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Introduction

y the fact of looking at the sky, we are already involved in

astronomy. Perhaps there are very few people that have never

seen the stars and thought a little about the mysteries of the

> Universe, and about the place of man in it. Astronomy tells us a
fascinanting story that began thousands of years ago, when our

hominid ancestors looked at the sky and were puzzled when they saw those

disconcerting fires,

The science of astronomy has discovered unexpected horizons, and due
to it we have improved our knowledge of our place in the Universe. The Earth
(on which surface we live) is simply a member of a planet family that turns
around the Sun, which is just a star as others in the enormous stellar system
that is our galaxy. In its turn, the Milky Way is just a light spot in the middle
of the infinity of galaxies and galaxy clusters, extended all over the observed
universe, some of them so far that their light takes millions of years to reach
us; the observed universe has an expanse of the order of 10* kilometres. In the
middle of this vastness, the Earth and the man seem, indeed, insignificant.

Nevertheless, if we look at the other extreme of the scale, the man does
not seem so small. The atom has a diameter of the order of 10™* metres, while
the nucleus, formed by protons and neutrons, is ten thousand times smaller
(10" m). But precisely the explanation of the gigantic and surprising
phenomena ohserved in the astronomical stage comes from here, from the
physics of the microcosmos. This fact has allowed to open new observation
windows to the Cosmos, besides the classical window of the optical astronomy.
This is the case of radio astronomy (that started at the beggining of the
thirties), or the high energy astronomy (X and y-rays); the last one is, without
any doubt, the branch of the astronomy that has contributed the most to our
present knowledge of the Universe during the last 30 years.

The development of detection techniques for X and y-rays coming from
sky sources started after the II World War, when the developing of the needed
technologies began, and afterwards it was possible to put instrumentation
outside of the atmosphere (mainly balloons and satellites). It is impossible to
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work in high energy astronomy on ground because, for not very high energies,
photons interact significantly with the highest part of the atmosphere, being
unable to reach the Earth surface; for instance, at a height of about 40 (the

typical working height of balloons), photons of 100 keV are absorbed by a factor
of 1/e.

The first X-ray detectors were lauched on board of balloons and rockets
in the sixties. They measured high energy radiation fluxes of extraterrestrial
origin and discovered that the Sun emits X radiation. In 1962, Scorpio X-1 was
discovered: the brightest X-ray source in the sky. In 1970 the first satellite
dedicated to the X-ray astronomy was lauched: the Uhuru, which discovered
the existence of a great number of high energy sources, so far unknown, and
it was possible to do the first catalogues and sky maps in these frequencies.

This discovery changed totally the conception of the Universe; it was more
violent than what it was supposed to.

—
—

EN——

Due to the very energetic nature of Y and hard X-rays, the conventional
focussing techniques based on lenses or mirrors are useless. This fact delayed
the appearance of the y-ray astronomy, because it was needed to develop new
imaging techniques for this range of the spectrum. These techniques arised

finally when the concept of coded mask was developed, which gave us a new
tool for imaging and doing astronomy.

Thus, new y-ray missions that use coded mask theory have recently
appeared, such as the French SIGMA mission (on board of the Russian
platform GRANAT) which was put into orbit in 1989 and was the first y-ray
mission working in the space, or the GRO (Gamma Ray Observatory). These
missions have significantly improved our knowledgement of the Universe in
that energy range and have leaded to the development of new missions. The
same spirit animates the LEGRI project (Low Energy Gamma Ray Tmager)
whose objective is the soft y-ray astronomy (20 - 100 keV). LEGRI will fly on
board the Minisat 01 platform which will be the first mission of the Minisat

program by the Instituto Nacional de Técnica Aeroespacial "Esteban Terradas"
(LLN.T.A)). It will be launched in 1996.

K T VT R i PR AR

RN RN T




_Introduction 3

In this work we describe the LEGRI project and summarily the Minisat

o program. We make an in-depth study of the mask theory and analyse and

" develop image reconstruction techniques (the main objective of this work),

o applying them to the specific case of the LEGRI telescope, and also studying

" other associated effects that affect the image reconstruction.







~ Chapter 1: The mission
1.1 Introduction

he results obtained during the last years by y-ray missions have

: &, made possible a great advance in our knowledge of the Universe
s éin the field of high energy astronomy [1]. It is interesting to
| M briefly summarize the main points that can have important

| consequences on the development of future high energy missions:

a) The hard X-ray and yray sky sources show a great variability in

number and intensities.

b) Although the number of ¥ sources is relatively small, there are sky
regions (for instance the Galactic Centre) where the relatively high
density of y emitters makes difficult to identify the sources and to relate
them to their counterparts in the other wavelenght.

¢) The spectrum of each well-known sky y source shows characteristic

features, and also a great variability on intensities.

Taking all that into account, there are three basic requirements for
future missions devoted to the study of X and vy rays sky sources:

1) Imaging capability with good angular resolution.

2) Good energetic resolution, to allow a good study of the spectra emited
by the sky sources.

3) Improvement of the sensitivity with respect to former missions, in

order to detect unknown sources.
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6 The mission

The LEGRI project is a collaboration among different English and
Spanish institutions. It arises as a mission which tries to cover part of those
objectives, working in the range from 20 to 100 keV (just on the frontier
between X and y-rays). One of the main objectives of the LEGRI project is to
test the behaviour of the new Hgl, detectors and the CdZnTe detectors in space
conditions, in order to study their viability for future missions. Thus, the
project has a clear component of technical study.

Therefore, the LEGRI collaboration proposed to the LN.T.A. a v-ray
telescope which uses a coded mask as imaging system, and a 10x10 array of
Hgl, and CdZnTe detectors as position detector, for the payload on board the
first Minisat mission. It is planned that LEGRI will fly on board Minisat 01
in 1996, on a two-year mission.

1.2 The Minisat progi'am

The conventional satellites are composed of two parts, forming an
inseparable set: the service module (or platform) and the payload. Each part
of the service module has been exclusively made for the mission the satellite
has to carry out, and this procedure puts up building costs and the price of the
mission. Consequently, putting a satellite in the space is beyond the means of
many-countries and it is only possible by working together different institutions
and countries and, in most cases, by obtaining also state funding. This
provokes unstable situations, because if a funding source disappears or a
member of the collaboration retires, the whole project will run the risk of
disappearing, and then it will need readjustments and concessions in order to
maintain the project.

The LN.T.A., which is the official Spanish institution in charge of
research and development in the aerospatial field, thought up the Minisat
program in order to avoid this situation. Instead of having developed a
different platform for each mission, a single and standard platform will be
developed and the payload must fit to it. This will imply that the building cost,
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" as the platform is mass produced, will be smaller than that of a conventional
o satellite. With this program, Spain is the first country which offers
" minisatellites cheaper and with more features, that will be easily accessible to

" universities and companies, since the payload is not intrinsic to the platform.

o Minisat is a multipurpose platform that is included in the minisatellite
- range (masses from 100 to 500 kg). Minisat and its subsystems are designed

~modularly and have standard interfaces with the payload module.

- Furthermore, as it is mass produced, Minisat will reduce the time necessary

. to prepare a mission: 2 years (typically, a conventional mission requires a

- preparation time of about 10 years).

In figure 1.1 we can see a drawing of the Minisat platform.

1) Upper platform ?A OAD

2) Solar sensor

3} Power control unit

4) Power distribution
unit

5) Battery

6) Magnetic coil

7} Wheel electronics

8) Inertial wheel

9) Computerr

10) Tramsponder

11) Lower platform

12) Magnetometers

13) External panels

14) Supports

PLATFORM

Figure 1.1: Minisat 01 Platform.




The mission

£l Minisat is also innovative and cheap in its launching system (taking
o advantage of the fact that it is a minisatellite and thus, light). Instead of being

s put into orbit with a conventional launcher taking off from ground (such as:
Arianne, Protén, Space Shuttle, etc...), it will be put into orbit with a ballistic
b 2 ? 3
missile launched from a cargo aircraft (the process is shown in figure 1.2). The
launcher for this first mission will be a Pegasus XL rocket, but for the following
missions, LIN.T.A. has developed a new launcher: the Capricornio.
Separation of Minisal at:
Ignition of the T=682.5 s e
third stage at: Platform
T=557 5 Ant
— o NISNna
§=3030 mis b= Unfolding s
i3 7 SI;:e;h”d of Minisat ppiy:
// is‘tgurned off; height 600 ki .
ik injection in inclination 28.5 Sélar panel
ot orbit at; -
e - Separation of T=662.5 s -—
R the second H=600 km -
. =; : stage al: §=7558 mfs -
i : T=546 s
: : H=399 km :
B f The Pegasus rocket —_
@ : is launched from -
i a freight airplane L-1011 at -
— T=0 s
% ] . _ : e—
Separation of the H=11582 m height
: protection capsule at: 5=0.79 mach ——
T=120.4 s
H=110 km

Cr., 18nition of the

e < - second stage al:
] T=87.1 s
1 ‘ $=2900 m/s

&

Ignition of the

Scparation first stage at:
: of the first T=5 s
- slage at: H=11473 m height
=86.3 5

H=78000 m height

Figu'el.z. Minisat 01 éuchmg

3 The general features of the Minisat 01 mission are the following:
E '- Mass
& § * Base Module: 100 kg.
B * Payload: 100 kg.

¢ Total: 200 kg.

T NN SR R e
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Power

e Non-regulated Bus: 28 V.

» Power per panel: 45 W.

e Number of solar panels: 4

e Base module consumption: 60 W.
¢ Payload consumption: 40 W.

Data

e Memory modules: 32 Mb.

» Total memory: 32 Mb.

¢ Transmission velocity to ground: 1 Mbps.
¢ Telemetry band: S

¢ Transponder power: 5 W.

Attitude
e Stabilization: 3 axis.

¢ Pointing error: 3°

Orbit

¢ Altitude: 600 km
¢ Inclination: 28.5°
¢ Periode: 96 min.

The Payload of Minisat 01 will be:

e EURD: It studies the diffuse radiation of the interstellar environment
in the ultraviolet extreme. It is being developed by an international
scientific team made up of LN.T.A. (Spain) and the Berkeley University,
California (U.S.A.)

¢ CPLM: It studies the behaviour of liquid bridges in microgravity and
it is being developed by the Universidad Politecnica of Madrid.




10 The mission

* LEGRI (Low Energy Gamma Ray Imager): It studies the low

energy Y radiation (20 - 100 keV) of different sources. It will use Hegl,
and CdZnTe detectors.

BRI NU@‘ L

1.3 Scientific objectives of LEGRI

As we have said in section 1.1, an accurate imaging capability and a
better sensitivity are two important requirement in yray astronomy. The
precise location of y emitters is very important in order to identify its
' counterparts in other wave longitudes [2].

e

There are a lot of interesting topics [3] to be studied by hard X-ray soft

t-ray astronomy. Therefore, they are scientifical objectives of LEGRI:

* Pulsars, such as the one in the Crab nebule.

* Binaries containing a star and a compact object (a neutron star of a
black hole) whose emissions come from the acretion disk, formed when
the mass from the star falls rotating fast on the compact object.

* Novas or supernovas, which produce y-ray jets.

* v-ray bursts, perhaps coming from neutron stars of our galaxy, or with

an extragalactic origin. It is also interesting to know if there are also
emissions in the visible range.

* The galactic centre, a place where it seems that there is a very massive
compact object, since there are strong 511 keV lines, perhaps coming
from a single source. The galactic centre is a specially interesting place,
because in its closeness (in some few degrees around it) we can find X
and y-ray sources, whose intensity varies in a factor of 2 or 3 times,

NIRRT, e R S
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although from the GRANAT data it seems that maybe even bigger.
» Diffuse background vy radiation, of unknown origin.

¢ The diffuse galactic emission and extended sources, which give us a
way to know the composition of the interstellar environment, through:

i} v lines, coming from the disintegration of radio isotopes
produced during the stellar nucleosynthesis (see table I).

Disintegration Half life Emission
chain (years) (keV)
Co=""Fe 0.742 14, 122, 136
UPi=4Sc="Ca 47.3 68, 78, 511, 1157
O Fe=%Co="Ni 1.44-10° 59, 1173, 1332

Table I v emissions of the intersteliar enviroment

ii) v lines, coming from the nuclear disexcitations after the
interaction of the interstellar material with cosmic rays.

iii) Injection of heavy elements due to the explosion of supernovas.

* Active Galactic Nuclei.

In this context, the region between 20 and 100 keV has a particular
importance [4]. Unique astrophysical information related to nuclear excitation,
radioactivity, cyclotron emission and line formation is included in this region
of the electromagnetic spectrum. For many astronomical objects, it is very
important to determine the end of its tails in X-rays, together with the possible
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extension in X-rays of well known y-emitters. The extension of the active
galactic nuclei from the X-ray region to bigger energies 1s essential for
understanding these so powerfull emitters.

Anyway, despite the importance of this energetic range, there is a
significant lack of data in this region. The efficiency of the present X detectors
and new generations of CCD (Charged Coupled Device) that work in this
region, fall abruptly when they arrive at 20 keV. On the other hand, many

instruments based on scintillators are limited to work over 100 keV. LEGRI
tries:to fill this gap.

1.4 Technological objectives of LEGRI

An efficient detection of radiation requires materials with a high effective
atomic number (i.e. high stopping power), as big as more energetical is the
radiation (as it is the case of the v radiation). The search of semiconductor
detectors efficient on these energies, with high effective atomic number, good
energetical resolution and working at room temperature (this means that they
have a wide gap, of the order of some eV) has shown that the Hgl, and the
CdZnTe (in fact Cd,¢Zn,;Te, a crystal of CdTe in which a 10% of the Cd atoms
have been substituted by Zn atoms) are some of the best materials [5]; due to
the achieved compromise between detection properties and technological
posibilities, they are nowadays one of the most interesting options.

If we compare these new materials with the classical semiconductors Ge
or 3i we find i) they have a great effective atomic number (bigger in the case
of the Hgl,); ii) they do not need cryogenic systems, because they work
efficiently at room temperature (the gap energy is 2.2 eV for Hgl, and 1.5 eV
for CdZnTe); iii) they have a great resistivity (>10° Q e¢m) and small capacity,
and thus the leak current is quite low to have a good signal to noise ratio and
therefore its energy resolution is also quite good, between the Nal scintillators
and the Ge semiconductors (~0.38 keV for Hgl, and ~0.5 keV for CdZnTe, for
an energy of 5.9 keV at room temperature).
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These detectors show a great endurance to radiation damages, bigger

" than the endurance of their competitors (even bigger in the case of Hgl,); this
is very useful for a detector working in space conditions. In the case of Hgl, [5],

they have been tested under doses of 40 keV photons with intensities bigger
" than 10 photons em? s™ without any damage; it has also been demonstrated
' that they support, without damages, doses of 10™ protons cm™ at an energy of
10 MeV. The Hgl, detectors have been worked efficiently during seven years

* at room temperature without any worsening; as the polarization is not a

- phenomenon intrinsic to this kind of detectors, they have a useful life very
~ long. About the CdZnTe [6], they do not present drift phenomena as time goes
by, and have been exposed to neutron fluxes (with energies of many MeV) of
the order of 10" neutrons/cm® finding a small activation, but without
degradation in the response. Besides, the growth of this material is easier than

' the growth of Hgl, crystals.

Thus, the main technological objective of the LEGRI project is to test the
behaviour in space conditions of a y-ray telescope based on this kind of
_ detectors, with imaging capability in the range 20-100 keV, and to do a

comparative study in equal conditions for both kind of detectors. The study has
a clear character of technological demonstration in view of future missions of
Y-ray astronomy.

In short, LEGRI tries to:
¢ Demonstrate the technological feasibility of y-ray telescopes, optimized
for the energetic zone from 20 to 100 keV, using Hgl, or CdZnTe

detectors.

» Test the capability of these detectors to operate efficiently in space

conditions.
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* Study their survival capacity in space conditions and evaluate the
degrading and worsening of the response versus the time.

: * Carry out a comparative study of endurance and features in the same
EB conditions for both materials.

1.5 LEGRI description

:; The LEGRI telescope is composed of the following units:

* A position sensitive y-rays detector, made up of an array of 10x10
detector units (80 Hgl, and 20 CdZnTe), with a distance between

detector centres of 1.2 em, a collimator and a pasive shielding.

* A coded magsk, made up of tungsten elements, in front of the detector
plane and parallel to it, at 54 cm from the detector plane.

* A stellar sensor that indicates accurately and continuously the pointing
g direction of the system.

¢ A digital process and extra power unit, which will be an interface with
the platform for the transmision of power and data.

¢ A high voltage source.

¢ The ground support and tracking team (the Science Operation Centre
or 85.0.C.), located in Valencia (see section 1.7).

The position of the instrumentation of the LEGRI project on board of the
Minisat platform can be seen in figure 1.3.
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Detector unit

Digital
process and High Codified
extra power voltage mask

Figure 1,3: LEGRI system units on board of Minisat 01

The position of the Payload will be in such a way that the pointing
direction of both the telescope and the stellar sensor will always be orthogonal
to the direction where the Sun is (the solar axis).

The basic system is made up of the detector unit and the coded mask;
they form the y-ray telescope (see fig. 1.4).

Collimator

Figure 1.4: Mask and detector unit
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The detector is a rectangular box joined to the platform by four
aluminium supports. The detector consists of:

¢ A pasive shielding (the walls of the box) to prevent that the radiation

reaches the detectors, except that coming from the pointing direction.

The shielding consists of several layers (from inside to outside, 1 mm of

iron, 0.5 mm of tin, 0.25 mm of tantalum and 2 mm of lead) and

prevents that y radiation beneath 100 keV arrives to the detector plane.

It also protects the electronics against electromagnetic interferences
eoming from other electronic systems on board the satellite.

- A tantalum collimator 5.85 cm long and with walls with a thickness of
0.25 mm (see fig. 1.4) placed over the detector plane, limiting the field
of view so that the detector plane will only receive the radiation that has
previously passed through the mask. To protect the detectors against the
visible light, at the bottom of the collimator there is a thick window of
kapton of 50 pm, transparent to the y radiation.

* The detector plane comprises 80 crystals of Hgl, with a thickness 0of 0.5
ea of ~0.25 cm?; and 20 detectors of CdZnTe with a
Ind a useful area of 1 cm® They are placed in a

mm and a ugct

thickness o
regular grid\g (Velements, with a distance between detector centres
of 1.2x1.2 c¢m. The grid is made up of 10 support structures with the
shape of an U, each one carrying 10 detectors (see fig. 1.4, one of the U’s
is shaded). Each U has incorporated an analogical electronic card that
checks the ten detectors. Therefore, each U (each group of ten detectors)
has the same electronics and is an independent unit. This gives modular-
ity and flexibility. Given that the electronics for groups of 10 detectors
is the same one, those 10 detectors should have similar electronic
properties. The U’s are placed in vertical position to avoid distortions
during the launching.

» The electronics associated to the detectors. As we have already said,
the analogical electronics is incorporated to the structures with the

shape of an U. But a digital electronics is needed as an interface between
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the analogical signals in the detectors and the digital process unit. This
digital electronics is not shown in the figure, but is placed at the bottom
of the detector box.

The coded mask is the unit that allows the telescope to form images (see
chapter 2) and it consists of a set of elements opaque to the radiation, made of

tungsten, and placed in a honeycomb structure (see fig. 1.5). The honeycomb
is a hexagonal structure made of Nomex (a kind of synthetic resin) with a
shape similar to a honeycomb with a great endurance to distortion and traction
and also with great transparency to the radiation if we compare. it to other
supporting materials. The tungsten elements are placed in hollows dug in the
honeycomb and its two sides are covered with a thin carbon fibre skin, as it can
be seen in fig. 1.5.

Carbon fibre skin (0.5 mm)

Glue

Figure 1.5: Structure of the coded mask

The size of the tungsten elements is 2.4x2.4x0.1 cm®

, and they are
positioned forming a grid of 14x14 opaque (where there are tungstens) and

transparent (where there are not) elements (see fig. 1.4); their centres are




18 The mission

equidistant a distance of 2.4x2.4 cm, that is just the double of the distance
between the centres of the detector units in the detector plane.

The pattern of the transparent and opaque mask elements is a 5x5
MURA (Modified Uniform Redundant Array, see section 2.8.4 and figures 1.4
and 2.23) pattern, placed in mosaic to fill the 14x14 mask elements. Since the
gap between centres of the mask elements is twice the one between centres of
the detector plane elements, then 2x2 detector plane elements are equivalent
to one mask element; that is to say, the size of the 555 MURA pattern has the
same size as the 10x10 detector plane.

About the stellar sensor, we can say that it is a camera made up of a
310x287 photodiodes array and a common lense system; it has a field of view
of 7° with a resolution of 1. Tt periodically gives an optical image of the
brightest pixels (stars) in the field of view, so that the S.0.C. can exactly know
the pointing direction of the telescope (comparing this image with stellar
tables).

In table IT we show the main features of the LEGRI system.

Energy range 20-100 keV
Continuum sensitivity 10 mCrab at 10° s (30)
Point source location capability 20°

Field of view 21°

Mass 30 kg

Power 20 W

Table I: LEGRI characteristics
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1.6 LEGRI orbit

LEGRI is the only instrument on board Minisat 01 that needs a pointing
direction. Therefore LEGRI is supposed to be, in principle, the instrument that
will decide the orientation of Minisat 01. Since the pointing direction of LEGRI
will be orthogonal to the solar axis (and the satellite will work under this
constraint), the pointing will be achieved rotating the satellite around the solar
axis. Then, a given sky zone will only be accessible during a few days at
intervals of six months (see fig. 1.6; in fact, although it is not depicted in the
figure, the solar axis is perpendicular to the platform plane, in such a way that
the solar planes will get the maximum light).

Orbit of the Earth
around the Sun

Orbit of Minisat 01
around the Earth

— Solar axis

LEGRI pointing directions,
orthogonal to the solar axis

Figure 1.6: Minisat 01 orbit around the Sun and Earth

The parameters of the Minisat 01 orbit are shown in table ILL:

Eccentricity 0
Altitude 600 km (injection error £ 50 km at 3¢)
Inclination 28.5° (injection error + 0.2° at 35)
Periode 96.69 min.
Speed 7558 m/s
Orbits per day 14.89

Tabla II: Parametros orbitales de Minisat 01
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1.6.1 Induced background in LEGRI

Since the Van Allen belts begin at an altitude of 1000 km, the Minisat
01 orbit avoids them and so LEGRI will not be affected by such an important
noise source. However, there is an important anomaly in the terrestrial
magnetic field in altitudes beneath the Van Allen belts that LEGRI will cross
through; it is the South Atlantic Anomaly (SAA) where there is radiation
trapped (mainly electrons and protons) with energies over 30 keV. The Minisat
orbit crosses it, as it can be seen in figures 1.7, 1.8 and 1.9.

~When LEGRI passes through the SAA, the protons will induce a
radioactivity in the LEGRI material that will be increasing each time it passes
until it reaches a maximum saturation level, due to the long life isotopes
desintegrations; the short life isotopes will produce a stronger radiation, but
because it has a short duration, and given that during the passing through the
SAA the sent data will not be taken into account, it will have no influence and
its effect will disappear when LEGRI takes again useful data.
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The radiation produced by this long life isotopes [7] (induced in turns for
the protons trapped in the SAA) produces in LEGRI a background noise of the
order of 5-10? counts cm™® s keV™. There are also other noise sources such as
the cosmic protons which leave some signals in the detectors and which also
induce isotopes (although its contribution is not considerable compared to the
trapped protons); and also the diffuse y-ray background which we mentioned
in section 1.3 and which follows the law [8]:

.fé% - 1.098-10°F 2% fotones s ! keV ! em

“Anyhow, the main contribution to the noise is without any doubt the
radioactivity induced by protons trapped in the SAA.

1.6.2 Telemetry

In table IV we show the visibility analysis of Minisat 01. We say that
Minisat is visible when it can be detected from the tracking ground station in.
Maspalomas and information can be exchanged between them.

Passings per day (elevation over 5 (49% of times)
the horizon > 20°) 4 (51% of times)
Duration of the contact max. 8.5 min

min. 6.5 min

average 8.1 min

Zenital passings (elevation over 17% of the passings
the horizon > 85°)

Table IV: Visibility results

Given that the EURD experiment on board Minisat 01 (because of the
experiment conditions) only can work in eclipse conditions (the Earth is
covering the Sun) and due to a lack of power in Minisat 01, EURD and LEGRI
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can not work at the same time, then LEGRI will only work in insolation (except
for the cases when EURD does not work at all). In this 96.69 min. orbit, an
average eclipse takes 33.75 minutes, and an average insolation 62.94 minutes;
therefore, about 2/3 parts of the observing time will be available for LEGRL

The memory capacity available for the experiments on board Minisat 01
is 15.5 Mbytes. The memory need of LEGRI is 0.83 Mbytes/hour, that is to say
0.87 Mbytes/orbit. The EURD memory need is 0.71 Mbytes/hour (0.40
Mbytes/orbit -the third experiment, CPLM, will only work once per month-).
This is a total of 1.27 Mbytes/orbit; then the 15.5 Mbytes memory of Minisat
will be emptied out each 12.2 orbits. This is more or less once per day.

The scientific data that the detector unit of the LEGRI system will send
to the ground are:

e X and Y co-ordinates of the detected signal (that is, detector
unit).

* Deposited energy (in fact peak height).

¢ Impact time (in "clicks" of the internal clock).

The data that the stellar sensor will send are:
* x and y co-ordinates of the 12 brightest pixels in the field of
view, or the 6 brightest stars, depending on if the stellar

recognition software is working or not.
¢ Intensity of those pixels.

1.7 The scientific team

1.7.1 The Science Operation Center (S.0.C.) of LEGRI

The scientific operations of LEGRI will be monitored by the S.0.C., that
will be located on the Burjassot campus of the Universidad de Valencia. The

S.0.C. will act as an interface between Minisat and the six scientific teams of
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the LEGRI collaboration. The main tasks of the S.0.C. are:

e Carrying out the in flight calibrations (pre-operational and

operational).

* Developing a standard software, needed for the data analysis.

* Designing the Observing Programme from the suggestions of the

scientific teams.

¢ Carrying out a quick analysis of the detector data (quick look) in order
“to take fast decisions about pointing changes or programme modificat-
ions, with reaction times smaller than 24 hours.

* Sending to each research team the detector data.

* Maintaining the main LEGRI files (pointing files -from the stellar
sensor data-, raw data files, calibration files, historical image files, ete...).

The S.0.C. will receive from the Minisat 01 control centre the detector
and stellar sensor data once per day. Besides, the S.0.C. commands for LEGRI
will also be sent to the Minisat 01 control centre once per day.

1.7.2 The LEGRI collaboration

LEGRI has been designed and developed by a consortium of laboratories

and universities, including:

* Universidad de Valencia/CSIC
Global project control; detector integration and assembling;
responsible for the CdZnTe detectors; design and building of the

coded mask and the mechanical detector structure; S.0.C.
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e CIEMAT
Manufacturing and testing the Hgl,; assembling the detector array
with the electronics.

» INTA
Direction; thermal control; integration and test.

* RAL
Electronics; high voltage unit; stellar sensor.

¢ University of Birminghan
Digital process and extra power unit; on ground calibration.

¢ University of Southampton
EGSE.
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Chapter 2: Masks theory.
Foundations

2.1 Introduction

he possibility of imaging in X and +yrays is very useful in

@, different research fields. For instance, it can be needed in

é medicine to know the distribution inside the patient body of the

“V ] emitter isotopes that the doctor has previously introduced, in

order to diagnose or cure a cancer. In nuclear physics, for

example, it can be useful in an experimental nuclear fusion reactor to know the

plasma distribution and movements inside the container . In astronomy (the

scope of this work), the motivations have been profusely explained in the
previous chapter.

In each case it is needed to obtain an image of the zone emitting X or v
radiation, but this is a complicated problem, as we have already pointed out,
because the classical telescopes based on lenses or mirrors are useless due to
the high energy or the radiation [9]; the soft X-ray photons, unlike visible
photons, have enough energy to pull out electrons from the atoms of the
mirrors and lenses, being therefore absorbed. On the other hand, the hard
X-ray photons and y-ray photons are so energetic that can pass through the
lens without suffering any significant deviation; therefore it is useless to use
a lens for focussing them and forming an image.

Grazing-incident reflection [10] is a method that allows to focus the low
energy X-rays by striking the photons in multiple reflectant surfaces (in a
position almost tangential to the arriving photons). This technique implies
surfaces whose normal is at great incidence angles with regard to the arriving
direction of the photons, bigger than the critical angle of the reflecting surface
material (therefore, the arriving radiation will not penetrate inside the
reflecting material but will be reflected). This diverts the X-rays towards a
focus, where the detecting surface is. Thus, we can form an image of the X

source in an almost "classical" way.
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However, this technique is more inefficient as the arriving radiation
energy increases, because the needed incidence angles become too near to 90°,
requiring therefore enormous surfaces in order to have a reasonable aperture,
and place them with a great precision; this is too expensive. As a result, this
technique is unfeasible for energies bigger than 10 keV.

Thus we need a completely different imaging technique for energies over
10 keV. This system is a coded mask.

2.2 Co-ordinates systems

Before introducting the foundations of imaging by means of coded mask,
we are going to explain the co-ordinates system that we use in the following
descriptions.

As each co-ordinates system in astronomy, the system we use is mainly
a direction system. Astronomical objects are so far away that it is not worth
considering a radius. Therefore, we will only consider the angular co-ordinates.
In astronomy, when working in spheric co-ordinate systems, it is very useful
to define a position in the sky by using only two angles (usually labelled 6 and
), which can be called right ascension and declination or altitude and azimuth,
depending on the system we are working with.

“n our case, the reference system is defined by the telescope (the set
detector plane - mask), being the z axis of the system, the telescope symmetry
axis (and x and y axis parallel to the detector plane borders, and its centre
equal to the origin of the co-ordinate system -see fig. 2.3-). Therefore, any object
in the centre of the telescope field of view will have the angular co-ordinates
(0,0). These will be, of course, independent of which are the real sky
co-ordinates of the object, because we are referring to something intrinsic to the
telescope and the telescope can change its pointing direction without varying

its own reference system.
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The co-ordinates of any object inside the telescope field of view with
regard to its centre will be given by two angles, o and B (see fig. 2.1).

Figure 2.1: Definition of the co-ordinates of an object respect to the telescope system

The & angle defines a plane that passes through the y axis and that
forms an angle o with the z axis. Similarly the  angle defines a plane that
passes through the x axis and that forms an angle B with the z axis. The
intersection of both planes is a straight line whose vector indicates the position
of the sky object. Another way of interpreting it is that given a direction vector
that points to the sky object, its projection on the xz plane forms an angle o
with the z axis and similarly its projection on the yz plane forms an angle §
with the z axis. This o and P angles are the co-ordinates of the object.
Therefore we define a bidimensional square grid of angles that is centred in the
telescope field of view centre.

The transformation laws between this co-ordinates system, the cartesian
co-ordinates system and the spheric co-ordinates system are easy to be deduced

from figure 2.1 (cf. appendix I, eq. A.2), and are given by:
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u, = send cosdp = tgo
VigPo+tg2p+1
u, = senb send = tefp (2.1)
Ytglortg2p+1
u, = cosd = 1
Vg o+tg 2B +1
or also by:
tgo = tgb
g g0 cosd 9.9)
tgh = tgb send

In figure 2.2 we have depicted the curves O=constant y ¢p=constant in the
co-ordinates system (o) to compare both. The curve 8=30° corresponds to the
(square) border of the co-ordinates system, and the curves ¢=0°, ¢=90°, ¢=180°
and ¢=270° correspond to the o and P axis. As each representation of a sphere
in a plane, there is a distortion of the image that grows as we move away from
the centre. Nevertheless, for the fields of view of this kind of telescopes
(typically smaller than +20°) the distortion is very small, as we can see looking
at the central zone of fig. 2.2.
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Figure 2.2: Co-ordinates (.8} versus co-ordinates (8,9).
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In fact, for angles smaller than 20° these angular co-ordinates behave
very similarly to cartesian co-ordinates (for example: Blo~tg(¢), o*+p%=6% and
we can employ with them the cartesian transformation laws (rotation, translat-
ion, ete...). One must also realize that if we represent an image following the
signs criterium for the « and B axis shown in figure 2.2 (which may seem the
most logical criterium) we obtain an image that is mirror-reversed, as we can
see looking at figure 2.3.

Telescope field Telescope
1 of view
centre

Masy

-8

Figure 2.3: When we represent an image using a “logical” signs criterium for the angle, the image is
mirror-reversed

An image with the signs criterium of fig, 2.2 is equivalent to look at the
source from outside the vault of heaven. Therefore we have to reverse the o
axis (for example) to obtaint the real image (as seen from inside the vault of
heaven). The same thing happens in the ordinary stellar maps; if we look at
the map of a sky region we can see that the Right Ascension increases from
right to left and not on the contrary. Anyway, since we already know this
phenomenon, we will use the signs criteria of fig. 2.2, for simplicity in the

software.
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2.3 Coded masks

The idea behind the concept of Pinhole camera
coded mask is in fact the same as
behind the pin hole camera (see
figure 2.4); it is an opaque plate that * ———
allows the pass of radiation through
certain zones, placed in front of the
detector plane between it and the
seurgg; therefore, it modulates

(codifies) the signal arriving from the -«

source. In fact, the pin hole camera

NN

can be considered as the simplest

case of coded mask. . Mask
Figure 2.4: Comparison of the pin hole camera with a

coded mask system
But the pin hole camera, which

immediately gives us an image (inversed and slightly blurred) of the studied
object, has the great disadvantage of a very low transmitivity since all the
radiation arriving at the opaque plate can only pass through a very small hole,
which is a very small percentage of the arriving light. The smaller the hole, the
sharper (and weaker) the image, and since the sky sources are very weak, this
1s a great disadvantage; coming from a typical sky source, in an hour will only
pass one photon through a hole of 1 mm? [9] (see table VII). Given that the
background noise due to cosmic rays that arrives at the detector plane is bigger
than 1 count per hour, we have a really bad signal to noise ratio (SNR) and
thus, this simple system can not be used in astronomy.

The solution to this problem is obvious: to increase the transmitivity
increasing the number and/or size of the holes. As a result, we obtain the
concept of coded mask: an opaque body with a certain transparent pattern
interposed between the detector plane and the source, which codifies the
received signal, allows a bigger radiation passage and has a SNR better than

the pinhole camera.
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Unfortunately (apparently) as it can be seen if figure 2.4, when using a
coded mask we do not have a direct image of the source, as happened when
using a pin hole camera, but a distortion of it which depends directly on the
mask pattern (in fact, it is its shadow). Here we have the key to reconstruct
the image: given a mask pattern and knowing the detected distorted image, we
can in principle reconstruct the source image.

Broadly speaking we can say that we look for the shadow of the mask
pattern in the detector plan and from it we deduce where the sky source is (and
which is its intensity). We can deduce from this description that our detector
plane must be sensitive to the position where the photons arrive; that is to say,
the detector plane must be a position sensitive detector, such as an Anger
camera, a multiwires camera, a discrete detector array (scintillators,
semiconductors, etc...) or even a photographic film. The choice mainly depends
on the energy range involved.

Figure 2.5: Projection of two identical shadows coming from two
different directions on the defector plane, using a chess-like mask
pattern

The choice of a suitable mask pattern is an important factor for imaging,
because not all the possible patterns are equally suitable; the trick lies on
choosing the correct one. Since the image reconstruction methods look for the
mask shadow(s) projected on the detector plane by the source(s) and therefore
deduce where the source(s) is (are), these shadows must be as distinguishable
as possible. For instance, a mask as the one shown in figure 2.5 is not a good
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choice and will be useless, because it casts the same pattern (the same shadow)
over the detector plane for many different sky positions; in figure 2.5 we can
see how two different directions, called (o, B,) and (o, B,), produce exactly the
same shadow on the detector plane. With this mask we have a great
uncertainty about which is the true position of the source. There are plenty of
possible (degenerated) directions that will appear as possible source positions
in the reconstructed image, regardless of the reconstruction method used,
because all the possible directions are equally good while we do not have
additional information. Therefore we have a multiplicity of reconstructed
sources where there is just a single real source, as we can see in figure 2.6.

Figure 2.6: Reconstruction from the shadow detected when using a
chess-like mask pattern

Therefore our pattern must be as distinguishable as possible. That is to
say, the shadow produced by a sky source placed in some direction must be
different of the shadow produced if it were in any other direction.

2.4 The Fresnel zone plates

The first imaging method that used a kind of mask was proposed by
Mertz and Young [11], and we mention it here for historical purposses. The
device recorded the shadows projected for a field of sources illuminating a

Fresnel zone plate [12] which was used as mask pattern (figure 2.7).
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The Huygens-Fresnel principle says that the
intensity of a wave front in a point P can be
obtained from the contribution of all the secondary
waves generated from the points of a former surface
H that the wave crossed. This former surface (that
may not correspond to any physical surface and can
be just a mathematical concept -for example, a

previous wave front-}) can be subdivided in zones

Figure 2.7: Fresnel zone plate

(the Fresnel zones) each one of them at a distance
r, + n-(A/2) from the point P, being n an:integer; orswhat amounts:to the same
thing, the secondary waves emitted from these zones arrive at the point P with
a phase difference of &, that is to say, in constructive interference. Choosing a
different r, we have a different Fresnel zones set (except for the case when r’
= r+m-(A/2) -m integer-, because in this case we have again the same set!). If
we integrate the contribution of the whole surface H (that is, all the possible
Fresnel zones) the different Fresnel zones will balance among them and the
total in P coincides with what the wave propagation law foretells.

But what will it happen if we impede this integration over the whole
surface H in some way? that is, if we select that only some Fresnel zones will
contribute in P but not the other. Basically this is what we do if we use a
Fresnel zone plate as the one shown in figure 2.7. In the zone plate, the zones
where the difference of paths between the source that produces the wave and
the point P are of the form of x + n-(A/2) are the only transparent; that is to
say, all the light coming from the source that arrives at the point P is in
constructive interference. As an amazing consequence we have that the Fresnel
zone plate works like a lens! (in fact the Fresnel zone plate is also called zonal
lens) and it can directly generate images of small objects without any kind of
reconstruction method.

However, this imaging system has two problems. First, the zonal lens is
optimised for a certain wave length A, as it can be easily deduced from its
definition. Second, the zonal lens uses the diffraction phenomena of the light,
which are a consequence of the interaction of the light with the matter, and

therefore, for the same reasons that we can not use mirrors or lenses with X
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and y-rays, we can not either use directly a zonal lens as imaging system for
these energies.

Therefore, if we use a zonal lens as a mask, each y source in the field of
view will produce a shadow of the Fresnel zone plate on the detector plane,
overlapped and shifted. The reconstruction method is very peculiar; it
generates a reproduction of the detected image in a transparent material (for
example, in a photographic film) and illuminates the reproduction with a
monochromatic light, whose wave length A is the one of the Fresnel zone plate
used:fand hence we finally use the diffraction properties of the zonal lens).
Then, as by magic, we get directly an image of the sky sources.

Unfortunately, although correct in theory, this system has the great
disadvantage of generating a great amount of noise in the reconstruction, and

other kind of mask are more useful for astronomy, for their better results and
smaller SNR.

2.5 Systematization

Opposite to the Fresnel zone plates, where an
optical reconstruction method is used, most of the used
masks need to use a computer for the image
recondtruction. Such reconstruction methods are the
main subject of this work. That is why first of all we
are going to systematize how the projected shadow is

detected in the detector plane [13]. We will mainly
. . Figura 2.8; Mdscara de patrén

consider rectangular masks with square patterns (that cyadrado aleatorio.

is to say, made up of square elements, as the mask in

figure 2.8, where we show a random pattern).
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Let us explicitly explain how the detector plane detects a set of sky
sources. Given a sky plane with emitting sources (see fig. 2.9), defined by the
intensity function O(o,B) (photons received per cm® and time unit) coming from
the sky position (o, ) (therefore, o and B are the angular co-ordinates of the sky
source); let D(x,y) be the number of photons received on the detector plane at
the position (xy); let M(x’y") be the pattern of the mask, that is the mask
transmitivity in the position (x’,y") (1 if there is a hole and 0 if there is an
opaque element). Both (x,y) and (x’y’) have dimensions of length. Finally, let
f be the distance detector plane-mask, b the distance mask-source (in
astronomy equal to infinite) and ¢ the size of a mask-element side.

(asﬁ)

O @p

Mx".y")

M Dx,
xy) x.y)

Figure 2.9: Effect of the mask in the detection process

As it can be deduced from figure 2.9, ¥’ and ¥’ are a function of x, y, o,
and f. Since in this kind of telescopes the field of view is usually smaller than
+20° (that is to say, 0.35 rad; and tg(0.35) = 0.365 = 0.35), we have:

x! = x+f-tgo = x+f-0

y' =y+ftgB = y+fP

(2.3)

Therefore, the detected counts in the (x,y) position on the detector plane

are given by:
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Dixy) = [0(op) Mz’ ') do dp = e

fO(a,B) M(f-o+x,f-B+y) da db

This has the mathematical form of a correlation. This last equation can
be discretized following the literature (for example, [13]) on the following way
(this will make easier to operate with it and to implement it in a computer): we
turn the sky plane and the detector plane into discrete fractions, and if we
follow [13], also the mask. This is specially suitable for masks with square
patté;"n but it is a little limited and inaccurate. But it is the most usual
description found in the literature, and it is also the base of the traditional
reconstruction methods based on discrete correlations.

Following [13] we have to divide the sky plane O(o.,B) into pixels with a
size of Ao x AP, being Ac. (= AB usually) = arctg (c/f) = cff, that is, the angle that
subtends a mask element seen from the detector plane; the mask plane is also
divided into pixels with a size exc (it is already done by construction) and also
the detector plane is divided into pixels with a size c¢xc (one can deduce, then,
that the detector plane must be divisible in elements of that size). Then, we
have:

O(o,B) = 0,
D(xy) =D, (2.5)
M(fo+x,fB +y) = M,

+k j+l

where M is a bidimensional array whose elements are 1's or 0's, depending on
if 1t is a transparent element or an opaque element. Therefore, equation 2.4
will be now:

D, = Z O; M., =0=M (2.6)
ij

which is the discrete form of the correlation.
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We can include a background noise term that is not codified (is not
modulated by the mask):

Dy, = ZOU Mi+kj+t + By = D=0x«M + B 2.7)
if

This equation is the starting point of the classic reconstruction methods
based on the correlation, and it is also useful for simulating the behaviour of
a given telescope; this means that given a mask M and a (discrete) sky O, using
this equation we can find out what the detector plane will detect. Anyway for
this purpose the following discretization is more accurate, that is in fact the
one we use for simulating. Similarly to the previous case, we do:

Oo,p) = Om[i

D(xy) =D, (2.8)

M(x+f tglo),y +f tg(B)) = @

where O is a discrete array giving the intensity of the source in the sky pixel
(0,B); now we have the small advantage that the index () (non-integer) gives
us explicitely which are the sky co-ordinates of the pixel. Besides, the size of
the sky pixels can be now any, not just the angle that a mask element
subtends from the detector plane. @ is a function that gives us the flux (in fact
the fraction) arriving at the detector plane pixel ij coming from the sky pixel
(a,B). ® has values between 0 and 1 (not only 0 or 1 as it happened with the
discrete array M) and can take into account other factors besides the mask,
such as shieldings, collimators, efficiencies, ete... On the other hand, since @ is
a function, there is not necessity of discretizing the mask and also it does not
need to be of square pattern (although the calculation of @ is easier if it has a

square pattern), allowing to handle a more general case and more exactly.
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Therefore we will have that the detected signal in Dy is given now by:

D, =Y 0,®} + B, (2.9)
afp

We will speak about this equation later on section 2.12.

2.6 Raiders of the lost reconstruction

Once we have understood how our telescope detects a field of sources, our
objective is to reconstruct this unknown field from the obtained experimental
data. Let us see now the keys for this reconstruction.

As we have seen in equation 2.7 (that we repeat here for convenience of

the argument), we can systematize the detection process by:

D=0+«M+ B (2.10)

where M, B, D and O are bidimensional arrays, which. are supposed to have
different sizes, except D and B that must have the same size.

The reconstruction method will be based on the search of a
reconstruction array G that when correlating it with the D array (our
experimental data) will give the original source O [13]. That is, we are looking
for a G such that:

In general, what we have for a given G is:

O =D+G =0+M*G + BxG (2.12)

where O stands for the reconstructed source, which in a general case should be

the same as O.
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Therefore, the requirements that G must fulfil are that M*G should be
a delta function, in such a way that O*(M*QG) = O, and B*G should be as close
to 0 as possible. In the first condition we have the possibility of imaging and
in the second, the posibility of subtracting (or reducing) the noise in order to
improve the SNR. Indeed, for the first condition (the most important) G must
fulfil the following requirement:

(M@, = 8,5, (2.13)

that is, when we have i=0 and j=0 the correlation is equal to 1 and otherwise
is equal to 0. Therefore we have:
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that is to say, a perfect reconstruction of our sky (see fig. 2.10).

Figure 2.10: Ideal case. (M*G),=5,3,
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As we look for a G with the property defined by eq. 2.13 (which it is
depicted in figure 2.10) it seems clear that G will be very related to the pattern
of M. Indeed, generally G will be a modification of M. In fact, M can be used
as reconstruction array, obtaining quite good results. We will use M as a
starting point for our search of the reconstruction array G.

If we self-correlate a mask with itself (for example, the one shown in
figure 2.8) we obtain a delta-like function: let A; be the M self-correlation, that
18:

AU'-‘E My M, ., (2.15)
¥,

When i=0 and j=0 there is a full coincidence between both patterns; i.e.,

the correlation is maximum (see fig. 2.11) and therefore A, coincides with the
number of holes in the mask. In the remaining cases the patterns are shifted
and the coincidence between holes (1’s) is smaller, decreasing (roughly) the
number of coincidences as i and j move away from the 0 value, until they reach
a point where the patterns are not overlapped and there are no coincidences,
being the value of the self-correlation equal to 0.

A=0

i=7 j=i0

Figure 2.11: Self-correlationn of the mask in figure 2.8

What we get is something similar to the image we showed in figure 2.10.
In figure 2.12 we show the result of the self-correlation of the random mask
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pattern shown in fig. 2.8.

Figure 2.12: Self-correlation of the mask in figure 2.8. Result

As it can be seen, we have a peak for the case i=0 and j=0 (equal to 32,
the number of holes in our mask) and a background that is not flat but

decreases as i and j move away from 0.

If we consider a detector plane with the same size as the mask pattern,
the described self-correlation will be the reconstruction of a source with
intensity 1 placed in the centre of the-field of view (and without any noise): if
M and D have the same dimensions and we have a source with intensity 1
placed at (0=0,8=0), the projected shadow in D will be exactly the mask pattern
(and, in absence of noise, that will be what we will detect). If we consider that
M is also our reconstruction array (G, then we have:

MM = DG (2.16)

That is, its reconstruction. Therefore, a point source with intensity I in

absence of noise will be reconstructed as a source with intensity I-(no. of holes)
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plus a non-flat background that will distort the signal and that has nothing to
do with the background noise. This is a "noise" due only to the reconstruction

process and it will be called reconstruction noise.

We could improve a little the result if the reconstruction noise were more
or less flat, because it would be easier to handle. Let us now consider a new
type of correlation, different to the previous one; it is the cyclic correlation [14].
Using this correlation, when we calculate M*M we do not calculate the product
M, M,,;,,, only in the overlapping zone, as it was illustrated in figure 2.11, but
as we shift both patterns a quantity i, one of them will be permuted cyclically,
and therefore the product M, -M,,; ,,; will be worked out for all the mask. That
is to say, for a given ij, we multiply the mask pattern by a version of it
cyclically permuted (see figure 2.13).

A ;

Non cyclic Cyelic
A =6 A =16
33 33

Figure 2.13: Non-cyclic correlation versus cyclic correlation

This can be expressed mathematically as:

m-1n-1

Aij:z Z Mkt M(k+i)modm {l-imodn (2-17)

k=0 1=0

where mxn is the size of the mask pattern (8x8 in the example of fig. 2.8) and
i mod m is the remainder when dividing i by m. For example:

Imod3=1; 2mod3=2; 83mod3=0; 4mod3d=1
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With this method we obtain a background flatter on average (although
it is true that also higher and more chaotic) as it can be seen in figure 2.14. In
this example where the mask in fig. 2.8 has been used, the background is more
or less centred in a value of 16, and the peak has a value of 32. But do not
worry, because this result will be improved soon.

Figure 2.14: Cyclic self-correlation of a mask with random pattern

2.7 Cyclic systems

We could use one or another kind of correlation depending strictly on the
physical structure of the telescope [15]. In figure 2.15 two different coded mask
telescopes are shown; one of them is a simple (non-cyclic) system, with a mask
with the same size of the detector plane. The other is a cyclic system where the
mask, instead of a single pattern as in the other case, has a base pattern
repeated in a mosaic (in the example of the figure, 2x2), having the base
pattern the same size as the detector plane. All these systems are usually
shielded and/or collimated in order to avoid that radiation not codified by the
mask arrives to the detector plane.
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Simple configuration Cyclic system
system

Figure 2.15: Simple configuration system versus cyclic system

As it can be seen in fig. 2.15, for a given direction (o,B) the first system
produces a shadow of the mask that is in part outside the detector plane and
therefore we will only detect a part of the shadow. In this case we have to use
a non-cyclic correlation to reconstruct, because we can only correlate with the
mask pattern the intersection of the shadow with the detector plane. However
it does'not happen the same thing in the second case. What we detect in the
detector plane is a cyclically permuted and complete version of the basic mask
pattern and therefore we can use in this case the cyclic correlation (we could
also use the non-cyclic correlation, considering in this case the whole mask, but
the final result would be exactly the same and it would take more time).

Although it was not obvious in section 2.6, the cyclic systems give the
best results when using correlation-based reconstruction methods (also simply

called correlation methods), when employing the correct mask pattern (as we
will see in section 2.8). They also have a bigger illumination and a bigger field
of view; that is why we are maily going to refer to these systems (another
reason is that LEGRI itself is a cyclic system, as it can be deduced from its
description at section 1.5).
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There is an intrinsic degeneration in the cyclic systems that arises from
its construction, as we can see if we look to figure 2.16; for example, in the
cyclic system shown in figure 2.15, just on the border of the field of view there
is a degeneration in the directions:

-alim’ Bl

Figure 2.16: Degenerated directions in the border of the field of view in a cyclic system

If we define oy, and ;, as the limit angles of the field of view, so that
(05 Priny) Will project over the detector the mask pattern without permutation,
we have that the directions (0, Bim)s -Otims Brims (Otims-Brim) @0 (-04y,,-Byin) Project
the same pattern in the detector plane. That is, the four corners of the field of
view are degenerated, and if there is a source in any of those directions we will
not distinguish in which direction it is. In the same way, the directions (0;,,B;)
and (-oq.,B3;) project the same pattern, and also the directions (o,,By,,) and
(0,-By;,), being o, and B, two arbitrary angles.

But there is no reason to worry about. It is quite easy to handle this
degeneration, as in the mentioned cyclic system the degeneration is restricted
to the field of view borders, and there are different ways to break it. One of
them is by physical procedures: we can reduce the field of view of the telescope
and therefore we will not consider those pixels (for example using collimators
or subtracting a part of the mask -the more external rows-). Another way is by

operative procedures and it consists of varying the pointing direction of the
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telescope in order to obtain more information about the real position of the
source. This procedure is shown in figure 2.17.

Real source Reconstruction Real source Recoastruction

, (A) (B)

Real source Reconstruction Real Source Reconstruction

© (D)

Figure 2.17: Elimination of the degeneration in the borders in a cyclic system by varying the pointing
direction of the telescope (in this example, towards the left)

JIn cases (A) and (B) we have two sources in the field of view border, on
the right and on the left respectively. Both produce the same pattern on the
detector plane (as we saw in fig. 2.16) and therefore, since we can not
distinguish them, the process will reconstruct both possibilities, and we have
two sources where there is just a single source. To single out between both
cases, we can slightly vary the pointing direction (towards the left in the
example); then the (A) case becomes (C) and the source is not on the border but
correctly reconstructed. But the (B) case becomes (D) and the source is now out
of the field of view; we have now no signal in the detector plane and therefore

we reconstruct an empty field.




Choice of the mask pattern 49

2.8 Choice of the mask pattern

As we have already said several times, the use of the correct mask is
very important. It must be as distinguishable as possible, and if it is possible
it should not have shadow-direction degenerations: this means that two
different directions should not project the same pattern in the detector plane.

The next step is, thus, the choice of a correct pattern. Since the cyclic
systems will give better results, we want to find masks whose cyclic
permutations will be perfectly distinguishable between them.

2.8.1 Random masks

Obviously, the first proposals for mask pattern was a random pattern.
This case has already been seen when we spoke about cyclic and non-cyclic
correlations; in fact this kind of masks gives quite good results, but the
background that generates (the reconstruction noise, see fig. 2.14) is quite
fluctuating.

2.8.2 Non-Redundant Arrays (NRA)

In 1971, Golay proposed a kind of mask whose properties were very
similar to the desired properties for a perfect ‘reconstruction [16]. This
mathematical sets are obtained by imposing that there are not two pairs of
holes in the mask with the same vector separation (horizontal and vertical
distance between the holes); the only exception is O elements spacing. The
(non-cyclic) self-correlation of this arrays is a single central peak and a flat
background (until a certain separation where the two patterns are not
overlapped and the self-correlation is 0). This flat background is due to the fact
that the separation vector between hole pairs is unique (non-redundant).

Unfortunately, the mathematical constraints impossed to the NRA are

too strong and therefore there are not many sets; and usually they do not have




50 Masks theory. Foundations

many holes: one of the biggest NRA masks (with 30x30 elements) has only 27
holes. This gives a transparency (open area/closed area) of only 0.03. This gives
a very bad SNR and so its interest in astronomy is reduced (although this kind
of mask has found applications in medicine).

2.8.3 Uniformly Redundant Arrays (URA)

Considered in terms of cyclic self-correlation, we obtain the mathematical
solution to our problems with the URA sets. The URA are non-random patterns
whosevector separation between two holes is repeated a constant number of
times;the same for any other vector separation (different of 0). This constraint
is smaller than the one for the NRA, so we can dispose of more variety of
patterns, and also with bigger transparency. The URA sets are based on the
cyclic difference sets (CDS) [9]. We will explain those sets with the following
example: given the integer numbers from 1 to 15, we are going to mark in a
special way the numbers 1, 2, 3, 5, 6, 9 and 11. Those numbers have a strange
relation; if we permute cyclically the set of numbers from 1 to 15 and bring
them face to face with the original set, the number of coincidences between
marked numbers will allways be the same, independently of the permutation
(see figure 2.18).

7.8 9101112 13 1415
1112131415 1 2 34

Figura 2.18: Cyclic difference set of base 15




Choice of the mask pattern 51

As it can be seen in the picture, we always have three marked elements
of the set of numbers in the permuted set that coincide with the marked
elements of the original set (except when we do not permute, when 7 elements
coincide). Besides, in the complementary set of numbers 4 clements coincide
(except when we do not permute, coinciding 8). That is to say, the]
complementary set of a CDS is also a CDS.
Contae T S,

From a cyclic difference set we can build an URA mask by following this
procedure [9]: 15 is the product of the prime numbers 3 and 5; therefore we
create a rectangular array with size 3x5 and we place in it the numbers from
1 to 15 diagonally; afterwards we identify each element of the CDS (each
marked eclement) for example with an opaque element, being the remaining
transparent elements (it is better if we have an even number of holes, as we
will see in section 2.9.1). That is:

1|7 (13| 4|10

12845 >

6 12/3 9 15

Figure 2.19: Generation of an URA pattern using a cyclic difference set

This layout maintains the characteristics of the

CDS when we calculate its cyclic self-correlation; when

1=0 and j=0, in this mask we have that the seven opaque

elements coincide (that is, the eight holes) and then the

self-correlation of this mask (when i=0 and j=0) is 8; in

any other permutation only 3 opaque elements will

coincide (and 4 holes); then, its self-correlation for any

other permutation (different of i=0, j=0) is 4. This is valid

for any URA array; the value of its cyclic self-correlation EEEGEH -
i : Figure 2.20: URA 5x7.
is a central peak (whose value is the number of mask  ° 0: URA 5x7

holes) and a absolutely flat background.
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In figure 2.20 we can see a 537 URA pattern, and in figure 2.21 we can see its
self-correlation.

2 W
¢}
— ¥ - -]
2 _s s -3 2

Figure 2.21: Self-correlation of the URA pattern in fig. 2,20,

There are different URA families, depending on the methods of
generation and the CDS used. Besides, a given URA can belong to different
clasifications. If we consider a CDS of base N (15 in the previous example,
shown in figure 2.18) containing K elements (7 elements in the previous
example) and with A solution pairs (the number of elements that coincide when
we permute cyclically the set; 3 in the previous example) we have [17] the
following relation:

, - KE-D

(2.18)
N-1

and therefore we can characterize a CDS, and therefore also the URA
generated with it, just with two numbers, N and K (N is the number of
elements in the mask and H the number of opaque -or transparent, depending

on our choice- elements).
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In a simplistic way, we can identify K with the signal and A with the
reconstruction noise; thus we want the difference between K and A to be as
large as possible. This is achieved by the Hadamard difference sets, which fulfil
the following conditions:

N=4m-1
K=2m-1 (2.19)
A=m-1

being m an integer. These arrays can be classified in:

* Twin primes: N = p-(p+2} where both p as p+2 are prime numbers.
This is the case of the examples in figure 2.19 (3x5) and 2.20 (5x7). The
way of generating the pattern M, of this URA array [13] is:

M, = 1 if j=0, i#0 B
M, = 1 if Cip)-C,(p+2) = +1

M, = 0 if C(p)-C,(p+2) = -1

where C(p) = 1 if i is a quadratic residue mod p (that is, if exists an

integer n such that n? mod p = i), and equal to -1 otherwise. For p = 5,
for instance, we have:

v
o ot S IRV &)
lmod5=1; 4mod5=4; 9mod5=4; 16 modH=1; 25.mod 5=0
36 mod 5=1; 49 mod 5 =4; 64 mod 5=4; 81 mod 5 = 1; etc...

In this example, 1 and 4 are the quadratic residue mod 5, that is,
C(5)=1, Cy(6)=-1, C;(5)=-1 and C,(5)=1.

* Pseudo-noise sequences or m-sequences: N = 2™ - 1 (m an integer). The
example of figure 2.19 also fulfils this case.

* Quadratic residues, where N is prime and the set is given by the
squares of the first (N+1)/2) integers, mod N. They are not applicable to
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rectangular masks, but to hexagonal masks as the one in fig 2.22. This
masks are called HURA (Hexagonal URA) and have the special feature
that when we turn them 60°, we obtain the antipattern (except for the
central element).

Figure 2.22: Hexagonal HURA pattern

The Singer sets are another CDS group that fulfils the following:

m+1_
N oo -1
t-1
g=1t""1 (2.20)
-1
m-1
k — t _1
t-1

where ¢ is a prime number. When =2, we obtain the m sequences.

The number of URA sets is limited for the "population" of prime
numbers, so the choice of an URA mask appropiate to a given detector needs
a carefully study. In general the contrary process it is easier: to choice an URA

mask, and then to define the appropiate detector.
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2.8.4 Modified Uniformm Redundant Arrays (MURA)

Gottesman and Fenimore [18], proposed in 1989
another kind of coded mask which have some of the
characteristis of the URA arrays, and that allow a bigger
variety of patterns. These patterns are the MURA, and
as their name says, they are a modification of the URA
patterns.

Figura 2.23: MURA 5x5.

As we have said, in the URA generated by twin
primes we have that N = p-g, where both p and g are prime numbers, and they
fulfil p - ¢ = 2. But the set given by p - ¢ = 0 is also very interesting for
imaging and allows square mask patterns. These are the MURA patterns. The
generation procedure is the same as the one for twin primes (but now N = p-p).
That is:

M; = 0 si i=0 ¢
M, = 1 si j=0, =0

M;; = 1 si Ci{p)-Cip) = +1

M;; = 0 si Ci(p)-Ci(p) = -1

As we have seen in section 2.8.3, for p = 5 the numbers 1 and 4 are the
quadratic residues mod 5; then, following this procedure we obtain the pattern
shown in figure 2.23. The element (0,0} is the one placed at the bottom left
corner. This is the base pattern of the LEGRI mask (as we can see if we look
again at fig. 1.3 and 1.4). In figure 2.24 we can see its cyclic self-correlation.

We can see in this figure that the background now is not flat, as it
happened with the URA patterns but does not fluctuate chaotically as in the
random mask case; in fact this odd fluctuation is very easy to correct as we will

see 1n section 2.9.1.
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Figure 2.24: Self-correlation of the 5x5 MURA pattern shown
in figure 2.23

2.8.5 New patterns

Recently the application in astronomy of a new kind of patterns with
perfect self-correlative properties have been suggested. Generically they are
called Perfect Binaries Arrays (PBA), and both the URA and MURA patterns
can be considered as a particular case of them. Their imaging properties are
very similar to the MURA and URA properties; its main advantage lies in their
greater variety of possible patterns. To know more about them, we refer the
reader to [19], [20], [21] and [22].

2.9 Choice of G

As it was explained in section 2.6 we are looking for a reconstruction
array g which fulfils that M*G is as similar as possible to a delta function;
repeating equation 2.21, this means:

(M#G); = 8 8y, (2.21)
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We have also said that (G is a modification of M. On the whole, we can consider
we have a good result if:

(M*G); = (no. of holes) 3, & (2.22)

(which is a scale factor). We get this result when we have an URA or MURA
(or PBA) array and we choose the proper G. By the way, we define [13] the
System Point Spread Function (SPSF) as:

SPSF=M*@G (2.23)

that is the answer of the system for a point source in the middle of the field of
view and without noise (as we have seen in section 2.6 for the particular case
when M=(G); it gives us an idea of how good the reconstruction is, given a mask
M and a reconstruction array G.

2.9.1 Balanced correlation

The balanced correlation [23] is the most usual method used when
reconstructing images by means of a correlation. It consists in defining the
reconstruction array G as:

Gy=1if M, =1
Gij = "']. ifMu = 0

This makes up for quite a lot the existence of reconstruction noise (which
appeared when reconstructing using M as reconstruction array). In fact, in the
case of the URA arrays, this reconstructed noise is totally suppressed if the
number of holes (the number of 1’s in the M array) is even, since in that case
the cycli¢ correlation of M and G is:

m-1 n-1

0, = Y Y M, Gyimotm tpmodn (2.24)

k=0 [=0

For (i,f) different to (0,0), M*G is a sum of values 1 and -1; there are as many
values as holes (1's) in M (if this number is odd, it would not be possible that
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all the 1’s balance totally the -1’s in order to give a value of 0).

Figure 2.25: Balanced reconstruction of the random pattern
shown in figure 2.8

Figure 2.26: Balanced cormrelation of a 5x7 URA

In figure 2.25 we can see the effect of the balanced correlation applied
to the random mask in figure 2.8, and in figure 2.26 we can see its effect on the
URA patterns shown in fig. 2.20; if we compare these figures with those we got
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' when we only used the cyclic self-correlation as reconstruction method (that is
~ to say, using the own M array as reconstruction array, see figures 2.14 and
2.21) we can see how in the case of the random mask the background has now

" been strongly suppressed, being now centred in 0 instead of 16 while the peak

" value is still the same; and how, in the case of the URA mask, the background

©isnow absolutely flat and with a value of O!.

On the other hand, if we apply balanced reconstruction to our MURA
pattern in fig. 2.23, although we greatly suppress the reconstruction noise
(similarly to what it happened with the random mask) we do not obtain a flat

- background with value 0 as we would desire, but what we can see in figure
221

Figure 2.27: Balanced reconstiuction of a 5x5 MURA

But there is not problem. As it was said in section 2.8.4, this is a problem
that will be easily corrected. In order to have a flat background, we just have
to do a small modification of our G array [18], which consists of changing its
(0,0) element (the equivalent to the element at the bottom left corner in figure
2.23 for M) that is now a -1 (because in M is a 0) into a +1. Using this
particular version of the balanced correlation for MURA mask, we have the
following result:
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Figure 2.28: Balanced reconstruction of a 5x5 MURA, once the
reconstruction array has been modified

That is, a flat plane with value 0, as we desired.

As it can be deduced from section 2.5, the angular resolution of these
kind of telescopes (or what is the same, the size of the pixels in the
reconstructed image) is given by:

resolucién= arctg(.%] (2.25)

where ¢ is the size of a mask element and f is the mask - detector plane
distance; therefore, the resolution is equal to the angle that a mask element
subtends, seen from the detector plane.

From these results, if we use correlation methods, we can define the
optimum telescope [14] as the coded mask system in which there are not
codification errors; this means that it obtains an optimum reconstruction
without reconstruction noise (the only noise is due to the data). This is

achieved using cyclic mask designs based on MURA or URA (or PBA) patterns,
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| and making sure that the shadow projected on the detector plane is an integer
__nilmber of cycles the basie mask pattern. Typically a mask with (Nx+1)-(Ny+1)
- cycles and a detector plane with a size equal to Nx-Ny cycles is used. A very
:-_ '__u"s.ual case 18 Nx=Ny=1. LEGRI is close to this case, because the mask has
2.'.8-2.8 cycles of the basic MURA pattern, and the detector has a size of 1-1
cycles. This is because it was desired a field of view (see section 2.11) as big as

- possible and therefore the maximum mask and detector size allowed by the

remaining devices in the Minisat 01 platform was used.

We have mentioned here the most used variety of balanced correlation.
~ To round off, we say now that one can deal with a more general case [17] by

- defining the reconstruction array G as:

Gy=AifMy=1

i - Depending on the values of these two parameters we can favour some
- characteristics in the reconstructed image or others; flux conservation between
I_.'the'det'ected signal and the reconstructed image, noise elimination, etc... In
- practice, all these posibilities are incompatible, and if we favor some
_'_.characteristic in the reconstruction, we worsen others (for example, if we
remove the noise in the reconstructed image, we have a wrong value of the
" reconstructed intensities). We think that the most suitable values are A=o=1,
although we leave the choice to the reader’s opinion. A detailed discussion of
~ the effect of these parameters can be found in [17].

2.9.2 Finely sampled balanced correlation (FSBC)

| In section 2.9.1 we have implicitly supposed that the detector plane can
~ be subdivided into pixels with the same size of the mask elements. But it could
- happen that the detector plane had better spatial resolution and we could
:': subdivide it more finely. This is what happens with the LEGRI detector plane,
_  in which each mask element is equivalent to 2x2 detector plane elements, or
- what could happen in a continuous detector in which we could in principle
- subdivide the detector plane as finely as we wanted, and so each mask element
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would be equivalent to nxn detector plane elements, being n the integer we
want (in practice this subdivision would have a limit, because a really
continuous detector does not exist). When this subdivision is possible, we can
improve the reconstructed image using a modification of the balanced
correlation called finely sampled balanced correlation [23]. We will explain this
method using as an example the case of LEGRI.

Each mask element is equivalent to 2x2 detector plane elements; thus we
will subdivide the mask array M (see fig. 2.29) and each mask element will
correspond to a single detector plane element and the basic mask pattern will
have the same size and element number as the detector plane (as a result, the
pixels in the reconstructed image will be also subdivided).

[S—ry o ek — i

Figure 2.29: Subdivision of the M array in smaller elements with the same size as the elements in the detector
plane

Once this subdivision is done, we generate the array G in the same way
we did in section 2.9.1:

Gy=1siM,=1

and in the case of MURA patterns, the subdivisions of its element (0,0) will be
changed to 1 instead of -1, as we did in the previous section (see figure 2.81).
Now both M and G will have a greater number of elements than in the
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- previous case (and thus the reconstructed image).
- The response in this case will not be a delta function as it happened in

thé_':'case of balanced correlation but it will have a pyramidal structure (see fig.
- 2:30.in two different representations), with a FWHM equal to:

FWHM-= arctg(%} (2.26)

.': : _""t_hat_ is, equal to the resolution (equation 2.25). But although the angular

~ resolution is still the same, due to thefact that now the pixels are smaller (a

" half of the size, in this case), we will be able to locate the sources more

accurately (more finely) and have a better image.

MG,

~2

d =

L

-8 b

Figure 2.30; M*G using finely sampled balanced correlation
293, 5-decoding

The §-decoding method [23] is a method for minimizing the non-delta

structure that appears with finely sampled balanced correlation (that is, it is

a method to improve the contrast of the image). It is similar to FSBC, because

. it also subdivides the M array in order to have the same size of the elements
- as the detector plane. The difference is in the definition of the G array; now it
~ is a bit different. We can see this difference more clearly in figure 2.31.
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Figure 2.31: Comparison between the reconstruction arrays used in finely sampled balanced correlation and
8-decoding in the case of the pattern of LEGRI

This means that in each mask element, instead of converting all its
subdivisions into values 1 or -1 (as we did in FSBC) we will only convert one
of them (we can choose which one, but it must be the same in each mask
element; in fig.2.31 we have chosen the top left subdivision) keeping 0 the
remaining subdivisions. This procedure improves the contrast in the
reconstructed image; now the response is not a pyramid but a (bidimensional)
box function, which width is equal to the angular resolution given by eq. 2.25.

MG

(M*G]j
12

Figure 2.32: M*G using &-decoding
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_ Like when using FSBC (since the pixel size is smaller), we can more

}_f"ﬁ_nely locate the sources, although this method introduces an intrinsic shift,

_-':'_:"d'epending on where we put the 1I's and -1’'s in G. If it were possible to

" subdivide each mask element in nxn pieces, being n and odd number (this is

not the case of LEGRI), choosing the element different to 0 as the eentral one,
'_-.We_ would obtain that there is not shift in the reconstructed sources.

;_2:._10 Fourier transforms

_ As we have said before, the reconstruction method consists of obtaining
“the correlation of the D data array with a reconstruction array G. That is, O

=D * G, which can be written in a more explicit way:

—

m-1 n-1

OU b Z Dy, G(k+i)modm (l+jimodn (2.27)

k=0 =0

Nevertheless, if we implement this equation in telescopes where m and

i .ali‘e big numbers (this means that both D and G have a great number of

_ é_léments) we find that we need a great number of calculations: m-=n

.”_'muitiplications for each ij sky pixel and depending on m and n, it can be

L ~impossible to do these calculations in a suitable time. This will not be the case

:: - of LEGRI, because n=m=10 and therefore we have to do 100 multiplications for
: é_ach reconstructed image pixel; the reconstruction of the whole image is done
-in less than a second (in a SUN Sparc 20); but for completness reasons we are
. gomg to explain an alternative and faster method to carry out thé correlation
_OI_f__eq. 2.27. We will use in this method the Fourier transforms.

-+ The Fourier transform of a function A(¢) is defined by:

HV) = Fhe) = f h(£)e 2ivt (2.28)

~-and its inverse by:
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hE) = FHW)| = f H(v)e -2 gy (2.29)

Usually it is said that Z(z) is the representation in the space of times of
the function, and H(v) the representation in the space of frequences. Similarly,
if instead of a continuous function we have a discrete set of data h,, we define
its Fourier transform [24] by:

N-1

H = E hke anikn/N (230)

n
k=0

and its inverse by:

N-1
hk - iz Hne -2rikniN (23]—)

n=0

Let a and b be two discrete arrays of size m whose correlation, ¢ (which
15 another array) we want to calculate (in equation 2.27, D and G are
equivalent to a and b6). Let ¢,=(a*b), be the k-th element of the correlation of
both arrays. And let A and B be the Fourier transforms of ¢ and b. The discrete
correlation theoreme [24] says:

axb = F(F(a)F b)) (2.32)

¢, =laxb), & A, B, =C,

where " represents the conjugated complex; what in the space of times
corresponds to a correlation (which implies m multiplications for each element)
in the space of frequences corresponds to a single multiplication. That is, in
order to calculate the ¢, element of the correlation we need to multiply the m
elements of @ and & (shifted between them £ positions) while for calculating the
C, element of the Fourier transform of ¢, we only have to multiply the n-th
elements of the A and B arrays.

On the other hand, we now have to calculate the Fourier transforms,
which are additional operations; to minimize the number of calculations, there

is an algorithm that obtains the Fourier transforms of discrete sets, called Fast
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“Fourier Transform (FFT) [24]. But, though fast, it has the limitation that it can
.O.illy handle with sets of numbers having N = 2' elements, where / is an integer.
If___this 1s not the case, we have to pad the set with enough 0’s until we have a
- 'ﬁufnber of elements equal to an integer power of 2 (or if it is possible, to
:-3_:. subdivide the set -as we did with FSBC and 6-decoding- in order to have the
- required number of elements) [24] [14].

- 2.11 Shields and collimators
These kind of telescopes are usually shielded and/or collimated in order

'i'_.'to avoid that radiation not codified by the mask arrives at the detector plane.
Both systems have their advantages and disadvantages.

--2:11.1 Collimators

. When we use collimators (for
- instance the case of LEGRI) we limit
: “the field of view of each detector unit
'_ in S_uch a way that, for example, they
can only see the mask (fig. 2.33).
" This arrangement has the advantage
""-':_that all the detector plane elements

~have the same field of view,
SR Figure 2.33: Limitation of the field of view of the
detector plane units using a collimator

"iﬁd_ependently of the position they
.héiVe in the detector plane. This
- means that if a collimator exists and it is rather high, it will define the
tt_éléscope field of view.

~ Onthe other hand, the collimator has an undesired effect on the detected
j_:_';"s?'ignal; the farther from the field of view centre the source is, the smaller the
detected flux will be, as the reader can see looking at figure 2.34.
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(a) () () (d)
Figure2.34: Effect of the collimator in the detected signal; the bigger the angle where the signal is received
from, the bigger the signal absorption produced by the collimator

The response varies with the illumination angle, since the detector units
receive a different flux depending on it. The response of the collimator is almost
triangular, with a maximum value when the angle is equal to 0 and decreasing
almost linearly until the angle reaches a maximum value (this is the case (d)
shown in figure 2.34) and from it the response is equal to 0. Let H be the
collimator height, LxL the detector unit area and o the angle where the source
1s, as we can see in figure 2.35 (a).

S
-
v

(a) (b)

Figure 2.35: Effect of the collimator in the response of the detector, in (a) 2 and (b) 3 dimensions

We have that x’ is the zone of the detector unit illuminated, given by:
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= L - Hglo| (2.33)

and % is the projection orthogonal to the direction ¢, and it is equal to:

x!

x=x' cos¢t = ——— (2.34)

Viglo+1

(this is a geometrical effect, due to the fact that the detector is "rotated" with
regard to the direction where the source light comes from; it always appears,
1ndependently of the presence or absence of a collimator). Therefore, we define
the flux allowed by the detector (in fact, the fraction) as:

d(a) = — = cosa - E.sen|a| (2.35)
L L

i  Ifwe generalize this to the three-dimensional case (fig. 2.35 (b)), we have
_thét_ Area’ is the zone of the detector unit that is illuminated, and it is given by:

=L - H-tglo|
=L - Htg|B| (2.36)

Area’ = x' -y’

é_ri'd"-Area is the projection orthogonal to the direction (o,p); generalizing
equation 2.34 (see appendix I) it is:

I
Areq = Area (2.37)

Vigtoortg ™ + 1

The ﬂux seen through the collimator, similarly to eq. 2.35, is:

Do, p) = Area (2.38)

LZ

S These expressions have a physical meaning whenever x” and y’ are bigger
an 0 (that is, the source illuminates the detector, indeed). This will happen

tglo| < and tg|p| £ = (2.39)

L
H

S
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2.11.2 Shields

A shield is a structure opaque
to the radiation that wraps the
detector-mask set in such a way that
any radiation that has not previously
passed through the mask does not
arrive to the detector plane (fig.
2.36). This system, when compared

with a collimator, has the disadvant- -
Figure 2.36: Limitation of the detector field of view
using a shield

age that each detector has a different
field of view depending on its
position in the detector plane; but it has the great advantage of not suppressing
the detected signal as its position moves away from the field of view centre; we
have only a small decrease due to the fact that the detector is rotated with
regard to the position of the source {and whose effect we have showed in
equations 2.34 and 2.37 for two and three dimensions, respectively). But this
is a very small effect when compared with the collimator effect.

If the system does not have a collimator (or if it exist but it does not limit
the field of view to the mask), we can define different fields of view [25],
according to figure 2.37.

FVZ3

Figure 2.37: Different fields of view in a coded mask
telescope
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-FCFV (Fully Coded Field of View) refers to the part of the sky where any
source will project in the detector plane a whole cycle of the mask; FVZS (Field
¢ _.Vz.ew at Zero Sensitivity) is the sky zone where any source will project light
m he detector plane (either a complete cycle or a part), i.e. the total field of
view. PCFV (Partly Coded Field of View) is the complementary field of view of
] e other two (fig. 2.37).

2.12 Other reconstruction methods

" Until now we have treated in detail the reconstruction methods based in
'Ebfrelation' this means that they are based in equation 2.7. In some sense,
1at these methods do is to apply the inverse function (the array G) to the
déta space to obtain the source space, in the cases where this analytical inverse
_.fuilctlon exists (when we use a URA or MURA in a cyclic system) or a
'_:é;_éénable approximation of it when it does not (for example, if the mask is
::'ré_{ 1dom). As we have said, even if equation 2.7 is an useful parametrization of
_t_li_"'-_"detection process, it is somewhat inexact because it does not take into
ount some factors, as the collimator effect or the efficiency of the detectors.
/e _Have also said that the detection process is better represented by equation
9 which we show here again:

D, =Y O,® + B, (2.40)
of

W e’té ® can include all the effects that can alter the signal (mask, collimators,
elficiencies, etc...).

- We are now going to deal with reconstruction methods which take into
"nﬁ those effects (and therefore one can expect a more realistic
' structxon) not based on the correlation but on maximization techniques;
'methods look for the estimators O, compatible with the data (by using
ation 2.40) that maximize a certain magnitude. Unfortunately, we will find
t t_'these methods are slower than the correlation methods, and that they can
?_-_unappll_cable for too complex telescopes.
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2.12.1 Inversion of functions

Before describing these methods, some concepts related to the problem
of inversion of functions should be clarified, since the reconstruction methods
are directly related to them: we have a function that links the souce space O
(we can include the noise B as a part of the space source, although we will not
do it now for clarity of exposition) with the data space D, and we want to
obtain the inverse function that gives us the source space from the known data
space; but this inverse function might not exist. The problem is, besides,
worsened by the incompletness and inaccuracy of our data [26].

,Detection theory

Theoretical
data spacc

Observed
data
space

Analytical inverse

Figure 2.38: Relations between the source space and the theoretical and observed data spaces

In principle it is desirable that the source space we want to reconstruct
has a pixel size as small as possible. In practice this pixel size will have a limit,
due to the fact that our experimental data are finite. We will call our data the
observed data space D and we will call O the source space. The data will not

be as thorough as we would like, due to the intrinsic limitations of our detector
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':"e'xample, finite pixel size in the detector plane). Thus, we can think about
eoretical data space D), made up of all the infinite number of observations

can conceive, without the limitations of a real detector (figure 2.38). We can

only know a small fraction of D,, which is D.

One must realize that even when the analytical inverse funcion exists and
uiiivdc&lly defined, it will carry us from D, to O, not from the subset D to O.

3The'_3-15'assage from D to O is not univocally defined; if we apply the analytical
erse to D assuming values for the lost data, what we get is an estimation
h'éfs'ources, O, which might not be the best estimation; because'we can have
fe’at.number of possible estimations O compatible with our data D. Then
' liéire to impose some criteria to O in order to select the preferred among all
.cQIInpatible estimations.

m As it can be seen, the analogy with equation 2.40 is complete: we just
Ve to identify fwith O and F(f) with Z0®. The only limitation we have is that
-th' magmtudes f must be additive magnitudes [26].

3 TO explain the maximum entropy method, we will use the monkey
'-argument {29]: let us suppose a sky map divided into discrete cells, and a team
monkeys throwing balls (photons) at random inside those cells, generating
1 this way lots of trial sky maps; given that our monkeys are more patient
th _ﬁ_the "Maxwell devil", they will generate all the possible maps, repeating
any __inaps. Afterwards we apply to all those maps the response function of the

et 3 tOl‘, R,(f) and we compare the result with our experimental data; almost
:_._-'the'_’trial maps f; will be inconsistent with the data D,, but there will be
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some trial maps consistent with the data and the error; we will keep these and
reject the others. Since we will have many repeated maps, we will sort them
mto piles {each different map in a different pile), and we will select the maps
of the largest pile. That is, the map consistent with the data produced more
often by the monkeys.

This procedure makes the map consistent with the data more uniform
and soft. This means that it is the feasible maximum entropy map. This image
represents the minimun quantity of structure imposed by the data. Or what is
the same, any structure we see in the map must come exclusively from the real
source.

As 1t is not possible to count on such a monkey team, we will formulate
a definition of entropy and will maximize it, under the restriction that it must
be compatible with the data. There are different entropy definitions (in [30]
some of them can be seen), and the different authors have not agreed on which
is the best. We will follow [29] and will use as entropy:

S = —zﬁ: 0,510g0 4 (2.42)

If we calculate the O, that maximize 2.42, we will get an absolutely flat
image, without any structure. Therefore we have to maximize it with the
restriction that the O, estimations must be consistent with our data. We
achieve this by defining a function @ as:

Q = MZO JlogO . - 7‘2 (ﬁij“Dij)z (2.43)
op 108V g
o3 ij Oy
where the second term, except for the value A (that works as a Lagrange
multipier) is a % distribution of the data. When maximizing ¢ with respect to

O, we have the estimation of O we were looking for:
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D,-D,;
5 —1—27%; a»;;?% (2.44)
= g o
of

: of the most obvious advantages of this estimation is that it compares the
experimental data D; with its estimation, given by:

= Z Oag q)?jﬁ (2.45)
of

[ _:--'-iznder the restriction of our experimental error ¢, The other great
a éhtéige- is the non-negativity of the reconstructed <image, assured by the
' dﬁéntial; therefore we do not need additional checks in order to assure that
it"heré'_'a:fe-not pixels with negative intensities.

:'But due to eq. 2.45 our maximum entropy solution given by eq. 2.44 is

transcendental equation, without analytical solution, because O is on both

of the equal sign and we can not solve it. Therefore we have to use

\erical techniques to solve it. We could use equation 2.44 iteratively in

rto find the solution, beginning with an initial uniform map O°, evaluating

the ght side of eq. 2.44 and obtaining a 0! value that we will put again on the
ght side, ete...

____nfortunateiy the straight use of 2.44 does not give a convergent result.
In order to solve this problem, in {31] it is suggested to use an average of two
Q_Ce_S_Sl_Vfa iterations on the form:

-1- 2x)jcb““ Dy-D;)

o ~ n {2.46
1 - (1 )Oaﬁ GU ( )

¢y controls the "memory" of the algorithm. The authors suggest that
3"§-shoud be used because of its good results. Even so, the use of 2.46 does
Ssure ‘that if OﬁtB converges, it will converge to the correct solution. [29]

_%S!lggests as a suitable procedure to average successive iterations in order to
convergence.

.AiithW, independently of which iterative method we use to solve
€quation 2.44, we have the extra problem of the free parameter A, which is so
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free that can change from iteration to iteration (and it changes!) (there are
expressions of the maximum entropy method -for example in [31]- with even
more free parameters!). To maintain the O, of each iteration in suitable
values, following different authors, it is chosen a A* (the A value in iteration n)
in such a way that the generated 0" give us a ¥ value of the order of the
number of data.

2.12.3 The EM algorithm

#The EM algorithm is an iterative algorithm of maximization that we
found by sheer chance in a medical article [32], applied to emission
tomography. Its formalism is analogous to ours, thus it could be totally
exportable to the problem of imaging with coded masks and used as a new tool
for our task of image reconstruction.

The EM algorithm (whose name arises from "Expected value" and
"Maximization") is an algorithm to compute maximum likelihood estimators
iteratively [33] from incomplete data. The idea is the following: let us suppose
that the data observed in an experiment is a random vector y, with a
conditioned probability function g(y | ¢) where ¢ is a set of unknown parameters
to be estimated; that is, g stands for the probability of obtaining the data y
given the parameters ¢. Our aim is to find the set of parameters ¢ that
maximizes gy |§) and that will be the best estimator of the real value of the
parameters ¢. Generally, it will be difficult to maximize g(y | ) with respect to
¢, so instead of working in the observed (and incomplete) data space, which
following {33] we call Y (it is equivalent to D in section 2.12.1), we will work
in the biggest space of theoretical complete data, called X (we called it D, in
section 2.12.1) where the optimization will be easier (following the analogy with
sectlon 2.12.1, our parameters to be estimated ¢ correspond to the O of the
source space). The data of this theoretical space, x, can not be directly obhserved
but only through the data y.

We assume that there is a (non-univocal) mapping x—ss(x) from X to Y,
and that the x values can be known only if they are included in X(y), i.e., the

subset of X determined by the equation y=s(x). We postulate for the complete
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at xa conditioned probability function flx|¢). Under these assumptions, it
sp SSible to obtain again g(y | ¢) from flx | ¢) by means of the following relation:

gy|0) = [Fx|o)dz (2.47)

X(y)

vhere the integral is converted in a sum if we are treating it with discrete
arxables (an hence the probability functions in just probabilities). Notice that
_enerai there will be several specifications flx|¢) that will be able to
':_ ' rate g(y | ¢). In some cases there will be a natural choice of f that will be
'_obw}ious and in other cases there will be different ways to define f.

. Each iteration n+1 of the EM algorithm consists of two steps; to find out
cpected value (E step) and maximize it (M step):

E tep: one forms the conditional expected value

E(logf(x|$) | 3,6™ (2.48)

’h e. (]) stands for the vector of parameters estimated in the iteration n (it is
_;'known value therefore).

n+1

tep: to obtam the new parameters vector ¢"**, one maximizes eq. 2.48 with

eS| _.ct to q;, keepmg constant tb (which we have obtained in the previous

Letus consider now the function:
H@ 9™ = E(logf(x|) | ¥,6™ - logg(y |9) (2.49)

'lliiction [33] has the following oddity:
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H©G' 1) < H@ |9 (2.50)

From eq. 2.49 we have:

logg(y [¢"D) - logg(y|o™) =
[E(logf(x 6™ | 3,0™ - E(logf(x|0™ | v,6™)] (2.51)
+ [H©@" 6™ - H(™|9")]

Given that ¢"' maximizes eq. 2.48, keeping ¢" constant, the first
brackets on the right side of the equal sign in eq. 2.51 will be 0. The same
thing happens with the second brackets, thanks to the property 2.50. Therefore
we have that:

logg(y[9™h 2 logg(y 9™ «  gly[e™) = gly|¢™ (2.52)

being strictly bigger in many cases. That is, the EM algorithm is designed to
increase the likelihood in each iteration.

Does the sequence of ¢" converge to the ¢™* which we are looking for and
which maximizes g(y|$)? Unfortunately, the demonstration of convergence
developed by Dempster et al. [33] is not correct because in one of the steps he
uses incorrectly the triangular inequality. In [34] and [35] the authors try to
remedy this situation although without covering all our needs.

Tortunately, Lange y Carson [32] demonstrate that in the concrete case
studied by them (emission tomography -which is completely analogous to ours-)
the required convergency to the correct solution does exist thanks to the strict
concavity of the function log g(y | ¢) in the studied model, based on poissonian
statistics.

The emission tomography works by changing the position of a single
detector (focussed towards the patient) and measuring the radiation that the
patient emits (because the doctor has previously supplied a radiactive

substance) from different positions (projections). Following [32], it is defined:
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i: projection subscript

J: pixel subscript in the reconstructed image

I: pixels subset that contributes to projection i

J;: projections subset to which pixel j contributes

A;: source intensity of pixel j (parameters to estimate)

c,: probability that a photon leaving pixel j reaches the
projection z

Y.: number of photons detected in projection i

We have, therefore:

= Z CijAj (2.53)

JerL

that. 1s ‘an equation analogous to 2.40. Applying the EM algorithm [32], we
bt: in the iterative solution for the estimation of the A parameters shown in

X C.Y,
M . (2.54)
’ ); C ied; Z Ca b Xu )
L& kel

Gomg now from tomography to coded masks, if we identify each detector
je oh in tomography with a different detector unit in our detector plane
'__a_t_ is the same, placing a single detector in different positions
"r'éject_i__oris— and doing a measurement in each place it is equivalent to having
many -’.’détéctofs in different places and doing a single measurament with each
etec r_),- then the analogy is clearer, and therefore we can conclude from
: n: 2. 40 that the solution of the EM algorithm to the imaging problem
hen sing coded masks is:
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< n o
0| !3 — ~on C.‘.I / .
'Zj LT SN it
I OL"B’

or what is the same, in a more elegant way:

[ Dy
¥ |22
O~rz+1 _ On Y Dij (256)

af of
P
t/

being:

D; =¥ 0,0 (2.57)
off

identically to ec. 2.45. This is the first time the EM algorithm is introduced in
the context of coded mask telescopes.

The iterative equation 2.56 has a great advantage with respect to the
equations we showed for the maximum entropy method: the total absence of
free parameters; the equation is robust and does not require continuous and
annoying checks in each iteration to adjust any parameter (or set of
parameters) that slow down the process. Furthermore, given that the
description of the probability function gy | §) is based on the random nature of
the detection process (using Poisson statistics) one can expect a better and
more natural reconstruction than when using the maximum entropy method.
Another advantage is the non-negativity of the reconstructed image. As with
the maximum entropy method, it is not necessary to impose additional
constraints to assure it. The only thing we need to assure it, is that the initial
parameters must be positive, that is O%0. This does not preclude the posibility

limOy = 0

Moreover, it converges to the proper maximum likelihood estimator,
independently of the initial value of 0°, as it is demonstrated in [32]. We will
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't "ﬁniform field of value 1 for all (¢,B) as initial parameters, in order to
«0id introducing any previous structure in the image.

~ definition of @ is as the definition of the mask array M, (that is, ®=1 if
ij detector "looks" through a hole when looking at (o,8), and ®=0 if it looks
ou h an opaque element), then we have:

Z(I)uﬁ - A
E(Daﬁ = C

her:' "'N a=total number of holes in the mask and N =number of holes in a
ycle of the mask. With it, we have that eq. 2.59 becomes:

N

ACU AT C

It
-t

(D*M)

‘hat is, the first iteration of the EM algorithm is something equivalent

he Teconstruction methods based on the correlation.
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2.12.4 Maximization methods versus inversion of functions

We have to say that both the maximum entropy method and the EM
algorithm solve elegantly the problem of inverse functions (see 2.12.1). As we
have already said, the response function of the detector (in our case ®) relates
the source space O to the data spade D. The "obvious" way to obtain the
parameters O from the data D would be applying the inverse function; but as
we have said, perhaps it is not univocally defined (for the incompletness of our
data) or still worse, perhaps the inverse function does not exist. Both the EM
algorithm and the maximum entropy method only use the detector response
function @ and never its inverse, to go from the trial maps in the source space

to the data space and compare the result with the experimental data.




n chapter 2 we have studied different image reconstruction methods,
5;- needed when using a coded mask system for imaging. We have
'_célled it masks theory. However, before getting inside the result
%) chapters, it is suitable to explain in this chapter some additional
_ points that are related to the mask theory and the v ray telescopes,
‘hi Ich may be useful for a better understanding.

rrors criterion
2. -in'_ i'e_constructions based on the correlation
_oﬂowmg [36], and according to equation 2.10, given an O array that

re__nts the source, given an M array that stands for the mask, and a
k_g '___u_nd noise B array, then the detector plane, represented by the D array,

e given by:
G O*M+B
reconstruction by
O=D+x«G
)y = Y. Dy Gryyy (3.1)
Kl

As 1t can be seen in [37], by square error propagation, the estimated
tlcal error in a term with the form d-g is given by

eHdg) = d%e¥g) + g2e¥d) (3.2)
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where d and g correspond respectively to the elements of D and G in eq. 3.1.
All the terms in the reconstruction array (G) are constants (for instance, with
balanced correlation they are 1 or -1), therefore its associate error is e(g)=0.
This gives us:

e’ (dg) = g¥e¥d) (3.3)

Using balanced correlation, we have g°=1. This means that we can write
the associate error in each reconstructed image pixel as:

SZ(OU) = %: sz(Dkg) . (34:)

And taking into account that the detected counts in D have poissonian
character, the error of D, is given by

S(Dkl) = \/b:l (35) |

therefore we have

2 .
e%0,) = %(\/Dk, ) - %:DM =T, (3.6)

where T, is the total detected counts number in the detector plane, and
therefore independent of the considered ij detector element.

Using it in the particular case of LEGRI, let us consider the balanced
correlation: we have a 5x5 pattern in the mask and a detector plane with the
same size (we group the detectors in 2x2 groups in order to have the same
elements size in both arrays). Let us suppose a source with an intensity of 100
photons/area unit (during an arbitrary At integration time). For simplicity let
us suppose absence of noise, detecting in each illuminated detector -100
photons (except for the statistical fluctuation); therefore we detect in each 2x2
group ~400 photons (and ~0 in those not illuminated). Since the mask pattern

(fig. 2.23) has 12 transparent and 13 opaque elements, there will be 12 2x2
groups illuminated having 7,~4800 detected counts, and an error of V4300 =
70 in each reconstructed image pixel.




rors criterion 85

: Cdnsidering the ij sky position where the source is, and using eq. 3.1, we
at each 1 in the G array will multiply an illuminated detector (those

400 counts), and each -1 will multiply a non-illuminated detector (with
0 ounts) This means, 12x400 - 13x0 = 4800 counts in the reconstructed
. peak, with an error of +70, exactly what would correspond to its
al error if it were a direct measurement. The rest of the reconstructed
'ill have a flat background with a value of ~0 (see fig. 2. 28) and with

ource _-1ﬁ.-thé field of view.

'If:_f'_'W_e_ use FSBC or 8-decoding (with pyramidal or square response
espect; vely) we have a systematic error besides, because they reconstruct
du-'r'ces'_:_ where there is nothing, even in the best case (ideal detector and
b 'Iic'gé_: of noise). If we look at figure 2.30 (where FSBC is used for a source
th intensity 100), the real source is in the centre, but we see a structure
ﬁrro_uhding the real signal that does not correspond to any true structure.

Figure 3.1: Reconstruction with FSBC (enlargement). It is showed the
pixel intensity and its error.
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The pixels in this structure should be ~0, but they have quite a high
value and a statistical error that it is too small, and thus the true value (0) is

not included in the error interval. Therefore there is a systematic error when
using FSBC and §-decoding.

3.2.2 In iterative methods

It was really difficult to find an error criterion for iterative methods (as
is the case of the EM algorithm and the maximum entropy method), because
the bibliography related to statistics and probability issues usually does not
consider iterative processes, and those books and articles that consider such
processes used to be related to mathematical problems that do not consider
experimental errors. Fortunately, we found a statistical book [38] where, in a
pair of pages, an iterative process is considered and it is assigned an error to
its result. Although in [38] it is studied a case that is different to ours, the
analogy is complete and we have used their error criterion to assign an error
to the result of our iterative methods.

This criterion consists in (once the algorithm has reached the desired
convergency, let us say at the n+1 iteration) estimating the pixels error by
square error propagation [37] from the iterative formula, estimated at the n
iteration. If we consider as magnitudes with error the detected counts (D) and
the response detector array @ (since we include in it magnitudes with error as
detectors position, detector-mask distance, and optionally the transparency of
the non-opaque telescope components, or the detectors efficiency), then we have
that the (square) error assigned to the (o,B) sky pixel is given by:

=+ ao~ el et aO el
32(0a51)=2 ap 'az(Dk[)+ aOaB '82((1):?)“2 b '82((1)116) 3.7)

ofp ¥ 5

k|| 9Dy, N Dy, 13¢0p | JD};

13

where the n subindex means that the partial derivatives must be estimated
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he values of the n-th iteration. For a more detailed study of the errors,

se 'app:endix 11

3.3 Sky mapping

he result of a single reconstruction operation is a pixels weft, an image
"a that represents the sky intensities in a particular sky zone, whose
o is "-the pointing telescope direction. As time passes, the pointing direction

il change to study different sky zones. Each of our partlcular maps is an
em nt_ of a mosaic, and uniting them we will carry out the sky mapping. But
'__W_e_need to know how to pass from our (o,B) co-ordinates, which are
la d"'to' the telescope pointing direction (or field of view centre), to the Right
Ascen_' 'on and declination (r.a.,dec.) co-ordinates, the absolute co-ordinates

Telescope ficld
of view centre
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*y, is the angle between the o axis of the image and the celestial
parallel that passes through the field of view centre (FVC).

*y, is the angle between the FVC and the celestial north, and it is
related to the FVC declination by y, = -(90° - dec.), since the sign of this
rotation (as we have defined it) is negative.

*\y; are the degrees needed to rotate the o axis to put it parallel to the
right ascensions origin; it is given by y; = 270° - r.a. (in degrees, because
-the r.a. is measured in hours).

Figure 3.3: Euler angles that connect the co-ordinates system intrinsic to the
telescope with the standard celestial co-ordinates system.

Therefore, given an object at the (o,B) position in the telescope
co-ordinates system, we get its spheric co-ordinates (6,0) referred also to the
FVC, by means of equation 2.2, Tt is trivial to calculate the new spheric.
co-ordinates (9,,0,) after the first rotation (a) (see fig. 3.2), and it is given by: k
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(3.8)
o, = ¢ -y,

“will not be so trivial to calculate the new (8,,4,) after the second
_ (called (b} in figure 3.2), so we need to use the cartesian co-ordinates

X, = X;
Yo = yr-cos(yy) + z;sen(y,)
7y = 2,-cos(Yy) - yo-sen(ys,)

nd given that:

%, = Resen(8,)-cos(d,) x, = R-sen(8,)-cos(dy)

y; = R-sen(6,)-sen($,) v, = R-sen(f,)-sen(¢,)
z, = R-cos(0,) z, = R-cos(6,)

hav _'.h"e' following relation among angles:

sen(0,)-cos(¢,) = sen(d, }-cos(d,)
cos(0,) = cos(0,)-cos(,) - sen(8,)-sen(o,)-sen(v,) (3.9
: sen(@z) sen(d,) = sen(d,)-sen(,)-cos(yy,) + cos(B,)-senlys,)

It_ _S__.easy to calculate the new spheric co-ordinates after the (b) rotation
sing jthe relatlons shown at eq. 3.9. Rotation (c) is analogous to rotation (a),
1 'Is glven by:

(3.10)
Gy = 0y — Wy

T e co-ordinates (0,,0,) are basically the declination and right ascension
s pectlvely) of our object; we have only to pass ¢, from degrees to hours to get
o ,a_nd the declination is given by dec = 90° - 8,. With this two changes
v finally the correct celestial co-ordinates.
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3.4 Simulators

It has been necessary to create some programs to simulate the LEGR]
response, as a first step to develope our image reconstruction software. Using
these simulators we can create useful data from well-known synthetic "sources"
that can be used as inputs for our reconstruction programmes, and so, we are
able to compare among the different reconstruction methods. |

In this chapter, the considered simulators have been two: a model of the
whole detector based in the Monte Carlo method [39], with a comprehensive
description of the component materials, and all the physical processes involved
in the detection, using the GEANT-3 [40] simulation package; and a
geometrical simulator that we will describe afterwards. The first is more
accurate and similar to reality, but very much slower, while the second,
although perhaps not so exact, is very much faster. When developing our
software and studying the characteristics of the different reconstruction
methods, we have mainly used the last one, using the first to check if the
approximation we do using the geometrical simulator is good enough. Both
methods try to obtain the detected image in the telescope detector plane, giveﬁ
a field of sources. The Monte Carlo method does it by launching photons (in a
number proportional to the source intensity) coming from the (,B) direction
where the source is; those photons interact with the matter by means of the
photoelectrical and Compton effect (in our energy range there are not pair
production), being finally detected by the detector plane units. As one can see,
this is a slow process, and still more if we consider many sources, or an
extensive source. The geometrical simulator calculates analitically the ® arraj(
of eq. 29, which gives us the detector response. Apart from being faster, this_'
simulator has the advantage of obtaining explicitly the ® flux factors, needed
not only for simulation of the detector but also for reconstruction when using

maximization methods (see eq. 2.44 and 2.56). With the Monte Carlo we can
calculate them, but no explicitly; we have to do a different simulation for each
(0,,B) direction, and after that, divide the counts detected in each detector by
the launched photons by area unit.
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:::L'_et_ us shortly describe the algorithm used in the geometrical simulator
calculate the @ flux factors. What we want to obtain is, given a source with
ntenéity- I at the arbltrary position (o,B), which fraction of intensity the

N

Intersection -

i dircction
“Collimator

i Detector

elther.ﬁi_‘ansparent or opaque), between two mask elements, or among four
}én}éiltis;_(this last case is the one shown in figure 8.4), defining, respectively,
o or four subareas. Multiplying each subarea by 1 if it is a hole or 0 if
15 a tungsten, and obtaining the total sum, we obtain the detector unit area
at is ill'}i_minated by the source in (o,B). Intuition tells us that, to obtain our
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flux, we only need to divide this area by the total area of our detector unit,
This is almost true, but we have also to divide by the geometrical factor as the
detector is rotated with respect to the coming direction of the radiation, as we

have seen in equation 2.37 (in section 2.11.1). Then, the flux seen by the

detector i/, coming form the direction (a,B) is given by;

n° subdreas
E Mn' Ansubdiu :
o (3.11)

if -
Aif"ml < yY1+tglo+1g B

In figures 3.5 and 3.6 we have shown graphically this flux, for a detector.
unit in the centre of the detector plane and for other in a corner, respectiveiy'.f
Each of the graphics is shown in two different representations: in (a) the grey.
tone is proportional to the flux value, and in (b) the height is proportional to

the flux value.

Detectar (5,5) Detector (5,5)

10 [

75§

soscoomes
=D T T T N E- S L)

Figure 3.5: Flux factors of the detector (5,5)
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Detector (1,1)

Detector (1,1)

0
m.mno\lol =

R Ik
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Sr—y it
(S
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Fluxes

Fluxes

(b)

(a)

Figure 3.6: Flux factors of the detector (1,1)

As .'_a_ result of this figures, we can say that the response of a detector

is the

coli}imat_or _effe_ct, as we have explained in section 2.11.1) as it can be seen more
learly in ﬁg. 3.5 (b) and 3.6 (b), multiplied by the mask pattern that

pi'ane_.uhi_"p can approximately be described as a pyramidal function (this

15 agver

t can be seen more clearly in fig. 3.5 (a) and 3.6 (a).

,as 1

it

the detector un
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.’pter 4: Results. Study of the
cOnstructlon methods

4 Introduction

long this chapter we are going to expose the results obtained
after the detailed study of the different image reconstruction
_ ‘methods, formerly described, and applied to LEGRI. Here we will
& study their main characteristics, different considerations and a
comparative analisys of those methods will be done, and it will
be studied how some phenomena, external to the reconstruction process, affect

nstruction.

) Convergency criteria

When we generate an image by means of an iterative process, as it is the
fmaximum entropy or the EM algorithm, we have to stop the process in
“moment and accept the product of this last iteration as the image

erated by the reconstruction process. Therefore, before continuing and
inning to reconstruct images by different methods, we have to study if the
ativi "Iﬁéthods that we study converge, and if so, know when we must stop
That is why we are going to carry out a previous study on the
I‘gency of these two methods, and to impose criferia to stop the iterative

':_algorithm convergency

We have said in section 2.12.3, the EM algorithm has an excellent

ve 'e_ ___y to the desired maximum likelihood estimator. Furthermore, the
vergency is monotonous and without oscillations, as we will see soon. We
this property to choose a stopping criterion for the algorithm.
evert less, this is a criterion about the convergency of the process, not about
e _HYE}_rgency to the correct result (although in this case it converges to the
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correct result). We can impose other criteria to stop the algorithm, for exampi;
based on statistics. We are going to use two criteria for the EM algorithm
these two criteria are the following.

If we base our criterion on statistics, we can require the algorithm to stog
whenever the detector plane data estimation (obtained from the present skj
pixels estimation) is indistinguishable from the experimental data, because the
value of the estimators is within the error of the experimental data. This
means that we can decide to stop the algorithm in the n-zh iteration when: .

; (= Z@“ﬁoaﬁ)e(D -0, ,

where G, = VDU.

This assures us that our reconstruction is a good reconstruction,
Nevertheless, this may not happen; the algorithm solution (with infinite
iterations) may not fulfil the requirement shown in eq. 4.1 in any case. For

D, +c,, _
) .

these cases, and using the monotonous convergency property of the algorithm;

we will impose that the algorithm will stop when the difference between the

images of two consecutive iterations is very small. One wonders how we can
define that very and that difference.

We are going to define a magnitude that we are going to call 8", by:

Y 40, -
§n = \ob
0 42
of .
where AQ,, = [0, - O

The more similar these two successive images are, the smaller is §*. We cal__a'
impose that the algorithm stops when §" is of the order of 10* (this is more or
less its value when the requirement of eq. 4.1 is fulfilled). In practice, we Wﬂi
use as stopping condition the one the algorithm reaches before. '
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'Applied to a particular case, the EM algorithm has been used with the
ata l obtained when the telescope is illuminated by a source with intensity
0.. phb'tbns/cmz, centred in the field of view, plus a random noise with average
'ue'f_cj;f 30 counts/em?® (it has been used the geometrical simulator described

B
et =
o
Tind 8
107
1031
.‘I....i”.‘t FEFENT REAT ST AT AU NS I AT IO VIR RTINS V-n«-l-.‘.!.. 'l EVEFITSr BRI S ST ere Il B I N W S W
~H0 150 200 250 300 350 400 450 ¢ 50 100 150 200 250 300 350 400 450
{terations Iterations

(a) (b)
Figure 4.1: EM algorithm convergency

In figure 4.1 (a) the peak height of
the central pixel in the reconstructed

image (the estimated intensity of the
source) is shown, and in figure 4.1 (b)
the value of 8". The stopping criterion
used was the one defined by eq. 3.1.
We also show the ¥* value

corresponding to the data estimation

in each iteration.

N The algorithm stopped at iter-
A -19{_; 150 200 250 300 350 400 450 ation 445. The estimated value of the
" Figura 4.2: y* value source intensity is 95.1 photons/cm?
__ and the value of § is 6-10™. Since
was ._fli_lﬂlled and given that %® is defined by:
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, D, - D, '

=y L (4.3

_ ij O, :

ij

the final ¥* value can not be bigger than the number of detector units (100 ; 1
our case), because each factor in the sum is smaller (or equal) than 1; the
value is 18.4. The execution time was 1 minute and 25 seconds, in a Sun Spal
20 with 120 Megabytes RAM (operating system: Solaris 2.4).

4.2.2 Maximum entropy method convergency

As the maximum entropy solution we have seen in eq. 2.44 must b
solved by iterative methods, and given that, contrary to the EM algorithm, th
convergency 1is not assured (and if it converges, it is not assured that j
converges to the correct solution), we need to introduce an additional test t
estimate the goodness of the solution. Following [31], we define a residue R" b}

< n ( 1-23" Z (b“ﬁ ‘D _ DJ) (44)
R no_ _]% Z oaB i : 5 s
o aB - OU

where both sides of equation 2.44 are compared. The nearer O" is to the correci
solution, the smaller R” is. In fact, in some cases, it can result more practlca
to use equation 4.4 as the stopping criterion, imposing, for instance, R*<0.1, as
the authors of [31] suggested (or a stricter boundary).

In any iteration method we use to solve eq. 2.44, we have to impose (a“
it has been said in 2.12.2, and as it is suggested by various authors) that the
x° of the data estimation in the next iteration (rn+1) has to be of the order of the
system freedom degrees (100 in our case), choosing the correct A* to obtain that
requirement. In general this will not be possible, mainly in the first iterations,
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we can ﬁnd cases where any A" we choose will give us y* values bigger

edom degrees.

t us now study the different iteration methods of the maximum
opy method, in order to seek the solution of eq. 2.44. The first method one
hink is just to iterate equation 2.44; this means:

uﬁD - Dy
; ———

-1- ZLEtD
s a+l 7 )
O, =e ’

- ¥ "0,

o B

(4.5)

e must be'éareful when o,~0, and has to substitute it, for example, for the

v lue of o;;, in order to avoid divisions by 0).

i
a I"y,. this method does not converge at all, as one can see in figure 4.3.
' iﬁerated the process 445 times (ignoring the § value) in order to
- it to the result obtained with the EM algorithm. Unluckily, the
_:_.:W;‘:lS so chaotical that the resulting graphic looked as an
'h o"'ram and it was imposible to see anything. That is why we have only
| he last 50 iterations, that are fotally representative of the whole
In__ﬁgu_re 4.3 (a) it is shown the central pixel intensity estimation in
ne rliéted image, for the same celestial source as we used in the
0us seq tlon for the EM algorithm. We can see that the estimated intensity
seillates alternately between 0 and 100 photons/cm In ﬁgure 4.3 (b) it is

.h_e: -exp;onent-
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Figure 4.3: Maximum entropy convergency, using eq. 4.5

The execution time for these 445 iterations, due to the need of
minimizing ¥* with respect to A in each iteration, was 4 hours and 15 minuts.

Some improvement can be obtained if we use the process described by
(311, that we have showed in eq. 2.46 and show here again:

-1-20" ): wiﬂ

o < n (4.6)

= (1- 'y)Oaﬁ ve S S
wherey is the algorithm "memory" of the result in the previous iteration. It
smooths the oscillation of successive iterations. Saying it roughly, summing ’_é_h_e_
result of the previous iteration makes the algorithm to remember the successflil
previous results, and the exponential acts to "improve" them in the followiﬁg.
iteration. The smoothing is bigger as smaller is v, and so the fluctuation Wlll
decrease, but, on the other hand, it can stop the algorithm (even if _t_h'fé
iterations carry on) if the value is too small. In [31] it is said that the more
suitable value is y=1/3. Nevertheless, we can see in figure 4.4 that the
behaviour of this algorithm is still very chaotical, and the improvement
obtained is quite small. It is again shown, for the last 50 iterations, thé
mtenszty of the central pixel in the reconstructed image and the correspondmg

x* of each iteration.
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Figure 4.4 Maximum entropy method convergency, using eq. 4.6

N‘oﬁv the algorithm fluctuation is not as big as in the previous case,

1 'is not small either. The intensity value is now mainly included
ween 60 and 100 photons/cm?®, with some values arriving at 40 photons/em®,
is r'a_th'er small, and its mean value is about 300. On the other hand,
thot hzt is not show in any graphic, the residue value (R", which behaviour
_ -p:i"e_vious case was extremely erratic) is now included between 0.5 and
9. The execution time is somewhat bigger than in the previous case, but

one where using R" as stopping criterion can be a good idea, in the
hat "::i”ng one iteration, R" fluctuates to a value smaller than a given one,
nd we have a good estimation of the image. Nevertheless, it would be more
mforte ble to use some algorithm with a good convergence to the solution of

If we base ourselves on the suggestion given in [29] of averaging out
S: 'iir_e iterations to get convergency (even though in [29] the exact way to
S 'Qt- explained), we have developed a new "smoothing" method in order
mprove the convergency. Let us suppose that, taking as input a certain
W use equation 4.5 to obtain O". This is:
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D"NOEY - b

~n R Za DL L 4.7
O =¢ o '-);

where we have omitted the pixel and detector indexes for more clarity. From
this 0" we generate an 0", by: '

s on = n-1 =5 h
O = O +0 " + ... + O (4.8)"

- _
This means that our new input to the algorithm will be the mean value of a.lul.
the previous outputs of eq. 4.5 (we do not consider 0°, because it is not an
algorithm ouput, but the initial input, and all its values are 1). If we iterate the_

algorithm, we obtain from this value a new result, 0", given by eq. 4.8; it 1s

O~n+1_ On+1+6n+ ...... "'Om1
bis

n+l

On+1 n O"’ n . O'"n-l — . Ol (49)

= 1 6}2*1 + n Obn
n+1 n+l

Let us now substitute O by its value, as given by eq. 4.7, and rename 0,, as
O, and what we get (writing it in an analogous way to eq. 4.6) is the foﬂowmgﬁ;
terative equation: :

DD, o .Z:ZEE
=R =on -1- 2A’Zd’ ﬂ—“—*—
g = [ nl}% ' ( 11} (@19
n+ n+

We can roughly say that here, the “smoothing" factor (y) of equation 4.6

is not constant, contrary to what Willingale [31] suggested, but decreases Wlthi':
each iteration, being initiaily 1 (to obtain O, n=0 -see eq. 4.10-). This means
that, initially, it is more important the current result of the algorithm than the
previous ones, but as the iteration number increases, this situation is 1nverted

(we could say that the "memory" of the algorithm grows with the experlence)
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As 'we can see in figure 4.5, the convergency capability has increased

notab y--With respect to the previous case.

~ Residue

#Uﬂ ltlibl'nu Wl Dt
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(a) (b)

1000 §

800 &

600 |

100 15{) 20{) 250 30{3 35(} 400 450 0 50 1060 150 200 250 300 350 460 4506
Iterations Iierations

{c) (d)
Figure 4.5: Maximum entropy method convergency, using eq. 4.10

OW_'_':We:really have convergency! Although some small fluctuations still

econstructed source intensity (fig. 4.5 (a)) is 98.3 photons/cm?, The
--_-.;_'(ﬁ'g-.:4.5 (b)) is centred in 0.2. The measurement of the convergence,
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value (fig. 4.5 (d)) is now 15.8. The execution time is again 4 hours and 4@
minutes. As it can be seen, this is a very good result, comparable to the resy]
obtained with the EM algorithm. Anyway, the residue R" value (that tells
how close we are to the solution of eq. 2.44), is still high, and this means that
although near, the obtained solution is not the correct solution of eq. 2.44 yet
One can observe that in fig. 4.5 (a) we are just looking at a single pixel of th‘
reconstructed image (the central one, where the source is). But the solution, 11
fact, reconstructs the whole image at once, and although the intensity in tha.
pixel can be more accurate, perhaps it is not the same in the remaining pmelc
of the image, and fake structures may appear.

Before continuing, let us study

the A" behaviour along the iterations. g
In fig. 4.6 it is depicted the A* value §

that minimizes ¥* in cach iteration. .|

The A" seeking range in all the 150k
explained cases has been from 0 to i
1000 (wider enough). As it can be

seen, in this case the A" value

1251

increases more or less linearly with

the iteration number, but increase

the quantity of fluctuations also. In

(1P O DU B DI DU DT DUTIN I H
. . S
fig. 4.6 it is shown a linear fit of 2™ 0 50100 150 200 250 300 350 400 45O

One can be tempted to use this linear Figure 4.6: A" that minimizes ¢ in each iteration, usmg
fit as values for A" in each iteration, ¢ 4.10. r

and so avoid looking for it. :
Unfortunately, this method fails absolutely, because the exponential magmﬂes

the small variations of the parameter A (mainly in the first iterations).

On the other hand, we can see in fig. 4.5 (a) that, from iteration 200, the
algorithm has practically converged, and the great oscillations of A* that call
be seen from iteration 200 in fig. 4.5, almost do not affect the convergency! Thls
means that, as the iteration increases, the algorithm becomes more insensitiitei
to A*. This suggest us a method to increase the speed of the algorithm: froxr_i_fj?-

certain moment when the algorithm is more or less near the convergency; W€
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fix th :__}U‘ value. For instance, one can see in fig. 4.5 (a) that the intensity
Tue. fr m iteration 60, is quite near to its final value. One can also see in fig
that until the iteration 60, the A" value is included between 0 and 10. But,
;-;S mamly centred in 5, let us do the experiment of allowing A" to oscillate
) tw_één 0 and 5 during the 60 first iterations, and {rom iteration 60, we
ts value to 5. The results are shown in figure 4.7:

; AV T DI TP I P P S T it s e das e T T yrmrm mrrwr
500100 150 200 250 300 350 404 450 0{} 50 100 150 200 230 300 350 400 450
SRS Iterations [terations
(a) ()]
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; {terations Iterations

() (d)
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As it can be seen in fig. 4.7 (a), the algorithm now oscillates more at the
beginning (because we force A* to oscillate between 0 and 5: this would not
happen if A" oscillated between 0 and 10; but it would take twice the timel).
Anyway, the convergency is better; the final 8" value is now 3-10°! Contrary
to what one could suppose, limiting A* between 0 and 5 for the 60-th first
iterations (and fix it for the following) has improved the convergency. But, does
it converge to the required solution? Now the reconstructed source intensity is
90.0 photons/cm?; it seems a worsening. But it is not! The next surprise we
have is that the final value of the residue R" is now 0.015. An order of
magnitude lower than the previous case! Therefore, despite the source intensity
is:subestimated, this solution is nearer to the solution of eq. 2.44, and so it is
more correct.

We must not be surprised that this better solution has a worse source
intensity reconstruction, because if we use the true celestial source as our
parameter estimation (an excellent estimation, indeed!) we will find that it is
not the solution of eq. 2.44. If we use in eq. 2.44 the true O, celestial map,
in absence of noise, as its own (jaﬁ estimation, we will have:

if O~0LB = O,y = true source

= D, =D,
-1-23Y o ﬁu“zD-'f
= O, = e d i
=e ' =0.368 Vol

This means that any map estimation that reproduces exactly the
measured counts in the detector plane, is not the mathematical solution of
equation 2.44. But eq. 2.44 does not pretend to find the estimation that
reproduces exactly our experimental data, because in the real case (with noise),
a reconstruction that exactly fits with our data (with ¥*=0) will introduce fake
structures in the image, due only to the noise; the maximum entropy method
protects us against that (or it tries to), avoiding a 100% adjustment of the data.
Precisely the fact of fixing A” in a given moment is what avoids an exact data

fitting, and what does not permit the algorithm to approach too much to v?=0.
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This is why we have a smaller R" value. Indeed, the ¥* value we have now is
'36.3, bigger than in the previous case. The execution time, as expected, has
been reduced to 38 minutes (reducing the seeking range of A* accelerates the
algorithm); this is another result in favour of fixing the A" value in a given

moment.

As a preliminary conclusion, and given the results of sections 4.2.1 and
4. 2 2, we can say that the EM algorithm does a better reconstruction of the
sources intensity than the maximum entropy solution, given by eq. 2.44.

Anyway, it is not convenient to fix A* too soon. Let us study the following
results; if we repeat the operation fixing the 1" value from iteration 40, we will
get:
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Figure 4.8: The same as in fig. 4.7, but fixing the A" value to 5 from iteration 40

_ We see that, from iteration 40 the convergency is brutally altered,
__élthough it slowly returns to convergency until iteration 120, where the
convergency is recovered; the & value at the end of the process is 2.5:10°. The
-i‘_ééi)nstructed source intensity is now 90.6 photons/cm?, and the final residue
;?alue is 0.032 (somewhat bigger). ¥* is now 36.4, almost the same as the
?p'revious case. The execution time is 25 minutes.
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Figure 4.9: The same as in fig. 4.7, but fixing the A* value from iteration 3

The sooner we fix the A* value, the worse the convergency is. In fact, it
is very important that in the first iterations the A" value is the one that
minimizes ¥°. In figure 4.9 we have repeated the process, but now we have
fixed the A" value from iteration 5. In this case we have iterated the process 10°
times. Fig. 4.9 (a) is an enlargement of fig. 4.9 (b), for the first 20 iterations.
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 As it can be seen, from iteration 5, where we have fixed the A* value, there is

a great alteration on the estimated source intensity value, about 5 magnitude
orders. It decreases step by step, but in iteration 10°, where we stopped the
process (after 5 and a half hours), the value was still 230 photons/cm®. The

o ~ convergency process is so slow that from iteration to iteration the image almost

~ does not change, as it can be seen by looking at the small value of 8" in fig. 4.9

~ (0), always very close to 0 (its final value is 2.1-10°, although smaller than 107
: :'_ - from iteration 200 approx.). Anyway, let us observe that now the algorithm
" does not converge to the solution of eq. 2.44 but, on the contrary, it diverges

from it, as it can be seen in the odd behaviour of R", shown in fig. 4.9 (d). The

 R"value at the end of the process was 2.4, and growing. The x* was also very

big: 3327 when we stopped the process.

We will choose a compromise between execution time and results, and
calculate the solution of eq. 2.44 using the iterative method described in eq.
4.10, using A* between 0 and 5 for the 60 first iteration, and fixing it from
iteration 60. These values are, in our case, in the limit of good behauviour.
Varying A" between 0 and 10 or between 0 and 5 for those 60 initial iterations
have almost no difference in the final result. But smaller ranges alter the

result of those first iterations too much. Equally, fixing its value after iteration

60 does not improve the final result (and takes a longer time) while we already
know what happens if we fix it before.

4.3 Reconstruction of a point source

4.3.1 Study of the simulators

Once we have fixed the convergency criteria, we are going to start the
reconstruction of images using the explained methods. First of all, we are going
to do a study of the simplest case; the reconstruction of a point source (with
intensity 100 photons/cm?) in the field of view centre, and in absence of
b_ackground noise (fig. 4.10). We are going to illuminate the simulators
described in section 3.4 with this source and compare both. From this

comparison, we are going to study if we can only use the geometrical simulator
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(very much faster) to develope the
reconstruction software and study
the characteristics of the different
reconstruction methods considered.

The results can be seen in
figure 4.11: in fig. 4.11 (a) it is shown
the signal detected in the LEGRI
detector plane when using the
geometrical simulator, and in fig.
4.11 (b) the detected signal when
using the Monte Carlo method, done
with. GEANT-3, throwing photons
with an energy of 100 keV (the
energetic range of LEGRI is 20.100
keV).

Detector plane

(a)

'ﬁﬁ[,..l,,.n.\‘a.

-6 -4 -2 0 2 4 [}
Sky gamma source
Figure 4.10: Source of 100 photons/cm? in the field of
view centre,

Detector plane

()

Figure 4.11: Detection of fig. 4.10 using (a) the geometrical simulator and (b) the Monte Carlo method

As it can be seen, the obtained results in both cases is similar. The main
difference is that the result obtained with the Monte Carlo method has
statistical fluctuations, due to the random nature of the detection process

(although the fluctuations will be fewer as the count number increases), and
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the measured counts are smaller (about 80 counts/cm? opposite to the 100 exact
counts of the geometrical simulator) because the efficiency of the detectors in
the Monte Carlo is not 1 (in the geometrical simulator we do have considered
a value of 1). The detected photons in detector plane units that are covered by
opague mask elements are due to photons scattered about the pasive telescope
material, and they work as additional noise.

Both the statistical fluctuation and the efficiency smaller than 1 are
phenomena easy to implement in the geometrical simulator, and therefore we
can work without using the Monte Carlo method. Anyway, although we
implement the statistical fluctuation in our geometrical simulator, in all this
chapter we will use an efficiency equal to 1, because using one efficiency value
or other only acts as a scale factor, and the efficiencies given by the Monte
Carlo method do not agree with the true LEGRI efficiencies (due to electronics).
We now say that in chapter 5 we will perform simulations using the measured
LEGRI efficiencies. But in this chapter the only thing we pretend to do is a
comparative analisys of the behaviour of our different reconstruction methods.

4.3.2 Reconstruction

The detected images, shown in fig. 4.11, are the starting point of our
reconstructions. We will use them as inputs of our algorithms, and the
reconstruction must be as similar as possible to the source image (fig. 4.10).
Applying the described reconstruction methods to this detected images, we get
the reconstructions shown in figure 4.12. In the (a) column on the left we have
the reconstructions obtained from the geometrical simulator; in the (b) column
on the right we have the ones obtained from the Monte Carlo model. From top
to bottom, the used reconstrution methods have been: Finely Sampled Balanced
Correlation (FSBC), 8-decoding, maximum entropy and the EM algorithm,
respectively (turning back to section 4.2, the execution time of the

reconstruction program using FSBM and 6-decoding was less than 0.2 seconds).
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Figure 4.12: Reconstructions of the detected images shown in fig. 4.11
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The first point to emphasize is that, using d-decoding, the reconstructed
image is not centred in the field of view, but shifted (to the left and top in this
case). As it was said in section 2.9.3, this is because the subdivision different
to 0 in each element in the G array (fig. 2.31) is not centred; in our case this
is imposible, because we can not subdivide the mask elements in an odd
number of subdivisions (so that we would have a central subdivision), but only
2x2 times. Choosing another subdivision different to 0 (but the same for each
G element) we have a different reconstruction. See fig. 4.13, where the non-null

subdivision is: (a) [ _.;g,(b) 1 ][R N — [ and (d) .....00;

(this is for the case of a hole; for an opaque element, just change 1 by -1).

|
i
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-6 -4 -z o 2 4

Reconstructlon

(b)

3 i Ll i1 1
-6 -4 -2 9 2 4
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(a)
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Reconstruction Reconsiruction
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Figure 4.13: Variations of §-decoding for the detected image shown in fig. 4.11 (a)

These variations of 8-decoding have been applied to the image detected

with the geometrical simulator and, of course, the first image coincides with
the second image in the (a) column in fig. 4.12. Given the form of eq. 3.1, that
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yields the reconstruction when using correlation, and given the definitions of
the G array for FSBC and 8-decoding shown in fig. 2.31, we can realize that
FSBM is exactly the sum of all the possible choices of d-decoding and, in fact,
if we add all the images in fig. 4.13, we get:

Sum image

Figure 4.14: Sum of the images in fig. 4.13

which is identical to the image obtained with FSBC (fig. 4.12 (a), image on the
top). This means that we can trivially pass from an image done with d-decoding
to the equivalent image with FSBC (and also vice versa, although not so
trivially), because they are equivalent.

The next point we are going to consider is the reconstructed source
intensity. For images in fig. 4.12 (a) (those obtained from the geometrical
simulator), the reconstructed intensities are: 4800 photons/cm? for FSBC in the
central pixel (=100 photons/cm® * 48, because there are forty eight 1’s in the G
array); 1200 photons/cm® for 8-decoding (=100 * 12); 89.73 photons/em? for
maximum entropy and 99.99 photons/cm” for the EM algorithm. For the FSBC
and d-decoding cases we see that the image is multiplied by a number that is
the number of 1’s in the reconstruction array (N, = 12 for O-decoding and 48
for FSBC in our case), as it was said in section 2.9, and we only have to divide
by it a posteriori to get a more realistic estimation of the intensities. In fact,
although for clarity in the dissertation it was not mentioned in section 2.9, we
can do it implicitly, including that factor in G. That is, each 1 and -1 in the
reconstruction array can be substituted by 1/N, and -1/N, (therefore it is
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possible to achieve the "ideal" case of eq. 2.21). The images that will be shown
afterwards with this two methods will be corrected by this factor. As for the
maximization methods, we can clearly see that the EM algorithm reconstructs
better the intensity than the maximum entropy method.

For the images in figure 4.12 (b) (those obtained from the Monte Carlo
model), the reconstructed intensities are: 3926 photons/cm?® for FSBC (= 81.8
* 48), 1002 photons/em? for §-decoding (=83.5 #* 12), 75.1 photons/cm® for
maximum entropy and 79.2 photons/cm® for the EM algorithm. We can clearly
see that the main effect of an efficiency smaller than 1 is a change on the scale;
it is as if we detect a source with smaller intensity. This can be easily
corrected, dividing the reconstructed intensity by the efficiency or including
this factor in the G array; for the maximization methods, the correction can be
done including the efficiency in the ® array (see section 5.3).

The other effect we can see is that the statistical fluctuation worsens the
image for the correlation methods (which are analytical methods that do not
consider such fluctuation). The image background (where there is not any
source) shows a bigger noise than the one observed in the maximization
methods (although this is partly due to the smaller pixel size chosen in these
last two methods); the background oscillates between -110 and 166 for FSBC
and between -57 and 85 for &-decoding. We have pixels with negative
intensities, due to the fact that the statistical fluctuation does not allow the
total cancellation of the 1’s and -1’s in the G array. In the correlative methods,
the pixel size is fixed, as we have said in section 2.5. In balanced correlation,
the pixel size is given by the nominal resolution of the telescope (AoxAca, being
Ao=arctgl(c/f)=2.54°, where ¢ is the size of a mask element and [ the
mask-detector plane distance). In FSBC and 8-decoding, when we subdivide the
mask, we also subdivide the pixel size (although the resolution, as we saw in
2.9.2 and 2.9.3, is still the same). In our case we divided it by 2, and so the
pixel size is given by (Ao/2)x(Ac/2). But the maximization methods do not have,
in principle, a defined pixel size, and it can be as small as we want.

In the previous paragraph we said that a smaller pixel size decreases
partly the level of noise in the rest of the image because the noise counts
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assigned to a sky region will be shared out, as in a histogram, among smaller
"channels", and so there will be less counts in each channel (the more pixels in
a sky zone, the smaller noise counts in each pixel). Nevertheless, the absolute
noise is smaller too. If we reconstruct the image with the same pixel size (and
with the same number of pixels: 11x11) as in the correlation methods, using
maximization methods, we get that the noise in the image background
oscillates between 0.004 and 0.75 for maximum entropy, and between 8:10*
and 1.25 for the EM algorithm. Of course, it is a smaller variation than in the
correlation methods, and non-negative.

The possibility of using a pixel size as small as we want in maximization
methods allow us that the reconstructed source in fig. 4.12 could be as "point-
like" as we want, so it can be more similar to the real source (fig. 4.10). But
this is due to the fact that the source is in a position where projects a shadow
that coincides exactly with the detector plane units position, and therefore we
can see it properly. If the projected shadow does not coincide so well with the
detector plane units position the reconstruction will not be so point-like; it does
not matter how small our pixel size will be, as we will see in the next section.
This will impose a practical limit to the pixel size.

4.4 Source movement

Let us see next the effect of moving the source with respect to the field
of view centre, so that the projected shadow does not coincide exactly with the
position of the detector units. The previous source with an intensity of 100
photons/cm®, in absence of noise, will be moved from (0,,[()=(0,0) to
(0,)=(1.27,1.27) (position where the shadow will coincide again with the
detector units position) passing through the intermediate positions (0.32,0.32),
(0.64,0.64) and (0.95,0.95), as it can be seen in figure 4.15. We show the results
for FSBC, the maximum entropy method and the EM algorithm. We do not
show the case (0,$)=(0,0), since it can be seen in fig. 4.12. The simulator used
1s the geometrical simulator.
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In the (a) column we see the reconstruction using FSBC: in (b), the
reconstruction using maximum entropy and in (¢) the reconstruction using the
EM algorithm. From top to bottom, the true source positions in degrees are,
respectively: (0.32,0.32), (0.64,0.64), (0.95,0.95) and (1.27,1.27), respect to the
telescope field of view centre.

When the projected shadow and the detector positions does not coincide,
there is an uncertainty in the true sky position of the source, because the
detector plane is not able to see clearly the mask pattern. This brings a spread
of the recontructed signal, independently of the reconstruction method used,
and so the signal embraces all the zone where the source could be. Given that
the signal is shared out in a bigger zone, the reconstructed intensities are also
smaller, obtaining the real total intensity by integrating over all the zone (this
is a little more difficult with FSBC and 8-decoding, because the reconstructed
image, even in the best case, is never limited to a single pixel but occupy some
pixels, and then there is an overlapping). When the source is again in a
position such that it projects a shadow that coincides with the detectors
position, the reconstruction is again the best, as we can see looking at the
images on the bottom of figure 4.15.

As it can be seen in fig. 4.15, in the cases (0.32,0.32) and (0.95,0.95), this
is when the source is at 0.32° from a position that projects a shadow coinciding
with the detectors position, the reconstruction is quite "punctual’, and the
shadow can induce to think (wrongly) that the true source position is given by
the reconstructed source position, by the brightest pixel (when the source is in
(0.64,0.64) the source is too spreaded to confuse it with a point source).
Therefore we commit an error in positioning a point source of 0.32°, this is 20’
of arc. This is the point source location capability of our telescope, as we have
shown in table II.

An additional point that must be emphasized is that the EM algorithm
is the reconstruction method that has less spread in the reconstructed image

of all the considered methods.
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4.5 Angular resolution

Let wus now the

theoretical LEGRI response when our

study

geometrical simulator is illuminated
by the sources shown in figure 4.16:
they are four sources, all them with
an intensity of 100 photons/em?,
located in four strategic positions:
(0,0), (0.64,0.64), (-1.27,-1.27) and
(2.54,-2.54). As we said, the nominal
resolution of our telescope, given by
the angle that a mask element
subtends from the detector plane, is
2.54°, Tts half value, that is 1.27° 1s
the minimum angular distance that
we have to move a sky source so that
its projected shadow coincides again
with the detector units position.

0.64° is again the half of the
value of the previous case, and it is a
really annoying position, because the
shadow that it casts is shared out
among various detectors, and it is not
possible to solve it properly in the
detector plane. The detected image is
shown in fig. 4.17.

Since the resolution of our
telescope is 2.54°, one can expect that
only the source in (2.54,-2.54) can be
solved separately while the others

2
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Sky gamma source

Figure 4.16: Field with four sources, which intensity is
100 photons/cm?, positioned at (0,0), (0.64,0.64),
(-1.27,-1.27) and {2.54,-2.54).

&5 6 1 8 9 10
Detector plane

Figure 4.17: Detected image in the detector plane when
the telescope is illuminated by the sources in fig. 4.16.

are confused, given that their separation is smaller than the resolution power

of our telescope; the results are shown in figure 4.18.
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Figure 4.18: Reconstructions from the detected image in fig. 4.17.

We can see that, indeed, with FSBC and 8-decoding, in the central part
of the image we only have a mess, difficult to solve, because the reconstructed
images at (0,0) and (-1.27,-1.27) are overlapped, and the source at (0.64,0.64)
is spreaded, worsening the result. The only source that can be solved
separately is the one at (2.54,-2.54), mainly with 8-decoding (using FSBC it is
overlapped with the central source).
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But when we study the images reconstructed with the maximum entropy
method and the EM algorithm, we are surprised as not only the source at
(2.54,-2,64) is clearly differenced (more than in the other two methods) but also
the one at (-1.27,-1.27), that can be seen clearly! The only source that can not
be seen clearly, and which is overlapped in part by the one at (0,0), is the one
at (0.64,0.64), which is spreaded (as we have said, this is a particularly
annoying position).

We have therefore an important conclusion: the correlation methods
obtain an angular resolution which is the nominal one. But the true angular
resolution of the telescope is not the nominal but, in our case, its half, 1.27°,
which is the resolution obtained with maximization methods. In fact, the
angular resolution of a coded mask telescope, is not given by equation 2.25,

which we repeat here:

resolution = arctg[%]

where ¢ is the size of a mask element and f the distance mask - detector plane,
but is given by:

resolution = arctg[fif} (4.11)

where d is the size of a detector plane element. This means that the true
angular resolution of a coded mask telescope is given by the spatial resolution
of its detector plane, and not by the mask element size.

Therefore, with the reconstruction methods based on the correlation,
there is implicit a loss of information in the reconstructed image, information
which is retrieved when using maximization reconstruction methods. With
those methods we can obtain the true angular resolution of the telescope. The
only exception will occur when the detector plane elements and the mask

elements have the same size; in this case, both resolution will be the same.
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The results in section 4.4 and in this section say clearly that, although
in maximization methods we can use in the reconstructed image a pixel size as
small as we want, there is a practical limit to its size (as it was pointed out in
section 2.12.1) because our data are finite and we can not get from them more
information than the one they have. Besides, if we have more pixels in the
image, the algorithm will take longer time in carrying out the reconstruction.
We will use for maximization methods a pixel size of 0.64°%0.64°; this is half
the true angular resolution, as it has been done in the images shown so far.

If we compare the images in figure 4.18 (specifically the source at
(-1.27,-1.27)) with the images of figure 4.15 (specifically those at the bottom)
corresponding to a single source at (1.27,1.27) we have another important
conclusion to emphasize: the reconstructed source intensity in a given pixel is
rather independent of the presence or absence of other sources inside the field
of view. This is a fact implicit in the correlation methods, as it was shown in
section 3.2.1; in those methods all pixels are independent of the others. But this
was not so clear in the maximization methods. The EM algorithm is the
maximization method in which the reconstructed intensity is less affected by
the presence of other sources.

In fact, the presence of other sources affects the reconstruction in
maximization methods, but not so much the final image structure as the
number of ilerations needed to get the image. As the source is more complex,
the algorithms are slowed down; this is because it is more difficult to fulfil the
stopping requirements that we have explained in section 4.2.

4.6 Ghosts

We have so far limited the field of view in the reconstructed images to

a mask cycle; this is the field included in 2x2 times the base pattern of the
mask (see fig. 2.15), and it is (x6.34%)x(+6.34°). But we have to remember that
the LEGRI mask is made up of 2.8x2.8 times the base pattern, and the
collimator does not limit the detectors field of view to a cycle: this means that
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our field of view is bigger, and sources outside these +6.34° will give a
modulated signal in the detector plane. This will generate the ghosts
mentioned in chapter 2; there will be different source positions that will
generate the same shadow on the detector plane, and this will appear in the
reconstructed image. We can prove it if we do not limit the field of view on the
reconstructed image to a cycle but use the complete field of view, that is given
by the collimator height and is equal to (+10.53°)x(x£10.53°) (or also if we limit
the field of view on the reconstruction to a cycle but we put a source outside it -
obtaining, therefore, a reconstructed source inside the field of view-). In fact,
as we have said in section 2.7, we will have ghosts even if we limit ourselves
to a mask cycle, because in this case border of the field of view is degenerated
(see fig. 2.17) and any source in its border would appear also on the opposite
border (and if it were on a corner, it would appear on the four corners).

Let us work using the complete

field of view of our telescope and r o
illuminate it with the field of sources _
shown in figure 4.19; it consists of el
three sources with intensities 100 g
photons/em?, and positiones at (0,0), >° ?

(5.08,0) and (-5.08,-5.08). On this "}

. 25 b
occasion we have added to the g
. . . -5
detector plane a poissonian noise :
. 1.5 -
with a mean value of 30 counts/cm?. :
. . 10 F

If we reconstruct the image with L

T'SBC, §-decoding, maximum entropy A8 75 -5 25 025 575 10

Sky gamma source
and the EM algorithm, using the Figura 4.19: Fuente celeste

whole telescope field of view, we get
the results shown on the following page. In the last two methods we have used
two different representations: tone map (each grey tone is an intensity) and

surface map (the intensity is represented by the height).
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As it can be seen, each source not too near to the centre field of view will
produce ghosts in the other directions where the same mask pattern could be
seen; 8o, the source at (5.08,0) will produce a ghost at (-7.59,0), and analogously
the source at (-5.08,-5.08) will produce three ghosts at (-5.08,7.59), (7.59,-5.08)
and (7.59,7.59).

In the methods based on correlation, these ghosts are exactly the same,
because the correlation is ¢yclic. In these sky pixels, the detector plane data are
correlated by the same permutation of the reconstruction array G and therefore
what we get is exactly the same. Something similar seems to happen with the
EM algorithm, although it is not the same phenomenon, because the EM
algorithm (as the maximum entropy method) does not reconstruct the sky pixel
by pixel (as we said) but all of them at once. One of the most surprising
characteristics of our EM algorithm is that it reconstructs all the ghosts
practically with the same intensity.

But if we compare the reconstruction by the maximum entropy method
(fig. 4.20) with the original source (fig. 4.19) we can see that the three
reconstructed sources exactly correspond to the true sky sources! And its ghosts
are very suppressed. How is it possible? If all the ghosts project the same mask
pattern on the detector plane (except for a difference in the detected intensity
due to the collimator), how can the maximum entropy method find the true
sources out of all the possible sources? Well, in fact it can not. What the
maximum entropy algorithm does is to favour the source/ghost nearest to the
centre of the field of view, as we can prove if, instead of using the sources field
of figure 4.19, we use the one in figure 4.21 (a), where we have subtracted the
source at (5.08.0) and we have put instead another (also with an intensity of
100 photons/em®) at (-7.59,0); this is, the place where the ghost appears. In
figure 4.21 (b) we can see the reconstruction with maximum entropy,
represented in surfaces map. As we can see, the source is again reconstructed
at (56.08.0) although now the true source now is at (-7.59,0); the maximum

entropy algorithm reconstructs the ghost/source nearest to the centre of the
field of view.
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Figure 4.21: Sky source (a} and reconstruction (b) with the maximum entropy method

Of course, with any method we can always determine which ghost is the
true source by operative procedures, as it was explained in section 2.7, varying
the telescope pointing; although in LEGRI this operative method is somewhat
limited by requiring that the LEGRI pointing direction must always be
orthogonal to the solar axis. This means that one of the axis (for instance o)
varies only as LEGRI turns around the Sun; this is, 360° in 365 days (approx.
1t varies one degree per day), while all our movement and pointing freedom is
in the other axis (B).

Furthermore, as the LEGRI mask is not made up of 2x2 cycles, the
ghosts are not limited to the border of the field of view as it was explained in
section 2.7, but they come into the telescope field of view: a source near to the
border of the total telescope field of view, for example at 0=10.1°, will produce
a ghost at 0=-2.54°, because the patterns projected in the detector plane from
both directions are the same and so the operational procedure described in
section 2.7 needs to be more exhaustive. Nevertheless, this will not be needed
as we will see in section 5.5.
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4.7 Collimator effect

Let us now study the decrease of the intensity in the reconstructed peaks
shown in figure 4.20, as they move away from the field of view centre. Let us
begin with the FSBC case and 8-decoding; as can be seen, the sources more
remotes to the central position are weaker, although the three original sources
have the same intensity. This is due to the suppressor effect of the collimator.
The reconstructed values of the image are, for FSBM: 103.3 photons/cm? for the
central source, 60.7 photons/cm? for the source at (5.08,0) (and its ghost), and
34.8 photons/cm?® for the one at (-5.08,-5.08) (and its three ghosts). Similarly,
for 8-decoding, these values are: 104.2 photons/ecm? for the central source, 59.8
photons/cm? for the source at (5.08,0) and 42.7 photons/em? for the one at (-
5.08,-5.08).

If we subtract the background (that is added to the pixels where the
sources are, and whose value -after dividing by the number of ones in the G
array- is about 2.5) and we divide these so corrected intensities by the
suppressing factor of the collimator (whose value for the three mentioned
positions are 1, 0.565 and 0.32 respectively -see section 2.11.1-) we get that the
so corrected reconstructed intensity is about ~100. This is, the suppression we

see in the reconstructed peak is due indeed to the collimator.

The shrewd reader could ask why we do not include this collimator
correction in the algorithm, so the image already shows the corrected sources.
In fact, it is possible (and easy) to do, although we think it is not suitable for
several reasons: a) to correct the image by dividing its pixels value by the
suppressing collimator factor not only affects those pixels where the sources are
but also all the image including the background pixels; b) the background (due
to noise in the detector plane, or to statistical fluctuations in the detected
counts, or to an incorrect reconstruction -for example, because some detectors
do not work, as we will see in section 4.11-) which is usually flat and different
to 0, when we correct it by the collimator factor is not so flat but grows as we
go away from the centre (in pixels near the border, for example at (o,3)=(10.8,0)
the suppressing collimator factor is 0.024; therefore its inverse is 42. The

background in this zone is 42 times bigger than the one at the centre!). This
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means that acting in such a way we introduce a structure in the reconstructed
image that could make difficult to see the sources. So we think it is better to
do this correction a posteriori once the sources are identified.

For the EM algorithm, the observed decreasing in the sources more
remote from the centre is not due to the collimator effect, as the algorithm
takes into account its effect, looking for the map more coherent with the data,
but to the fact that some ghosts appear. Indeed, if we concentrate on the source
at (5.08,0), its expected counts in the detector plane are given by its intensity
(49.1-photons/cm® multiplied by the corresponding collimator factor (0.565)
plus:the intensity of the ghosts at (-7.59,0) that is 51.2 photons/cm?, multiplied
by the corresponding collimator factor (0.305) (we add the intensities of the
source to its ghost because the map is reconstructed as a whole; this is not
correct for correlation methods because they reconstruct the map pixel by
pixel). This procedure gives us an expected count number in the detector plane,
corresponding to the source and its ghost, of 49.1 * 0.565 + 51.3 * 0.305 = 43.4
counts/ecm?, which is equivalent to a single source at (5.08,0) with intensity 77
photons/em® (77 * 0.565 = 43.5); and in fact this is the reconstruct-ed intensity
given by the EM algorithm when limiting the reconstruction to the field of view
of one cycle, removing thus the ghosts (or the true source if it is outside the
field of view of one cycle).

This means that the collimator has in fact a suppressor effect in the
reconstructed intensity, but it is due to the diminution of the Signal to Noise
Ratio (SNR). The noise is in proportion bigger for the source at (5.08,0) than
for a centred source with the same intensity. In absence of noise, the source is
reconstructed with a bigger intensity (~100) (see next section for the noise
effect in the peak height). Anyway, the main effect is that the source intensity
1s shared out among the ghosts (and this is not a collimator effect, but depends
on the mask pattern); the more the ghosts, the less the source counts there will

be in each ghost. The intensity of the central peak is 87.2 photons/cm?, and for
the source at (-5.08,-5,08) and its three ghosts, it is ~28 photons/cm? each one.
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For the maximum entropy method, the reconstructed intensities are 79.6
photons/cm?® for the central pixel, 68.3 photons/cm?® for the source at (5.08,0)
and 40.7 photons/ecm? for the one at (-5.08,-5.08).

We see that it appears a suppression due to the collimator. In part, as
with the EM algorithm it is due to the increase of the noise in proportion to the
signal that it makes, as in the EM algorithm, the reconstructed peak wider and
shorter (see section 4.8); anyway, the suppression is bigger than what one could
expect and it is not only due to the increase of the SNR but to the collimator
itself too. This suppression appears even in absence of noise (this does not
happen with the EM algorithm; one can not either associate the suppression
to the ghosts presence, because there are not ghosts in the maximum entropy
method).

Therefore, although the algorithm indeed takes into account the
collimator effect (in @, similarly to the EM algorithm), the reconstruction of the
pixels more distant to the image centre is affected by the collimator and is,
mysteriously, worse than what one could expect; at first sight it seems as if it
were not implemented. It is difficult to explain this odd behaviour, unexpected
in principle, but it anyway appears when the reconstruction is done; it is as if
the maximum entropy method, as it observes less counts corresponding to that
sky pixel, were more insecure in its answer and gave a more cautious intensity
value. Perhaps this is partly owed to the fact that the method looks for the map
compatible with the data that is smoother and with less structure.

About the imaging capability, the maximum entropy method (given that
it favours the ghost/source nearest to the image centre -and this happens even
if we limit ourselves to a cycle, or if we reconstruct in the whole telescope field
of view-) is equivalent to the EM algorithm when we limit it to the field of view

of a cycle. Nevertheless, about source intensity reconstruction, the EM
algorithm works better.
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But on the other hand, if we look at figure 4.20 we can see that, in the
EM algorithm reconstruction, the background is more fluctuating than in the
maximum entropy method. In the maximum entropy method, except for the
ghosts, the background is very flat, while the EM algorithm has generated
some small fake sources in zones where there is nothing. These fake sources
come from the structure of the noise in the detector plane only. We are going
to study, then, the noise effect in the following section.

4.8 Noise effect

As we have just seen, the noise in the detector plane, added to the signal,
not only can generate background noise in the reconstructed image but can also
alter the shape of the signal and generate fake structures. This is why it is
important not to confuse a source due only to the noise structure with a true
source. In this section, the simulator is going to undergo a given sky source
(always the same) and different noise levels. With it, we will study how
sensitive to the noise each reconstruction method is, and how we can improve
the image quality. In theory one could expect that the maximum entropy
method (because it is a maximum entropy method) will be the most insensitive
to the noise of all the methods, and would generate the least structures
compatible with the data; it should be the flatest image compatible with them
and so the background should have almost no fluctuations. We will see that the

answer 18 yes and no.
4.8.1 Constant noise

Our simulator has undergone a constant noise in the detector plane and
a centred source with intensity 100 photons/cm® The results are shown in
figure 4.22; from left to right, the reconstruction method used was FSBC,
maximum entropy and the EM algorithm. From top to bottom, the noise in the
detector plane, constant except for the statistical fluctuation, was 10, 100, 1000
and 10000 counts/cm?® (the counts were sorted as a gaussian whose width was

the square root of the detected counts).
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Using FSBC, the main effect that the noise has in the reconstructed
image is that, as the detector plane noise level increases, the reconstructed
source (with an intensity of ~100 photons/ecm?®) appears "floating" in a
fluctuating background that is bigger each time, as a small floating island in
a sea more stormy each time, added to the reconstructed background (even
with really big noise levels, one can still see the source in the centre). To
emphasize this phenomenon we have used, instead of the surfaces map
representation, a variation of it, called lego representation (the surfaces map
representation assigns a point -a reticle crossing- for each image pixel, while
the lego representation assigns a whole square; in both cases, the height is
proportional to the intensity).

Regarding the maximization methods, the observed phenomenon is that,
as the noise level increases (and the statistical significancy of the signal
decreases), the reconstructed source gets wider and its height decreases.
Indeed, for a noise of 10, 100 and 1000 counts/cm®, the reconstructed intensity
of the central pixel is, for the maximum entropy method, 82.1, 52.1 and 31.5
photons/cm?, respectively, and for the EM algorithm, 95.1, 66.4 and 21
photons/em?; in both cases the signal is widened (it takes more pixels); for a
noise of 10000 counts/em?, it is not possible to see any source (note: for the
cases with 1000 and 10000 noise counts/cm?® and only in the case of maximum
entropy and the EM algorithm, we have pul an upper limit to the height in the
representation, of (.2 times the order of detected counts in the detector plane;
that is, 200 and 2000 respectively. If we suppose that the detected counts come
from a_true sky signal, one expects that its intensity has to be of the order of
the detected signal; if with this upper limit does not appear any peak in the
reconstruction, it is because the detected signal is mainly noise).

On the whole, the capability for detecting the presence or absence of a
source will depend on if the counts coming from the real source are confussed
with the noise. The statistical noise fluctuation is given by the square root of
the counts due to noise (poissonian statistics); therefore, if the source intensity
is slower than this statistical fluctuation, the source will be confused with the
statistical noise fluctuation and will not be possible to detect it. This means

that our practical limit to detect a sky source is given by:
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Intensitys yNotse (4.12)

The obvious method to improve our detection capability will be, of course,
to increase the measurement time, increasing then the count number but
improving (decreasing) the statistical data fluctuation (the noise fluctuation
increases with VB, but the counts increase with B, therefore the relative
fluctuation decreases with 1/4B). This may allow us to see sources that were
hidden by the statistical noise fluctuation and, as the counts increase, they
appear (sec a more detailed discussion about sensitivity in chapter 5).

As regards to the structures that appear in the background, we see that
for a noise of 10 counts/cm?, the background is very flat in any case. With a
noise of 100 counts/cm?®, the background is flatter in the maximum entropy
method, as it is expected in priciple, while in the EM algorithm some
structures appear, similarly to the previous section; for FSBC, the background
simply oscillates. But we observe that as the noise increases (1600, 10000), the
situation is reversed and unexpected fluctuations appear in the background
image in the case of maximum entropy, while the background in the EM
algorithm image is smoother (IF'SBC still simply oscillates).

For the EM algorithm, as the counts increase (decreasing, therefore, the
statistical data fluctuation and being more similar fo a flat case -without
fluctuation-), also the fluctuations in the reconstructed image decrease, and so
the fake images; in the case of a 10 counts/cm?® noise, the fluctuation is there,
but since the background is so weak, it is inconsiderable compared to the
reconstructed source of 100 photons/cm?, and it can not be observed, while in
the case of a noise of 100 counts/cm?, both noise and source are similar.

On the contrary, with the maximum entropy method, the structure due
to the noise increases as the noise level increases.




134 Results: Study of the reconstruction methods

4.8.2 Noise with structure

Let us force a little more the
reconstruction methods. We have
considered in 4.8.1 that the noise in
the detector plane, except for the
statistical fluctuation, was flat; but
this could not be like that. For
example, the telescope can become a
noise source due to the radiation that
will suffer in the space (as it will
occur; see section 1.6.1), and the
structural elements can become a

1 2 3 4 5 6 7 8§ 9 10

source that will introduce in the
Betector plane

detector plane a non-uniform noise Figura 4.23: Sefial en el plano detector con ruido
(for example, the armour plating variable més una fuente centrada de 100 fotones/cm’.

surrounding the detector unit). To
simulate such effect in LEGRI, we have generated with our simulator a noise
in the detector plane decreasing from the detector plane borders (nearer to the
armour plating) to the centre. We have generated a poissonian noise with mean
value of ~300 counts/cm® for the most external detectors, ~200 counts/cm? for
the following detectors, ~100 counts/cm? for the next level, and ~50 for the four
central detectors (this values do not come from any place but are just an
exercise). We have added a source in the field of view centre with an intensity

of 100 photons/cm®. The detected result is shown in figure 4.23.

The reconstruction from this beautiful detector plane, using (from left to
right) FSBC, maximum entropy and the EM algorithm, can be seen in figure
4.24. It can be observed in every case the appearance of two simetrical lobes,
due to the structure of the detector plane noise, The obvious conclusion is that
we can not forget the noise effect, it is very important to know it well and we

have to include this information in some way in the reconstruction methods.
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Figure 4.24: Reconstructions with variable noise in the detector plane

4.8.3 Extending the source space

A way of trying to improve the image that one could think if we do not
know the noise structure, consists in extending the source space (See section
2.12.1) and including the noise as another parameter to be estimated from the
data. We can only do this in the maximization methods.

If we suppose that the noise in the detector plane is constant, we can
extend eq. 2.45 to include this noise as another unknown to estimate:

D,=Y 0,0 +B (4.13)
of

The entropy is defined now by:

S = —ZB O,plogO,, - B-logB (4.14)

and the maximum entropy solution is given by equation 4.15.

-1-212‘1:;;"83‘1_?‘;‘)
A - i o
Oup = € ) (4.15)
-1-23Y" (D-‘J':)U)
B=e " %

Similarly, for the EM algorithm, the iterative solution is shown in
equation 4.16,
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(4.16)

where 100 refers to the number of detector plane units. Applying both
algorithms to the cases we studied in section 4.8.2, this is, constant noise in the
detector plane, with values 100 and 1000 counts/fem®, plus a centred source
with intensity 100 photons/cm® |, we get the reconstructions in figure 4.25.

Reconstnsetion Reconstruction

Noise: 100 counts/cm? Noise: 1000 counts/cm®

Maximum entropy

e,
S IOX I
S
v T
AP W

Reconstruction Reconstruction

Noise; 100 countsfcm? Noise: 1000 counts/cm?
EM Algorithm

Figure 4.25: Reconstructions estimating a constant noise B
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We can observe that we have now undesired structures in the images
obtained with the maximum entropy method that do not correspond to any real
source, although the central source intensity reconstruction is, indeed, quite
better. The estimation of the central source intensity, when the noise in the
detector plane is 100 counts/cm?, is now 79.9 photons/cm? (in the previous case,
when we did not estimate the noise, it was 52.1) and the estimated detector
plane noise is 7 counts/cm® (not very good). In the case when the noise in the
detector plane is 1000 counts/em?, the estimation of the central source intensity
is now 63.6 photons/cm?® (in the previous case it was 81.5) and the estimated
noise is 600 counts/cm? (better).

About the EM algorithm, the only result that deserves to be emphasized
is that the background fluctuations in the reconstructed image are smaller (in
this respect, the image has improved), while the reconstructed intensity is
basically the same: when the noise in the detector plane is 100 counts/cm?, the
estimated intensity of the central source is 63.3 photons/cm? (in the previous
case it was 66.4) and the estimated noise is 0.8 counts/cm? when the noise in
the detector plane is 1000 counts/cm?®, the estimated intensity of the central
source is 21.5 photons/em? (in the previous case it was 21) and the estimated
noise is 6.5 counts/cm?.

Of course, this method can only be applied if we have good reasons to
think that the noise in the detector plane is flat and it can be represented by
a single B parameter. For example, in the case where the noise varies and
increases from the centre to the border of the detector plane (fig. 4.23) it is no
licit to do this approximation.

Therefore we are going to extend equation 4.13 and we are going to
consider a variable noise B;; as additional unknowns to be estimated. Then, eq.
4.13 will be now:

ﬁij = EOQB‘I’?}B + ng (4.17)
ap
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With this extension of the unknowns to be estimated, the entropy is now
defined as follows:

S = —Eﬁ O,plog0,, - }:Bij-logBij (4.18)

ij

and the maximum entropy solution is now given by equation 4.19.
_1_2;\_%: q,;}ﬁ (D‘-_,-;DU-)

Ous = € ’ (4.19)
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Similarly to the previous case, the iterative solution of the EM algorithm
will be the following:

Z (I){JLB Dij
EJ ~ n
2+l C i D,;'
Ot =02 e
Z D (4.20)
ij
~ n+l s Di‘
Bij T Dy | — i
D

‘We are now going to apply these modified algorithms to the cases
previously described in sections 4.8.1 and 4.8.2 when the telescope was
illuminated by a source with an intensity of 100 photons/em? and the detector
plane had a noise (a) flat of ~100 counts/cm?, (b) flat of ~1000 counts/em? and
(e} variable of ~300 counts/cm® in the border and decreasing until ~50
counts/cm? in the centre. In figures 4.26 and 4.27 are shown the results: the
column on the left corresponds to the case (a), the one on the middle to the case
(b) and the one on the right to the case (c). Figure 4.26 corresponds to the
maximum entropy method (the first row shows the sky intensities estimation

and the second row shows the detector plane noise estimation); similarly, figure
4.27 corresponds to the EM algorithm.
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Figure 4.26: Reconstructions estimating a variable noise B

.» and detector plane noise estimations with the

maximum entropy method

Beginning with the maximum entropy method, we see that increasing the
freedom degrees (by adding the noise estimation as a part of the problem) has
a similar effect to the previous case (in which we estimated a constant noise B):
we have some undesired structures in the image, but the source intensity
estimation on the whole is better (although in case (b) the difference with the
original method -without any noise estimation- is not very big). The
reconstructed intensities are, for (a) 90 photons/cm?, for (b) 32 photons/cm? and
for (c) (variable noise) 84.4 photons/cm®. We can see that the noise estimation
is relatively good, and it @ grosse modo reproduces the noise structure
(although not its magnitude). That is, if we have no way to know the noise
structures in our detector plane, this could be a good tool to have a first

estimation of it.
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Reconstruction

Noise Noise Noise

Figura 4.27: Reconstructions estimating a variable noise B;;, and detector plane noise estimations with the
EM algorithm

About the EM algorithm, the failure is complete. The peak is more
widened, the intensity reconstruction has worsened (for (a) it is 26.7
photons/cm®, for (b) 15.8 photons/em? and for (c) 24.8 photons/em?®) and now
there are some new structures in the background. This is because the EM
algorithm "thinks" that the best noise estimation in the detector plane is one
which reproduces what is detected in the detector plane; indeed, if we compare
the noise estimations in the cases (a) and (b) with figure 4.11, and the noise
estimation in the case (¢) with figure 4.23, we see that the noise estimations
reproduct the whole detected signal and not only the counts due to noise.
Introducing these counts in the noise estimation subtracts information to the
detected signal for the sources estimation, and so the reconstructed image is
worse. We can try to improve the image using as initial value for the noise a
more realist noise estimation (for example, the mean value of the detector
plane instead of an array of 1’s). But this does not alter the result; both
methods converge to the same final result.
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4.8.4 Improving the results

The methods explained in section 4.8.3 can be useful when we do not
know the noise structure. Nevertheless, it is a better way if we can have a good
knowledge of the noise structure instead of trying to find it out using these
methods. It is possible to study and know the noise structure in our detector
plane simply by studying sky zones where there are not gamma sources (or
where the sources are too weak for our detector) during enough time. This will
give us a good model of the expected noise in the detector plane which will be
useful to correct the measurements done with real sky sources. This is possible
because, as it was said in section 1.6.1, the prevailing noise in LEGRI will be
given by the radiation induced by South Atlantic Anomaly (S.A.A.) which will
arrive to a saturation point; therefore from that moment we will have a
constant (in time) noise in our detector plane.

Reconstrocion Reconstruction

Noise ~1000 counts/cm® Noise ~10000 counts/cm® Variable noise

Figure 4.28: Reconstruction with FSBC once substracted to the detector plane a noise model

Once we have a good detector plane noise model, the first method one
could think in order to correct the noise effect in the data is, simply, to subtract
the model to the data, and to use this so modified detector plane as input for
our reconstruction methods. This will give good results when using correlation
methods, but fails when using maximization methods although it is due to

different causes. In figure 4.28 it is shown the reconstruction using FSBC for
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the cases with a noise of ~1000 counts/ecm?, ~10000 counts/em? and a variable
noise (with the structure described in section 4.8.2), but subtracting to the
detector plane a noise model, previously to reconstruct. The subtracted model
is, respectively, 1000 counts/cm? in the first case, 10000 counts/cm? in the
second and from 300 counts/cm? in the external detectors to 50 counts/em? in
the internal detectors; that is, the noise we previously had inserted, but
without considering the statistical fluctuation. As it can be seen in figure 4.28,
the reconstructed image has really improved. But if we do the same with the
maximization methods (this is, we sustract to the detector plane a noise model
and use this so corrected data as an input in the algorithm), the method fails
as we have said. In the case of the maximum entropy method, this is simply
because we are acting wrongly, as now eq. 2.44 is converted in:

5,-D,
SEE 3 Al

i i

O = e

. f _ model
being Dij = DL.J. Bij

(4.21)

but given that 6,; = D,

5}
then o;; = YD/ !!

that is, when we use the corrected plane as an input in the algorithm, we are
underestimating the experimental errors and (again) we are introducing fake
structures in the image [29]. But it is a different (and worse) story for the EM
algorithm, because the input Ir’; can be now negative! (as it can be seen in the
definition in eq. 4.21) and therefore (see eq. 2.56 and 2.57) the non-negativity
of the solution is seriously altered: not only that, but even the convergency is
damaged! As we can see in figure 4.29, where we show the convergency on the
reconstructed intensity and y?, the good convergency of the algorithm that we
might see in section 4.2.1 has been totally destroyed, and we can find intensity
values that are negative. The studied example (shown in figure 4.29) is the
case of variable noise in the detector plane, in which we have previously

substracted a noise model.
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Figure 4.29: EM algorithm convergency of the central pixel intensity and x* when a noise model is substracted

to the experimental data before the reconstruction.

The image reconstructed with
the EM algorithm can be seen in
figure 4.30. That is, if we previously
subtract a noise model from the
experimental data (method that gives
good results with correlation-based
reconstructions), the result is
completely catastrophic when applied
to the EM algorithm.

Nevertheless, not everything is
lost; we can include the noise model
in the algorithm but as part of the
detector response. That is, instead
of modifying our experimental data

] Reconstruction
Figure 4.30: Image reconstructed with the EM algorithm

when a noise model is substracted to the data before
reconstruction.

D, we modify its estimation (given by eq. 2.45) according to:

D, = y—g Oy @ + B (4.22)
o
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If we implement this in the maximum entropy model, we see that we
have corrected the small failure we did in eq. 4.12, because the sum in the
exponent is the same as before (then we subtracted the noise from the real data
and now we add it to its estimation, but as both are subtracted, the final result
is the same). In the denominator we have now the correct error value, because
we have not corrected the detector plane counts. About the EM algorithm, now
we have again the non-negativity of the solution; everything is again positive,
and the algorithm converges again. The results obtained once the noise model
has been included as part of the detector response, are shown in figure 4.183;
from left to right it is shown the reconstruction for the well known cases with
a noise of ~100 counts/cm?, ~1000 counts/cm? and variable noise. At top of the
image the results using the maximum entropy method are shown, and at
bottom the results using the EM algorithm.

Reconstruction

£ %
Reconstrudion Reconstruction Reconstruetion

Figure 4.31: Reconstructions including the noise model as a part of the detector response
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As it can be seen, now we have eliminated absolutely the structures due
to the noise, and can clearly be seen a peak in a flat background. The
reconstructed intensities for the maximum entropy case are: 66.8 photons/cm?
(for a noise of ~100), 19.3 photons/em?® (for a noise of ~1000) and 62.31
photons/ecm? (for a variable noise); respectively, for the EM algorithm case, they
are: 85.7 photons/cm? 18.9 photons/cm? and 83.22 photons/em?. As it can be
seen, for the EM algorithm this is the best way to avoid the noise effect.
Although in the maximum entropy method we had a better intensity source

reconstruction when estimating B, , there were anyway undesired structures in

ij?
the reconstructed image, mainly in the variable noise case (the sidelobes in the
image appeared whether we estimate the noise or not, even though if we had

quite a good estimation of the noise values).

But have the structures due to noise really disappeared? or are they just
so small that when compared with a true signal are negligible? what will
happen when we try to reconstruct an image of a sky zone where there are not
sources? will we get fake images due to the noise?

To test it, we have put in the detector plane a poissonian noise with a
value of ~100 counts/cm® and another of ~100 counts/em?, both in absence of
signa. We have reconstructed the signal implementing the correct noise model
in the algorithms, and the results can be seen in fig. 4.32; the top of the image
shows the results for maximum entropy and the bottom for the EM algorithm;
from left to right, the noise value is ~100 and ~10000 counts/cm®.

Since a signal must be bigger than the statistical noise fluctuation to be
detectable (this fluctuation is given by the square root of the counts), we have
used the square root of the noise value as the maximum value for the
representation; that is, respectively, 10 and 100. If a signal is detectable, this
will be its minimun expected intensity in the reconstruction (this is a stronger
constraint than the one we have used before using 0.2 times the mean detected
value as upper limit, and more accurate; therefore, if there were some real

source it would now be seen clearly).




146 Results: Study of the reconstruction methods
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Figure 4.32: Reconstruction in absence of source and in presence of noise, using a model of it

One can see that, for the EM algorithm, in the case of low noise (~100
counts/cm?®) there are some structures (with an intensity of the order of 0.3
photons/cm®) because of the statistical noise fluctuation; this fluctuation
disappears when the noise is stronger and the relative fluctuation is thus
smaller (this can be achieved by increasing the measure time). In all the other
cases we can not see any structure that could be confused with a real signal,;
this means that a good knowledge of the noise structure eliminates any ghost
source due to it (although any reconstructed source can be identified as a ghost
source due to the noise or as a real source simply by varying the pointing
direction of the telescope; if it is a true source, it will move in accordance to the
pointing change. Anyway, although we could identify true sources by varying

the pointing direction, it is better to have an image as good as possible).
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Therefore, our conclusion will follow the old maxim "If you can not defeat
your enemy, join him", that is, the best way to correct the noise effect and
avoid its influence is to know it well (studing sky zones where there are not
sources) and afterwards subtract its influence to the data.

What we have done in this section is a particular case of fixing the value
of certain pixels and mantaining them invariable in each iteration; in this case,
following the idea of section 4.8.3 (in which we included the noise as
parameters to be estimated) we have fixed the value of the "pixels" correspond-
ing to noise to a certain value (the one of our noise model). We can always fix
some pixels with a given value, so they do not change in each iteration,
estimating only the remaining pixels (in fact this is what we do when we limit
ourselves to the field of view defined by a mask cycle (£6.34°), because we fix
to 0 the value of the pixels outside this field of view). This technique can be
used to improve the image; for example, if we know with certainty that in a
given pixel there is a source of known intensity, we can fix this value and
iterate the remaining image to improve it).

4.9 Extended sources

Until now we have studied the behaviour of our telescope to (one or
some) point sources. It is true that an extended source can be considered as
made up of many point sources (when we use a discrete sky); but it is also true
that when the sources are too near they suffer an overlap when reconstructing,
or spread when the mask shadow does not match with the detector plane units,
as we have checked. So, how will the telescope work when illuminated with an
extended source? Could we reconstruct the source shape? And what about the
intensities?

Therefore we are going to study the response of LEGRI to an extended
source by illuminating it with the sky source that is shown in figure 4.33 (a),
in absence of noise. This source we have generated has the shape or an A. In
figure 4.33 (b) we can see the detected signal in the detector plane, and from
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1t we have reconstructed the image: figure 4.33 (c) with FSBC, (d) with
d-decoding, (e) maximum entropy methods and (f) the EM algorithm.
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Figure 4.33: Detection and reconstruction of an extended source
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These images have been done using the field of view defined by a mask
cycle. As we can see, FSBC reconstructs something more or less similar to the
source, although it is very blurred; the image is better with 8-decoding, because
it has a better contrast. But the best results are obtained with maximization
methods.

All the pixels in the source image have the same intensity: 100
photons/cm?, but the intensity in the reconstructed image is not uniform at all,
it clearly favours some pixels; specifically, those positions that project a shadow
which match with the detector plane units are favored.

4.9.1 Multiple pointing

If we want to improve the results, we need to obtain more information
from the source. At the beginning of this work, one might ask oneself why we
have not considered more clasical methods that work successfully in other
fields and problems, as for example the least squares method. In this method
we fit some few parameters to a lot of data, all them following in principle the
same law; this means that we have very few unknowns and very much data.
Here the problem is just the opposite; let us evaluate the unknowns and data
we have: our unknowns, that is the sky pixels, will depend on how finelly we
subdivide the field of view, but for example, in the results we have shown,
when we limit ourselves to the field of view of a mask cycle (+6.34%) divided
into pixels with an angular size of 0.64°, we have 20x20 = 400 pixels or
unknowns (if we also try to evaluate the noise, we will have other 100
unknowns); on the other hand, our data are the measurements in each detector
unit, that is 100 data.

Therefore we have 100 data for 400 unknowns to be estimated. Then, in
principle we could not apply to our problem a least square method.

But there is a way to do that. We can increase the number of data we
have, by doing different pointings in the same sky zone. That is, pointing to a

zone, measuring during a certain time, shifting slightly the pointing direction,
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measuring again, and so on. So in each pointing we have a different set of data.
For example, doing nine pointings in the same zone, we have 900 data for 400
unknowns. The detected counts in detector ij during pointing p are given by
equation 4.23.

D, = %:oaﬁqagg (4.23)

That is, the same old equation, but with an added index. But what are
now .0 and B? We have so far said that the co-ordinates were given by the
telescope and were intrinsic to it; for each pointing we should have a different
co-ordinates system. What we have to do is to choose one of them as reference
pointing and take it as master co-ordinates system, referring the other
pointings to this one (see figure 4.34).

(0,0)

mp Reference pointing
——+ Other pointings

------ *» Co-ordinates of the
sky source respect to

the reference pointing I
Telescope

Figure 4.34: Different pointings in the same zone of the sky. We take one of them as master
reference system

The sky source co-ordinates (o,B) are measured respect with to the
reference pointing co-ordinates system. Likewise, (a,,,3,) (the field of view centre

of another pointing) is also measured with respect to the reference pointing
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co-ordinates system. Therefore, the (o,B) coordinates of the sky source, with
respect to the pointing p, are given by (o-0,,,p-B,) (this is not exactly true, but
for pointings that are not rotated very far from the reference pointing -say a,,
B, < 10°-, this is an excellent approximation); that is, by:

(I)(IB = (I)'fl_up'ﬁ_ﬁp (4.2-4:)

ijp ij
therefore, equation 4.23 is given by:

™ p’ﬁ-ﬁp
D, = Zoaﬁq};a (4.25)
ap

This equation is equivalent to the following linear equation

i

O —— (4.26)

just doing the equivalence y=D, x=® and a=0. Taking several pointings, we can
try to estimate the g parameters by means of a least square fitting. Applying
1t to the problem of the source with the shape of an A (figure 4.33 (a)), we have
made nine pointings of the sky source, in a 3x3 grid {(and without rotations;
that is, all the o and B axis are parallel). The central pointing has been taken
as reference co-ordinates system. The (o,,3,) co-ordinates of the other eight
pointings (with respect to the central one) are:

-1, 1 0,1 1,1

-1, 0 0, 0 (master 1,0
system)

-1,-1 0,-1 1,-1

For the least square fitting of the so obtained data, we have used an
standard mathematical calculation software, very used in physics: the CERN
mathematical libraries (or cernlib [41}). Specifically, the used subroutine has
been LINSQ, which carries out least squares fittings of linear functions.
Previously the subroutine was tested in some typical least squares fitting

problems, obtaining good results.




152 Results: Study of the reconstruction methods

The disappointing result of the fitting for the parameters ¢ (or what is
the same, O) is shown in fig. 4.35; anyway it is still possible to glimpse the A
shape.

Figure 4.35; Reconstruction of fig. 4.31 (a) using a least
squares fitting and nine pointings.

Conclusion: it is possible to apply a least squares fitting method, but with
not very good results.

But, anyway, since we have used several pointings of the same zone, we
have obtained more information from the source than what we had with a
single pointing, and this means that, in principle, we ought to be able to obtain
a better reconstruction. Therefore, we are trying to apply the multiple pointing
method to our maximization methods, and to generalize them. This general-
ization will be very easy using equation 4.23, and so, the generalization of the
maximum entropy iterative solution (given by eq. 4.10) will be:

weay . B8, (D7 = D, )
_1_2?\:! (I-"J rd P iy p
ot o (n Yo L (2 b —— (4.27)
af B

n+1 n+1

And similarly, the generalization of the EM algorithm solution (given by
eq. 2.56) is now:
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o-o - D
E €IJij e B ff
ijp D.. (4.28)

O~n+1 - On ijp

iip

Applying these new algorithms fo the nine pointings we have done
before, looking at the source in fig. 4.33 (a), we get the results in figure 4.36 (on
the left with the maximum entropy method and on the right with the EM
algorithm).

ot L . VR BT LA 1
-4 -2 0 2 -4 -2 1] 2
Reconstruction Reconstruction

Figure 4.36: Reconstructions with the maximum entropy method and the EM algorithm, using nine pointings of
the source in fig. 4.33 (a)

Now we can say "eureka"! The reconstructed image is now much better
than when we did a single pointing (see fig. 4.33). As the pointing number
increases (increasing therefore the information from the source), we indeed
improve the reconstruction. The drawback is that now the reconstruction is
slower: in the case of the EM algorithm, it takes nine times more time. But in
the maximum entropy method it is worse; the absolute value of the sum in the
exponential (that now takes nine times more time than before) is also about
nine times bigger, and then, small fluctuations in the A" value produce
fluctuations bigger than before, due to the magnification power of the
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exponential. Therefore, these fluctuations must be counteracted by doing a
finely sampling when seeking the correct A" value (typically, nine times finer),
because otherwise it could not converge. That is, now the maximum entropy
method takes 9x9=81 times longer.

As a final remark, let us say that if the pointings grid width were of 1.27°
in place of 1°, we would have not additional information. We would have the
same, but permuted (remember that 1.27° is the angle that a detector plane
unit subtends from the mask) and thus the reconstruction obtained would
exactly be the same we obtained with a single pointing.

4.10 Non-cyclic patterns

We have seen that using a cyclic mask pattern is a good idea when we
reconstruct the image using correlation methods, thanks to the autocorrelative
properties of the MURA and URA patterns, when the correlation is done
cyclically. But, in fact, we have not used the MURA properties when
reconstructing with maximization reconstruction methods (we have seen that
these last methods give in general better results, and for simple telescopes as
LEGRI can be absolutely competitive); in fact we have had more troubles than
advantages with a cyclic mask when using maximization methods (mainly the
ghosts, that for the EM algorithm means a weakening of the source, as the
source. intensity is shared out among the ghosts). That is why we are going to
prove some non-cyclical masks, to study its behaviour and to check whether
they could be preferable for LEGRI. Could this suppose a reappearing of the
random masks for simple telescopes?

We have implemented three 14x14 random masks and a 19x19 MURA
pattern (from which we have extracted a 14x14 piece} and illuminated the
telescope with the sources in fig. 4.19 (but in absence of noise). In figure 4.37
the results are shown: in each row we see, on the left, the implemented pattern
(the one on the bottom is the MURA), at the centre the reconstruction with the
maximum entropy method, and on the right, the reconstruction using the EM
algorithm.
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Figure 4.37: Reconstructions using different mask patterns
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In this case, as in section 4.6, the image has been reconstructed using the
whole field of view. As one can see, comparing these images with those of
section 4.6, now we have no ghosts; or almost not. In the EM algorithm (the
reconstruction corresponding to the first random mask), one can see an
anomalous structure on the right, over the position (10,0); for the second
random, the reconstruction has some small structures all over the image; the
third mask is the random mask that produces better results. But when we use
the MURA pattern we have a marvellous flat background without structures.
For all the reconstructions using the EM algorithm, the intensities are properly
reconstructed, giving ~100 photons/cm?®.

The maximum entropy method, in reference to ghost structures, has a
better behaviour; in all the cases we have a similar image, with small
background fluctuations which are smaller in the case of the first random mask
(the background is very flat). Nevertheless it is again the MURA pattern the
one that has the best results, since it reconstructs the sources intensity better
than the other cases (note: contrary to the EM algorithm, the collimator affects
the intensities when reconstructing with our maximum entropy method, even
in absence of noise -as in this case-, as it was said in section 4.7).

Concluding this section, and as the maximization methods have more
advantages than disadvantages in our case, it would be preferable a non-cyclic
mask for LEGRI. And, although with a random pattern one can obtain good
results, the best results are obtained with URA and MURA patterns, since in
a random pattern, in different parts of the mask, subpatterns that are similar
(just by pure hazard) can be produced, and they could produce ghosts.

4.11 Damaged detector plane

What would happen if the detector plane suffers some damage and some
of the detector units were useless? Would the telescope loose the imaging
capacity? To find the answer out, we have simulated this effect by
"disconnecting" some detector units in our detector plane. Specifically, and
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given that the electronics is common
in each row of 10 detectors (in each U
of the detector plane), and supposing
a damage in the electronics, we have
disconnected the U’s number 1, 4 and
8. Besides in order to simulate a
damage in particular detectors, we
have also disconnected the detectors
(2,6), (2,9), (3,1), (3,8), (6,4), (7,2),
(9,7) and (10,2); that is, 38 detectors
altogether (an important loss!).
Illuminating the telescope with the
sources in fig. 4.16 (those that were
used in section 4.5), instead of what
we got (see fig. 4.17), now we get
what is shown in figure 4.38.

3IFEX
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Figure 4.38: Detector plane with 38 detector units
disconnected, marked with an X.

If we reconstruct the image from these data, we obtain the images in

figure 4.29; from left to right, using FSBC, maximum entropy and the EM

algorithm. In this example, as in section 4.5, we have not implemented any

noise, so we can compare them with the reconstructions we obtained using a

detector plane in perfect conditions.

7% "
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Figure 4.39: Reconstructions from the data obtained with 38 damaged detectors O
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We can observe that, in the case of FSBC, the autocorrelative properties
of the MURA mask (that gave us a flat background where there were not
sources) have been totally destroyed (compare this figure with figure 4.18). This
1s owing to the fact that we can not take into account all the detector units, and
thus the I’s and -1’s in the G array can not be made up for properly. In the
image we obtain we can not make anything out.

The result obtained with the maximum entropy method is better,
although anyway we still have fake structures in the image that do not
correspond to a source; on the other hand, the reconstructed intensities are
somewhat smaller (when all the detector plane worked, the intensities were
~90 photons/cm®, and now they are ~20 photons/em?). The best result is
obtained with the EM algorithm, were we get less structures and the
intensities are better reconstructed (before ~95 photons/em? and now -50
photons/cm?).

But we can try to improve this result. Why do these methods give worse
results? Because we are taking into account the signal "detected" in the broken
detector units (0) as a good value, as valid information; that is, we are
deceiving the algorithm and we do not inform to it that the counts (the absence
of counts) in those detectors must not be taken into account. Therefore, what
we have to do is substituting in equations 2.56 and 4.10 the sum for all the
factors with a sum including only the detectors that work properly. That is:

> - X
ij iJj e damaged detectors

And what about the correlation? We do not need to do this kind of
bypass, because it is done automatically and the obtained result is exactly the
same both if we bypass those detectors or not; if we look at eq. 3.1 we see that,

exactly those detector plane units with wrong information that we want to
avoid, are avoided by themselves, because D,, has a value of 0 and therefore the

product Dy, G,,;,,; is not added to the sum.
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It seems as if the same thing would happen with the EM algorithm in
the denominator of eq. 2.56; but if we include the response (the lack of
response) of those detectors that do not work, in the ® array, we will have that
all the @,

;» corresponding to broken detectors ij, will be 0 for all (o,p) and
therefore the estimation of D, (that is dividing D) will be 0; this means that
we would have 0/0 if we do not do the bypass. The obtained result when
avoiding the broken detectors can be seen in figure 4.40 (on the left for the

maximum entropy method, and on the right for the EM algorithm).
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Figure 4.40: Reconstructions, once corrected the effect of the non-operative detector units

As it can be seen, in the case of the maximum entropy method, the image
has improved a lot, and the anomalous structures that appeared in the image
have been eliminated. The reconstructed intensities have also improved; now
they are ~60 photons/cm® The same happens with the EM algorithm. The
image 1s now very similar to the one we obtained when the detector plane
worked properly (see fig. 4.18); the reconstructed intensities have also
improved, being now ~100 photons/cm® (although when the detector plane was
all right, the sources intensities were more similar among them than now).
This is a great success for maximization methods, because one must consider
that we have lost almost 40% of the detector area, and we can anyway
reconstruct with these methods images with enough quality. The correlation

methods have nothing to do in comparison to this case.
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On the other hand, as we loose detectors, we are more sensitive to the
noise effect and it is easier to generate fake structures, due to the loss of
information; the more information is lost, the more possible is that the
telescope structure appears in the reconstructed image. Of course, if we loose
too much information, there is a moment when it is impossible to work. In an
extreme case, if there is only a single detector working, for instance, the (5,6),
the obtained "reconstruction” is the one shown in figure 4.41, for maximum
entropy on the left and for the EM algorithm on the right.

Reconstraction Reconstruction

Figure 4.41: Reconstructions with a single operative detector

This means that the presence of counts in the only working detector
leads the algorithms to deduce that a source exists in one of the possible sky
positions from where light can arrive to the detector; i.e. passing through the
mask holes. Therefore, given that all the directions where there are mask holes
(seen from the single detector working) can be possible source positions, all of
them appear in the reconstructed image. That is, the reconstructed image
reproduces the mask pattern over the detector.




Chapter 5: Results. Real response
of LEGRI

5.1 Introduction

11 the results shown in chapter 4 have been obtained for an

idealized LEGRI, with detectors with the same size (1 em?) and

with an efficiency 1, and being all the non-opagiie elements

absolutely transparent. Nevertheless, as it was said in chapter

1, LEGRI is mainly an experiment of a new technology
demonstration (the technology of Hgl, and CdZnTe detectors; for the whole
experiment, the most important is to study the response and behaviour of the
detectors in space conditions).

With this we mean that the Hgl, detectors were handcrafted detectors
(there is not mass production line of detectors at the moment), and therefore
there are not two identical detectors; each one has a different size (we do not
have this problem with the 20 CdZnTe detectors, because they are commercial-
ized). The response of each detector is also different, mainly due to problems
with the flight electronics, which has a response more controversial than the
laboratory ground elebtronics, because it is designed to support the launching
and the space conditions at the same time that it must be compact and light.
These conditions limit the electronics effectiveness. In fact, there are 15
unworkable detector units: the first detector in each U, due to the fact that the
electronics is too noisy in them, and other five detectors that are almost "blind".

Besides, the honeycomb or mask tungstens support structure is not
completely transparent, but it absorbes part of the y photons that pass
through. In this final chapter we have implemented the real instrument
features (the honeycomb transparency, the real size of each detector, its real
efficiency, etc...) in the geometrical simulator described in section 3.4, in order
to study how the results of chapter 4 are altered; we also will show the real

detector response (efficiency, sensitivity, spectral response...).
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5.2 Detector response

When we have a discrete array of detectors as detector plane (or even a
continuous position detector), the response of different detector plane zones
against the same signal is not the same. In a discrete detector this means that
two different detector units on the detector plane, with identical source and
identical circumstances will measure different counts; this is magnified in our
case because we will never have "identical circumstances" since we have not
two equal detectors, as it can be seen in figure 5.1, where a picture of the
LEGRI detector plane is shown (a grosso modo, the Hgl, have a size about 5x5
mm?, although they vary quite a lot; the CdZnTe have a size of 10x10 mm?).

The efficiency is defined as the
fraction "measured counts in a
detector" / "photons arriving at the
detector". In the ideal case, when so
many counts as photons arrive at the
detector are detected, the efficiency is
1. In the real case, the efficiency is
always smaller than 1 mainly for two
reasons:

1) The detector (unless it is big
and/or masive enough) will not stop

all the arriving y photons, but there
. . Figure 5.1: A picture of the LEGRI detector plane,

will be some of them that will pass imout the collimator.

through the detector without deposit-

ing any energy (and, since in our case the detectors are semiconductors,

without producing hole-electron pairs). This implies that the intrinsic detector

efficiency is smaller than 1. This is the efficiency one obtains with the Monte

Carlo simulation, using the GEANT-3 code we described in section 3.4 (where

we considered as detected event all those photons that deposit energy in the

detector -over a certain threshold-).
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ii) Even so, the real detector will not give a signal for each photon that
deposites energy, due to the electronics, which will no process properly all the
events. This means that two identical detectors, with identical stopping power
but different electronics will give a different efficiency depending on the signal
processing electronics used. Not only that but also the electronics can produce
(and will produce) ghost counts that will not correspond to any real photon (the
so called electronic noise), and other things will also happen, as interferences

between electronic channels, etec...

In our case we had very much
Y=9 V=8 Y=7 Y=6 Y=5 Y=4 Y=3 Y=2 Y=1 Y=0

X=X X X X X X X X X X

better results when wusing the
standard laboratory ground

B le [ E3
electronics than when using the :

04

flight electronics which, as it is

compact and light (and resistant to (_,

acceleration and radiation) must

0

sacrify most of the good qualities of 44}
the ground electronics, needed for an  x_;}

ideal detection: the GEANT-3 x
simulations gave us efficiency values  x-of

of about ~0.8 between 20 and 100

Eficiencias

keV for both kinds of detector, Figure 5.2; LEGRI efficiency

results very similar to the obtained

with the laboratory ground electronics. On the other hand, the measured
efficiency using the flight electronics is about ~0.3 for Hgl, and about ~0.5 for
CdZnTe, that are clearly worse. In figure 5.2 the measured efficiency in the
LEGRI detector plane in the range 20-100 keV for photons is shown: the shown
X and Y co-ordinates correspond to the internal co-ordinates of LEGRI; the

equivalences with the co-ordinates used in chapter 4 (for example, in figure
4.17}) are given by i=10-Y, j=10-X. One can see that the first detectors in each
U (all those with X=0) does not work, and the same for other 5 detectors (all
of them marked with an X); moreover there are other (as for example X=7,
Y=5) that are almost blind. The 20 CdZnTe correspond to X=0-9 Y=0 and X=0-9
Y=9.
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Using the flight electronics does not imply only a worsening in the
efficiency, but also in our spectroscopic capability. In figure 5.3 four typical
spectra (chanel number against counts) taken during the LEGRI calibration are
shown (superimposed it is shown the background noise, detected in absence of
sources); the two spectra on the top were taken with a CdZnTe detector, and
the other two with a Hgl,. The used sources were, from left to right, Cd 109
and Am 241. On the next page, in table V, the emission characteristics of these
two sources [42] are shown.
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Figure 3.3: Spectra detected with LEGRL
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Source Desintegr. Half life | Radiation | Energy % of
emission

Cd 109 | Electr. Capture | 463 days v X K) 23 keV 102.1
Electr. Capture v 88.0 keV 3.61

o Y X L) 16 keV 38.0

Am 241 o 432 years Y 59.5 keV 35.9
o Y 26.3 keV 2.41

Table V: Radiactive sources used during the LEGRI calibration

The 22.6 keV line of Cd 109 and the line of 16 keV of Am 241 correspond
to a multiplet of X rays (from the K and L shells respectively) with different
energies but very close ones to the others (therefore it is very difficult to solve
them), so it is shown an average value of energy and a percentage of emission
intensity. We should not be surprised of obtaining percentages bigger tham
100, as it refers to the number of photons produced in 100 nuclear desintegrat-
ions, and some desintegrations can produce more that one photon.

As it can be seen, the spectral resolution of the LEGRI detectors, with
the flight electronics, is not very good; for instance, the 16 and 59.5 keV lines
of Am 241 are very close one to each other; the FWHM is about ~40 keV, and
not all the LEGRI detectors show a peak for each line in the source, but there
are others that only show a continuum; in others the electronic noise is
dominant (the detectors near X=0 are noisier). This fact, plus the lack of time
due to problems that appeared during the calibration, which delayed very much
the calibration program (when the detectors were subjected to a thermal
vacuum that emulates the space conditions, there was an outgassing of the
detectors and therefore it was necessary to encapsulate them in order to avoid
a direct contact with the vacuum), plus the need of delivering LEGRI to
LN.T.A. (for its assembling with Minisat 01 and the other modules according
to the schedule), leaded that a detailed study was not possible. Therefore we
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do not know the dependence of the LEGRI efficiency as a function of energy
(because in principle, the efficiency should be different for photons with
different energy) and thus we had to conform to the obtained data and to
calculate an efficiency integrated over the nominal range of LEGRI (20 to 100
keV). This is the efficiency shown in fig. 5.2. This array of efficiencies is called
the calibration array, and it is the starting point of later calibrations that
will be done in flight, using well known 7 sources (as for example the Crab
nebulse pulsar); these calibrations will bring successive modifications and
improvements on the calibration array (that is, the calibration array will be
updated along the mission life).

5.3 Correcting the data

Since the ideal situation would be a detector plane with the same
response for each detector unit, we will correct the data in the detector plane
to correct its un-uniformity, that we know by means of the calibration array.
In the case of correlative methods, we can do the following correction:

D; 1cm? D,

D; = = J (5.1)
/ e.Tr A. el Ty

¥ Ly

12

where g; is the detection efficiency of the detector ij, Tr is the honeycomb
transparency (with these two corrections we obtain the photons that have
really arrived) and A, is its area (with it we correct the data in order to have
which are the photons that arrive at each cm?); doing this, we correct all the
detectors to obtain D', that is a corrected version of the detector plane, and will
be our input for the correlation methods. This method is very similar to flat
fielding [36]; it consists in:

i

. T/N
D - Dﬁj[ pJ 5.2)
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where C; is an array that corresponds to the measured counts in detector i,
when all the detector plane is illuminated uniformly by a source, 7, is the total
number of the counts measured in the detector plane, N is the total number of
detector units (and so T'/N is the mean count value expected for detector unit)
and 1 is a normalisation factor that can be introduced to assure flux
conservation (that is, the total count number in D is equal to the total count
number in D°).

Using both methods one obtains a uniform detector plane. Indeed, the
result with one method is proportional to the other. The problem is that the flat
fielding, although it improves the image and eliminates structures, it falsifies
the intensity reconstruction, because the detector plane uniformity is related
to the remaining detector units, and it is calculated by means of the detected
counts, while when we correct using the efficiency, the uniformity is done by
means of the really arriving photons (either if they give signal or not). That is
to say, the detector plane uniformity is obtained in an absolute way while
with flat fielding it is obtainted in a relative way. Nevertheless, if it is
impossible or too difficult to measure the detector efficiency, flat fielding is an
excellent alternative.

This detector plane corrected by the efficiency, could be used without any
problem as an input of our maximization methods (it does not produce negative
values; although one must be careful with the experimental error that uses in
the maximum entropy method). Anyway it is more useful to include all the
information about the detection process in the detector response array @ such
as the efficiencies, the real honeycomb transparency, the different size of the
detectors (that entails, for example, that each detector has a different field of
view as a function of its size and the collimator height -the total field of view
of the telescope is given, then, by the detector with the biggest field of view-),
etc... Implementing a size and shape different for each detector is quite easy,
as it is a simple generalization of the method explained in section 3.4; now we
just have to project the real shape of the detector in the mask pattern (instead
of a perfect 10x10 square) and, as it was explained in figure 3.4, to obtain its
intersection with the collimator projection (that is exactly the same we did but

now the intersection is a different rectangle) and with the mask elements.
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Exactly as we did in eq. 5.1 (where we normalized by the area, so all the
detectors have the same response to a given flux) now we multiply ® by A,/ lem?
(because for identical illumination, a detector with half the size of other will
detect half of the counts!). Therefore, the new detector response array @ will
be:

O = T B @b (5.3)
ij ij Tom? Y i ij

being Tr the honeycomb transparency, ® the flux calculated according to eq.
3.11 (and fig. 3.4) but already taking into account the existence of detectors
with different shapes and sizes, and g; the efficiency of detector ij normalized
by the area (it was already introduced in eq. 5.1). This new @& will be used in
our maximization methods exactly in the same way as we used ® in chapter 4
(and in order to simulate LEGRI with the geometrical simulator so modified).

The transparency values were obtained using Am 241 and Cd 109
collimated sources, and measuring with a Ge type n detector. The
measurements were made with honeycomb interposed between the source and
the detector and without it. The fraction between both meditions gives us the
honeycomb transparency, whose result is given in table VI.

Energy Transparency
17 keV 62 %
21.5 keV 74 %

26 keV 84 %

31 keV 39 %

35 keV 92 %

60 keV 95 %

Table VI: Honeycomb transparency
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Since the LEGRI energy range is between 20 and 100 keV, the value we
are going to consider for the following results is the corresponding to ~30 keV
(~90%), because we consider that it is representative enough.

5.4 Noise and sensitivity

5.4.1 Noise

As it was said in section 1.6.1 and as it can be seen in [7], the main
contribution to the expected noise in the LEGRI detector plane is given by the
radioactivity induced in the LEGRI material by the protons trapped in the
South Atlantic Anomaly. The desintegrations due to this radioactivity produce
Y, B and B radiation; the B* radiation is invisible for LEGRI because liberates
positrons that are desintegrated producing two 511 keV photons, energy that
is out of the LEGRI energy range, thus we will only detect the vy and B*
radiation. The radiation induced in the mask does not have a big contribution;
the main contribution is due to the armour-plating of LEGRI (from outside to
inside, Pb, Ta, Sn and Fe; the main contribution is due to Pb and Ta), to the
collimator and to the detector units themselves [7]. In all the cases, except in
the detector case, only vy radiation arrives at the detector plane, with the B
radiation being absorbed by the passive material. The only f radiation that is
detected is the one produced in the detectors, and it is not predominant but
about a quarter of the total radiation generated in the detectors. This means
that the counts due to noise induced by the S.A.A. are mainly due to photons
coming from desintegrations in the LEGRI material.

E. Porras [7] has calculated by means of Monte Carlo models the noise
expected in LEGRI due to the S.A.A. after a year, obtaining that the noise
value is about 5:10® counts cm™® s keV?; specifically, integrating over the
range from 20 to 100 keV, it is 0.4 counts cm® s™. But this will not be the noise
expected in the real LEGRI, since each detector has an area different from 1

cm? (this was the area considered in the Monte Carlo model) and an efficiency
smaller than the expected one; therefore LEGRI will not detect a noise of 0.4
counts cm™ s, but less: the total detector area of LEGRI is 35.8 em? (far from
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the ideal model with 100 em® studied in the Monte Carlo model); the total
efficiency for photons (that is: total detected counts versus photons arriving at
the whole detector area) is 0.346. Since the greatest part of the noise counts
comes from photons (as we have said), we can use the efficiency for photons in
order to estimate the expected noise counts, on the whole detector and in the
real case:

0.4 counts cm™® s - 35.8 cm? - 0.346 = 4.95 counts/s = 5 counts/s
5.4.2 Sensitivity

The sensitivity is defined as the minimum flux coming from a source that
can be detected by the detector (it can be made out over the noise and the
statistical fluctuation) with some significance level. To develop this section we
are going to follow the reasonings in [43] (which are based in [44]).

Let f be the flux (photons em® s%) arriving from a sky source. It is
defined S as the total detected counts number coming from the source during
a certain time. Both magnitudes are related by the exposure, X, as it can be
seen in equation 5.4.

S=-X-f (5.4)

Therefore, the exposure is defined as:

X =A,T, te (5.5)

where A, is the total detector plane area illuminated by the source (that is, the
area in the detector plane where the opaque elements do not project a shadow),
T, is the total observation time, ¢ is the transmission due to residual mass
between source and detector (in our case its value come from the honeycomb
transparency and the collimator) and ¢ is the total detector efficiency. Also we
define the noise N as the total counts due to background noise. It can be
subdivided as:

N=N, +N, (5.6)
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where N, is the count number due to the background measured by the detector
plane area illuminated by the source and N, is the count number due to the
background in the non-illuminated area. We will call their quotient o

N

o = on (57)
NOff

If we have a detector plane where all its units have identical response and the
noise is uniform per area unit, it is also equal to:

o = on (5‘8)

that 1s, the fraction between illuminated and non-illuminated areas. For
detectors with the same size it will also be equal to the fraction between open
and closed mask elements (it can be similar to 1, depending on the mask; for
example, for LEGRI, it would be 12/13 = 0.92).

Let us continue with the definitions: we call C , the counts detected in
the area illuminated by the source, and analogously, C,; the counts detected in
the non-illuminated area. We have, therefore:

COR = S + ND!!,
(5.9
Corp = Nogr
An estimation of S is given by:
§=c, -aC, (5.10)
and, for square error propagation, its error is:
oS
” [acoj Cud { T -
11
[ as ( C' (6.11)
aCOlt Off

0
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If we define now N’ as:

on

N’ =N, + a*N,, (5.12)

then we have that the S error value is given by:

6= STNT (5.13)

N’ is similar to N if o is close to 1. In fact, from equations 5.6, 5.7 and
5.12 we have the following relation between N and N™

N =N, +&’N,= N, + al(oN,,) =

on o1

= (aN,p) + a(N,,) = a(N,, + N,) (5.14)

oh

N’ = oN
therefore, if we know o, it is easy to pass from N to N°.

Finally, the significance n is defined as the fraction between the

measurement and its error;

— (5.15)
(&)

that is, the number of times the signal is greater than its error. Typically, a
source can be considered as detected if its significance is greater or equal to 3.
From eq. 5.4 and 5.13, we have that the significance is:

_ S . fX
yS + N’ JfX + N’

n (6.16)

The minimum detectable flux with a significance n, f,, is given by the
following transcendent equation:

P nyf,X + N’ (5.17)

X
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The solution of eq. 17 is given by the following serial development:

[ = nyN’ 1+ " . 1 n + 0(4) (5.18)
X oWN' 2 9/N7

The sensitivity is defined as the minimun detectable flux with a
significance level n. We will use equation 5.17 with n=3 to obtain the LEGRI
sensitivity. Unfortunately we do not know N’ because the LEGRI detector plane
is very uneven, and so the o value (the fraction between the noise in the
iluminated area and the non-illuminated area) will depend on the sky position
of the source (and therefore on which area it illuminates} and the noise
structure. Similarly, in eq. 5.5 (where the exposure is defined), A, will also
depend on the source position.

Anyway, let us try to obtain an estimation of the LEGRI sensitivity,
calculating it in the case where the source is at (0,0), centred in the field of
view, in such a way that the collimator will not affect the transmission ¢.
Therefore, ¢ can be considered equal to the honeycomb transparency (as a value
which typifies the whole range, at ~30 keV it is equal to 90% = 0.9). In this
case, we have that A_ (the illuminated area) is 24.6 ecm?; given that the total
detector plane area is 35.8 ecm?, and supposing an uniform noise per area unit,
we have o= A /A . = 2.21 (very far from 1! This is due to the fact that, when
the source is centred, almost all the CdZnTe -bigger, with an area equal to 1
cm®- are illuminated). Then, we have:

A,, =24.6 cm?

t =09

T, = for example 10° s (somewhat more than one day)
e = 0.346

This gives us an exposure of X = 7.66-10° cm?® s (see eq. 5.5). Given the

noise value of 5 counts/s in the whole detector plane which we got in section
5.4.1, for an observing time of 10° s, N = 5-10° counts, and therefore N’ = o-N
= 1.1-10° counts. With these values of X and N’, and considering n = 3, we
have that the estimated LEGRI sensitivity, with a significancy of 3¢, during
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10° seconds of observing time, and integrated over the nominal energy LEGRI
range (20 - 100 keV), is:

fs = 4.12:10° photons cm™® g™
3

To obtain the mean value per keV, we divide it by 80 (= 100 - 20), and
then we get:

f3 = 5.14-10° photons em® s ke V'

Analogously, for an observation time of 10° seconds (approx. a week),
f3=1.3-10"° photons cm® s (or what is the same, 1.625-10° photons cm? s
keV?). That is, as the observing time increases, the telescope sensitivity
Increases too (we can see weaker sources). The sensitivity increases (its value
decreases!) approximately with the square root of the observing time. This
means that to see a source 10 times weaker, we have to observe during a 100
times longer time.

Let us study now a more unfavourable case, in which the CdZnTe are not
so well iluminated, for instance, considering the source to be at (2.54,0). The
illuminated area is now A,=19.14 cm?% o is now 1.15 (closer to 1!) and
therefore, N’ (for 10° seconds of observing time) is now equal to 5.75-10° counts.
We already have to include now the collimator effect in the transparency (the
colimator effect is different for each detector, because each one has a different
size; in fact, in this case, only the CdZnTe are affected by it. This gives an
mean value of 0.96). Then, ¢ = 0.9-0.96 = 0.864. Thus we have an exposure
value of X = 5.72-10° em® s. Using all these values in eq. 5.18, we obtain now
the sensitivity value:

f3 = 3.98-10° photons cm™ 57!
3

and, per keV, it gives a mean value of:

s = 4.98-10°° photons em? s keV
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which is not very different to the previous one. That is, with these two results
we can conclude that the LEGRI sensitivity, during 10° s of observing time,
with a significance of 30, integrated over the range from 20 to 100 keV is of the
order of ~4-10° photons ecm™? s (or ~5-10° photons em™ s keV'!, averaged). As
the Crab nebule pulsar in the range from 20 to 100 keV emits about 0.4
photons cm? s, we can infer that the LEGRI sensitivity in 10° s is equal to 10
mCrab (where 1 mCrab is an intensity 1000 times weaker than the Crab
nebulae pulsar emission intensity). This means that LEGRI is able to detect
sources 100 times weaker than the Crab nebulae pulsar with a significancy of
30 and during an observing time of 10° seconds.

This sensitivity qualifies LEGRI to study a good part of the known X and
y-ray sources. In table VII we show some examples of X and y-ray sources. The
emission shown is the one of the source integrated from 20 to 100 keV, in
photons cm® g,

Black holes candidates X-Ray binaries Active  Galactic Nuclei
Name Emission Name Emission Name Emission
Cygnus X-1 0.7 0834-430 0.1 NGC 4151 8.8:10°
Nova Muscae 0.17 GRO 1948+32 16102 3C273 5-107
SMC X1 13107 ‘| 0115+63 MISO 1.6-107 1C4329a 3.6:10°
1E1740.7-2942 2.6:10° H 0521+373 8.1:107

Table VIE: Some X and y-ray sources [45]

As it can be see, there are some black hole candidates that can be
detected by LEGRI, as well as X-ray binaries. In particular 05621+373 is very
close to the LEGRI sensitivity value. We are not so lucky with the AGN, whose
emission values are very close to the LEGRI sensitivity (as 3C273) or are

beneath it, as the case of IC4329a which would be detected with a significancy
level of n~2.7.
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5.5 Imaging

We have seen that our real telescope is not exactly the same as we
considered in chapter 4; we have detector units with different responses,
different efficiencies and different sizes. Does this affect in any way to the
conclusion on imaging we have obtained in the previous chapter?

One can expect that if

something is affected, one of the
effects will be a change in the
intensities reconstruction, since the
main effect of the efficiency is a
reduction in the intensity of the
detected signal from the ideal case
(although as the efficiency is different
in each detector, it is not exactly the
same as a scale change). To study it,
we have illuminated the detector

plane (once the geometrical simulator

Detector ptane
has been properly modified to include Figure 5.4: Detector plane of LEGRI

all the effects) with a source with

intensity 100 photons/cm?® (figure 5.4). Comparing this result with fig. 4.11; one
clearly sees the effect of different areas and efficiencies, and how the CdZnTe
measure more counts than the Hgl,. One can also see (although not so clearly)
that there are 15 unworkable detectors (in white).

If we reconstruct the image, correcting previously the data of fig. 5.4 as
it was explained in section 5.3 (see equations 5.1 and 5.3) and bypassing the
unworkable detectors, we obtain that the reconstructed intensity of the source
has not worsened significantly, as it can be seen in figure 5.5 where, from left
to right, the reconstruction with FSBC, the maximum entropy method and the

EM algorithm are shown.
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Figure 5.5: Reconstructions from fig. 5.4

In fact, the intensity variation one can observe in the source

reconstructed with FSBC is not due to the fact of having different efficiencies

(which has been corrected) but to the fact that we can not take into account all

the detector plane units; indeed, the detector unit i=1, j=2 (fig. 5.4) does not

work and its absence makes the estimated intensity to be smaller.

One can consider the example
in figure 5.4 (in which the source is
centred in the field of view) a lucky
case, indeed, because except for one
detector, all the illuminated area is
operating. Does the result vary in a
more unlucky case? To find out the
answer, we have now put the same
source in a different position: at
(-2.54,-1.27). It generates the detector
plane shown in figure 5.6. This case
is less favourable than the previous
one; now the source illuminates 7
unworkable detectors (almost half of

Detector plane
Figura 5.6: Deteccitén de una fuente en (-2,54,-1.27)

them) instead of one. Reconstructing the image now, we obtain the results

observed in figure 5.7. Again, from left to right, the reconstruction has been
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done with FSBC, maximum entropy and the EM algorithm.

S g ; S A ; - L L 1 1 :
-4 -2 0 2 4 -6 -4 -2 ] 2 4 o -6 -4 -2 [¢] 2 4
Reconstruction Reconstruetion Reconstruction

Figure 5.7: Reconstructions from fig. 5.6

We have again good results using maximization methods (it seems that
they are even somewhat better than in the previous case!); the result with
FSBC is similar, although the background seems to have a little more structure
and the source intensity is smaller, in part because of the collimator (in a
factor of 0.94), but mainly because we have now 7 detectors that do not
contribute to the correlation.

As a conclusion one can say that respect to the results in chapter 4, we
practically do not have any worsening in the reconstruction of the source
intensity when we use maximization methods, while we can observe a slight
worsening in the correlative methods, although it is due to the fact that we can

not take into account all the detector units in the detector plane (see section
4.11).

Nevertheless, in this case we have only studied two particular cases with
point sources, placed in two strategic positions. A better understanding of the
imaging capability can be achieved if we study an extended source. That is why
we are going to subject this more realistic LEGRI to the source shown in figure
4.33 (a) (the capital A) and compare the result with the one obtained in chapter
4. The results are shown in figure 5.8, From left to right, the method used is

d-decoding (with a better contrast than FSBC), the maximum entropy method
and the EM algorithm.
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Reconsiruction Reconstruction Reconstruction

Figure 5.8; Reconstructions of the source shown in fig. 4.33 (a)

It is now clear that there is a worsening in the imaging capability of the
real telescope regarding the ideal telescope (fig. 4.33), although it is not critical
and the image obtained with the maximization methods is quite good (but not
the one obtained with 8-decoding, where one can not recognize the A). Anyway,
it is possible to improve the image by obtaining more information from it, as
we did in chapter 4, using the multiple pointing method. Using the same
pointing sequence we used in section 4.9.1, and applying it to the EM
algorithm, we obtain the result shown in figure 5.9 (we have not applied this
method to the maximum entropy method because it takes too much time to
calculate the result, and it is expected a result similar to the EM algorithm
result, as it happened in section 4.9.1).

e S T
Reconstruction

Figure 5.9: Application of the multiple pointing

method to the EM algorithm.
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The image has improved substantially, indeed, even though it is not so
good as in figure 4.35.

Another effect one could expect is related to the ghosts. In chapter 4, all
the detectors had the same field of view, limited by the collimator height.
Therefore any source in any position inside the fiel of view affects all the
detectors equally (except if mask tungstens cover some of them). It does not
happen the same now, because, due to the fact that each detector has a
different size, they has also a different field of view (see fig. 5.10), and in most
casesthey are not square but rectangular (this means a different field of view
in each axis). That is, there will be positions inside the field of view where a
source could be seen for some detectors but not for the others (forgetting the
presence of the mask), while in other positions the source will be seen for all
the detectors (the closer to the centre of the field of view, the more the
detectors that will see the source, whereas near the field of view, only the
greatest detectors will see it).

Collimador

Detector Detector

Figure 5.10: Effect of the different detector sizes in the field of view
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Will it affect the results about ghosts we obtained in section 4.67 Let us
check it by illuminating the telescope with the field of sources shown in figure
4.19, and reconstructing the image using the whole telescope field of view,
defined now by the field of view of the biggest detectors (in this case, the
CdZnTe). We have also implemented an uniform poissonian noise of 30
counts/cm? in the detector plane (which is multiplied by the real area and
efficiency of each detector; this will give us a non uniform noise in counts in
each detector, contrary to what had happened in chapter 4). Implementing a
good noise model in the reconstruction, the obtained result is shown in figure
5.11, using, from left to right, FSBC, maximum entropy and the EM algorithm.
We have used a representation in a surface map for the maximization methods,
but not for FSBC because the image obtained with that representation was
very confussing; thus we have used a representation in grey tones.

0

25

25

AL
-6 25 5 25 0 25 5 75 10
Reconstruction

Reconstruction

Figure 5.11: Reconstructions of fig. 4.19

The FSBC reconstruction gives nothing surprising, because, as we said
in section 4.6, the correlation is cyclic, and then we obtain the ghosts cyclicaly.
They are exactly the same. But we have a great (and nice) surprise when we
look at the maximization reconstructions: there are not ghosts! This means that
the fact of having different fields of view in each detector, breaks the
degeneration we had originally: two different directions that in the ideal
telescope give the same shadow, do not give the same shadow in the real
telescope, and therefore we can differentiate betweem both cases. But perhaps

what happens is that we are favouring the ghost/source nearer to the field of
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view centre, as it has happened in chapter 4 with the maximum entropy
method. To demonstrate that this is not what happens, we illuminate now the
telescope with the source in figure 4.21 (a). The result is shown in figure 5.192
(from left to right, with FSBC -for completness-, maximum entropy and the EM
algorithm).

75 25 0 25 5 75 10 AU
Reconstrisction Reconstruction Reconstruction

Figure 5.12: Reconstructions of fig. 4.21 (a)

One can see (mainly in the case of the EM algorithm) that now the
reconstructed source is in the opposite side, that is, where it really is.
Nevertheless, the Source reconstruction is worse than before because it is now
nearer to the field of view border and therefore there are less detectors which
can see it, having then less information.

On the other hand, it is now more niecessary to use a good noise model
in order to obtain a good reconstruction (see section 4.8.4), because the systemn
is much more sensible now to the noise than before; in the reconstructions we
showed in section 4.6, the detector plane was subjected to a noise of 30
counts/ecm® plus the source (like now), and even without considering a noise
model, the reconstruction was quite good. Now we have had to implement a
good noise model to obtain a good result because, otherwise, we get the terrible
result shown in figure 5.13, where we can see a lot of structures that are not
in the real source,



e

250 s S

-5 5 2 . S 5

RGN 25 0 15 5. 75 10 RERINE -%-ﬁm G077s
Reconsiruction Reconstruction Reconstruction

Figure 5.13: Reconstructions of fig. 4.21 (a), ignoring the noise

We therefore conclude that in this more realistic model, including
detectors with different shapes, sizes and efficiencies, 15 of them unworkable,
and a transparence of the non-opaque elements different from 100%, we can
appreciate a worsening of the imaging capability, although it is not critical,
mainly if we use maximization methods; we can observe a greater sensitivity
to the noise which can be counteracted by including a realistic model of the
noise in the reconstruction algorithms. Besides, we have that now there are no
ghosts in the reconstruction.

5.6 Erxrrors

Finally and concluding this chapter, we are going to do a study of the
errors associated to the reconstructed images. Since this study has only plenty
sense in the case of the real LEGRI (given that we will use its data), we
present this study in this chapter.

What we have said for the correlative methods in section 3.2.1 is
basically still valid; the error in each pixel of the reconstructed image is still
the same for all them, although now they are not just the square root of the
total detected counts, as it can be seen in appendix II, in equation A.16 (there,
it is shown the square of the errors).
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Applying this error criteria to the examples shown in this chapter, we
have that the image obtained with FSBC in fig. 5.5 has an error for each one
of its pixels of 5; therefore, the central pixel (where the real source is) has an
intensity value of 92+5 photons/cm?; for the image obtained with FSBC in fig.
5.7, each image pixel has an error of 6, and therefore the reconstructed
intensity of the source is 79+6 photons/cm? (this value is farther from the real
value). For the three sources of the image reconstructed with FSBC in fig. 5.11,
the error is +9 for all of them. Finally, for the reconstruction of the A shown
in fig. 5.8 (done with d-decoding) we have an error of +80 in all the pixels. As
it happened in the ideal case (see section 3.2.1), the more sources in the field
of view, the bigger the error is (although now the relation is not so linear).

About the maximization methods, if we use the error criterion of [38] and
use the values in the penultimate iteration to obtain the errors in the last
iteration, we can deduce the equations for the error that can be seen in
appendix Il (eq. A.13 for the EM algorithm and eq. A.14 for the maximum
entropy method).

As it can be seen, the error formula for the reconstructed intensity O™
in the EM algorithm is approximately proportional to the value of 0" which,
once has reached the convergency, must be very similar to 0" and so, the
error value is approximately proportional to O”*. That is, except for the value
included in the brackets of eq. A.13 (the square root), for the EM algorithm, the
error of each pixel in the reconstructed image must be approximately
proportional to its own value.

On the other hand, as it can be seen in eq. A.14, for the maximum
entropy method, the error is approximately proportional to the second addend
of the iterative equation 4.10 (used in order to obtain the maximum entropy
solution). This means that the error is not proportional to the intensity of the
reconstructed image O™ but to the difference between two consecutive
iterations, 00" (since for big values of n, n/n+1 is practically 1). In figure
5.14 it is shown the error of the reconstruction in fig. 5.8 for the maximum
entropy method (left) and the EM algorithm (right).
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Errors Errors

Figure 5.14: Errors associated to the reconstructions in fig. 5.8

As it can be seen, the error associated to the image pixels in the EM
algorithm reproduces the shape of the reconstructed image (although they are
of course smaller). It does not happen the same with the maximum entropy
method; the error does not resemble the final image, but the difference between
this and the previous one.

Studing the error we find another argument in favour of fixing the A
value in a given moment; as we have said in section 4.2.2, if we leave A"
fluctuating freely, the image will fluctuate more than if we would fix it in a
given moment (compare the final stretch of figures 4.5 (c) and 4.7 (c) where we
show the values of &, which indicates the difference between consecutive
iterations). Given that the error is approximately proportional to the difference
between two consecutive iterations, the error will be smaller if we fix A" in a
given moment than if we leave it free (even if the final result were the same).

For the case of the reconstruction of a centred source with intensity 100
photons/cm?® shown in fig. 5.5, the error was +3 (casually the same as in the EM
algorithm); but when we leave A* oscillate freely, since the fluctuation is bigger,
the error we obtain is £60!
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Nevertheless, we can also find some troubles when fixing A", because the
convergency 18 better, and as the error is proportional to the difference between
two consecutive iterations, if our convergency criteria were stricter, the error
would also be smaller (and it would also take g longer time). In fact, waiting
enough time we could do the error as small as we like, and this is not a very

realistic result. This can never happen with the EM algorithm.



Conclusions

In the carrying out of this work, the main results and conclusions can be

summarized in the following points:

1)

2)

3)

4)

5)

We have presented the y-ray telescope LEGRI (Low Energy Gamma Ray
Imager), which works in an energy range from 20 to 100 keV and with
a field of view of £10.5°, describing its structure and objectives, as well
as the characteristisc of its orbit.

We have exposed the need of using a coded mask to image while working
in energies over 10 keV and we have described the foundations of the
theory associated to their use, describing several techniques to
reconstruct the image from the coded data.

We have developed two simulators, a geometrical simulator with two
versions (one more idealised and other more similar to the real detector)
and a Monte Carlo model. We have studied with them the expected
response of the telescope. With these simulators we have generated the
flux factors ® (which indicates the fraction that a certain detector
receives from a certain sky direction), needed for the reconstructions

using maximization methods.

We have applied to LEGRI two reconstruction system based on the
balanced correlation, which are the finely sampled balanced correlation
(or FSBC) and 6-decoding.

We have applied to LEGRI a maximum entropy reconstruction method.
Given that its solution is a transcendental equation, it is needed to find
the solution by an iterative method. We have studied the iterative
methods in the literature which find the maximum entropy solution and
we have found that the convergency is not the desired one. Therefore, we
have developed a new convergency method that produces better results

than the previous and that converges to the maximum entropy solution.
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6)

7)

8)

),

10)

The iterative method that we have developed has a free parameter A*.
We have found that better results are obtained if A* only varies during
the first iterations (obtaining a x” of the order of the freedom degrees),
and subsequently we fix it.

We have applied the EM algorithm, which is a maximum likelihood
method, to the coded mask telescope context and we have used it as an
image reconstruction method. This is the first time the EM algorithm is
used in coded mask telescopes. We have seen that its CONVErgency
properties in this context are excellent and that it converges to the

-correct result.

We have proved that for not very complex telescopes, as the case of
LEGRI, the reconstructions with the EM algorithm and the maximum
entropy method (which we have generically called maximization
methods) are quicker enough to compete with the correlative methods.
The fastest of the maximization methods is the EM algorithm, very much
faster than the maximum entropy method.

We have seen that, when the source projects a shadow of the mask on
the detector plane which does not match with the position of the
detectors, the reconstructed source is spreaded, independently of the
reconstruction method used.

We have checked that the source intensity is better reconstructed with
the correlative methods and the EM algorithm, being in general the
maximum entropy method the one that gives the worst result in the
source intensity reconstruction. Likewise we have seen that the
reconstructed intensity of a pixel is independent of the presence or
absence of other sources in the image in the correlation methods, and
rather independent in the maximization methods. Nevertheless, for a
good source reconstruction, correlative methods need all the detector
plane working, in order to give optimum results. When it is not possible,
the best results are obtained without doubt with the maximization
methods.
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11)

12)

13)

14)

15)

We have proved that the maximization methods have better angular
resolution than the correlative methods (in which the §-decoding method
has bigger contrast than FSBC). In fact, in the correlative methods there
1s implicit a loss of information that can be recovered with the
maximization methods, obtaining that the telescope angular resolution
is directly related to the detector plane spatial resolution. For LEGRI,
the angular resolution is 1.27°. The EM algorithm is the maximization
method with a better contrast.

We have seen that a non-cyclic mask is the best option for the
maximization methods, since we can therefore avoid the ghosts in the
reconstructed image. Besides we have seen that, when we have several
ghosts of the same sky source the EM algorithm reconstructs all them
with the same intensity whereas the maximum entropy methods favours
the closer to the centre of the field of view.

We have observed that the noise in the detector plane generates fake
sources in the reconstructed image, and we need a good knowledge of its
structure in order to avoid its influence. Besides we have seen that the
noise has the additional effect of widening the reconstructed signal in the

maximization methods, doing it wider and weaker.

We have seen that for correlation methods, the error is the same for all
the image pixels. On the other hand, in the EM algorithm the error of a
given pixel is roughly proportional to its value. About the maximum
entropy method, the error value of a given pixel is related to the
difference of values between the final iteration and the previous one.
Thus, the closer these two images are, the smaller the error is.

We have studied the capabilities of the different reconstruction methods
to study extended sources, checking that the best results are obtained
with the maximization methods. On the other hand, if it is possible to do
different pointings of the source, we get more information from it and it
18 possible to obtain a better reconstruction of the source structure.
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16)

17)

18)

We have applied the studied reconstruction methods to the real LEGRI
configuration, which has 15 unworkable detectors and different sizes and
efficiencies for each detector. We have seen that the former points are in
general still applicable, although a light worsening of the image can be
observed (bigger for the correlation methods). The exception is the
disappearance of the ghosts in the reconstructed image.

We have estimated the LEGRI sensitivity with a significance of 30,
obtaining that it is of the order of 5-10° photons cm? s keV'!

We have seen that the EM algorithm, considering the execution time,
robustness, angular resolution, intensity reconstruction capability and
ease of adaptation to difficult conditions (unworkable detectors, multiple
pointings...) is, in general terms, the method that offers the best results

and features of all the studied methods.
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Appendices

Appendix I: Relation between an area and its
orthogonal projection

In section 2.11.1 we have said that the relation between an area and its
projection orthogonal to a given direction (a,B) (see fig. 2.35) was given by
equation 2.37, which we repeat here:

Area’
VtgZo+tg 2B +1

Areq =

where Area’ is the considered area and Areq the orthogonal projection.

In this appendix we are going to demonstrate this relation. Let us

observe figure A.1, which is basically the same as fig. 2.35 but with more
legends.

' ‘(LX :LY 50)

g

" (Ly,0,0)

Figure A.1: Orthogonal projection of Area’ in a direction (o)
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The co-ordinates origin in the figure has been taken at the bottom left
vertex of Area’. Ly and Ly are the sides of the area whose projection we are
going to calculate; therefore we have:

Area’ = Ly'Ly. (A1)

7’is an unitary vector in the direction (o). As it can be deduced from

figure 2.1, we have:

_Jf_=tg(x
z
l:tgﬁ
F-4
Z =1

Therefore, the unitary vector in that direction will be proportional to the vector
(tgo,tgB,1), and will be given by:

7= (tgo,tgf 1) 1 (A.2)
Jtgo + tgh + 1

as it was shown in equation 2.1.
Area is the orthogonal projection of Area’ in the direction (o, B); given that
it is orthogonal to that direction, Area will be inscribed in a plane P that is

perpendicular to 7° and that includes the point (L,,L;,0). Its equation is,

therefore:

P: (tgox + (tgBly + z - (tgo)Ly - (tgB)Ly, = 0 (A.3)

R, and R, are two straight lines parallel to r?; and which passes through

the points (0,Ly,0) and (L,,0,0) respectively. Tts equations are given by:
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. { x = ztgo
o y = ztgB+Ly (A.4)
x = ztga+L
R2 {y = Ztg[.)) X

The intersections of R, and R, with P define the points 171 and 172):

P - tg?o-Ly Ios tgotgP Ly tgo L,

' (tg?a+tg?B +1) Y (tg2o+tg 2B + 1) ’ (tg2o+tg®B+1) | (A5)
P =L+ tgo-tghB Ly tg?B Ly tgp Ly

P GglartgB D) | Ggloartg?Prl) | (tglo+tg B+ 1)

V_i and 172) are defined as the vectors that go from the point (Ly,L,,0) to the

points I—’i and FQ), respectively:

7 - tg oLy I tgo-tgP <Ly tgo Ly

' (tglo.+tg 2P + 1) X7 (tgla+tg?P +1)  (gla+tg?B+1) ) (A6)
7 - tgo -tgf <Ly tg?p Ly - tgp -Ly

2 \(tgzcx +tg?B +1) ’ (tgPa+tg?p +1) v (tglo+tg?B +1)

As it can be seen in figure A.1, we have that Area (the magnitude we
want to calculate) will be given by the modulus of the vectorial product off-_’i
and 1?2 That is:

A.
Area = IVixV_‘;l (AT

Writting P?:(xl,yl,zl) and ﬁ;:(x2,y2,z2) (the components of the vectors), we have

that the square of the vectorial product modulus is given by:




198 Appendices

Area? = [VixV|” = yP22+20y2 -2y 2.2y, (A.8)

2 2 2 2 2 2 2 2
THY 2y 2y Xy~ LXGZ 2K XL Vg Ty K ~22Y5Y %y

Using the values shown in eq. A.6, we obtain:

Ao ? = EOtgBLY tg*p Ly
rea? = +
(tgPo+tg?B + 1) (tg 20 +tg 2B + 1)

tg oLy { tgBLy e,  tgBLY
(tg2o+tg 2P + I)ZL(tg 2 +tg B +1)2 (tg?o+tg B +1)

9 tgotgP L, tgB L, tgo Ly tg*B Ly _
(tg*o+tg™B +1) (tg”a+tg?B +1) (b0 +tg2p +1)| (tg o+t 2B + 1)

L,|+

tg 2otg B Ly tg 2oL}
.
(tgPo+tg®B +1)% (tg 2o +tg?B +1)2

tg?p Ly ( tgtaly .,  tgfoLi |

(tg 2o +tg 2B + 1)2L(tg2a +tg 2P +1)2 * (tg?o+tg 2B +1)

9 tgotgB L, tga Ly, tgp L, tg?al, .
(tg?o+tg B +1) (tg2o+tg 2B +1) (te la +tg B+ D| g lo+tg 2P+ 1)

tglaly ., 2tglaLg tg*BLy 2 21g"BL}
(tg2o+tg?p +1)2 (tg?a+tg2B +1) | (tg2o+tg 2P + 12 © (tg?o +tg?p + 1)

tgotg’BLy  tglatg®BLy
(tg o +tg*B + 1) (tg 2o +tg 2P +1)2

o tefoly tg*p Ly _L) tgotgf Ly tgortgB Ly
(tglo+tg®B+1) ) (tgPa+tgp + 1) Y}(tg2a+tg2B+1) (tg?ortg®B + 1)

Developing this expression, we have the following:
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tg2atg ‘B LIL; . tgotg ‘PLoLE . tg?aLIL;

Area? = -
(tgPo+tg?p +1)*  (tglo+tg2B +1)* (tglo+tg 2P +1)2

tgfatg®BLyLy , tglutg'BLILy  tg'outg’BLiLy
(tglo+tg?P +1)° (tglo+tg?B+1)* (tglo+tg 2B +1)°

2

tglatg’LyLy  tg'atg’PLiLly = tg’BLILy
(tglo+tg?B+1)* (tgla+tg?B+1)F  (tglo+tg 2P +1)2

2

tg’otg®BLiLy ., tglatg’BLiLy o tEPtg?BLILy
(tglo+tg?B +1P°  (tgla+ig?B+1)*  (tglo+tg 2P +1)°
te*otg*BLyLy tglolil;  tg'atg®BLiLy  tg*BLIL!
(tglo+rtg®B +1)* (tgla+tg?P+1?  (tgla+tg®P +1P (tglo+tg2p + 1)

tg®BLrLly _, tglatg'BLILy tgloLiLy
- - +
(tg®o+tg®B+1)  (tgla+tg?B+1P°  (tgla+tg?p +1)

LILE-2

4t 2atg 2B LILE , tglatg?p LiLy o 8 ‘otg P LIL? .
(tgo+tg?B +1)*  (tgla+tg?B+1)  (tglo+tg 2P + 1)

tglotg®BLiLy ., te’atg*BLyLy  tglotg’BLIL;
(tgo+tg?p +1P®  (tglo+tg?B +1)*  (tglo+tg?B +1)2 E

2

Simplifying terms and regrouping, we have:

(g0 +tg"PLyLy | (g'a+tgBILILY o,
(tgla+tg?B +1)? (tgla+tg?B +1)? S

Area? =

o (8% rtg®BILLy  tglatg®PLiLy
(tg2o +tg 2B + 1) (tg 2o +tg ®p + 1)

and factorizing, we get:

LILZ
Area? = o ’; 2YB 1)2-[tg20c+tg26 rtgto rtg P +(tg o +tg 2B + 12 -
ga+tg P +

2(tg %o +1g *B) (tg 2o+ tg 2P + 1) + 2tg 2otz 2B] =
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) LyLy
(tg 2o +tg 2B + 1)?
g

ftg o +tg 2B +tg to +tg 1P + gt +tg B+ 1+
2tg 0otg B + 2tg 20 + 262 2B -2tg o -2tg 2otg 2B -~ 2tg 20 -

2tg%otg B -2tg 1B -2t 2P +2tg *otg 2B =

L2L2 2L2
- X~y '[tg2a+tng+1] _ LyLy
(tg?o +tg 2B +1)? (tgla+tg?B+1)

Given that Area’ is equal to LyL,, we have, therefore:

Area? = Area'” (A.9)
(tg o +tg*B +1)
or what is the same:
!
Area = Area (A.10)

Vtg 2o +tg 2P + 1

as we wanted to demonstrate.

This relation, applied here to a rectangular area of the form LyLy, is
also valid in its differential form; that 1s, one can apply it to a differential area
dLydLy. Therefore, we can subdivide an area with any shape in differential
rectangular (or square) areas and apply eq. A.10 to each differential; when
integrating over the whole area, we have that equation A.10 is still valid.

Apendix II: Errors

In section 3.2.2 we have said that the error criterion for the iterative
maximization methods is the one given in [38]; once the algorithm has reached
the desired result (at iteration n+1) the errors of the image pixels are estimated

by square error propagation from the iterative formula estimated at the
iteration n.
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Doing this, we obtain that the (square of the) error in the intensity
estimation of pixel (o) (considering as magnitudes with error the detected

counts D, and the detector response array @) is given by equation 3.7 that we
show here again:

5 R+l
(05" = Y| Len

k1 Bl

o+l A+l
aOaB . Sg(q)rkxlﬁ) n Z aOaB
’ vizap | ODY)

n n

. SQ(DM) + a

n ki

e @I

where the subindex n means that the partial derivatives are estimated with the
values of iteration n.

In the case of the EM algorithm (eq. 2.56) we have that the partial
derivatives are:

= n+l =~ n
D, | Y o
ij

wg D
=~ n+l ®k? ~k12
390, N ¢ 9
2| = -0n 0 ——2 (A.11)
o, n Z(I)ij
i
D ) op D,
x4+l ~krf, h OO‘B Q)k[ ™y }:1! 9 Z (DUB p
Oy | _ ol Dy, D)y v

of

D
oo;T hIL v Y o

Similarly, for the maximum entropy method (eq. 4.10), we have that the
partial derivatives are:
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ao’v:{;l ) 1 [ ‘1-27&"2 q,:_:_s( o 2&_;)} (2 ln) (I)QB
aDkl i ot 1 e Y g Gzl ki
80 1+l 1 ’— ol D) -D, | ( 29 )
Slgny el el (_9n ~ n
2| - M ( ) = @y O (A.12)
oD}, A n+l i - Ou

A n+l 5 A
aO“B = 1 _lhmﬂ‘i‘; q),i‘f( Dijcs;.Dij) (-2A7) (jjkr; * (I)ki 0 n)
IpuP ) n+l 1€ 16 = of

Applying A.11 and A.12 to eq. 3.7, factorizing and defining G, as the
error of D,,, we have for the EM algorithm:

B(Oaﬁ 1) - af - Z ~kl 62[ +
pIL [“ Dy,
L]
Y o Dy (A.13)
D, ~. D i D’ o
> ,,ki _Ouﬁd)glﬁ NI: - GBJ 2@y +
HoL Dy, Dy? 3 P}

2

Rl y8=ap (Dk’;)z

s D ,
> [o%@kf }z@m

and for the maximum entropy method:
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— _ D"D q)ﬂﬁ
o (] vt fo2Ts

n+l € Iy G
13” (A.14)
Y l— +0, (thﬁiz 82(‘1):1&) +
ki Gk.z O
/2

L o 1
> ¥ |00 L |
El y5£ap sz

Regarding the correlative methods, and expanding what we said in
section 3.2.1, we obtain that a reconstruction, once corrected by the number of
I’'s in the G array (), by the efficiency and area of the detectors, and the
mask transparency, is given by:

Oij -2 E Du 'Gk+u+j (A.15)
NU ki SMTT'AM

Both N as G are numerical constants and, therefore, without error.
Since G is equal to %1 (or also 0 in 3-decoding), when in the error formula we
use its square, we will lose all the information about the mask pattern (that is
included in the +1 values), and therefore, the same as in section 3.2.1, the error
for all the pixels of the reconstructed image will be exactly the same; although
it will not now correspond exactly to the square root of the total detected
counts, but it will be given (by square error propagation) by:

~ D D
eX0,) = “""—Z Gk+zl+_; e(D,,) . wo eley)
NE& e, 1TA,, TrA,,

2
€l

(A.16)

Dy e(Tr) . D, eA,)

ey Tr? eMTr A,i
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