(f) is an
injective immersion.

Corollary 2.2.4. (n = p = 3) Let f : (R3, 0) → (R3, 0) be a finitely de-
termined map germ. Then, there is a representative f : U → V , where
U, V ⊂ R3 are open sets, such that:

1. f−1(0) = {0},

2. f : U → V is proper,

3. the restriction f |U\{0} is stable with only fold planes, cuspidal edges and
double fold point curves.

Definition 2.2.5. We say that f : U → V is a good representative for a
finitely determined map germ f : (Rn, 0) → (Rn, 0), with n = 2 or 3, if the
conditions (1), (2) and (3) of corollary 2.2.3 or 2.2.4 hold.
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2.3 Fukuda’s theorem and the link of a map

germ

We must remind an important result due to Fukuda, which tell us that any
finitely determined map germ, f : (Rn, 0) → (Rp, 0), with n ≤ p, has a conic
structure over its link. The link is obtained by intersecting the image of a
representative of f with a small enough sphere centered at the origin of Rp.

Theorem 2.3.1. ([5]) Suppose n ≤ p and let f : (Rn, 0) → (Rp, 0) be a
finitely determined map germ. Then, up to A-equivalence, there is a repre-
sentative f : U → V and ϵ0 > 0, such that, for any ϵ with 0 < ϵ ≤ ϵ0 we
have:

1. S̃n−1
ϵ = f−1(Sp−1

ϵ ) is a homotopy (n-1)-sphere which, if n ̸= 4, 5 is
diffeomorphic to the natural (n-1)-sphere Sn−1,

2. the restricted map f |S̃n−1
ϵ

: S̃n−1
ϵ −→ Sp−1

ϵ is topologically stable (C∞

stable if (n, p) is a ”nice pair” (in Mather’s sense)),

3. letting D̃n
ϵ = f−1(Dp

ϵ ), the restricted map f |D̃n
ϵ
: D̃n

ϵ −→ Dp
ϵ is proper,

topologically stable (C∞ stable if (n, p) is a ”nice pair”) and topolog-
ically equivalent (C∞ equivalent (A- equivalent) if (n, p) is a ”nice
pair”) to the product map

(f |S̃n−1
ϵ

)× id(0,ϵ) : S̃n−1
ϵ × (0, ϵ) −→ Sp−1

ϵ × (0, ϵ)

(x, t) −→ (f(x), t)

and

4. consequently, f |D̃n
ϵ
: D̃n

ϵ −→ Dp
ϵ is topologically equivalent to the cone

C(f |S̃n−1
ϵ

) : S̃
n−1
ϵ ×[0,ϵ)

S̃n−1
ϵ ×{0}

−→ Sp−1
ϵ ×[0,ϵ)

Sp−1
ϵ ×{0}

of the stable map f |S̃n−1
ϵ

: S̃n−1
ϵ −→

Sp−1
ϵ defined by C(f |S̃n−1

ϵ
)(x, t) = (f(x), t).

Restricting ourselves to what are going to be our particular cases of study
in this work, we have the following consequences.

Corollary 2.3.2. (n = p = 2) Let f : (R2, 0) → (R2, 0) be a finitely de-
termined map germ. Then, up to A-equivalence, there is a representative
f : U → V and ϵ0 > 0, such that, for any ϵ with 0 < ϵ ≤ ϵ0 we have:

1. S̃1
ϵ = f−1(S1

ϵ ) is diffeomorphic to S1.

2. The map f |S̃1
ϵ
: S̃1

ϵ → S1
ϵ is stable, in other words, it is a Morse function

all of whose critical values are distinct.
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3. f is topologically equivalent to the cone of f |S̃1
ϵ
.

Corollary 2.3.3. (n = p = 3) Let f : (R3, 0) → (R3, 0) be a finitely de-
termined map germ. Then, up to A-equivalence, there is a representative
f : U → V and ϵ0 > 0, such that, for any ϵ with 0 < ϵ ≤ ϵ0 we have:

1. S̃2
ϵ = f−1(S2

ϵ ) is diffeomorphic to S2.

2. The map f |S̃2
ϵ
: S̃2

ϵ → S2
ϵ is stable.

3. f is topologically equivalent to the cone of f |S̃2
ϵ
.

As a consequence of this theorem we have the following definition.

Definition 2.3.4. Let f : (Rn, 0) → (Rp, 0) be a finitely determined map

germ, with n ≤ p. We say that the stable map f |S̃n−1
ϵ

: S̃n−1
ϵ → Sp−1

ϵ is
the link of f , where f is a representative such that (1), (2), (3) and (4) of
theorem 2.3.1 hold for any ϵ with 0 < ϵ ≤ ϵ0. This link is well defined, up to
A-equivalence.

Remark 2.3.5. If we consider a multigerm f : (Rn, S) → (Rp, 0), with
n ≤ p and S = {x1, . . . , xr}, the construction of the link can be done in
an analogous way. By reviewing carefully Fukuda’s arguments, we see that
the only difference is the condition (1) of theorem 2.3.1: now S̃n−1

ϵ is not
diffeomorphic to Sn−1 anymore, but it is diffeomorphic to a disjoint union of
r copies Sn−1⊔ . . .⊔Sn−1. However, the other conditions (2), (3) and (4) are
still valid in this case.

2.4 The topological degree of a map germ

Before finishing this chapter we must remember how we define the topological
degree of a map germ, as well as its main properties.

Definition 2.4.1. Let f : (Rn, 0) → (Rn, 0) be a smooth map germ such
that f−1(0) = {0}. We will call topological degree of f to the degree of the
associated map (f/∥f∥) : Sn−1

ϵ → Sn−1 for ϵ > 0 small enough. Let’s notice
that to compute the degree of f (see for example [22]) is enough to take a
regular value w ∈ Rn small enough and we have

deg(f) =
∑

zi∈f−1(w)

ind(f, zi),
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where

ind(f, zi) =

{
1, if Jf(zi) > 0,

−1, if Jf(zi) < 0.

This definition doesn’t depend on the chosen regular value w.

Proposition 2.4.2. Let f : (R, 0) → (R, 0) be a smooth function germ such
that f−1(0) = {0}. Then, deg(f) ∈ {0,±1}.
Proof. Let w ∈ R be a regular value of f , f−1(w) = {z1, . . . , zt}, with z1 <
· · · < zt. We have two cases:

• If t is even, f intersects the straight line f(x) = w an even number of
times. Therefore, for any i ∈ {1, 2, . . . , t} if f ′(zi) > 0, then f ′(zi+1) < 0
and viceversa. Then, deg(f) = 0.

• If t is odd,

deg(f) =
2k∑
i=1

ind(f, zi) + ind(f, z2k+1) = ind(f, z2k+1) =

=

{
1, if f ′(z2k+1) > 0;

−1, if f ′(z2k+1) < 0.

Thus, deg(f) ∈ {0,±1}.
Proposition 2.4.3. Let F : (Rn × Rr, 0) → (Rn × Rr, 0) be a r-parameter
unfolding of a smooth map germ f : (Rn, 0) → (Rn, 0) such that f−1(0) =
{0}, with F (x, t) = (ft(x), t), f0 = f . Then, deg(F ) = deg(f).

Proof. Firstly, let’s take suitable representatives f : U ⊂ Rn → Rn such that
f−1(0) = 0 and F : V × U → Rr × Rn.

We choose a regular value of f y ∈ Rn, with f−1(y) = {x1, . . . , xt}. From
this, it follows that F−1(0, y) = {(0, x1), . . . , (0, xt)}. Then:

DF (u, x) =

(
Id ∗
0 Dfu(x)

)
If we compute DF in a point of the form (0, xi) we obtain

DF (0, xi) =

(
Id ∗
0 Dfu(xi)

)
Therefore, (0, y) is a regular value of F . Moreover, JF (0, xi) = Jf(xi).

We conclude deg(f) = deg(F ).

Corollary 2.4.4. Let F : (R×Rr, 0) → (R×Rr, 0) be a r-parameter unfolding
of a smooth function germ f : (R, 0) → (R, 0) such that f−1(0) = {0}, with
F (x, t) = (ft(x), t), f0 = f . Then, deg(F ) ∈ {0,±1}.
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Chapter 3

The link of a finitely
determined map germ from R2

to R2

In this chapter we study the topological classification of finitely determined
map germs, f : (R2, 0) → (R2, 0), by looking at the topological type of its
link. The main tool will be an adapted version of Gauss word, which will be
proved to be a complete topological invariant of our map germs. We will also
take special attention to the case that f has corank 1. In this case, f can be
written as f(x, y) = (x, gx(y)) and gives a stabilization of g0 : (R, 0) → (R, 0).
The topology of f is now determined by the two stabilizations g+x , with x > 0
and g−x with x < 0. We obtain the topological classification up to multiplicity
5, provided that f is weighted homogeneous (theorem 3.3.13). In the last
part we will give a couple of results (theorem 3.4.1 and remark 3.4.2) related
to the cusps and double folds that appear in a finitely determined map germ
when you consider a stable perturbation of it.

3.1 The link of a germ

We have defined in chapter 2 the link of a finitely determined map germ in
the general case. Now, we adapt this concept to our particular case of study.

Definition 3.1.1. Let f : (R2, 0) → (R2, 0) be a finitely determined map

germ. We say that the stable map f |S̃1
ϵ
: S̃1

ϵ → S1
ϵ is the link of f , where f

is a representative such that (1), (2) and (3) of corollary 2.3.2 hold for any ϵ
with 0 < ϵ ≤ ϵ0. Then, in this case f is a Morse function, all of whose critical
values are distinct. This link is well defined, up to A-equivalence. We also
say that ϵ0 is a Milnor-Fukuda radius for f .

21
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Since any finitely determined map germ is topologically equivalent to the
cone of its link, we have the following immediate consequence.

Corollary 3.1.2. Two finitely determined map germs f, g : (R2, 0) → (R2, 0)
are topologically equivalent if their associated links are topologically equiva-
lent.

We will see the converse of this result at the end of the following section.

3.2 The Gauss word

We recall that a Gauss word is a word which contains each letter exactly
twice, one with exponent +1 and another one with exponent -1. They were
introduced originally by Gauss to describe the topology of closed curves in
the plane R2 or in the sphere S2. Here, we use the same terminology of Gauss
word to represent a different type of word, adapted to our particular case of
stable maps S1 → S1.

Let S1 be the unit 1-sphere with the anti-clockwise orientation and let
us choose a base point z0 ∈ S1. Any point x ∈ S1 can be written in a
unique way as x = z0e

iα, with α ∈ [0, 2π). Given x = z0e
iα and y = z0e

iβ,
with α, β ∈ [0, 2π), we denote x ≤ y if α ≤ β. If S1 is considered with the
clockwise orientation, then we write x = z0e

−iα, with α ∈ [0, 2π) and the
order relation is defined in an analogous way.

Definition 3.2.1. Let γ : S1 → S1 be a stable map, that is, such that all
its singularities are of Morse type and its critical values are distinct. We fix
orientations in each S1 and we also choose base points z0 ∈ S1 in the source
and a0 ∈ S1 in the target.

Suppose that γ has r critical values labeled by r letters a1, . . . , ar ∈ S1

and let us denote their inverse images by z1, . . . , zk ∈ S1. We assume they are
ordered such that a0 ≤ a1 < · · · < ar and z0 ≤ z1 < · · · < zk and following
the orientation of each S1.

We define a map σ : {1, . . . , k} → {a1, . . . , ar, a1, . . . , ar} in the following
way: given i ∈ {1, . . . , k}, then γ(zi) = aj for some j ∈ {1, . . . , r}; we define
σ(i) = aj, if zi is a regular point and σ(i) = aj, if zi is a singular point. We
call Gauss word to the sequence σ(1) . . . σ(k).

Example 3.2.2.

1. Let γ : S1 → S1 be the link of the fold f(x, y) = (x, y2). There are
only 2 critical values and 2 inverse images, one for each critical value.
The Gauss word is ab (figure 3.1).
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z

(1)

a

b

(2)

a b

ab

(3)

z

1

z2

1z2

Figure 3.1

2. Let γ : S1 → S1 be the link of the cusp f(x, y) = (x, xy + y3). There
are 2 critical values and 4 inverse images, two for each critical value.
The Gauss word in this case is abab (figure 3.2).

(1) (2) (3)

z

z

z

z

a

b

b a

z abab

4

3

2

1

1z z z
2 3 4

Figure 3.2

It is obvious that the Gauss word is not uniquely determined, since it
depends on the chosen orientations and base points in each S1. Different
choices will produce the following changes in the Gauss word:

1. a cyclic permutation in the letters a1, . . . , ar;

2. a cyclic permutation in the sequence σ(1) . . . σ(k);

3. a reversion in the set of the letters a1, . . . , ar;

4. a reversion in the sequence σ(1) . . . σ(k).

We say that two Gauss words are equivalent if they are related through
these four operations. Under this equivalence, the Gauss word is now well
defined.

Moreover, we will have the following restrictions in their construction:
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1. The number of folds (and as a consequence of distinct letters) have to
be even. This is easily proved by considering Euler-Poincaré equality

0 = χ(S1) =
∑
x∈S(γ)

ind(γ, x)

with γ : S1 −→ S1 and

ind(γ, x) =

{
1, if γ′′(x) < 0;

−1, if γ′′(x) > 0.

2. We cannot have the same letter in two consecutive positions.

In order to simplify the notation, given a stable map γ : S1 → S1, we
denote by w(γ) the associated Gauss word and by ≃ the equivalence relation
between Gauss words. We also denote by deg(γ) the topological degree.
Then, we can state the main result of this section.

Theorem 3.2.3. Let γ, δ : S1 → S1 be two stable maps. Then γ, δ are
topologically equivalent if and only if

w(γ) ≃ w(δ), if γ, δ are singular,

| deg(γ)| = | deg(δ)|, if γ, δ are regular.

Proof. We choose orientations in the source and the target of γ : S1 → S1

and we also choose base points z0 ∈ S1 and a0 ∈ S1. We denote by a1, . . . , ar
the critical values of γ and by z1, . . . , zk their inverse images. Assume they
are ordered such that a0 ≤ a1 < · · · < ar and z0 ≤ z1 < · · · < zk and
following the orientation of each S1. Let σ(1) . . . σ(k) be the Gauss word of
γ.

Suppose that δ : S1 → S1 is topologically equivalent to γ. Then, there
are homeomorphisms ϕ, ψ : S1 → S1 such that δ = ψ ◦ γ ◦ ϕ−1. We choose
the orientations in the source and the target induced by the orientations of
γ and the homeomorphisms ϕ, ψ. We denote z′i = ϕ(zi) with i = 0, . . . , k
and a′j = ψ(aj) with j = 0, . . . , r. We take z′0 and a′0 as base points in the
source and the target respectively. Then, a′1, . . . , a

′
r are the critical values

of δ and z′1, . . . , z
′
k are their inverse images and all of them are well ordered

with respect to the chosen base points and orientations. If we label the
critical values also with the letters a1, . . . , ar, then δ has the same Gauss
word σ(1) . . . σ(k).
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If γ, δ are topologically equivalent, then we always have the equality
| deg(γ)| = | deg(δ)|. In fact, since any homeomorphism has degree ±1,
we obtain

deg(δ) = deg(ψ ◦ γ ◦ ϕ−1) = deg(ψ) deg(γ) deg(ϕ−1) = ± deg(γ).

We show now the converse. We divide the proof into several cases.

Case 1: γ, δ are singular and w(γ) = w(δ). We adopt the following notation:

1. a1, . . . , ar are the critical values of γ and z1, . . . , zk are their inverse
images,

2. a′1, . . . , a
′
r are the critical values of δ and z′1, . . . , z

′
k are their inverse

images.

We assume that all the points are well ordered with respect to the chosen base
point and orientation in each corresponding S1. The fact that w(γ) = w(δ)
implies that γ(zi) = aj if and only if δ(z′i) = a′j.

We define the circle intervals

Jj = [aj, aj+1], Ii = [zi, zi+1], Kj = [a′j, a
′
j+1], Hi = [z′i, z

′
i+1],

with j = 1, . . . , r and i = 1, . . . , k (we set ar+1 = a1, a
′
r+1 = a′1, zk+1 = z1

and z′k+1 = z′1).
For each j = 1, . . . , r we choose a homeomorphism ψj : Jj → Kj such

that ψj(aj) = a′j and we construct the homeomorphism ψ : S1 → S1 by
taking ψ|Jj = ψj.

For each i = 1, . . . , k, suppose that γ(zi) = aj and δ(z′i) = a′j. Then
the restrictions γi = γ|Ii : Ii → Jj and δi = δ|Hi

: Hi → Kj are also
homeomorphisms. We define the homeomorphism ϕi : Ii → Hi by ϕi = δ−1

i ◦
ψj◦γi (see figure 3.3). Finally, we construct the homeomorphism ϕ : S1 → S1

by taking ϕ|Ii = ϕi. This homeomorphism verifies that δ = ψ ◦ γ ◦ ϕ−1 and
hence, γ, δ are topologically equivalent.

Case 2: γ, δ are singular and w(γ) ≃ w(δ).
In this case, we can define a new map δ̃ which is topologically equivalent

to δ and such that w(γ) = w(δ̃). Then, the result follows from case 1.
In fact, given θ ∈ [0, 2π), we denote by Tθ : S1 → S1 the rotation with

angle θ, that is, Tθ(z) = eiθz. We also denote the inversion I : S1 → S1,
where I(z) = z−1.

1. If w(γ), w(δ) are related through a cyclic permutation in the letters
a1, . . . , ar, then there is θ such that w(γ) = w(Tθ ◦ δ).
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γ

δ

φ ψ

I
i

Jj

Hi
Kj

i j

Figure 3.3: The commutative diagram between the stable maps γ and δ

2. If w(γ), w(δ) are related through a cyclic permutation in the sequence
σ(1) . . . σ(k), then there is θ such that w(γ) = w(δ ◦ Tθ).

3. If w(γ), w(δ) are related through a reversion in the set of the letters
a1, . . . , ar, then w(γ) = w(I ◦ δ).

4. If w(γ), w(δ) are related through a reversion in the sequence σ(1) . . . σ(k),
then w(γ) = w(δ ◦ I).

Case 3: γ, δ are regular and deg(γ) = deg(δ).
We choose a point a0 ∈ S1 and let us denote γ−1(a0) = {z1, . . . , zk}

and δ−1(a0) = {z′1, . . . , z′k}, where k is the absolute value of the topological
degree of γ and δ. We assume that the points are well ordered in each
corresponding S1. We consider the intervals Ii = [zi, zi+1] and Hi = [z′i, z

′
i+1]

and the restrictions γi = γ|Ii : Ii → S1 and δi = δ|Hi
: Hi → S1, with

i = 1, . . . , k.
For each i = 1, . . . , k, we define the homeomorphism ϕi : Ii → Hi by

taking ϕi = δ−1
i ◦ γi on the interior of Ii, ϕi(zi) = z′i and ϕi(zi+1) = z′i+1.

We construct the homeomorphism ϕ : S1 → S1 by taking ϕ|Ii = ϕi. This
homeomorphism verifies that δ = γ◦ϕ−1 and γ, δ are topologically equivalent.

Case 4: γ, δ are regular and deg(γ) = − deg(δ).
We have that deg(γ) = deg(δ ◦ I) and hence, this is a consequence of case

3.

Given a finitely determined map germ f : (R2, 0) → (R2, 0), we denote by
w(f) the Gauss word of its link and by deg(f) the local topological degree.
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Remark 3.2.4. If f : (R2, 0) → (R2, 0) is a finitely determined map germ,
then we can compute Gauss word of the link of f just by looking at the
relative position of the branches of the three curves S(f), ∆(f) and X(f).
This construction is useful sometimes because we do not need to compute
explicitly the link of f . We take a small enough representative f : U ⊂ R2 →
R2 such that

1. f−1(0) = {0},

2. the restriction f |U\{0} is stable with only simple folds.

The three curves S(f), ∆(f) and X(f) are plane curves which are smooth
outside the origin. By shrinking the neighbourhood U if necessary, we can
assume that the three curves are simply connected.

The discriminant ∆(f) has a tree structure with one vertex at the origin
and r adjacent edges labeled by r letters a1, . . . , ar. Analogously, S(f) ∪
X(f) has also a tree structure with one vertex at the origin and k adja-
cent edges labeled by Z1, . . . , Zk. We assume that the edges are well or-
dered a1 < · · · < ar and Z1 < · · · < Zk with respect to some chosen
base points and orientations in the source and the target. We define the
map σ : {1, . . . , k} → {a1, . . . , ar, a1, . . . , ar} in the following way: given
i ∈ {1, . . . , k}, then γ(Zi) = aj for some j ∈ {1, . . . , r}; we define σ(i) = aj,
if Zi ⊂ X(f) and σ(i) = aj, if Zi ⊂ S(f). Then, σ(1) . . . σ(k) is equal to the
Gauss word of the link of f .

As a direct consequence of the last remark and the theorem 3.2.3 we are
in conditions of stating and proving the following result that will give us the
converse of corollary 3.1.2

Corollary 3.2.5. Let f, g : (R2, 0) → (R2, 0) be two finitely determined
map germs. Then, if f and g are topologically equivalent, their links are
topologically equivalent.

Proof. If f and g are topologically equivalent, applying last remark we have
that their respective Gauss words, w(f) and w(g), are equivalent. If we use
now theorem 3.2.3 we arrive to the desired result.

Then, we have the following immediate consequence of corollaries 3.1.2
and 3.2.5 and theorem 3.2.3.

Corollary 3.2.6. Let f, g : (R2, 0) → (R2, 0) be two finitely determined map
germs. Then f, g are topologically equivalent if and only if

w(f) ≃ w(g), if f, g are singular outside the origin,

| deg(f)| = | deg(g)|, if f, g are regular outside the origin.



28 Chapter 3. The link of a map germ from R2 to R2

Remark 3.2.7. If f is regular outside the origin and |deg(f)| = r, then f is
topologically equivalent to the germ z → zr, with z = x+ iy.

Before finishing this section we should make the following remark, which
will be very useful in the following chapter.

Remark 3.2.8. By following step by step the proof of theorem 3.2.3 we can
observe the following fact: if γ, δ : S1 → S1 are stable maps with w(γ) ≃
w(δ) and if we fix any homeomorphism in the target ψ : S1 → S1 such
that ψ(∆(γ)) = ∆(δ), then there is a unique homeomorphism in the source
ϕ : S1 → S1 such that ψ ◦ γ ◦ ϕ−1 = δ.

By combining this observation with corollaries 3.1.2 and 3.2.5 we have an
analogous result for map germs: let f, g : (R2, 0) → (R2, 0) be two finitely
determined map germs that are topologically equivalent. If we fix any home-
omorphism in the target ψ : (R2, 0) → (R2, 0) such that ψ(∆(f)) = ∆(g),
then there is a unique homeomorphism in the source ϕ : (R2, 0) → (R2, 0)
such that ψ ◦ f ◦ ϕ−1 = g.

3.3 Topological classification of corank 1 map

germs

In this section we study the topological classification of finitely determined
map germs of corank 1. The main tool will be the Gauss word, which is a
complete topological invariant, as we have seen in section 2.

First of all, we should remark that if f : (R2, 0) → (R2, 0) has corank
≤ 1, then after taking smooth changes of coordinates in the source and the
target, we can write f in the form f(x, y) = (x, gx(y)), in other words, f can
be seen as a 1-parameter unfolding of the germ g0 : (R, 0) → (R, 0).

In addition to this, and taking in account the properties of the topological
degree of a map germ f we have the following result.

Proposition 3.3.1. Let f : (R2, 0) → (R2, 0) be a finite germ of corank 1,
with f(x, y) = (x, gx(y)), g0(y) = any

n + an+1y
n+1 + . . . with an ̸= 0. Then,

deg(f) =


0, if n is even,

1, if n is odd and an > 0,

−1, if n is odd and an < 0.

Proof. We know, by corollary 2.4.4 that deg(f) = deg(g0) ∈ {0, 1,−1}.
On the other hand, since g0(y) = any

n + an+1y
n+1 + . . . with an ̸= 0, we

have that g0(y) is A-equivalent to ±yn, depending on the sign of an.
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Now, let’s take a regular value w ∈ R of g0 which will verify that±yn = w.
If n is even w will present two or none inverse images, depending on its sign,
thus, in both cases deg(f) = 0. If n is odd w will be present a single inverse
image, obtaining that deg(f) will be equal to 1 or −1, depending on the sign
of an.

Another consequence is that the multiplicity of f is equal to n. In general,
the multiplicity of f : (R2, 0) → (R2, 0) is defined as

m(f) = dimR
R{x, y}
⟨f1, f2⟩

,

where f1, f2 denote the components of f and R{x, y} is the local algebra of
germs of analytic functions (R2, 0) → R. In this case, if f is written as in
proposition 3.3.1,

m(f) = dimR{1, y, y2, . . . , yn−1} = n.

Written in the form (x, gx(y)), f will be regular if c0,1 = 0 and singular
otherwise, where we denote by ci,j the coefficient of the term xiyj of Taylor
polynomial of gx. Clearly, j1f(0) is A-equivalent to (x, y) in the first case
and to (x, 0) in the last one.

Next, we state a result due to J.H.Rieger ([34]) which gives a classification
of corank 1 map germs according to its 2-jet. We denote by Σ1J2(2, 2) the
space of 2-jets of corank 1 map germs from (R2, 0) to (R2, 0) and A2 denotes
the space of 2-jets of diffeomorphisms in the source and target.

Lemma 3.3.2. There exist three orbits in Σ1J2(2, 2) under the action of A2,
which are

(x, y2), (x, xy), (x, 0).

It is well known that the fold f(x, y) = (x, y2) is 2-determined. Thus, if
a map germ has 2-jet equivalent to (x, y2), then it is in fact A-equivalent to
the fold. Hence, we do not need to consider this case.

The rest of the section will be centered in the study of the two remaining
cases.

3.3.1 Classification of germs with 2-jet of type (x, xy)

Now, we center our attention in germs with 2-jet A-equivalent to (x, xy). We
will prove that a map germ of this type is topologically equivalent to the fold,
(x, y2), or the cusp, (x, xy + y3). First of all, we state an important result,
due to J. Damon [1].
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Theorem 3.3.3. Let f0 : (Rn, 0) → (Rp, 0) be a weighted homogeneous
finitely determined map germ. Then, any polynomial unfolding of f0 with
positive weighted degrees is topologically trivial.

In our case, we will show that any finitely determined map germ f :
(R2, 0) → (R2, 0) with 2-jet of type (x, xy) is semi-weighted homogeneous,
that is, we can write f = f0 + h where f0 is weighted homogeneous and
finitely determined and h has only terms of higher weighted degree. By
Damon’s result, this implies that f is topologically equivalent to the initial
part f0 and we can complete the topological classification.

Theorem 3.3.4. Let f : (R2, 0) → (R2, 0) be a finitely determined map germ
with 2-jet of type (x, xy) and with multiplicity n. Then, f is topologically
equivalent either to the fold (x, y2) if n is even, or to the cusp (x, xy + y3) if
n is odd.

Proof. We can assume, without loss of generality by the finite determinacy,
that f is polynomial and that it is written in the form

f(x, y) = (x, xy + any
n + . . . ),

with an ̸= 0 and where n is the multiplicity of f . We have that f0(x, y) =
(x, xy + any

n) is weighted homogeneous of weights (n − 1, 1) and weighted
degrees (n − 1, n) and any other monomial appearing in h = f − f0 has
weighted degree > n.

If we define the unfolding F (t, x, y) = (t, f0(x, y) + th(x, y)), then F is
a polynomial unfolding of f0 with positive weighted degrees in the sense
of [1]. We will show that f0 is finitely determined and by Damon’s result,
F is topologically trivial. In particular, we deduce that f is topologically
equivalent to f0.

Let f̂0 be the complexification of f0. The jacobian determinant of f̂0 is
x+ nany

n−1 and thus, the singular curve S(f̂0) is smooth. The restriction of
f̂0 to S(f̂0) is the map y 7→ (−nanyn−1,−(n− 1)any

n), which is an injective
immersion outside the origin. By the stability criterion, f̂0 is stable outside
the origin. Therefore, f̂0 (and hence f0) is finitely determined by the Mather-
Gaffney criterion (see corollary 2.2.3).

To finish the proof, it only remains to show that f0 is topologically equiv-
alent to the fold if the multiplicity n is even, or to the cusp if n is odd.
Since the singular curve S(f0) is smooth, the discriminant ∆(f0) has only
one branch. Thus, the link of f0 has only 2 critical values.

If n is even, then deg(f0) = 0. If we compute the number of roots of the
polynomial yn + xy + w by computing the number of roots of its derivate
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nyn−1 + x, we arrive to the conclusion that f can present at most 2 inverse
images. Then, each critical value present a single inverse image and as a
consequence the Gauss word of our link is ab. Hence, f0 is topologically
equivalent to the fold (x, y2).

Analogously, if n is odd, then deg(f0) = ±1. Using an analogous pro-
cedure we arrive to the conclusion that f can present 1 or 3 inverse images
in the real case. Thus each critical value is going to present two inverse im-
ages and the Gauss word of our link in this case will be abab. Then, f0 is
topologically equivalent to the cusp (x, xy + y3).

3.3.2 Classification of germs with 2-jet of type (x, 0)

The germs with 2-jet of type (x, 0) are the biggest class inside the corank 1
map germs and we cannot expect to obtain a complete classification. We will
restrict ourselves to the weighted homogenous case and also to map germs
with multiplicity ≤ 5, although the techniques can be also used to classify
more degenerate singularities.

We assume that f is written in the form f(x, y) = (x, gx(y)), and we look
at f as a 1-parameter unfolding of the germ g0 : (R, 0) → (R, 0). If f has
multiplicity n, then g0 has type An−1 (i.e., it is A-equivalent to yn) and the
Ae-versal unfolding of the An−1 singularity is

G(a1, . . . , an−2, y) = yn + an−2y
n−2 + · · ·+ a1y.

As a consequence, after taking smooth changes of coordinates in the source
and the target, we can assume that f is written in the following prenormal
form:

f(x, y) = (x, yn + an−2(x)y
n−2 + · · ·+ a1(x)y),

for some germs ai : (R, 0) → (R, 0), i = 1, . . . , n − 2. The germ a =
(a1, . . . , an−2) : (R, 0) → (Rn−2, 0) defines a curve in the space of param-
eters of the versal unfolding. This will allow us to control the functions gx
by looking at the versal deformation.

Another important point in the classification is that if f(x, y) = (x, gx(y))
is finitely determined, then f is a stabilization of g0. This means that there
is a representative f : U = (−ϵ, ϵ) × V → R2 such that for any x, with
0 < |x| < ϵ, gx : V → R is locally stable (that is, gx is a Morse function with
distinct critical values).

Proposition 3.3.5. Let f : (R2, 0) → (R2, 0) be a finitely determined map
germ given by f(x, y) = (x, gx(y)). Then, f is a stabilization of g0.
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Proof. By corollary 2.2.3, if f is finitely determined, we can choose a proper
representative f : U → V , where U, V ⊂ R2 are open sets, such that

1. f−1(0) = {0},

2. the restriction f |U\{0} is stable with only simple folds.

We take V a neighbourhood of 0 in R, and then take ϵ sufficiently small, so
that we can assume that U = (−ϵ, ϵ) × V . Let us take x, with 0 < |x| < ϵ.
If gx has a degenerate singularity at y ∈ V , then g′x(y) = g′′x(y) = 0 and f
should have a cusp at (x, y) ∈ U \ {0}. Analogously, if gx is singular at two
distinct point y1, y2 ∈ V with gx(y1) = gx(y2), then g

′
x(y1) = g′x(y2) = 0 and

f should have a double fold at (x, y1), (x, y2) ∈ U \{0}. So, we arrive in both
cases to a contradiction with the hypothesis of the proposition.

Let f : (R2, 0) → (R2, 0) be a finitely determined map germ given by
f(x, y) = (x, gx(y)). We take a representative f : U = (−ϵ, ϵ) × V → R2

such that gx : V → R is stable for any x, with 0 < |x| < ϵ. Since g0 has
isolated singularity, by shrinking U if necessary, we can also assume that
g−1
0 (0) = {0} in V and that g0 is regular in V \ {0}.
Because of the local stability, all the functions gx : V → R are A-

equivalent if −ϵ < x < 0 and we will denote by g−x one of these functions.
Analogously, all the functions gx : V → R are A-equivalent if 0 < x < ϵ and
we will denote by g+x one of these functions.

Next step will be asking ourselves what will happen if we have two finitely
determined map germs f, f ′ such that gx and g′x are topologically equivalent
for x > 0 and x < 0. In that case, will f and f ′ be topologically equivalent?

Motivated by this question let us associate a partial Gauss word to each
of the functions g−x , g

+
x in a similar way to definition 3.2.1.

Definition 3.3.6. Let g : V → R be one of the functions g−x or g+x . Let
a1, . . . , ar ∈ R be the critical values of g and let y1, . . . , yk ∈ V their inverse
images. Assume all of them are ordered such that a1 < · · · < ar and y1 <
· · · < yk. We define the partial Gauss word of g as σ(1) . . . σ(k), where

σ(i) =

{
aj, if g(yi) = aj and yi is regular;

aj, if g(yi) = aj and yi is singular.

Definition 3.3.7. Assume that g+x and g−x have r and s critical values re-
spectively and let σ+(1) . . . σ+(k) and σ−(1) . . . σ−(ℓ) be their respective par-
tial Gauss words. We denote by ϕ the map ϕ(aj) = ar+s−j+1 and ϕ(aj) =
ar+s−j+1, for j = 1, . . . , s. Then we define the union of the partial Gauss
words as the Gauss word with r + s critical values defined by

σ+(1) . . . σ+(k)ϕ(σ−(ℓ)) . . . ϕ(σ−(1)).
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After giving both definitions we are now in conditions of stating and
proving the following result.

Theorem 3.3.8. Let f : (R2, 0) → (R2, 0) be a finitely determined map germ
given by f(x, y) = (x, gx(y)). Then the Gauss word of f is equivalent to the
union of the partial Gauss words of g+x and g−x .

Proof. We will compute the Gauss word of f by following the construction of
remark 3.2.4. Take a small enough representative f : U = (−ϵ, ϵ)× V → R2

such that

1. f−1(0) = {0},

2. f is stable with only simple folds in U \ {0},

3. the three curves S(f), ∆(f) and X(f) are simply connected.

The first two conditions imply that if 0 < |x| < ϵ, then gx : V → R is stable
and that g−1

0 (0) = {0}.
We show that the three curves S(f), ∆(f) and X(f) are transverse to

the vertical lines {x} ×R if 0 < |x| < ϵ. In fact, S(f) is defined by equation
g′x(y) = 0 and the intersection with {x} × R is not transverse if in addition
g′′x(y) = 0, but this should imply that (x, y) ∈ U \ {0} is a cusp of f .

Now, if α(t) = (x(t), y(t)) is a local parametrization of S(f) near a point
(x, y) ∈ S(f) with x ̸= 0, then f(α(t)) = (x(t), gx(t)(y(t))) gives a local
parametrization of ∆(f) near the point f(x, y) ∈ ∆(f). Since x′(t) ̸= 0,
∆(f) is also transverse to {x}×R at f(x, y). A similar argument shows that
the same is true for X(f).

The transversality of S(f) with the vertical lines, together with the fact
that S(f) is simply connected, imply that S(f) ∩ ({0} × R) = {0}. In
particular, g0 is regular in V \ {0} and we have a good representative in
order to define the partial Gauss words.

We take points x1, x2 with −ϵ < x2 < 0 < x1 < ϵ. We assume that:

1. ∆(f) ∩ ({x1} × R) = {a1, . . . , ar},

2. f−1(∆(f)) ∩ ({x1} × R) = {y1, . . . , yk},

3. ∆(f) ∩ ({x2} × R) = {a′1, . . . , a′s},

4. f−1(∆(f)) ∩ ({x2} × R) = {y′1, . . . , y′ℓ}.

We choose the indices such that all the points are well ordered and we denote
the corresponding partial Gauss words by σ+(1) . . . σ+(k) and σ−(1) . . . σ−(ℓ)
respectively.
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By transversality, the curve ∆(f) has r + s edges A1, . . . , Ar+s which we
can label so that a1 ∈ A1, . . . , ar ∈ Ar, a

′
s ∈ Ar+1, . . . , a

′
1 ∈ Ar+s. Moreover,

the edges are well ordered following the standard orientation of R2. Anal-
ogously, f−1(∆(f)) has k + ℓ edges Z1, . . . , Zk+ℓ which can be labeled such
that y1 ∈ Z1, . . . , yk ∈ Zk, y

′
ℓ ∈ Zk+1, . . . , y

′
1 ∈ Zk+ℓ and they are well ordered.

We deduce from definition 3.3.7 that the associated Gauss word is exactly
the union of the two partial Gauss words (see figure 3.4).

x1
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a1

ar

a’1

a’s
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1

A
r

A
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f  (∆( f ))

y1

yk

y’1

y’l

Z
1

Z
k

Z
k+1

Z
k+l

-1

f

Figure 3.4

Corollary 3.3.9. Let f, f̃ : (R2, 0) → (R2, 0) be two finitely determined map
germs given by f(x, y) = (x, gx(y)) and f̃(x, y) = (x, g̃x(y)). If the two partial
Gauss words of f, f̃ are equal, then f, f̃ are topologically equivalent.

Remark 3.3.10. The condition that the partial Gauss words are equal is a
necessary condition, because in general, the union of equivalent partial Gauss
words does not give equivalent Gauss words. We will find examples of that
in example 3.3.12.

Remark 3.3.11. The Gauss word of a stable map γ : S1 → S1, with γ
being the link of a corank 1 map germ, has always the following property: at
two consecutive positions of the Gauss word, we must have two consecutive
letters (either overlined or not). Hence, in the corank 1 case our Gauss words
can be simplified in the two following ways: each time that we find a group
of the form aiajai in the Gauss word, then we substitute it by just aj. For
instance, the Gauss word abcdcbcb can be simplified with this operation (see
figure 3.5):

abcdcbcb→ abdbcb→ adbc.
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It is obvious that given a simplified Gauss word, we can recover the complete
Gauss word just by adding the missing consecutive letters.

c
b

d

a
adbc

Figure 3.5: The link and its simplified Gauss word

The last remark is not true in the general case, where our map germs
can’t be seen as 1-parameter unfoldings of functions. We will give in chapter
5 several examples of map germs from R2 to R2 with the same simplified
Gauss word that are not topologically equivalent.

Example 3.3.12. Let f : (R2, 0) → (R2, 0) be a finitely determined map
with 2-jet of type (x, 0) and multiplicity 3. We assume that f is written in
its prenormal form

f(x, y) = (x, y3 + u(x)y),

where u(x) = ukx
k + . . . and uk ̸= 0. If x ̸= 0, we have two possibilities for

the stabilization gx(y) = y3 + u(x)y. If u(x) > 0, then gx is regular and the
partial Gauss word is ∅. Otherwise, if u(x) < 0, then gx has 2 critical values
and the partial Gauss word is abab (see figure 3.6).

(a)
(b)

a

b

Figure 3.6

By taking the union of the partial Gauss words we get 3 possibilities for
f :

1. If k is odd, then g+x and g−x are the 2 stabilizations of y3. Hence, the
link of f has 2 critical values and the Gauss word is abab.
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2. If k is even and uk > 0, then both g+x and g−x are regular. Hence, the
link of f is regular and the Gauss word is ∅.

3. If k is even and uk < 0, then both g+x and g−x are singular. Hence, the
link of f has 4 critical values and the Gauss word is ababcdcd.

The pictures and the normal forms for these three topological classes can be
found in the first three entries of degree 1 in table 3.1.

Analogously, if f has multiplicity 4, a similar analysis can be done. We
have three stabilizations of y4 with partial Gauss words: (a) a, (b) cacbc and
(c) cbcac (see figure 3.7).

(a) (b) (c)

a a

c

b

a

c

b

Figure 3.7

The possible Gauss words for f are obtained by taking all the possible
combinations between these 3 stabilizations. We see that (a)+(b) is equiva-
lent to (a)+(c) and that (b)+(b) is also equivalent to (c)+(c). Then, there
are only 4 non-equivalent possibilities, namely (a)+(a), (a)+(b), (b)+(b) and
(b)+(c). The corresponding Gauss words are respectively:

1. ab,

2. acbd,

3. cbcacdedfd,

4. cbcacdfded.

The pictures and the normal forms for these four topological classes can be
found in the first four entries in table 3.1.

A similar analysis can be done for higher multiplicity, just by looking at
the stabilizations of the germ yn and taking the possible unions which are
not equivalent. For y5, there are seven stabilizations of y5 with partial Gauss
words: (a) ∅, (b) abab, (c) abdbcacd, (d) ababcdcd (e) abcadbcd, (f) abdacbcd
and (g) abcbdacd (see figures 3.6 and 3.8).
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Now let’s state the main theorem of this section, which will give us the
complete classification of weighted homogeneous map germs of multiplicity
≤ 5.

Theorem 3.3.13. Let f : (R2, 0) → (R2, 0) be a weighted homogeneous
finitely determined map germ given by f(x, y) = (x, gx(y)), with 2-jet of type
(x, 0) and multiplicity ≤ 5. Then, f is topologically equivalent to one of the
germs of tables 3.1 and 3.2, depending on the topological configuration of its
associated link and its topological degree.

Proof. The cases of multiplicity 3 and 4 have been analyzed in example
3.3.12. Hence, we assume that the multiplicity is 5. We distinguish 2 cases:

Case A: f is homogeneous. Since gx(y) is homogeneous of degree 5, we have
the symmetry g−x(−y) = −gx(y). Let us denote by σ(1) . . . σ(k) the partial
Gauss word of g+x with r letters. Then the partial Gauss word of g−x is
τ(σ(k)) . . . τ(σ(1)), where τ(ai) = ar−i+1. By theorem 3.3.8, the Gauss word
of f is σ(1) . . . σ(k)ϕ(σ(1)) . . . ϕ(σ(k)), where ϕ(ai) = ar+i.

Consider the seven stabilizations of y5 (a),. . . ,(g) given in figures 3.6 and
3.8. The stabilization (f) is symmetric to (g), but each one of the remain-
ing cases is its own symmetric. Thus, we obtain six possible combinations,
namely, (a)+(a), (b)+(b), (c)+(c), (d)+(d), (e)+(e) and (f)+(g). The cor-
responding Gauss words are respectively:

1. ∅,

2. ababcdcd,

3. abdbcacdefhfgegh,

4. ababcdcdefefghgh,

5. abcadbcdefgehfgh,
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Degree Germ Associated link

0 (x, y4 + x2y2)
a

b

ab

(x, y4 − xy2 − x2y)

c
b

d

a
adbc

(x, y4 − x4y2 + 1
4
x6y)

ed

f
a

cb cbcacdfded

(x, y4 − x2y2 − 1
4
x3y)

d

f

c cacbcdfded
a

b

e

1 (x, y3 + x2y)

(x, y3 + x3y)

abab

a

b

(x, y3 − x2y)

a

b

c
d

ababcdcd

(x, y5 + 2xy3 + 1
2
x2y)

a
c

b
d abdbcacd

Table 3.1

6. abdacbcdefhegfgh.

Case B: f is weighted homogeneous. We suppose now that gx(y) is a weighted
homogeneous polynomial of weights w1 and w2, with w1 ̸= w2. We can write
this polynomial in the form

gx(y) = xrys(a0(x
w2)d + a1(x

w2)d−1yw1 + · · ·+ ad(y
w1)d).
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Degree Germ Associated link

1 (x, y5 + 3xy3 + 2x2y)

b

d

a
c abcadbcd

(x, y5 − 3x2y3 + 5
4
x3y2 + x4y)

bc ad

f
ge

h

abdacbcdefhegfgh

(x, y5 − 5x2y3 + x4y)

a
cbd

e
gf
h

abdbcacdefhfgegh

(x, y5 − 3
2
x2y3 + 1

2
x4y)

b
d a
c

f
he

g

abcadbcdefgehfgh

(x, y5 − 3x2y3 + 3x4y)

c
d a

b

g
he

f

ababcdcdefefghgh

(x, y5 − 7
2
x4y3 + 2x6y2 + x8y)

bc ad

e
hf

g

abdacbcdefgfhegh

Table 3.2

Since f is finitely determined, we must have necessarily r = 0 and s ≤ 2.
We have two possible cases:

1. f(x, y) = (x, y(a0x
dw2 + a1x

(d−1)w2yw1 + · · ·+ ady
dw1)),

2. f(x, y) = (x, y2(a0x
dw2+a1x

(d−1)w2yw1+ · · ·+ad−1x
w2y(d−1)w+ady

dw1)),

where either dw1 + 1 = 5 or dw1 + 2 = 5. In addition, we can also take into
account the following restrictions:
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(a) As a consequence of the prenormal form of map germs of corank 1, if
w1 = 1, we can take ad−1 = 0.

(b) The functions ϕ1(x) = xw2 if w2 is odd and ϕ2(x
2) = xw2 if w2 is even

are homeomorphisms. Thus, we only consider w2 = 1, 2.

Depending on the possible values of d and w1 and with the above restric-
tions, we find only 4 possibilities for f :

f(x, y) =


(x, y5 + ax4y3 + bx6y2 + cx8y),

(x, y5 + axy3 + bx2y),

(x, y5 + ax2y2),

(x, y5 + axy2).

In the first and third cases, we have the symmetry g−x(y) = gx(y). Thus,
we will have one of the following combinations (a)+(a), (b)+(b), (c)+(c),
(d)+(d), (e)+(e), (f)+(f) or (g)+(g). Since (f)+(f) is equivalent to (g)+(g),
we only need to add one more topological type to our list, namely that with
Gauss word abdacbcdefgfhegh.

In the second case, f is finitely determined if and only if (20b− 9a2)(4b−
a2)(10b + 81a2)b ̸= 0. This bifurcation set is obtained by looking for the
values (a, b) such as f presents simple cusps or double fold points, that is

g′x(y) = g′′x(y) = 0

or
gx(y1) = gx(y2), g

′
x(y1) = g′x(y2) = 0.

This gives a partition of the (a, b) plane into 8 connected components (see
figure 3.9). By taking a point in each connected component we find all the
possible topological types of f . We find two more new types corresponding
to the combinations (a)+(c) and (a)+(e), with Gauss word abdbcacd and
abcadbcd respectively. Finally, in the fourth case, f is finitely determined if
and only if a ̸= 0 and we get two connected components, but do not get any
new topological type in this case.

We remark that all the types that appear in tables 3.1 and 3.2 can be
realized by considering the normal forms listed there. We have used the
software singR2R2 developed by A. Montesinos [25] in order to check that
each normal form gives the desired topological type.

Before finishing this section, let’s state a result that will give us a neces-
sary condition that a stable map γ : S1 −→ S1 should verify to be the link
of a corank 1 map germ.
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b = 0

10b + 81a  = 0

4b - a  = 0

20b - 9a  = 02

2

2

Figure 3.9: Bifurcation set of the map germ (x, y5 + axy3 + bx2y)

Proposition 3.3.14. Any finitely determined map germ f : (R2, 0) −→
(R2, 0) of corank 1, with link γ, verifies that

mult(γ) =

{
0, if deg(f) = 0,

1, if deg(f) = ±1.

Here, we define the multiplicity of a stable map γ : S1 −→ S1 as mult(γ) =
minp∈S1 mult(p), with mult(p) = #γ−1(p).

Proof. The three possible values of the topological degree of f are a con-
sequence of proposition 3.3.1. Let’s suppose that f(x, y) = (x, gx(y)), with
gx(y) = yn + an−2(x)y

n−2 + · · ·+ a1(x)y.
If deg(f) = 0, n is even, n − 1 is odd and, as a consequence, the both

curves g+x , g
−
x , that will form the link of f will have both an odd number of

folds. Thus, γ will not be surjective and mult(γ) = 0. If deg(f) = ±1, n is
odd, n − 1 is even and the union of both partial curves will completely fill
S1, so mult(γ) = 1.

3.4 The number of cusps and double folds of

germs of corank 1

In this last section, we give some results related to the number of cusps and
double folds that appear near the origin in a stable perturbation of a finitely
determined map germ of corank 1.
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Let f : (R2, 0) → (R2, 0) be a finitely determined map germ. We denote
by f̂ : (C2, 0) → (C2, 0) the complexification of f and we consider F̂ = (t, f̂t)
a stabilization of f̂ (i.e., f̂0 = f̂ and if t ̸= 0, then f̂t is stable in a small
enough neighbourhood U). Then, we denote

c(f) = the number of cusps of f̂t in U ,

d(f) = the number of double folds of f̂t in U .

These two numbers c(f), d(f) were introduced for the first time by Rieger
[34] for the case of corank 1 and independently c(f) was studied by Fukuda-
Ishikawa in [6] for general case. Both numbers c(f), d(f) are invariants of f
which do not depend on the stabilization F̂ . Moreover, they can be computed
algebraically in terms of the dimensions of some local algebras associated to f
(see [9, 10]). In fact, if f has corank 1 and f has the form f(x, y) = (x, gx(y)),
then we have

c(f) = dimR
R{x, y}
⟨g′x, g′′x⟩

,

where g′x, g
′′
x denote the first and second partial derivatives of gx with respect

to y and R{x, y} is the local algebra of germs of analytic functions (R2, 0) →
R.

If F is a real stabilization of f , then the numbers c(ft) and d(ft) of cusps
and double folds of ft respectively, depend on the stabilization F . However,
c(ft) is congruent modulo 2 to the invariant c(f) (see [6]).

Theorem 3.4.1. Let f : (R2, 0) → (R2, 0) be a finitely determined map germ
of corank 1 given by f(x, y) = (x, gx(y)). Then,

deg(g′x, g
′′
x) =

n(g−x )− n(g+x )

2
≡ c(f) mod 2,

where deg(g′x, g
′′
x) is the local topological degree of the map germ (g′x, g

′′
x) :

(R2, 0) → (R2, 0) and n(g+x ) and n(g−x ) denote the number of critical values
of g+x and g−x respectively.

Proof. The equality is a direct consequence of Theorem C (2) in [31] applied
to g′x : (R2, 0) → (R, 0). In fact, n(g+x ) is the number of branches of (g′x)

−1(0)
which lie in the half region x > 0 and n(g−x ) is the number of branches of
(g′x)

−1(0) which lie in the half region x < 0. Moreover, since f is finitely
determined we have that

c(f) = dimR
R{x, y}
⟨g′x, g′′x⟩

<∞.
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Then, the result of Nishimura, Fukuda and Aoki implies that

n(g−x )− n(g+x ) = 2 deg(g′x, g
′′
x).

Finally, the congruence follows from the relation between the multiplicity
and the local degree of (g′x, g

′′
x) : (R2, 0) → (R2, 0), taking into account that

c(f) = mult(g′x, g
′′
x)

and
mult(g′x, g

′′
x) ≡ deg(g′x, g

′′
x) mod 2.

Remark 3.4.2. Let f : (R2, 0) → (R2, 0) be a finitely determined map germ
of corank 1 and multiplicity m(f). Then:

1. c(f) = 0 if and only if m(f) ≤ 2,

2. d(f) = 0 if and only if m(f) ≤ 3.

We can take a prenormal form

f(x, y) = (x, yk + a1(x)y
k−2 + · · ·+ ak−2(x)y),

for some functions ai : (R, 0) → (R, 0), where k = m(f). We use a result of
Gaffney and Mond [9]. We set

BC = {u ∈ Ck−1 : gu has a degenerate critical point },
BD = {u ∈ Ck−1 : gu has two critical points having the same critical value },

with gu(x) = yk+u1y
k−2+ · · ·+uk−2y. We denote by bC and bD the reduced

equations of BC and BD respectively. Then,

c(f) = ν(bC ◦ a), d(f) = ν(bD ◦ a),

where a = (a1, . . . , ak−2) : (C, 0) → (Ck−2, 0) and ν(h) denotes the order of
a function h.

As a consequence, c(f) ≥ 1 if and only if the polynomial bC is not con-
stant, in other words, if the set BC is not empty. But this means that
c(f) ≥ 1 if and only if there is a map germ f0 such that m(f0) = k and
c(f0) ≥ 1. Analogously, d(f) ≥ 1 if and only if there is a map germ f0 such
that m(f0) = k and d(f0) ≥ 1.

By remark 2.2 of [10] we know that, if f is weighted homogeneous,

c(f) = (k − 1)(k − 2)
w2

w1

,
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d(f) = (k − 1)(k − 2)(k − 3)
w2

2w1

,

where k is the multiplicity of f and w1 and w2 are the weights of x and y
respectively.

Therefore, if we consider f0(x, y) = (x, yk + xy), it is easy to compute

c(f0) = k − 2, d(f0) =
(k − 2)(k − 3)

2
,

which implies the desired result.



Chapter 4

Families of map germs from R2

to R2

In this chapter we consider a 1-parameter unfolding of f , that is, a map germ
F : (R2 × R, 0) → (R2 × R, 0) of the form F (x, t) = (ft(x), t) and such that
f0 = f .

We are interested in the topological triviality of F , which means that it is
topologically equivalent as an unfolding to the constant unfolding. Our main
result is that F is topologically trivial if it is excellent in the sense of Gaffney
[8] and moreover, the family of discriminant curves ∆(F ) is a topologically
trivial deformation of ∆(f). This can be seen as a real version of the same
result obtained by Gaffney for complex analytic map germs [8, Theorem 9.9].
In fact, since ∆(f) is a plane curve, the topological triviality of F in the
complex case is equivalent to the constancy of the Milnor number µ(∆(ft)).
In the real case, we show that this is also a sufficient condition, although it is
not necessary in general. In order to have a necessary and sufficient condition
we should need an invariant which controls the topological triviality of a
family of real plane curves. In the last section we consider unfoldings which
are not topologically trivial and give a result about the number of cusps that
appear in ft.

The techniques used to prove this result have been already used by
J.J.Nuño-Ballesteros in [32], where he gets a sufficient condition for the topo-
logical triviality in the case R2 to R3. The topological triviality of plane-to-
plane has been also studied by Fukuda in [7]. We also refer to the work of
Ikegami and Saeki [15] for related results.

45
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4.1 Cobordism of links

We recall that a cobordism between two smooth manifolds M0,M1 is a
smooth manifold with boundary W such that ∂W =M0 ⊔M1. Analogously,
a cobordism between smooth maps f0 : M0 → N0 and f1 : M1 → N1 is
another smooth map F : W → Q such that W,Q are cobordisms between
M0,M1 and N0, N1 respectively, and for each i = 0, 1, F−1(Ni) = Mi and
the restriction F |Mi

: Mi → Ni is equal to fi. In the case that f0, f1 belong
to some special class of maps (for instance, immersions, embeddings, stable
maps, etc.), then we also require that the cobordism F belongs to the same
class.

Definition 4.1.1. Given two stable maps γ0, γ1 : S1 → S1, a cobordism
between γ0 and γ1 is a stable map Γ : S1 × I → S1 × I, where I = [0, 1] and
such that for i = 0, 1,

Γ−1(S1 × {i}) = S1 × {i}, Γ|S1×{i} = γi × {i}.

Γ

Figure 4.1: Example of a cobordism between stable maps γ, δ : S1 → S1

The first condition implies that Γ(S1 × {0}) ⊂ S1 × {0}, Γ(S1 × {1}) ⊂
S1 × {1} and Γ(S1 × (0, 1)) ⊂ S1 × (0, 1), but in general, Γ is not level
preserving (see figure 4.1).

Lemma 4.1.2. Let Γ be a cobordism between γ0, γ1. If ∆(Γ) is diffeomorphic
to ∆(γ0)× I, then γ0, γ1 are topologically equivalent.

Proof. Since ∆(Γ) is diffeomorphic to ∆(γ0) × I, Γ cannot have cusps or
double folds. Thus, Γ restricted to Γ−1(∆(Γ)) is a local diffeomorphism and
it follows that Γ−1(∆(Γ)) is also diffeomorphic to γ−1

0 (∆(γ0))× I.
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Γ  (∆(Γ)) ≈ γ  (Δ(γ  )) x [0,1]-1
0

-1

0
Δ(Г) ≈ Δ(γ  ) x [0,1]

0

Г

a

a

i

i

z

zj

j

Figure 4.2: A cobordism with ∆(Γ) diffeomorphic to ∆(γ0)× I

In particular, for each critical value or each inverse image of γ0 there is a
unique arc joining the point in S1×{0} with a point in S1×{1} corresponding
to a critical value or an inverse image of γ1 respectively. We choose the
orientations and the base points of γ0, γ1 in such a way that if two critical
values are joined by an arc, then they share the same label ai and if two
inverse images are joined by an arc, then they share the same label zj (see
figure 4.2).

With these choices, it follows that w(γ0) = w(γ1) and hence γ0 and γ1
are topologically equivalent by theorem 3.2.3.

Remark 4.1.3. If Γ is a cobordism between γ0, γ1 such that ∆(Γ) is dif-
feomorphic to ∆(γ0) × I, then it can be shown that Γ is trivial, that is, Γ
is A-equivalent to the product cobordism γ0 × id : S1 × I → S1 × I by
diffeomorphisms Φ,Ψ : S1 × I → S1 × I such that Φ|S1×{0},Ψ|S1×{0} = id.

To show this, we first choose a diffeomorphism ψ : ∆(γ0)×I → ∆(Γ) such
that ψ(p, 0) = (p, 0), for all p ∈ ∆(γ0). We denote by ϕ : γ−1

0 (∆(γ0))× I →
Γ−1(∆(Γ)) the induced diffeomorphism by Γ in such a way that ϕ(s, 0) =
(s, 0), for all s ∈ γ−1

0 (∆(γ0)) and the following diagram is commutative:

Γ−1(∆(Γ))
Γ−−−→ ∆(Γ)xϕ xψ

γ−1
0 (∆(γ0))× I

γ0×id−−−→ ∆(γ0)× I

We extend the diffeomorphisms ϕ, ψ to S1 × I. This can be done by using
standard arguments of extensions of vector fields. Details are left to the
reader.
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4.2 Extending the cone structure

Let f : U → V be a good representative of a finitely determined map germ
f : (R2, 0) → (R2, 0). Since ∆(f) is a 1-dimensional analytic subset, we can
also shrink the neighborhoods U, V so that this set is contractible. In this
case ∆(f) \ {0} has a finite number of connected components, each one of
them is an edge joining the origin with the boundary of V . We orient each
one of this edges from 0 to ∂V . We denote by X : ∆(f) \ {0} → R2 the unit
normal vector field of ∆(f) \ {0} with respect to this orientation (see figure
4.3).

y

X(y)∆(ƒ)

Figure 4.3

Definition 4.2.1. Let f : U → V be a good representative of a finitely
determined map germ f : (R2, 0) → (R2, 0) such that ∆(f) is contractible.
We say that ϵ > 0 is a convenient radius for f if the following conditions
hold:

1. S1
ϵ is transverse to ∆(f),

2. S̃1
ϵ is diffeomorphic to S1,

3. S1
ϵ intersects ∆(f) properly, that is, S1

ϵ intersects each connected com-
ponent of ∆(f) \ {0} at exactly one point.

It is easy to see that S1
ϵ intersects ∆(f) properly if and only if S1

ϵ cuts
each point of ∆(f) following the orientation of the outward-pointing normal
of S1

ϵ . In other words, S1
ϵ cuts ∆(f) properly if and only if

det(X(y), y) > 0, ∀y ∈ S1
ϵ ∩∆(f).
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If ϵ0 is a Milnor-Fukuda radius (see definition 3.1.1), then S1
ϵ intersects ∆(f)

properly for any 0 < ϵ ≤ ϵ0, but in general, this may not be true for a
convenient radius, as we can see in figure 4.4.

S
1

ε

Figure 4.4

Theorem 4.2.2. Let f : U → V be a good representative of a finitely de-
termined map germ f : (R2, 0) → (R2, 0) such that ∆(f) ⊂ V is contractible
and let ϵ > 0 be a convenient radius for f. Then,

1. f |S̃1
ϵ
: S̃1

ϵ → S1
ϵ is topologically equivalent to the link of f .

2. f |D̃2
ϵ
: D̃2

ϵ → D2
ϵ is topologically equivalent to the cone of f |S̃1

ϵ
.

Proof. Let ϵ0 > 0 be a Milnor-Fukuda radius for f . If ϵ ≤ ϵ0, then the result
follows from corollary 2.3.2 . We assume ϵ > ϵ0 and take 0 < δ < ϵ0. We
consider the two associated links γ0 = f |S̃1

δ
and γ1 = f |S̃1

ϵ
and we denote by

C2
δ,ϵ = {y ∈ R2 : δ ≤ ∥y∥2 ≤ ϵ}, C̃2

δ,ϵ = f−1(C2
δ,ϵ),

and Γ = f |C̃2
δ,ϵ

: C̃2
δ,ϵ → C2

δ,ϵ, which defines a cobordism between γ0 and γ1.

We only need to show that γ0 and γ1 are topologically equivalent, since in
this case we have that the cone structure of f |D̃2

δ
can be extended to f |D̃2

ϵ
.

Let ∆1, . . . ,∆r be the connected components of ∆(f)\{0}. Since ∆(f) ⊂
V is closed, contractible and regular outside the origin, we have that each
∆i is diffeomorphic to an open interval, whose end points are the origin and
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another point of ∂V . Now, both S1
δ and S1

ϵ intersect ∆(f) properly, so that
S1
δ ∩∆i = {xi} and S1

ϵ ∩∆i = {x′i} for each i = 1, . . . , r. It follows that

∆(Γ) = x1x′1 ∪ · · · ∪ xrx′r,

where xix′i is the closed interval in ∆i joining the points xi and x
′
i. Therefore,

∆(Γ) is diffeomorphic to {x1, . . . , xr} × [δ, ϵ] and γ0 and γ1 are topologically
equivalent by lemma 4.1.2.

S

δ

ε

S
1

1 ∆(ƒ)

V

x

x’
i

i

Figure 4.5: Scheme of C2
δ,ϵ

4.3 Topological triviality of families

Given a map germ f : (R2, 0) → (R2, 0), a 1-parameter unfolding is a map
germ F : (R2 × R, 0) → (R2 × R, 0) of the form F (x, t) = (ft(x), t) and such
that f0 = f . Here, we consider that the unfolding is origing preserving, that
is, ft(0) = 0 for any t. Hence, we have a 1-parameter family of map germs
ft : (R2, 0) → (R2, 0).

Definition 4.3.1. Let F be a 1-parameter unfolding of a finitely determined
map germ f : (R2, 0) → (R2, 0).

1. We say that F is excellent if there is a representative F : U → V ×
I, where U, V, I are open neighborhoods of the origin in R2 × R,R2

and R respectively, such that for any t ∈ I, ft : Ut → V is a good
representative in the sense of definition 2.2.5.
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2. We say that F has constant topological type if for any t ̸= t′, the map
germs ft and ft′ are topologically equivalent.

3. We say that F is topologically trivial if there are homeomorphism germs
Ψ,Φ : (R2 × R, 0) → (R2 × R, 0) such that they are unfoldings of the
identity and F = Ψ ◦ (f × id) ◦ Φ.

Example 4.3.2. Any topologically trivial unfolding F has constant topolog-
ical type, but the converse is not true in general. Let us consider ht : R2 → R
the equation of S(ft) for each t, given by

ht(x, y) = (x+ 3y)(5x− 2y)st(x, y),

with st(x, y) = ((x− 2)2 + (y − 3)2)t− ϵ2t (see figure 4.6). Then, we set:

ft(x, y) = (x,

∫
ht(x, y)dy).

It is not difficult to check that the Gauss word is constant w(ft) = ababcdcd.
As a consequence, the map germs ft and ft′ are topologically equivalent for
any t ̸= t′. However, it is clear that our family is not topologically trivial.

S(ƒ )t S(ƒ )0

st

Figure 4.6: Singular sets of ft (left) and f0 (right)

Theorem 4.3.3. Let F be an excellent unfolding of a finitely determined
map germ f : (R2, 0) → (R2, 0). If ∆(F ) is topologically trivial, then F is
topologically trivial.

Proof. Let F : U → V × I be a representative of the unfolding F , where
U, V, I are open neighborhoods of the origin in R2×R,R2 and R respectively,
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and such that ft : Ut → V is a good representative of the map germ ft, for
any t ∈ I. We can shrink the neighborhoods if necessary and assume that
∆(f0) ⊂ V is contractible.

On the other hand, since ∆(F ) is topologically trivial, by shrinking again
the neighbourhoods if necessary, there is a homeomorphism Ψ : V ×I → V ×I
of the form Ψ = (ψt, t) such that ψ0 = id and ψt(∆(ft)) = ∆(f), for any t ∈ I.
In particular, ∆(ft) is homeomorphic to ∆(f0) and it is also contractible.

We take X : (V \ {0}) × I → R2 such that Xt(y) = X(y, t) is the unit
normal vector at each point y ∈ ∆(ft) \ {0} as in definition 4.2.1. We also
denote by gt : Ut → R the function gt(x) = ∥f(x)∥2 and G : U → R, given
by G(x, t) = gt(x).

Let ϵ0 > 0 be a Milnor-Fukuda radius for f and let 0 < ϵ ≤ ϵ0. We have
that ϵ is a regular value of g0, S̃

1
ϵ = g−1

0 (ϵ) is diffeomorphic to S1 and that
S1
ϵ intersects properly to ∆(f), that is,

det(X0(y), y) > 0, ∀y ∈ S1
ϵ ∩∆(f).

Once ϵ is fixed, we can choose δ > 0 such that for any t ∈ (−δ, δ), by a
continuity argument, ϵ is also a regular value of gt and

det(Xt(y), y) > 0, ∀y ∈ S1
ϵ ∩∆(ft).

By the fibration theorem, we have that S̃1
ϵ,t = g−1

t (ϵ) is diffeomorphic to S̃1
ϵ ,

and hence to S1. Moreover, the above condition gives that S1
ϵ is transverse

to ∆(ft) and that S1
ϵ intersects ∆(ft) properly. In conclusion, we have shown

that ϵ is a convenient radius for ft, for any t ∈ (−δ, δ). By theorem 4.2.2,
γϵ,t = ft|S̃1

ϵ,t
is the link of ft and ft|D̃2

ϵ,t
is topologically equivalent to the cone

of γϵ,t.

Since γϵ,t : S̃
1
ϵ,t → S1

ϵ , with t ∈ (−δ, δ), is stable, we have that this family
of links is trivial. Hence, each ft|D̃2

ϵ,t
is topologically equivalent to f |D̃2

ϵ
.

By remark 3.2.8, there is a unique homeomorphism in the source ϕt such
that ψt ◦ ft ◦ ϕ−1

t = f . Note that the unicity of ϕt implies that it depends
continuously on t. We consider now Φ = (ϕt, t) : F−1(D2

ϵ × (−δ, δ)) →
D̃2
ϵ × (−δ, δ). Then Φ is a homeomorphism, it is an unfolding of the identity

and Ψ ◦ F ◦ Φ−1 = f × id.

Before stating an immediate consequence of this result we should remem-
ber what the Milnor number of a curve is.

Definition 4.3.4. In the complex case, given a plane curve (X, 0) with
reduced equation h(u, v) = 0 in (C2, 0), its Milnor number is the colength of
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the ideal generated by the partial derivatives hu, hv, that is,

µ(X, 0) = dimC
O2

⟨hu, hv⟩
.

If f : (R2, 0) → (R2, 0) is a finitely determined map germ, we denote by
µ(∆(f)) the Milnor number of the discriminant ∆(f̂) of the complexification
f̂ : (C2, 0) → (C2, 0).

Example 4.3.5. Let us consider f : (R2, 0) → (R2, 0) given by f(x, y) =
(x, x2y + y3/3). We have that S(f) has defining equation x2 + y2 = 0 and
hence, ∆(f) is given by 4u6 + 9v2 = 0. Although ∆(f) = {0} as set germs,
we have that µ(∆(f)) = 5, which is the Milnor number of the complex curve
given by this equation.

Definition 4.3.6. Let F be a 1-parameter unfolding of a finitely determined
map germ f : (R2, 0) → (R2, 0). We say that F is µ-constant if the Milnor
number µ(∆(ft)) is independent of t.

Corollary 4.3.7. Any µ-constant unfolding F of a finitely determined map
germ f : (R2, 0) → (R2, 0) is topologically trivial.

Proof. Any µ-constant unfolding F is excellent. This is known to be true in
the complex case by the results of Gaffney [8]. Since F is analytic we are able

to consider its complexification F̂ and we have that µ(∆(f̂t)) = µ(∆(ft)) is

constant. Then, F̂ is excellent, and as a consequence, F is also excellent. On
the other hand, the µ-constant condition in the family of plane curves ∆(F )
implies its topological triviality by the results of [16]. By theorem 4.3.3, F
is topologically trivial.

It is well known that in the complex case, any family of plane curves is
topologically trivial if and only if the Milnor number is constant in the family.
Hence, the converse of corollary 4.3.7 is also true in the complex case. In the
real case, this is not true in general, as shown in the following example.

Example 4.3.8. Consider the family ft(x, y) = (x, x4y+y5+t2y3). We have
f−1
t (0) = {0}, Jf = x4 + 5y4 + 3t2y2 = 0 and S(ft) = {0}, for any t ∈ R.
Thus, the unfolding F = (ft, t) is excellent. Moreover, ∆(ft) = {0} for any
t ∈ R, and hence F is topologically trivial by theorem 4.3.3.

On the other hand, the discriminant ∆(f̂t) of the complexification f̂t is
given by equation:

108t10v2+16t8u12−900t6u4v2−128t4u16+2000t2u8v2+256u20+3125v4 = 0.

We have that µ(∆(ft)) = 11 for t ̸= 0, but µ(∆(f0)) = 57. The computations
have been done with the aid of Mathematica and Singular.
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4.4 The number of cusps of an unfolding

In this last section, we follow the arguments of the proof of theorem 4.3.3
to give a formula for the parity of the number of cusps of an unfolding
F : (R2 ×R, 0) → (R2 ×R, 0) of a finitely determined map germ f . Here, we
do not assume that F is excellent, but we only assume the condition given
by the following definition.

Definition 4.4.1. Let F : (R2 × R, 0) → (R2 × R, 0) be an unfolding of
a finitely determined map germ f . We say that F verifies the condition
(∗) if there is a representative F : U → V × I, where U, V, I are open
neighbourhoods of the origin in R2 × R,R2,R respectively, such that ft :
Ut → V is proper and its restriction to f−1

t (V \ {0}) is stable.

Given an unfolding satisfying this condition (∗), we introduce the follow-
ing notation:

1. c(f+
t ) (respectively c(f

−
t )) is the number of cusps of ft on f

−1
t (V \ {0})

for t > 0 (respectively t < 0).

2. r(f+
t ) (respectively r(f

−
t )) is the number of points of f−1

t (0) for t > 0
(respectively t < 0).

3. #S(f+
t ) (respectively S(f−

t )) is the number of branches of S(ft) at
f−1
t (0) for t > 0 (respectively t < 0).

4. #S(f0) is the number of branches of S(f0) at 0.

If the neighbourhoods U, V, I are small enough, then these numbers are well
defined. We also denote the multiplicity of a map germ f : (R2, 0) → (R2, 0)
by

m(f) = dimR
E2

⟨f1, f2⟩
.

We have the following congruences, which can be also deduced from the
arguments of [9, Proof of Theorem 1.12]

Proposition 4.4.2. Let F : (R2 × R, 0) → (R2 × R, 0) be a 1-parameter
unfolding of a finitely determined map germ f : (R2, 0) → (R2, 0) satisfying
condition (∗). Then,

c(f±
t ) ≡ 1− r(f±

t ) + #S(f0) + #S(f±
t ) mod 2.

Moreover, if m(ft) is constant for each t ∈ R we have that

c(f±
t ) ≡ #S(f0) + #S(f±

t ) mod 2.
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Г

C η,εη,ε C2 2~

Figure 4.7: An example of the cobordism Γ = ft|C̃2
η,ϵ

Proof. Let ϵ0 > 0 be a Milnor-Fukuda radius for f and take 0 < ϵ ≤ ϵ0.
There is δ > 0 such that if t ∈ (−δ, δ), then ϵ is a convenient radius for the
multigerm ft : (R2, Zt) → (R2, 0), where f−1

t (0) = Zt.
We fix 0 < t < δ, the case −δ < t < 0 being analogous. Take 0 < η < ϵ,

where η ≤ η0, a Milnor Fukuda radius for ft. We denote:

γ0 =ft|S̃1
ϵ
: S̃1

ϵ → S1
ϵ ,

γ1 =ft|S̃1
η
: S̃1

η → S1
η ,

Γ =ft|C̃2
η,ϵ

: C̃2
η,ϵ → C2

η,ϵ.

We have that γ0 is A-equivalent to the link of the map germ f , γ1 is the
link of the multigerm ft and Γ is a cobordism between γ0, γ1. Since Γ is a
stable map between compact oriented connected surfaces with boundary, we
can apply a result due to Fukuda - Ishikawa [6]:

c(Γ) ≡ χ(C̃2
η,ϵ) + deg(Γ|∂C̃2

η,ϵ
)χ(C2

η,ϵ) +
1

2
#(S(Γ|∂C̃2

η,ϵ
)) mod 2,

where c(Γ) is the number of cusps of Γ. We have c(Γ) = c(f+
t ), χ(C̃

2
η,ϵ) =

1− r(f+
t ), χ(C

2
η,ϵ) = 0 and

1

2
#(S(Γ|∂C̃2

η,ϵ
)) = #S(f0) + #S(f+

t ).

Thus, we arrive to

c(f+
t ) ≡ 1− r(f+

t ) + #S(f0) + #S(f±
t ) mod 2.
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If m(ft) is constant, we have that {f−1
t (0)} = {0}, r(f+

t ) = 1 and hence,

c(f+
t ) ≡ #S(f0) + #S(f+

t ) mod 2.



Chapter 5

Corank 2 map germs from R2

to R2

5.1 The corank 2 case

After having defined a complete topological invariant for a finitely determined
map germ f : (R2, 0) → (R2, 0) and having used it to classify map germs of
this kind of corank 1, the following logical step would be trying to extend
this classification to germs of corank 2. This classification is also motivated
by the fact that, taking into account proposition 3.3.14, some examples of
links are not realizable by corank 1 map germs, even if | deg(f)| ≤ 1 (see
figure 5.1).

Figure 5.1

This classification was completed for the Σ2,0 class in the case of K -
equivalence following Mather’s techniques of classification (see for example
[12]) and Nishimura proved in [30] that, dealing with K - C0 - classes, the
absolute value of deg(f) becomes a complete topological invariant. In the

57
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complex case, we can find related results in [24] and a full clasification for
weighted homogeneous map germs from C2 to C2 in an article of T.Gaffney
and D.Mond in [10].

The fact that we are not able to consider our germs as 1-parameter un-
foldings of functions, as we did in the corank 1 case, makes things to become
much more complex. The absolute value of the topological degree doesn’t
have to be necessarily less or equal than 1 and although our Gauss words
continue being a complete topological invariant, since their links are not con-
stituted as the union of 2 curves (as we did in chapter 2) the simplifications
of letters are not allowed anymore.

Therefore, in this chapter we will classify corank 2 map germs but putting
ourselves the convenient restrictions in their form that we believe are neces-
sary to reach this goal. Firstly we will suppose that f is of type Σ2,0, that is,
all its partial derivatives vanish at (0, 0) and one of the minors of the deriva-
tives of second order is distinct from 0. Departing from this point, we will
establish a prenormal form of this kind of germs by using their A2-classes
and Eisenburd-Levine formula([4]) will let us to compute their topological
degree. As final step we will consider particular cases and we will try to
obtain the different topological classes that we have in each case.

5.2 Topological classification of map germs of

type Σ2,0

In this section of the chapter we will classify corank 2 map germs, f :
(R2, 0) −→ (R2, 0) which are of type Σ2,0.

First of all we will state a result that will give us two prenormal forms of
map germs of this type.

Theorem 5.2.1. Let f : (R2, 0) −→ (R2, 0) a corank 2 map germ of type
Σ2,0. Then, f can be written in one of the following prenormal forms:

1. (xy, g(x, y))

2. (x2 + y2, h(x, y)),

where g, h ∈ M2
2

Proof. Firstly, we know that if we consider a map germ f of type Σ2,0, its
2-jet j2f(0) is situated in one of the following A2-classes (see for example
[12]):

(xy, x2 + y2), (xy, x2), (xy, 0), (x2 + y2, 0).

Therefore, f will present one of the following forms:
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1. (xy + a(x, y), b(x, y)), with a(x, y) ∈ M3
2, b(x, y) ∈ M2

2

2. (x2 + y2 + c(x, y), d(x, y)), with c(x, y) ∈ M3
2, d(x, y) ∈ M2

2

By applying Morse’s lemma we know that if we consider a function germ
f : (R2, 0) −→ (R, 0) of the form f(x, y) = u(x, y)+v(x, y), with u(x, y) being
a non degenerate quadratic form and with v(x, y) ∈ M3

2, we can choose a
suitable change of coordinates

α : (R2, 0) −→ (R2, 0)
(x, y) → (X,Y )

such that u = f ◦ α−1.
As we have a non degenerate quadratic form in the first component, if

we apply this change of coordinates in (1) and (2), we arrive to the desired
result.

The first step to classify topologically this kind of germs will be to com-
pute their topological degree. Taking it into account, we state and prove the
following result.

Proposition 5.2.2. Let f : (R2, 0) → (R2, 0) be a finitely determined map
germ of type Σ2,0.

1. If f(x, y) = (xy, g(x, y)), f can have degree 0,±1 or ±2.

2. If f(x, y) = (x2 + y2, h(x, y)), f has degree 0.

Proof. Let’s prove first (2). If our germ f has as first component x2 + y2 it
is not surjective. Then, deg(f) = 0.

For (1), we can suppose, without loss of generality, that

g(x, y) = axp + byq + k(x, y)

where
p, q ≥ 2,

a, b > 0

and
k(x, y) ∈ ⟨xy⟩.

As we know that (xy, g(x, y)) is K-equivalent to (xy, axp+ byq) and that the
topological degree is a K-invariant we only need to compute the topologi-
cal degree of (xy, axp + byq). We will do it by applying Eisenburd-Levine’s
formula ([4]), given by

deg(f) = sign⟨, ⟩φ,
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the signature of the quadratic form associated to a linear function

φ : Q(f) → R

defined conveniently, with

Q(f) =
E2

⟨f1, f2⟩
.

Thus, we have that

Q(f) =
E2

⟨xy, axp + byq⟩

and a basis of this space will be given by

{1, x, x2, . . . , xp−1, y, y2, . . . , yq−1, J(f)}

with

J(f) = qbyq − paxp.

We define the map

φ : Q(f) −→ R
J(f) → 1
[1] → 0
[x] → 0
[y] → 0
...

...
...

[xp−1] → 0
[yq−1] → 0

We will suppose that a = b = ±1, generalizing the result later.

The matrix of

⟨, ⟩φ : Q(f)×Q(f) −→ R
(p, q) → φ(pq)
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with respect to the basis of Q(f) is

A =



1 x x2 · · · xp−1 y y2 · · · yq−1 J

1 0 0 0 · · · 0 0 0 · · · 0 1
x 0 0 0 · · · ∓ 1

p+q
0 0 · · · 0 0

x2 0 0 0 · · · 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

xp−1 0 ∓ 1
p+q

0 · · · 0 0 0 · · · 0 0

y 0 0 0 · · · 0 0 0 · · · ± 1
p+q

0

y2 0 0 0 · · · 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

yq−1 0 0 0 · · · 0 ± 1
p+q

0 · · · 0 0
J 1 0 0 · · · 0 0 0 · · · 0 0


taking into account the following facts:

• Each element of the form xiyj ∈ ⟨xy⟩ and as a consequence is 0 in Q(f)

• Each element of the form Jxi, Jyj, xp+i, yq+j can be written as linear
combination of the components of f , that is, they are 0 in Q(f)

• The elements xp and yq can be written in the following form:

– xp = ∓qyq±pxp±q(±xp±yq)
±(p+q)

= ∓1
p+q

J ± q
p+q

(±xp ± yq), with φ(xp) =

∓ 1
p+q

– yq = ±qyq∓pxp±p(±xp±yq)
±(p+q)

= ±1
p+q

J ± p
p+q

(±xp ± yq), with φ(yq) =

± 1
p+q

Therefore, by computing the determinant of the matrix (xI−A) we obtain
the following characteristic polynomials, depending on the parity of p and q:

• If p and q are odd, det(xI − A) = (x2 − 1)(x2 − 1
(p+q)2

)
p+q−2

2 and, as a

consequence, deg(f) = sign⟨, ⟩φ = 0.

• If p and q are even, det(xI−A) = (x2−1)(x2− 1
(p+q)2

)
p+q−4

2 (x∓ 1
p+q

)(x±

1
p+q

) and, as a consequence, deg(f) = sign⟨, ⟩φ =

{
0, if ab > 0,

±2, if ab < 0.

• If p and q have different parity, det(xI−A) = (x2−1)(x2− 1
(p+q)2

)
p+q−3

2 (x±
1
p+q

) and, as a consequence, deg(f) = sign⟨, ⟩φ = ±1.
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Let’s see now that we are able to generalize this result for any a, b ∈ R,
with a, b ̸= 0. We will prove this by constructing a homotopy.

Let f0(x, y) = (xy, axp+byq), with a > 0 (analogous for a < 0), f1(x, y) =
(xy, xp + byq) and we consider the family

ft(x, y) = (xy, ((1− t)a+ t)xp + byq),

with t ∈ [0, 1].
If we prove that for any t, f−1

t (0) = {0} and that if t = 0, ft = f0
and if t = 1, ft = f1, we will have that f0 and f1 are homotopic and, as a
consequence, deg(f0) = deg(f1).

As (1− t)a+ t ̸= 0 for any t, we will have that if we want that both terms
of ft vanish, x and y must be 0. Then, for any t, f−1

t (0) = {0}. On the other
hand, by substituting, if t = 0, ft(x, y) = (xy, axp + byq) = f0(x, y) and if
t = 1, ft(x, y) = (xy, xp + byq) = f1(x, y). Then, f0 and f1 are homotopic
and deg(f0) = deg(f1).

Analogously, we will have that deg(xy, xp + byq) = deg(xy, xp + yq) if
b > 0. Then, deg(xy, axp + byq) = deg(xy, xp + yq).

Now, putting together theorem 5.2.1 and proposition 5.2.2, we have the
following corollary.

Corollary 5.2.3. Let f : (R2, 0) → (R2, 0) be a finitely determined map
germ of type Σ2,0. Then, | deg(f)| ≤ 2.

Proof. If f is of type Σ2,0, by theorem 5.2.1 it can be written in the form
(xy, g(x, y)) or in the form (x2 + y2, h(x, y)), that we have just seen that the
absolute value of their topological degree is less or equal than 2.

Before starting to compute the different topological classes of this kind of
germs, we should remember the concepts of admissible weights and weighted
degrees of a weighted homogeneous map germ which were introduced by
Gaffney and Mond in [10] and will be very helpful for us in our classification.

Definition 5.2.4. Let f : (R2, 0) → (R2, 0) be a weighted homogeneous map
germ. We will say that its weights w1, w2 and its weighted degrees d1, d2 are
admissible if they verify the two following conditions:

1. (w1, w2) = (d1, d2) = 1

2. w1 = w2 = 1 (homogeneous case) or d1 = k1w1w2, d2 = k2w1w2 +w1 +
w2 (type 1) or d1 = k1w1w2 + w1, d2 = k2w1w2 + w2 (type 2).

Once we have introduced this concept, let’s see its relation with finitely
determined map germs.
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Theorem 5.2.5. ([10]) Let f : (R2, 0) → (R2, 0) be a weighted homogeneous
finitely determined map germ. Then, w1, w2, d1, d2 must be admissible.

Remark 5.2.6. Let’s see how we apply this result to a finitely determined
map germ in our particular case of study.

• f(x, y) = (xy, g(x, y))

If f is weighted homogeneous, that is,

g(x, y) =

p∑
i=0

ai(x
w2)i(yw1)p−i

we must have that (w1, w2) = (w1 + w2, pw1w2) = 1. Departing from
the basis that w1, w2 must be relatively primes, we have the following
consequences, according to the value of p.

– If p = 1, f is generically finitely determined.

– If p = 2, f won’t be finitely determined if w1 and w2 are odd.

– If p = 3, f won’t be finitely determined if w1 + w2 = 3k, with
k ∈ N.

– In general, if p = tα1
1 . . . tαm

m , f won’t be finitely determined if there
exists i such that w1 + w2 = kti, with 1 ≤ i ≤ m and k ∈ N.

• f(x, y) = (x2 + y2, h(x, y))

Because of the first component, we are only able to study this kind of
germ in the homogeneous case w1 = w2 = 1, with

h(x, y) =

p∑
i=0

aix
iyp−i

and (2, p) = 1. We arrive quickly to the conclusion that if p = 2k, f
won’t be finitely determined.

5.2.1 Germs with prenormal form (xy, g(x, y))

We consider the special case of weighted homogeneous map germs, that is,

g(x, y) =

p∑
i=0

ai(x
w2)i(yw1)p−i,

with (w1+w2, pw1w2) being the weighted degrees of our germ and (w1, w2) =
1. We also suppose that p ≤ 3. Then, the following results will give us a
complete topological classification of these particular cases.



64 Chapter 5. Corank 2 map germs from R2 to R2

Theorem 5.2.7. (p = 1) Let f : (R2, 0) → (R2, 0) be a finitely determined
map germ of corank 2 of the form f(x, y) = (xy, axw2 + byw1). Then,

1. if w1, w2 are odd, f is topologically equivalent to the fold (x, y2),

2. if w1, w2 have different parity, f is topologically equivalent to the cusp
(x, xy + y3).

Proof. Let’s prove first (1). If w1, w2 are odd, we know by the proof of theo-
rem 5.2.2 that deg(f) = 0. In addition to this, if we compute its singular set,
we get the equation w1by

w1 −w2ax
w2 = 0. Since this equation is irreducible,

we can conclude that S(f), and, as a consequence ∆(f), only present a single
branch.

Let’s see that we are going to have a single topological class which is the
class of the fold. To prove this is enough to see that for any a, b ∈ R \ {0}
there are points where f doesn’t have any inverse image.

Let’s consider the point (1, 0). We get the equations

xy = 1

axw2 + byw1 = 0,

obtaining that

y = w1+w2

√
−a
b
.

Thus, if ab > 0 f doesn’t have any inverse image and the result is proved
(see figure 5.2). Analogously, if we take now the point (−1, 0) we have that

0
2

∆(ƒ) link(ƒ)

Figure 5.2

every map germ f with ab < 0 doesn’t have any inverse image either and we
arrive to the conclusion again that we have a single configuration of inverse
images in the discriminant curve, which is the one of the fold.
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1
3

∆(ƒ) link(ƒ)

Figure 5.3

If w1 and w2 are of distinct parity, applying an analogous procedure as
in (1) to prove the existence of points with a single inverse image, we obtain
the desired result (see figure 5.3).

Theorem 5.2.8. (p = 2) Let f : (R2, 0) → (R2, 0) be a finitely determined
map germ of corank 2 of the form f(x, y) = (xy, ax2w2 + bxw2yw1 + cy2w1).
Then,

1 if w1, w2 have the same parity, f is not finitely determined,

2 if w1, w2 have distinct parity, we have three cases,

• if (w1 − w2)
2b2 + 16w1w2ac > 0,

– f is topologically equivalent to the map germ (xy, x2+xy2+y4)
if ac > 0

– f is topologically equivalent to the map germ (xy, x2+20xy2−
y4) if ac < 0

• if (w1−w2)
2b2+16w1w2ac < 0, f is topologically equivalent to the

map germ (xy, x2 + xy2 − y4)

• if (w1 − w2)
2b2 + 16w1w2ac = 0, f is not finitely determined.

Proof. If w1, w2 are both even or odd the result follows from remark 5.2.6.
Let’s suppose that w1 and w2 have different parity. The Jacobian determinant
is given by

J(f) = −2w2ax
2w2 + b(w1 − w2)x

w2yw1 + 2w1cy
2w1 ,

that can be factorized in the form

−2w2(x
w2 − λ1y

w1)(xw2 − λ2y
w1),
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with λi = λi(a, b, c, w1, w2) ∈ C, i = 1, 2. These λi are obtained by solving the
quadratic equation given by the Jacobian determinant, whose discriminant
is

(w1 − w2)
2b2 + 16w1w2ac = 0.

Then, if this discriminant is positive we have two different real solutions
for λi and as a consequence two branches in our singular set S(f), if it is
negative our singular set is empty outside of the origin and in the case that
the discriminant vanishes, λ1 = λ2 and f won’t be finitely determined. If
the discriminant is negative, by remark 3.2.7 and proposition 5.2.2, taking
into account that ac must be necessarily negative, we have that f will be
topologically equivalent to the germ (xy, x2 − y2). Since this germ is not
finitely determined we can choose another member of this topological class
that is finitely determined. Let’s take, for example, (xy, x2 + xy2 − y4).

Thus, we center our attention in the case (w1 − w2)
2b2 + 16w1w2ac > 0.

If we call

Ci ≡ xw2 − λiy
w1 = 0

for i = 1, 2, and apply the coordinate changes{
x = αtw1

y = βtw2

we have that

f |Ci
(t) = (αβtw1+w2 , (aλ2i + bλi + c)t2w1w2),

whose derivative never vanishes out of 0 and it will present double folds if
and only if αβ = 0, which is impossible. Let’s observe that these curves are
going to be symmetrical with respect to the y-axis (figure 5.4). From this

∆(ƒ)

Figure 5.4

point, we must consider two different cases:
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• If ac > 0, by proposition 5.2.2 we know that deg(f) = 0. Taking into
account that our discriminant set has 2 branches and the link of f can’t
have more than one connected component, if we are able to prove that
for any b we have points with no inverse images, we finish.

If we consider the point (0,−1) we obtain the equations

xy = 0

ax2w2 + bxw2yw1 + cy2w1 = −1,

getting the equality y = 2w1

√
−1
c

if x = 0 and x = 2w2

√
−1
a

if y = 0.

In both cases if a and c are positive the equalities don’t have any real
solution. Thus, f doesn’t present any inverse image (see figure 5.5).

∆(ƒ)

0

2 24

Figure 5.5

Considering the point (0, 1) and applying a totally analogous procedure
we arrive to the conclusion that if a, c < 0 f doesn’t present any inverse
image either (see figure 5.6). Then, we have in both cases a single con-

∆(ƒ)

0

2 2

4

Figure 5.6
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c
b

d

a
adbc

Figure 5.7

figuration of inverse images in the discriminant, obtaining the associ-
ated link and Gauss word that appear in figure 5.7. Thus, f is topolog-
ically equivalent to the known corank 1 normal form (x, y4−xy2−x2y).
If we want to take a normal form of corank 2 we can choose, for exam-
ple, (xy, x2 + xy2 + y4).

• If ac < 0, using again proposition 5.2.2, we know that deg(f) = ±2.
Taking into account that we are dealing with a map germ whose dis-
criminant only has two branches if we are able to prove that the max-
imum number of inverse images of f is 4 we finish.

Let’s consider the equations

xy = d,

ax2w2 + bxw2yw1 + cy2w1 = e,

with (d, e) ∈ R2. From here, we get the equality

cy2(w1+w2) + bdw2yw1+w2 − ey2w2 + ad2w2 = 0.

Applying Descartes method and using the hypothesis ac < 0 we arrive
to the conclusion that we can have three sign changes for y > 0 in the
best of the cases and since all the exponents are even except w1 + w2,
this is the only term whose sign is going to change when we consider
y < 0. Then, we will have in this last case a single inverse image and
a total of 4 inverse images, as we wanted to prove.

Thus, the only possible configuration of the inverse images in the dis-
criminant of a map germ of this type will be the one that appears in
figure 5.8, having its correspondent associated link and Gauss word
(figure 5.9).
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∆(ƒ)

2

4 42

Figure 5.8

a

b

c
d

ababcdcdabcd

Figure 5.9

To finish, let’s choose a representative of this topological class, for exam-
ple, (xy, x2 + 20xy2 − y4).

Theorem 5.2.9. (p = 3) Let f : (R2, 0) → (R2, 0) be a finitely determined
map germ of corank 2 of the form f(x, y) = (xy, ax3w2+bx2w2yw1+cxw2y2w1+
dy3w1). Let’s denote by

A = −3w2a
(2w1 − w2)c

3
− (

(w1 − 2w2)b

3
)2,

B = −3w2a3w1d−
(w1 − 2w2)b

3

(2w1 − w2)c

3
,

C =
(w1 − 2w2)b

3
3w1d− (

(2w1 − w2)c

3
)2.

Then:

1. Let’s suppose that w1, w2 have different parity,

• if B2 − 4AC > 0, f is topologically equivalent to the simple cusp
(x, xy + y3),
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Degree Germ Associated link

1 (xy, x6 + 7x4y3 + 8x2y6 + y9)

a

b
c

d e

f

ababcdcdefef

(xy, x6 + 2x4y3 + 9x2y6 + y9)

a
b

c

d

e

f

abcbabcdedcbcdefedef

(xy, x6 − x4y3 + 7x2y6 + y9)

a

b

c

d

e

f

abcbcdefedcbabcdedef

Table 5.1

• if B2 − 4AC < 0, f is topologically equivalent to one of the map
germs that appear in table 5.1:

• if B2 − 4AC = 0, f is not finitely determined.

2. In the case that w1, w2 are both odd,
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• if B2 − 4AC > 0, f is topologically equivalent to one of the map
germs that appear in the table 5.2:

Degree Germ Associated link

0 (x, y2)

a
b

ab

(xy, x3 − x2y3 − xy6 + y9)

a

b

ababab

Table 5.2

• if B2 − 4AC < 0, f is topologically equivalent to one of the map
germs that appear in table 5.3:

• if B2 − 4AC = 0, f is not finitely determined.

Proof. If we compute the Jacobian determinant of f we get

Jf(x, y) = −3w2ax
3w2+(w1−2w2)bx

2w2yw1+(2w1−w2)cx
w2y2w1+3w1dy

3w1 .

Let’s realize that if we make the coordinate changes
x = xw2

y = yw1

we get the cubic form

Jf(x, y) = −3w2ax
3 + (w1 − 2w2)bx

2y + (2w1 − w2)cxy
2 + 3w1dy

3.

From this point we apply a known result (see for example [12]) which tell us
that a cubic form will be of symbolic, hyperbolic, parabolic or elliptic type if
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Degree Germ Associated link

0 (xy, x3 − x2y3 + 3xy6 + y9)

d

f

c cacbcdfded
a

b

e

(xy, x3 − 6x2y3 + 4xy6 + y9)

a

bc

e

f

d

abcdcdefedcbabafef

(xy, x3 + 6x2y3 + 6xy6 + y9)

ab

c

d

e

f

abcdedcdefedcbcdcb

Table 5.3

and only if its associated quadratic form obtained by computing the Hessian
determinant is of symbolic, hyperbolic, parabolic or elliptic type respectively.
Thus, if we compute the Hessian determinant of Jf(x, y) we get the quadratic
form Ax2 + Bxy + Cy2 with A,B,C depending on the values of the initial
coefficients a, b, c, d and of the weights w1, w2 and undoing the coordinate
changes we made earlier we get the function Ax2w2 +Bxw2yw1 +Cy2w1 which
we will use to determine the different cases of study. Therefore, we have the
following possibilities:

1. Let’s suppose that w1 and w2 have different parity. Firstly, if we con-
sider as we did in the case p = 2 the coordinate changes{

x = αtw1

y = βtw2

together with the image of the restriction of f to each one of the curves
of the singular set, Ci, we get

f|Ci(t)(t) = (αβtw1+w2 , (aλ3i + bλ2 + cλi + d)t3w1w2),
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realizing that each one of these branches is symmetric with respect to
the y-axis. Now, let’s see the different configurations of inverse images
that we can have in the discriminant, in order to obtain the distinct
topological classes. As first step we will prove that # f−1(z) ≤ 5,
∀z ∈ R2.

Let’s take a point (e, f) ∈ R2 and let’s consider the equations{
xy = e

ax3w2 + bx2w2yw1 + cxw2y2w1 + dy3w1 = f.

Taking in the first equation x = e
y
, with y ̸= 0 and substituting we get

a(
e

y
)3w2 + b(

e

y
)2w2yw1 + c(

e

y
)w2y2w1 + dy3w1 = f.

As last step we multiply both sides of the equation by y3w2 , obtaining
the final equation

dy3(w1+w2) + cew2y2(w1+w2) − fy3w2 + be2w2yw1+w2 + ae3w2 = 0.

Now, putting in order the monomials according to their weighted de-
gree and taking into account that the order of appearance of (c,−f, b)
can suffer variations due to the different values of (w1, w2), we apply
Descartes rule of signs. Since we are working with a a polynomial con-
sisting of 5 monomials, the worst configuration (with a biggest number
of inverse images) will be given by + − + − +. Then, we will have at
most 4 inverse images for y > 0 or y < 0 indistinctly(let’s take y > 0).
If y < 0, taking into account the parity of the weighted degrees of the
monomials, we have the configuration −−−++ (or −−+++, depend-
ing on the parity of w2), obtaining a single inverse image and a total of
5 inverse images as we wanted to prove. If (c,−f, b) would appear in a
distinct order, by applying an analogous procedure we would arrive to
the same result.

Secondly, we are going to prove that our germ f is always going to have
points with a single inverse image and points with 3 inverse images. To
do this we take a point (0, f) ∈ R2 and consider the equations{

xy = 0

ax3w2 + bx2w2yw1 + cxw2y2w1 + dy3w1 = f.

Since xy vanishes, x or y must be 0 and using the second equation

we get in the first case y = 3w1

√
f
d
and in the second case x = 3w2

√
f
a
.
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Therefore, if w1 is even and w2 is odd we will have 3 inverse images if
fd > 0 and a single one if fd < 0; analogously, if w1 is odd and w2 is
even we will have 3 inverse images if fa > 0 and a single one if fa < 0.
Then, from this point, what we know for sure is that the sectors of our
bifurcation set in the image of f created by the discriminant curves
that contain the y-axis are going to have one of them 3 inverse images
and the other, a single one.

With all these previous calculations we are now in conditions to obtain
the different topological classes.

• If B2−4AC > 0, we have a single branch in our singular set and as
a consequence, the only possible configuration of inverse images in
its single discriminant curve is the one that appear in figure 5.10,
which is clearly identified with the Gauss word and the link of the
simple cusp (figure 5.11). Then, f is topologically equivalent to
the simple cusp.

3

1

Figure 5.10

abab

a

b

Figure 5.11

• If B2 − 4AC < 0 we have three branches and two possible con-
figurations of inverse images in the discriminant curves (figure
5.12), obtaining in the first case the associated link and Gauss
word that appears in figure 5.13 , with normal form (xy, x6 +
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7x4y3 +8x2y6 + y9) and in the second case the two different topo-
logical classes that appear in figure 5.14, having as normal forms
(xy, x6 + 2x4y3 + 9x2y6 + y9) and (xy, x6 − x4y3 + 7x2y6 + y9)
respectively.

3

1 1

3 3

1

3

5 5

3 3

1

Figure 5.12

a

b
c

d e

f

ababcdcdefef

Figure 5.13

• If B2 − 4AC = 0 we will have, at least, a curve of double points
and as a consequence f won’t be finitely determined.

2. If w1 and w2 are odd, we consider again the coordinate changes{
x = αtw1

y = βtw2

together with the image of the restriction of f to each one of the curves
of the singular set, Ci. In this case, these images are symmetric with
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a
b

c

d

e

f

abcbabcdedcbcdefedef

a

b

c

d

e

f

abcbcdefedcbabcdedef

Figure 5.14

respect to the x-axis. Now, let’s see the different configurations of
inverse images that we can have in the discriminant, in order to obtain
the distinct topological classes. Firstly, we will prove that # f−1(z) ≤
6, ∀z ∈ R2.

Following a totally analogous procedure to the case of weights with
different parity, taking a point (e, f) ∈ R2 we arrive to the equation

dy3(w1+w2) + cew2y2(w1+w2) − fy3w2 + be2w1yw1+w2 + ae3w2 = 0

and applying Descartes method we conclude that points situated in the
image of f are going to present 6 inverse images at most.

Let’s see now that f is always going to have points with 2 inverse images
in the y-axis. To prove this, we consider a point (0, f) ∈ R2. Since the

first component of f must vanish we get the equalities y = 3w1

√
f
d
, with

a single inverse image (0, 3w1

√
f
d
) and x = 3w2

√
f
a
, with a single inverse

image ( 3w2

√
f
a
, 0), getting a total of 2 inverse images, as we wanted to

prove.

With all these previous remarks we are in conditions of giving a re-
stricted list of the possible distribution of inverse images that we can
have in the discriminant curves.

• If B2 − 4AC > 0 our singular set and as consequence the discrim-
inant has a single real branch. Therefore, we only have two possi-
ble distributions of inverse images (figure 5.15), getting in the first



5.2. Topological classification of map germs of type Σ2,0 77

case the link and Gauss word that appear in the left hand side of
figure 5.16, with the associated normal form of the fold (x, y2), and
in the last case the one that appear in the right hand side of figure
5.16, with the associated normal form (xy, x3 − x2y3 − xy6 + y9).

0

2 2

4

Figure 5.15

ab

a

bab

ababab

Figure 5.16

• If B2 − 4AC < 0 our singular set, and as a consequence the dis-
criminant, has 3 distinct real branches and the initial number of
possible configurations of inverse images in the discriminant is
much bigger (see figure 5.17). Let’s see that (d) and (e) can’t
occur.

If we had the configuration of (d), we would have points of the
form (e, 0) ∈ R2 with 6 inverse images. Let’s suppose that e > 0.
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(a) (b) (c)

(d) (e)

Figure 5.17

We obtain the equation

dy3(w1+w2) + cew2y2(w1+w2) + be2w1yw1+w2 + ae3w2 = 0.

If we apply Descartes method to this polynomial, the only possible
signs configuration to get 6 inverse images is + − +− for y > 0,
obtaining +−+− for y < 0. If (d) was possible taking a point of
the form (e, 0) with e < 0 we should have 4 inverse images. But
this is impossible because applying again Descartes method and
using the sign of coefficients (a, b, c, d) we have had to choose to
obtain 6 inverse images when e > 0 we obtain a signs configuration
of the form ++++ for any y. Therefore, we have just arrived to
a contradiction and the configuration (d) is not possible.

To prove that (e) is not possible either we will choose a point of
the form (ew1+w2 , te3w1w2) ∈ R2, that is, a point of a generic cusp
and we consider the equations{

xy = ew1+w2

ax3w2 + bx2w2yw1 + cxw2y2w1 + dy3w1 = te3w1w2 .

If we suppose that y ̸= 0, we can take x = ew1+w2

y
and by substi-

tuting in the second equation and multiplying both terms by y3w2
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we have

a(ew1+w2)3w2 + b(ew1+w2)2w2yw1+w2 + c(ew1+w2)w2y2(w1+w2)

−tew1w2y3w2 + dy3(w1+w2) = 0,

that is, a polynomial constituted by 5 monomials and where, ap-
plying Descartes method, we are going to have in the worst of the
cases 4 sign changes, and as a consequence, 4 inverse images for
e > 0 and e < 0. Then, (e) is not possible.

Thus, we only have 3 possible configurations ((a), (b) and (c))
obtaining for each one a single topological class given by its cor-
respondent associated link and Gauss word (see figure 5.18).

a

bc

e
f

d

abcdcdefedcbabafef

ab

c

d

e

f

abcdedcdefedcbcdcb

d

f

c

cacbcdfded

a
b

e

(a) (b)

(c)

Figure 5.18

To finish we associate to (a) the normal form (xy, x3 − 6x2y3 +
4xy6 + y9), to (b) (xy, x3 +6x2y3+6xy6+ y9) and to (c) (xy, x3 −
x2y3 + 3xy6 + y9).
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• If we consider the remaining case, B2 − 4AC = 0, following and
analogous argument to the case of weights with different parity
we conclude that f won’t be finitely determined.

5.2.2 Germs with prenormal form (x2 + y2, h(x, y))

As we did with germs with prenormal form (xy, g(x, y)), we will suppose that
h(x, y) is a weighted homogeneous polynomial, that is,

h(x, y) =

p∑
i=0

bi(x
w2)i(yw1)p−i,

although, in general, f won’t be weighted homogeneous. We distinguish two
different cases, according to the parity of p.

• p = 2k

The following theorem will give us the classification of all germs of this
type.

Theorem 5.2.10. Let f be of type Σ2,0,

f(x, y) = (x2 + y2,

p∑
i=0

bi(x
w2)i(yw1)p−i),

with p = 2k. Then, f is not finitely determined.

Proof. We will prove it for p = 2, being analogous for the remaining
cases.

If w1 or w2 are greater than 1, when we compute the Jacobian deter-
minant of f we obtain a expression of the form 2yA or 2xB with A,B
depending on w1, w2, x, y. In the first case, we have the curve y = 0
in the singular set, getting an image (x2, ax2w2) that clearly presents
double points. If we have x = 0 by an analogous procedure we arrive
to the same conclusion.

If w1 = w2 = 1 we have branches of the form x = λy in the singular
set, and as a consequence, each one of the discriminant curves will have
the form ((λy)2 + y2, a(λy)2 + b(λy)y+ cy2) that present double points
of the form y1 = −y2. Then, f is not finitely determined either.
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• General case Firstly, we will see that if one of the weights is even and
the other is different from 1, f won’t be finitely determined.

Theorem 5.2.11. Let f be of type Σ2,0,

f(x, y) = (x2 + y2,

p∑
i=0

bi(x
w2)i(yw1)p−i).

Then, if w1 or w2 is even, with the other weight being greater than 1,
f is not finitely determined.

Proof. Let’s suppose that w1 is even and w2 > 1. If we compute the
Jacobian determinant of f we get

Jf(x, y) = 2x

p−1∑
i=0

w1(p−i)bi(xw2)i(yw1)p−i−1−2y

p∑
i=1

w2ibi(x
w2)i−1(yw1)p−i.

Since w2 > 1 we can get one x out of the second summation, obtaining

Jf(x, y) = 2x(

p−1∑
i=0

w1(p−i)bi(xw2)i(yw1)p−i−1−y
p∑
i=1

w2ibi(x
w2)i−2(yw1)p−i.

Therefore, one of the branches of S(f) will always be given by the
equation x = 0 and

f|x=0(y) = (y2, ypw1),

that will always present double points of the form y1 = −y2. Thus, f
is not finitely determined.

Let’s see now what happen when both weights are odd. We will give
some particular results about it.

Theorem 5.2.12. (p = 1) Let f be of type Σ2,0, f(x, y) = (x2 +
y2, axw2+byw1), with w1, w2 both odd.Then, f is topologically equivalent
to the germ (x2 + y2, x3 + y5).

Proof. Let’s suppose that w1, w2 are both odd and greater than 1 (if
one of them was 1, f wouldn’t be of type Σ2,0 anymore). In this case

Jf(x, y) = 2xy(w1by
w1−2 − w2ax

w2−2),

obtaining that our singular set S(f) will have 3 branches, x = 0, y = 0

and yw1−2 = w2axw2−2

w1b
. In the first two f doesn’t present any prob-

lem. Let’s see that it doesn’t present any problem in the third one
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either. To see this we make the coordinates change


x = αtw1−2

y = βtw2−2

with β = w1−2
√
w2a ∈ C and α = w2−2

√
w1b ∈ C. We have that

f |
yw1−2=

w2ax
w2−2

w1b

(t) = (A(t), B(t)), with A(t) = α2t2(w1−2) + β2t2(w2−2)

and B(t) = aαw2tw2(w1−2)+bβw1tw1(w2−2). It is clear that although A(t)
is going to present double points of the form t1 = −t2, it isn’t going to
happen with B(t). Then, f is finitely determined.

Thus, ∆(f) will have three branches and we can only have two possible
configurations:

∆(ƒ)

(a) (b)

0

2

2

4

4

2

0

2

2

4

4

6

Figure 5.19

Let’s see that (b) isn’t possible. To prove this we consider a point
(e, 0) ∈ R2 and we will prove by Descartes method that it will present
at most 2 inverse images. We have the equations

x2 + y2 = e

axw2 + byw1 = 0

,

obtaining a single equation of the form A(y
w1
w2 )2 + y2 = e with A > 0.

We consider the coordinate change y = zw2 in order to be able to work
with integer exponents and we get Az2w1 + z2w2 − e = 0 that, applying
Descartes method will always present at most 1 root if z > 0 and 1 root
if z < 0, having a total of 2 roots z1 and z2 and as a consequence y1
and y2. Therefore, the only possible configuration is given by (a) and,
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since the 3 branches of the singular set are symmetric with respect
to the origin of coordinates the only possible topological class is the
associated to the link and Gauss word of figure 5.20.

d

f

c cacbcdfded
a

b

e

Figure 5.20

Then, f is topologically equivalent to (x, y4 − x2y2 − 1
4
x3y) and to the

corank 2 normal form (x2 + y2, x3 + y5).

Theorem 5.2.13. (p = 3, homogeneous case) Let f be of type of Σ2,0,
f(x, y) = (x2 + y2, ax3 + bx2y + cxy2 + dy3). Then, if we denote by

A = b(
3d− 2b

3
)− (

2c− 3a

3
)2,

B = −bc− (2c− 3a)(3d− 2b)

9
,

C =
c(3a− 2c)

3
− (

3d− 2b

3
)2

we have that

1. if B2 − 4AC > 0, f is topologically equivalent to the fold,

2. if B2 − 4AC < 0, f is topologically equivalent to one of the germs
that appear in table 5.4,

3. if B2 − 4AC = 0, f is not finitely determined.

Proof. Applying the result used earlier for map germs of the form
(xy, g(x, y)) in the case p = 3 we obtain coefficients A = A(a, , b, c, d),
B = B(a, b, c, d) and C = C(a, b, c, d) such that Jf(x, y) will present
a symbolic, elliptical, hyperbolic or parabolic quadratic form if and
only if Ax2 + Bxy + Cy2 presents a symbolic, elliptical, hyperbolic or
parabolic quadratic form. Therefore, we have several cases:
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Degree Germ Associated link

0 (x2 + y2, x3 + y5)

d

f

c cacbcdfded
a

b

e

(x2 + y2, x3 + x2y − 3xy2 + y3)

ab

c

d

e

f

bcdedcdefedcbcdca

Table 5.4

1. If B2 − 4AC > 0, S(f) presents a single branch x = λy whose
image will be, as happen with all the germs of this form, symmetric
with respect to the x-axis. Since the only possible configuration
of inverse images is the one that appears in figure 5.21, f will be
topologically equivalent to the fold.

2

0

Figure 5.21

2. If B2 − 4AC < 0, S(f) will present three distinct real branches,
obtaining in the discriminant the possible configurations of figure
5.22 and from each one of them a single topological class, sym-
metric with respect to the origin of coordinates. In case (a) we
have the associated link and Gauss word of figure 5.23, taking as
normal form (x2+y2, x3+y5) and in case (b) we obtain the link of
figure 5.24, taking as normal form (x2 + y2, x3 + x2y− 3xy2 + y3).

3. B2−4AC = 0 or A = B = C = 0 we obtain, in the best of cases, a
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Figure 5.22
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Figure 5.23

ab

c

d

e

f

bcdedcdefedcbcdca

Figure 5.24

curve of double points in S(f). Then, f is not finitely determined.
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Chapter 6

Topological properties of
finitely determined map
germs from R3 to R3

Here, we want to study the topological classification of finitely deter-
mined map germs, f : (R3, 0) → (R3, 0), by looking at the topological
type of its link. A natural open question is to determine whether given
a stable map γ : S2 → S2, there exists a finitely determined map germ
f : (R3, 0) −→ (R3, 0) which is topologically equivalent to the cone of
γ.

Given a stable map γ : S2 → S2, then the singular set S(γ) is a 1-
dimensional closed submanifold of S2 and its image or discriminant
∆(γ) is a union of curves with only simple cusps or transverse double
points. The restriction γ : γ−1(∆(γ)) → ∆(γ) contains all the topo-
logical information of γ, although in general we have also to take into
account the embedding types of γ−1(∆(γ)) and ∆(γ) into S2. In order
to overcome that problem, we restrict ourselves to the case that S(γ)
is connected. Then, we will use an adapted version of Gauss words
to classify such stable maps, demostrating that, with this additional
hypothesis, they become a complete topological invariant. In the case
that S(γ) is not connected, the Gauss words are not enough to classify
stable maps and we need to use some other global type invariants (see
[14, 38]).

In the following section, we consider finitely determined map germs
f : (R3, 0) → (R3, 0) of corank 1 and whose 2-jet is equivalent to
(x, y, xz). This condition guarantees that the singular set is smooth and

87
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hence, the singular set of its link is connected. We give a topological
classification of weighted homogeneous map germs of this type in a
particular form, using this theorem to finish this chapter with the full
classification of ruled map germs from R3 to R3.

6.1 The link of a germ from R3 to R3

Definition 6.1.1. Let f : (R3, 0) → (R3, 0) be a finitely determined

map germ. We say that the stable map f |S̃2
ϵ
: S̃2

ϵ → S2
ϵ is the link of

f , where f is a representative such that (1), (2) and (3) of corollary
2.3.3 hold for any ϵ with 0 < ϵ ≤ ϵ0. This link is well defined, up to
A-equivalence.

Since any finitely determined map germ is topologically equivalent to
the cone of its link, we have the following immediate consequence.

Corollary 6.1.2. Let f, g : (R3, 0) → (R3, 0) be two finitely determined
map germs such that their associated links are topologically equivalent.
Then f and g are topologically equivalent.

We will see that the converse of this corollary is also true at the end of
this section, if we assume that the singular sets S(f), S(g) are smooth.
Now we introduce the Gauss paragraph of a stable map with connected
singular set.

6.2 Gauss words

We recall that a Gauss word is a word which contains each letter exactly
twice, one with exponent +1 and another one with exponent −1. They
were introduced originally by Gauss to describe the topology of closed
curves in the plane R2 or in the sphere S2 (see for instance [35]). Here,
we use the same terminology of Gauss word to represent a different
type of word, adapted to our particular case of stable maps S2 → S2.

Along this section, we assume that γ : S2 → S2 is a stable map, that is,
such that all its singularities are folds and cusp points and that γ|S(γ)
only presents simple cusps and double transverse points. Moreover, we
assume that S(γ) and hence its image ∆(γ) are connected.
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Lemma 6.2.1. Let γ : S2 → S2 be a stable map such that S(γ) is
connected. Then:

1. γ−1(∆(γ)) is also connected,

2. the restriction of γ to each connected component of S2\γ−1(∆(γ))
is a diffeomorphism.

Proof. If S(γ) is empty, then γ−1(∆(γ)) is also empty. Moreover, γ is
a local diffeomorphism and hence a d-fold covering, for some d ≥ 1.
Then,

2 = χ(S2) = dχ(S2) = 2d,

and we have d = 1 and γ is a diffeomorphism.

Assume that S(γ) is non empty, then S(γ) and γ−1(∆(γ)) are both non-
empty graphs in S2. Since S(γ) is connected, ∆(γ) is also connected
and hence, S2 \ ∆(γ) is a disjoint union of open discs. We show that
γ−1(∆(γ)) is connected by showing that S2\γ−1(∆(γ)) is also a disjoint
union of open discs.

Let C be a connected component of S2 \ γ−1(∆(γ)) and let D = γ(C)
be the connected component of S2 \∆(γ). The restriction γ|C : C → D
is again a d-fold covering, for some d ≥ 1. Therefore,

1− β1(C) = χ(C) = dχ(D) = d ≥ 1,

where β1(C) is the first Betti number of C. Hence, β1(C) = 0 and
d = 1. We deduce that C is an open disc and γ|C : C → D is a
diffeomorphism.

Now we look at the structure of the singular curves. We split γ−1(∆(γ))
into γ−1(∆(γ)) = S(γ) ∪X(γ) where

X(γ) = γ−1(∆(γ)) \ S(γ).

The local structure of these curves at a cusp or at a transverse dou-
ble point is shown in figure 6.1. In general X(γ) may have several
components, that is, it is equal to a finite union of closed curves with
cusps or transverse double points. We denote such components by
X1(γ), . . . , Xk(γ).

We now choose orientations on the spheres S2 (we may take different
orientations on each S2). Then there are natural orientations induced
on the singular curves:
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∆(γ)

X(γ)

X(γ)

S(γ)

∆(γ)

X(γ)

S(γ)

X(γ)

Figure 6.1: Local structure of X(γ), S(γ) and ∆(γ)

– S(γ): we have on the left the positive region (where γ preserves
the orientation).

– ∆(γ): we have on the left the region of bigger multiplicity (the
number of inverse images of a value).

– Xj(γ): we have on the left the region of bigger multiplicity (the
multiplicity of a point here is the multiplicity of its image).

At a transverse double point we have two oriented branches. One
branch is called positive if the other branch crosses from right to left
at the double point, otherwise we call it negative. We always have a
positive and a negative branch meeting at a double point (see figure
6.2).

- +

Figure 6.2: Sign of the branches at a double point

The next step is to choose a base point on each curve S(γ), ∆(γ) and
Xj(γ). But we only need to choose a point in S(γ) and this point
determines in a unique way a base point in all the other curves.
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In fact, we put, for simplicity, X0(γ) = S(γ) and fix a point z0 ∈ X0(γ)
which determines a point γ(z0) ∈ ∆(γ). Since S(γ)∪X(γ) is connected,
we can reorder the curves X1(γ), . . . , Xk(γ) in such a way that Xj(γ)
has at least one point in common with X0(γ) ∪ · · · ∪ Xj−1(γ). Then
we take zj ∈ Xj(γ) as the first point appearing in the first curve Xℓ(γ)
such that Xℓ(γ) ∩Xj(γ) ̸= ∅.

Definition 6.2.2. Assume that ∆(γ) presents r double points and s
simple cusps, which are labeled by r + s letters {a1, a2, . . . , ar+s}. The
Gauss word of ∆(γ) is denoted byW0 and it is the sequence of cusps and
double points that appear when traveling around ∆(γ) starting from
the base point and following the orientation. If we arrive to a point ai,
then we put a2i if it is a cusp, ai if it corresponds to the positive branch
of a double point or a−1

i if it corresponds to the negative branch.

For each j = 1, . . . , k, the Gauss word of Xj(γ) is denoted by Wj

and it is defined in an analogous way, but we have now more possi-
bilities. Given a point which is an inverse image of ai, if it belongs
to S(f) we use the same letter ai to label the point; otherwise we put
ai, ai, . . . (we use multiple bars in order to distinguish between different
inverse images). We also use the same convention with the exponents:

a2i , ai
2, ai

2
, . . . for a cusp, ai, ai, ai, . . . for a positive branch of double

point or a−1
i , ai

−1, ai
−1
, . . . for a negative branch of double point.

We call Gauss paragraph to the list of Gauss words {W0,W1, . . . ,Wk}.

Example 6.2.3. Let’s see what form has the link of the three stable
singularities.

1. Let γ : S2 → S2 be the link of the fold f(x, y, z) = (x, y, z2). Then
∆(γ) doesn’t present any simple cusp or double point. The Gauss
paragraph is just {∅} (figure 6.3).

Figure 6.3
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2. Let γ : S2 → S2 be the link of the cuspidal edge f(x, y, z) =
(x, y, xz + z3). Then ∆(γ) presents 2 simple cusps, each one
with a single inverse image. The Gauss paragraph in this case
is {a2b2, a2b2} (figure 6.4).

a

bb

a

Figure 6.4

3. Let γ : S2 → S2 be the link of the swallowtail f(x, y, z) =
(x, y, z4 + xz + yz2). Then ∆(γ) present 2 simple cusps, each
one with 2 inverse images, and a double fold point, with 2 inverse

images. The Gauss paragraph is {a−1b2c2a, a−1b
2
c2ac2b2} (figure

6.5).

a

bc

a
b

c

a
c

b

Figure 6.5

4. Let γ : S2 → S2 be the link of the germ f(x, y, z) = (x, y, z4 +
xz − y2z2). Then ∆(γ) presents 4 simple cusps, each one with 2
inverse images, and 2 double fold point, each one with 2 inverse
images. The Gauss paragraph in this case is:

{a−1b2c2ad−1e2f 2d, a−1b
2
c2ac2b2, d−1e2f 2df

2
e2}
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a

bc

d

e f

a

b

c
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d

e

f

d

b

c

f

e

Figure 6.6

(figure 6.6).

5. Let γ : S2 → S2 be the link of f(x, y, z) = (x, y, z5 + xz + yz3).
Then ∆(γ) presents 4 simple cusps, one with 3 inverse images and
the others with 1, and 3 double points, with 3 inverse images each
one. The Gauss paragraph is:

{a−1bc2d−1e2af 2b−1dg2, ae2d−1e2af 2b
−1
db−1dg2a−1ba−1bc2d

−1
e
2}

(figure 6.7).

e

a
b

c

d
f

g

Figure 6.7

6. Let γ : S2 → S2 be the link of f(x, y, z) = (x, y, z5 + xz − y2z3).
Then ∆(γ) presents 6 simple cusps, 2 with 3 inverse images and
the others with 1, and 6 double points, with 3 inverse images each
one. The Gauss paragraph is:

{a−1bc2d−1e2af 2b−1dg−1hi2j−1k2gl2h−1j,

ae2d−1e2af 2b
−1
db−1dg−1hg−1hi2j

−1
k
2
g−1k2j−1k

2
gl2h

−1
jh−1ja−1ba−1bc2d

−1
e
2}

(figure 6.8).



94 Chapter 6. Map germs from R3 to R3
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Figure 6.8

It is obvious that the Gauss paragraph is not uniquely determined,
since it depends on the labels a1, . . . , ar+s, the chosen orientations in
each S2 and the base point z0 ∈ S(γ). Different choices will produce
the following changes in the Gauss paragraph:

1. a permutation in the set of the letters a1, . . . , ar+s,

2. a reversion in the Gauss words together with a change in the
exponents +1 to −1 and viceversa,

3. a cyclic permutation in the Gauss words.

We say that two Gauss paragraphs are equivalent if they are related
through these three operations. Under this equivalence, the Gauss
paragraph is now well defined.

In order to simplify the notation, given a stable map γ : S2 → S2, we
denote by w(γ) the associated Gauss paragraph and by ≃ the equiva-
lence relation between Gauss paragraphs.

As a consequence of this definition and previous remarks we have the
following important result:

Theorem 6.2.4. Let γ, δ : S2 → S2 be two stable maps such that S(γ)
and S(δ) are connected and non empty. Then γ, δ are topologically
equivalent if and only if w(γ) ≃ w(δ).

Proof. Let us denote by w(γ) = {W0,W1, . . . ,Wk} the Gauss para-
graph of γ with respect to some labels {a1, a2, . . . , ar+s}, some orienta-
tions in the source and the target S2 and some base point z0 ∈ S(γ).
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Suppose that δ is topologically equivalent to γ. Then, there are home-
omorphisms ϕ, ψ : S2 → S2 such that δ = ψ ◦γ ◦ϕ−1. We use the same
labels {a1, a2, . . . , ar+s} in such a way that if ai is the label of a cusp
or double point of γ, then it is also the label of its image through ψ
and if ai, ai, ai, . . . is the label of an inverse image in γ, then we take
the same label for its image through ϕ. We choose the orientations in
the source and the target S2 induced by the orientations of γ and the
homeomorphisms ϕ, ψ. Finally, we set ϕ(z0) ∈ S(δ) as the base point.
With these choices, we have that w(δ) = {W0,W1, . . . ,Wk} = w(γ).

We show now the converse. We divide the proof into several cases.

Case 1: w(γ) = w(δ). We can assume that w(γ) = w(δ) ̸= ∅, since
otherwise both maps should be topologically equivalent to the link of
the fold.

We first observe that each stable map γ with w(γ) ̸= ∅ has a unique
cellular structure compatible with the stratification by stable types and
such that γ restricted to each cell is a homeomorphism. In the target,
the 0-cells are the cusps and double folds and the 1-skeleton is ∆(γ); in
the source, the 0-cells are the inverse images of the cusps and double
folds and the 1-skeleton is S(γ) ∪X(γ).

The second fact is that such cellular structure can be deduced in a
unique way from the Gauss paragraph of γ. In the target, the 0-cells
are labelled by the letters a1, . . . , ar+s, each 1-cell is an oriented edge
given by two consecutive letters aϵia

η
j in W0 (including also the edge

joining the last to the first letter) and each 2-cell is a face which is
determined by a closed sequence of oriented edges or their inverses. In
the source, we proceed analogously but this time we take into account
all the Gauss words W0, . . . ,Wk.

If w(γ) = w(δ), we write γ : M1 → P1 and δ : M2 → P2 where
Mi, Pi denote S

2 with the associated cellular structure in the source
or the target respectively. Since the Gauss word of ∆(γ) is equal to
the Gauss word of ∆(δ), we have that P1, P2 are isomorphic as CW-
complexes. We choose a cellular homeomorphism β : P1 → P2. Then
we construct another cellular homeomorphism α :M1 →M2 such that
δ ◦ α = β ◦ γ. Given a cell E in M1, then there is a unique cell E ′ in
M2 corresponding to the same label in the Gauss word and such that
β(γ(E)) = E ′. We define α|E : E → E ′ as α|E = (δ|E′)−1 ◦ β|γ(E) ◦ γ|E.

Case 2: w(γ) ≃ w(δ).

1. Suppose that w(γ), w(δ) are related through a permutation τ in
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the set of the letters a1, a2, . . . , ar+s. The proof is essentially the
same as in case 1, but we construct the homeomorphisms α, β in
such a way that a vertex with label ai is mapped into a vertex
with label aτ(i), and so on.

2. Assume that w(γ), w(δ) are related through a reversion in the
Gauss words together with a change in the exponents. We take
J : S2 −→ S2, with J(x1, x2, x3) = (x1, x2,−x3) such that either
w(γ) = w(δ ◦ J), w(γ) = w(J ◦ δ) or w(γ) = w(J ◦ δ ◦ J). Then
the result follows from case 1.

3. Assume that w(γ), w(δ) are related through cyclic permutations
in the Gauss words. Then we can choose again a homeomorphism
T : S2 → S2 such that w(γ) = w(δ ◦ T ) and apply case 1.

Remark 6.2.5. The equivalence between the Gauss words of ∆(γ)
and ∆(δ) is not enough to guarantee that γ and δ are topologically
equivalent. In fact, if γ, δ have isomorphic discriminants ∆(γ),∆(δ),
then they are not topologically equivalent in general (see [2]).

Remark 6.2.6. Note that theorem is not true if S(γ) is not connected.
We find in [14, Figure 6] an example of two stable maps from S2 to
S2, both with empty Gauss words, which are not topologically equiva-
lent. In that paper, the authors consider other global type invariants,
for instance, the graph associated to the connected components of the
complementary of S(γ), but again this is far from being a complete
invariant.

Now, we are in conditions of stating and proving the converse of corol-
lary 6.1.2 in the case that the singular sets are smooth. In fact, if
f : (R3, 0) → (R3, 0) is a finitely determined map germ such that S(f)
is smooth and non empty outside of the origin, then the singular set
of its link S(f |S̃2

ϵ
) is connected and non empty and hence, we can use

theorem 6.2.6.

Theorem 6.2.7. Let f, g : (R3, 0) → (R3, 0) be two finitely determined
map germs such that S(f) and S(g) are smooth and non empty out-
side of the origin. Then, if f and g are topologically equivalent, their
respective links are topologically equivalent.

Proof. Since f and g are topologically equivalent, there are homeomor-
phisms ϕ, ψ : (R3, 0) → (R3, 0) such that ψ ◦ f = g ◦ ϕ. We take
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small enough representatives and ϵ > 0 such that f |S̃2
ϵ
is the link of f .

We denote M = ϕ(S̃2
ϵ ) and P = ψ(S2

ϵ ), then we have a commutative
diagram:

S̃2
ϵ

f |
S̃2
ϵ−−−→ S2

ϵyϕ yψ
M

g|M−−−→ P

.

Let us denote by w(f |S̃2
ϵ
) = {W0,W1, . . . ,Wk} the Gauss paragraph

with respect to some labels {a1, a2, . . . , ar+s}, some orientations in S̃2
ϵ

and S2
ϵ and a cusp z0 ∈ S(f |S̃2

ϵ
) as a base point.

We also put R = ϕ(D̃3
ϵ ) and Q = ψ(D3

ϵ ) and consider the restriction
g|R : R → Q. We take δ > 0 small enough such that D3

δ ⊂ Q and g|S̃2
δ

is the link of g. Then we consider in R,Q the orientations induced by
ϕ, ψ respectively, in D̃3

δ , D
3
δ the orientations induced as submanifolds of

R,Q respectively and in S̃2
δ , S

2
δ the orientations induced as boundaries

of D̃3
δ , D

3
δ respectively.

For each cusp or double fold in the target of g|S̃2
δ
we can associate a

unique letter ai in the obvious way: consider the curve of cusps or
double folds of g joining the origin to this point and take the point of
such curve in P , which is the image of a cusp or double fold in the
target of f |S̃2

ϵ
, labelled by ai (see figure 6.9). For cusps or double folds

in the source of g|S̃2
δ
we proceed analogously.

By using the same procedure, we take as a base point the corresponding
cusp z′0 ∈ S(g|S̃2

δ
) coming from the cusp z0 ∈ S(f |S̃2

ϵ
).

With these choices it becomes clear that g|S̃2
δ
has the same Gauss para-

graph w(g|S̃2
δ
) = {W0,W1, . . . ,Wk} and therefore, it is topologically

equivalent to f |S̃2
ϵ
by theorem 6.2.6.

Remark 6.2.8. If S(f) is empty outside the origin its associated link
γ : S2 → S2 becomes a regular map and hence a diffeomorphism by
lemma 6.2.1. Hence, in this case we only have one topological class,
namely the regular map f(x, y, z) = (x, y, z).

Putting together theorems 6.2.6 and 6.2.7 and corollary 6.1.2, we have
the following result.
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P

δ

a
a

a
a

i

i
j

j

S2

Figure 6.9: Scheme of the relation between S2
δ and P

Corollary 6.2.9. Let f, g : (R3, 0) −→ (R3, 0) be two finitely deter-
mined map germs such that S(f) and S(g) are smooth and non empty
outside of the origin. Then f and g are topologically equivalent if and
only if their links have equivalent Gauss paragraphs.

6.3 Topological classification of corank 1

map germs

Given a finitely determined map germ f : (R3, 0) → (R3, 0), we want
to study its topological type by means of the Gauss paragraph of its
link. Since the Gauss paragraph is considered only in the case that the
singular set of the link is connected, we have to restrict ourselves to
this case. We consider only corank 1 map germs, which can be written
in the form f(x, y, z) = (x, y, g(x, y, z)). Then S(f) is defined by the
equation gz(x, y, z) = 0. We want a condition for the singular set S(f)

to be smooth, which guarantees that its transverse intersection with S̃2
ϵ

will be diffeomorphic to S1.

Lemma 6.3.1. Let f : (R3, 0) → (R3, 0) be a corank 1 map germ.
Then, the 2-jet j2f(0) is A-equivalent to either (x, y, z2), (x, y, xz) or
(x, y, 0).

Proof. Since f has corank 1, we can assume j2f(0) = (x, y, h(x, y, z))
where h(x, y, z) is a quadratic form in x, y, z. We eliminate all the terms
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in x, y by using an appropriate coordinate change in the target. Hence,
we arrive to j2f(0) ∼A (x, y, cz2+ eyz+ fxz), for some c, e, f ∈ R. We
distinguish several cases.

1. Let c ̸= 0. We assume, for instance, that c > 0 (the case c < 0
is analogous). Then, j2f(0) becomes A-equivalent to (x, y, z2) by
taking the following coordinate changes in the source and target,
respectively:

z̄ =
fx+ ey + 2cz

2
√
c

, Z̄ = Z +
(fX + eY )2

4c
.

2. Let c = 0 and f ̸= 0. Then, j2f(0) ∼A (x, y, xz) by means of the
following coordinate changes: x̄ = ey + fx and X̄ = eY + fX.

3. Let c = f = 0 and e ̸= 0. Again, j2f(0) ∼A (x, y, xz) by taking
x̄ = ey, ȳ = x and X̄ = eY, Ȳ = X .

4. If c = e = f = 0, then j2f(0) = (x, y, 0).

It is well known that the fold f(x, y, z) = (x, y, z2) is 2-determined.
Thus, if a map germ has 2-jet equivalent to (x, y, z2), then it is in fact
A-equivalent to the fold. Hence, we do not need to consider this case.

We center our attention from now on in the case j2f(0) ∼A (x, y, xz).
Then S(f) is smooth and hence, the singular set of the link is connected.

Lemma 6.3.2. Let’s consider a weighted homogeneous finitely deter-
mined map germ whose 2-jet is A-equivalent to (x, y, xz).Then, f will
be have the form

(x, y, xz + zm(a0(z
w2)r + a1(z

w2)r−1yw3 + · · ·+ ar(y
w3)r))

where w2 and w3 are the weights of y and z respectively and m = 2, 3

Proof. By the fact of being in the A2-class (x, y, xz) and being weighted
homogeneous, f must be have the form

(x, y, xz + zm(a0(z
w2)r + a1(z

w2)r−1yw3 + · · ·+ ar(y
w3)r)).

In addition to this, if m = 1 we obtain non isolated swallowtails and
the same happen for m ≥ 4, arriving to a contradiction with the finite
determinacy hypothesis. Then, m = 2, 3 and the result is proved.
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We are going to work with the simplest case of this germs. Since f is
finitely determined a0, ar must be distinct from 0, getting a0 = 1 and
ar = ±1 if we normalize them, but we will take ai = 0, 1 ≤ i ≤ r − 1.
From this point, let’s consider the following table (table 6.1):

Degree 0 Degree 1
Germ Associated link Germ Associated link

(x, y, z2) (x, y, z3 + xz) a

b

(x, y, z4 + yz2 + xz) a

bc

(x, y, z5 + yz3 + xz)

e

a
b

c

d

f

g

(x, y, z4 − y2z2 + xz) a

bc

d

e f

(x, y, z5 − y2z3 + xz)

a
bc

d

e

f

g

h i

j

k

l

Table 6.1

We are going to prove that if we are working with a map germ of the
form f = fc + f̃ , with fc(x, y) = (x, y, zk + xz + ylzm) with m = 2, 3

and f̃ with only terms of higher weighted degree we are only going to
obtain six different topological classes given by the normal forms and
discriminant curves that appear in table 6.1. To be in conditions of
proving this statement we should remember an important result due
to J. R. Quine and stating and proving some previous lemmas and
theorems which will help us in the proof of the main result.

Theorem 6.3.3. ([33]) Let M and N be smooth compact oriented con-
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nected 2-manifolds. Suppose f : M → N is smooth and every point
p ∈ M is either a fold point, cusp point, or regular point of f i.e., f is
excellent in the sense of Whitney. Let M+ be the closure of the set of
regular points at which f preserves orientation and M− the closure of
the set of regular points at which f reverses orientation. Let p1, . . . , pn
be the cusp points and µ(pk) the local degree at the cusp point pk. Then:

χ(M)− 2χ(M−) + Σµ(pk) = (deg f)χ(N)

where χ is the Euler characteristic and deg is the topological degree

Remark 6.3.4. If we take in Quine’s theorem M = N = S2 we have

Σµ(pk) = 2(deg f),

so if deg f = 0, Σµ(pk) = 0 and we will have the same number of cusps
with positive local degree and cusps with negative local degree in the
discriminant curve and if deg f = 1, we have that Σµ(pk) = 2 and we
will have two more cusps with positive local degree or two more cusps
with negative local degree in the discriminant curve. We will see the
importance of this remark later.

Given a stable map γ : S2 → S2, we define the multiplicity of γ as
mult(γ) = minp∈S2 mult(p), where mult(p) = #γ−1(p).

Theorem 6.3.5. Let γ : S2 → S2 be a stable map, with S(γ) connected.
Then, its multiplicity is determined by ∆(γ).

Proof. If we denote by c the number of cusps and by d the number of
the set of double points {z1, . . . , zd} of ∆(γ), we have that, applying the
Euler formula in the image, S2\∆(γ) presents 2+d faces {F1, . . . , Fd+2}.
Let’s suppose that mult(zi) = n+qi, i = 1, . . . , d and mult(Fi) = n+pi,
i = 1, . . . , d+ 2, where n = mult(γ).

On the other hand, if we center now our attention in the inverse im-
age set of the discriminant γ−1(∆(γ)) ⊂ S2 the Euler formula is also
satisfied and, as a consequence, we obtain that the number of faces of
S2 \γ−1(∆(γ)) is 2+c+2d+ d̃ with d̃ being the number of non singular
inverse images of double points that appear in X(γ)

So, we have that by one side # of faces of S2\γ−1(∆(γ)) =
∑d+2

i=1 mult(Fi) =

(d + 2)n +
∑d+2

i=1 pi. and by the other # of faces of S2 \ γ−1(∆(γ)) =
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2 + c +
∑d

i=1 mult(zi) = 2 + c + nd +
∑d

i=1 qi. Simplifying we obtain
the formula

n =
1

2
(2 + c−

n∑
i=1

pi +
n∑
i=1

qi)

which is completely determined by the topological information given
by the discriminant of γ.

Lemma 6.3.6. Let γ, δ : S2 → S2 be two stable maps, with S(γ), S(δ)
both connected. Assume that ∆(γ),∆(δ) are both diffeomorphic to one
of the discriminant curves that appear in table 6.1 and the signs of their
cusps (their local degrees) coincide too. Then, γ and δ are topologically
equivalent.

Proof. If both discriminants coincides with the discriminant curve of
one of the three stable singularities (fold, cusp and swallowtail), the
result is trivial. Let’s suppose first that ∆(γ),∆(δ) are equal to the
discriminant curve given by the Gauss word a−1bcad−1efd. By theorem
6.3.5 we can determine its inverse images distribution uniquely (figure
6.10) and that each one of the simple cusps is going to present 2 inverse

4

4

2
0

Figure 6.10

images, and by remark 6.3.4, we know that, taking into account the
local topological degree of each one of the 4 cusps that appear, we only
can have two possible cases:

1 The signs of the cusps are alternating (figure 6.11, left).

The structure of X(γ)∪S(γ) will have the form given by the right

side of figure 6.11, with Gauss words a−1b
2
c2ac2b2 and d−1e2f2df

2
e2.

Then, w(γ) = w(δ) and as a consequence, γ and δ are topologi-
cally equivalent.
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+

+

-

-

Figure 6.11

2 The first and the last cusp are negative(figure 6.12, left).

In this case the structure of X(γ) ∪ S(γ) will have the form that
appears in the right side of figure 6.12,

+

+

-

-

Figure 6.12

with Gauss words a−1b
2
c2ac2b2 and d−1e2f

2
df2e2. Therefore, both

Gauss paragraphs are equal and as a consequence γ and δ are
topologically equivalent.

Following an analogous procedure in the discriminant curves given by
Gauss words a−1bc2d−1e2af 2b−1dg2 (figure 6.13, left) and

a−1bc2d−1e2af 2b−1dg−1hi2j−1k2gl2h−1j

(figure 6.13, right) we also arrive to the conclusion that in both cases
w(δ) = w(γ) and both stable maps are topologically equivalent.
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Figure 6.13

Lemma 6.3.7. The map germ f(x, y, z) = (x, y, zk + xz ± ylz2) is
topologically equivalent to one of the germs of the table 6.1.

Proof. The equation of S(f) is kzk−1 ± 2ylz + x = 0, so that we can
put x in terms of y, z and substitute in f to get f |S(f). Then f |S(f) can
be seen as an unfolding of a plane curve py(z) with parameter y, where

py(z) = (−kzk−1 ∓ 2ylz, (1− k)zk ∓ ylzm).

If we compute its derivative we obtain

p′y(z) = (−k(k − 1)zk−2 ∓ 2yl,−k(k − 1)zk−1 ∓ 2ylz).

The equation for the cuspidal edges is p′y(z) = 0, which gives

yl =
∓k(k − 1)

2
zk−2.

To obtain the double point curves we compute the pairs (z, u) such
that

py,1(z)− py,1(u)

z − u
=
py,2(z)− py,2(u)

z − u
, (6.1)

where py(z) = (py,1(z), py,2(z)). This gives the equation

(zk−2 + zk−3u+ zk−4u2 + · · ·+ zuk−3 + uk−2)(z + u)

zk−1 + zk−2u+ · · ·+ zuk−2 + uk−1
=

2(k − 1)

k
.

(6.2)
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In order to simplify our computations we take u = 1, obtaining thus
the equation

(zk−2 + zk−3 + · · ·+ z + 1)(z + 1)

zk−1 + zk−2 + · · ·+ z + 1
=

2(k − 1)

k
. (6.3)

We know, by [21] that the left hand side of (6.3) has its maximum at

z = 1, taking the value 2(k−1)
k

. Thus, the only solution of our equation
is z = u, and as a consequence, if k is odd, f doesn’t present any
double fold point. If k is even, z = −1 is a solution of the polynomial
zk−1 + zk−2 + · · ·+ z + 1 and as a consequence z = −u is a solution of
(6.2). If we suppose that k is even and substitute the equality z = −u
in (6.1) we obtain our double point curve

yl =
∓kzk−2

2
.

Now, let’s take into account some important facts:

1. yl is topologically equivalent to either y2 when l is even, or y when
l is odd.

2. If k is even the map germs (x, y, zk+xy+yz2) and (x, y, zk+xz−
yz2) are topologically equivalent, so we only need to consider one
of the topological classes.

As a consequence, we obtain the following configuration of the curves
of the singular set as well as the discriminant of the link of f (figures
6.14, 6.15, 6.16, 6.17) :

y = - k(k-1)

2
z

k-2

y = -kz
k-2

y < 0 y > 0

k even, l odd

2

Double Point Curve

Cuspidal Edge

Figure 6.14
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y < 0 y > 0

k even, l even (+y²z²)

Figure 6.15

y = - k(k-1)z k-2

2 y = + k(k-1)z
k-2

2

y = - kz
k-2 y = + kz

k-2

k even, l even (-y²z²)

y < 0 y > 0

22

Figure 6.16

y = - k(k-1)

2
z

k-2

k odd

y < 0 y > 0

Figure 6.17
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The last step to check that each one of these discriminant curves origi-
nates a single topological class is to verify that there is a single config-
uration of the local degrees of the cusps that appear in each one of the
discriminant curves. Then, applying lemma 6.3.6 we will have finished.
In the case of the fold, the cusp and the swallowtail there is nothing to
prove. Let’s see what happen with the discriminant curve of figure 6.16.
As we saw in the proof of lemma, according to the different configura-
tion of their cusps we can have two cases, but taking into account the
normal form we are working with ((x, y, zk + xz − y2z2), with k even)
the only possible configuration is the one whose curves are symmetric
respect of the origin (figure 6.11). Then, we only need to choose a
normal form of each of these classes and the proof is concluded.

Lemma 6.3.8. The map germ f(x, y, z) = (x, y, zk + xz ± ylz3) is
topologically equivalent to one of the germs of the table 6.1.

Proof. Following the same procedure as in the proof of last lemma, we
get the cuspidal edge equation which is given by

z = 0,

yl = ∓k(k−1)
6y

zk−3,

as well as the equation of the double fold curve:

(zk−2 + zk−3u+ · · ·+ zuk−3 + uk−2)(z2 + zu+ u2)

(zk−1 + zk−2u+ · · ·+ zuk−2 + uk−1)(z + u)
=

3(k − 1)

2k
, (6.4)

Again we take u = 1, arriving to the equation

(zk−2 + zk−3 + · · ·+ z + 1)(z2 + z + 1)

(zk−1 + zk−2 + · · ·+ z + 1)(z + 1)
=

3(k − 1)

2k
. (6.5)

Let’s consider the real function

h(z) =
(zk−2 + zk−3 + · · ·+ z + 1)(z2 + z + 1)

(zk−1 + zk−2 + · · ·+ z + 1)(z + 1)
,

and let’s study its graph. It satisfies the following properties:

– h(1
z
) = h(z), ∀z ̸= 0

– h(z) > 1 if z ̸= 0 and h(0) = 1
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In order to determine the solutions of h(z) = c, with c = 3(k−1)
2k

, we
study its positive and negative real roots by applying Descartes rule of
signs to the polynomial

g(z) = (z − 1)2H(z) = (1− c)zk+2 + czk − zk−1 − z3 + cz2 + (1− c),

where H(z) = (zk−2 + zk−3 + · · ·+ z + 1)(z2 + z + 1)− c(zk−1 + zk−2 +
· · ·+ z+1)(z+1). We find 4 positive roots and 2 negative roots when
k is even and 4 positive and 3 negative roots when k is odd for g(z).
We have to take into account that{

positive roots of g(z) = positive roots of h(z) + 2,
negative roots of g(z) = negative roots of h(z).

Hence, we have that h(z) presents at most 2 positive and 2 negative
roots when k is even and 2 positive and 3 negative roots when k is odd.
The graph of h(z) is shown in figure 6.18 in each case:

3(k-1)

2k

k even k odd

3(k-1)

2k

Figure 6.18

By looking at the graph of h(z), we see that in both cases, (6.5) has
3 real roots, namely z = A1, with −2 < A1 < −1, z = A2, with
−1 < A2 < 0, and z = 1. As a consequence, (6.4) presents the double
points z = A1u, z = A2u when k is even, obtaining respectively the
double fold curves

yl =
∓k(Ak−1

1 − 1)zk−3

3(A2
1 − 1

), yl =
∓k(Ak−1

2 − 1)zk−3

3(A2
2 − 1)

.
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If k is odd we obtain this two roots, together with z = −z′ (by using
an analogous argument as in case 1) getting in this case the equation

yl =
∓kzk−3

3
.

Now, as we did in the proof of lemma 6.3.7 we must take into account
the following facts:

1. yl is topologically equivalent to either y2 when l is even, or y when
l is odd

2. If k is odd the map germs (x, y, zk+xy+ yz3) and (x, y, zk+xz−
yz3) are topologically equivalent, so we only need to consider one
of the topological classes.

The configuration of the curves of the singular set, as well as the corre-
sponding links of the discriminant and Gauss words is shown in figures

6.19, 6.20, 6.21, 6.22, where C1 =

√
k(Ak−1

2 −1)zk−3

3(A2
2−1

, C2 =

√
k(Ak−1

1 −1)zk−3

3(A2
1−1

,

C3 =
√

k(k−1)zk−3

6
and C4 =

√
kzk−3

3
.

-k(k-1)z
k-3

6
y =

-1)z
k-3

3(A2
2

-1)

-k(A2

k-1

y =

-k(A1

k-1
-1)z

k-3

3(A1

2
-1)

y =

y = -kz k-3

3

z = 0

y < 0 y > 0

k odd, l odd

Figure 6.19

By an analogous procedure of the end of the proof of lemma 6.3.7, using
lemma 6.3.6 again, we obtain a single topological class for each one of
the discriminant curves. Then, we only need to choose again a normal
form of each of these classes and the proof is concluded.
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z = 0

y < 0 y > 0

k odd, l even (+ y²z³)

Figure 6.20

z = 0

y = +y = -

y = +y = -

y = +y = -

y = + y = - 

y < 0 y > 0

k odd, l even (- y²z³)

C1

C2

C3

C4

C1

C2

C3

C4

Figure 6.21

z = 0

-k(A1

k-1
-1)z

k-3

3(A1

2
-1)

-1)z
k-3

3(A2

2
-1)

-k(A2

k-1

-k(k-1)z
k-3

6

y =

y =

y =

y < 0 y > 0

k even

Figure 6.22
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Theorem 6.3.9. Let f : (R3, 0) → (R3, 0) be a finitely determined map

germ of the form f = fc+ f̃ , with f̃ with only terms of higher weighted
degree. Then, w(f) and w(fc) are equivalent, and, as a consequence f
and fc are topologically equivalent.

Proof. Let’s check first that the number of branches of the double point
curves D2(f |S(f)) and D2(fc|S(f)) coincides. First of all, let’s notice
that the number of branches of these curves is equal to the number of
branches of the plane curves defined by the equations (2) and (4) of
the proof of the lemmas 6.3.7 and 6.3.8. Making use of these equations
we will have that

k(zk−2+zk−3u+ · · ·+uk−2)(z+u)+2(k−1)(zk−1+zk−2u+ · · ·+uk−1)+

+G(z, u) = G0(z, u) +G(z, u) = 0

in the first case and

2k(zk−2 + zk−3u+ · · ·+ zuk−3 + uk−2)(z2 + uz + u2)+

+3(k − 1)(zk−1 + zk−2u+ · · ·+ uk−1)(z + u) +H(z, u) =

= H0(z, u) +H(z, u) = 0

in the second case, where G0, H0 are homogeneous and G,H are poly-
nomials of higher order terms.

Since H0 and G0 are homogeneous we are able to apply a result due to
H. Kuiper ([17]), which tell us that H0 +H and G0 +G have the same
number of branches than H0 and G0 respectively.

If we consider the map germ fc we know for the proof of lemmas 6.3.7
and 6.3.8 that its double point curves and cuspidal edges are given by
equations of the form yl = Aiz

k−m with Ai ̸= Aj if i ̸= j because fc is
not degenerate. It follows that these curves, in the case of f will have
the form yl = Aiz

k−m + F (z), with F being a polynomial of higher
order terms. So, if we take values of z small enough, we will have that
the relative position of the curves doesn’t change with respect to the
initial part, it only depends on A− i.

Let’s finish this proof seing that the sign of the double points in the
Gauss word doesn’t change either. This sign is given by the deter-
minant formed by the vectors {δ1 ∂f∂y (y, z), δ2

∂f
∂y
(y, u), δ3

∂f
∂z
(y, z)}, with

δi = ±1.If we compute this determinant in the case of gc = fc|S(fc) and
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and taking into account the relations yl = Aiz
k−m and u = Biz we

obtain the following expression

det(δ1
∂gc
∂y

(y, z), δ2
∂gc
∂y

(y, u), δ3
∂gc
∂z

(y, z)) =

= (zm−1 − um−1)lm(±k(k − 1)yl−1zk−1 +m(m− 1)y2l−1zm−1)+

+(zm − um)l(1−m)(k(k − 1)yl−1zk−2 +m(m− 1)y2l−1zm−2 =

= CiDily
l−1zk+m−2

with
Ci = ∓k(k − 1)±m(m− 1)Ai

and
Di = m(1−Bm−1

i ) + (m− 1)(1−Bm
i )

As the terms Ci and Di never vanish, taking into account the values
of Ai and Bi obtained in the proof of lemmas 6.3.7 and 6.3.8 this
determinant never vanishes out of the origin and using a continuity
argument if we choose ϵ > 0 small enough we will have that for any
z, with |z| < ϵ the sign of the double points of the Gauss word of f
coincides with the sign of the double points the Gauss word of fc and
the result is proved.

Now, putting together lemmas 6.3.7 and 6.3.8 and theorem 6.3.9 we
have the following result:

Corollary 6.3.10. Let f : (R3, 0) → (R3, 0) be a finitely determined
map germ of the form of theorem 6.3.9. Then, f is topologically equiv-
alent to one of the germs of table 6.1.

6.4 Ruled map germs from R3 to R3

Ruled surfaces are surfaces generated by straight lines or rulings and
have been studied for centuries by geometers. We can find examples of
this kind of surfaces in the discriminant of the stable maps from R3 to
R3.

In this last section we will define formally what is a ruled map germ in
our case of study, how we can relate them with its discriminant and at
the end we will give a complete topological classification of them.
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Definition 6.4.1. A ruled map from Rn to Rp, with n ≤ p is a map
f : I × Rn−1 → Rp given by

f(t, u1, . . . , un−1) = a1(t) + u1a2(t) + · · ·+ un−1an(t),

where I ⊂ R is an interval, a1 : I → Rp is a curve in Rp and
a2, . . . , an : I → Rp are vectors fields along a1, such that they are
linearly independent in each point. If (t0, u10 , . . . , un−10) ∈ I ×Rn and
f(t0, u10 , . . . , un−10) = p, then the map germ

f : (I × Rn−1, (t0, u10 , . . . , un−10)) → (Rp, p)

will be call a ruled map germ.

If we take n = p = 3 we will have a ruled map f : I × R2 → R3 given
by

f(t, u, v) = a(t) + ub(t) + vc(t)

where I ⊂ R is an interval, a : I → R3 is a space curve and b, c : I → R3

are vectors fields along a, such that they are linearly independent in
each point. Analogously as in the general case we obtain from here a
ruled map germ from R3 to R3.

We have now the following result:

Proposition 6.4.2. Let f : (R3, 0) → (R3, 0) be a ruled map germ.
Then, up to A - equivalence, f can be written in the form f(x, y, z) =
(x, y, α(z) + xβ(z) + yγ(z)).

Proof. For the fact of being a ruled map germ we have f(t, u, v) = a(t)+
ub(t) + vc(t) with b and c linearly independent along a. Let’s suppose

that

∣∣∣∣ b1 c1
b2 c2

∣∣∣∣ is the minor that doesn’t vanish. We are looking for

obtaining a C∞ map germ ϕ : (R3, 0) → (R3, 0) such that f ·ϕ(x, y, z) =
(x, y, α(z) + xβ(z) + yγ(z))

If we take

ϕ(x, y, z) = (z,
B(z)c2(z)− C(z)c1(z)

A(z)
,
b1(z)C(z)−B(z)b2(z)

A(z)
),

with A(z) = c2(z)b1(z) − c1(z)b2(z), B(z) = x − a1(z) and C(z) =

y− a2(z), we get the desired result, with α(z) = det(a(z),b(z),c(z))
A(z)

, β(z) =
c2(z)b3(z)−b2(z)c3(z)

A(z)
and γ(z) = b1(z)c3(z)−c1(z)b3(z)

A(z)
.
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Let’s see now that using this normal form of a ruled map germ we can
easily proof a direct relation with its discriminant.

Proposition 6.4.3. Let f : (R3, 0) → (R3, 0) be a map germ, with
S(f) smooth. Then,if f is a ruled map germ if and only if ∆(f) is a
ruled surface in R3.

Proof. Let’s suppose first that f is a ruled map germ. This directly im-
plies than f can be written in the form f(x, y, z) = (x, y, α(z)+xβ(z)+
yγ(z)) We have that S(f) is given by the equation α′(z) + xβ′(z) +
yγ′(z) = 0. So ∆(f) is parameterized by (A(z)y + B(z), y, C(z)y +

D(z)), with A(z) = −γ′(z)
β′(z)

, B(z) = −α′(z)
β′(z)

, C(z) = γ(z) + −γ′(z)β(z)
β′(z)

and

D(z) = α(z) + −α′(z)β(z)
β′(z)

. Therefore, ∆(f) is a ruled surface in R3.

Reciprocally, if ∆(f) is a ruled surface in R3, ∆(f) = f(S(f)), we
will have that, for the smoothness of S(f), f |S(f)(y, z) = (a(z)y +
b(z), y, c(z)y + d(z)), with S(f) = {(x, y, z) : x − a(z)y − b(z) = 0}
and f will be given by f(x, y, z) = (x, y,

∫
(x − a(z)y − b(z))dz =

(x, y, A(z)y +B(z) + xz). Then, f is a ruled map germ.

To finish this section and this article we are going to give a complete
topological classification of this kind of germs. We will need some
previous lemmas.

Lemma 6.4.4. Let f : (R3, 0) → (R3, 0) be a finitely determined
ruled map germ. Then j2f(0) is A - equivalent to either (x, y, z2) or
(x, y, xz).

Proof. We know from the lemma 6.3.1 that j2f(0) is A - equivalent to
either (x, y, z2), (x, y, xz) or (x, y, 0). Let’s see than in this case it can’t
be A - equivalent to the class (x, y, 0)

By the fact of being a ruled map germ we have f(x, y, z) = (x, y, α(z)+
xβ(z) + yγ(z)), so j2f(0) will be A - equivalent to a germ of the form
(x, y, α′′(0)z2 + β′(0)xz + γ′(0)yz).

If j2f(0) were A - equivalent to (x, y, 0) we would have α′′(0) = 0,
β′(0) = 0, γ′(0) = 0 and as a consequence a map germ f of the form
(x, y, zk + · · ·+ x(z2 + · · · ) + y(z3 + · · · )). We would get as a singular
set’s equation kzk−1+x(z+ · · · )+ y(z2+ · · · ).Let’s see that it presents
a non isolated singularity. If we derive the singular set, obtaining the
vector (z + · · · , z2 + · · · , (k − 1)kzk−2 + x(1 + · · · ) + y(2z + · · · )) it’s
obvious that it doesn’t present pure terms on y, obtaining points of the
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form (0, y, 0) where this vector vanishes and arriving to a contradiction
with the finite determinacy of f .

Lemma 6.4.5. Let f : (R3, 0) → (R3, 0) be a finitely determined ruled
map germ. Then f is topologically equivalent to a germ of the form
(x, y, zk + xz + yzm) with m = 2, 3.

Proof. First of all, let’s notice that, applying the last lemma, f can
be written in the form fc + f̃ , with fc(x, y, z) = (x, y, zk + xz + yzm),

m = 2, 3 and f̃(x, y, z) = (0, 0, (ak+1z
k+1 + · · · ) + x(b2z

2 + · · · ) +
y(cm+1z

m+1 + · · · )). Now, the proof is a direct consequence of theorem
6.3.9.

We are in conditions now of stating and proving the main result of this
last section.

Theorem 6.4.6. Let f : (R3, 0) → (R3, 0) be a finitely determined
ruled map germ. Then f is topologically equivalent to one of the map
germs of the table 6.2.

Degree 0 Degree 1
Germ Associated link Germ Associated link

(x, y, z2) (x, y, z3 + xz) a

b

(x, y, z4 + yz2 + xz) a

bc

(x, y, z5 + yz3 + xz)

e

a
b

c

d

f

g

Table 6.2

Proof. We obtain the desired result by just applying together lemmas
6.3.7, 6.3.8 and 6.4.5.
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Chapter 7

Open problems

During this work we got to reach the following goals:

1. We constructed a complete topological invariant for stable maps
from S1 to S1 and as a consequence, applying the results of Fukuda,
a complete topological invariant for finitely determined map germs
f : (R2, 0) → (R2, 0).

2. Using this invariant we obtained a wide topological classification
of these map germs in the case of corank 1 and we extended it to
corank 2 in some particular cases.

3. We proved that any unfolding of a finitely determined map germ
F : (R2 × R, 0) → (R2 × R, 0) that is excellent in the sense
of Gaffney and such that ∆(F ) is topologically trivial, is topo-
logically trivial. We putted a bit more our attention in this 1-
parameter families, giving a result related with the parity of the
number of cusps that appear on them.

4. As a final result of this PhD-Thesis we constructed a complete
topological invariant again, in this case to study the topological
behavior of stable maps γ : S2 → S2 and restricting the singular
set of γ, S(γ), to be connected. With this tool we studied the dif-
ferent topological classes that are contain in the A2-class (x, y, xz)
and we gave a full classification of ruled map germs from R3 to
R3.

For the results achieved many future lines of research arise:

1. Complete the topological classification of finitely determined map
germs from the plane to the plane, specially in the corank 2 case.

117
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2. Departing from the Gauss words try to define a complete topo-
logical invariant that control globally the topological behavior of
the links associated to multigerms and as a consequence, being in
conditions of classifying these multigerms.

3. Taking into account the work achieved for the planar case, find
conditions that give us the topological triviality of families in
higher dimensions.

4. As in the planar case, construct a complete topological invariant
that let us to deal with stable maps γ : S2 → S2 which singular
set is not connected as well as study the topology of multigerms
in this case.
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