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Variability of the human gut microbiota

in space, time, and associated with

the irritable bowel syndrome

Memoria presentada por Ana Durbán Vicente

para optar al grado de Doctor en Biotecnoloǵıa
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Y para que aśı conste, firman el presente certificado.

Valencia, a de de 2012
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el ámbito laboral y/o en los momentos de distensión, según se aplique, y por

crear entre todos un ambiente tan agradable. En especial, a los de la sala
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1 Introduction

1.1 First insights into the human microbiota

Microorganisms came to light in the mid-1600s when the Dutch merchant

Anton van Leeuwenhoek directly observed tiny “animalcules”, later known as

bacteria, using a single-lens microscope of his own design. It was also the first

time that human-associated microbes were seen in tooth plaque. From there,

some physicians and microbiologists were defenders of the “germ theory” of

disease, a theory that proposes that microorganisms are the cause of many di-

seases. In the late 19th century, the German physician Robert Koch, working

on cholera, anthrax, and tuberculosis, was the first scientist who devised a

series of tests to assess the “germ theory” and finally proved it.

After microorganisms were shown to cause disease in humans, the popular

and scientific views of the microbial world became dominated by its role in mi-

crobial disease, which led to significant progress in medicine through improved

hygiene, vaccinations, and antibiotics. Nowadays, the search of isolated disease

agents has been complemented with the recognition that also imbalances in the

complex microbial communities naturally inhabiting the human body can be

related to some diseases.

However, most interactions between humans and microorganisms are not

pathogenic for the host but beneficial to both. This new view of the human-

associated microbiota began at the end of the 19th century, when the German-

Austrian pediatrician Theodore Escherich realised that the intestinal microor-

ganisms should interact with each other and influence properties of their host.

He carried out an extensive work on the relationship of the intestinal bacteria

with the physiology of digestion in infants (Escherich, 1886). The following

statement of T. Escherich would probably be subscribed by many researchers

working on the gut microbiota nowadays:

“At a time when microbiologic research has gained us so many laurels by

11



12 CHAPTER 1. INTRODUCTION

following the research methods of Koch into the regions of the aetiology and

pathology of infectious diseases, it would appear to be a pointless and doubtful

exercise to examine and disentangle the apparently randomly appearing bacte-

ria in normal faeces and the intestinal tract, a situation that seems controlled

by a thousand coincidences. If I have nevertheless devoted myself ... to this

special study, it was with the conviction that the accurate knowledge of these

conditions is essential for the understanding of not only the physiology of di-

gestion, ... but also the pathology and therapy of microbial intestinal diseases”

(Escherich, 1885).

There was a decreasing interest in the study of the “normal” microbiota of

humans in the early decades of the 20th century. Some reasons were the great

effort devoted to search for aetiological agents of disease and the lack of effec-

tive methods for culturing bacteria that grow only in oxygen-free atmospheres

(anaerobes). As it is now well-known, most microorganisms found in the large

bowel and in faeces are strict anaerobes. The development of these methods

was key to the explosion of research in the field during the 1960s, when many

microbiologists all over the world made important contributions to the current

knowledge of the intestinal microbiota. See Savage (2001) for an excellent re-

view. Some key concepts regarding the intestinal microbiota derived from these

studies are:

a) The human body surfaces are colonised by microbial cells that outnumber

the host cells by at least one order of magnitude. The vast majority of these

microbes lies in the gastrointestinal (GI) tract (more than one hundred trillion

cells).

b) The communities are established in newborns in an ecological succession.

c) The microbiota of adult humans is composed of anaerobic bacteria.

d) Some species reside in the mucosa layer covering the epithelium and some

in the lumen.

e) The microbiota is regulated by many factors, some exerted by the host

and the intestinal environment and some exerted by the microbes themselves.

These concepts will be further explained and complemented with new ones

in Section 1.2. The work of these pioneer researchers provided a new perspec-

tive of humans as composites of animal and microbial cells, with the micro-

biota assuming biological functions that are essential to the host. Under these

assumptions, the research in the area has continued until today.
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1.2 Current knowledge of the human micro-

biota

1.2.1 Microbial habitats in the human body

Like other mammals, humans have co-evolved with complex microbial commu-

nities that live in their bodies. Microbial symbionts of humans were once

considered only commensals or opportunistic pathogens. Actually, the interac-

tion can be recognised as mutualistic in many cases. Microorganisms benefit

from protected environments and nutrients from which they extract the energy

that require to survive, while make vital contributions to human development,

immunity, nutrition, and physiology, and offer protection against potentially

dangerous invaders (Guarner and Malagelada, 2003; Dethlefsen et al., 2007).

Microbes constitute a major component of the human body. For example,

adult humans have 1012 microbes associated with their epidermis, and 1014

microbes in their GI tract. It is estimated that the total number of microorga-

nisms in the human body is about 10 times greater than the total number of

host cells (Luckey, 1972).

Microbial habitats in the human body include skin surfaces (Grice et al.,

2009), penis (Price et al., 2010), vagina (Fredricks, 2011), upper respiratory

tract (Charlson et al., 2010), oral cavity (Aas et al., 2005), and gut (Zoetendal

et al., 2006). These habitats can in turn be subdivided into microhabitats for

microbial colonisation. The most striking cases of habitat diversification are

probably found within the skin and the GI tract. Human microbial commu-

nities are overwhelmingly dominated by bacterial species. Other members are

several archaeal species, yeast, and other microscopic eukaryotes. More than 50

bacterial phyla have been detected, but Firmicutes, Bacteroidetes, Actinobac-

teria, and Proteobacteria contain most of the diversity in all habitats (Figure

1.1) (Dethlefsen et al., 2007; Spor et al., 2011).

The composition of the human-associated microbial communities is deter-

mined primarily by body habitat. Each habitat harbours a characteristic mi-

crobiota and a relatively stable set of prevalent phyla across people and over

time, although the interpersonal variability within the same body habitat can

be high, especially at the species/strain level (Costello et al., 2009). For exam-

ple, Bacteroidetes and Firmicutes predominate in the colon and Actinobacteria

in the skin in almost all humans. By contrast, Firmicutes predominate in the

vagina of most women, but Actinobacteria predominate in a small fraction of
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women (Dethlefsen et al., 2007). Finally, the many local microbial commu-

nities harboured by humans can interact through direct dispersal or indirect

interactions modulated by the host immune system (Gonzalez et al., 2011).

Figure 1.1: Composition of the bacterial community (relative abundances of
the dominant phyla) at different body locations in a healthy human. Adapted
from Spor et al. (2011).



1.2. CURRENT KNOWLEDGE OF THE HUMAN MICROBIOTA 15

1.2.2 The microbial communities inhabiting the GI tract

1.2.2.1 Microbial habitats in the GI tract

The human GI tract refers to all the organs from the mouth to the anus, that

is, the oesophagus, the stomach, the small intestine, and the large intestine

(Figure 1.2). The composition of the GI microbiota is not uniform. It varies

longitudinally along the GI tract and transversally between the intestinal lumen

and the mucosa lining the epithelium. Some of the microbial habitats within

the GI tract are described bellow.

Figure 1.2: Regions of the human GI tract and accessory organs of digestion.
Adapted from http://mybioversa.com/qleanza by bioversa.

The stomach. The stomach is a dilated part of the GI tract located

between the oesophagus and the small intestine. Masticated food enters the

stomach and is mixed with hydrochloric acid, proteases, and fluid through

muscular contractions of the stomach wall. The acidic pH (1-2) allows

the activity of the secreted proteases and kills or inhibits many ingested

microbes. Some microorganisms can survive these conditions and reach low
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population levels, such as the opportunistic pathogen Helicobacter pylori,

which can be found normally in association with the gastric mucosa (Lee, 1999).

The small intestine. The small intestine is subdivided into the duodenum,

the jejunum, and the ileum. It is about three meters long, but its absorptive

surface is increased to about six meters by the special structure of the

epithelium, with evaginations of the mucosa (villi) and the brush border of the

epithelial cells (microvilli). Most of the digestion by host pancreatic enzymes

and the absorption of food takes place in the small intestine. Proteins and

peptides are degraded into amino acids, lipids into fatty acids and glycerol,

and some carbohydrates (CHOs) are degraded into oligosaccharides and

monosaccharides. Many complex polysaccharides can not be digested by host

enzymes and pass into the large intestine where intestinal bacteria digest them

(this is one of the main contributions of the microbiota). Food is also blended

with bile salts and bicarbonate in the duodenum. Bile salts emulsify fats

and help in their digestion. Bicarbonate neutralises the potentially harmful

acid coming from the stomach and provides the pH needed for the digestive

enzymes. The short transit time (1-4h) limits the microbial growth in the

lumen of the small intestine. There is a gradient of bacterial colonisation from

103-104 cells per gram of luminal content near the stomach to 107-108 near

the colon, where the transit slows down (Finegold et al., 1983).

The large intestine. The large intestine comprises the caecum, the colon

(which is in turn subdivided into the ascending, transverse, descending, and

sigmoid colon), and the rectum. The large intestine is about 1.5 meters

long. Excess water, salts, and products of the microbial activity on nutrients

that have escaped digestion in the small intestine are absorbed through the

colonic mucosa. The colon is densely populated by microorganisms, with

concentrations of 1011-1012 cells per gram of luminal content, one of the

highest recorded for any microbial habitat (Whitman et al., 1998). Regarding

nutrition, they ferment dietary compounds that are not degraded in the upper

GI tract and endogenous mucus. This and other benefits to the host are

discussed in Section 1.2.2.4.

Faeces. Undigested food and waste material from the body are eliminated

with faeces. Faeces are compacted in the large intestine through the absorption

of excess water, and are stored into the rectum until defaecation. Bacteria are a
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major component of faeces representing about 55% of their dry weight (Stephen

and Cummings, 1980).

Faeces could be considered another microbial habitat. Faecal bacteria

could be a mixture of luminal and shed or poorly adhered mucosal bacteria.

Besides, growing conditions such as temperature, oxygen concentration, and

nutrient availability change dramatically after evacuation, potentially leading

to alterations in the community composition due to differential bacterial death

or growth. Faeces have been extensively employed for the study of the GI

microbiota. However, faecal microbial communities may not entirely represent

those found in other parts of the GI tract (Zoetendal et al., 2002; Ott et al.,

2004; Eckburg et al., 2005; Lepage et al., 2005).

Radial differentiation of intestinal habitats. The intestinal lumen is the

cavity where food passes through, digestion takes place, and nutrients are ab-

sorbed from. Microorganisms in the lumen can be dispersed in the liquid or

bound to the solid particles found in it (Walker et al., 2008).

The intestinal epithelium is responsible for the absorption of nutrients. The

epithelium also creates a barrier between external and internal environments

and is the first line of pathogen recognition by the immune system. The epi-

thelium of the GI tract is a single layer of columnar cells, with the exception

of the multilayered squamous epithelium of the esophagus and anus. Mucins

are high molecular weight glycoproteins produced by globet cells within the

intestinal epithelium (and foveolar cells in the stomach). They are the major

component of the mucus layer that overlies and protects the epithelium. Mu-

cus forms a double protective layer: a very dense, firmly attached, and quite

sterile inner mucus layer, and a less dense, loose, and more strongly colonised

outer mucus layer (Johansson et al., 2011). The microbial composition of the

inner mucus layer, the outer mucus layer, and the lumen differ from each other

(Zoetendal et al., 2002; Ott et al., 2004; Eckburg et al., 2005; Lepage et al.,

2005; Johansson et al., 2011).

The epithelium rests on the lamina propria, a layer of connective tissue

populated by cells of the immune system and supported by a thin layer of

smooth muscle called muscularis mucosa. The epithelium, lamina propria and

muscularis mucosa form the mucosa, which lays on the submucosa, a dense

layer of connective tissue with nerves, blood vessels, and lymphatic vessels.

The submucosa is supported by the muscularis externa, which usually consists

of an inner circular and an outer longitudinal layers of smooth muscle. The
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coordinated contractions of these layers is called peristalsis and push the food

through the GI tract. In most areas, a thin layer of connective tissue and the

surface mesothelial cells form the serosa that encases the GI tract.

1.2.2.2 Composition and location of GI microbial communities

The human GI microbiota refers to the communities of microorganisms, in-

cluding bacteria, archaea, and microbial eukaryotes, that populate the human

GI tract. The current knowledge of the composition of the human microbiota

comes from culture-based studies, and more recently, from culture-independent

molecular approaches that identify microorganisms from the small subunit ri-

bosomal RNA (16S rRNA) genes.

Microbial eukaryotes constitute a minor fraction of the GI microbiota. The

eukaryotic diversity within the GI tract appears to be low, rather stable over

time, and dominated by different subtypes of Blastocystis. Blastocystis spp. are

unicellular protozoa, at least some with pathogenic potential. The cultivable

fungal fraction is dominated by yeast of the genus Candida (Cohen et al., 1969;

Scanlan and Marchesi, 2008). However, culture-independent analysis has shown

that other species are more frequently found in faeces than Candida spp., for

example Gloeotinia/Paecilomyces and Galactomyces (Scanlan and Marchesi,

2008).

Archaea in the human GI tract comprise several methanogenic species.

Methanogens utilise several substrates for methane generation, including hydro-

gen (H2). This is, in fact, a major pathway for the removal of the H2 produced

by bacterial fermentation in the distal gut. The predominant species in the

human colon is Methanobrevibacter smithii. Few other methanogens have been

detected, such as Methanosphaera stadtmanae and Methanobrevibacter oralis

(Scanlan et al., 2008).

Bacteria are by far the most abundant and widely studied group of microbes

in the GI microbiota (Zoetendal et al., 2008). The diversity of major lineages

(phyla) of bacteria is low. Most GI microbes belong to the Firmicutes and the

Bacteroidetes phyla, which together comprise more than 90% of the bacteria

in the faeces and colonic mucosa of adults. Proteobacteria and Actinobacteria

are common but ususally not dominant. Some other phyla can be found at low

abundance in some GI sites and individuals, for example Cyanobacteria, Defe-

rribacteres, Deinococcus–Thermus, Fusobacteria, Lentisphearae, Spirochaetes,

Verrucomicrobia, and the candidate phyla TM7 and SR1. Within these few

deep lineages, the diversity of bacterial species and strains is extremely high
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(Figure 1.3).

Figure 1.3: Patterns of human-associated microbial diversity. a) Richness esti-
mates in specific human habitats. The x axis shows the percentage difference
threshold for delineating separate lineages. The y axis shows the number of
distinct lineages at each distance threshold. b) Patterns of microbial diversity
in soil and aquatic environments generally resemble the tree shape on the left,
with new branches arising at all distances from the root. In contrast, patterns
of diversity in human-associated communities resemble the tree shape on the
right, with few branches arising close to the root and many branches arising
close to the branch tips. Adapted from Dethlefsen et al. (2007).
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A variety of habitats and niches is found along the proximal-distal axis

of the GI tract that result in compositionally distinct microbial communities.

Some features of these GI habitats are:

a) The oral cavity contains 600-700 bacterial species, with the predomi-

nance of species of the genus Streptococcus, within the Firmicutes phylum.

Multispecies biofilms are typical in the mouth, where surface attachment is

key in order to persist. Different surfaces, such as the supragingival and sub-

gingival dental plaque, the cheek, and the tongue, contain distinct bacterial

communities (Aas et al., 2005).

b) Few species have been detected in the oesophagic mucosa, most of which

are similar or identical to residents of the oral cavity (Pei et al., 2004).

c) The acidic condition in the stomach kills many ingested microbes. Con-

trary to what occurs in other GI sites, Proteobacteria and Actinobacteria cons-

titute a major fraction of the microbiota in the stomach. More than one hun-

dred species have been detected, but Helicobacter pylori, associated with the

gastric mucosa, is the only undisputed resident (Bik et al., 2006).

d) Microbial growth is limited in the small intestine by the short retention

time and the host secretions. The abundance and diversity of bacteria increase

from the proximal to the distal small intestine. Facultative anaerobes predo-

minate in the jejunum and the ileum, but the proportion of strict anaerobes

increases towards the distal gut (Hayashi et al., 2005; Wang et al., 2005).

e) The largest bacterial populations of the GI tract are found in the

large intestine because of the long retention time and the high amount of

substrates available for bacterial fermentation. Relatively small differences

in the microbial community composition have been found between mucosal

sites along the large intestine (Zoetendal et al., 2002; Eckburg et al., 2005;

Lepage et al., 2005). Richness estimates suggest around 1000 bacterial species,

with a dominance of obligate anaerobes of the Bacteroidales order and the

Clostridium clusters IV and XIVa (Zoetendal et al., 2008). At the species

level, the composition of the colonic and faecal microbiota in healthy adults is

highly host-specific (Eckburg et al., 2005; Tap et al., 2009).

Different habitats are found across the radial axis of the GI tract: the

epithelium, the mucus layer covering the epithelium, and the intestinal lumen.

Distinct selective pressures acting in these habitats presumably influence the

composition and activity of the local microbial communities. It has been

hypothesised that microorganisms targeted by host defence molecules in
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the mucus layer are restricted to the lumen, while those non-targeted form

the mucosa-associated microbial community. Mucosal colonisers could also

be those able to adhere to mucus, digest it, and/or deal with the oxygen

gradient along the mucus layer (Roos and Jonsson, 2002; Derrien et al.,

2004; Ruas-Madiedo et al., 2008; Kankainen et al., 2009). Additionally,

some microorganisms might be able to interact directly with the epithelial

cells. With their closer interaction with the intestinal epithelium, mucosal

microorganisms would be more relevant for the shaping of the immune system

and the stimulation of the epithelial cell proliferation and differentiation (Van

den Abbeele et al., 2011). In contrast, luminal microorganisms would be

important for nutrient digestion. The microbial communities associated with

the intestinal mucosa and those of faecal samples from the same individual

differ from each other (Zoetendal et al., 2002; Ott et al., 2004; Eckburg et al.,

2005; Lepage et al., 2005). Also, there is stratification within the mucus layer,

the inner mucus layer usually being devoid of bacteria (Johansson et al.,

2011). Moreover, liquid and particulate faecal fractions have distinct bacterial

composition (Walker et al., 2008).

The microorganisms found in any GI habitat may not be characteristic

of it and be just passing through. Such microbes may come from ingested

food or water, or from other habitats in the human body where they could

be normal colonisers, such as skin, upper respiratory tract, or GI habitats

above the one in which they are found. In practice, however, it is challenging

to distinguish between transient and resident microbes. Resident microbiota

fills the available niches in its habitat and avoids the colonisation by non-

indigenous microbes unless the habitat is perturbed. Thus, some criteria for

recognising indigenous microbes in a GI habitat include stable population levels

in normal adults, intimate association with the mucosal epithelium (and thus

not being eliminated by the flowing stream), and/or metabolic activity in that

habitat. Recent longitudinal studies have shown that only a small subset of the

bacterial species in faecal communities is permanently detected and maintains a

relatively uniform abundance, while the stability of more inclusive taxa is high

(Caporaso et al., 2011; Dethlefsen and Relman, 2011). Molecular approaches

targeting RNA help deciphering which faecal microorganisms are metabolically

active and reveal that the activity level of some microbial taxa can not be

predicted from their relative abundance (Turnbaugh et al., 2010; Peris-Bondia

et al., 2011).
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Finally, it should be noted that, contrary to the high inter-subject variabi-

lity in the species composition, the gene content of the faecal microbiota seems

to be largely shared among individuals, defining a common core at the func-

tional level (Turnbaugh et al., 2009a; Qin et al., 2010). The fact that different

species assemblages converge towards conserved functions implies a high degree

of functional redundancy between microbes and microbial consortia within the

gut microbiota. It also suggests that the intestinal environment selects for

microbial traits rather than for specific microbes.

1.2.2.3 Factors influencing the GI microbiota

Host genotype

Evidence of the effect of host genotype on the GI microbiota comes from the

correlation between genetic relatedness and community composition similarity,

and from the influence of gene polymorphisms on the configuration of the

microbiota, both in humans and in murine models of disease. A higher

similarity with higher degree of relatedness has been observed in a study of

the dominant bacterial populations of faecal samples of monozygotic twins,

dizygotic twins, and unrelated children (Stewart et al., 2005). Most of the

genes shown to have an impact on the composition of the gut microbiota are

components of the immune system, and a few others have roles in metabolism

(see Spor et al. (2011) for a review of host genes with known effects on

the microbiota). For example, mutations of the gene MEFV that lead to

an autoinflammatory disorder in humans, the familial Mediterranean fever

(FMF), have been associated to a depletion in the total number of bacteria,

loss of diversity, and major shifts in several bacterial populations (Khachatryan

et al., 2008). Mice deficient in Toll-like receptor 5 develop insulin resistance

and greater adiposity, and their microbiota is somehow altered because, when

it is transferred to wild-type mice, many features of the donors’ phenotype

are reproduced (Vijay-Kumar et al., 2010). Similarly, obese mice due to a

mutation in the gene encoding leptin, a proteic hormone with a central role

in energy intake and control of appetite, have lower Bacteroidetes/Firmicutes

ratio than lean mice (Ley et al., 2005). Complex host genetic control on

the composition of the microbiota has been demonstrated in mice, as several

quantitative trait loci control the relative abundance of specific microbes

(Benson et al., 2010).
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Host age

Humans undergo certain life stages, during which the structure and stability of

the gut microbiota change. Various host and environmental factors are thought

to influence the microbiota throughout the lifetime (Figure 1.4).

Figure 1.4: Overview of host and environmental factors potentially affecting the
gut microbiota, and evolution of microbial diversity and stability throughout
life. Adapted from Spor et al. (2011).

The GI tract has been traditionally considered sterile at birth. However,

recent studies have shown that the meconium, the earliest stools of a newborn,

composed of materials ingested during the stay in the uterus, is non-sterile

(Jiménez et al., 2008; Gosalbes et al., 2012). Anyway, the GI tract of newborns

is rapidly colonised by bacteria of maternal origin from the vagina, skin, milk,

and any other environment to which they are exposed. Initially, the type of

delivery (natural birth versus caesarean) and the type of diet (breast milk
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versus formula milk) affect the colonisation pattern (Yoshioka et al., 1983;

Grönlund et al., 1999; Harmsen et al., 2000; Penders et al., 2006; Dominguez-

Bello et al., 2010). In the first years of life, the GI tract progresses from near

sterility to dense colonisation. The postnatal development of the gut microbial

communities is remarkably variable between individuals. To a large extent, it

is determined by the specific bacteria to which the baby is exposed. However,

the gut microbiota of infants becomes progressively similar to one another,

converging into a complex assembly similar in composition and function to

that found in adults (Palmer et al., 2007; Vaishampayan et al., 2010; Koenig

et al., 2011). The predictable end-point of the succession could respond to

pressures selecting for bacteria that typically dominate the adult colon and that

overcome the initial advantage of early colonisers less adapted to the adult gut

environment. Examples of these pressures could be the introduction of solid

food and changes in the growing conditions due to the development of the

intestinal mucosa and the action of the microbiota.

It is claimed that the gut microbiota is stable throughout adult life in the

absence of perturbations. The temporal stability of the faecal microbiota has

been evaluated by repeated sampling of microbial communities over time, which

allows the identification of persistent and transient components of the commu-

nities (Franks et al., 1998; Zoetendal et al., 1998; Vanhoutte et al., 2004; Ca-

poraso et al., 2011), and the measurement of the robustness and resilience to

perturbations (De La Cochetière et al., 2005; Manichanh et al., 2010; Dethlef-

sen and Relman, 2011). Gut communities have been considered stable because

the temporal variation within individuals is smaller than the variation between

individuals. Stability has typically been examined with samples collected at

intervals of weeks or months, finding that the microbiota of healthy individuals

remains fairly constant over these long-term intervals at family or genus level.

However, variation is found in the presence and abundance of some taxa, while

others remain more constant. Recent studies examining the daily variation in

the faecal microbiota confirm these results, but also reveal pronounced fluctua-

tions in the abundance of bacterial taxa and that few species are permanent

members of the communities (Caporaso et al., 2011; Dethlefsen and Relman,

2011). Moreover, the gut microbiota of adults shows considerable resilience,

that is, ability to return to its original state after being perturbed (De La

Cochetière et al., 2005; Dethlefsen and Relman, 2011).

Modifications of the gut microbiota have been reported in elderly people,

including reduction in bacterial diversity, increased numbers of facultative



1.2. CURRENT KNOWLEDGE OF THE HUMAN MICROBIOTA 25

anaerobes, and decrease in bifidobacteria. These shifts are linked to changes

in host physiology associated with ageing, such as loss of appetite, decreased

intestinal motility, and persistent activation of the innate immunity (Wood-

mansey, 2007; Claesson et al., 2011). Together, these alterations may result in

increased putrefaction in the colon and a greater susceptibility to GI infections

in the elderly.

Forces exerted by the host

Humans select GI microorganisms based on multiple physical and defence

mechanisms. Some forces exerted by the host influence the microbial composi-

tion equally in all regions of the GI tract. For example, microorganisms with

an optimum growth temperature of about 37 ◦C are favoured. However, most

factors vary along the tract, thus setting up particular microbial communities

in different parts of it.

Oxygen concentration decreases progressively along the GI tract and it is

very low, if any, in the large intestine (Levitt, 1971). The majority of GI mi-

crobes in an adult human are therefore anaerobes, reflecting the anoxic lumen,

and the proportion of facultative anaerobes decreases while the proportion of

strict anaerobes increases as we advance towards the end of the intestine. Also,

mucosal microbes are exposed to an oxygen gradient because oxygen is released

from the blood vessels that irrigate the epithelium towards the mucus layer, so

aerotolerant microbes have a niche there.

Luminal pH strongly affects the microbiota (Fallingborg, 1999; Duncan

et al., 2009). The very acidic condition of the stomach (pH 1-2) kills or in-

hibits the growth of many microbes. Bicarbonate released in the small intestine

neutralises pH. Then, microorganisms themselves are the ones that modify the

luminal pH. In the proximal colon, fermentation processes produce high levels

of short-chain fatty acids (SCFAs) that low pH to 5-6, limiting the growth of

acid-sensitive microbes. In contrast, the substrate availability is reduced in the

distal colon and pH is close to neutral.

The short retention time in the stomach (1-4 h) and the small intestine

(2-6 h) prevents microbial colonisation in the lumen. The ability to attach to

the epithelium is key in the upper GI tract to remain long enough to grow,

while most luminal microbes are probably ingested and transient ones. In

contrast, the colon is characterised by a long retention time (10 h to several

days) that, along with the more favourable growing conditions, provides an

ideal environment for a heavy microbial colonisation.
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Some host-derived substances have an impact on the gut microbiota. In the

small bowel, microbes are exposed to the action of pancreatic juices and bile

salts. It has been suggested that bile salts repress bacterial growth through

direct antimicrobial effects and/or regulation of the host mucosal defences, and

bile acids have been shown to regulate the composition of the gut microbiota

in rats (Inagaki et al., 2006; Islam et al., 2011). The constant shedding of

epithelial cells and the attached mucus requires the replacement of mucosa-

associated microbes, but, on the other hand, it provides nutrients for luminal

microbes. The mucus layer favours the colonisation by microorganisms that

have developed specific mechanisms to adhere to it or to use mucins as energy

and carbon source (Roos and Jonsson, 2002; Derrien et al., 2004; Ruas-Madiedo

et al., 2008; Kankainen et al., 2009).

The intestinal epithelium forms a physical barrier against the invasion by

pathogens, and, importantly, by the vast amount of indigenous non-pathogenic

microbiota. Tight junctions hold the intestinal epithelial cells (IECs) together,

so they form a virtually impermeable barrier. Specific nutrients or microbial

antigens are absorbed through controlled mechanisms. The physical barrier is

strengthened by the mucus layer.

The barrier function of the intestinal mucosa also includes the innate

and the adaptive immunity (Figure 1.5). The innate mucosal immunity

involves the recognition of conserved microorganism-associated molecular

patterns (MAMPs) through the pathogen recognition receptors (PRRs) of

IECs and dendritic cells (DCs), which can migrate between the IECs and

through the lamina propria. This leads to the secretion of innate immune

effectors with broad specificity, such as antimicrobial peptides (AMPs) (Müller

et al., 2005; Meyer-Hoffert et al., 2008). The immune system distinguishes

pathogens thanks to the strategic location of PRRs: those basolateral in

the cellular membrane or intracytosolic can sense pathogens invading the

epithelium (Cario and Podolsky, 2000; Gewirtz et al., 2001; Girardin et al.,

2001). Besides, microorganisms and microbial antigens from the gut lumen

are continually sampled by IECs, DCs, and M cells of the epithelium overlying

the gut-associated lymphoid tissue (GALT) of the Peyer’s patches. Antigens

are engulfed by antigen presenting cells (APCs), that is, DCs, B lymphocytes,

and macrophages. DCs activate cells of the adaptive immune system, leading

to the differentiation of the T lymphocyte cell subsets Th1 (resulting in

cell-mediated immunity and inflammation), Th2 (humoral immunity), Th17

(cell-mediated immunity and inflammation), and Treg (immunosuppression).
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Tolerance to the indigenous microbiota results from the induction of Treg

cells and the secretion of anti-inflammatory cytokines such as interleukin-

10 (IL-10) and transforming growth factor beta (TGF-β) (Neutra et al.,

2001; Mazmanian et al., 2005). Th2 cells stimulate the development of B

lymphocytes into plasma cells that produce specific immunoglobulin (Ig) A

antibodies (Macpherson and Uhr, 2004). IgA-coated bacteria can not adhere

to epithelial cells. The mucus layer traps AMPs and IgA, thus preventing

microbes from breaching the epithelium. These mechanisms restrict the

inflammatory response to the indigenous microbiota to the level seen under

normal conditions (physiologic inflammation). It has been hypothesised that

microorganisms targeted by host defence molecules in the mucus layer are

restricted to the lumen, while microorganisms non-targeted by or resistant to

defence molecules can colonise the mucosa (Van den Abbeele et al., 2011).

Figure 1.5: The mammalian immune system and the intestinal microbiota.
Adapted from Van den Abbeele et al. (2011).
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Diet

Diet is an obvious factor that potentially affects the GI microbiota. There are

some reports in support of this idea, although the exact mechanisms whereby

diet influences gut microbes remain to be characterised.

The faecal microbiota of human infants differs between breast-fed and

formula-fed newborns, and it is strongly affected by the introduction of solid

food (Yoshioka et al., 1983; Harmsen et al., 2000; Penders et al., 2006; Koenig

et al., 2011). Populations of Bifidobacterium spp. dominate in breast-fed ba-

bies, whereas babies drinking formulas develop a more diverse microbiota that

contains, in addition to bifidobacteria, also Bacteroides, enterobacteria, ente-

rococci, streptococci, and Clostridia. Once solid food is introduced, the level

of strict anaerobes increase progressively with the concomitant decrease in the

level of facultatives.

It also appears that changes in diet affect the faecal microbial composition

in adults. A research group on obesity found that the relative proportion of

Bacteroidetes increased in humans following two types of low-calorie diet (fat-

restricted and CHO-restricted) (Ley et al., 2006), and that the change in “hu-

manised” gnotobiotic mice (raised in germ-free conditions and then colonised

with human faecal microbial communities) from a diet low in fat and rich

in fibre to a diet high in fat and low in fibre altered the composition and

gene expression of the microbiota (Turnbaugh et al., 2009b). Wu et al. (2011)

linked the composition of the faecal microbiota with long-term dietary patterns:

communities with relatively high levels of Bacteroides were associated with high

intake of animal protein, amino acids, and saturated fats, whereas communi-

ties with relatively high levels of Prevotella were associated with low values

for these nutrients, but high values for CHOs and simple sugars. Other group

found striking differences between the faecal microbial composition of Euro-

pean children, eating a modern Western diet, and that of children living in a

rural African village, where the diet is very low in fat and proteins and rich

in fibre (De Filippo et al., 2010). Even though the two populations differed in

many environmental factors, the authors hypothesised that diet had a major

impact on microbial composition. They correlated the presence of some bac-

terial genera in the African cohort with a higher capacity of energy extraction

from ingested fibre, which was observed in turn by determining the concen-

tration of SCFAs produced by bacterial fermentation in the faecal samples. In

addition, studies of specific dietary compounds have shown their effects on spe-

cific taxa. For example, dietary sulfate favours sulfate-reducing bacteria over



1.2. CURRENT KNOWLEDGE OF THE HUMAN MICROBIOTA 29

methanogenic archaea (Gibson et al., 1993), and inulin increases the abundance

of Bifidobacterium (Kolida et al., 2007).

The acquisition of a new diet is a fundamental driver for the evolution

of new species. The comparison of the faecal microbiota of extant mammals

revealed that both host diet and host phylogeny influence gut bacterial

diversity, which increases from carnivory to omnivory to herbivory, and

that the gut microbiota of humans living a modern lifestyle is typical of

omnivorous primates (Ley et al., 2008). Ancestral mammals were carnivores.

The adaptation to a plant-based diet was an evolutionary breakthrough that

resulted in massive radiations. Gut microbes were pivotal for the emergence

of herbivory as they provide most of the enzymatic repertoire needed for

extracting energy from complex plant CHOs such as celluloses and resistant

starches. Herbivores enlarged the GI tract in several ways to prolong the gut

retention time and thus expose fibre to the bacterial activity (Stevens and

Hume, 1998, 2004). Therefore, the nutrient sources in which different animals

were specialised, together with the subsequent structural adaptation of the

GI tract, influenced the composition of their gut microbiota and the animal

nutritional needs that are covered through the activity of the microbiota.

Clinical interventions

Antibiotic use is often associated with adverse GI symptoms and can induce

disturbances in the intestinal microbiota. However, modulation of the gut

microbiota by antibiotics, probiotics, prebiotics, and synbiotics are attractive

approaches to improve host health. In addition, transplantation of whole

faecal microbial communities from healthy donors is sometimes used as a

therapy for some intestinal disorders.

Antibiotics. Antibiotics are widely used in clinics as antimicrobial agents to

prevent and treat infections caused by pathogenic microorganisms. However,

antibiotics not only affect the target pathogens, but also other members of the

indigenous microbiota (Sjölund et al., 2003; De La Cochetière et al., 2005).

They inhibit the growth of susceptible organisms and select for resistant ones.

This can result in dysbiosis of the intestinal microbiota, subsequently leading to

intestinal problems such as antibiotic-associated diarrhoea (Högenauer et al.,

1998; Young and Schmidt, 2004). The antibiotic-induced alterations in the

composition of the microbiota can be temporary, but medium- and long-term

disturbances have been also reported (Jernberg et al., 2007; Dethlefsen and
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Relman, 2011).

Besides, several studies have demonstrated that broad-spectrum antibiotics

eradicate small intestinal bacterial overgrowth and improve GI symptoms,

including studies in a subset of IBS patients (Baidoo et al., 2006; Basseri

et al., 2011).

Probiotics and prebiotics. Minimising the side-effects of antibiotic therapy

has been one reason for the growing interest in probiotic research in the last

decade (Katz, 2006; Engelbrektson et al., 2009). According to the definition

of the World Health Organisation, probiotics are “live microorganisms which,

when administered in adequate amounts, confer a health benefit to the host”.

Prebiotics are “non-digestible food ingredients that, when consumed in suffi-

cient amounts, selectively stimulate the growth and/or activity of a limited

number of microorganisms in the gut microbiota that confer health benefits

to the host” (Meyer and Stasse-Wolthuis, 2009). Mixtures of probiotics and

prebiotics are referred to as synbiotics. Probiotic microorganisms are mainly

lactic acid bacteria and bifidobacteria. They are often taken in food such as

yogurts and cheese, food supplements, or as drugs. Prebiotics include inulin,

fructo-oligosaccharides, and galacto-oligosaccharides.

Probiotics have been shown to modulate systemic and mucosal immune

function, improve intestinal barrier function, protect against physiological

stress, inhibit the colonisation by pathogens, and promote the stability of the

microbiota (Fooks and Gibson, 2002; Ng et al., 2009; Wallace et al., 2011).

The therapeutic or preventive effects of certain probiotics have been

documented in chronic intestinal inflammation, irritable bowel syndrome,

constipation, diarrhoea (including antibiotic-associated diarrhoea), rotavirus

enteritis, obesity, and metabolic disorders. The effectiveness of probiotics has

also been studied in a number of autoimmune and neoplastic diseases (Gareau

et al., 2010; Iannitti and Palmieri, 2010; Weichselbaum, 2010).

Faecal microbiota transplantation. Faecal microbiota transplantation

(FMT), also known as faecal bacteriotherapy, involves the repeated infusion

of faecal suspensions (or cellular suspensions obtained from faeces) from a

healthy individual into the intestine of an ill individual with a disease believed

to result, at least partially, from microbiota-related dysfunctions. FMT has

been used sporadically for over 50 years and has been proved as a safe and

highly efficient treatment for recurrent Clostridium difficile infection (CDI)
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refractory to standard antibiotic therapies (Gough et al., 2011). FMT may

be working through the restoration of a “healthy” microbiota. Indeed, a

recent study on FMT for the treatment of CDI demonstrated the long-term

persistence of the donor’s microbiota in the recipient patients (Grehan et al.,

2010). The increasing evidence that many diseases can be related to pertur-

bations in the intestinal microbiota points to FMT as a promising alternative

treatment, but there is a need for controlled trials (Borody and Khoruts, 2011).

Stochastic events

Unpredictable events also affect the microbiota of every individual. These

include the colonisation history, bacterial infections that produce a response

in the host that subsequently disturbs the already established community, and

bacterial predation by phages.

Early colonisation. In the first days to months of life, the composition and

temporal progression of the faecal microbiota vary widely from baby to baby,

although eventually the microbiota acquires an adult profile. The earliest

colonisation events are determined to a large extent by accidental exposures

to bacteria from the infant environment, such as maternal vaginal, faecal,

or skin microbiota, and breast milk (Palmer et al., 2007; Dominguez-Bello

et al., 2010). The early life environment could affect the composition of the

adult intestinal microbiota, as it has been shown in animal models (Deloris

Alexander et al., 2006; Mulder et al., 2009; Ubeda et al., 2012). Due to

functional redundancy, several microorganisms can potentially fill the same

niche within a GI habitat. The first ones to arrive can settle and then could

select for microbes with whom to establish cooperative interactions, or for

microbes with non-overlapping niches, as well as promote the exclusion of

competitors. For example, indigenous bacteria can regulate the availability of

host-derived nutrients for their own benefit, strengthen the mucosal barrier,

and overall prevent the growth of other bacteria introduced later in the

ecosystem (Bernet et al., 1994; Hooper et al., 1999, 2001).

Enteric infections. The invasion of enteric pathogens impacts the already

established microbiota. For example, host-mediated inflammation in response

to infection by the mouse pathogen Citrobacter rodentium produces a reduction

in the total numbers of colonic bacteria, preferentially of the Cytophaga-

Flavobacter-Bacteroides class, and the overgrowth of either resident or invader
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aerotolerant bacteria, particularly of the Enterobacteriaceae family (Lupp

et al., 2007). Similar events occur after infection by Salmonella (Barman et al.,

2008). In these cases, the original microbial community is largely restored

after clearance of the pathogen. Long-term effects of bacterial gastroenteritis

over the GI microbiota are suspected in humans with post-infectious irritable

bowel syndrome, in which persistent symptoms begin after an enteric infection

(Spiller and Garsed, 2009).

Phage attacks. The human GI tract harbours abundant and diverse viral

communities (Breitbart et al., 2003; Reyes et al., 2010). Phages affect the

abundance and diversity of bacteria in a community, as it has been shown in

aquatic ecosystems (Suttle, 1994; Sime-Ngando and Colombet, 2009). How-

ever, Reyes et al. (2010) did not detect such viral-microbial dynamics in human

faeces. Anyway, it is known that phage attacks can cause rapid community

changes by decimating established bacterial species or strains. Phages can

also serve as a reservoir of genes that can be horizontally transferred to their

microbial hosts, thus expanding their functional diversity (Dinsdale et al.,

2008).

Microbial interactions

Interactions established within the microbial community contribute to the

diversity and individuality of the gut microbiota. Gut microorganisms can

influence each other through direct interactions or indirectly by modifying

intestinal habitats. Examples of microbial interactions are explained below.

Cooperative interactions. Microbial transformations often involve several

microorganisms organised in syntrophic associations in which the metabolic

end-products of one species are used by others. The microbial partners may

become very complementary and dependent, resulting in resilient associations

within the microbial community. An example of such consortia is that involved

in the degradation of polysaccharides in the colon (Figure 1.6) (Flint, 2004;

Derrien et al., 2010; Koropatkin et al., 2012). Numerous species are needed for

the initial stages of food digestion. Some microorganisms have a versatile reper-

toire of enzymes for the binding and hydrolysis of the complex polymers, mostly

belonging to the Bacteroidetes phylum, such as Bacteroides thetaiotaomicron

(Salyers et al., 1977; Martens et al., 2009), but also to Actinobacteria, Pro-

teobacteria, and Firmicutes. At the same time, the degradation of specific
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polymers is often species- and even strain-dependent. The fermentation of the

resultant sugars involves multiple species that use different pathways and de-

pend on each other to produce certain SCFAs (Walker et al., 2005; Belenguer

et al., 2006; Falony et al., 2006). Bifidobacteria and lactobacilli are dominant

acetate and/or lactate producers. Other microorganisms convert acetate, lac-

tate, and/or partially degraded CHOs to butyrate (such as members of the

Clostridium clusters IV and XIVa) and propionate (such as members of the

Clostridium cluster IX and Bacteroides spp.). The H2 generated during fer-

mentation is removed by methanogenic archaea, sulphate-reducing bacteria,

and acetogenic bacteria (Nakamura et al., 2010). Otherwise, the accumulation

of H2 would inhibit the fermentation processes (Macfarlane and Macfarlane,

2003).

Moreover, cooperative interactions between microorganisms are not res-

tricted to sequential metabolic reactions. For example, some microorganisms

consuming products of the degradation of complex CHOs in the colon do not

contribute with digestive enzymes, but stimulate strains that do so through

the release of growth factors (Flint, 2004).

Figure 1.6: Schematic illustration of the ways in which different gut microor-

ganisms are thought to interact in the processing of dietary and endogenous

glycans. Adapted from Koropatkin et al. (2012).
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In addition, one strain can be directly inhibited by another without

Competitive interactions. The members of the microbiota compete for the

nutrients available in the GI tract. Besides, symbionts can indirectly prevent

the growth of competitors by regulating the production of host-derived re-

sources (Hooper et al., 1999). Microbes also compete for the binding sites on

the surface of the epithelial cells and the mucus layer (Bernet et al., 1994).

Resource competition provides resistance to pathogen colonisation, one of the

main roles of the gut microbiota.

In addition, one strain can be directly inhibited by another without com-

petition for resources, which is called interference. Some compounds are spe-

cifically produced to inhibit competitors, such as bacteriocins. In other cases,

metabolic by-products of one species inhibit the growth of another (Brook,

1999). Bacteriocins are peptides released by a microbe that kill other mi-

crobes. Bacteriocins are active against specific strains, usually closely related

to the producer one, but can also be effective against more phylogenetically

distant microorganisms (Servin, 2004; Hütt et al., 2006). Symbionts can in-

directly inhibit the growth of pathogens by inducing the intestinal epithelium

to overproduce antimicrobial peptides (Vaishnava et al., 2008). Lactate and

SCFAs produced by the bacterial fermentation in the colon are bactericidal

and bacteriostatic for some species through direct mechanisms or by lowering

the luminal pH, which affects acid-sensitive microbes (Alakomi et al., 2000;

Shin et al., 2002). Sulfate-reducing bacteria produce hydrogen sulphide (H2S),

which can be toxic for the host and for other microbes (Nakamura et al., 2010).

Some lactobacilli produce hydrogen peroxide (H2O2), which may inhibit or kill

organisms that produce little or no H2O2-scavenging enzymes (Wheater et al.,

1952).

1.2.2.4 Benefits of the GI microbiota to the host

In the symbiotic relationship between humans and the GI microbiota, the

microbial partners make specific contributions of great impact on the host

health. Microbial functions include salvage of energy and nutrients, trophic

effects on the intestinal epithelium and on the immune system, and protection

against invasion by exogenous microbes (Figure 1.7).
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Figure 1.7: Beneficial functions of the intestinal microbiota. Adapted from
O’Hara and Shanahan (2006).

Fermentation of non-digestible dietary substrates and endogenous

mucus

The colonic microbiota degrades CHOs that can not be metabolised by hu-

mans and endogenous mucin-linked glycans, which are a major source of energy

for the host and for the microbiota itself. Non-digestible CHOs include large

polysaccharides (resistant starches, fructans, cellulose, hemicellulose, pectins,

inulins, and gums), some oligosaccharides that escape digestion, and unab-

sorbed sugars and alcohols. Specific members of the gut microbiota have the

enzymatic machinery needed to break and digest these compounds (Flint, 2004;

Derrien et al., 2010; Koropatkin et al., 2012). The major end-products of fer-

mentation are SCFAs, primarily acetate, propionate, and butyrate (Cummings

et al., 1987). These SCFAs have important and specific functions in host phy-

siology. Most of the SCFAs are absorbed by the host and provide 6-9% of his

total energy requirement (McNeil, 1984). Butyrate is the preferred source of

energy for colonic epithelial cells and is almost completely consumed by them

(Roediger, 1982; Cummings et al., 1987). Acetate and propionate pass into

the bloodstream and are metabolised by the liver (mainly propionate) and pe-

ripheral tissues, particularly muscle (acetate) (Cummings et al., 1987). Also,

SCFAs lower the luminal pH, potentially inhibiting the growth of acid-sensitive
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pathogens (Alakomi et al., 2000; Shin et al., 2002), and improve the absorption

of ions (Roediger and Moore, 1981).

The colonic microbiota anaerobically metabolise proteic dietary residues

and proteins of endogenous origin (pancreatic enzymes, mucus, and shed

epithelial cells) (Macfarlane et al., 1986). These processes also produce

SCFAs. Once CHO sources are exhausted in the proximal colon, protein

fermentation becomes more prevalent (Macfarlane et al., 1992). Catabolism

of proteins by the colonic microbiota provides less energy than that of CHOs,

but its importance lies mainly in the effects that its end-products have on host

intermediary metabolism and as potential toxins.

Other metabolic functions

Other important metabolic functions of the gut microbiota are the synthesis

of essential amino acids and vitamins (such as vitamin K, folate, and biotin)

(Conly et al., 1994; Hill, 1997; Torrallardona et al., 2003), the improvement of

ion absorption by the gut epithelium (including magnesium, calcium, sodium,

and iron) (Roediger and Moore, 1981; Younes et al., 2001), the deconjugation

of bile salts and the subsequent bile acid modification, which influence lipid

metabolism and bile-controlled endocrine functions (Houten et al., 2006;

Ridlon et al., 2006), and the detoxification of xenobiotics (Gill et al., 2006).

At the organism level, the gut microbiota impacts global metabolism by

modulating energy harvest from the diet and energy storage in the host

(Bäckhed et al., 2004; Martin et al., 2007).

Control of epithelial cell growth, differentiation, and function

Studies in germ-free (GF) animals have proved that the gut microbiota sti-

mulates the intestinal angiogenesis (Stappenbeck et al., 2002), the renewal of

epithelial cells (Savage et al., 1981), the differentiation of secretory globet and

enteroendocrine cells (Bates et al., 2006), and the secretion of mucus (Szen-

tkuti et al., 1990), while also influences the composition of mucins (Meslin

et al., 1999).

The three major SCFAs stimulate the proliferation and differentiation of

gut epithelial cells (Frankel et al., 1994). Furthermore, butyrate may have a

role in the prevention of colon carcinogenesis, as it inhibits the proliferation

and promotes the differentiation of neoplastic epithelial cells, and promotes the

reversion of neoplastic phenotypes (Gibson et al., 1992; Siavoshian et al., 2000).
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Regulation of the development and homeostasis of the immune sys-

tem

The interaction between the host and the gut microbiota is crucial for the deve-

lopment of both the intestinal and the systemic immune systems. GF animals

have low densities of lymphoid cells in the gut mucosa, inappropriate balance

of Th cell subsets, and low blood levels of immunoglobulins (Ig) (Butler et al.,

2000; Mazmanian et al., 2005). The microbial colonisation of the GI tract

contributes to the development of the gut-associated lymphoid tissue (GALT)

(Cebra et al., 1998). Gut symbionts stimulate the maturation of the adaptive

immune system. It has been shown that a single normal symbiont, Bacteroides

fragilis, induces the maturation of T cells to Th1 in GF animals (while the

default pathway is skewed towards Th2), and stimulates the development of

immunosuppressive T cells (Tregs) in an animal model of colitis, which results

in reduced inflammation (Mazmanian et al., 2005, 2008).

The constant monitoring of the gut microbiota induces the local production

of specific antibodies (IgA) that limit the colonisation of the mucosa and select

the mucosa-associated microbiota (Macpherson and Uhr, 2004). The micro-

biota also induces the secretion of a variety of broad-spectrum antimicrobial

molecules that strengthen the mucosal barrier (Müller et al., 2005; Meyer-

Hoffert et al., 2008).

A role for SCFAs in the tolerance of mutualistic microorganisms is

suggested by their immunomodulatory effects: SCFAs repress the secretion

of pro-inflammatory cytokines in cultured epithelial cells and leukocytes, and

attenuate inflammation in animal models (Vinolo et al., 2011).

Protection against pathogens

The observation that GF animals had increased susceptibility to infection by

enteric pathogens led to the concept of colonisation resistance, that is, the nor-

mal resident gut microbiota limits the establishment and/or growth of potential

pathogens. The barrier effect implies several mechanisms. First, the resident

microbiota competes for the attachment sites on the epithelial surface, thus

preventing the colonisation and invasion by pathogens (Bernet et al., 1994).

Second, the normal microbiota competes for available nutrients. Moreover,

some symbionts may regulate the amount of resources provided by the host

and thus prevent overproduction that would favour the growth of exogenous

microbes (Hooper et al., 1999). Finally, some symbionts secrete antimicrobial

compounds called bacteriocins that kill or inhibit the growth of their com-
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petitors, including host pathogens (Servin, 2004; Hütt et al., 2006). SCFAs

produced during bacterial fermentation can also be bacteriostatic for some

bacterial species, through a direct effect or by lowering pH (Alakomi et al.,

2000; Shin et al., 2002). In addition, symbionts can regulate host immune res-

ponse against pathogens. They can alert the host epithelium that pathogens

are present in the mucosa, resulting in enhanced secretion of antimicrobial

peptides to avoid the infection (Vaishnava et al., 2008).

1.2.2.5 The GI microbiota and disease

The GI microbiota has been implicated in the aetiology of a number of com-

plex multifactorial pathologies as diverse as obesity, cardiovascular diseases,

chronic inflammatory and autoimmune diseases, neurological and psychiatric

diseases, and colorectal cancer (Gerritsen et al., 2011; Tlaskalová-Hogenová

et al., 2011). An improved understanding of the interactions between the

indigenous microbiota and the host organism might bring new insights into

the mechanisms of such diseases. As a consequence, the gut microbiota

could be the target of new tools for disease prevention, diagnosis, and treat-

ment. The following sections summarise the current understanding of several

disorders in which the influence of the gut microbiota has been widely explored.

Obesity

Obesity is a complex disease characterised by excess fat accumulation in

the body leading to adverse effects on health. The modulation of the host

metabolism by the gut microbiota suggests a role for the microbiota in pro-

moting obesity and related diseases, such as insulin resistance, type 2 diabetes,

and atherosclerosis.

A number of studies in animal models have provided insights into potential

mechanisms underlying this relationship. Gordon and co-workers pioneered the

investigation of the gut microbiota as a factor that regulates fat storage. They

found that colonisation of young GF mice with the gut microbiota of conven-

tionally reared animals increases the energy harvest from diet, induces hepatic

lipogenesis, and promotes triglyceride accumulation in adypocites, thereby con-

tributing to the increase in body weight (Bäckhed et al., 2004). Furthermore,

GF mice were found to be resistant to diet-induced obesity (Bäckhed et al.,

2007). Key modulators are the fasting-induced adipose factor (FIAF) and the

AMP-activated protein kinase (AMPK). The former is a secreted lipoprotein

lipase (LPL) inhibitor whose expression is normally supressed by the micro-
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biota in the gut epithelium, thus enhancing LPL activity in adipocytes. The

activity of the latter and its downstream targets involved in fatty acid oxidation

is increased in the liver and skeletal muscle of GF animals.

Obesity has been directly associated with phylum-level changes in the com-

position and function of the gut microbiota. Gordon and co-workers found

that genetically obese mice had a reduction in the relative abundance of Bac-

teroidetes and a proportional increase in Firmicutes when compared with lean

mice (Ley et al., 2005; Turnbaugh et al., 2006). It was corroborated in humans,

together with the increase in the Bacteroidetes/Firmicutes ratio accompanying

weight loss in obese subjects following low-calorie diets (Ley et al., 2006). Obese

mice also harboured more methanogenic Archaea, which may increase the effi-

ciency of bacterial fermentation. These same researchers demonstrated that

microbiota transplantation from the caecum of obese mice results in a greater

increase in body fat in recipient mice than colonisation with microbiota from

lean donors (Turnbaugh et al., 2006). However, these specific changes remain

controversial. Several studies have found no evidence that the relative pro-

portions of Bacteroidetes and Firmicutes differ between obese and non-obese

subjects (Duncan et al., 2008; Zhang et al., 2009), while another study reported

a Bacteroidetes/Firmicutes ratio in favour of Bacteroidetes in the obese group,

totally contradicting the findings of Gordon et al. (Schwiertz et al., 2010). Al-

together, these data suggest that instead of phylum-level changes, more subtle

changes in the composition of the gut microbiota could be associated with the

development of obesity.

Irrespective of the correlation between obesity and the relative abundance

of the various bacterial groups, the amount of SCFAs produced by bacterial

fermentation in the colon is higher in obese mice and humans (Turnbaugh

et al., 2006; Schwiertz et al., 2010). SCFAs can contribute directly to weight

gain by acting as energy source for the host de novo lipogenesis, and indirectly

through the modulation of intestinal motility and nutrient absorption (Halldén

and Aponte, 1997; Xiong et al., 2004; Samuel et al., 2008).

Inflammatory bowel disease

The major forms of inflammatory bowel disease (IBD), Crohn’s disease (CD)

and ulcerative colitis (UC), are chronic inflammatory disorders of the GI tract.

Substantial advances in the understanding of their pathogenesis have revealed

an inadequate mucosal immune response to the GI microbiota in genetically

predisposed hosts.
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Genome-wide searches have been successful in identifying susceptibility loci

for IBD, especially in CD. Many of the mutations are found in genes involved in

the recognition, processing, and killing of microorganisms, and the regulation

of immune processes (Gaya et al., 2006; Xavier and Podolsky, 2007).

Mouse models of colitis, which exhibit many of the features of UC, pro-

vide the best evidence that the presence of the gut microbiota is necessary for

triggering colitis since GF animals do not develop the disease (Nell et al., 2010).

Moreover, the microbiota of the TRUC immunodeficient mouse model of coli-

tis is able to induce colitis after being transmitted to wild-type mice (Garrett

et al., 2007).

Recently, the “hygiene hypothesis” has been implicated in the aetiology of

IBD. This hypothesis, first proposed by D. P. Strachan in 1989, suggests that

the increasing incidence of inflammatory, autoimmune and allergic diseases in

developed countries is related to the reduction in the exposure to microbes in

early life as a result of the improvement in hygienic measures, which results

in an impaired development of the immune system (Strachan, 1989; Guarner

et al., 2006).

Several studies have demonstrated a deficit of mucosal defensin in CD. De-

fensins are antibacterial peptides produced by the Paneth cells of the small

intestine and play a major role in the innate immunity (Wehkamp et al., 2003,

2004). In addition, several studies have reported high concentrations of anti-

bodies targeting the antigens of non-pathogenic indigenous bacteria in the GI

tract of IBD patients (Macpherson et al., 1996).

The above evidence supports a key role of the gut microbiota in IBD,

as it carries the antigens that fuel the chronic inflammation. Dysbiosis in

the gut microbiota is highly suspected in the onset, perpetuation, and/or

aggravation of IBD. Its understanding has increased in recent years thanks

to the application of molecular methods for assessing microbial community

composition. See Seksik (2010) for a review of the alterations detected in

the microbiota of IBD patients by separating the diseases (CD and UC) and

the explored compartments (faeces and gut mucosa). Among the structural

alterations confirmed by several studies, there are an abnormally elevated

bacterial load in the intestinal mucosa, which could be related to the deficiency

of the mucosal barrier, an overall reduction in microbial diversity, a decrease

in bacteria within the Firmicutes phylum, particularly in the Clostridium

leptum group in CD patients, which includes the butyrate-producing bacteria

Faecalibacterium prausnitzii, and in the Clostridium coccoides group in UC
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patients, an increase in facultative anaerobes such as Enterobacteriaceae, and

the presence of unusual bacteria. Several studies searching for a dysbiosis

restricted to mucosal lesions did not demonstrate a significant difference

between the microbiota of normal and injured areas. In addition, IBD is

amongst the first diseases that have been the subject of a metagenomic study.

Qin et al. (2010) found that IBD patients can be clearly separated from

healthy individuals, and CD from UC patients, based on the global structure

of the faecal microbiota (in that case, the relative abundance of 155 species).

Besides, the microbiota of IBD patients had a lower gene count than that

of healthy individuals, which suggests that the functional diversity is also

reduced in IBD patients.

Irritable bowel syndrome

The role of the gut microbiota in the irritable bowel syndrome (IBS) is a central

topic of this thesis and is introduced in detail in the next section.

1.3 The irritable bowel syndrome

1.3.1 Definition, clinical presentation, and diagnosis

IBS is a functional bowel disorder that produces chronic symptoms (Longstreth

et al., 2006). The main ones are abdominal pain, bloating, discomfort, and

alteration of bowel habits. No organic or structural cause explains these symp-

toms. Patients may experience diarrhoea, constipation, or an alternation of

both, and the severity of symptoms can be mild, moderate, or severe. Symp-

toms are typically worse at times of increased stress.

The many presentations of IBS and its functional nature make the diagnosis

challenging. The Rome criteria are a system developed to classify the functional

GI disorders and to improve their diagnosis (Thompson, 2006). They were

created in 1989 and have become since then the most widely accepted diag-

nostic criteria for IBS. According to the Rome criteria, IBS is characterised by

continuous or recurrent abdominal pain or discomfort that is:

a) relieved by defaecation and/or

b) associated with change in the frequency of stool and/or

c) associated with change in the form of stool.

The versions of the Rome criteria produced over time differ in how strict

they are about the period of time since the symptoms started, the frequency
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of presentation of symptoms, the number of main criteria required for being

diagnosed, and whether additional supportive criteria are required for the diag-

nosis. For example, the Rome II criteria, established in 1999, base the diagnosis

on the presence of abdominal pain or discomfort in at least twelve weeks in the

preceding twelve months plus at least two of the three main criteria (Drossman,

1999b).

The diagnosis of IBS has been called one of exclusion, but actually, there is

no need of a differential diagnosis to discard other conditions. Some conditions

share symptoms with IBS, such as several IBDs, lactose intolerance, coeliac

disease, colon cancer, functional chronic constipation, and functional chronic

diarrhoea. Misdiagnosis of other disease could occur, but only the presence of

some “alarm” symptoms should alert the physician to discard another diagno-

sis. They include anaemia, GI bleeding, weight loss, fever, palpable abdominal

or rectal mass, familial history of colon cancer or IBD, and new or recent onset

in patients older than 50 years (Longstreth et al., 2006).

Some subtyping systems for IBS have been suggested according to the pre-

dominant stool pattern. For example, the criteria proposed by Longstreth et al.

(2006) are:

a) IBS with constipation (IBS-C): hard or lumpy stools ≥25% and mushy

or watery stools <25% of bowel movements.

b) IBS with diarrhoea (IBS-D): mushy or watery stools ≥25% and hard or

lumpy stools <25% of bowel movements.

c) Alternating type IBS (IBS-A): hard or lumpy stools ≥25% and mushy

or watery stools ≥25% of bowel movements.

d) Unsubtyped IBS: insufficient abnormality of stool consistency to meet

criteria for IBS-C, IBS-D, or IBS-A.

The Bristol stool scale for the form of faeces can be used to identify cons-

tipation as types 1 and 2, and diarrhoea as types 6 and 7 (Lewis and Heaton,

1997).

1.3.2 Epidemiology

IBS is the most common functional disorder of the GI tract, affecting approxi-

mately 10–15% of the Western population (Quigley et al., 2006). It has been

reported a wide variation in the prevalence between countries. One should

be cautious when comparing prevalence rates between studies because these

estimates depend on the employed diagnostic criteria and are affected by the
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tendency of sufferers to seek for health care and that of physicians to diagnose

IBS, which may differ between countries. Two population surveys in which

the same diagnostic criteria were applied revealed a prevalence of 14.1% in

the United States (Hungin et al., 2005), and a lower prevalence in Europe (an

overall prevalence of 9.6%, ranging from 6.2 to 12% across countries) (Hun-

gin et al., 2003). Although IBS is so common in the general population, it is

estimated that up to 70% of sufferers may not have been formally diagnosed

(Hungin et al., 2003, 2005).

Women are affected more often than men, with female:male ratios ranging

from 3:2 to 3:1 (Chang and Heitkemper, 2002; Quigley et al., 2006). IBS affects

people of all ages, even children, but most patients are aged 20-40. Symptoms

begin before 35 years old in 50% of patients, and almost all patients report onset

before 50 years old (Hungin et al., 2003). Onset in older ages is rare, and it may

indicate organic pathology. The first onset of symptoms can follow an episode

of infectious gastroenteritis. This is called post-infectious IBS, and affects 6-

17% of the IBS patients (Spiller and Garsed, 2009). Also, the prevalence of IBS

is higher among people who experienced some physical or psychological abuse

in the past, and among people with psychiatric problems (Drossman, 1999a;

Lea and Whorwell, 2003; Hood et al., 2008).

In spite of being a benign condition, IBS can have a profound negative im-

pact on patients’ quality of life, comparable to or greater than that of other

chronic conditions such as IBDs (Pace et al., 2003; Tang et al., 2008), rheuma-

toid arthritis, asthma, and migraine (Frank et al., 2002). The impact of IBS

ranges from mild inconvenience to severe debilitation. It is associated with

psychological disturbances (anxiety, depression), sleep problems, physical diffi-

culties in daily life, and sexual dysfunction (Drossman, 1999a; Hungin et al.,

2003; Lea and Whorwell, 2003; Hood et al., 2008).

IBS has a high economic impact (Inadomi et al., 2003; Quigley et al., 2006).

Direct costs include physician visits, diagnostic tests, medical treatments, and

hospitalisations. Approximately 3% of primary care consultations are due to

IBS; about 30% are derived to gastroenterologists and other specialists. Indi-

rect costs include work absenteeism and reduced productivity due to illness.

The absolute economic cost of IBS is unknown, partly due to the difficulty of

estimating indirect costs and to the high number of non-diagnosed IBS sufferers.
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1.3.3 Aetiology

The aetiology of IBS remains unclear. IBS has been attributed to psychologic

factors or post-infectious alterations in the GI tract neuromuscular func-

tion, but actually it should be viewed as a multifactorial disorder. Today,

the main mechanisms proposed are visceral hypersensitivity, altered gut

motility and secretion, autonomic and/or central nervous system dysfunc-

tion, along with psychosocial stress, environmental factors, and gut flora

alterations (Talley and Spiller, 2002; Karantanos et al., 2010; Salonen et al.,

2010). The interaction of these factors could trigger and sustain IBS symptoms.

Visceral hypersensitivity

The abdominal pain feeling in IBS is mainly due to visceral hypersensitivity.

The enteric nervous system (ENS) is localised in the submucosa layer and

between the smooth muscle fibres of the GI wall. It transmits stimuli of

abdominal pain and visceral reflexes to the central nervous system (CNS). Vis-

ceral sensitivity is regulated at the levels of the ENS, spinal chord, thalamus,

and cerebral cortex. In response to injury of the enteric mucosa or visceral

stimuli like bowel distension or irritative substances in the lumen, a variety of

mediators are released that participate in a signalling cascade leading to the

recognition of abdominal pain by the brain (Bueno and Fioramonti, 2002).

Any alteration of this system could result in the characteristic abdominal

pain of IBS. Different studies have shown that IBS patients have a reduced

threshold for abdominal pain compared with healthy people (Serra et al., 2001;

Bouin et al., 2002). Also, antagonists of receptors of those mediators, such

as the neurotransmitter serotonin (5-HT), act as visceral analgesics in animal

models of abdominal pain as well as in IBS patients (Banner and Sanger, 1995;

Spiller, 2011).

Abnormal gut motility and secretion

The ENS also controls the neuromuscular and secretory functions of the

GI tract. Stimuli are integrated in the ENS and in the spinal cord and

hypothalamus. A variety of mediators and their receptors participate in this

system. 5-HT stimulates intestinal secretion and peristalsis. Therapeutic

agents targeting this system are employed for the treatment of IBS symptoms:

antagonists of 5-HT receptors delay the GI transit in IBS patients with

diarrhoea, while activation of the receptors promotes transit in IBS patients
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with constipation (Talley et al., 1990; Mart́ınez et al., 2004).

Autonomic nervous system dysfunction

The autonomic nervous system (ANS) regulates visceral sensitivity, gut moti-

lity, and gut secretion. Most of the IBS symptoms can be related to specific

alterations of the ANS. Increased activity of the sympathetic nervous system

and decreased activity of the parasympathetic nervous system are frequent

in IBS (Adeyemi et al., 1999). Furthermore, differences in the ANS function

are suspected to explain the variation between IBS subtypes and between

genders (Aggarawal et al., 1994; Elsenbruch and Orr, 2001; Tillisch et al., 2005).

Low-grade mucosal inflammation

Although inflammation in the intestinal mucosa was initially discarded in

IBS patients, the presence of low-level inflammation has been observed in

several studies (Chadwick et al., 2002; Aerssens et al., 2008). Inflammation

in IBS could arise from infection, stress, food allergy, and changes in the GI

microbiota, and it is a normal symptom in post-infectious IBS. Inflammation

could be seen as an overlap between IBS and IBDs, but actually it is of

different nature in each condition (Spiller, 2009).

Genetic predisposition

Evidence of the contribution of genetic factors to IBS comes from familial

aggregation, twin studies, and analysis of gene polymorphisms. Some studies

have reported a higher prevalence of IBS among first-degree relatives of

patients diagnosed with this disorder (Kalantar et al., 2003). Interestingly,

one study reported an elevated IBS prevalence among first-degree relatives

of patients with IBD, which may suggest the involvement of shared genetic

factors (Aguas et al., 2011). However, these familial clusters could also

reflect shared psychological and environmental factors. There is a higher

concordance for IBS in monozygotic twins than in dizygotic twins (Levy

et al., 2001; Bengston et al., 2006). Some polymorphisms in genes of the

serotonergic and adrenergic systems and genes encoding immunomodulatory

proteins have been related to IBS (Fukudo and Kanazawa, 2011). For example,

the gene of the serotonin transporter (SERT), involved in the reuptake of

serotonin from the synaptic cleft, has a long allele that has been related to

constipation in homozygosis. The effect of the short allele is controversial:

it has been related to diarrhoea in some studies but with constipation in others.
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Psychosocial factors

IBS is not a psychiatric disorder per se, but psychosocial factors play an

important role in the development and persistence of IBS symptoms (Dross-

man, 1999a; Hungin et al., 2003; Lea and Whorwell, 2003; Hood et al.,

2008). Traumatic life events such as a history of physical abuse are strongly

correlated with the development of IBS and the severity of its symptoms.

Studies have repeatedly shown a high incidence of psychiatric comorbidity

in IBS patients, such as anxiety, depression, and hypochondriasis. Anxiety

is associated with rapid bowel transit and increased stool frequency, whereas

depression is generally associated with delayed transit. Moreover, symptoms

are typically worse at times of increased stress.

Diet

Diet is not the cause of IBS but can influence the development of symptoms.

Indeed, many patients believe that food intolerance contribute to their

symptoms. IBS has been related to malabsorption of certain CHOs such as

lactose, sorbitol, or fructose. A hypersensitive reaction to the bowel distension

caused by incomplete absorption of these CHOs is likely to occur. Careful

eating may reduce IBS symptoms, but an individualised dietary control is

needed to identify the specific substances causing symptoms (McKenzie et al.,

2012).

Altered GI microbiota

Evidence of dysbiosis has emerged in patients with IBS. Since IBS could be con-

sidered a disorder of the gut-brain axis, some authors have proposed a model,

illustrated in Figure 1.8, to incorporate dysbiosis into the pathogenesis of

IBS (Collins and Bercik, 2009). Known risk factors for IBS, such as acute

gastroenteritis, antibiotic therapy, or stress, could produce long-term changes

in the indigenous microbiota of IBS patients due to an underlying instability

of the gut physiology, in contrast to the transient changes seen in otherwise

normal subjects. Intestinal dysbiosis could then result in inflammation that

is subclinical but perturbs gut function and produces GI symptoms. In addi-

tion, intestinal dysbiosis might contribute to the psychiatric comorbidity that

sometimes occurs in IBS patients.
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Figure 1.8: A hypothetical model describing the role of the intestinal microbiota
in the pathogenesis of IBS. Adapted from Collins and Bercik (2009).

While this model requires testing in clinical studies, the involvement of the

GI microbiota in IBS is supported by several observations:

a) Post-infectious IBS (PI-IBS) is a special subtype of IBS (Spiller and

Garsed, 2009). About 6-17% of IBS patients believe their symptoms began

after an episode of acute gastroenteritis, in most cases due to bacterial infection

by Campylobacter, Salmonella, or Shigella. Infectious enteritis is the strongest

risk factor for developing IBS. The risk increases with the duration of the

initial infection and the virulence of the infecting microorganism. It is higher

for females and in co-occurrence with psychological alterations (Neal et al.,

2002). The mechanisms that cause PI-IBS are unknown but could include

residual mucosal damage and inflammation or persistent changes in mucosal

immunocytes, enterochromaffin cells (which store serotonin), mast cells (which

store histamine and heparin), enteric nerves, and the GI microbiota.

b) Clinical trials targeting the microbiota seem to alleviate IBS symptoms

(Parkes et al., 2008). Although antibiotic treatment can trigger IBS (Mendall

and Kumar, 1998; Maxwell et al., 2002), its therapeutic use has been explored

and found effective in reducing symptoms, in particular in patients diagnosed

with small intestinal bacterial overgrowth (SIBO) (Basseri et al., 2011). The

results of randomised controlled trials of probiotics in IBS are not consistent.

Some showed reduction of symptoms, but others failed to prove benefits to the
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patients (Moayyedi et al., 2010). Anyway, probiotics are viewed as a promising

strategy to treat IBS.

c) An increased number of bacteria in the small intestine, a condition known

as SIBO, has been observed in a subset of IBS patients (Lee and Pimentel,

2006). SIBO is an abnormal colonisation of the proximal small intestine by

species commonly found in the lower GI tract. However, reports of SIBO

in IBS are controversial. Firstly, IBS symptoms may be mimicked by SIBO.

Secondly, the hydrogen breath test commonly used for the detection of SIBO

seems to have a high false-positive rate (Simrén and Stotzer, 2006). Studies

employing other methods suggest that the incidence of SIBO in IBS patients

is not significantly different from that of controls (Posserud et al., 2007).

d) Some studies suggest an altered colonic microbiota in IBS patients, with

specific features depending on the predominant bowel pattern (see Salonen et al.

(2010) for a review of the recent insights into the intestinal microbiota of IBS

patients generated in molecular studies). It has been found a higher instability

in the faecal communities of IBS patients compared with those of controls in

studies based on fingerprinting of 16S rRNA amplicons (Mättö et al., 2005;

Maukonen et al., 2006). Other studies have looked for differences between IBS

patients and healthy controls in the abundance of specific bacterial groups. The

available data do not reveal pronounced IBS-related alterations and the results

are often inconsistent between studies, even when the same Finnish IBS cohort

is analysed under complementary methodologies (Salonen et al., 2010). Despite

these limitations, some repeated findings in faecal samples of patients with IBS

are a reduction in the levels of Actinobacteria (especially bifidobacteria) and

Lactobacillus, and an increase in the levels of Enterobacteriaceae, observed both

by culture and molecular methods (Balsari et al., 1982; Si et al., 2004; Malinen

et al., 2005; Kassinen et al., 2007; Kerckhoffs et al., 2009; Krogius-kurikka

et al., 2009; Tana et al., 2010). In addition, IBS-D and IBS-C appear to have a

distinct microbial composition, and IBS-D patients differ from healthy controls

in their faecal microbiota more than IBS-C patients (Kassinen et al., 2007;

Rajilic-Stojanovic, 2007; Lyra et al., 2009).

There are several explanations for the lack of reproducibility of the changes

in microbial composition detected in the studies carried out so far. One is

that dysbiosis in IBS seems to consist in subtle alterations in the microbiota,

in contrast to the global differences detected in other pathologies such as obe-

sity or IBDs (Ley et al., 2006; Qin et al., 2010). The detection of such subtle

changes is difficult due to the complexity of the GI microbiota and the high level
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of between-subject variability in microbial composition due to reasons other

than the pathological state. Also, cohorts are often relatively small, which

reduces the statistical power to detect significant alterations. The disagree-

ment between studies in the specific microbial groups found altered may also

be partly due to the methods employed and to phenotypic variation within the

patient’s group. IBS is a complex disorder in its aetiology and clinical presenta-

tion. Patients with heterogeneous aetiology, type and/or severity of symptoms

at the time of sampling could have been included in different studies, and even

within the same study, further difficulting the detection of patterns.

Most of the studies on IBS are based on faecal samples because they are

the most accessible source of GI microbiota. There is little information about

the differences between IBS patients and healthy controls in mucosa-associated

microbiota. Mucosal communities may be more important to the disorder

because of their closer association with the host epithelium and thus their

relevant role in the regulation of intestinal immunity and inflammation. The

few studies targeting both mucosal and faecal communities in IBS have shown

differences in the diversity and abundance of specific taxa between sampling

sites, as seen in healthy controls. However, some changes were common to

the mucosal and faecal samples, such as a decrease in Bifidobacterium and

an increase in Pseudomonas in IBS patients (Kerckhoffs et al., 2009, 2011).

Thus, each intestinal compartment seems to be differently affected by IBS, and

its study could provide complementary information to address the role of the

microbiota in IBS.

Currently, most of the detected alterations can not be functionally inter-

preted due to the lack of information about the role of many taxa. Nevertheless,

some information is available on functional attributes of the gut microbiota that

can contribute to symptoms, such as the fermentation end-products SCFAs and

H2. In one study, IBS patients showed a significant increase in the levels of

acetic and propionic acids that correlated with worsening of symptoms and

higher amounts of Lactobacillus and Veillonella (Tana et al., 2010). Note-

worthy, acetate is a known irritant and at high concentrations induces mucosal

lesions and abdominal cramps in laboratory animals (Burton and Gebhart,

1995). H2 could be involved in some IBS symptoms, such as bloating, flatu-

lence, and distension (Serra et al., 2001). H2 is removed by methanogenic ar-

chaea, sulphate-reducing bacteria (SRB), and acetogenic bacteria (Nakamura

et al., 2010). Methane produced by methanogens has been linked to constipa-

tion (Pimentel et al., 2006), and the H2 disposal through SRB generates H2S,
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a toxic with potential detrimental impact on the host. However, the results of

the current studies addressing the impact of H2-removing microorganisms on

IBS are inconclusive.

Further research is needed to assess the implication of the gut microbiota

in IBS from a functional perspective, taking advantage of the recently deve-

loped high-throughput tools. Follow-up studies, in which samples are collected

at moments with different symptomatology, could be very useful. They would

help to mitigate the confusion caused by between-subject variability and hete-

rogeneity within IBS that is problematic in cross-sectional studies. Also, they

would reveal the structural and functional dynamics of the microbiota in IBS.

1.4 Methods for the study of the GI microbiota

The study of the microbial communities associated with humans involves the

identification of the organisms present, their activity, and their interactions

with each other and with the host. Progress in the study of the GI microbiota

has been largely conditioned by the methodology available at the time. Some

milestones in the development of methods for studying the human microbiota

are discused below.

1.4.1 Anaerobic culture techniques

Anaerobic microbes, that is, microbes that grow in atmospheres without oxy-

gen, were discovered lately in the history of microbiology (Pasteur, 1860). Effec-

tive methods for culturing anaerobes were developed in the middle decades of

the 20th century (Hungate, 1950; Aranki et al., 1969) and were put in use

for culturing anaerobes from the GI tract of ruminants and humans (Hungate,

1966; Moore and Holdeman, 1974). They allowed the access to the strict anae-

robes of the GI tract and the recognition that they constitute the majority of the

intestinal microbial communities of adult humans (Savage, 2001). Cultivation

techniques are still widely used for the isolation and detailed characterisation

of new representatives of the GI microbiota, which is being facilitated by the

development of specific culture media (Zoetendal et al., 2003; Derrien et al.,

2004) and high-throughput culture technologies (Zengler et al., 2002; Ingham

et al., 2007).
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1.4.2 Animal models for exploring the host-microbiota

interactions

A gnotobiotic animal is one in which the status of the microbiota is known. GF

animals have no microorganisms living in or on them (technically, they are also

gnotobionts). Such animals are born and raised in sterile conditions. Gnoto-

bionts are obtained after exposing GF animals to selected microbes (Faith et al.,

2010). The comparison of GF and conventionally-raised mice has provided rele-

vant information about the effects of the gut microbiota on host physiology and

development (Section 1.2.2.4). Gnotobionts are used to study in vivo the sym-

biotic interaction between an animal and one or more of the microorganisms

that inhabit its body (Sonnenburg et al., 2006; Mahowald et al., 2009). Be-

sides, transplantation of gut microbial communities from conventional mice to

GF recipients is used to determine how much of the donor phenotype is trans-

ferable via the microbiota and the underlying mechanisms (Turnbaugh et al.,

2006; Garrett et al., 2007; Vijay-Kumar et al., 2010). Mice with genetically-

determined or chemically-induced phatological phenotypes, such as models of

obesity and colitis, are used to investigate the contribution of the microbiota

to these diseases (Ley et al., 2005; Nell et al., 2010).

1.4.3 Microbial diversity estimates based on the SSU

rRNA

The SSU rRNA gene is present in all life organisms due to its house-keeping

function (it encodes an RNA component of the ribosome involved in the trans-

lation of messenger RNAs (mRNAs) into proteins). Therefore, its sequence

is relatively conserved, but also includes variable regions that can be used for

discriminating between species (Baker et al., 2003). The classification of or-

ganisms using the SSU rRNA gene led Carl Woese to define a new domain of

life, Archaea, and to reconstruct the phylogenetic tree of life with the three

domains, Archaea, Bacteria, and Eukarya (Woese, 1987; Woese et al., 1990).

Although the concept of species remains unclear for prokaryotes, the analysis

of 16S rRNA genes has become the standard method for their definition. Se-

quences are clustered into groups based on their sequence similarity. Arbitrary

cut-offs are used to delimit microbial species, commonly ranging from 97 to

99% of sequence identity.

Polymerase chain reaction (PCR) amplification and sequencing of 16S
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rRNA genes obtained from microbial communities has revolutionised microbial

ecology by revealing that the majority of microbes in a variety of ecosystems

were previously unknown, as they are yet unculturable. For example, estimates

of cultivability of bacteria in the GI tract range from 10 to 50%, depending on

the study (Wilson and Blitchington, 1996; Suau et al., 1999). The resistance of

many microbes to be cultured could be due to their unknown growth require-

ments, the stress imposed by the culture procedure, and the almost impossible

simulation of the interactions between microbes (and with the host) that occur

in their natural environment.

A wide variety of molecular approaches based on the sequence variability

of the 16S rRNA gene has been applied during the last 15 years to explore the

diversity and dynamics of microbial communities (Zoetendal et al., 2004).

Sequencing of 16S rRNAs and their genes allows the identification of mi-

croorganisms, often to the species level, and the detection of even minori-

tary members of the community. 16S rRNA sequences can be obtained either

from their genes after PCR amplification or directly from the 16S rRNAs after

reverse-transcription and subsequent PCR. Genes encoding 16S rRNA reveal

the composition of the community. 16S rRNAs discriminate the metabolically

active microbial populations, since the number of ribosomes and the quantity

of rRNA per cell depend on the growth phase and the level of activity, being

higher in active than in dormant cells (Wagner, 1994). 16S rRNA sequences

are assigned to taxonomic groups after comparison with sequences deposited

in 16S rRNA databases. Phylogenetic analysis can be performed, and species-

level phylogenetic types can be defined within the samples based on sequence

similarity (Figure 1.9). Until recently, sequencing of PCR amplicons was very

laborious and expensive because it required the generation of clone libraries be-

fore sequencing with the classical dideoxynucleotide chain termination method

(Sanger sequencing). The advent of high-throughput sequencing (the Roche

454 GS-FLX technology and the Illumina Solexa technology, based respec-

tively on pyrophosphate release and bridge amplification) has made possible

the direct sequencing of amplicons, thus avoiding the cloning step (Metzker,

2010). The new sequencing platforms produce high numbers of reads in a sin-

gle run, while the cost has dramatically dropped. In addition, sequencing of

hypervariable regions of the 16S rRNA gene can be combined with the tagging

of samples with specific barcode sequences, which enables mixing of multiple

samples to be sequenced in parallel (Sogin et al., 2006; Andersson et al., 2008).
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Figure 1.9: Phylogenetic tree of Bacteria showing established phyla (italicised
Latin names) and candidate phyla within the November 2003 ARB database
(http://arb-home.de). The vertex angle of each wedge indicates the relative
abundance of sequences in each phylum; the length of each wedge indicates
the range of branching depth found in each phylum; the redness of each wedge
corresponds to the proportion of sequences in that phylum obtained from cul-
tured representatives. Adapted from Handelsman (2004).
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Fingerprinting techniques consist in the PCR amplification of 16S rRNA

genes and the subsequent generation of profiles representing the sequence di-

versity within the selected samples. They include techniques such as dena-

turing gradient gel electrophoresis (DGGE) and temperature gradient gel elec-

trophoresis (TGGE), that are based on sequence-specific melting behaviour

of amplicons. They are very useful for a rapid monitoring and comparison

of microbial communities. However, these diversity profiles only recover the

most dominant bacteria, and sequencing is necessary for identification of the

community members.

Several methods are used to quantify 16S rRNA concentrations in environ-

mental samples. Real-time PCR uses species- or group-specific primers to quan-

tify specific 16S rRNAs relative to the total concentration of 16S rRNA. Other

approaches involve hybridisation with specific oligonucleotide probes instead

of PCR amplification. Fluorescence in situ hybridisation (FISH) combines the

hybridisation with fluorescent 16S rRNA probes with microscopy or flow cy-

tometry for the direct enumeration of individual cells. Microscopy allows the

direct visualisation of microbes and the determination of their spatial organisa-

tion in the samples (Swidsinski et al., 2005). Flow cytometry coupled with cell

sorting allows the study of specific fractions of the community or even of single

cells in a culture-independent manner (Peris-Bondia et al., 2011). A limita-

tion of quantitative PCR and FISH is that only a few primers/probes can be

used per analysis, so they are laborious at the species level. In contrast, high-

throughput quantification of 16S rRNAs is possible with diversity microarrays

(or phylogenetic microarrays). Diversity microarrays are small glass surfaces

spotted with arrays of covalently linked species-specific 16S rRNA probes that

are available for hybridisation. They allow the simultaneous quantification of

thousands of microbes. Microarrays focused on the microbial communities of

specific ecosystems have been constructed, including some that target human-

associated microbiota (Rajilic-Stojanovic et al., 2009).

Studies that analyse the 16S rRNA sequence variability have rapidly ex-

panded the knowledge about the composition and dynamics of microbial

communities. However, these approaches have some well-known limitations

(von Wintzingerode et al., 1997; Hongoh et al., 2003; Sipos et al., 2007; Hong

et al., 2009). First, the design of primers and probes is limited by the available

information of the 16S rRNA sequence diversity. Moreover, although these

oligos are designed to target either the whole microbial community or particu-

lar taxa, their hybridisation efficiency may be not uniform. FISH depends on
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the permeability of the target cells, while conditions of the PCR, such as the

annealing temperature and the number of cycles, affect the estimated relative

abundances of microbial groups in the samples. Additionally, little information

can be derived about the activity of the microorganisms from these approaches,

as there is a lack of information of their functional attributes in most of the

cases and/or they have only moderate similarity to characterised microorga-

nisms.

1.4.4 Genomics and functional genomics of microbial

communities

Beyond the description of microbial diversity, new culture-independent

approaches have been recently developed to gain insight into the activities

of microbes in complex ecosystems (Figure 1.10) (Zoetendal et al., 2008).

Metagenomics (also called community genomics or environmental genomics)

is the analysis of the collection of genomes directly isolated from an environ-

ment, that is, the metagenome. A metagenomic project can be sequence-driven

or function-driven (Handelsman, 2004). Massive sequencing of the metagenome

is performed to explore the genomic and genetic diversity within the ecosys-

tem, the functional potential and the phylogenetic composition of the micro-

bial community, and the distribution and redundancy of functions. Popula-

tion properties can also be derived from metagenomic data, and comparative

metagenomics can reveal the influence of environmental factors on microbial

communities and their adaptations to specific habitats (Raes et al., 2007).

As metagenomics tries to capture sequences from many diverse organisms si-

multaneously, the coverage of a particular organism in the sample at a given

depth of sequencing is determined by its relative abundance and genome size.

On the other hand, function-driven metagenomics involves the construction of

expression libraries from metagenomic DNA that are screened to search for

genes with specific functions of interest. This approach leads to the discovery

of new genes for known or new functions, such as antimicrobial peptides, anti-

biotic resistance genes, and degradative enzymes. Metagenomics has revealed

extensive information about the gene content of microbial communities in a

variety of habitats, including the GI tract (Venter et al., 2004; Daniel, 2005;

Delong et al., 2006; Gill et al., 2006; Kurokawa et al., 2007).
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Figure 1.10: Schematic representation of metagenomics and other community-
based “omic” approaches. Adapted from Zoetendal et al. (2008).

A limitation of metagenomics is that it is not known whether the predicted

genes are expressed and, if so, under what conditions and to what extent. In

addition, it is not possible to determine whether environmental DNA comes

from active, dormant, or dead cells. Other meta-“omic” approaches that focus

on activity biomarkers, such as RNA (metatranscriptomics) (Frias-Lopez et al.,

2008; Urich et al., 2008; Shi et al., 2009; Turnbaugh et al., 2010; Gosalbes

et al., 2011), proteins (metaproteomics) (Ram et al., 2005; Verberkmoes et al.,

2009; Kolmeder et al., 2012), or metabolites (metabolomics) (Antunes et al.,

2011; Ponnusamy et al., 2011), are needed to understand the in situ activity of

microorganisms. Metatranscriptomics is the most advanced of these functional

community-based approaches and has been applied mainly to aquatic and soil

ecosystems, but also to the GI tract. In metatranscriptomics, complementary

DNA (cDNA) is synthesised from total RNA extracted from an environmental

sample and is used for massive sequencing. Total RNA is dominated by rRNAs,

but also includes functionally relevant molecules such as mRNAs, which will

be translated into proteins, and small non-coding RNAs (sRNAs), which act
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as regulatory elements or ribozymes. Therefore, metatranscriptomics allows to

assess the structure of the most active members of the community and the genes

that are expressed under particular conditions. This offers the opportunity to

link community structure and function and to get a clearer picture of the in

situ activity of the microorganisms in an ecosystem.

High-throughput sequencing is generating a vast amount of complex data

that are challenging to analyse. In fact, the study of microbial communities

has prompted the adaptation and further development of computational and

statistical methods and tools employed in genomics and microbial ecology, as

well as to the continuous development of new bioinformatic analytical tools.





2 Objectives

The advent of high-throughput molecular techniques has given a boost to

the research on environmental microbial communities during the last decade.

Those associated with human hosts are being investigated from ecological

and biomedical perspectives by many researchers worldwide. This thesis

focuses on some basic issues concerning the distal gut microbiota such as

its spatial distribution, its temporal dynamics, and its association with a

disease in which a link with the microbiota is suspected. Usually, we were

not the first to address these issues and other studies on the same topics were

published during the development of our work, as one can expect in this hot

research area. However, we tried to go beyond what was known at the time

of the experimental design of each study included here. We also tried to take

advantage of the available knowledge for comparison with our results.

The objectives we tackled are stated below and will be presented in specific

sections:

Study 1. Bacterial diversity in rectal mucosa and faeces of healthy subjects.

Study 2. Structural alterations of colonic mucosal and faecal bacteria in the

irritable bowel syndrome.

Study 3. Stability and host-specificity of faecal bacteria in healthy subjects.

Study 4. Follow-up of faecal microbial communities in the irritable bowel

syndrome.

Study 5. Response of a Prevotella-dominated human faecal microbiota to a

ketogenic diet.

Our main objective was to study the potential relationship of the colonic

microbiota with IBS, one of the most common functional bowel disorders in

Western countries. The definition and treatment of IBS is challenging due to

its largely unknown aetiology and the variety of symptoms that patients can
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present. Alterations in the GI microbiota have been longly suspected to be

one of the numerous factors potentially involved in the onset and persistence

of IBS (Section 1.3.3).

To address this, we first tried to understand the intrinsic variation in the

GI microbiota within and between individuals. This led us to run a few other

studies.

We first measured the within-subject variability of the bacterial composition

of faeces and colonic mucosal biopsies in healthy subjects in order to evaluate

the extent to which the faecal bacteria resemble the mucosa-associated ones

(Study 1).

Then, our first approach to IBS was to compare the bacterial composition of

IBS patients with different predominant bowel habits with that of healthy sub-

jects (Study 2). We sampled faecal and colonic mucosa-associated microbial

communities, unlike most studies on IBS, which only analyse faecal samples.

We also measured the short-term temporal variation in faecal bacterial

communities in healthy subjects (Study 3). Our aims were to evaluate the

normal dynamics of the community structure and to establish putative patterns

of interaction between specific bacteria.

Our results in the cross-sectional study on IBS, as well as the conclusions

about the normal temporal variation in the structure of the microbiota, led us

to undertake a longitudinal study on IBS (Study 4). It allowed us to compare

samples from single patients at moments with different type and/or severity

of symptoms, thus overcoming the confusion introduced by the inter-subject

variability and the heterogeneity within IBS.

Additionally, we realised that some obese subjects included in our cohorts

had an unusual high prevalence of bacteria within the Prevotella genus. To-

gether with some observations extracted from the literature, this led us to

suggest a potential link between this genus and some type of obesity, which was

first tested through the monitoring of one volunteer following a CHO-restricted

diet (Study 5).

When volunteers were followed over time (Studies 3-5), sampling was res-

tricted to faeces because they are easily collected in a non-invasive manner.

The composition of mucosal and faecal bacterial communities was analysed

through massive sequencing of 16S rRNA amplicons in Studies 1, 2, 3, and 5.

We adopted metagenomic and metatranscriptomic approaches in Study 4 to

assess potential changes in the genetic potential and the gene expression of the

microbiota.



3 Material and Methods

3.1 General remarks

We studied the human microbiota of several colonic mucosal sites and faeces,

both in healthy volunteers and IBS sufferers. The microbial communities were

analysed by sequencing their nucleic acids without isolation and culturing of

the community members.

The general “wet lab” methodology for the specific studies was overall simi-

lar. Protocols started with the isolation of nucleic acids. On one hand, the DNA

of the whole community was used for the analysis of the taxonomic composi-

tion by PCR amplification and sequencing of the 16S rRNA genes. Sometimes,

it was also used for the analysis of the gene composition by direct sequencing

(metagenomics). On the other hand, the RNA of the whole community was

used for the analysis of the gene expression by sequencing the cDNA obtained

by retro-transcription of the total RNA (metatranscriptomics).

There were diferences between studies in the experimental procedure due

to several factors. Regarding the isolation of nucleic acids, in our first studies

we were only interested in the DNA content of the samples, so we employed

protocols optimised for the DNA isolation from each sample type, biopsies and

faeces. Later on, to analyse also the RNA content, we adopted a protocol to

perform the co-extraction of both types of nucleic acid instead of the previous

ones. We were also conditioned by the sequencing technologies available at each

time, which have experienced a revolution in the last years with the advent

of next-generation sequencing technologies. We started sequencing with the

classical Sanger method, but we moved to pyrosequencing when it became

available, thus avoiding the cloning step prior to sequencing. We then moved to

the improved pyrosequencing chemistry to obtain longer reads. The sequencing

technology employed in each study affected in turn the choice of primers and

conditions for the PCR amplification.

61



62 CHAPTER 3. MATERIAL AND METHODS

blabla

The detailed protocols of the specific objectives (Studies 1-5) will be ex-

plained below. Section 3.2 describes the characteristics of the study partici-

pants and the procedure of sample collection. Section 3.3 provides details about

the processing of samples, from the isolation of nucleic acids to their sequen-

cing. Section 3.4 specifies the bioinformatic and statistical analyses applied to

sequence data.

3.2 Sampling

3.2.1 Study participants

All participants gave prior informed written consent to the study protocol,

which was approved by the Ethics Committee of La Fe University Hospital

(Valencia, Spain). Volunteers were administered a questionnaire face to face

about lifestyle and relevant clinical features.

Study 1

The study subjects comprised nine volunteers (hereinafter referred to as

individuals 1-9). None had a previous history of GI disease or systemic

comorbidities, recent treatment with antibiotics (except for V7, who had taken

antibiotics the previous month), immunomodulating therapy, anti-diarrhoeal

medication, or laxatives. Relevant volunteers’ details are summarised in Table

3.1.

Study 2

The study subjects comprised nine healthy controls (subjects without GI

disorders or systemic comorbidities) enrolled from a screening program for

colon cancer prevention, and sixteen IBS patients classified into diarrhoea

subtype (IBS-D, thirteen patients) and constipation subtype (IBS-C, three

patients) according to the Rome II criteria (Drossman, 1999b; Longstreth

et al., 2006). Hereinafter they will be referred to as controls C01-C09 and

patients I01-I16. Relevant volunteers’ details are summarised in Table 3.2.
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Table 3.1: Characteristics of the volunteers of Study 1 and sample collection
date. BMI: body mass index, mass (kg)/(height (m))2

Volunteer Age Sex Nationality BMI Antibiotics Collection date

(last 3 months) Biopsies Faeces

1 29 F Spanish 21.5 No 27-11-07 08/02/08

2 26 F Spanish 20.2 No 27-11-07 11/12/07

3 36 F Spanish 23.7 No 27-11-07 02/01/08

4 61 F Spanish 22.6 No 27-11-07 08/02/08

5 42 F Spanish 32 No 11/12/07 11/12/07

6 33 M Italian (48 25.4 No 02/06/08 02/06/08

months in Spain)

7 37 M Spanish 31.3 Ampicilin (1 03/06/08 03/06/08

month earlier)

8 40 M Spanish 24.4 No 03/06/08 03/06/08

9 36 M Mexican (8 24.4 No 03/06/08 03/06/08

months in Spain)

Study 3

The study subjects were three male volunteers (hereinafter referred to as

individuals A, B, and C). None had a previous history of GI disease or sys-

temic comorbidities, recent (in the last 3 months) treatment with antibiotics,

immunomodulating therapy, anti-diarrhoeal medication, or laxatives. A, B,

and C were 40, 39, and 29 years old, respectively. A was normal-weight; B

and C were obese class I according to the classification by the body mass

index of the World Health Organisation (30 ≤ BMI < 35). They followed a

Mediterranean diet that remained unchanged throughout the follow-up.

Study 4

Initially, four IBS patients with diarrhoea subtype, according to the Rome II

criteria (Drossman, 1999b; Longstreth et al., 2006), were included in the study

(Patients 1-4). The husband of Patient 1 was included as an age-matched con-

trol that also shared her environment (Control 1). Patients underwent medical

examination every two weeks. Additionally, patients collected daily data on

symptoms during the follow-up, specifically, presence of abdominal pain or

discomfort, abdominal distension, and defaecatory urgency, and number and

type of stools (according to the Bristol scale, Figure 3.1) (Lewis and Heaton,

1997). Patients 3 and 4 remained fairly asymptomatic over the follow-up, so

their samples were not selected for analysis. Relevant volunteers’ details are

summarised in Table 3.3.
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Table 3.2: Characteristics of the volunteers of Study 2.

(a)

Subject Group Age Sex BMI Nationality Educational Physical High fibre food

level activity consumption

C01 Control 60 Female 25.1 Ecuadorian (7 High school Moderate Daily

years in Spain)

C02 Control 56 Male 27.5 Spanish Primary school Moderate Daily

C03 Control 55 Female 27.9 Spanish Primary school Moderate Daily

C04 Control 62 Female 26.4 Spanish University/College Moderate Daily

C05 Control 55 Male 31.4 Spanish University/College Moderate Daily

C06 Control 54 Male NA Spanish Primary school Moderate Daily

C07 Control 50 Male 26.1 Spanish University/College Moderate Daily

C08 Control 62 Female 23 Spanish University/College Sedentary Daily

C09 Control 66 Male 25.5 Spanish Primary school Moderate Weekly

I01 IBS-diarrhoea 49 Female 18.7 Spanish University/College Moderate Daily

I02 IBS-diarrhoea 33 Male 29.3 Spanish High school Intense Monthly

I03 IBS-diarrhoea 32 Female 18.9 Spanish University/College Sedentary Weekly

I04 IBS-diarrhoea 62 Female 31.5 Spanish University/College Sedentary Daily

I05 IBS-diarrhoea 35 Male 24.7 Spanish University/College Intense Daily

I06 IBS-diarrhoea 56 Male 34 Spanish University/College Moderate Weekly

I07 IBS-constipation 60 Female NA Spanish University/College Moderate We ekly

I08 IBS-diarrhoea 38 Male 24 Spanish High school Moderate Daily

I09 IBS-diarrhoea 53 Female 24 Spanish University/College Moderate Daily

I10 IBS-constipation 46 Female 15.4 Spanish High school Intense Daily

I11 IBS-diarrhoea 27 Male 23.2 Spanish University/College Sedentary Daily

I12 IBS-constipation 46 Male 21.6 Spanish Primary school Moderate Daily

I13 IBS-diarrhoea 26 Female 25.5 Spanish High school Sedentary Monthly

I14 IBS-diarrhoea 42 Female 17.3 Spanish Primary school Moderate Weekly

I15 IBS-diarrhoea 57 Male 23.7 Spanish University/College Sedentary Daily

I16 IBS-diarrhoea 27 Male 20.8 Spanish University/College Sedentary Daily

(b)

Subject Alcohol Smoking Antibiotics Drug consumption at sampling time

consumption (last 3 months)

C01 Monthly Non-smoker No None

C02 Daily Smoker No None

C03 Never Ex-smoker No Hypertension, Diabetes

C04 Weekly Smoker No Gastroesophageal reflux, Bowel spasms

C05 Monthly Ex-smoker Yes Gastroesophageal reflux

C06 Never Non-smoker No None

C07 Daily Ex-smoker No None

C08 Daily Smoker No None

C09 Daily Ex-smoker No Gastroesophageal reflux, Hypertension, Dietary supplements

I01 Daily Non-smoker No Psychotropics, Hyperaldosteronism

I02 Never Ex-smoker No None

I03 Weekly Smoker Yes None

I04 Monthly Ex-smoker No Gastroesophageal reflux, Hypertension

I05 Daily Smoker Yes Gastroesophageal reflux

I06 Weekly Non-smoker No None

I07 Never Smoker No None

I08 Never Ex-smoker Yes Gastroesophageal reflux

I09 Never Ex-smoker No Psychotropics, Hypertension

I10 Monthly Ex-smoker No Gastroesophageal reflux, Bowel spasms, Psychotropics

I11 Monthly Non-smoker No None

I12 Monthly Non-smoker No Psychotropics, Osteoporosis

I13 Monthly Smoker No Contraceptives

I14 Daily Smoker No Psychotropics, Hyperlipidemia

I15 Weekly Ex-smoker No Gastroesophageal reflux, Hypertension, Hyperlipidemia

I16 Monthly Non-smoker No Gastroesophageal reflux, Alopecia
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Table 3.3: Characteristics of the volunteers of Study 4. C1, P1, and P2 are
Control 1, Patient 1, and Patient 2, respectively.

Subject C1 P1 P2

Group Control IBS-diarrhoea IBS-diarrhoea

Age 66 62 21

Sex Male Female Female

BMI 31.7 27.5 30.4

Nationality Spanish Spanish Spanish

Educational level University/College University/College High school

Physical activity Moderate Moderate Moderate

High fibre food consumption Daily Weekly Daily

Alcohol consumption Monthly Never Never

Smoking Ex-smoker Ex-smoker Smoker

Antibiotics (last 3 months) No No No

Drug consumption Hypertension Hypertension Bowel spasms

at sampling time Hyperlipidemia Arthrosis Contraceptives

Urinary-tract disorders Osteoporosis

Study 5

An obese volunteer (individual B in Study 3) subject to a ketogenic diet (high

in fat and protein and virtually without CHOs) was monitored for two months.

His daily food intake and weight loss were registered during the follow-up.

3.2.2 Sample collection

Biopsies were obtained from the colonic mucosa by endoscopy using a standard

colonoscopy (Olympus) and single-use biopsy forceps (Radial JawTM 4, Boston

Scientific), recovered in dry tubes, preserved on ice, and immediately frozen at

-80 ◦C. Faeces were self-collected by the volunteers in tubes containing 10 mL

of phosphate-buffered saline (PBS, containing, per liter, 8 g of NaCl, 0.2 g of

KCl, 1.44 g of Na2HPO4, and 0.24 g of KH2PO4 [pH 7.2]) and stored in the

volunteers’ home freezers until its release. Faecal samples were kept at 4 ◦C

for 1-2 hours before being stored at -80 ◦C. All samples were stored at -80 ◦C

until further processing.

Study 1

Biopsies of the rectal mucosa and faeces were obtained from each subject. Biop-

sies were obtained by rectoscopy.aa Neither laxatives nor enema were adminis-
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Figure 3.1: Categories of the Bristol stool scale for the form of faeces. Types
1 and 2 indicate constipation, while types 6 and 7 show diarrhoea. Adapted
from the Wikipedia file “Bristol Stool Chart.png”.

tered prior to endoscopy to avoid the potential disturbance of the mucosal

microbiota associated with these procedures. Biopsies were taken in the

absence of macroscopic faeces. Although the possibility of contamination

of biopsies by faecal material could not be ruled out, it is unlikely because

stools usually have hard consistency and are not attached to the mucosa in

the rectum. Faeces were collected within the shortest possible time-lapse

to biopsies in order to minimise potential temporal changes in community

composition. Initially, all faecal samples were collected prior to rectoscopy and

within the same day. However, for four of the volunteers, the faecal sample did

not provide enough DNA for the study and eventually a second sample was

obtained between 2 and 8 weeks after rectoscopy (see Table 3.1 for details).
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Study 2

Three types of sample were obtained per subject: biopsies of the ascending

and the descending colonic mucosa, and faeces. Biopsies were obtained

by endoscopy, and participants were administered laxatives prior to the

endoscopic procedure. Faeces were collected prior to endoscopy and within

the same day, thus minimising potential temporal changes in community

composition between faecal and mucosal samples.

Study 3

The study participants collected faecal samples daily in the morning over a

period of fifteen consecutive days.

Study 4

The sampling design was to start the follow-ups at a moment of acute

symptoms and to collect faecal samples every two days the first week. Then,

weekly samples would be collected. Additional samples would be collected

in case of worsening of symptoms. Patient 1 and Control 1 provided faecal

samples at days 1, 3, 5, 7, 14, 21, 28, 37, and 42 of their follow-ups. Faecal

samples were collected at days 1, 3 (1st and 2nd), 4, 5, 7, 14, 21, 27, 28, 35,

42, 49, and 56 from Patient 2. A summary of patients’ symptoms in the days

of sampling is shown in Table 3.4.

Study 5

The volunteer provided faecal samples daily before, during, and after a dietary

intervention of 24 days. From them, samples at days -6, -5, -2, -1 (pre-diet), 1,

2, 3, 4, 7, 8, 9, 13, 14, 15, 19, 24 (during diet), and +1, +2, +3, +4, +27, +57

(post-diet) were analysed.

3.3 Sample processing

3.3.1 Nucleic acid extraction

DNA was extracted from the biopsy samples in Studies 1 and 2 using the

QIAamp DNA Mini Kit (QIAGEN) and its protocol for DNA purification from

tissues. The standard protocol was modified to maintain overnight the incuba-

tion at 56 ◦C with ATL buffer and proteinase K, and to extend the incubation

at 70 ◦C with RNase A from 10 min to 30 min. DNA was extracted from the
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Table 3.4: Intestinal symptons of Patient 1 (P1) and Patient 2 (P2) in the
days of sampling, the previous days, and the subsequent ones. It is indicated
the presence of abdominal pain or discomfort, abdominal distension, and de-
faecatory urgency, the number of stools, and the number of stools of each type
according to the Bristol scale (T1-T7). Data for day 29 in Patient 2 were not
recorded.

Day Sampling Pain Distension Urgency Stools T1 T2 T3 T4 T5 T6 T7
P1 1 Yes Yes Yes Yes 2 - - 1 - - 1 -

2 No Yes Yes Yes 2 - - 1 - - 1 -
3 Yes Yes Yes Yes 2 - - 1 - - 1 -
4 No Yes Yes Yes 2 - - - 1 - 1 -
5 Yes Yes Yes Yes 3 - - 1 1 - 1 -
6 No Yes Yes Yes 4 - 1 - - - 3 -
7 Yes Yes Yes Yes 2 - 1 - - - 1 -
8 No Yes Yes Yes 2 - - 1 1 - - -
13 No Yes Yes Yes 2 - - 1 1 - - -
14 Yes Yes Yes Yes 4 - - 1 - 1 2 -
15 No Yes Yes Yes 2 - - 1 - - 1 -
20 No Yes Yes Yes 2 - - 1 - 1 - -
21 Yes Yes No No 3 - - 1 - - 2 -
22 No Yes Yes No 1 - 1 - - - - -
27 No Yes Yes Yes 2 - 1 - - - 1 -
28 Yes Yes Yes Yes 3 - 1 - - - 2 -
29 No Yes Yes Yes 2 - - - - - 2 -
36 No Yes Yes Yes 2 - - - - - 2 -
37 Yes Yes Yes Yes 2 - - - - - 2 -
38 No Yes Yes Yes 1 - - - - - 1 -
41 No Yes Yes Yes 3 - - - - - 3 -
42 Yes Yes Yes Yes 2 - - - - - 2 -
43 No Yes Yes Yes 2 - 2 - - - - -

P2 1 Yes No No Yes 3 - - - - 1 1 1
2 No Yes Yes No 3 - - - - - 3 -
3 Yes Yes Yes Yes 11 - - - - - - 11
4 Yes Yes Yes Yes 5 - - - - - 2 3
5 Yes Yes Yes Yes 4 - - - - - 3 1
6 No No No No 5 - - - - - 3 2
7 Yes No No No 4 - - - - - 3 1
8 No Yes Yes Yes 5 - - - - - 3 2
13 No Yes Yes No 5 - - - - - 5 -
14 Yes Yes Yes Yes 5 - - - - - 5 -
15 No No No No 3 - - - 1 - 2 -
20 No Yes Yes Yes 5 - - - - - - 5
21 Yes Yes Yes Yes 5 - - - - - 3 2
22 No Yes Yes Yes 7 - - - - - 5 2
26 No Yes Yes Yes 6 - - - - - 3 3
27 Yes Yes Yes Yes 4 - - - - - 4 -
28 Yes Yes Yes Yes 7 - - - - - 3 4
34 No Yes Yes Yes 4 - - - - - - 4
35 Yes Yes Yes No 2 - - - - 2 - -
36 No Yes Yes No 6 - - - - - 4 2
41 No Yes Yes Yes 3 - - - 3 - - -
42 Yes No No No 5 - - - - - 5 -
43 No Yes Yes Yes 7 - - - - - - 7
48 No Yes Yes Yes 3 - - - 3 - - -
49 Yes Yes Yes Yes 4 - - - - - - 4
50 No Yes No Yes 2 - - - - - - 2
55 No Yes Yes Yes 8 - - - - - - 8
56 Yes Yes Yes Yes 4 - - - - - - 4
57 No Yes Yes Yes 6 - - - - - - 6
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faecal samples in Studies 1, 2, and 3 using the QIAamp DNA Stool Mini

Kit (QIAGEN) and its protocol for isolation of DNA for pathogen detection.

Before the DNA extraction, the faecal samples were resuspended in PBS and

centrifuged at 4000 rpm for 3 min to remove faecal debris as far as possible.

Between 1-3 mL of the supernatants were centrifuged at 14000 rpm for 5 min

and the pellets were resuspended in 2 mL of ASL buffer from the QIAGEN kit.

Then, we went on to step 3 of the protocol. DNA extractions were stored at

-20 ◦C.

DNA and RNA were simultaneously extracted from the faecal samples in

Studies 4 and 5 using the AllPrep DNA/RNA Mini Kit (QIAGEN) and its

protocol for simultaneous purification of genomic DNA and total RNA from

animal cells. Before the DNA/RNA extraction, the faecal samples were treated

as described above but being the pellets resuspended in RLT Plus buffer. DNA

and RNA extractions were stored at -20 ◦C and -80 ◦C, respectively.

3.3.2 Amplification and sequencing of 16S rRNA genes

DNA from samples in Studies 1, 2, 3, and 5 was used to amplify bacterial 16S

rRNA genes by PCR using broad range bacterial primers. Then, amplicons

were sequenced using the same primers (Figure 3.2). The PCR conditions

were selected to minimise biases in the estimation of the distribution of

bacterial taxa in the samples potentially introduced by the amplification

process (use of degenerate primers, low primer annealing temperature, and

low number of amplification cycles).

  

F8

V1 V2 V3 V4 V5 V6 V7 V8 V9

R357 R1510

16S rRNA gene

Sanger

454

100 nt

Variable region Primer Amplicon Sanger read 454 FLX read 454 FLX Titanium read

Figure 3.2: Schematic view of the amplicons and reads generated by Sanger
and 454 sequencing in the studies of this thesis. Positions are mapped along
the 16S rRNA gene based on the Escherichia coli reference sequence.
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Study 1

The 16S rRNA genes of the samples were amplified using the bacterial forward

primer B8F (5’-AGAGTTTGATCMTGGCTCAG-3’) and the bacterial re-

verse primer B1510R (5’-TACGGYTACCTTGTTACGACTT-3’) (Baker et al.,

2003).

Each PCR mixture was composed of 25 µL of GoTag Green Master Mix

(Promega), 1 µL of each primer (20 µM), and 1 µL of template DNA in a total

volume of 50 µL. The PCR conditions were 5 min of initial denaturation at 95
◦C followed by 25 cycles of denaturation (30 s at 95 ◦C), annealing (30 s at 56
◦C), and elongation (90 s at 72 ◦C), with 8 min of final extension at 72 ◦C.

The PCR products were purified by ethanol precipitation.

The PCR products were ligated to pCR-XL-TOPO vectors using the TOPO

XL PCR Cloning kit (Invitrogen). One-Shot TOP10 electrocompetent E. coli

cells (Invitrogen) were transformed, according to the manufacturer’s instruc-

tions. Approximately 800 transformant colonies from each library were picked

up randomly and plasmid extraction was performed using the Montage Plasmid

MiniPrep96 Kit (Millipore) and a MultiPROBE II Robotic Liquid Handling

System (Packard BioScience).

The 5’ half of the cloned 16S rRNA genes was determined by Sanger

sequencing using the BigDye Terminator v3.1 Cycle Sequencing kit (Applied

Biosystems) and the B8F primer. Sequences were analysed on an ABI 3730

Sequencer (Applied Biosystems).

Study 2

The 16S rRNA genes of the samples were amplified using the composite forward

primer (5’-GCCTCCCTCGCGCCATCAGNNNNNNTCAGAGTTTGATCM -

TGGCTCAG-3’) and the composite reverse primer (5’-GCCTTGCCAGC-

CCGCTCAGGCTGCTGCCTCCCGTAGGAGT -3’), where the underlined se-

quences are the adaptors A and B for the pyrosequencing GS FLX chemistry

(454 Life Sciences, Roche), respectively, NNNNNN designates a unique six-

nucleotide barcode used to tag each PCR product, and in italics are the bac-

terial primers B8F and B357R, respectively (Baker et al., 2003).

Each PCR mixture was composed of 0.4 µL of FastStart Taq DNA poly-

merase (Roche), 5 µL of 10X PCR reaction buffer with MgCl2 (Roche), 2 µL

of dNTPs (10 mM), 1 µL of each composite primer (20 µM), and 1 µL of tem-

plate DNA in a total volume of 50 µL. The PCR conditions were 5 min of initial

denaturation at 95 ◦C followed by 25 cycles of denaturation (30 s at 95 ◦C),
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annealing (30 s at 52 ◦C), and elongation (30 s at 72 ◦C), with 8 min of final

extension at 72 ◦C. The PCR products were purified by vacuum filtration, and

equal amounts of barcode-tagged PCR products from different samples were

pooled.

The mixtures were sent for pyrosequencing with adaptor A on a Genome

Sequencer FLX system and the GS FLX chemistry (454 Life Sciences, Roche).

Study 3

The 16S rRNA genes of the samples of individual A were amplified using the

composite primers employed in Study 2. The 16S rRNA genes of the samples

of individuals B and C were amplified using the composite forward primer

(5’-CGTATCGCCTCCCTCGCGCCATCAGNNNNNNNNTCAGAGTTTGA-

TCMTGGCTCAG-3’) and the composite reverse primer (5’-CTATGCGCC-

TTGCCAGCCCGCTCAGTGCTGCCTCCCGTAGGAGT -3’), where the un-

derlined sequences are the adaptors A and B for the pyrosequencing GS FLX

Titanium chemistry (454 Life Sciences, Roche), respectively, NNNNNNNN

designates a unique eight-nucleotide barcode used to tag each PCR product,

and in italics are the bacterial primers B8F and B357R, respectively (Baker

et al., 2003).

The PCR mixtures, reaction conditions, and PCR purification method were

the same as for samples in Study 2, except for the number of amplification

cycles that was 20.

The mixtures were sent for pyrosequencing with adaptor A on a Genome

Sequencer FLX system and the GS FLX chemistry for samples of subject A,

and the GS FLX Titanium chemistry for samples of subjects B and C (454

Life Sciences, Roche). This difference was due to the change in the sequencing

chemistry while the study was ongoing.

Study 5

The 16S rRNA genes of the samples were amplified using the bacterial primers

B8F and B357R, with eight-nucleotide barcodes added to the forward primer

used to tag each PCR product. In this case, the adaptors A and B for the

pyrosequencing GS FLX Titanium chemistry (454 Life Sciences, Roche) were

added later by the sequencing service, thus minimising potential biases in-

troduced during the PCR due to the adaptor sequences when added to the

primers.

The PCR mixtures, reaction conditions, and PCR purification method were
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the same as for samples in Study 3.

The mixtures were sent for pyrosequencing with adaptor A on a Genome

Sequencer FLX system and the GS FLX Titanium chemistry (454 Life Sciences,

Roche).

3.3.3 Sequencing of metagenomes

Total DNA extracted from samples in Study 4 was sent directly for pyrose-

quencing on a Genome Sequencer FLX system and the GS FLX Titanium

chemistry (454 Life Sciences, Roche).

3.3.4 Sequencing of metatranscriptomes

Total RNA extracted from samples in Study 4 was incubated with DNase I

(Ambion) 30 min at 37 ◦C. The digestion of DNA was checked with a PCR

using the broad range bacterial primers B8F and B357R and the treated RNA

as template. The integrity of total RNA was assessed using standard agarose

gel electrophoresis.

Total RNA (DNase-treated) was amplified with enrichment in mRNA using

the MessageAmp II-Bacteria Kit (Ambion) following the manufacturer’s ins-

tructions. Briefly, the method is based on polyadenilation of the 3’ end of

RNA using the E. coli Poly(A) Polymerase (PAP). The poly(A)-tailed RNA is

reverse-transcribed to cDNA with an oligo(dT) primer containing a recognition

site for a restriction enzyme (BpmI). These steps favour the preferential am-

plification of bacterial mRNA compared to rRNA because the 3’ end of intact

rRNA is sterically blocked, which obstructs their polyadenilation (Wendisch

et al., 2001). Then, cDNA is linearly amplified by an in vitro transcription

yielding large amounts of antisense RNA (aRNA).

This aRNA was further reverse-transcribed to single-strand cDNA using

the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems),

and to double-strand cDNA using an enzymatic mix containing E. coli DNA

Polymerase I, E. coli DNA Ligase, RNase H, and T4 DNA Polymerase (New

England Biolabs).

Finally, the double-strand cDNA was digested with BpmI (Fermentas), pu-

rified by ethanol precipitation, and sent for pyrosequencing on a Genome Se-

quencer FLX system and the GS FLX Titanium chemistry (454 Life Sciences,

Roche).
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3.4 Sequence analyses

3.4.1 Initial processing of sequences

Amplicon reads generated by the Sanger method

In Study 1, base-calling of each sequence was performed using the Pregap4

program; sequences were then manually revised using the Trev and Gap4

programs, all in the Staden v1.12 package (Staden et al., 2000). After adjusting

for quality values, the average read length was around 700 nucleotides.

Amplicon reads generated by pyrosequencing

In Studies 2, 3, and 5, processing of the pyrosequencing output was done

using the GS FLX Data Analysis Software (454 Life Sciences, Roche), whereas

sorting of reads into those from each sample based on the barcodes, trimming

off the barcodes, removal of sequences with low average quality scores (<20),

and removal of sequences with short read lengths (<200 nt for sequences

obtained using the GS FLX chemistry, <250 nt for sequences obtained

using the GS FLX Titanium chemistry) were done using the Pyrosequencing

Pipeline of the Ribosomal Database Project (RDP) II (Cole et al., 2007,

2009). The remaining sequences were checked for potential chimeras using

the chimera.slayer tool incorporated into the mothur v1.13.0 package (Schloss

et al., 2009).

Metagenomic and metatranscriptomic reads generated by pyrose-

quencing

In Study 4, processing of the pyrosequencing output and filtering of reads

based on signal quality were done using the GS FLX Data Analysis Software

(454 Life Sciences, Roche) with default parameters. Sequences shorter than 50

nt were left out of the analyses.

3.4.2 Annotation of sequences

3.4.2.1 Taxonomic affiliation of 16S rRNAs

In Study 1, the taxonomic affiliation of sequences was performed with a

BLASTN search (Altschul et al., 1990) against a curated 16S rRNA database

made as follows: from the original dataset of the RDP-II database (Cole et al.,

2007, 2009), a non-redundant dataset of sequences with known taxonomic affi-
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liation was obtained after performing a clustering at 99% of sequence identity

using the cd-hit-est tool of the cd-hit v4.0 program (Li and Godzik, 2006).

Best-hit sequences were used to assign a confident taxonomic position to each

sequence.

In Studies 2, 3, 4, and 5, the taxonomic affiliation of sequences was de-

termined using the Classifier tool of the RDP-II (Cole et al., 2007, 2009), with

a bootstrap threshold of 70% for 16S rRNA gene amplicons, and a lower one

(50%) for 16S rRNA genes and cDNAs identified in metagenomes and meta-

transcriptomes (see Section 3.4.2.3) because of their typically shorter length.

3.4.2.2 Phylotype definition for 16S rRNAs

Clustering at 97% or 98% of sequence identity was carried out using the cd-

hit-est tool of the cd-hit v4.0 program (Studies 1 and 2) (Li and Godzik,

2006) or the cluster tool of the usearch v5.0 package (Studies 3, 4, and 5)

(Edgar, 2010). Input sequences to cluster were previously sorted by decreasing

abundance as recommended for 16S rRNA amplicons. The resulting phylotypes

were used to study sample composition at the “species” level. The species of

the closest isolated strain of phylotypes in Studies 2 and 5 was determined

with a BLASTN search (Altschul et al., 1990) against the 16S rRNA genes of

bacterial isolates in the RDP-II database (Cole et al., 2007, 2009).

3.4.2.3 rRNA search in metagenomes and metatranscriptomes

We used the Small Subunit rRNA Reference Database (SSUrdb) and the Large

Subunit rRNA Reference Database (LSUrdb) described in Urich et al. (2008) to

search for genes and cDNAs of the 16S and 23S rRNAs, respectively. To select

the correct parameters for the BLASTN comparisons, we used SSU rRNA, LSU

rRNA, and mRNA test datasets. 1000 SSU rRNA human gut-associated se-

quences were collected from the environmental division of the NCBI through the

EnvDB database (Pignatelli et al., 2009). The same number of LSU and mRNA

sequences was collected from Genbank (ftp://ftp.ncbi.nlm.nih.gov/genbank)

using regular expressions. Fragments of 100 nucleotides were obtained by

randomly sampling out the collected sequences. We compared these datasets

with the SSUrdb and the LSUrdb using BLASTN (Altschul et al., 1990) with

different maximum e-values. This analysis showed that e-value thresholds of

10−16 for the SSUrdb and 10−4 for the LSUrdb gave the lowest rates of “cross-

contamination”. Then, metagenomic and metatranscriptomic sequences were
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compared with the SSUrdb using BLASTN (Altschul et al., 1990). All sequen-

ces with positive matches were labelled as 16S rRNAs and used to determine

the phylogenetic diversity. The remaining reads in metatranscriptomes were

compared with the LSUrdb, all putative 23S rRNAs were discarded, and the

remaining fraction was used to infer the functional content.

3.4.2.4 Functional annotation of protein coding genes and mRNAs

Assembly of metagenomes

The reads from each metagenome were assembled using the runAssembly tool

of the Newbler v2.6 package (454 Life Sciences, Roche) with 95% of minimun

overlap identity and 50 bp of minimun overlap length.

Mapping of metatranscriptomes to metagenomes

The assembled metagenomes from different samples of the same patient were

concatenated. Then, metatranscriptomic reads with no significant similarity

with any of the rRNA databases (see Section 3.4.2.3) were aligned to the

concatenated metagenomic assembly of the same patient using the runMapping

tool of the Newbler v2.6 package (454 Life Sciences, Roche) with 95% of

minimun overlap identity.

Gene finding in metagenomic assemblies

Putative coding regions were identified in the metagenomic assemblies from

the coordinates of best hits in a BLASTX search (e-value threshold of 10−3)

(Altschul et al., 1990) against a subset of the NCBI non-redundant (nr) protein

sequence database containing bacterial sequences (ftp://ftp.ncbi.nlm.nih.gov/

blast/db). Additional open reading frames were searched using the gene finder

program Glimmer v3.02 (Salzberg et al., 1998) i (http://www.cbcb.umd.edu/

software/glimmer).

BLAST-based searches

Putative coding regions previously identified in the metagenomic assemblies

were compared with the KEGG GENES database (Kanehisa et al., 2004)

(http://www.genome.ad.jp/kegg) using BLASTX (Altschul et al., 1990) with

an e-value threshold of 10−5 to assess the metabolic or regulatory pathways

present in the samples. Metatranscriptomic reads that aligned to a genomic

region adopted its annotation.
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Profile-based searches

Putative coding regions previously identified in the metagenomic

assemblies were aligned against the TIGRFAM database of global

and fragment models of protein families (Selengut et al., 2007)

(http://www.jcvi.org/cgi-bin/tigrfams/index.cgi) using HMMER v3.0 (Eddy,

1998) (http://hmmer.janelia.org) with an e-value threshold of 0.1. Metatrans-

criptomic reads that aligned to a genomic region adopted its annotation.

Metatranscriptomic reads non-annotated as putative mRNAs (see Sec-

tion 3.4.2.3) were aligned against the Rfam database of RNA families

(Griffiths-Jones et al., 2003) (http://rfam.sanger.ac.uk) using INFERNAL

v1.0.2 (Nawrocki et al., 2009) (http://infernal.janelia.org) with an e-value

threshold of 0.1 to identify known small RNAs.

3.4.2.5 Taxonomic affiliation of protein coding genes and mRNAs

The taxonomic assignment of the putative coding regions identified

in the metagenomic assemblies from the BLASTX search against

the NCBI non-redundant (nr) protein sequence database (see above)

was assessed using the Blast2lca v0.02 tool developed in our lab

(http://github.com/emepyc/Blast2lca). For this assignment, Blast2lca calcu-

lates the lowest common ancestor (LCA) of each query sequence in a BLAST re-

sult from its best-hits. It works in a similar way to the well-recognised MEGAN

tool for exploring the taxonomic content of metagenomic data (Huson et al.,

2007). Metatranscriptomic reads that aligned to a genomic region adopted its

taxonomic affiliation.

3.4.3 Phylogenetic analysis of 16S rRNAs

In Study 1, the representative sequences of phylotypes defined at 98% of se-

quence identity were aligned using the align.seqs tool of the mothur v1.13.0

package (Schloss et al., 2009) and the aligned sequences of the Greengenes

Core Set as template alignment (DeSantis et al., 2006). The closest template

of each sequence was found using 9-mer searching, and the pairwise alignment

between the sequences and the templates was made using the Gotoh algorithm.

A neighbor-joining tree was obtained from the alignment with the programs

DNADIST (using the F84 model of nucleotide substitution) and NEIGHBOR

of the PHYLIP v3.5 package (Felsenstein, 1989). The derived tree was used

as input for UniFrac together with taxa abundance in the different samples
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(Lozupone et al., 2006). The UniFrac metric measures the difference between

two communities in terms of the branch length that is unique to one commu-

nity or the other. We employed weighted UniFrac, which weights the branches

based on the relative abundance of a given sequence for each particular commu-

nity. To compare multiple communities, we used principal coordinates analysis

(PCoA) (Quinn and Keough, 2002, p 474).

3.4.4 Statistical analyses

Most of the statistical analyses were carried out using the statistical environ-

ment R (R Development Core Team, 2010) (http://www.R-project.org) and

the R vegan package (Oksanen et al., 2011). Other R packages were used in

specific studies. These are cited in the corresponding places below.

3.4.4.1 Exploratory statistical analyses

The Shannon diversity index (Shannon, 1948) and the Chao 1 and Abundance-

based Coverage (ACE) estimators of richness (Chao, 1987; Chazdon et al., 1998;

Chao et al., 2000) were calculated to assess bacterial diversity and richness in

the samples. Rarefaction curves were also computed. In Study 3, re-sampling

of the samples to identical sequencing depth (the number of sequences of the

smallest sample) was done with the multiple.rarefactions tool of the QIIME

v1.3.0 package (Caporaso et al., 2010). It allowed to evaluate the impact of

the number of sequences per sample on the estimation of richness, biodiversity,

and sample composition.

The similarity between samples according to bacterial taxonomic and func-

tional composition was assessed with correspondence analysis (CA) or de-

trended correspondence analysis (DCA) (Quinn and Keough, 2002, p 459),

and with cluster analysis using Euclidean distances or Bray-Curtis distances

depending on the type of data used as input (Quinn and Keough, 2002, p 488).

Analysis of similarities (ANOSIM) based on distance matrices (Quinn

and Keough, 2002, p 484) was used to assess differences between groups and

sampling sites in Study 2, and between individuals in Studies 3 and 4.
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3.4.4.2 Study-specific statistical analyses

Study 1: Patterns of variation in the bacterial composition

We considered a Bayesian hierarchical model, which is set up in levels or hie-

rarchies. In the first layer, the model assumes a multinomial distribution for

the observed counts of sequences in each taxonomic group:

Yik ∼ Multinomial(nik,πik)

where Yik = (Yik1, . . . , YikJ)′, with Yikj being the number of sequences in taxon

j = 1, . . . , J found in the sample of type k = 1, 2 (faeces or biopsies) from

individual i = 1, . . . , 9, nik is the total number of sequences in that sample,

and πik = (πik1, . . . , πikJ)′, where πikj is the actual (unknown) proportion of

taxon j in the community corresponding to sample of type k from individual

i. The variability of these proportions is in turn broken down into:

log πikj = α+ λi + θj + δk + ϕij + γkj + εikj

where α is an overall intercept, λi, θj , and δk are individual, taxon, and sam-

ple type main effects, respectively, and ϕij and γkj are order-two interactions

between individuals and taxa, and between sample type and taxa, respectively.

In the Bayesian paradigm, prior information about the parameters (if

available) is combined with the information provided by the data (likelihood)

via the Bayes theorem. The output is the posterior probability distribution

of the parameters, from which we can extract the relevant summaries (mean,

median, other quantiles, standard deviation, etc.). It is therefore necessary

to assign prior distributions to the parameters. We assigned non-informative

prior distributions to all model parameters. In particular, we chose a flat nor-

mal prior for the intercept, and the following normal prior distributions for the

main effects and the interactions:

λi ∼ Normal(0, σλ)

θj ∼ Normal(0, σθ)

δk ∼ Normal(0, σδ)

ϕij ∼ Normal(0, σϕ)

γkj ∼ Normal(0, σγ)

εikj ∼ Normal(0, σε)

Note that the standard deviations σ represent the amount of variability of

the proportions πikj (on the log-odds scale) due to the corresponding main
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effects and interactions. These (hyper)parameters were in turn assigned prior

distributions, namely inverse gamma priors with shape = 0.05 and rate =

0.0005.

The posterior distribution of the parameters does not have a closed

analytical expression, so we resorted to Markov chain Monte Carlo (MCMC)

simulation methods as implemented in the JAGS package to obtain a

sample from the posterior distribution of the parameters (http://mcmc-

jags.sourceforge.net). This model allows to estimate the unknown proportions

πikj as well as to decompose their variation into different sources while

taking into account the sampling variation due to the different number of

sequences in each sample. The estimated proportions πikj (on their log-odds

transformation) are then used for further statistical analyses.

Study 1: Closeness between samples

In order to assess the similarity between samples according to their bacterial

composition, we computed Euclidean distances between samples based on their

compositions (on the log-odds scale) estimated with the above Bayesian model.

Study 1: Prediction of sample type from composition

We applied linear discriminant analysis (LDA) (Fisher, 1938) and classifica-

tion and regression trees (CART) (Breiman et al., 1984) to assess whether

community composition could characterise sample type.

Study 2: Univariate analysis

To assess differences in the microbial composition between groups (IBS-D/IBS-

C and controls), we used taxa abundances in the individual samples and also

in the pooled samples obtained by pooling the individual ones by sample type

(ascending colon, descending colon, or faeces) within each group. Analogously,

for the comparison of the bacterial communities in the three sampling sites,

we pooled the individual samples by sample type.

Univariate chi-square tests were applied to assess the homogeneity in the

relative abundance of each bacterial taxon in the samples of IBS patients com-

pared with those of controls differentiating by IBS subtype and separately for

each sample type (ascending colon, descending colon, and faeces). For many

taxa, the assumption of the asymptotic chi-square distribution did not hold,

hence we computed Monte-Carlo p-values based on 105 replicas. Bonferroni’s

correction for multiple testing was applied.
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Odds ratios (ORs) were calculated to measure the magnitude of the over-

representation or underrepresentation of taxa between samples. We calculated

ORs using (a/b)/(c/d), where a is the number of sequences assigned to taxon i

in sample X, b is the number of sequences assigned to all other taxa in sample

X, c is the number of sequences assigned to taxon i in sample Y, and d is the

number of sequences assigned to all other taxa in sample Y. An OR greater

than one indicates overrepresentation of taxon i in sample X compared with

sample Y, whereas an OR lower than one suggests underrepresentation.

We proceeded similarly to compare the bacterial composition between

sampling sites.

Study 2: Variation between individuals

Gini coefficients (Gini, 1912) were calculated to assess the homogeneity in the

relative abundance of taxa between the individual samples that were pooled

in the IBS and control pooled samples. The Gini coefficient measures the

evenness of a distribution. It ranges between 0 and 1, with 0 representing

complete homogeneity (i.e. all individuals have the same proportion of

sequences of a given taxon) and 1 maximum concentration (one individual

concentrates all the sequences of a given taxon).

The robustness of the results in the IBS versus control homogeneity tests

was assessed by repeating the analysis with 999 pooled samples obtained after

randomly labelling the individual samples as IBS patient or control and then

aggregating them to build new pooled samples. This procedure allowed us to

obtain a distribution of OR values under the null hypothesis of no difference

between IBS cases and controls to assess the significance of the differences found

between these cohorts. Extreme OR values of the actual pooled samples when

compared with those from the replicas were indicative of true association.

Within-subject comparisons were performed to assess the consistency of

the differences between sampling sites across individuals.

Study 2: Evaluation of the questionnaires

The homogeneity of the clinical and lifestyle variables in patients and controls

was assessed using chi-square tests for non-numerical variables, and t-tests

for numerical variables. Canonical correspondence analysis (CCA) (Quinn

and Keough, 2002, p 467) was carried out to explore the patterns of variation

between the microbial composition of patients and controls adjusting for

questionnaire variables.
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Study 3: Multivariate time series modelling

From a statistical point of view, the data on daily taxa abundances can be

regarded as a multivariate time series. The potential interactions between

taxa are expected to be reflected in the correlations between taxa, but also

some temporal correlation is expected to be present in the data. In other

words, if Yit represents the matrix with the number of sequences of taxon

i = 1, . . . , n found in the sample collected on day t = 1, . . . , T for a given

individual, both rows and columns present correlation structures of different

nature. Abundances in a given row are likely to be affected by temporal

correlation, whereas values in a specific column may be subject to the

correlations generated by the underlying interactions between taxa. To model

both correlation structures simultaneously, we applied a Bayesian hierarchical

model to the follow-up data for each individual. Our model specification is as

follows. Let Yt = (Y1t, . . . , Ynt)
′ be the taxonomic distribution of sequences

on day t. Our model first assumes that Yt follows a multinomial distribution:

Yt ∼ Multinomial(πt, Nt)

where Nt is the total number of sequences on day t and πt = (π1t, . . . , πnt)
′,

πit being the unknown proportion in which taxon i is present in the community

on day t. The proportions πit are in turn decomposed, on the log-odds scale,

into:

log

(
πit

1− πit

)
= αi + νit + εit

where αi is a taxon-specific intercept that picks up the average relative abun-

dance of taxon i over the T = 15 days, and νit and εit are random effects

intended to pick up time structured and unstructured variation, respectively.

To this end, we chose a normal prior distribution for εit, and a multivariate

random walk of order one for νt, t = 1, . . . , T

νt | νt−1 ∼ MVN (νt−1,Σ)

where Σ is the n×n variance-covariance matrix between taxa abundances. For

convenience, we take ν0 = 0n×1. This conditional specification is a particular

case of the intrinsic multivariate conditional autoregressive (MCAR) models

(Kim et al., 2001; Gelfand and Vounatsou, 2003), for which the full conditional

distribution is
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νt | ν1, . . . ,νt−1,νt+1, . . . ,νT ∼


MVN (νt+1,Σ) t = 1

MVN
(

νt−1+νt+1

2 , Σ
2

)
t = 2, . . . , T − 1

MVN (νt−1,Σ) t = T

that is, νt follows a multivariate normal distribution centred in the ave-

rage of its temporal neighbours, and a variance-covariance matrix inversely

proportional to the number of neighbours. The joint distribution of ν =

(ν11, . . . , νn1, ν12, . . . , νn2, . . . , ν1T , . . . , νnT )′ is a zero-mean multivariate nor-

mal distribution with precision matrix Ω = (D − W ) ⊗ Σ−1, where W is a

T × T matrix with Wtt′ = 1 if time points t and t′ are adjacent and Wtt′ = 0

otherwise, D is a T ×T diagonal matrix with Dtt equal to the number of neigh-

bours of time point t (i.e. D11 = DTT = 1 and Dtt = 2 ∀t = 2, . . . , T − 1), and

⊗ represents the Kronecker product for matrices. The matrix D −W is sin-

gular, which makes this distribution improper. However, with our choice of W

and D, Ω satisfies the so-called symmetry condition that ensures propriety of

the posterior. In practice, this impropriety is overcome by using the proper full

conditionals for νt and imposing n sum-to-zero constraints. See e.g. Banerjee

et al. (2004, pp 247-251) for further details.

We fitted our model using Markov chain Monte Carlo (MCMC) simulation

techniques as implemented in the WinBUGS software (Lunn et al., 2000) and

the R2WinBUGS package (Sturtz et al., 2005) for the R statistical software

(R Development Core Team, 2010) (http://www.R-project.org). We ran two

chains with 50000 iterations, discarded the first 10000 as burn-in and kept

every 40th to reduce autocorrelation in the chains. Therefore, inference for

each parameter is based on a thinned sample of size 2000 from its posterior

distribution.

Study 3: Putative interactions between taxa

Graphical Gaussian networks (GGNs) (Schäfer and Strimmer, 2005a,b) have

been used to recover gene regulation network structures using gene expression

data as input. They aim at predicting interaction networks between genes.

Here, however, we apply for the first time GGNs to explore patterns of asso-

ciation between taxa using the partial correlations between their abundance

profiles. A strong partial correlation between two species is indicative of some

form of association. The estimation of that matrix is tricky because typically

it is sparse and has large dimensionality. However, GGNs allow to estimate
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efficiently the partial correlation matrix from the variance-covariance matrix.

We therefore applied GGNs to the covariance matrix Σ (which measures

covariances between taxa abundances on the log-odds scale) obtained with

the above Bayesian model to infer a network of potential associations between

taxa. This was done using the R package corpcor (Schafer et al., 2010). The

statistical significance of the estimated partial correlations was calculated

using the algorithms proposed by Opgen-Rhein and Strimmer (2007). The

idea is to model the partial correlations with a mixture of two components.

The first component tries to capture the null partial correlations, whereas the

second component intends to pick up the sizeable ones. Opgen-Rhein and

Strimmer (2007) suggest a method to estimate the mixture components and

also a “local false discovery rate” (LFDR) procedure to assess the statistical

significance of each partial correlation. They show that their methods perform

very well both in simulations as well as in application to large-scale real

expression data in the context of gene association networks. We applied these

methods as implemented in the R package GeneNet (Schaefer et al., 2009).

These analyses were done for each individual separately.

The output from this analysis is a graph, with nodes corresponding to taxa

and edges representing a statistically significant partial correlation between

taxa (taking as such that the probability, 1-LFDR, for the partial correlation

to be different from zero is above 0.95). Graphics were generated with the R

package Rgraphviz (Gentry et al., 2008).

Study 4: Evaluation of symptom fluctuation

Principal components analysis (PCA) (Quinn and Keough, 2002, p 443) was

employed to analyse the variation in symptom presence/absence and symptom

intensity between patients and within patients throughout the follow-ups.

It was used for the classification of sampling days based on the severity of

symptoms.

Study 4: Univariate analysis

Univariate chi-square tests were applied to assess the homogeneity in the

relative abundance of each bacterial taxon in samples from days with acute

symptoms and days with milder symptoms within each patient. Samples

were pooled for the analysis based on their similarity in symptom intensity.

For many taxa, the assumption of the asymptotic chi-square distribution did

not hold, hence we computed Monte-Carlo p-values based on 105 replicas.



84 CHAPTER 3. MATERIAL AND METHODS

Bonferroni’s correction for multiple testing was applied.

Odds ratios (ORs) were calculated to measure the magnitude of the

overrepresentation or underrepresentation of taxa between samples.

Study 4: LEfSe analysis

The linear discriminant analysis (LDA) effect size (LEfSe) algorithm (Segata

et al., 2011) was applied to identify intermediate functional categories in

the KEGG PATHWAY and the TIGRFAM hierarchies characterising the

differences between patients and between days with severe and mild/moderate

symptoms within each patient. For the comparisons between samples of a

single patient, samples were pooled based on their similarity in symptom

intensity.



4 Results and Discussion

4.1 Bacterial diversity in rectal mucosa and fae-

ces of healthy subjects

4.1.1 Background

Our knowledge of the bacteria living in the human GI tract has mainly been

obtained by studying the sequence variability of the 16S rRNA genes in repre-

sentative samples of GI habitats. Such studies have been carried out on both

healthy people and patients affected by different disorders (Zoetendal et al.,

2008; Salonen et al., 2010; Seksik, 2010). The purposes were to get a first

description of the biodiversity and the spatial and temporal variation in the

composition of the GI microbiota, and to assess the implication of imbalances in

the GI microbiota in the aetiology of diseases, as well as changes in composition

in response to therapeutic treatments.

Many studies on the GI microbiota are based on faecal samples. This is be-

cause faeces are easily collected in a non-invasive manner. However, the faecal

microbiota may not entirely represent the microbial communities living within

the GI tract, which nevertheless seem to be relatively similar in the mucosal

fraction along the colon (Zoetendal et al., 2002; Ott et al., 2004; Eckburg et al.,

2005; Lepage et al., 2005). This might be due to several reasons. The faecal

microbiota could be a mixture of luminal microbes and shed or poorly adhered

mucosal microbes. Also, inadequate storage of faecal samples can lead to al-

terations in the composition of the faecal microbiota (Ott et al., 2004). For

instance, a delay of several hours between the collection of faecal samples and

their adequate storage is quite common. This may affect faecal microbial com-

position due to its dynamic nature, which depends on growing conditions such

as nutrient availability, oxygen concentration, and temperature. These condi-

85
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tions change dramatically after evacuation, potentially leading to alterations

in the community composition due to differential bacterial death or growth.

Unlike faeces, biopsies of the colonic mucosa are directly collected from the

GI tract and thus could be a more suitable option for the study of microbiota-

related gut pathologies or treatments targeting the GI microbiota. Further-

more, biopsies can be extracted under controlled conditions and preserved im-

mediately by cryopreservation. Unfortunately, there are some important draw-

backs to using biopsy samples. The main one is that they are collected by an

invasive procedure (endoscopy) that can not be used routinely. Moreover, the

endoscopic procedure is usually carried out after a bowel cleansing, which can

have an impact on the mucosal bacterial community. Finally, biopsy samples of

an individual may pose problems to some molecular techniques because there

may not be enough microbial material to work with.

Several studies have dealt with differences between faecal and colonic mu-

cosal samples so far (Zoetendal et al., 2002; Ott et al., 2004; Ouwehand et al.,

2004; Eckburg et al., 2005; Lepage et al., 2005; Bibiloni et al., 2008; Momozawa

et al., 2011). Most of them used fingerprinting techniques and showed differen-

ces between the two types of sample, except that by Bibiloni et al. (2008), who

found a high similarity between the bacterial profiles obtained from mucosal

biopsy, luminal aspirate, and faeces of the same subject. Despite providing a

rapid method for the comparison and monitoring of microbial ecosystems, the

diversity profiles produced by fingerprinting techniques only recover the most

dominant members of the community, and sequencing is still necessary for their

identification. Before us, Eckburg et al. (2005) employed massive sequencing

of PCR-amplified 16S rRNA genes for the comparison of mucosal and faecal

samples of three individuals. They detected differences between the two sample

types, but faeces were collected one month after the intestinal biopsies, a lag

that might have introduced changes in the composition of the microbiota. Af-

ter the publication of our study (Durbán et al., 2011), Momozawa et al. (2011)

also reported differences between the two sample types using high-throughput

sequencing. A common feature of these two studies is that individuals received

a bowel cleansing prior the collection of biopsies.

From a clinical point of view, it is necessary to more accurately determine to

what extent faecal microbial communities actually represent the communities

within the gut. There is a critical question in this respect: how can we assess

whether the gut microbiota is involved in the aetiology of a particular disease

when the mucosal fraction has not actually been observed? Or put it in other
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terms, how reliable are the results obtained based only on faeces? A first step

is to assess how well faecal microbiota represents the mucosa-associated one.

To this end, it is essential that both samples are collected at the same time.

Also, the bowel cleansing prior to colonoscopy may introduce perturbations

in the composition of the mucosal community (related to this, Bibiloni et al.

(2008) attributed the high similarity they found between the bacterial profiles

of biopsies, luminal aspirates, and faeces to contamination of biopsies by the

fluid that pools in the bowel after cleansing). We addressed both issues in this

study (see Section 3.2.2).

Our objectives were to analyse the variability in the composition of gut bac-

terial communities between healthy individuals, to analyse the within-subject

variability in the bacterial composition of faeces and colonic biopsies, and to

measure the extent to which the bacterial composition of faeces serves as a

predictor of the bacterial composition of colonic biopsies. To this end, PCR-

amplified 16S rRNA gene libraries were obtained from rectal biopsies and faeces

of nine healthy volunteers.

4.1.2 Results

We sequenced around 740 clones for each of the eighteen clone libraries of 16S

rRNA genes. Trimmed sequences had an average length of 710 nt. Sequences

were classified into phylotypes defined at 98% of sequence identity.

4.1.2.1 Dataset coverage and bacterial diversity

To determine the fraction of operational taxonomic units (OTUs, considering as

such any of the extant taxonomic units under study) that were recovered in the

samples, we carried out a rarefaction analysis (Figure 4.1). Rarefaction curves

were obtained by plotting the number of observed OTUs against the number

of cloned sequences. At the family level, curves reached or nearly reached

a plateau for most samples, whereas for curves calculated using phylotypes,

the upward phase was ongoing. This means that we observed most of the

families in most samples, but also that quite a few phylotypes were missed.

The rarefaction curves also showed that bacterial communities were usually

less diverse in the faecal samples than in the respective biopsies.
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Figure 4.1: Rarefaction curves for each sample calculated at the levels of family
(A) and phylotype at 98% of sequence identity (B). B: rectal biopsies; F: faeces.

We employed the Chao1 richness estimator to estimate the number of fa-

milies and phylotypes in the sampled communities (Table 4.1). In agreement

with the rarefaction curves, the comparison of the observed and the estimated

number of phylotypes indicated substantial numbers of unseen phylotypes in

the samples, which could be detected only after sequencing many more clones

(on average, 470 phylotypes were estimated, while 215 were detected). This

can be put down to the fact that many phylotypes appear at very low fre-
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quencies. The Shannon biodiversity index (H), that correlates positively with

species richness and evenness, was calculated at both family and phylotype

levels (Table 4.1). Overall, Chao1 estimates and Shannon indices indicated

great diversity of the intestinal bacterial communities. Furthermore, in most of

the paired samples, the mucosa-associated community was more diverse than

the faecal one.

Table 4.1: Observed richness, Chao1 richness estimator (and standard error),
and Shannon biodiversity index (H) calculated for each sample at the levels of
family and phylotype at 98% of sequence identity. B: rectal biopsies; F: faeces;
nc: not computable.

Volunteer Sample No. reads Families Clusters 98% identity

Obs. Chao1 Shannon H Obs. Chao1 Shannon H

1 B 763 29 51 (33.41) 1.91 296 545 (55.79) 5.24

F 705 16 17 (2.29) 1.69 199 406 (59.84) 4.64

2 B 742 29 31 (3.49) 2.58 173 345 (53.44) 4.17

F 867 18 23 (17.14) 1.92 281 680 (96.40) 4.77

3 B 751 28 33 (5.92) 1.71 281 746 (108.90) 4.87

F 772 14 17 (11.66) 1.41 219 491 (75.53) 4.63

4 B 681 20 21 (2.29) 1.94 166 288 (38.92) 4.18

F 708 11 12 (3.74) 1.26 126 242 (44.53) 3.74

5 B 863 30 48 (28.64) 1.99 260 519 (66.49) 4.97

F 740 16 18 (5.29) 1.67 206 400 (52.71) 4.52

6 B 617 14 15 (2.29) 1.48 171 365 (61.23) 4.27

F 749 10 16 (nc) 1.01 182 346 (49.22) 4.14

7 B 623 15 20 (10.17) 1.37 106 192 (34.65) 3.36

F 701 14 17 (nc) 1.74 216 449 (60.83) 4.54

8 B 832 25 27 (3.49) 1.81 273 482 (49.90) 5.03

F 678 15 15 (1.31) 1.86 226 679 (128.31) 4.69

9 B 754 23 30 (10.27) 1.76 249 501 (59.69) 4.58

F 822 17 18 (3.74) 1.56 258 663 (101.23) 4.56

4.1.2.2 Bacterial taxonomic composition

The distribution of the 16S rRNA gene sequences at phylum, class, and family

levels is shown in Figure 4.2. Most sequences were assigned to the Firmicutes

and Bacteroidetes phyla, which have repeatedly been described as major and

functionally significant components of the human intestinal microbiota. Pro-

teobacteria was the third most abundant phylum and its presence was lower in

faeces than in rectal biopsies. Low prevalence of other phyla was also found in

the biopsy samples, such as Actinobacteria, Fusobacteria, Gemmatimonadetes,

Lentisphaerae, Tenericutes, and Verrucomicrobia, which were lower or even ab-

sent in faecal samples. The relatively low abundance of Actinobacteria could be
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a result of an insufficiently rigorous cell lysis procedure (this phylum has been

found as a major constituent of the GI microbiota by using other molecular

approaches) (Zoetendal et al., 2008).

  

Phylum Class Family B1 B2 B3 B4 B5 B6 B7 B8 B9 F1 F2 F3 F4 F5 F6 F7 F8 F9

Actinobacteria Actinobacteria Actinomycetaceae
Coriobacteriaceae
Corynebacteriaceae
Micrococcaceae
Propionibacteriaceae
unclassified

Bacteroidetes Bacteroidetes Bacteroidaceae
Porphyromonadaceae
Prevotellaceae
Rikenellaceae
unclassified

Flavobacteria Flavobacteriaceae
unclassified

unclassified
Firmicutes Bacilli Bacillaceae

Lactobacillaceae
Staphylococcaceae
Streptococcaceae

Clostridia Clostridiaceae
IncertaeSedis XI
IncertaeSedis XIII
IncertaeSedis XV
Lachnospiraceae
Peptostreptococcaceae
Ruminococcaceae
Veillonellaceae
unclassified

Erysipelotrichi Erysipelotrichaceae
unclassified

Fusobacteria Fusobacteria Fusobacteriaceae
Gemmatimonadetes Gemmatimonadetes unclassified
Lentisphaerae Lentisphaerae Victivallaceae

unclassified
Proteobacteria Alphaproteobacteria Caulobacteraceae

Methylobacteriaceae
Rhodospirillaceae
Sphingomonadaceae
unclassified

Betaproteobacteria Alcaligenaceae
Comamonadaceae
Oxalobacteraceae
unclassified

Deltaproteobacteria Desulfovibrionaceae
Epsilonproteobacteria Campylobacteraceae
Gammaproteobacteria Enterobacteriaceae

Halomonadaceae
Moraxellaceae
Pasteurellaceae
Succinivibrionaceae

Tenericutes Mollicutes Anaeroplasmataceae
Verrucomicrobia Verrucomicrobiae Verrucomicrobiaceae
unclassified

0% 0-1% 1-5% 5-15% 15-30% 30-50% 50-70%

Figure 4.2: Percentage of sequences (grouped into six intervals) at phylum,
class, and family levels in rectal biopsies (B) and faeces (F) of volunteers 1-9.

The Firmicutes phylum covered 59.4% of the total number of sequences, and

67.9% of the phylotypes. Most (96.9%) of the Firmicutes sequences belonged to
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the Clostridiales order, being Ruminococcaceae and Lachnospiraceae the most

abundant families. Lachnospiraceae was less abundant in faeces than in rectal

biopsies, while no trend was observed for Ruminococcaceae. The Bacteroidetes

phylum included 36.1% of the sequences and 26.5% of the phylotypes. These

were almost exclusively members of the Bacteroidales order (99.3%). Large

variation between subjects was observed in the relative abundance of the fa-

milies within this order. The counts for Rikenellaceae were higher in faeces

than in rectal biopsies, and the same occurred in general for Bacteroidaceae.

All Proteobacteria classes were detected, being Alpha-, Beta-, and Gammapro-

teobacteria the most abundant. There was large variability between samples in

the abundance of bacteria within Proteobacteria. Betaproteobacteria was the

only class found in all volunteers, at least in biopsies.

Sample composition was also studied at the species level by working with

phylotypes defined at 98% of sequence identity (Figure 4.3). A remarkable

portion of the species within each volunteer was sample type-specific. An ave-

rage of 17% of the phylotypes detected in each subject was found in both

faeces and rectal biopsy, whereas an average of 52% of the sequences belonged

to phylotypes shared between the two types of sample. Species shared between

two paired samples also differed in their relative abundance. Variation was

found between families in these quantitative differences. For instance, within

Lachnospiraceae, most species were not shared between two paired samples,

and usually those that were had a similar relative abundance in biopsies and

faeces. In contrast, many Ruminococcaceae species found in biopsies were also

detected in faeces, but their relative abundance was quite different in the two

types of sample.

4.1.2.3 Variation between subjects and sampling sites

DCA showed a great deal of variation in the composition of the communities

(Figure 4.4). At coarse taxonomic levels, such as phylum, no pattern was

observed. However, when using intermediate levels such as family or genus,

DCA plots separated faecal and biopsy samples. At the phylotype level, a new

pattern emerged showing faecal and biopsy samples from the same subject to be

closer to each other. We also used UniFrac to compare sample composition at

this same level taking into account phylogenetic distances between phylotypes

besides their abundance. UniFrac coupled with PCoA showed some clustering

by sample type similar to the DCA plots at genus or family level (Figure 4.5).
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Figure 4.3: Shared phylotypes between rectal mucosa (B) and faeces (F) within
the Lachnospiraceae (a), Ruminococcaceae (b), and Bacteroidaceae (c) families. In
each individual, shared phylotypes are in the same colour in both sample types, while
phylotypes found only in biopsies or in faeces are in white. Every rectangle represents
a phylotype and its size corresponds to its relative abundance, expressed as percentage
of the total number of sequences in the sample.
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Figure 4.4: DCA at phylum, family, genus, and phylotype levels. Percentages
correspond to the fraction of inertia explained by each axis. B: rectal biopsies;
F: faeces.

The Bayesian model confirmed the high level of variation in the commu-

nity composition between samples. It also revealed that the variation in the

proportions πikj characterising the community composition was mainly due to

differences between individuals (45%) and between sample types (45%), and, to

a lesser extent, to differences between taxa (5%). These results were consistent

across taxonomic levels.
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Figure 4.5: PCoA based on the UniFrac metric at the phylotype level. B: rectal
biopsies; F: faeces.

A heatmap of the posterior medians of the πikj parameters (i.e., the median

of the sample from the posterior distribution for each parameter provided by the

MCMC methods) at the family level highlighted, as stated above, that most

communities were dominated by species from just a few taxa, though there

was a low prevalence of many other families too (Figure 4.6). We computed

Euclidean distances between community distributions (on the log-odds scale)

estimated with the Bayesian model to assess similarities between samples. At

the family level, a hierarchical cluster based on this distance matrix revealed

that the estimated community distributions grouped samples by sample type.

Each column in Table 4.2 lists all samples ranked by increasing distance to

the faecal sample that appears in the column header. In most instances, we

can see that for a given sample the closest ones were those of the same type,

as indicated by the dendrogram in Figure 4.6, i.e., the closest samples to

a given faecal sample were usually other faecal samples. For individuals six,



4.1. DIVERSITY OF RECTAL AND FAECAL BACTERIA 95

seven, and nine, the closest biopsy sample to their faecal sample turned out to

be their own paired biopsy sample. These are three of the five individuals that

provided both samples on the same day. It should be noted that biopsy six was

the closest biopsy to seven out of the nine faecal samples, and was the second

closest to the remaining two. This is partly due to the relative low diversity in

biopsy six that makes its bacterial distribution similar to those found in faeces.

Table 4.2: Sample ordering based on the Euclidean distance among the logit of
the taxonomic distributions πik at the family level. In each column, samples
are ordered by increasing distance to the faecal sample in the column header.
Highlighted is the paired biopsy of each faecal sample. B: rectal biopsies; F:
faeces.

Order F1 F2 F3 F4 F5 F6 F7 F8 F9

1 F1 F2 F3 F4 F5 F6 F7 F8 F9

2 F4 F8 F8 F1 F8 F4 F8 F7 F8

3 F8 F1 F7 F3 F9 F3 F9 F9 F7

4 F3 F9 F4 F7 F7 F7 F3 F3 F5

5 F9 F3 F1 F8 F1 F8 F5 F5 F1

6 F5 F5 F9 F6 F2 F1 F4 F1 F3

7 F2 F7 F2 F9 F3 F9 F2 F2 F2

8 F7 B6 F5 F5 B6 F5 F1 F4 F4

9 B6 F4 F6 B6 F4 B6 B7 B6 B9

10 F6 B9 B6 F2 B9 F2 F6 B7 B6

11 B1 B8 B7 B7 B7 B7 B6 B9 B7

12 B9 B7 B9 B9 B8 B9 B9 B8 F6

13 B8 B3 B3 B4 B3 B8 B8 F6 B8

14 B7 B1 B8 B8 B5 B3 B3 B3 B1

15 B3 F6 B1 B1 F6 B1 B1 B1 B3

16 B4 B2 B4 B3 B1 B4 B4 B4 B4

17 B5 B4 B5 B5 B4 B5 B5 B5 B5

18 B2 B5 B2 B2 B2 B2 B2 B2 B2

Finally, LDA and CART did not prove useful to discriminate sample type

by community composition, probably due to the large variability observed and

the relatively small sample size. For LDA, we tested multivariate normality

and homokedasticity of the covariance matrix of the logit πikj (the output

of the Bayesian model) and did not find significant departures from the null,

though this again may be a consequence of the relatively reduced sample size.

CART, in contrast, is a non-parametric method and more robust in general (less

sensitive to outliers, invariant to monotonic transformations of the variables,

etc.), so it should be less affected by the sample size.
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Figure 4.6: Heatmap at the family level of the posterior medians of πikj grouped
into five intervals. On top, hierarchical cluster based on the Euclidean distances
of the estimated distributions πik = (πik1, . . . , πikJ)′ on the log-odds scale. B:
rectal biopsies; F: faeces.
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4.1.3 Discussion

Most of the studies carried out until now on gut metagenomics do not take into

consideration that a faecal sample contains a microbial composition that not

necessarily can be taken as a good predictor of a corresponding intestinal one.

Here, we address the analysis of equivalences and/or correspondences between

faecal and rectal mucosal samples from nine healthy individuals. Extrapolation

of our results to other sites in the intestine should be made with caution as the

microbial composition may vary along the gut.

Our work confirmed the findings from previous studies that suggested that

faecal and colonic mucosal microbial diversity from the same individual are not

similar (Zoetendal et al., 2002; Ott et al., 2004; Eckburg et al., 2005; Lepage

et al., 2005). However, our approach has several differences over previous stu-

dies. Firstly, we attempted to provide this diversity comparison from faecal

and mucosal samples collected as close as possible in time. Secondly, we did

not carry out a bowel cleansing prior to colonoscopy to avoid the potential

disturbance of the mucosal microbiota associated with this procedure. This

opens the possibility for rectal biopsies to contain bacteria from faeces loosely

sticking to the mucus but not being actually part of the mucosal microbiota.

Given the differences that we found in the microbiota between the two types of

sample, we think this can hardly be a generalised situation, though the possi-

bility can not be ruled out completely. Nevertheless, biopsies were taken in

the absence of macroscopic faeces, and it is unlikely that biopsies were conta-

minated with faecal material because stools usually have hard consistency and

are not attached to the mucosa in the rectum, where they are formed to be

expelled outside the body and do not adhere to the mucosa because nothing is

absorbed nor secreted there, unlike in other sections of the intestine. Finally,

the results presented here have been generated through sequence analysis of

clone libraries, which enabled the identification of microorganisms.

Overall, we found that two phyla, Firmicutes and Bacteroidetes, dominated

those communities, accounting for nearly 95% of all sequences. However, we

also observed large between-sample variability in community composition at

nearly all taxonomic levels. At the phylotype level in particular, the majority of

phylotypes detected were sample-specific, showing that each individual carried

a particular combination of bacterial lineages, as previously reported (Eckburg

et al., 2005; Tap et al., 2009; Turnbaugh et al., 2009a). Strong within-subject

variability was also found in the faeces-biopsy paired samples.
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Our results suggest that the community composition in faecal samples is not

highly representative of the microbiota in the rectum. In fact, at family and

genus levels, taxa distributions grouped samples by sample type rather than by

individual, even for those sample pairs collected the same day. Evaluating the

closeness between samples based on distances between their estimated compo-

sitions (on the log-odds scale), we found that any faecal sample is more similar

to any other faecal sample than to a rectal biopsy sample. We also found that

the closest biopsy sample to the faeces of an individual was his own paired

biopsy sample in three of the five individuals that provided both samples on

the same day, a finding that can not be considered as conclusive given the

(statistically) small sample size, especially considering that one of the biopsies

was very similar to all faecal samples. These results confirm that the intestinal

microbiota is an extremely complex community, the richness and diversity of

which seems to be underrepresented in faecal samples. However, it has yet to

be assessed whether this impoverishment is because not all species in the intes-

tine are susceptible to ending up in faeces or whether it is a consequence of the

impact of the sudden change in the growing conditions (temperature, oxygen,

nutrient availability, etc.) on leaving the body. Also, the biopsy samples were

frozen immediately after collection, whereas faecal samples were not. It should

be considered the possibility that this might have had an impact on reducing

the biodiversity found in faeces compared with biopsies.

Faeces will continue to be used in the study of the human gut microbiota

because they are easier to collect than intestinal samples and current work with

biopsies is limited to certain methodologies due to the quantity of material

that can be obtained from them. Actually, each sample type may provide

a distinct and complementary picture of the diversity and ecology found in

the human gut microbiota. However, since bacterial diversity in the colonic

mucosa is underrepresented in faeces, we think it is important to caution

researchers about making inference of the intestinal mucosal microbiota, or

even about the entire GI one, from that found in faeces, especially when

dealing with microbiota-related pathologies.

This study has been published in Microbial Ecology (Durbán

et al., 2011).
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4.2 Structural alterations of colonic mucosal

and faecal bacteria in the irritable bowel

syndrome

4.2.1 Background

Research about the aetiology and potential treatments of IBS is relevant be-

cause it is the most common functional GI disorder in Western countries, with

a profound impact on patients’ quality of life and high economic costs derived

from it (Quigley et al., 2006). The symptoms of IBS are variable and include

chronic abdominal pain, discomfort, or bloating that is relieved with defaeca-

tion and/or is associated with altered bowel habits (Longstreth et al., 2006).

The cause of IBS is thought to be multifactorial but remains poorly understood.

Some of the major aetiological factors that have been proposed are visceral hy-

persensitivity, abnormal gut motility and secretion, autonomic nervous system

dysfunction, and low-grade inflammation in the intestinal mucosa (Aerssens

et al., 2008; Karantanos et al., 2010). Psychosocial factors are also known to

play an important role in the development and persistence of symptoms in IBS

(Drossman, 1999a; Lea and Whorwell, 2003; Hood et al., 2008).

In addition, several observations point to alterations at the level of the GI

microbiota in subjects suffering from IBS. First, the onset of IBS frequently

follows an acute episode of infectious enteritis, which is in turn the strongest

risk factor for developing IBS (Spiller and Garsed, 2009). Second, clinical

trials targeting the microbiota (like antibiotics and probiotics) seem to alleviate

IBS symptoms (Moayyedi et al., 2010; Basseri et al., 2011). Finally, recent

molecular studies suggest an altered GI microbiota in patients, with specific

features depending on the predominant bowel pattern (reviewed by Salonen

et al. (2010)). Some of the findings in IBS patients compared with controls are

large temporal instability and inter-subject variation in the faecal microbiota

and altered abundance of specific taxa. However, the current available data

do not reveal pronounced IBS-related deviations in the microbial composition,

and no consensus has been reached regarding the association between specific

bacteria and IBS.

Most molecular studies on IBS carried out so far have used faecal sam-

ples. Nevertheless, it is important to study the different compartments where

the gut microbiota can be found when assessing its role in the aetiology of a
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particular disease. This is because each intestinal habitat contains a specific

microbial community (Section 4.1) (Zoetendal et al., 2002; Ott et al., 2004;

Eckburg et al., 2005; Lepage et al., 2005) and therefore can offer a distinct and

complementary picture of the microbiota and its relationship with the host.

Specifically, mucosal communities may be more relevant to the disorder be-

cause of their closer association with the host epithelium and thus their role in

the regulation of intestinal immunity and inflammation.

The main objective of this study was to explore the potential alterations of

the intestinal bacteria in IBS in several compartments within the GI tract and

in faeces. To this end, mucosal biopsies of the ascending and the descending

colon and faecal samples were obtained from sixteen IBS patients and nine

healthy controls, and the entire bacterial communities were analysed through

sequencing of PCR-amplified 16S rRNA genes. A secondary goal was to com-

pare the bacterial composition between the three sampled sites.

4.2.2 Results

We obtained ∼268000 non-chimeric sequences with an average length of 235

nt. The bacterial composition for the group-type pooled samples is shown in

Figure 4.7. Most sequences belonged to the Bacteroidetes, Firmicutes, and

Proteobacteria phyla. Low prevalence of Actinobacteria, Fusobacteria, and

other phyla was also found.

Figure 4.8 shows the cluster analyses based on the community compo-

sition at the genus level. The dendrogram of the group-type pooled samples

(Figure 4.8, top) revealed larger differences in the microbial composition

between biopsies and faeces than between IBS patients and controls. Biopsies,

however, clustered together by group instead of site. These findings were re-

produced in the dendrogram of the individual samples (Figure 4.8, bottom),

where healthy controls and IBS patients appeared mixed within clusters. Sam-

ples from the same IBS-subtype did not cluster either. Both mucosal samples

from the same individual clustered together at short distances in many cases.

However, faecal samples formed several clusters far from the respective biop-

sies. DCA confirmed the previous descriptive analysis (Figure 4.9). The first

DCA axis separated faeces from biopsies. The second axis separated IBS pa-

tients from controls in the pooled samples, though this pattern was not clear

for the individual samples. Similarly, ANOSIM found significant differences in

the global composition between sampling sites (ANOSIM R=0.158, p=0.001)

but not between IBS patients and controls (ANOSIM R=-0.005, p=0.483).
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Ascending colon Descending colon Faeces

Phylum Class Family HC IBS-D IBS-C HC IBS-D IBS-C HC IBS-D IBS-C
Acidobacteria 0.00004 0.00008 0 0.00011 0 0 0 0 0
Actinobacteria Actinobacteria Actinomycetaceae 0.00073 0.00090 0.00040 0.00056 0.00130 0.00007 0.00006

Micrococcaceae 0.00106 0.00087 0.00027 0.00064 0.00068 0.00013 0.00004 0.00006
Propionibacteriaceae 0.00543 0.00210 0.00347 0.00445 0.00205 0.00156 0.00004 0.00010
Other Actinomycetales 0.00070 0.00065 0.00040 0.00097 0.00050 0.00026 0 0.00004 0.00008
Coriobacteriaceae 0.00440 0.00513 0.00507 0.00393 0.00410 0.00241 0.00267 0.00361 0.00100

0.00037 0.00008 0.00027 0.00026 0.00027 0 0.00002 0.00002 0
Bacteroidetes Bacteroidia Bacteroidaceae 0.29332405 0.41385798 0.37443288 0.27371963 0.36891744 0.54276959 0.33713286 0.38250231 0.25780169

Porphyromonadaceae 0.05019 0.05983 0.04750 0.05757 0.05684 0.02399 0.06540 0.11160077 0.15472713
Prevotellaceae 0.14796349 0.10435755 0.17800907 0.17005607 0.13231274 0.00372 0.10333112 0.09062 0.02091
Rikenellaceae 0.02797 0.02304 0.02095 0.02856 0.02399 0.00828 0.06540 0.11588181 0.28862414
Other Bacteroidales 0.00895 0.00564 0.00707 0.008 0.01465 0.00176 0.03956 0.03916 0.03743

Flavobacteria Flavobacteriaceae 0.00029 0.00027 0.00067 0.00039 0.00013
Sphingobacteria 0.00051 0.00106 0.00013 0.00082 0.00084 0.00033 0.00004 0.00010 0
Other Bacteroidetes 0.00649 0.00357 0.00574 0.00793 0.01408 0.00248 0.05671 0.01834 0.03351

Cyanobacteria Cyanobacteria Chloroplast 0.00125 0.00046 0.00027 0.00041 0.00052
Deinococcus-Thermus Deinococci 0.00022 0.00003 0.00013 0.00007 0.00016 0 0 0 0
Firmicutes Bacilli Staphylococcaceae 0.00436 0.00578 0.00120 0.00284 0.00494 0.00026 0.00010

Other Bacillales 0.00026 0 0 0.00064 0.00014 0.00013 0.00012 0.00010 0
Aerococcaceae 0.00062 0.00153 0.00040 0.00052 0.00046
Carnobacteriaceae 0.00605 0.00684 0.00173 0.00247 0.00478 0.00091 0.00004 0.00004
Leuconostocaceae 0.00007 0.00025 0.00028 0.00842 0.00031
Streptococcaceae 0.02236 0.02547 0.01214 0.01944 0.03217 0.00124 0.00090 0.00197 0.00008
Other Lactobacillales 0.00044 0.00060 0.00053 0.00022 0.00077 0 0 0.00017 0

Clostridia Clostridiales Inc Sed XI 0.00158 0.00025 0.00053 0.00164 0.00021 0.00020 0.00004
Clostridiales Inc Sed XIII 0.00022 0.00038 0.00040 0.00045 0.00041 0.00123 0.00067 0.00038
Clostridiales Inc Sed XIV 0.00693 0.00665 0.00854 0.00830 0.00624 0.06650 0.00312 0.00197 0.00046
Eubacteriaceae 0.00565 0.00764 0.01014 0.00837 0.01255 0.00065 0.00076 0.00302 0.00008
Lachnospiraceae 0.08285 0.06981 0.06899 0.07895 0.07080 0.09584 0.01964 0.02422 0.01699
Peptostreptococcaceae 0.00495 0.00087 0.00093 0.00609 0.00132 0.00046 0.00036
Ruminococcaceae 0.09983 0.07703 0.07993 0.08019 0.07643 0.04792 0.15328790 0.08168 0.10607225
Veillonellaceae 0.01774 0.01456 0.00654 0.01593 0.01248 0.00958 0.01419 0.02094 0.01476
Other Clostridiales 0.04770 0.03665 0.03163 0.04935 0.04413 0.03397 0.03689 0.02785 0.02191

0.00469 0.00286 0.00440 0.00602 0.00317 0.00254 0.00716 0.01328 0.00646
Erysipelotrichi Erysipelotrichaceae 0.01012 0.00698 0.01775 0.01503 0.00686 0.00502 0.00099 0.00743 0.00038
Other Firmicutes 0.00359 0.00316 0.00627 0.00456 0.00342 0.01265 0.00422 0.00428 0.00377

Fusobacteria Fusobacteria Fusobacteriaceae 0.01811 0.00712 0.00133 0.02867 0.00515 0.00020 0.00040 0.00006
Leptotrichiaceae 0.00070 0.00235 0.00040 0.00258 0.00109
Other Fusobacteriales 0.00018 0.00044 0.00011 0.00007

Gemmatimonadetes Gemmatimonadetes Gemmatimonadaceae 0.00004
Lentisphaerae Lentisphaeria Victivallaceae 0.00007 0.00010 0.00004
Nitrospira Nitrospira Nitrospiraceae 0.00004
Proteobacteria Alphaproteobacteria Methylobacteriaceae 0.00194 0.00046 0.00147 0.00194 0.00016

Other Rhizobiales 0.00103 0.00003 0.00013 0.00045 0.00002 0 0 0 0
Sphingomonadaceae 0.00066 0.00019 0.00067 0.00101 0.00009 0.00002

0.00048 0.00057 0.00040 0.00086 0.00087 0.00183 0.00008 0.00023 0
Betaproteobacteria Alcaligenaceae 0.00990 0.01001 0.00667 0.01121 0.02112 0.00998 0.00265 0.00399 0.00623

Comamonadaceae 0.00986 0.00464 0.00267 0.00920 0.00321 0.00248 0.00002 0.00010
Other Burkholderiales 0.00128 0.00112 0.00187 0.00217 0.00221 0.00176 0.00024 0.00036 0
Neisseriaceae 0.00191 0.00488 0.00053 0.00363 0.00273 0.00007 0.00013

0.00040 0.00758 0.00334 0.00097 0.00351 0.00072 0.00056 0.00031 0.00008
Deltaproteobacteria Desulfovibrionaceae 0.00191 0.00027 0.00053 0.00105 0.00068 0.00026 0.00034 0.00029 0.00031

Other Desulfovibrionales 0.00013 0.00002
0.00005 0.00002 0.00002

Epsilonproteobacteria Campylobacteraceae 0.00081 0.00068 0.00153 0.00050 0.00004 0.00004
Helicobacteraceae 0.00007 0.00014 0.00013 0.00009 0.00002

Gammaproteobacteria Enterobacteriaceae 0.03017 0.01614 0.06245 0.02217 0.01877 0.10731516 0.00060 0.00275 0.00223
Pasteurellaceae 0.02552 0.02533 0.00374 0.02546 0.01465 0.00026 0.00096 0.00010
Moraxellaceae 0.00282 0.00202 0.00040 0.00247 0.00130 0.00052 0.00002 0.00036
Pseudomonadaceae 0.00147 0.00900 0.00040 0.00243 0.00606 0.00111 0.00010 0.00002
Sinobacteraceae 0.00002 0.00004
Xanthomonadaceae 0.00257 0.00243 0.00347 0.00187 0.00205 0.00059 0.00002 0.00008

0.00011 0.00022 0.00013 0.00131 0.00032 0 0.00002 0.00021 0
Other Proteobacteria 0.00477 0.00644 0.00214 0.00307 0.00465 0.00196 0.00078 0.00208 0.00115

Spirochaetes Spirochaetes Spirochaetaceae 0.00003 0.00291
Other Spirochaetales 0.00002

SR1 SR1 SR1 0.00007
Synergistetes Synergistia Synergistaceae 0.00008 0.00019 0.00009 0.00056
Tenericutes Mollicutes Anaeroplasmataceae 0.00113

Mycoplasmataceae 0.00003 0.00007
TM7 TM7 TM7 0.00037 0.00046 0.00013 0.00011 0.00030 0.00070 0.00038
Verrucomicrobia Verrucomicrobiae Verrucomicrobiaceae 0.00011 0.00003 0.00013 0.00022 0.00005 0.00013 0.00052 0.00141 0.00069
Other Bacteria 0.01265 0.00813 0.01054 0.01518 0.00686 0.00509 0.07368 0.02833 0.02314

<0.1% 0.1-1% 1-5% 5-10% 10-25% >25%

Figure 4.7: Percentage of sequences (grouped into six intervals) at phylum,
class, and family levels belonging to the pooled samples of healthy con-
trols (HC), diarrhoea-predominant IBS patients (IBS-D), and constipation-
predominant IBS patients (IBS-C).
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Figure 4.8: Hierarchical cluster of the group-type pooled samples (top) and the
individual samples (bottom) based on the Bray-Curtis distances between the
observed distributions of genera. AC, DC, and FC: ascending colon, descending
colon, and faeces of healthy controls; AI, DI, and FI: ascending colon, descen-
ding colon, and faeces of IBS patients. Patients with constipation-predominant
IBS: I07, I10, I12; patients with diarrhoea-predominant IBS: the rest.
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Figure 4.9: DCA at the genus level of the group-type pooled samples (top)
and the individual samples (bottom). Percentages correspond to the fraction
of inertia explained by each axis. AC, DC, and FC: ascending colon, descen-
ding colon, and faeces of healthy controls; AI, DI, and FI: ascending colon,
descending colon, and faeces of IBS patients. Constipation-predominant IBS:
I07, I10, I12; diarrhoea-predominant IBS: the rest.
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4.2.2.1 Comparison of IBS patients and controls

The Shannon diversity indices (H) were on average lower in IBS cases than

in healthy controls in the three intestinal compartments (Table 4.3). The

Chao1 and ACE estimators of total richness were quite similar and indicated

substantial numbers of unseen phylotypes, while the estimated numbers of

genera were closer to the observed ones. The richness estimators were on

average lower in IBS patients than in controls (Table 4.3).

Table 4.3: Average values (and standard deviations) of the Shannon diversity
index (H) and the Chao1 and ACE richness estimators of the individual samples
within the control (HC), IBS-diarrhoea (IBS-D), and IBS-constipation (IBS-C)
groups at each sampling site (A, D, and F: ascending colon, descending colon,
and faeces) at the levels of genus and phylotype. n: number of subjects.

Genus Phylotype 97% identity

Site Group n No. reads Shannon H Chao1 ACE Shannon H Chao1 ACE

A HC 9 27277 2.87 (0.38) 96 (23.54) 96 (20.48) 4.74 (0.45) 671 (509.14) 684 (488.13)

IBS-D 13 36672 2.43 (0.64) 85 (44.51) 81 (24.63) 4.47 (0.66) 597 (348.03) 615 (332.74)

IBS-C 3 7494 2.21 (0.74) 81 (35.85) 88 (47.25) 4.61 (1.05) 658 (510.44) 669 (513.33)

D HC 9 26750 2.71 (0.45) 100 (29.13) 98 (29.15) 4.84 (0.64) 765 (367.16) 785 (374.13)

IBS-D 13 43896 2.38 (0.56) 89 (30.70) 85 (25.37) 4.59 (0.62) 687 (396.40) 699 (377.17)

IBS-C 3 15338 1.95 (0.61) 58 (4.69) 60 (4.53) 4.23 (0.77) 565 (72.88) 554 (89.37)

F HC 8 49743 2.24 (0.46) 58 (17.00) 57 (12.52) 4.49 (0.44) 639 (124.13) 636 (116.05)

IBS-D 13 47652 2.14 (0.48) 51 (18.78) 54 (21.23) 4.25 (0.44) 469 (190.05) 474 (196.23)

IBS-C 3 13010 2.18 (0.14) 41 (13.16) 43 (13.33) 4.36 (0.27) 403 (128.70) 425 (151.11)

The community structure of the pooled samples of IBS patients and con-

trols looked overall quite similar (Figure 4.7). However, mucosal samples of

patients had higher counts of Bacteroidaceae (IBS-D and ascending colon of

IBS-C ≈38%, descending colon of IBS-C 54%, controls ≈28%). In addition,

faeces of patients had more Rikenellaceae than controls (IBS-D 12%, IBS-C

29%, controls 7%) as well as more Porphyromonadaceae (IBS-D 11%, IBS-C

16%, controls 7%) and less Ruminococcaceae (IBS-D 8%, IBS-C 11%, controls

15%). Some other characteristics of the IBS-C patients were higher counts

of Enterobacteriaceae in mucosal samples and Rikenellaceae in faecal samples

when compared with the rest. Specifically, the descending colon of the IBS-C

patients differed more from the rest of colonic samples.

We assessed the within-group homogeneity in the prevalence of each bacte-

rial taxon using Gini coefficients and found large between-individual variability
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in the abundance of almost all bacterial taxa within each cohort, even for the

most dominating genera (Tables 4.4 and 4.5).

Only a few of the genera that were found altered in the microbiota of IBS

patients with respect to controls turned out to be statistically significant after

applying a random labelling permutation process to assess differences in the

microbial composition between cases and controls taking into account the large

inter-individual variation. That is, the OR for the actual pooled samples was

between the most extreme ones in comparison with the ORs of simulated pooled

samples obtained under the null hypothesis of no differences between cases and

controls (Tables 4.4 and 4.5). The shape of the OR distributions built by the

random labelling process also reflected the large variability between subjects

(Figure 4.10). It was bimodal for many of the genera, thus indicating that for

those genera, differences between cases and controls were due to only a few of

the individuals (sometimes even just one) included in the cohorts rather than a

general trend, and hence not detected as statistically significant by the random

labelling process. In the IBS-D patients, we found an overrepresentation of

Acinetobacter (OR=16.71, p=0.02), Butyricimonas (OR=2.29, p=0.042), Leu-

conostoc (OR=21.42, p=0.018), and Odoribacter (OR=6.11, p=0.003) in faeces

with respect to controls, an underrepresentation of Desulfovibrio (OR=0.03,

p=0.037) and Oribacterium (OR=0.17, p=0.041) in the ascending colon, and

an underrepresentation of Brevundimonas (OR=0.09, p=0.009) and Butyri-

cicoccus (OR=0.38, p=0.026) in the descencing colon. We found evidence

for the following changes in IBS-C cases compared with controls: an increase

in Alistipes (OR=5.82, p=0.01) and Butyricimonas (OR=3.27, p=0.004) in

faeces, as well as an increase in Bacteroides (OR=3.15, p=0.039) and a de-

crease in Coprococcus (OR=0.03, p=0.007), Eubacterium (OR=0.08, p=0.044),

Fusobacterium (OR=0.02, p=0.036), Haemophilus (OR=0, p=0.019), Nei-

sseria (OR=0.02, p=0.037), Odoribacter (OR=0.14, p=0.02), Streptococcus

(OR=0.06, p=0.007), and Veillonella (OR=0.03, p=0.044) in the descencing

colon. Of these altered genera, only Alistipes, Bacteroides, Butyricimonas,

Eubacterium, Fusobacterium, Odoribacter, and Streptococcus had a relative

abundance greater than 1%.

To establish whether the changes seen at the genus level were due to one, a

few, or many bacterial species/strains within them, we also analysed the com-

positional differences between patients and controls for each phylotype defined

at 97% of sequence identity. Table 4.6 lists the phylotypes for which significant

differences were found after applying a random labelling permutation process
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Table 4.4: Comparisons between controls (HC) and IBS-diarrhoea cases (IBS-D). It
is shown the ORs for the comparison between IBS-D and control pooled samples at
the genus level for genera in which significant differences were found in a chi-square
test, the Gini coefficients for the abundances of each genus in the individual samples
within the IBS-D and control groups, and the OR ranks, which are the ranks of the
OR values for the IBS and control pooled samples when compared with the values of
999 simulated pooled samples obtained after random labelling the individual ones as
IBS or control (extreme values are indicative of true association). In the comparison
sample X vs. sample Y, an OR greater than one indicates overrepresentation in
sample X, whereas an OR lower than one indicates underrepresentation in sample X.

ASCENDING COLON DESCENDING COLON FAECES
IBS-D vs. HC IBS-D vs. HC IBS-D vs. HC

Phylum Genus OR Gini Gini OR OR Gini Gini OR OR Gini Gini OR
(Class) HC IBS rank HC IBS rank HC IBS rank
Actinobacteria Propionibacterium 0.38 0.57 0.43 148 0.46 0.65 0.49 197
Bacteroidetes Bacteroides 1.70 0.65 0.58 863 1.55 0.43 0.37 876 1.22 0.61 0.47 593
(Bacteroidia) Barnesiella 2.93 0.63 0.74 881 1.54 0.58 0.53 836 1.59 0.61 0.56 806

Butyricimonas 0.41 0.73 0.63 158 2.29 0.44 0.54 958
Odoribacter 0.66 0.73 0.67 164 6.11 0.56 0.63 997
Parabacteroides 1.33 0.65 0.55 814 0.82 0.48 0.49 211 1.41 0.52 0.41 783
Porphyromonas 0.22 0.85 0.85 262
Paraprevotella 0.23 0.85 0.71 224 2.64 0.71 0.70 796 1.63 0.74 0.68 714
Prevotella 0.71 0.77 0.73 350 0.71 0.75 0.77 313 0.87 0.71 0.86 463
Alistipes 0.82 0.68 0.63 262 0.84 0.57 0.54 250 1.88 0.52 0.43 887

Bacteroidetes Sphingobacterium 5.95 0.83 0.75 914
(Sphingobacteria)
Firmicutes Gemella 2.15 0.48 0.71 796
(Bacilli) Brevibacillus 0.00 0.89 427

Granulicatella 1.95 0.45 0.60 841
Leuconostoc 21.42 0.67 0.67 982
Weissella 81.69 0.75 0.87 912
Lactococcus 3.75 0.60 0.75 908
Streptococcus 1.67 0.44 0.65 751

Firmicutes Clostridium 10.44 0.88 0.86 770
(Clostridia) Finegoldia 0.04 0.88 0.92 205 0.00 0.77 52

Peptoniphilus 0.00 0.84 159
Blautia 0.50 0.56 0.73 171
Eubacterium 1.51 0.66 0.74 531 3.96 0.70 0.79 795
Coprococcus 0.61 0.59 0.68 113
Dorea 1.54 0.62 0.59 737
Oribacterium 0.17 0.50 0.82 41
Roseburia 0.60 0.72 0.69 95 0.61 0.53 0.58 86 1.86 0.46 0.72 667
Syntrophococcus 0.33 0.80 0.65 81 10.44 0.88 0.90 727
Sporacetigenium 0.04 0.88 0.92 187
Butyricicoccus 0.38 0.59 0.71 26
Faecalibacterium 0.75 0.60 0.65 363
Hydrogenoanaerobacterium 2.96 0.75 0.78 800 0.09 0.80 0.85 128
Oscillibacter 0.56 0.63 0.64 109 0.44 0.56 0.52 153
Ruminococcus 0.22 0.86 0.65 213 0.17 0.84 0.53 356
Acidaminococcus 12.01 0.75 0.85 804
Dialister 2.43 0.68 0.76 822
Phascolarctobacterium 0.57 0.85 0.80 290
Succinispira 4.70 0.73 0.87 785
Veillonella 10.23 0.68 0.89 828

Firmicutes Catenibacterium 0.18 0.76 0.82 121
(Erysipelotrichi) Coprobacillus 0.49 0.66 0.69 103 4.77 0.61 0.81 838

Turicibacter Inf 0.92 611
Fusobacteria Fusobacterium 1.65 0.36 0.75 576 0.50 0.68 0.73 215 0.10 0.86 0.85 316

Leptotrichia 5.21 0.63 0.85 780 0.28 0.77 0.79 186
Proteobacteria Brevundimonas 0.09 0.71 0.85 9
(Alpha) Methylobacterium 0.24 0.79 0.79 160 0.08 0.86 0.88 192

Sphingomonas 0.07 0.85 0.77 123
Proteobacteria Sutterella 2.70 0.73 0.79 738
(Beta) Delftia 0.45 0.67 0.56 262 0.35 0.56 0.51 101

Diaphorobacter 0.10 0.85 0.81 157
Neisseria 2.65 0.48 0.79 702

Proteobacteria Desulfovibrio 0.03 0.85 0.85 37
(Delta)
Proteobacteria Campylobacter 0.33 0.73 0.75 180
(Epsilon)
Proteobacteria Escherichia/Shigella 0.34 0.74 0.67 186 0.42 0.77 0.66 274 3.54 0.86 0.85 777
(Gamma) Aggregatibacter 0.23 0.83 0.67 290 0.51 0.87 0.88 312

Acinetobacter 16.71 0.88 0.70 980
Pseudomonas 6.15 0.63 0.75 899 2.46 0.75 0.82 713

Spirochaetes Treponema Inf 0.92 0.00 0.88 386
Tenericutes Asteroleplasma 0.00 0.87 158
Verrucomicrobia Akkermansia 2.69 0.78 0.92 617
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Table 4.5: Comparisons between controls (HC) and IBS-constipation cases (IBS-C).
It is shown the ORs for the comparison between IBS-C and control pooled samples at
the genus level for genera in which significant differences were found in a chi-square
test, the Gini coefficients for the abundances of each genus in the individual samples
within the IBS-C and control groups, and the OR ranks, which are the ranks of the
OR values for the IBS and control pooled samples when compared with the values of
999 simulated pooled samples obtained after random labelling the individual ones as
IBS or control (extreme values are indicative of true association). In the comparison
sample X vs. sample Y, an OR greater than one indicates overrepresentation in
sample X, whereas an OR lower than one indicates underrepresentation in sample X.

ASCENDING COLON DESCENDING COLON FAECES
IBS-C vs. HC IBS-C vs. HC IBS-C vs. HC

Phylum Genus OR Gini Gini OR OR Gini Gini OR OR Gini Gini OR
(Class) HC IBS rank HC IBS rank HC IBS rank
Actinobacteria Propionibacterium 0.35 0.65 0.44 306
Bacteroidetes Bacteroides 1.44 0.65 0.22 940 3.15 0.43 0.37 961 0.68 0.61 0.07 444
(Bacteroidia) Barnesiella 0.41 0.58 0.48 147 2.56 0.61 0.26 934

Butyricimonas 0.20 0.73 0.67 85 3.27 0.44 0.14 996
Odoribacter 0.14 0.53 0.11 20 4.76 0.56 0.59 878
Parabacteroides 0.54 0.48 0.37 155 2.11 0.52 0.36 813
Porphyromonas 0.00 0.85 250
Paraprevotella 0.38 0.85 0.47 737 1.30 0.74 0.37 665
Prevotella 1.33 0.77 0.66 530 0.02 0.75 0.31 127 0.02 0.71 0.67 106
Alistipes 0.28 0.57 0.29 103 5.82 0.52 0.23 990

Firmicutes Gemella 0.12 0.48 0.50 67
(Bacilli) Granulicatella 0.22 0.55 0.60 120

Streptococcus 0.54 0.36 0.58 220 0.06 0.44 0.21 7
Firmicutes Blautia 9.48 0.51 0.65 786 0.18 0.56 0.44 116
(Clostridia) Eubacterium 1.80 0.69 0.53 772 0.08 0.66 0.40 44

Coprococcus 0.03 0.59 0.44 7
Roseburia 2.02 0.53 0.58 775 1.53 0.46 0.42 717
Butyricicoccus 0.11 0.59 0.56 81
Faecalibacterium 0.65 0.27 0.54 256 0.61 0.60 0.43 477
Hydrogenoanaerobacterium 0.00 0.80 254
Ruminococcus 0.06 0.86 0.50 437 0.26 0.84 0.67 592
Subdoligranulum 0.34 0.45 0.41 115 0.34 0.54 0.33 205
Dialister 0.03 0.76 0.67 154 1.88 0.68 0.66 671
Phascolarctobacterium 0.27 0.85 0.45 683 1.79 0.62 0.66 731
Succinispira 0.00 0.84 462
Veillonella 0.03 0.63 0.67 44

Firmicutes Catenibacterium 0.00 0.71 150
(Erysipelotrichi) Coprobacillus 2.61 0.66 0.34 881 0.41 0.66 0.30 247
Fusobacteria Fusobacterium 0.31 0.36 0.67 121 0.02 0.68 0.44 36

Leptotrichia 0.00 0.77 98
Proteobacteria Methylobacterium 0.00 0.86 258
(Alpha) Sphingomonas 0.00 0.85 372
Proteobacteria Parasutterella 0.10 0.79 0.44 217 1.90 0.71 0.56 727 2.57 0.76 0.51 850
(Beta) Sutterella 0.00 0.73 94

Delftia 0.28 0.67 0.42 299 0.27 0.56 0.57 163
Neisseria 0.02 0.72 0.67 37

Proteobacteria Campylobacter 0.00 0.73 98
(Epsilon)
Proteobacteria Escherichia/Shigella 2.99 0.74 0.52 736 6.93 0.77 0.65 819
(Gamma) Aggregatibacter 0.14 0.83 0.67 409 0.01 0.87 0.67 194

Haemophilus 0.21 0.35 0.67 72 0.00 0.61 19
Acinetobacter 0.10 0.71 0.33 95 0.23 0.72 0.33 262

Spirochaetes Treponema 0.00 0.88 245
Tenericutes Asteroleplasma 0.00 0.87 459

to assess differences in the composition of the microbiota between cases and

controls taking into account the inter-individual variation. We found several

phylotypes with an altered abundance in patients compared with controls.

Differences of opposite sign could be found for phylotypes belonging to the

same genus. Only a few differences between IBS cases and controls were shared
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between sample types or IBS subtypes. One phylotype was consistently over-

represented in the colonic mucosa and faeces of IBS-D patients. It accounted for

≈2% of the sequences in these samples and was closely related to Bacteroides

vulgatus.

  

a) b)

c) d)

Figure 4.10: Distribution of the ORs calculated for the IBS-D subtype and the
HC pooled samples (red line) and for 999 simulated pooled samples obtained
after random labelling the individual ones as IBS or control. a, b: examples of
genera for which the change detected in the pooled samples is well supported
by the individual samples; c, d: examples of genera for which the change is not
supported.
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Table 4.6: Comparisons between controls (HC) and IBS cases (IBS-D or IBS-C). It
is shown the ORs for the comparisons between sampling site-pooled samples for phy-
lotypes in which significant differences were found in a chi-square test, also supported
by a permutation test, and with a relative abundance greater than 0.1%. In the
comparison sample X vs. sample Y, an OR greater than one indicates overrepresen-
tation in sample X, whereas an OR lower than one indicates underrepresentation in
sample X. The closest species are the species of best blast hits with more than 96%
of sequence identity and more than 95% of query coverage.

Comparison Phylotype 97% identity OR Genus Closest species
IBS-D vs. HC 974650 0.01 Bacteroides B. dorei
ASCENDING COLON 97431 0.25 Bacteroides B. ovatus

971776 0.11 Bacteroides B. uniformis
974218 3.65 Bacteroides B. vulgatus
974361 6.10 Bacteroides B. vulgatus
974516 7.33 Bacteroides B. vulgatus
971992 0.09 Escherichia/Shigella E. coli
972853 0.10 Escherichia/Shigella E. coli, S. dysenteriae
972296 0.20 Faecalibacterium F. prausnitzii
971322 0.15 Odoribacter O. splanchnicus
972166 0.36 Odoribacter O. splanchnicus
973087 0.09 Oribacterium O. sinus

IBS-D vs. HC 971080 0.02 Alistipes
DESCENDING COLON 97431 0.30 Bacteroides B. ovatus

97968 19.20 Bacteroides B. thetaiotaomicron
974516 4.06 Bacteroides B. vulgatus
974242 0.05 Blautia
971270 0.13 Butyricicoccus
97804 0.19 Faecalibacterium
974956 0.20 Parabacteroides
97256 0.00 Parasutterella P. excrementihominis
972173 0.06 Prevotella P. copri
975039 27.45 Streptococcus S. australis, S. oralis, S. sanguinis

IBS-D vs. HC 97714 50.26 Alistipes A. finegoldii
FAECES 971080 0.09 Alistipes

971132 310.19 Bacteroides B. coprocola
972067 605.41 Bacteroides B. coprocola
97495 98.70 Bacteroides B. plebeius
97727 8.63 Bacteroides B. plebeius
971028 9.03 Bacteroides B. plebeius
974187 19.86 Bacteroides B. vulgatus
974516 8.64 Bacteroides B. vulgatus
974527 5.40 Bacteroides
974548 61.11 Bacteroides B. vulgatus
974639 23.54 Bacteroides B. vulgatus
97134 4.97 Bacteroides B. xylanisolvens
97346 13.58 Bacteroides B. xylanisolvens
97646 9.40 Bacteroides
97106 9.40 Butyricimonas
97162 11.49 Butyricimonas
97222 12.88 Butyricimonas B. virosa
97804 0.10 Faecalibacterium
97903 0.04 Faecalibacterium
971559 19.78 Faecalibacterium F. prausnitzii
973391 20.45 Leuconostoc L. citreum
972166 5.56 Odoribacter O. splanchnicus
972776 8.43 Odoribacter O. splanchnicus
972979 14.13 Odoribacter O. splanchnicus
972053 0.16 Oscillibacter
974143 0.00 Oscillibacter
974333 0.08 Oscillibacter
974425 0.14 Oscillibacter
973220 189.66 Parabacteroides P. distasonis

IBS-C vs. HC 971771 0.04 Bacteroides B. thetaiotaomicron
DESCENDING COLON 974454 0.04 Bacteroides B. vulgatus

97271 6.49 Parasutterella P. excrementihominis
97924 15.74 Roseburia
973927 0.05 Streptococcus S. mitis

IBS-C vs. HC 97714 81.97 Alistipes A. finegoldii
FAECES 97446 88.09 Alistipes A. indistincts

97298 145.71 Alistipes A. indistinctus
971023 686.07 Alistipes A. onderdonkii
971529 475.36 Alistipes A. onderdonkii
971373 19.13 Alistipes
972546 7.36 Alistipes A. putredinis
973534 585.83 Alistipes
973660 288.42 Alistipes
971232 6.95 Alistipes
97642 22.00 Bacteroides
97136 33.21 Bacteroides B. cellulosilyticus
97646 39.92 Bacteroides
971907 918.98 Barnesiella
972044 60.05 Barnesiella B. intestinihominis
972369 72.51 Barnesiella
9791 6.18 Butyricimonas
97106 12.12 Butyricimonas
972297 48.64 Faecalibacterium F. prausnitzii
973233 7.41 Faecalibacterium
972979 38.91 Odoribacter O. splanchnicus
972366 70.93 Parabacteroides
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4.2.2.2 Comparison of sampling sites

The Shannon diversity indices (H) and the Chao1 and ACE richness estimators

were on average lower in faeces than in mucosa in IBS patients (in both sub-

types) and in healthy controls, with few differences between the ascending and

the descending colon, except for the descending colon of the IBS-C patients

(Table 4.3).

Differences in the composition of the microbiota between sample types can

be appreciated visually, especially between the intestinal and the faecal ones

(Figure 4.7). The Bacteroidetes phylum accounted for 58% of the sequences

in mucosal samples and 72% in faeces. In contrast, 29% of the sequences

in the intestinal mucosa belonged to the Firmicutes phylum compared with

21% in faeces. Proteobacteria accounted for 9.5% of sequences in mucosa and

0.9% in faeces. At the family level, faeces had more members of Rikenellaceae

(11.3% in faeces versus 2.4% in mucosa) and less of Lachnospiraceae (2.1%

versus 7.6%), Streptococcaceae (0.1% versus 2.3%), and Enterobacteriaceae

(0.2% versus 3.1%).

Comparisons between the microbial composition of the communities found

in the ascending colon, descending colon, and faeces at the genus level are

shown in Table 4.7. No relevant differences were found between the ascending

and the descending colon. Those differences in bacterial composition between

colonic mucosa and faeces detected in at least two thirds of the individuals were

considered statistically significant. Specifically, we found an underrepresenta-

tion in colonic mucosa with respect to faeces of Barnesiella (OR≈0.20) and

Alistipes (OR≈0.19), and an overrepresentation of Streptococcus (OR≈39.50)

and Dorea (OR≈7.75). Results were consistent within the IBS and the control

cohorts, further confirming the shifts detected.

4.2.2.3 Analysis of clinical and lifestyle data

We found no significant association between case/control status and the

collected clinical and lifestyle factors (except for age, the controls being on

average older than the patients). No patterns relating bacterial composition

and lifestyle factors were observed in CCA plots. bla

bla

bla

bla
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Table 4.7: Comparisons between sampling site-pooled samples. Only genera for
which significant differences were detected for at least one third of the individuals in
at least one sampling site are shown. In the comparison sample X vs. sample Y, an
OR greater than one indicates overrepresentation in sample X, whereas an OR lower
than one indicates underrepresentation in sample X. It is indicated the number of
subjects for which a significant overrepresentation (^) or underrepresentation (_) was
found in the comparison between his/her samples, showing data for controls (HC)
and patients (IBS) separately. ASC.: ascending colon; DESC.: descending colon; n:
number of subjects included in each group.

ASC. vs. DESC. ASC. vs. FAECES DESC. vs. FAECES
Phylum Genus HC n=9 IBS n=16 HC n=8 IBS n=16 HC n=8 IBS n=16
(Class) OR ^ _ ^ _ OR ^ _ ^ _ OR ^ _ ^ _
Bacteroidetes Bacteroides 0.97 1.09 3 3 7 6 1.11 4 1 9 5
(Bacteroidia) Barnesiella 1.30 2 0.23 5 1 10 0.17 6 1 11

Parabacteroides 0.99 0.87 1 2 3 7 0.88 2 4 7
Paraprevotella 1.33 0.20 3 2 7 0.15 5 1 6
Prevotella 1.06 2.26 2 4 8 2 2.13 2 2 5 2
Alistipes 1.10 0.20 1 5 1 13 0.18 5 1 14

Firmicutes Gemella 1.43 1 1 1 223.33 6 6 162.32 2 3
(Bacilli) Granulicatella 1.78 2 1 1 137.04 4 5 88.03 1 5

Streptococcus 1.01 38.54 8 11 41.42 7 10
Firmicutes Blautia 0.36 1 1 2 3.56 1 5 9.83 3 5
(Clostridia) Eubacterium 0.78 1 4.39 3 6 5.60 4 4

Dorea 1.08 7.03 5 11 6.49 8 12
Roseburia 1.01 2.29 3 1 4 2 2.26 4 1 7 2
Faecalibacterium 1.25 2 3 4 4 2.23 4 1 10 1.76 5 1 9 2
Oscillibacter 1.24 0.17 5 2 9 0.13 6 1 9
Veillonella 1.06 2.31 6 4 1 2.26 4 2 1

Firmicutes Coprobacillus 0.98 4.13 5 6 2 4.20 4 5 2
(Erysipelotrichi)
Fusobacteria Fusobacterium 0.93 26.72 5 5 29.48 5 4
Proteobacteria Sutterella 0.66 1 1 2 14.69 2 5 22.17 3 5
(Beta) Delftia 1.38 1 1 1 641.94 4 6 451.64 5 5
Proteobacteria Escherichia/ 0.54 2 1 1 25.41 3 5 46.61 4 5
(Gamma) Shigella

Haemophilus 1.97 4 1 4 49.37 6 7 26.34 4 3
Pseudomonas 1.30 97.71 3 5 74.40 2 4
Stenotrophomonas 1.56 2 1 2 138.68 4 4 90.50 3 1

4.2.3 Discussion

This is the first study that explored the potential alterations of the intestinal

microbiota in IBS patients simultaneously in colonic mucosa and faeces through

a 16S rRNA gene sequencing approach, although massive sequencing has been

widely used in recent times to study microbiomes in both faeces and intestinal

mucosa in relation to other GI pathologies.

Previous studies on IBS using 16S rRNA gene sequencing based their con-

clusions on pooled faecal samples of patients and healthy controls without

accounting for the within-group variability (Kassinen et al., 2007; Krogius-

kurikka et al., 2009). We found that the prevalence of nearly all bacterial

groups present in the samples was highly variable between individuals, which

may create spurious differences between the pooled samples due to just a few

individuals dominating the composition of these bacterial taxa in the pooled
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samples instead of a general trend. To avoid this problem, we carried out a ran-

dom labelling procedure to compare the microbial composition of IBS patients

versus to that of controls while accounting for the individual variation. After

that, we found a few genera associated with IBS, with differences varying by

site. Our results are in agreement with recent research on IBS that points to

subtle rather than pronounced alterations in the gut microbiota of IBS patients

(Salonen et al., 2010).

The bacterial communities of IBS patients in mucosal sites along the colon

and in faeces were less diverse (as measured by the Shannon index) than those

found in healthy subjects. Although several studies on IBS seem to contradict

these findings (Carroll et al., 2011; Ponnusamy et al., 2011), a lower biodi-

versity has also been found in the gut microbiota in association with obesity

(Turnbaugh et al., 2009a) and IBD (Seksik, 2010; Qin et al., 2010), and in

the skin microbiota of allergic children (Hanski et al., 2012). The findings fit

with the “biodiversity hypothesis”, which holds that reduced exposure to mi-

crobes may adversely affect the composition of the human microbiota and its

immunomodulatory capacity (von Hertzen et al., 2011).

Studies in healthy individuals have shown that the microbiota associated

with the intestinal mucosa differs from the microbiota in faecal samples (Sec-

tion 4.1) (Zoetendal et al., 2002; Ott et al., 2004; Eckburg et al., 2005; Lepage

et al., 2005). However, there is little information about the differences between

these compartments in IBS, mostly because most of the studies are based on

faecal samples. We noticed that the communities in the ascending colon, the

descending colon, and faeces are affected differently by the disorder. The micro-

biota of IBS patients showed lower biodiversity than that of controls in colonic

mucosa and faeces, but when analysing the differences in the abundance of par-

ticular genera, we found no statistically significant changes common to all three

or even two of the sampling sites. In faeces, we found more genera overrepre-

sented than underrepresented in the microbiota of IBS patients with respect to

controls. In contrast, mucosal sites showed communities with more genera un-

derrepresented in IBS cases compared with controls. This finding must serve

to caution researchers about the risk of inferring the role of the endogenous

microbiota in IBS from that found in faeces, especially considering that the

mucosa-associated microbiota may be more relevant to the pathogenesis of IBS

because it is closer to the host epithelial and immune cells.

Several precedent studies compared both mucosal and faecal bacteria of IBS

patients and healthy controls, though not via high-throughput sequencing. In
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contrast to our study, Kerckhoffs and co-workers found a decrease in Bifidobac-

terium in IBS patients by using FISH (Kerckhoffs et al., 2009), and an increase

in Pseudomonas in IBS patients by using quantitative PCR (Kerckhoffs et al.,

2011), whereas Carroll et al. (2010) detected an increase in Lactobacillus only

in the faeces of IBS patients with quantitative PCR. Carroll et al. (2011) also

characterised the faecal and sigmoid mucosal microbiota of IBS-D patients and

controls by T-RFLP fingerprinting. They found differences in the composition

between patients and controls, and a lower diversity in the former just in the

faecal communities. However, we found a lower diversity in all sampling sites

from IBS patients compared with those of controls.

The comparison between sampling sites showed a high level of similarity

between the mucosal-associated communities of the ascending and the descen-

ding colon from the same subject, whereas faecal samples clustered separately.

Faeces showed lower richness and diversity than biopsies, with many bacte-

rial genera underrepresented and just a few overrepresented when compared

to colonic mucosa. These patterns could be due to differences in the ecologi-

cal conditions between the two environments, to the susceptibility of different

bacteria in the intestine to ending up in faeces, or to the possibility that faeces

better represent luminal than mucosal-associated microbiota. Our results must

be interpreted with caution given that the bowel cleansing prior to endoscopy,

which is the standard clinical procedure, could have partly removed the outer

mucus layer, which might have attached bacteria. Nevertheless, the results of

this study are overall in agreement with those of Section 4.1, where we com-

pared faeces and rectal mucosa in healthy individuals, despite biopsies there

were collected without any previous preparation of the colon and the entire 16S

rRNA gene, instead of the V1-V2 region, was targeted.

The existing knowledge on IBS does not reveal pronounced and reproducible

compositional deviations in the gut microbiota. There are several explanations

for the lack of reproducibility in the transversal studies carried out so far. One

is that dysbiosis in IBS is characterised by subtle alterations in the microbiota

instead of the high level phylogenetic alterations that occur in other pathologies

such as obesity or IBDs (Ley et al., 2006; Qin et al., 2010). The large inter-

subject variability in the microbiota composition due to other reasons than

the pathological state and the use of relatively small cohorts make difficult the

detection of such subtle changes. The other is that IBS is a complex functional

disorder, and patients with perhaps heterogeneous aetiology and symptoms at

the moment of sampling were included in these studies, further difficulting the
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detection of patterns.

IBS-related studies have been almost exclusively limited to the analysis

of the community structure based on the variability of the 16S rRNA gene.

Further research is needed to assess the implication of the gut microbiota in

IBS from a functional perspective. Moreover, longitudinal studies in which

patients are followed over time and samples are taken at moments with

different symptomatology would help to mitigate the confusion caused by

the inter-subject variability and the heterogeneity within IBS patients that is

problematic in cross-sectional studies.

This study has been published in Environmental Microbiology

Reports (Durbán et al., 2012b).
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4.3 Stability and host-specificity of faecal bac-

teria in healthy subjects

4.3.1 Background

In the last decade, an extensive effort has been made to characterise the human

GI microbiota by means of 16S rRNA gene sequencing and metagenomic ana-

lyses. Regarding temporal stability, it is known that an ecological succession

takes place within the human GI microbiota over the first years of life that cul-

minates in the complex adult pattern (Palmer et al., 2007; Vaishampayan et al.,

2010; Koenig et al., 2011). Then, it is generally accepted that, in the absence

of perturbation, the adult human gut microbiota is composed of stable commu-

nities inhabiting the different niches found along and across the intestine. In

older people, modifications of the gut microbiota have been reported related to

the physiological changes associated with ageing (Woodmansey, 2007; Claesson

et al., 2011).

Many factors are known to influence the structure of the microbiota of adult

humans, such as host genotype (Stewart et al., 2005; Spor et al., 2011), disease

(Turnbaugh et al., 2006; Seksik, 2010), diet (De Filippo et al., 2010; Wu et al.,

2011), and stochastic events such as the colonisation history (Deloris Alexander

et al., 2006; Mulder et al., 2009; Ubeda et al., 2012) or external disturbances

(De La Cochetière et al., 2005; Dethlefsen and Relman, 2011). Little is known

about the short- and long-term effects that these factors have in the composition

of the microbiota. To assess the response of the gut microbiota to external

perturbations or its role in pathological states, it is important to know first

the “normal” temporal dynamics of this ecosystem. However, relatively few

studies have followed intestinal microbial communities over time to assess their

stability in the absence of perturbation.

Human faecal communities have been considered stable because the tempo-

ral variation within individuals is smaller than the inter-individual variation.

The stability has typically been examined with several samples collected at

intervals of weeks or months, finding that the microbiota of healthy individuals

remains fairly constant over these long intervals (Franks et al., 1998; Zoetendal

et al., 1998; Vanhoutte et al., 2004). However, some variation has been found in

the abundance of certain taxa, while others remain more constant (Vanhoutte

et al., 2004). Recently, studies of the temporal variation using shorter time

periods confirmed the stability of the community composition at a lower phy-
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logenetic level, but also revealed a high degree of dynamism, with relatively

large fluctuations around average abundance values (Caporaso et al., 2011;

Dethlefsen and Relman, 2011).

Ecological interactions between the members of gut communities, like nu-

tritional associations, niche adaptation, growth stimulation, resource competi-

tion, and interference mechanisms, also contribute to the shape and stability

of these ecosystems. Despite their importance, little is known about the rela-

tionships between gut bacteria. A first step for the study of these interactions

is searching for patterns of co-occurring bacteria. Due to the high level of

interpersonal variation in the community assembly, it seems more appropiate

to do this in longitudinal studies of single communities as opposed to cross-

sectional ones. This is because there is no between-individual variation when

following the same community over time. The same inference can be done using

cross-sectional studies (see e.g. Arumugam et al. (2011)), but probably at the

expense of a much larger number of samples.

The objectives of this study were to analyse the intrinsic daily variation in

the community structure of the faecal bacteria from three healthy subjects over

fifteen days, and to assess correlations between shifts in the relative abundance

of specific bacteria to reconstruct networks of potential interactions within the

communities. The global community structure was analysed through sequen-

cing of PCR-amplified rRNA genes. bla

bla

bla

4.3.2 Results

After sequencing all 45 samples, we obtained an average of 1500 sequences per

sample for A, 4165 for B, and 6510 for C. The average read length was ∼250 nt

in A and ∼350 nt in B and C. This difference in read length was the result of the

slightly different sequencing technologies employed for subject A and subjects B

and C, but, in both cases, the variable regions V1 and V2 of the 16S rRNA gene

were covered. The comparison between subjects could be affected by differential

biases introduced during the PCR amplification due to the sequencing adaptors,

or by the impact of read length in the taxonomic assignment. However, we think

that their impact on the estimate of the variation between subjects is small,

and none on the analysis within each subject, which was our main objective.

The Chao1 index of richness indicated a good coverage for most samples
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at the genus level (Table 4.8). The coverage decreased at the phylotype level

(defined at 97% of sequence identity), with larger differences between observed

and expected number of phylotypes (Table 4.9). Although the number of

sequences per sample is important for the estimation of richness, it has little

impact on the estimation of biodiversity (as it is demonstrated in Tables 4.8

and 4.9, which show the Shannon diversity indices for the original samples and

subsamples obtained with the number of sequences of the smallest sample).

This is because biodiversity is based on relative abundances, the estimation

of which is less sensitive to the number of sequences per sample (though the

associated standard errors are obviously larger for the smaller samples).

4.3.2.1 Between-subject variation

Most members of the sampled communities belonged to a small number of

genera within the Bacteroidetes phylum (61% of the sequences on average in

samples from A, ∼86% in B and C) and the Firmicutes phylum (26% in A,

∼10% in B and C). The composition of the faecal microbiota of B and C was

quite similar from the phylum to the genus level. At the genus level, sam-

ples from A were dominated by Alistipes (23%), Bacteroides (22%), several

genera within Porphyromonadaceae, such as Barnesiella (8%) and Parabac-

teroides (2%), and several genera within Ruminococcaceae, such as Faecalibac-

terium (4%) and Oscillibacter (2%) (Figure 4.11(a)). Samples from B and

C were dominated by Prevotella (76% in B, 72% in C), Bacteroides (5% in B,

12% in C), and Betaproteobacteria within the genus Sutterella (∼3%) (Figure

4.11(b) and 4.11(c)).

At a finer taxonomic scale (phylotypes defined at 97% of sequence identity),

the faecal microbiota was highly specific to each individual. About half of the

phylotypes detected in each subject were exclusive to him, whereas 20% were

shared with the other two subjects. The greater similarity between B and C

was also seen at this level, as they had more phylotypes in common than each of

them with A. Most of the sequences were concentrated in a small fraction of the

phylotypes. Thus, 11% of the phylotypes in A, and 4% of the phylotypes in B

and C, had a relative abundance of at least 5�, and all together accounted for

86%, 80%, and 89% of the respective number of sequences. The most prevalent

genera in A, Alistipes, Bacteroides, and Barnesiella, accounted for 9%, 10%,

and 3% of the total number of phylotypes, whereas 16% of the phylotypes in

B, and 10% in C, belonged to Prevotella.
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Table 4.8: Observed richness, Chao1 richness estimator, and Shannon diversity
index (H) at the genus level for each sample with the full datasets and average
values for 1000 subsamples with the number of sequences of the smallest sample
(*). Samples are labelled with the name of the subject (A, B, C) and the day
over the follow-up.

Sample No. reads No. observed Chao1 Average Chao1 Shannon H Average Shannon H

genera (1000 subsamples) (1000 subsamples)

A.1 1386 34 39.6 35.15 3.45 3.42

A.2 1535 32 41.33 32.11 3.37 3.34

A.3 1576 27 27.75 26.45 3.26 3.24

A.4 1508 28 33 27.01 3.12 3.09

A.5 1741 29 38.33 27.87 3.03 3

A.6 2181 29 30 26.74 3.01 2.99

A.7 4312 34 52.33 25.61 3.08 3.05

A.8 1014 25 32 28.69 3.23 3.21

A.9 602 29 36.5 35.95 3.58 3.58

A.10 1547 28 35.5 27.68 3.66 3.64

A.11 1816 35 38 35.35 3.73 3.7

A.12 * 590 27 32 - 3.46 -

A.13 1451 36 38.63 37.33 3.31 3.28

A.14 2906 33 40 27.95 3.15 3.12

A.15 1216 25 31 24.4 3.26 3.24

B.1 5915 41 63 29.06 2.22 2.18

B.2 3797 32 59.5 24.09 1.51 1.48

B.3 3313 26 33 20.23 1.19 1.16

B.4 4147 33 40 26.77 1.57 1.53

B.5 3822 38 65.5 30.56 2.27 2.24

B.6 737 27 42 38 2 1.99

B.7 4902 36 58 24.86 1.9 1.86

B.8 4821 31 38 24.17 1.1 1.07

B.9 4429 31 33.5 23.98 1.18 1.14

B.10 6118 32 50 22.67 1.24 1.21

B.11 5168 30 32.5 22.19 1.08 1.05

B.12 5209 44 70.25 31.67 1.63 1.59

B.13 4816 36 47 25.89 1.68 1.65

B.14 5583 40 41.11 31.16 2.27 2.23

B.15 4879 36 38.63 26.91 1.57 1.53

C.1 8192 28 46 18.01 1.02 1

C.2 5938 32 34.5 22.9 1.08 1.05

C.3 7009 45 56 30.29 1.76 1.72

C.4 6372 40 66 27.12 2.07 2.04

C.5 6682 38 40.5 28.95 1.92 1.88

C.6 8028 41 45 27.27 2.04 2

C.7 6126 37 46 25.7 1.82 1.78

C.8 7805 38 43.6 25.7 1.86 1.82

C.9 7299 35 41 22.78 1.79 1.77

C.10 7121 36 39 24.08 1.64 1.61

C.11 8678 37 39.5 25.28 1.38 1.35

C.12 4373 29 31.5 22.51 1.26 1.24

C.13 4185 35 57.75 24.26 1.57 1.54

C.14 4675 28 29 22.94 2.14 2.11

C.15 7428 34 39.25 24.29 2.12 2.08
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Table 4.9: Observed richness, Chao1 richness estimator, and Shannon diversity
index (H) at the phylotype level for each sample with the full datasets and
average values for 1000 subsamples with the number of sequences of the smallest
sample (*). Samples are labelled with the name of the subject (A, B, C) and
the day over the follow-up.

Sample No. reads No. observed Chao1 Average Chao1 Shannon H Average Shannon H

phylotypes 97% (1000 subsamples) (1000 subsamples)

A.1 1386 142 195.45 152.2 5.56 5.43

A.2 1535 149 206.24 159.99 5.52 5.39

A.3 1576 141 190 156.59 5.58 5.46

A.4 1508 132 167.29 137.87 5.73 5.61

A.5 1741 145 237.81 144.4 5.61 5.48

A.6 2181 167 222.03 161.69 5.81 5.64

A.7 4312 184 250.5 138.67 5.46 5.29

A.8 1014 133 182.21 172.94 5.58 5.49

A.9 602 127 202.14 201.5 6.04 6.03

A.10 1547 179 278.11 200.79 5.63 5.47

A.11 1816 189 256.03 196.46 5.71 5.53

A.12 * 590 130 220.05 - 5.99 -

A.13 1451 171 236.1 190.64 6.01 5.86

A.14 2906 208 298.62 176.52 5.97 5.76

A.15 1216 161 260.53 184.94 5.91 5.78

B.1 5915 281 390.28 192.06 5.69 5.43

B.2 3797 224 381.24 176.49 5.04 4.83

B.3 3313 174 256.83 146.06 4.81 4.64

B.4 4147 226 320.53 180.17 4.9 4.69

B.5 3822 247 353.95 190.86 5.55 5.31

B.6 737 121 235.07 191.75 5.26 5.22

B.7 4902 240 364.62 174.03 5.24 5

B.8 4821 225 392.38 154.1 4.33 4.14

B.9 4429 198 346.75 141.46 4.35 4.17

B.10 6118 236 355.6 154.28 4.55 4.35

B.11 5168 212 333.83 146.33 4.42 4.22

B.12 5209 263 433.63 181.3 5.05 4.8

B.13 4816 258 414.09 183.09 4.99 4.75

B.14 5583 292 481.87 199.74 5.68 5.41

B.15 4879 273 427.34 190.45 4.93 4.69

C.1 8192 144 214.71 80.62 3.1 2.97

C.2 5938 139 173.18 91.3 2.97 2.85

C.3 7009 224 388.54 133.1 3.79 3.6

C.4 6372 192 303 120.13 4.09 3.93

C.5 6682 234 321.78 149.81 4.12 3.9

C.6 8028 217 284 130.71 3.98 3.79

C.7 6126 237 409.44 150.17 3.99 3.78

C.8 7805 224 303.08 135.46 4.1 3.91

C.9 7299 208 320.86 126.43 4.03 3.85

C.10 7121 195 249.03 123.95 3.71 3.54

C.11 8678 206 285.44 117.64 3.46 3.29

C.12 4373 146 220.25 106.92 3.34 3.19

C.13 4185 141 194.26 107.63 3.52 3.39

C.14 4675 152 199.22 110.41 4.35 4.21

C.15 7428 218 289.5 138.18 4.21 4.02
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Figure 4.11: Daily fluctuations in the relative abundance of the main bacterial
genera (average abundance ≥ 5�) in subjects A (a), B (b), and C (c). Daily
variation in the bacterial diversity (Shannon index) at genus and phylotype
levels (d).

Between-subject differences in the community structure were larger than

dissimilarities between samples from the same subject. Therefore, CA plots

clearly discriminated the samples of the three subjects at the genus and phy-

lotype levels (Figure 4.12). The first CA axis separated A from B and C; the

second axis separated B from C. ANOSIM found significant differences between

subjects (genus level: R=0.686, p=0.001; phylotype level: R=1, p=0.001). At
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the genus level, the between-subject median rank of distances was 1.5 times

that of within A, and 4 times that of within B or C. At the phylotype level,

the between-subject variation was 2.6, 4.5, and 8.6 times that of within A, B,

and C, respectively, thus reflecting even larger differences in the composition

of the microbiota between individuals at this finer taxonomic resolution.

(a) (b)

Figure 4.12: CA at genus (a) and phylotype (b) levels. Percentages correspond
to the fraction of inertia explained by each axis. Samples are labelled with the
name of the subject (A, B, C) and the day over the follow-up.

4.3.2.2 Within-subject variation

The communities experienced daily fluctuations in the bacterial diversity

according to the Shannon index (Tables 4.8 and 4.9, Figure 4.11(d)), though

these values varied around a rather constant level. This is consistent with the

fact that the structure of the sampled faecal communities remained quite sta-

ble over time. Relative abundances showed daily fluctuations for all genera but

no temporal trends were observed (Figure 4.11(a), 4.11(b), and 4.11(c)).

All genera with an abundance of at least 5�were permanent members of the

communities, whereas genera with prevalence below that threshold were some-

times lost and recovered, though some were consistently detected too. The taxa

with the highest prevalence showed the lowest relative fluctuations in time. In
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A, Alistipes, Bacteroides, and Barnesiella experienced an average daily relative

change of 2.9%, 3.8%, and 6.4% in their abundance, respectively, whereas in B

and C, the average daily relative variation in Prevotella was ∼1.8%.

At the subgeneric level, a reduced number of phylotypes were consistently

detected throughout within each subject (Figure 4.13(a), which shows the

number of phylotypes detected on just one day, on two days, etc.). The intra-

individual core (phylotypes detected all the days during the study period) com-

prised 38 phylotypes in A, 56 in B, and 44 in C, which corresponded to approxi-

mately 9% of the total number of phylotypes within each subject. Conversely,

most of the phylotypes detected within each subject were found in a few days

only (Figure 4.13(a)). The core phylotypes belonged to the most prevalent

genera and accounted for most of the sequences in the samples (74% of the

total number of sequences in A, 90% in B, and 93% in C) (Figure 4.13(b),

which shows the cummulative percentage of sequences belonging to phylotypes

detected on just one day, on two days, etc.). Again, phylotypes showed fluctua-

tions in their abundance over time, but the trend was constant. Only 0.2% of

the phylotypes were detected in all subjects all the days during the follow-ups,

while 2.6% of the phylotypes were simultaneously detected throughout in the

more similar subjects B and C. With a less restrictive definition of the bacterial

core, we found that 0.5% of the phylotypes were detected in all three subjects

in at least 13 out of 15 days.

4.3.2.3 Correlations between co-occurring genera

Using GGN, we built interaction networks from the statistically significant

partial correlations between genera estimated with the Bayesian model. These

networks are represented in a graph, where nodes correspond to genera and

edges represent interactions (Figure 4.14 shows the subgraphs of the networks

including the statistically significant correlations).

Most genera showed correlations with a small number of other genera, while

a small number of genera correlated with many. The main components of the

faecal communities scarcely correlated with other genera. Alistipes correlated

(positively) only with Barnesiella in A. Prevotella was negatively correlated

with Alistipes in B, and with no genus in C. Bacteroides, the second genus in

abundance, was correlated with five, three, and two genera in A, B, and C,

respectively. The most connected genera were Paraprevotella in A, Faecalibac-

terium, Alistipes, and Odoribacter in B, and Coprococcus, Escherichia/Shigella,

and Blautia in C. No significant correlations were found for many of the genera
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in the samples.
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Figure 4.13: Community structure at the phylotype level in subjects A, B, and
C. a) Occurrence of phylotypes during the fifteen-day study period, i.e. number
of phylotypes detected on just one day, on two days, etc. b) Combined average
relative abundance of phylotypes detected on just one day, on two days, etc.,
computed over all samples where they occur.
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Figure 4.14: Graphical Gaussian networks representing the interactions
between genera within subjects A (a), B (b), and C (c). Red and blue edges
represent positive and negative partial correlations, respectively. Yellow nodes
are those of genera with an average relative abundance ≥ 5�. Genera for which
no significant partial correlations were found are not shown in the networks.
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The sign of the correlation did not depend on the degree of phylo-

genetic relatedness. Both positive and negative correlations were found

between closely and distantly related genera. For example, in subject

A, Paraprevotella, a genus within Bacteroidetes-Bacteroidia-Bacteroidales-

Prevotellaceae, had a positive correlation with Odoribacter and a negative

correlation with Barnesiella, two genera within Bacteroidetes-Bacteroidia-

Bacteroidales-Porphyromonadaceae; in subject C, Butyricimonas, a genus

within Bacteroidetes-Bacteroidia-Bacteroidales-Porphyromonadaceae, had a

positive correlation with Blautia and a negative correlation with Coprococcus,

two genera within Firmicutes-Clostridia-Clostridiales-Lachnospiraceae.

The patterns of correlations were highly subject-specific, even for B and

C, in which the community structure was quite similar. Typically, the same

genus correlated with different genera in different individuals. For example,

in subject B, Bacteroides co-occurred with Odoribacter, while in subject C, it

co-occurred with Parabacteroides and Alistipes. Only five pairwise correlations

were found in more than one individual: Bacteroides-Odoribacter (A and B),

Bacteroides-Parabacteroides (A and C), Odoribacter -unclassified Proteobacte-

ria (A and B), Coprococcus-Ruminococcus (A and C), and Blautia-unclassified

Lachnospiraceae (A and C). Furthermore, nine pairwise correlations were

positive in one subject but negative in another: Blautia-Coprococcus, Blau-

tia-Dorea, Blautia-Ruminococcus, Eubacterium-Ruminococcus, Coprococcus-

Ruminococcus, Coprococcus-unclassified Porphyromonadaceae, Bacteroides-

Subdoligranulum, unclassified Bacteroidales-unclassified Porphyromonadaceae,

and Odoribacter -unclassified Veillonellaceae.

We did not find a relationship between the diversity of the community and

the complexity of the associated interaction network. Even though the bacterial

community of A was the most diverse at the genus level (Shannon index ∼2.3),

and the ones of B and C harboured a similar diversity (Shannon index ∼1.1),

the highest number of genera in the network (the same as in A) and the largest

average number of links per genus were observed in B, and the lowest ones in

C.

4.3.3 Discussion

In this study, we monitored the faecal bacterial communities of three sub-

jects during fifteen consecutive days. We analysed the daily variation in the

composition of the microbiota and the degree of stability of specific members
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of the community. The analysis of the time series also revealed patterns of

correlations between the abundance profiles of specific bacterial groups, thus

indicating potential cooperative and competitive interactions between them.

In accordance with current knowledge of the human gut microbiota, we

found that the faecal microbiota is host-specific and fairly stable in the ab-

sence of perturbation, being the within-subject variability much smaller than

that between subjects (Franks et al., 1998; Zoetendal et al., 1998; Vanhoutte

et al., 2004; Caporaso et al., 2011; Dethlefsen and Relman, 2011). The level of

prevalence of the predominant members of the faecal communities in our three

study subjects was sustained over time, with abundances fluctuating around

rather constant average values. This also held true for less abundant mem-

bers, although some of them were not persistently detected in our sampling.

In addition, a considerable number of bacterial groups were detected at very

low abundance in one or few samples across the time series, probably represen-

ting transient members of the communities. Similar observations were made at

genus and phylotype levels.

Some studies had examined the daily variation in the faecal microbiota

using high-throughput technologies. Dethlefsen and Relman (2011) monitored

the response of faecal microbiota to antibiotic perturbation in three subjects

and took daily samples in the periods surrounding each antibiotic course.

They found that just a few OTUs maintained uniform abundance, even in

the antibiotic-free intervals. Caporaso et al. (2011) sampled daily three body

sites, including faeces, in two healthy subjects for fifteen and six months, res-

pectively. They reported that only a small fraction of the OTUs within a single

body site was present across all or nearly all time points, and from this, they

concluded that a minimal temporal core exists. In a shorter temporal win-

dow, Booijink et al. (2010) detected morning-afternoon variation in the human

ileal microbiota that exceeded the fluctuations between samples collected at

the same time point of the day. We also found that only a small fraction of the

97% OTUs in our samples was systematically present throughout the follow-

up (9% of the total number of OTUs within each subject). However, as their

combined abundance was high (74%, 90%, and 93% in subjects A, B, and C,

respectively), we consider that a high-abundance core faecal microbiota exists

also at the subgeneric level. In our view, this finding is indicative of a dynamic

ecosystem with a stable core. In addition, it suggests that studies aimed at

linking the prevalence of specific OTUs with various environmental exposures

and/or disease risk should be limited to the numerically most dominant OTUs,
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as the rest appears transient in the GI tract.

We used a Bayesian model to estimate the covariance matrix between rela-

tive abundances of taxa (on the log-odds scale) while accounting for the tem-

poral autocorrelation in those. The posterior mean of the covariance matrix

Σ (estimated using all the samples of a given individual) was used to estimate

the partial correlation matrix, which was in turn the input for the GGN-based

methods to detect associations between taxa. Although these methods cope

well with sparse matrices of relatively large dimension, some of the statistically

significant associations we found involve taxa with low relative abundances,

which makes difficult any biological interpretation. In addition, functional stu-

dies would be needed to disentangle the biological meaning of the correlations

detected between abundance profiles.

With regard to the inter-individual variation, the bacterial communities

sampled in this study differed not only on the basis of their composition, but

also in the correlation patterns found between their members. Barely a few

of the correlations were shared between subjects. The vast majority of genera

usually correlated with others that varied between subjects, even when the

community composition was quite similar (subjects B and C). Furthermore,

correlations of opposite sign were detected for some pairs of genera in different

subjects. This disparity of community assemblies could imply that each indivi-

dual may be offering somewhat different niches to the gut bacteria (regarding

pH, temperature, secretions, retention time, etc.) in which the same species can

establish different microbial interactions, even though the gut environment is

overall similar in all subjects. At the same time, the identity of the interacting

bacteria could be affected by host selection of commensal/mutualistic microbes,

as well as by the order in which microbes arrive in the colonisation processes

and selection by already established microbes (Dethlefsen et al., 2006; Van den

Abbeele et al., 2011). Due to functional redundancy, several microorganisms

can potentially occupy a specific niche within the GI habitats. The first ones

to arrive can settle and then select for cooperative or non-overlapping microor-

ganisms, as well as exclude competitors. Related to this, it has been reported

a long-term impact of the early life environment on the composition of the

intestinal microbiota in mice and pigs (Deloris Alexander et al., 2006; Mulder

et al., 2009; Ubeda et al., 2012).

The persistent diversity and individuality of human gut communities could

be explained by a combination of factors that vary between individuals, such

as host genotype and diet, but also less predictable events, such as the coloni-
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sation history during the community assembly and external perturbations with

long-term effect on the gut microbiota, an example of which is antibiotic treat-

ment. Several studies evaluating its effect on the gut microbiota have found

an important loss of diversity followed by a rapid return to the pre-treatment

community composition (De La Cochetière et al., 2005; Dethlefsen and Rel-

man, 2011). The ability of these communities to recover their original struc-

ture suggests the existence of selective forces shaping them. The microbiota

itself is thought to account for some of its diversity through the modification of

the intestinal habitats and the interactions established between their members

(Dethlefsen et al., 2006; Van den Abbeele et al., 2011). Our results suggest that

specific microbial interactions are set within each individual, which may be an

important factor contributing to the inter-individual variability, the resilience,

and the temporal stability of the gut microbiota.

Recent studies have shown that despite the variation in the community

structure between subjects, the normal fluctuations in the community com-

position detected over time, and the shifts due to disturbances, the overall

community function seem to be maintained, which is indicative of some degree

of functional redundancy among individual microbes and consortia within

the gut microbiota (Turnbaugh et al., 2009a; Dethlefsen and Relman, 2011).

Functional studies analysing the within-subject temporal variation under

different conditions may help to better understand the contribution of the

intestinal microorganisms to human well-being and disease.

This study has been published in FEMS Microbiology Ecology

(Durbán et al., 2012a).
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4.4 Follow-up of faecal microbial communities

in the irritable bowel syndrome

4.4.1 Background

Over the past decade, there has been an accumulation of evidence suggesting a

role of the gut microbiota in IBS, mainly coming from case-control studies based

on molecular methods (Salonen et al., 2010). These have revealed qualitative

and quantitative alterations in the composition of the intestinal microbiota

of IBS patients when compared with that of healthy subjects, although no

consensus has been reached regarding the association of specific microbes with

IBS.

This lack of reproducibility may partly arise from differences in the applied

molecular methods as well as in the depth and statistical power of the analyses.

The detection of subtle alterations such as those that seem to characterise

microbial dysbiosis in IBS is hampered by the relatively small size of the cohorts

and the existence of many sources of variability in the composition of the

microbiota unrelated to the intestinal disorder. Moreover, the detection of

patterns may have been further difficulted by differences between studies (or

even within a single study) in the nature of IBS patients regarding aetiology,

symptomatology, etc. Longitudinal studies in which patients are followed over

time can help to overcome the confusion introduced by the high inter-subject

variation that is problematic in cross-sectional studies.

There are few longitudinal studies on IBS apart from those that address

the improvement of symptoms by clinical trials targeting the GI microbiota

(reviewed in Moayyedi et al. (2010); Basseri et al. (2011)). Mättö et al. (2005)

assessed the long-term temporal variation in the faecal bacteria by PCR-DGGE

analysis with samples taken every three months. They found more temporal

instability in the predominant bacteria in IBS patients than in controls, al-

though this result should be interpreted with caution because many of those

IBS patients took antibiotics during the study. Later, Maukonen et al. (2006)

re-analysed the same cohorts excluding those patients who had recently taken

antibiotics. Focusing on the predominant clostridial populations and sam-

ples obtained six months apart, they found greater instability in IBS patients

according to RNA-based RT-PCR-DGGE profiles, that is, in the metabolically

active clostridial groups, but a similar stability to that of controls in DNA-

based PCR-DGGE profiles. The authors speculated that instability might be
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due to different symptomatic phases at the days of sampling (although they did

not record symptom data), in line with what has been found between active

and inactive phases in IBD patients (Seksik et al., 2003; Scanlan et al., 2006).

In support of this idea, stabilisation of the faecal microbiota has been observed

in IBS patients after a probiotic supplementation that alleviated the symptoms

(Kajander et al., 2008).

The functions of the microbiota are an essential factor to consider in un-

derstanding the GI disorders. Tana et al. (2010) provided a feasible link

between specific intestinal microbes, their products, and the features of IBS.

They found higher levels of acetic acid and propionic acid, and also of Veillo-

nella and Lactobacillus, bacteria that are known to produce these SCFAs, in

the faecal samples of IBS patients compared with those of controls. Besides,

higher levels of these acids were associated with worse GI symptoms and qua-

lity of life. Le Gall et al. (2011) applied a functional genomic approach in IBS.

They explored the differences between IBS patients, UC patients, and healthy

subjects in the composition and metabolites of the faecal microbiota (through

PCR-DGGE and NMR spectroscopy, respectively). They also addressed the

temporal stability with samples obtained at six-month intervals and detected

a higher dynamics at the functional level in all groups, in line with the results

reported by Maukonen et al. (2006) in IBS patients. Specific metabolites were

associated with each group, but IBS condition could not be predicted from the

metabolite profiles, unlike UC or control condition, similar to what happens at

the compositional level (Section 4.2) (Qin et al., 2010). The paucity of data

on the functional impact of the GI microbiota and its dysbiosis in IBS requires

further investigation.

In this study, we explored potential alterations in composition and function

of the faecal microbiota in IBS through the analysis of two female IBS patients

with diarrhoea as predominant bowel habit at several points over a two-month

period. An age-matched healthy control of one of them, who also shared her

environment, was included. Faecal samples were collected every two days the

first week and once a week thereafter. Additional samples were collected when

patients reported acute symptoms. The faecal microbiota was analysed for the

first time in IBS using whole-community metagenomics and metatranscripto-

mics. Self-reported symptom diaries allowed relating microbiological attributes

to the presence and severity of symptoms.
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4.4.2 Results

The global gene expression of the microbial communities in the samples of

Control 1, Patient 1, and Patient 2 was explored through sequencing their me-

tatranscriptomes. The metagenomes of some of the first samples of Patients 1

and 2 were also sequenced to evaluate the gene composition. Table 4.10 con-

tains information about the sequences obtained from the samples. 16S rRNA

genes and 16S rRNAs identified in metagenomes and metatranscriptomes, res-

pectively, were used to analyse the taxonomic composition, whereas protein

coding genes in metagenomes and mRNAs in metatranscriptomes were used to

analyse the functional composition. We tried to relate distinctive features of

the microbial profiles to variation in symptoms.

4.4.2.1 Classification of samples based on symptoms

Each patient was characterised based on their bowel symptoms over the follow-

up, given that they daily reported symptoms (see Table 3.4 in Section 3). Both

patients were diagnosed with IBS with diarrhoea as predominant bowel habit,

but clearly differed in the symptoms they experienced. Patient 1 constantly

complained about abdominal pain, abdominal distension, and defaecatory ur-

gency, whereas Patient 2 had a high number of depositions with diarrhoea

(stools of types 6 and 7 in the Bristol scale, Figure 3.1). This difference

is illustrated by the PCA based on weekly summaries of symptoms over the

follow-ups of Patient 1 and Patient 2 (Figure 4.15). In addition, Patient 1

remained rather stable over the follow-up, while Patient 2 went through phases

of acute diarrhoea (see, for example, days 3, 43, and 55 in Table 3.4).

Within each patient, sampling days were classified based on symptoms (Ta-

ble 3.4, Figure 4.16). Days with milder symptoms could be classified into

two groups: those with no pain-distension-urgency (day 21 of Patient 1; days

1, 7, and 42 of Patient 2) and those with less stools-diarrhoea (days 1, 3, and 7

of Patient 1; day 35 of Patient 2). Days with severe symptoms were considered

those in which the number of diarrhoeal stools was higher (days 14, 28, 37,

and 42 of Patient 1; days 3 and 28 of Patient 2). Day 56 of Patient 2 was also

classified as one with severe symptoms because the number of diarrhoeal stools

in the surrounding days were among the highest.

As mentioned above, the differences between samples of Patient 1 were

minimal regarding the number of diarrhoeal stools (two when symptoms were

considered more severe, one when symptoms were considered mild). Patient 2,
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in contrast, had several acute diarrhoeal phases (the worst on day 3, with eleven

entirely liquid depositions).

This information was employed to interpret the comparison of samples based

on attributes of the microbiota and to define which groups of samples would

be compared.

Table 4.10: Characteristics of the metagenomic (DNA) and metatranscriptomic
(cDNA) samples from the faecal microbial communities analysed in this study.
Samples are labelled with the code of the volunteer (C1, P1, P2) and the
sampling day over the follow-up. When there are two samples from a given
individual in the same day, these are numbered after the day.

Library Sample No. of Total base Average read No. of 16S No. of reads with No. of reads with No. of reads with

reads pairs (Mbp) length (nt) rRNA reads NCBI-nr hits TIGRFAM hits KEGG GENES hits

DNA P1.1 262322 104.10 397 635 (0.24%) 173860 (66.28%) 81104 (30.92%) 68280 (26.03%)

DNA P1.5 527021 209.22 397 1210 (0.23%) 216817 (41.14%) 137821 (26.15%) 108772 (20.64%)

DNA P2.1 224546 89.04 397 533 (0.24%) 194123 (86.45%) 76722 (34.17%) 69637 (31.01%)

DNA P2.3.1 294084 113.12 385 631 (0.21%) 144198 (49.03%) 79417 (27.00%) 68307 (23.23%)

DNA P2.3.2 151553 41.29 273 264 (0.17%) 89511 (59.06%) 32757 (21.61%) 30791 (20.32%)

DNA P2.4 284271 92.74 326 617 (0.22%) 164360 (57.82%) 82276 (28.94%) 76234 (26.82%)

DNA P2.5 269569 106.16 394 837 (0.31%) 130164 (48.29%) 78305 (29.05%) 67767 (25.14%)

cDNA C1.1 14382 2.37 165 2680 (18.63%) 210 (1.46%) 15 (0.10%) 10 (0.07%)

cDNA C1.3 74136 9.74 131 18049 (24.35%) 1321 (1.78%) 69 (0.09%) 65 (0.09%)

cDNA C1.5 39937 6.42 161 6640 (16.63%) 590 (1.48%) 65 (0.16%) 61 (0.15%)

cDNA C1.7 94795 12.82 135 26047 (27.48%) 1808 (1.91%) 151 (0.16%) 132 (0.14%)

cDNA C1.14 55149 7.95 144 18969 (34.40%) 545 (0.99%) 30 (0.05%) 18 (0.03%)

cDNA C1.21 20204 2.44 121 4400 (21.78%) 644 (3.19%) 18 (0.09%) 28 (0.14%)

cDNA C1.28 77314 10.94 142 19525 (25.25%) 1118 (1.45%) 109 (0.14%) 98 (0.13%)

cDNA C1.37 82799 12.46 151 17383 (20.99%) 1669 (2.02%) 164 (0.20%) 149 (0.18%)

cDNA C1.42 66079 8.34 126 15363 (23.25%) 1437 (2.17%) 291 (0.44%) 244 (0.37%)

cDNA P1.1 35325 6.16 174 6499 (18.40%) 695 (1.97%) 67 (0.19%) 82 (0.23%)

cDNA P1.3 6951 0.90 130 1083 (15.58%) 197 (2.83%) 34 (0.49%) 40 (0.58%)

cDNA P1.5 62871 7.06 112 11674 (18.57%) 2688 (4.28%) 313 (0.50%) 321 (0.51%)

cDNA P1.7 33687 4.09 122 5696 (16.91%) 1325 (3.93%) 97 (0.29%) 76 (0.23%)

cDNA P1.14 70913 7.16 101 10739 (15.14%) 2882 (4.06%) 116 (0.16%) 110 (0.16%)

cDNA P1.21 20877 2.37 113 4555 (21.82%) 1192 (5.71%) 47 (0.23%) 22 (0.11%)

cDNA P1.28 51801 7.86 152 5546 (10.71%) 1706 (3.29%) 361 (0.70%) 322 (0.62%)

cDNA P1.37 35206 5.75 163 4246 (12.06%) 1259 (3.58%) 272 (0.77%) 309 (0.88%)

cDNA P1.42 12966 1.40 108 2460 (18.97%) 428 (3.30%) 52 (0.40%) 64 (0.49%)

cDNA P2.1 54323 6.98 129 14948 (27.52%) 4237 (7.80%) 534 (0.98%) 609 (1.12%)

cDNA P2.3.1 77316 11.47 148 19843 (25.66%) 12479 (16.14%) 256 (0.33%) 277 (0.36%)

cDNA P2.3.2 149422 15.97 107 19750 (13.22%) 15410 (10.31%) 187 (0.13%) 320 (0.21%)

cDNA P2.4 40936 4.87 119 3432 (8.38%) 3174 (7.75%) 1159 (2.83%) 1333 (3.26%)

cDNA P2.5 20505 2.33 114 2932 (14.30%) 2899 (14.14%) 664 (3.24%) 950 (4.63%)

cDNA P2.7 105818 11.25 106 23381 (22.10%) 7093 (6.70%) 929 (0.88%) 1170 (1.11%)

cDNA P2.14 121556 19.16 158 47851 (39.37%) 6596 (5.43%) 874 (0.72%) 948 (0.78%)

cDNA P2.21 30382 4.01 132 5905 (19.44%) 4192 (13.80%) 107 (0.35%) 96 (0.32%)

cDNA P2.27 89030 12.58 141 11833 (13.29%) 3924 (4.41%) 197 (0.22%) 213 (0.24%)

cDNA P2.28 45138 4.73 105 7043 (15.60%) 5334 (11.82%) 610 (1.35%) 694 (1.54%)

cDNA P2.35 29424 2.68 91 4799 (16.31%) 3070 (10.43%) 379 (1.29%) 448 (1.52%)

cDNA P2.42 15260 1.05 69 161 (1.06%) 488 (3.20%) 27 (0.18%) 41 (0.27%)

cDNA P2.49 56892 6.61 116 8627 (15.16%) 4555 (8.01%) 495 (0.87%) 555 (0.98%)

cDNA P2.56 38022 4.09 108 2836 (7.46%) 1885 (4.96%) 254 (0.67%) 522 (1.37%)
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Figure 4.15: PCA on the summary of symptoms for each week over the follow-
ups. Each point represents one week (W1-W8) of Patient 1 (P1) or Patient 2
(P2).

4.4.2.2 Dynamics of the microbial taxonomic profile

The similarity between metatranscriptomic samples according to the distribu-

tion of microbial families was assessed with DCA. When analysing the sample

composition estimated from the 16S rRNAs (Figure 4.17, top), the first DCA

axis separated Patient 2 from Patient 1 and Control 1. Samples of Control 1

were mixed with those of Patient 1. However, the last three samples of Patient

1 (taken on days with more severe symptoms) were slightly separated from the

rest and closer to samples of Patient 2. Within each patient, samples taken on

days with milder symptoms were quite similar to each other, and most samples

taken when symptoms were more severe differed from those taken on days with

mild/moderate symptoms. In Patient 2, the metabolically active microbiota on

days with severe symptoms differed markedly from each other. We also analy-
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sed the distribution of active bacteria estimated from the taxonomic affiliation

of mRNAs. These profiles differed significantly from those obtained from the

16S rRNAs. These discrepancies could be due to the difference in the refe-

rence database (RDP database for 16S rRNAs, NCBI-nr protein database for

mRNAs) and the assignment method (RDP Bayesian classifier for 16S rRNAs,

BLAST plus LCA for mRNAs). However, the patterns of between- and within-

subject variation observed with both procedures were similar (Figure 4.17).

  

Patient 1 Patient 2

Figure 4.16: PCA on the symptoms at days of sampling. Samples are labelled
with the sampling day over the follow-up. Days with milder symptoms are
highlighted in green, whereas those with severe symptoms are in red.

The major groups of metabolically active faecal bacteria were similar and

remained quite constant over time in Control 1 and Patient 1 (Figure 4.18).

Firmicutes and Bacteroidetes, mainly within the Clostridia and Bacteroidia

classes, provided the largest number of 16S rRNAs in the communities of

these subjects (about 90% of the total number of sequences). The ratio Firmi-

cutes/Bacteroidetes was greater than 1 in all samples (except in the last one of

Patient 1). The active bacteria belonged, in decreasing order of abundance, to

the Bacteroidaceae, Prevotellaceae, and Porphyromonadaceae families within

the Bacteroidia class, and to Lachnospiraceae and Ruminococcaceae within the
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Figure 4.17: Taxonomic differences between the metatranscriptomes of Control
1, Patient 1, and Patient 2. DCA of the distribution of microbial families
estimated from 16S rRNAs (top) or mRNAs (bottom). Percentages correspond
to the fraction of inertia explained by each axis. Samples are labelled with the
code of the volunteer (C1, P1, P2) and the sampling day over the follow-up.
When there are two samples from a given individual in the same day, these are
numbered after the day. Days with milder symptoms are highlighted in green,
whereas those with severe symptoms are in red.
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Figure 4.18: Relative abundance of microbial classes (top) and families
(bottom) in the metagenomes (16S rRNA genes) and the metatranscriptomes
(16S rRNAs) of Control 1, Patient 1, and Patient 2. The sampling day is indi-
cated below each column. When there are two samples from a given individual
in the same day, these are numbered after the day.
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Clostridia class. Among the similarities of these subjects, there was an in-

crease in unclassified Alphaproteobacteria and unclassified Proteobacteria the

last weeks of their follow-ups, which might reflect shared environmental factors

affecting the microbiota.

Conversely, the faecal microbiota of Patient 2 was characterised by great

variation over time in the composition of the metabolically active bacteria (Fi-

gure 4.18). No temporal trends were observed in the relative abundance of

active bacteria.aaA prominent feature of Patient 2 was the high activity of

Proteobacteria some days, mainly unclassified Alphaproteobacteria and un-

classified Proteobacteria. The proportion of Proteobacteria and the ratio Fir-

micutes/Bacteroidetes varied widely over time in the active fraction of the

microbiota. Also, the fraction of each bacterial family within the Clostridia

and the Bacteroidia classes experienced greater variation than in Control 1

and Patient 1 (see, for example, the amount of Clostridiaceae or Rikenellaceae

over the follow-up). No correlation was found between the level of activity of

Proteobacteria and the severity of symptoms.

The increases in the relative abundance of Proteobacteria were not due to a

single or a few species, as demonstrated by the detection of multiple phylotypes

mapped along reference 16S rRNA genes after clustering the sequences affiliated

to Proteobacteria at 97% of sequence identity.

Strong and quick compositional shifts were associated with acute diarrhoea

in Patient 2. She provided a faecal sample in the morning on day 3. Then,

she began to feel more abdominal discomfort and increased stool frequency,

which were increasingly more watery, and took another sample that afternoon.

The change in the distribution of active bacteria was very pronounced between

the pairs of consecutive samples taken the first days of her follow-up, which

included the day with acute diarrhoea, even between the samples collected that

day a few hours apart.

Thus, temporal instability in the distribution of active bacteria in faeces

was associated with the IBS condition (greater instability in patients than in

Control 1) and with severe diarrhoea (greater instability in Patient 2 than

in Patient 1). It was reflected in the distances between samples within each

subject. ANOSIM based on the distribution of bacterial classes revealed that

the median rank of distances between samples of Patient 1 was 1.8 times that

of between samples of Control 1, but less than one-third of that found between

samples of Patient 2. At the family level, the median rank of distances within

Patient 1 was four times that of within Control 1, and half of that found within
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Patient 2.

The alterations in the active microbiota detected in association with

worsening of symptoms were barely consistent between patients and within

a single patient in different days. In Patient 2, the morning sample of day 3

had the highest level of activity of Alphaproteobacteria of all samples, the after-

noon sample, the highest level of total Bacteroidia and Porphyromonadaceae,

and sample of day 56, the highest level of Streptococcaceae, Clostridiaceae,

Betaproteobacteria, and Gammaproteobacteria. In Patient 1, sample of day

14 had an increase in Verrucomicrobia, while samples of days 28, 37, and 42,

an increase in unknown members of Alphaproteobacteria and Proteobacteria.

Table 4.11 shows all significant differences in the level of activity of bacte-

rial families between days with more severe symptoms and days with milder

symptoms within each patient.

Table 4.11: Significant differences detected in chi-square tests in the relative
abundance of bacterial families between the metatranscriptomes of Patient 1
(P1) or Patient 2 (P2) on days with severe symptoms and days with milder
symptoms. Some samples were grouped by similarity of symptoms. An OR
greater than one indicates overrepresentation in days with severe symptoms,
whereas an OR lower than one indicates underrepresentation in days with severe
symptoms. *: comparison between afternoon (3.2) and morning (3.1) samples.

Patient P1 P1 P2 P2 P2 P2 P2

Days with severe symptoms 14 28,37,42 3.1 3.2 28 56 3.2*

Days with milder symptoms 1,3,7,21 1,3,7,21 1,7,35,42 1,7,35,42 1,7,35,42 1,7,35,42 3.1*

Bacteroidaceae (Bacteroidia) 1.95 0.06 2.39 0.54 0.48 38.92

Porphyromonadaceae (Bacteroidia) 0.56 1.32 0.24 9.78 0.47 39.98

Prevotellaceae (Bacteroidia) 0.31 0.39 0.06 20.84

Rikenellaceae (Bacteroidia) 0.29 0.51 0.22 0.34 4.53

uc Bacteroidales (Bacteroidia) 1.27 0.09 4.52 1.45 47.92

uc Bacteroidetes 1.51 0.21 2.61 12.23

Streptococcaceae (Bacilli) 31.85

Clostridiaceae (Clostridia) 2.62 0.07 0.02 2.84 13.91

Eubacteriaceae (Clostridia) 2.24

Lachnospiraceae (Clostridia) 0.45 1.41 0.21 0.43 0.59 2.08

Peptostreptococcaceae (Clostridia) 0.21 0.04 0.21 2.72

Ruminococcaceae (Clostridia) 1.17 0.59 0.22 0.67 0.34 4.83

uc Clostridiales (Clostridia) 1.26 0.80 0.15 0.36 1.40 2.43

uc Clostridia (Clostridia) 2.49

Erysipelotrichaceae (Erysipelotrichi) 0.11 0.07 3.00

uc Firmicutes 0.61 0.14 0.49 1.82 3.52

α-proteobacteria IncSed (α-proteobacteria) 1.56 0.02 0.00 0.01

uc α-proteobacteria (α-proteobacteria) 6.44 16.15 0.09 1.44 0.10 0.01

Alcaligenaceae (β-proteobacteria) 0.60 0.12 8.72

Pasteurellaceae (γ-proteobacteria) 171.70

uc Proteobacteria 2.04 4.98 1.41 0.06 1.37 0.21 0.04

Puniceicoccaceae (Opitutae) 3.36

uc Verrucomicrobia 8.66
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The distributions of bacterial taxa obtained from the 16S rRNA genes were

different from those obtained from the 16S rRNA transcripts, indicating a

different contribution to the active fraction of the predominant faecal micro-

biota (Figure 4.18). For example, Bacteroidia was the predominant class and

accounted for more than half of the sequences in the metagenomes but not in

the metatranscriptomes. As could be expected, temporal dynamics was greater

in the metatranscriptomes than in the metagenomes. In our case, the study of

metatranscriptomes allowed to detect changes associated with an acute phase

of the syndrome that were subtler at the metagenomic level (see changes on

day 3 in Patient 2).

4.4.2.3 Dynamics of the microbial functional profile

Sequences of putative protein coding genes in the metagenomes and mRNAs in

the metatranscriptomes were assigned to functional roles and pathways through

homology searches in the TIGRFAM and KEGG GENES databases.

Figure 4.19 shows the distribution of broad functional categories in the

TIGRFAM and KEGG functional hierarchies for the metagenomes of Patient 1

and Patient 2. The encoded functions were highly conserved between subjects

and over time (within a few days) within each subject. Given the different

community assemblies found in each sample, it supports the concept of func-

tional redundancy among their constituent taxa.

While most sequences in metatranscriptomes were annotated as rRNA, only

5.6% had hits in the NCBI-nr protein database, and 0.5% in the KEGG GENES

and the TIGRFAM databases. 1.4% of the sequences had hits in the Rfam

database, while 13% had no hits in any of the reference databases. Samples

with less than 200 sequences with an assigned functional role were discarded

for analysis due to the great uncertainty in the estimation of the distribution

of functions.

Temporal variation in the functional profile was higher at the gene

expression level than at the genomic level (Figure 4.20), but lower than varia-

tion in the profile of active microbes. It also points to functional redundancy

among individual microbes and/or consortia in the faecal samples.

The functional profiling based on broad functional categories provides

limited information, so we analysed the distributions of intermediate cate-

gories in the same functional hierarchies. CA plots separated metagenomic

samples of Patient 1 and Patient 2 (Figure 4.21(a), 4.21(b)). CA plots

of metatranscriptomes gave a picture similar to that found with the distribution
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Figure 4.19: Relative abundance of broad functional categories in the KEGG
PATHWAY (top) and the TIGRFAM (bottom) hierarchies in the metagenomes
of Patient 1 and Patient 2. The sampling day is indicated below each column.
When there are two samples from a given individual in the same day, these are
numbered after the day.

of active bacteria, being samples of Patient 1 taken on days with more severe

symptoms the closest to samples of Patient 2 (Figure 4.21(d)), and samples

of Patient 2 collected during acute phases usually the most different from the

rest and from each other (Figure 4.21(c), 4.21(d)).

We used the LEfSe method to identify functional roles or pathways charac-

terising the differences between the faecal microbiota of Patient 1 and Patient

2, and the differences within each patient between the microbiota on days with

severe and mild/moderate symptoms. No differentially abundant features were

found between the metagenomes of Patient 1 and Patient 2, or between the

metatranscriptomes of Patient 1 in association with worsening of symptoms.
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Figure 4.20: Relative abundance of broad functional categories in the KEGG
PATHWAY (top) and the TIGRFAM (bottom) hierarchies in the metatrans-
criptomes of Control 1, Patient 1, and Patient 2. The sampling day is indicated
below each column. When there are two samples from a given individual in
the same day, these are numbered after the day.

Table 4.12 shows the significant differences between the metatranscriptomes

of Patient 1 and Patient 2, and between days with severe and mild/moderate

symptoms within Patient 2. Although statistically significant, these few

differences are difficult to interpret considering the limited number of sam-

ples per group and the rather low number of sequences per sample, which also

complicate the detection of significant changes. These limitations were greater

when we tried to detect temporal changes in the expression profile of specific

taxa, since the number of annotated sequences within each taxon was really

small (except for Bacteroidaceae, in which only the reduction in “prophage

functions” was associated with acute symptoms in Patient 2).
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Figure 4.21: Functional differences between samples of Control 1, Patient 1,
and Patient 2. CA of the distribution of KEGG metabolic pathways (a, c)
and TIGRFAM functional roles (b, d) in the metagenomes (a, b) and the
metatranscriptomes (c, d). Percentages correspond to the fraction of inertia
explained by each axis. Samples are labelled with the code of the volunteer
(C1, P1, P2) and the sampling day over the follow-up. When there are two
samples from a given individual in the same day, these are numbered after the
day. Days with milder symptoms are highlighted in green, whereas those with
severe symptoms are in red.
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Table 4.12: Significant differences detected in LEfSe analyses in the relative
abundance of functional categories between the metatransciptomes of Patient
1 (P1) and Patient 2 (P2), and between the metatranscriptomes of Patient 2
on days with severe and mild/moderate symptoms.

KEGG metabolic pathways

P1 > P2 Energy metabolism/Nitrogen metabolism

Metabolism of cofactors and vitamins/Riboflavin metabolism

Metabolism of terpenoids and polyketides/Biosynthesis of ansamycins

Metabolism of terpenoids and polyketides/Limonene and pinene degradation

Xenobiotics biodegradation and metabolism/Ethylbenzene degradation

Xenobiotics biodegradation and metabolism/Naphthalene and anthracene degradation

P1 < P2 Folding, sorting, and degradation/RNA degradation

Xenobiotics biodegradation and metabolism/Drug metabolism - other enzymes

mild > severe Biosynthesis of other secondary metabolites/Phenylpropanoid biosynthesis

(within P2) Carbohydrate metabolism/Amino sugar and nucleotide sugar metabolism

Glycan biosynthesis and metabolism/Glycosaminoglycan degradation

Glycan biosynthesis and metabolism/Glycosphingolipid biosynthesis

Metabolism of other amino acids/Taurine and hypotaurine metabolism

Xenobiotics biodegradation and metabolism/Drug metabolism - other enzymes

TIGRFAM functional roles

P1 > P2 Biosynthesis of cofactors, prosthetic groups, and carriers/Riboflavin, FMN, and FAD

Purines, pyrimidines, nucleosides, and nucleotides/Salvage of nucleosides and nucleotides

Transport and binding proteins/Anions

P1 < P2 Transcription/Degradation of RNA

mild > severe Amino acid biosynthesis/Histidine family

(within P2) Cell envelope/Biosynthesis and degradation of surface polysaccharides and

lipopolysaccharides

Central intermediary metabolism/Nitrogen metabolism

4.4.3 Discussion

We analysed the temporal changes in structure and function of faecal micro-

bial communities and the evolution of GI symptoms and bowel habits in two

IBS patients with diarrhoea and one healthy control. We detected a greater

temporal variation in the patients, and even larger instability associated with

acute diarrheoa in Patient 2. Previously, Maukonen et al. (2006) found greater

instability in IBS patients than in controls in the 16S rRNA levels of some

clostridial groups. It is confirmed in our study, where, in addition, the stability

of the whole community was evaluated. The abnormal instability could reflect

a loss of homeostasis, where the community is unable to maintain its struc-
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ture. Moreover, a high degree of temporal variation is typical of disturbed and

re-establishing communities, as seen in gut microbiota subject to treatment

with antibiotics (De La Cochetière et al., 2005; Dethlefsen and Relman, 2011)

or short-term dietary alterations (Section 4.5) (Wu et al., 2011). It has also

been found in the faecal communities of patients with recurrent Clostridium

difficile–associated diarrhoea (CDAD) (Chang et al., 2008).

Previous studies reported differences between IBS patients and healthy con-

trols in the abundance of specific bacterial groups in the gut (Salonen et al.,

2010), including our study presented in Section 4.2, but could not clearly dis-

criminate IBS cases from controls. In contrast, IBDs can be linked to pro-

nounced dysbioses, and patients can be distinguished from healthy individuals

based on the composition of the gut microbiota (Qin et al., 2010). In this study,

the differences in the distribution of active microorganisms in the samples dis-

criminated Patient 2 from Control 1 and Patient 1. The last two shared envi-

ronmental factors and were of similar age, which undoubtedly contributed to

their differentiation from Patient 2. However, the mild symptoms experienced

by Patient 1 compared with Patient 2, together with the large alterations in the

microbiota of Patient 2 concomitant with changes in the intensity of symptoms,

support that the singularities of Patient 2 were also related to the disorder.

We focused on the study of microbial activity (at the level of gene

expression) because there are few functional studies on IBS and because we

found greater variation between and within subjects at this level than at the ge-

nomic level. Similarly, Le Gall et al. (2011) reported greater temporal variation

in the profile of metabolites of the gut microbiota than in its taxonomic compo-

sition. It is not surprising that a given community exhibits temporal variation

in its in situ activity in a changing environment such as the GI tract in res-

ponse to the available resources, growing conditions, environmental stressors,

host physiology, etc. Therefore, to minimise the sources of variation and to

make the samples more comparable, our volunteers kept their routine lifestyle

habits and took samples at a defined time slot each sampling day during the

follow-up.

We observed compositional shifts in the active fraction of the microbiota

associated with worsening of symptoms, although with low reproducibility

between and within patients. Changes in the pattern of gene expression also

characterised days with acute symptoms in Patient 2. Unfortunately, we only

had a small number of sequences with a functional annotation in the meta-

transcriptomes due to methodological limitations (because of the difficulty to
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enrich mRNAs prior to sequencing and the small length of non-rRNA sequen-

ces that makes difficult a confident assignment in homology searches). This

leads to considerable uncertainty in the estimated distributions of functional

categories and to an overestimation of the variation between samples, so these

results should be interpreted with caution.

Another limitation of our study is that patients experienced little variation

in the severity of symptoms throughout. Further studies should follow more

patients and over longer periods to increase the chance of collecting samples

in acute phases. Moreover, sampling should be adapted to collect samples in

phases of relapse and remission of symptoms, which can occur within a short

time and can be associated with equally quick changes in the microbiota, as

happenned in this study.

Cohort studies on IBS usually take into account the classification of pa-

tients into subtypes according to the primary symptom that patients expe-

rience (diarrhoea, constipation, or an alternation between both). In addition,

it would be helpful to have a finer classification of patients based on the pattern

and intensity of symptoms, which can vary widely among patients, as occurred

between the four patients initially included in this study. Furthermore, our

results reveal the importance of knowing if there are symptoms and their se-

verity at the time of sampling due to the characteristic fluctuation in IBS-

related symptoms, as it is done in IBDs when active and inactive phases of the

disease are distinguished (Seksik et al., 2003; Scanlan et al., 2006; Sokol et al.,

2006; Martinez et al., 2008). Otherwise, heterogeneity within patients could

complicate the detection of alterations in the gut microbiota.

Interestingly, some episodes of diarrhoea were associated with a signifi-

cant increase in Proteobacteria in faeces, which are normally found in small

proportions in the faeces of healthy individuals, as assessed by sequencing of

metagenomes and metatranscriptomes (Arumugam et al., 2011; Gosalbes et al.,

2011). There are no estimates of the microbial distribution in the intestinal

mucosa by direct sequencing, but our studies based on 16S rRNA gene sequen-

cing show that the prevalence of Proteobacteria in mucosal biopsies is much

higher than in faeces (Sections 4.1 and 4.2). One possible explanation is that

the Proteobacteria that we found in these faecal samples, and maybe other

bacteria, represent, at least in part, bacteria detached from the mucosa by the

acute diarrhoea.

Diversity analyses, using both culture and molecular methods, have demons-

trated an expansion of members of the Enterobacteriaceae family in faeces and
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intestinal mucosa of IBD patients (Seksik, 2010), as well as in faecal samples

of IBS patients (Si et al., 2004; Krogius-kurikka et al., 2009), when compared

with those of healthy controls. Specific pathogenic Proteobacteria (adherent-

invasive Escherichia coli, Campylobacter concisus, enterohepatic Helicobacter)

have also been found in association with IBD (Mukhopadhya et al., 2012).

However, we did not detect these abnormalities in our IBS patients, but the

levels of unknown members of Alphaproteobacteria and Proteobacteria were

unusually high.

Cross-sectional studies on IBS have not found consistent alterations in the

gut microbiota. Similarly, the alterations we found in this study associated

with acute symptoms are not systematic within a single patient. We consider it

unlikely that dysbiosis is the underlying cause of the development of symptoms

in IBS. Other mechanisms may trigger the acute phases, for example, stress.

Animal studies suggest that psychological stress can change the composition of

the microbiota via perturbation of the normal GI habitat (Collins and Bercik,

2009). Besides, IBS sufferers tend to have a low threshold for coping with

stressful situations and a high incidence of psychiatric comorbidity (Drossman,

1999a; Hungin et al., 2003; Lea and Whorwell, 2003; Hood et al., 2008). Thus,

stress may promote the alterations of the GI function observed in IBS, and,

subsequently, the alterations of the GI microbiota. Taken as a whole, our results

suggest that the association of the intestinal microbiota with IBS is rather weak.

We have proved that IBS is associated with a decrease in the stability (this

study) and a decrease in the biodiversity (Section 4.2) of the gut microbiota.

Regardless of whether the community imbalances are a cause or a consequence

of symptom development, treatments that promote the stabilisation of the gut

microbiota would be helpful in IBS.
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4.5 Response of a Prevotella-dominated human

faecal microbiota to a ketogenic diet

4.5.1 Background

Recent evidence suggests that the gut microbiota may play an important role

in the pathogenesis of obesity (see Section 1.2.2.5). We found that the obese

subjects included in Section 4.3 had a low bacterial diversity compared to other

individuals in our surveys. Such a decrease in the level of diversity had been

previously associated with obesity (Turnbaugh et al., 2009a). In our cases, we

found a remarkable and unusually high prevalence of Prevotella. This led us to

think of a potential link between bacteria within this genus and some type of

obesity. Some observations extracted from the literature available at that time

appeared to support our hypothesis.

Firstly, Zhang et al. (2009) found higher levels of Prevotellaceae and

Methanobacteriales, which are respectively H2-producing fermentative bacteria

and H2-consuming methanogenic archaea, in obese individuals than in normal-

weight individuals. They suggested that such interspecies H2 transfer is an im-

portant mechanism for increasing fermentation and energy uptake from food,

thus contributing to obesity.

De Filippo et al. (2010) compared the faecal microbiota of African and

European children and found that the former showed communities very rich

in Prevotella. In addition, higher amounts of SCFAs, which are end-products

of bacterial fermentation, were detected in the faecal samples of the African

children. The authors considered diet as the main discriminating factor between

both populations. The African children ate a diet rich in starch, fibre, and plant

polysaccharides, and low in fat and animal protein, whereas the European

children ate a typical Western diet high in fat, animal protein, sugar, and

starch, but low in fibre. Also, the African children consumed only 2/3 of the

calories consumed by the Europeans. The authors hypothesised that Prevotella

co-evolved with the polysaccharide-rich food of Africans because these bacteria

are more efficient in extracting energy from complex polysaccharides (Flint

et al., 2008). Going beyond, we postulate that this capability of Prevotella

may be useful on a low-calorie diet to survive, but otherwise it may lead to

obesity.

Arumugam et al. (2011) identified three main types of microbial assem-

blies in the human gut, named enterotypes, after clustering faecal samples
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obtained in different studies based on their species composition or gene pools.

Subjects B and C in Section 4.3, the obese ones, could be included in the en-

terotype enriched in Prevotella. Looking further into Arumugam’s analysis of

the pyrosequencing-based 16S rRNA samples from Turnbaugh et al. (2009a), we

noticed that 17 of the 20 individuals of the Prevotella-enriched enterotype were

obese, whereas 87 of the 134 individuals classified in the other enterotypes were

so. This gives a statistically non-significant OR=3.04 (p=0.1221) of associa-

tion between this enterotype and obesity. Adding our three subjects in Section

4.3, there are 19 obese out of 22 in the Prevotella enterotype, and 87 out of

135 in the other ones. This gives an OR=3.47 (p=0.0498), which begins to be

supportive of a potential link between the Prevotella enterotype and some type

of obesity.

Finally, Wu et al. (2011) linked the human microbial enterotypes suggested

by Arumugam et al. (2011) to long-term dietary patterns. They clustered the

faecal communities of healthy volunteers into two enterotypes, driven primarily

by the levels of Bacteroides and Prevotella. Then, communities with relatively

high levels of the Bacteroides genus were associated with high intake of animal

protein, amino acids, and saturated fats, whereas relatively high levels of the

Prevotella genus were associated with low values for these nutrients, but high

values for CHOs and simple sugars.

In this study, we monitored one obese volunteer (individual B in Section 4.3)

subject to a ketogenic diet (high in fat and protein and virtually without CHOs)

to assess the changes in the composition of his faecal microbiota associated with

CHO-restriction, and the ability of this community to return to its original

composition after restoration of CHOs back into the diet.

4.5.2 Results

The volunteer provided faecal samples before, during, and after a dietary inter-

vention lasting for 24 days. Samples at days -6, -5, -2, -1 (pre-diet), 1, 2, 3, 4,

7, 8, 9, 13, 14, 15, 19, 24 (during diet), and +1, +2, +3, +4, +27, +57 (post-

diet) were analysed. An average of 3900 sequences was obtained per sample.

Sequences covered the V1 and V2 variable regions of the 16S rRNA gene, with

an average read length of 350 nt.

The normal profile of the faecal microbial community in this subject (based

on the samples taken before initiating the dietary intervention) was dominated

by bacteria within the Bacteroidetes phylum (92% of the sequences), mostly
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(85%) within Prevotella (Bacteroidia-Bacteroidales-Prevotellaceae) (Figure

4.22). Bacteroides (Bacteroidia-Bacteroidales-Bacteroidaceae) included 4.5%

of the sequences, and other taxa within Bacteroidetes, less than 1%.

Apart from those genera, only Sutterella (Betaproteobacteria-Burkholderiales-

Alcaligenaceae), Roseburia (Clostridia-Clostridiales-Lachnospiraceae), and

Faecalibacterium (Clostridia-Clostridiales-Ruminococcaceae) had a prevalence

greater than 1%. This profile is in agreement with that of the previous survey

done for subject B (see Section 4.3).

  

-6 -5 -2 -1 1 2 3 4 7 8 9 13 14 15 19 24 +1 +2 +3 +4 +27 +57
0

10

20

30

40

50

60

70

80

90

Prevotella Bacteroides Sutterella Roseburia
uc_Lachnospiraceae Paraprevotella Faecalibacterium Oscillibacter
Odoribacter Parabacteroides uc_Clostridiales Alistipes
Butyricimonas uc_Ruminococcaceae Succinispira uc_Alphaproteobacteria
Clostridium Sporacetigenium Blautia Acidaminococcus
Anaerovorax

Day

P
e

rc
e

n
ta

g
e

 o
f 

se
q

u
e

n
ce

s

CARBOHYDRATE RESTRICTION

Figure 4.22: Relative abundance of genera with an average abundance≥ 5�ain
the faecal microbiota of subject B before (days -6 to -1), during (days 1 to 24),
and after (days +1 to +57) a CHO-restricted diet.

The community structure experienced marked alterations immediately after

the introduction of a CHO-restricted diet (Figure 4.22). Within 24 hours, the
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prevalence of Prevotella was reduced by half. This space was filled mainly by

the increase in Bacteroides and Sutterella, although most of the genera also

increased their abundance on the CHO-restricted diet. The largest relative

increases (9-fold on average) were those in Bacteroides, Butyricimonas, and

Odoribacter, all genera within Bacteroidetes. These changes were reflected in

the increase in the bacterial diversity of this community (as measured by the

Shannon index) produced by the change in diet (Figure 4.23).
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Figure 4.23: Bacterial diversity (Shannon index) in the faecal microbiota of
subject B at genus and phylotype levels before (days -6 to -1), during (days 1
to 24), and after (days +1 to +57) a CHO-restricted diet.

Change in diet increased the temporal instability in the structure of the

community. That is, faecal bacteria showed large fluctuations in their relative

abundances, but without temporal trends. This instability persisted the first

days after the subject switched to normal feeding. We could not correlate

abrupt shifts in the community structure during the ketogenic diet with specific

nutrients or events (for example, on day 9 during diet).

No later than 4 weeks after restoring the normal diet, the faecal micro-

biota moved back to its original structure. DCA plots at the genus and phylo-
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type (defined at 97% of sequence identity) levels clearly showed the similarity

between the samples taken before changing the diet and those of a few weeks

after restoring the normal diet, and the strong shifts and instability in the

community composition introduced by the change in diet (Figure 4.24).
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152 CHAPTER 4. RESULTS AND DISCUSSION

The few remarkable changes between the microbial composition before the

ketogenic diet and eight weeks after restoring the normal diet were the decrease

in Paraprevotella, Roseburia, Faecalibacterium, and Oscillibacter, though we

could not discriminate whether these differences corresponded to normal fluc-

tuations in the community structure or were due to long-term effects of the

dietary intervention.

The dynamics at the phylotype level was consistent with that detected at the

genus level. The same phylotypes predominated within each genus and period

(before, during, and after the change in diet). Thus, the ketogenic diet did not

change the identity of the members of the community, but altered their relative

abundances: phylotypes within Prevotella decreased in abundance while those

within Bacteroides, Sutterella, etc., increased in abundance during the CHO-

restricted diet, and then returned to their previous levels (Figure 4.25).

4.5.3 Discussion

In this study, we assessed the response of the faecal microbiota to a short-term

dietary intervention. Specifically, we monitored the Prevotella-dominated

bacterial community of an obese subject fed on a diet rich in protein and fat

and very low in CHOs. Our results add to the increasing evidence of the impact

of diet on the composition of the gut microbiota. Wu et al. (2011) already

showed both the long- and short-term effects of diet on the gut microbiota.

They monitored subjects within the Bacteroides enterotype when fed on

a high-fat/low-fibre or low-fat/high-fibre diet. Both studies revealed rapid

(detectable within 24 hours) changes in the composition of the microbiota in

response to the alteration of diet. In our study, the prevalence of Prevotella

under CHO-restriction was on average half that before CHO-restriction, but

still relatively high. This decrease in the major genus was compensated

by the increase in other genera, notably the 8-fold increase in Bacteroides.

Faecal microbiota moved back to its previous structure no later than four

weeks after reintroducing CHOs. Our results are consistent with the nutrient

preferences reported for Prevotella and Bacteroides (Wu et al., 2011) and

confirm the strong dependence on CHOs of bacteria within the Prevotella

genus. In turn, Wu et al. (2011) found greater compositional changes in the

low-fat/high-fibre diet group, as could be expected since it is the diet that

correlated negatively with the Bacteroides enterotype, but it was not reported

whether the high-fibre diet led to an increase in Prevotella and, if so, its mag-



4.5. EFFECT OF CHO-RESTRICTION ON FAECAL BACTERIA 153

  

Figure 4.25: Relative abundance (grouped into six intervals) of phylotypes
within the most abundant genera in the faecal samples of subject B before
(days -6 to -1), during (days 1 to 24), and after (days +1 to +57) a CHO-
restricted diet. Each row represents a phylotype defined at 97% of sequence
identity. It is shown the genus and the species of the closest isolate for each
phylotype.
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nitude. Similar to our study, no subject switched stably to another enterotype.

Both studies confirm the significant structural resilience of the gut micro-

biota of adult humans to short-term dietary perturbations. The rapid restora-

tion of the community composition is indicative of selective forces imposed by

the environment (composition of the diet) and intrinsic to the community (eco-

logical interactions between the gut microbes). Non-selective forces could also

be implied, such as recolonisation after perturbation of the gut lumen from the

outmost of the mucus layer (Van den Abbeele et al., 2011).

A reduced intake of dietary CHOs is expected to impact both the activity

and the abundance of the different bacterial groups that populate the colon.

The effect of low-CHO weight loss diets on the faecal bacterial populations

had been previously evaluated in obese and overweight humans. Duncan et al.

(2007) found a reduction in Roseburia spp., the Eubacterium rectale group,

and bifidobacteria in obese subjects as CHO intake decreased, whereas Walker

et al. (2011) found a reduction in Collinsella aerofaciens and an increase in

the Oscillibacter group on the weight loss diet, together with a marked inter-

individual variation in the responses to the dietary change. Interestingly, those

studies reported no significant change in the proportion of Bacteroidetes or

in the relative counts of the Bacteroides-Prevotella group as CHO intake de-

creased. However, the Bacteroides/Prevotella ratio was not explored, since a

probe targeting the Bacteroides-Prevotella group was used for FISH and qPCR.

Therefore, it is unknown whether changes similar to the ones observed by us

in these genera occurred in those trials. Anyway, it is likely that the responses

to dietary changes depend on the initial composition of the individual’s gut

microbiota, as it is suggested by the clustering of samples by individual rather

than by diet observed by Walker et al. (2011).

It should be noted that the actual prevalence of genera within Bacteroidetes

in the faecal samples of our volunteer migth be not so high, since the choice of

primers and reaction conditions for the PCR amplification are known to impact

the estimated relative abundance of bacterial taxa present in the samples (von

Wintzingerode et al., 1997; Hongoh et al., 2003; Sipos et al., 2007; Hong et al.,

2009). This is indeed a general limitation of PCR-based analyses of microbial

diversity. However, relative abundances similar to the ones we found for ge-

nera within Bacteroidetes have been previously reported in the literature, even

when using different methodologies (De Filippo et al., 2010; Caporaso et al.,

2011; Wu et al., 2011). Also, we performed a metatranscriptomic analysis

(PCR-independent) of a sample of this subject and found a large proportion of
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Prevotella and Bacteroidetes (see Gosalbes et al. (2011), Figure 1, individual

E).

An intriguing question is how such communities dominated by Prevotella

are established. Several factors (and their interaction) are likely involved, in-

cluding the host genotype, especially in immunity-related genes (Spor et al.,

2011), and environmental factors such as the parental inocula and other early

exposures to microbes (Deloris Alexander et al., 2006; Mulder et al., 2009;

Ubeda et al., 2012), the type of feeding (Penders et al., 2006; De Filippo et al.,

2010; Wu et al., 2011), and long-term effects of antibiotics on the microbiota

(De La Cochetière et al., 2005; Dethlefsen and Relman, 2011).

Our study warrants further research into the contribution of Prevotella

to obesity. Although the initial factors that shape the Prevotella-enriched

communities are difficult to define, the causal relationship between high levels

of Prevotella in the gut and subsequent development of obesity can be tested

through studies in animal models. In this respect, we are currently conducting

an experiment in which the main strains of Prevotella identified in obese hu-

mans in our surveys (P. copri DSM-18205 and P. stercorea DSM-18206) will

be administered to mice fed on two different diets. The energy yield from diet,

weight gain, and other obesity-related phenotypes will be compared between

manipulated and non-manipulated mice, and the effect of a diet rich in fibre

in obesity induction will be tested. We expect that this study will provide

new insights about the link between this particular dysbiosis and obesity, simi-

larly to the reports of transmission of obesity (Turnbaugh et al., 2006), colitis

(Garrett et al., 2007), and metabolic syndrome (Vijay-Kumar et al., 2010) by

transplantation of a dysbiotic microbiota from diseased to normal mice.





5 Conclusions

� Faeces contain bacterial communities that are less diverse than those asso-

ciated with the mucus layer along the colon. The structural differences

found between these sample types were reproduced in several studies in

spite of variations in the experimental and analytical procedures.

� The variation in community composition between faeces and colonic mu-

cosa is as large as the variation between samples of the same compart-

ment taken from different individuals. In contrast, the mucosa-associated

communities along the colon are very similar.

� The different microbial habitats of the distal gut should be analysed be-

fore discarding the involvement of the colonic microbiota in a pathological

state or extrapolating the findings in one compartment to the entire GI

microbiota.

� Faecal communities do not appear to be fully representative subsets of

mucosa-associated communities in the colon. Moreover, mucosal biop-

sies do not seem contaminated by faecal material during sampling. This

warrants the validity of each compartment to analyse the local commu-

nities.

� The composition of the faecal microbiota is stable over time. The preva-

lence of each bacterial taxon experiences fluctuations over short-term in-

tervals (e.g. daily). However, the community diversity and the relative

abundance of predominant bacteria do not change significantly in the

absence of major perturbations.

� Within each host, there is a large core made of few bacterial taxa. Only

a small number of taxa within the faecal bacteria, from phylum to phylo-

type level, is consistently present over time. However, these quantitatively

comprise the majority of faecal microbes. Therefore, the intra-individual
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core of gut bacteria is very large when considering not only the percen-

tage of taxa it represents, as it is usually measured, but also the fraction

of the microbiota it accounts for.

� The search for dysbiosis in pathological states should be better focused

on the high-abundance core microbes as they are undoubtedly part of the

resident microbiota.

� Large inter-subject variation is found in the patterns of co-occurrence

between bacterial taxa in faeces. This suggest that specific ecological

interactions established between resident microbes within each host may

contribute to the maintenance of a stable host-specific microbiota.

� IBS patients harbour bacterial communities in mucosal sites along the

colon and in faeces that are less diverse than those found in healthy

subjects.

� The global distribution of gut bacteria does not allow to distinguish IBS

patients from healthy subjects, or IBS patients with diarrhoea from IBS

patients with constipation. However, subtle alterations in the relative

abundance of specific gut bacteria are found in IBS patients compared

with healthy subjects. They differ between gut compartments, especially

between colonic mucosal sites and faeces, and between IBS patients with

diarrhoea and IBS patients with constipation.

� An increase in the temporal variation in the distribution of active faecal

bacteria is associated with the IBS condition and with fluctuation of

bowel symptoms.

� Strong and quick structural and functional changes in the faecal micro-

biota are associated with acute symptomatology in IBS patients with

diarrhoea. The specific changes are barely reproduced between and

within patients, which makes it difficult to assess whether dysbiosis con-

tributes to the initiation and/or perpetuation of the pathogenesis of IBS

or appears as a result of the development of symptoms.

� IBS symptoms may be mitigated by therapeutic interventions aimed at

increasing the diversity and stability of the GI microbiota.

� An accurate classification of IBS patients by type and severity of symp-

toms must be considered before evaluating suspected aetiological factors

and alterations of the GI microbiota.
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� Functional redundancy between individual members or consortia within

the gut microbiota is suggested by the host-specificity in community

structure and microbial co-occurrence patterns. This is also confirmed

by the overall similarity in the genetic potential and gene expression of

different community assemblies.

� A high prevalence of bacteria within the Prevotella genus is found in

faeces of a subset of obese individuals. They experience a significant

reduction in abundance under a CHO-restricted diet, compensated by

the increase in other bacteria, and a rapid recovery after restoration of

CHO intake.

� Prevotella is associated with an increase in bacterial fermentation in the

colon that may contribute to obesity in developed countries. Therefore,

the potential inductive role of Prevotella in obesity should be tested in

animal models.

� The presence of selective forces that maintain the structure of the faecal

microbiota is indicated by a stable composition with relatively small fluc-

tuations over time and the rapid recovery after disturbance by short-term

dietary interventions.





A Resumen en castellano

A.1 Introducción

Los humanos viven en simbiosis con complejas comunidades microbianas que

habitan distintas superficies y cavidades corporales, como la piel, la vagina, las

v́ıas respiratorias superiores, la cavidad oral, y el tracto gastrointestinal (Aas

et al., 2005; Zoetendal et al., 2006; Grice et al., 2009; Charlson et al., 2010;

Fredricks, 2011). Estas comunidades se denominan microbiota humana. Cuan-

titativamente, el número de microorganismos en el cuerpo humano es diez veces

el de células humanas, encontrándose la mayoŕıa en el tracto gastrointestinal,

y, dentro de este, en el intestino grueso, donde se alcanza una de las mayores

concentraciones microbianas registradas en cualquier ambiente (Luckey, 1972;

Whitman et al., 1998).

Tradicionalmente, los microorganismos asociados a humanos han sido con-

siderados comensales o patógenos oportunistas, y el interés en su estudio se ha

centrado en el potencial patógeno de microorganismos concretos. Sin embargo,

las investigaciones llevadas a cabo desde hace más de un siglo han revelado

que la mayoŕıa mantiene una relación mutualista con el hospedador de la que

ambos part́ıcipes extraen beneficio: el hospedador proporciona nutrientes y

un ambiente protegido a los simbiontes microbianos mientras que estos asisten

al normal desarrollo y fisioloǵıa del hospedador, al tiempo que lo protegen de

potenciales patógenos (Guarner and Malagelada, 2003; Dethlefsen et al., 2007).

Recientemente, la aplicación de métodos moleculares en ecoloǵıa microbiana

ha permitido el acceso al conjunto de la microbiota humana. Estos incluyen

la caracterización de la diversidad de las comunidades microbianas mediante

el análisis de la variabilidad de los genes de la subunidad pequeña del RNA

ribosomal (rRNA 16S) y la secuenciación del DNA o el RNA totales aislados de

las comunidades microbianas, denominados metagenoma y metatranscriptoma,

respectivamente (Zoetendal et al., 2004, 2008). Con anterioridad, sólo se pod́ıan
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caracterizar aquellos simbiontes que pueden ser cultivados en el laboratorio, los

cuales representan una fracción minoritaria de estas comunidades (Wilson and

Blitchington, 1996; Suau et al., 1999).

Estos estudios han revelado que la microbiota humana está constituida prin-

cipalmente por bacterias, la mayoŕıa pertenecientes a los filos Firmicutes, Bac-

teroidetes, Actinobacteria, y Proteobacteria. También incluye varias especies

de arqueas, levaduras, y otros eucariotas microscópicos. Cada hábitat corporal

contiene una microbiota caracteŕıstica que es relativamente consistente entre

individuos en cuanto a la abundancia de filos, aunque la composición en especies

o cepas puede diferir considerablemente (Dethlefsen et al., 2007; Costello et al.,

2009; Spor et al., 2011).

La microbiota gastrointestinal está dominada por bacterias anaerobias es-

trictas de los filos Firmicutes y Bacteroidetes. Algunos otros filos, principal-

mente Proteobacteria y Actinobacteria, se pueden detectar en proporciones

reducidas. Por contra, la diversidad dentro de estos pocos linajes profundos

es muy elevada, con estimaciones de miles de especies en el colon de cada in-

dividuo (Dethlefsen et al., 2007; Zoetendal et al., 2008). También aparecen

varias especies minoritarias de arqueas metanógenas (Scanlan et al., 2008).

Estos microorganismos pueden ser residentes o transitorios en los hábitats gas-

trointestinales. Algunos criterios para distinguir los microorganismos ind́ıgenas

es que estén presentes con niveles estables en la población normal, aparezcan

asociados a la mucosa, o se observe su actividad in situ.

La microbiota cambia a lo largo de las estructuras del tracto gastrointesti-

nal debido a la variación longitudinal en las condiciones de crecimiento (pH,

concentración de ox́ıgeno, tiempo de retención, secreciones del hospedador,

disponibilidad de nutrientes, etc.) (Savage, 1977). También puede variar

transversalmente, entre el lumen y la mucosa epitelial. Se hipotetiza que los

microorganismos asociados a la mucosa son aquellos que escapan a los anti-

cuerpos y péptidos antimicrobianos producidos por el hospedador, atrapados

en la capa mucosa, los que se adhieren o se alimentan de mucina, y/o los que

resisten la mayor concentración de ox́ıgeno cerca del epitelio (Van den Abbeele

et al., 2011).

La estructura de las comunidades microbianas asociadas a los humanos

adultos está influenciada por múltiples factores (Dethlefsen et al., 2006; Spor

et al., 2011). Algunos son intŕınsecamente aleatorios, como la historia de colo-

nización durante el ensamblaje de la comunidad o la respuesta a infecciones.

Otros son más deterministas, como la selección impuesta por el genotipo del
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hospedador, especialmente por polimorfismos en genes relacionados con el sis-

tema inmune, y por factores ambientales, como el tipo de dieta o las terapias

con efectos duraderos sobre la microbiota, por ejemplo, el tratamiento con

antibióticos. Además, las interacciones ecológicas establecidas entre microor-

ganismos concretos pueden contribuir a la estabilidad e individualidad de la

microbiota.

Los estudios realizados en modelos animales han sido clave para revelar los

beneficios que aporta la microbiota gastrointestinal al hospedador (Guarner and

Malagelada, 2003; O’Hara and Shanahan, 2006). Las funciones metabólicas de

la microbiota incluyen la extracción de enerǵıa a partir de la dieta, principal-

mente a través de la hidrólisis de polisacáridos complejos no digeribles por el

propio hospedador y su fermentación hasta la generación de ácidos grasos de

cadena corta, la producción de vitaminas y aminoácidos esenciales, y la mejora

en la absorción de iones por parte del epitelio intestinal. La microbiota cumple

funciones tróficas tan importantes como la estimulación de la proliferación y

diferenciación de las células del epitelio intestinal y la regulación del desarro-

llo y homeostasis del sistema inmune. Además, la microbiota limita la colo-

nización por patógenos compitiendo por los recursos disponibles, produciendo

compuestos antimicrobianos, y regulando la respuesta inmune del hospedador.

Alteraciones en la composición de la microbiota humana, conocidas como

disbiosis, pueden afectar a cualquiera de las interacciones mutualistas entre la

microbiota y el hospedador y, por ello, contribuir al inicio, mantenimiento o em-

peoramiento de ciertos estados patológicos. De hecho, estudios recientes han

encontrado disbiosis en desórdenes tan diversos como obesidad, enfermedad

ceĺıaca, enfermedad de Crohn y colitis ulcerosa (comúnmente denonimadas en-

fermedad inflamatoria intestinal), śındrome del intestino irritable, diarrea aso-

ciada a antibióticos, cáncer colorrectal, vaginosis bacteriana, fibrosis qúıstica, o

psoriasis (Frank et al., 2011; Gerritsen et al., 2011; Tlaskalová-Hogenová et al.,

2011).

A.2 Objetivos

El objetivo principal de la presente tesis era estudiar la relación entre la micro-

biota humana del intestino distal y el śındrome del intestino irritable (SII),

uno de los trastornos intestinales más comunes en los páıses desarrollados

(Longstreth et al., 2006; Quigley et al., 2006). El SII es un desorden funcional,
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es decir, sin causa orgánica aparente, caracterizado por śıntomas intestinales

crónicos como dolor o malestar abdominal y alteración de los hábitos intesti-

nales. Los afectados se clasifican en función del hábito predominante (diarrea,

estreñimiento, o alternancia de ambos). Su diagnóstico y tratamiento son com-

plicados debido a su etioloǵıa, probablemente multifactorial y en gran medida

desconocida, y a la heterogeneidad en la sintomatoloǵıa de los pacientes (Talley

and Spiller, 2002; Karantanos et al., 2010). Se sospechaba desde haćıa tiempo

de alteraciones en la microbiota intestinal como uno de los factores implicados

en el desencadenamiento y persistencia del SII, aunque los estudios de casos y

controles no hab́ıan revelado cambios marcados en la composición de la micro-

biota relacionados con el SII y no se hab́ıa alcanzado un consenso respecto a la

implicación de bacterias espećıficas (Salonen et al., 2010).

Antes de estudiar las alteraciones potenciales de la microbiota en el SII,

consideramos necesario evaluar otras fuentes de variación de la microbiota in-

testinal. En primer lugar, las diferencias entre la microbiota aislada de distintos

hábitats intestinales (heces y mucosa del colon) de distintos individuos sanos

(Estudio 1). Las heces son el tipo de muestra escogido en la mayoŕıa de es-

tudios de la microbiota gastrointestinal debido a la facilidad de su recolección.

Sin embargo, la microbiota fecal podŕıa no ser enteramente representativa de

las comunidades asociadas a la mucosa del colon, como apuntaban estudios

previos (Zoetendal et al., 2002; Ott et al., 2004; Eckburg et al., 2005; Lepage

et al., 2005).

Dado que los distintos tipos de muestra podŕıan revelar información distinta

y complementaria sobre la microbiota intestinal, nuestro primer estudio sobre

el SII consistió en comparar la composición microbiana de pacientes con SII y

controles sanos en heces y varios puntos de la mucosa del colon (Estudio 2).

Simultáneamente, analizamos la dinámica temporal de la microbiota fecal

de individuos sanos para evaluar la variación normal a corto plazo en la com-

posición de las comunidades y la extensión del core de bacterias dentro de cada

individuo, y para inferir interacciones potenciales entre grupos de bacterias a

partir de los patrones de co-ocurrencia (Estudio 3).

Los resultados del Estudio 2 y de otros estudios transversales realizados en

el SII, junto con los datos acerca de la variación temporal de la microbiota

fecal, nos llevaron a plantear un estudio longitudinal en el que se tomaran

muestras fecales de pacientes con SII a lo largo de cierto peŕıodo de tiempo y

se registrara la fluctuación en los śıntomas intestinales (Estudio 4). Monito-

rizar a pacientes individuales permite superar la confusión introducida por la
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gran variación entre individuos que es problemática en los estudios de casos y

controles. Además, analizamos por primera vez el metagenoma y el metatrans-

criptoma de pacientes con SII, lo que nos permitió evaluar los cambios en el

potencial genético y la expresión génica de la microbiota relacionados con la

presentación de śıntomas.

Adicionalmente, detectamos que algunos de los voluntarios obesos incluidos

en nuestras cohortes albergaban comunidades microbianas con una abundancia

inusualmente elevada de bacterias del género Prevotella. Esta observación,

junto con otras extráıdas de la literatura, nos llevó a sugerir una vinculación

de estas bacterias con la obesidad, que fue testada, en primer lugar, mediante

el análisis de la respuesta de la microbiota de uno de los voluntarios a una

dieta pobre en carbohidratos (Estudio 5).

Aśı pues, esta tesis se estructura en los siguientes estudios:

Estudio 1. Diversidad bacteriana en heces y mucosa rectal de

individuos sanos.

Estudio 2. Alteraciones estructurales de las bacterias fecales y de la

mucosa del colon asociadas al SII.

Estudio 3. Estabilidad y especificidad de las bacterias fecales de

individuos sanos.

Estudio 4. Seguimiento de la microbiota fecal de afectados por el

SII.

Estudio 5. Respuesta de una microbiota fecal dominada por

Prevotella a la restricción de carbohidratos.

A.3 Metodoloǵıa

Toma de muestras

Todos los participantes dieron consentimiento informado al protocolo de estu-

dio, aprobado por el comité ético del Hospital Universitario La Fe, de Valencia.

Los voluntarios cumplimentaron cuestionarios sobre su estilo de vida y datos

cĺınicos relevantes. Los voluntarios sanos no presentaban un historial previo

de enfermedad gastrointestinal o comorbididad sistémica, tratamiento reciente

con antibióticos, terapia inmunomodulatoria, antidiarreicos, o laxantes. Los pa-

cientes con SII cumpĺıan los criterios diagnósticos Roma II (Drossman, 1999b)

y fueron clasificados en los subtipos SII-diarrea y SII-estreñimiento (Longstreth

et al., 2006).
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La Tabla A.1 resume los participantes incluidos en cada estudio y las

muestras recogidas.

Tabla A.1: Muestreo.

Estudio 1 2 3 4 5

Voluntarios 9 sanos 13 SII-diarrea 3 sanos 2 SII-diarrea 1 sano (obeso)

3 SII-estreñimiento 1 control sano

9 controles sanos

Tipo de Heces Heces Heces Heces Heces

muestra Mucosa Mucosa del colon

rectal ascendente y del

colon descendente

Número de Una de Una de Una diaria Paciente 1/Control 1: Antes de la dieta:

muestras cada tipo cada tipo (15 d́ıas d́ıas 1,3,5,7,14,21,28, d́ıas -6,-5,-2,-1

consecutivos) 37,42 Durante la dieta:

Paciente 2: d́ıas 1,3 d́ıas 1,2,3,4,7,8,9,13,

(mañana y tarde),4, 14,15,19,24

5,7,14,21,27,28,35,42, Tras la dieta: d́ıas +1,

49,56 +2,+3,+4,+27,+57

Datos Śıntomas Registro de la dieta y

adicionales gastrointestinales de la pérdida de peso

Las muestras de la mucosa del colon se obtuvieron mediante endoscopia,

sin (Estudio 1) o con (Estudio 2) preparación previa del colon. Las biopsias

fueron preservadas inmediatamente a -80 ◦C. Las muestras fecales fueron

recogidas en tampón fosfato salino (PBS), previamente a la toma de biopsias

en los Estudios 1 y 2. Las muestras fecales se conservaron a 4 ◦C durante 1-2

horas antes de ser almacenadas a -80 ◦C.

Extracción de ácidos nucleicos

En los Estudios 1 y 2, el DNA fue extráıdo de las biopsias del colon utilizando

el kit QIAamp DNA Mini (QIAGEN). En los Estudios 1, 2, y 3, el DNA

fue extráıdo de las muestras fecales utilizando el kit QIAamp DNA Stool

Mini (QIAGEN). En los Estudios 4 y 5, el DNA y el RNA fueron aislados

simultáneamente a partir de las muestras fecales utilizando el kit AllPrep

DNA/RNA Mini (QIAGEN). Antes de la extracción, las muestras fecales

fueron resuspendidas en PBS y centrifugadas a 4000 rpm para descartar el

material particulado grande.

Amplificación y secuenciación de los genes del rRNA 16S

Los genes del rRNA 16S fueron amplificados a partir del DNA extráıdo de

las muestras de los Estudios 1, 2, 3, y 5 mediante reacción en cadena de

la polimerasa (PCR) utilizando cebadores de amplio rango para bacterias.
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Las condiciones de amplificación (selección de cebadores, número de ciclos

de amplificación, temperatura de alineamiento) se ajustaron para minimizar

los sesgos potencialmente introducidos durante la PCR en la estimación

de la distribución en las muestras de los distintos taxones bacterianos (von

Wintzingerode et al., 1997; Hongoh et al., 2003; Sipos et al., 2007; Hong et al.,

2009).

Las muestras del Estudio 1 fueron secuenciadas mediante el método de

Sanger y analizadas en un secuenciador ABI 3730 (Applied Biosystems). Las

muestras de los Estudios 2, 3, y 5 fueron secuenciadas mediante pirosecuen-

ciación en un secuenciador FLX utilizando la qúımica GS FLX o GS FLX

Titanium (454 Life Sciences, Roche). Las diferencias en el método de secuen-

ciación se deben a que adoptamos los avances en la tecnoloǵıa de secuenciación

conforme estuvieron disponibles.

La Figura A.1 esquematiza la estrategia seguida en los distintos estudios.

  

F8

V1 V2 V3 V4 V5 V6 V7 V8 V9

R357 R1510

gen rRNA 16S

Sanger

454

100 nt

Región variable Cebador Amplicón lectura Sanger lectura 454 FLX lectura 454 FLX Titanium

Figura A.1: Cebadores, amplicones, y lecturas obtenidas mediante secuen-

ciación por el método de Sanger o pirosecuenciación (454), mapeados a lo largo

del gen del rRNA 16S.

Secuenciación de metagenomas y metatranscriptomas

El RNA extráıdo de las muestras del Estudio 4 fue tratado con DNasa I (Am-

bion), y, posteriormente, amplificado con el kit MessageAmp II-Bacteria (Am-

bion), que favorece el enriquecimiento en RNA mensajero (mRNA). El RNA

resultante fue retro-transcrito a DNA complementario (cDNA) utilizando el kit

High Capacity cDNA Reverse Transcription (Applied Biosystems) y las enzi-

mas DNA Polimerasa I de E. coli, DNA Ligasa de E. coli, RNasa H, y DNA
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Polimerasa del fago T4 (New England Biolabs).

El cDNA resultante y el DNA extráıdo de las muestras del Estudio 4

fueron secuenciados mediante pirosecuenciación en un secuenciador FLX con

la qúımica GS FLX Titanium (454 Life Sciences, Roche).

Procesamiento de las secuencias

Las lecturas con baja calidad y/o longitud fueron excluidas del análisis.

Adicionalmente, se eliminaron las posibles quimeras detectadas en las lecturas

de amplicones del gen del rRNA 16S con la herramienta chimera.slayer del

paquete mothur (Schloss et al., 2009).

Asignación taxonómica de los rRNAs 16S

La asignación taxonómica (filo, clase, orden, familia, género) de las se-

cuencias de los genes y los cDNAs del rRNA 16S fue determinada con el

clasificador del Ribosomal Database Project (RDP) II (Cole et al., 2007,

2009). Las secuencias fueron agrupadas en filotipos asimilables a especies en

base a su identidad de secuencia utilizando los programas cd-hit-est del pa-

quete cd-hit (Li and Godzik, 2006) o cluster del paquete usearch (Edgar, 2010).

Anotación de metagenomas y metatranscriptomas

Los genes y cDNAs de los rRNAs 16S fueron identificados mediante búsqueda

de homoloǵıas con la herramienta BLASTN (Altschul et al., 1990) en la base

de datos SSUrdb (Urich et al., 2008). En las lecturas restantes, se identificaron

los genes y cDNAs de los rRNAs 23S mediante búsqueda BLASTN en la base

de datos LSUrdb (Urich et al., 2008).

Las lecturas de cada metagenoma fueron ensambladas usando el programa

runAssembly del paquete Newbler (454 Life Sciences, Roche). Las lecturas de

los metatranscriptomas no asignadas a rRNAs fueron alineadas con los ensam-

blajes metagenómicos procedentes del mismo voluntario usando el programa

runMapping del paquete Newbler (454 Life Sciences, Roche).

Las regiones codificantes de protéınas fueron identificadas en los metageno-

mas mediante búsqueda BLASTX (Altschul et al., 1990) en la base de datos

no redundante de protéınas NCBI-nr (ftp://ftp.ncbi.nlm.nih.gov/blast/db).

Además, se utilizó el programa de predicción génica Glimmer (Salzberg et al.,

1998) (http://www.cbcb.umd.edu/software/glimmer).

La asignación funcional de los supuestos genes codificantes se llevó a

cabo comparándolos con la base de datos KEGG GENES (Kanehisa et al.,
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2004) (http://www.genome.ad.jp/kegg) mediante búsqueda BLASTX, y con

la base de datos de familias de protéınas TIGRFAM (Selengut et al., 2007)

(http://www.jcvi.org/cgi-bin/tigrfams/index.cgi) utilizando el programa

HMMER (Eddy, 1998) (http://hmmer.janelia.org). Las lecturas de los meta-

transcriptomas que mapearon sobre regiones de los metagenomas adoptaron

sus anotaciones funcionales. Las lecturas de los metatranscriptomas restantes

fueron comparadas con la base de datos de familias de RNAs no codificantes

Rfam (Griffiths-Jones et al., 2003) (http://rfam.sanger.ac.uk) utilizando el

programa INFERNAL (Nawrocki et al., 2009) (http://infernal.janelia.org).

Análisis estad́ısticos

La mayor parte de los análisis estad́ısticos se realizaron utilizando el entorno

estad́ıstico R (R Development Core Team, 2010) (http://www.R-project.org)

y el paquete de R vegan (Oksanen et al., 2011).

La diversidad microbiana en las muestras fue estimada con el ı́ndice de

diversidad de Shannon (Shannon, 1948) y los estimadores de riqueza Chao1

y Abundance-based Coverage (ACE) (Chao, 1987; Chazdon et al., 1998; Chao

et al., 2000). La riqueza estimada y las curvas de rarefacción permitieron

evaluar la cobertura de las muestras.

La similitud de las muestras con respecto a la distribución de taxones o

funciones fue evaluada aplicando análisis de correspondencias, análisis de con-

glomerados, y análisis de similitudes (ANOSIM) (Quinn and Keough, 2002, p

459, 488 y 484, respectivamente).

En el Estudio 1, se estimó la abundancia relativa de cada taxón en cada

muestra aplicando un modelo Bayesiano que teńıa en cuenta las interacciones

entre individuos y taxones, y entre tipos de muestra y taxones. La similitud

entre las muestras se calculó en base a las distribuciones estimadas con dicho

modelo.

En el Estudio 2, se aplicaron test chi-cuadrado para detectar cambios signi-

ficativos en la abundancia relativa de cada taxón entre las muestras de pacientes

con SII y las de controles sanos. Para ello, se agruparon las muestras según

la cohorte (SII-diarrea, SII-estreñimiento, control) y el tipo de muestra (colon

ascendente, colon descendente, heces). La robustez de los resultados obtenidos

con las muestras agrupadas frente a la variación interindividual se evaluó com-

parando los resultados con los de muestras agrupadas artificiales obtenidas tras

etiquetar aleatoriamente las muestras individuales como procedentes de casos

o controles.
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En el Estudio 3, se analizó la serie temporal de cada individuo con un

modelo Bayesiano que teńıa en cuenta la posible correlación entre taxones y la

autocorrelación temporal dentro de cada taxón. La asociación potencial entre

taxones fue inferida aplicando graphical Gaussian networks (GGNs) (Schäfer

and Strimmer, 2005a,b) para estimar la correlación parcial entre los perfiles

de abundancia a partir de la matriz de covarianzas obtenida con el modelo

Bayesiano.

En el Estudio 4, se aplicaron análisis de componentes principales para

analizar la variación temporal en la presentación de śıntomas (Quinn and

Keough, 2002, p 443), test chi-cuadrado para detectar cambios significativos

en la abundancia relativa de cada taxón entre los d́ıas con śıntomas agudos y

los d́ıas con śıntomas leves, y el algoritmo LEfSe (linear discriminant analysis

(LDA) effect size) (Segata et al., 2011) para identificar categoŕıas funcionales

que caracterizaran los d́ıas con śıntomas agudos y leves.

A.4 Conclusiones

Diferencias en la composición de las comunidades bacterianas de la

mucosa del colon y de las heces:

� Las comunidades bacterianas que se encuentran en heces son menos di-

versas que las asociadas a la mucosa intestinal en los distintos tramos

del colon estudiados (colon ascendente, colon descendente, y recto). Las

diferencias en la composición bacteriana entre heces y mucosa del colon

han sido reproducidas en dos estudios a pesar de las variaciones en la

metodoloǵıa aplicada.

� La variación en la composición de la microbiota entre heces y mucosa

del colon es tan grande como la variación entre individuos en muestras

del mismo compartimento intestinal. En cambio, las comunidades micro-

bianas asociadas a la mucosa intestinal en distintos puntos del colon son

similares.

� Dadas estas diferencias, los distintos hábitats del intestino distal debeŕıan

ser analizados antes de poder descartar la implicación de la microbiota en

una patoloǵıa o de extrapolar los hallazgos hechos en un compartimento

a la totalidad de la microbiota intestinal.

� Las comunidades microbianas presentes en heces no parecen ser total-
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mente representativas de las asociadas a la mucosa del colon. Además,

las muestras de mucosa obtenidas por endoscopia no parecen contami-

nadas por material fecal. Por tanto, ambos tipos de muestra resultan

válidos para analizar las correspondientes comunidades microbianas.

Variación temporal normal en la estructura de la microbiota fecal:

� La composición de la microbiota fecal es estable a lo largo del tiempo.

La abundancia relativa de los distintos taxones bacterianos fluctúa en

ausencia de perturbaciones externas en intervalos cortos de tiempo (p. ej.

diariamente). Sin embargo, la diversidad de la comunidad y la prevalencia

de las bacterias predominantes no cambian singnificativamente.

� Dentro de cada individuo, sólo un número reducido de taxones bacteria-

nos es detectado en heces de forma constante a lo largo del tiempo (visto

a distintos niveles, desde filo hasta especie). Sin embargo, en términos

cuantitativos, estos engloban la mayoŕıa de las bacterias fecales. Por

tanto, el core de bacterias dentro de cada individuo es grande si se tiene

en cuenta la fracción de la microbiota que representa, no sólo el número

relativo de grupos, que es como se evalúa habitualmente.

� Podŕıa ser conveniente restringir la búsqueda de disbiosis en estados pa-

tológicos a los microorganismos abundantes ya que estos son parte de

la microbiota residente, no microorganismos que se detectan transitoria-

mente en el intestino.

Interacciones entre microorganismos intestinales:

� La microbiota intestinal difiere entre distintos individuos no sólo en su

composición, también en los patrones de co-ocurrencia entre grupos es-

pećıficos de bacterias. Esto sugiere que las interacciones ecológicas (de

cooperación, competencia, etc.) establecidas dentro de cada hospedador

podŕıan contribuir a la estabilidad e individualidad de la microbiota.

Alteraciones de la microbiota intestinal asociadas al SII:

� Las comunidades bacterianas de las heces y de la mucosa del colon ascen-

dente y descendente de los afectados por el SII son menos diversas que

las respectivas de controles sanos.

� La distribución global de bacterias intestinales no permite distinguir entre

pacientes con SII y controles sanos, ni entre pacientes de distinto subtipo
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(diarrea o estreñimiento como śıntoma predominante). Sin embargo, se

detectan alteraciones sutiles en la abundancia relativa de grupos concre-

tos de bacterias en los afectados por el SII con respecto a los controles

sanos. Las alteraciones son distintas en los diferentes compartimentos

intestinales analizados, especialmente entre las heces y la mucosa intesti-

nal. También son distintas según el subtipo (SII con diarrea o SII con

estreñimiento).

� La variación temporal en el perfil de bacterias activas en heces es mayor

en los pacientes con SII que en los controles sanos, y está asociada posi-

tivamente a la severidad y fluctuación de los śıntomas intestinales.

� Las fases agudas de diarrea en afectados por SII están asociadas a cambios

marcados y rápidos en la estructura y el funcionamiento de la microbiota

fecal. Las alteraciones detectadas no se reproducen en distintos pacientes

ni dentro del mismo paciente en distintas fases, lo que dificulta evaluar

si la disbiosis contribuye a la presentación de śıntomas o se produce a

consecuencia de la alteración del hábitat gastrointestinal debida a otros

factores etiológicos.

� Nuestros estudios sugieren que el papel de la microbiota en el SII es

más bien débil. Los rasgos más destacados de la microbiota intestinal en

pacientes con SII son una menor diversidad y una mayor inestabilidad,

por lo que terapias que potencialmente contrarrestan estas caracteŕısticas

(p. ej. probióticos) pueden resultar adecuadas para mitigar los śıntomas

del SII.

� Se requiere una clasificación detallada de los afectados por el SII según

el tipo y la severidad de los śıntomas que presentan antes de evaluar la

implicación de factores etiológicos potenciales y alteraciones de la mi-

crobiota intestinal. De otra forma, la heterogeneidad entre los pacientes

puede dificultar la detección de patrones.

Relación de las bacterias del género Prevotella con la obesidad y los

carbohidratos de la dieta:

� Un subconjunto de humanos obesos presenta comunidades microbianas

fecales ricas en bacterias del género Prevotella.

� La restricción de carbohidratos en la dieta produce cambios inmediatos

en la microbiota fecal dominada por bacterias del género Prevotella de



A.4. CONCLUSIONES 173

un individuo obeso, que consisten en la reducción significativa de estas

bacterias compensada por el aumento de otras presentes en la comunidad.

Estos cambios revierten tras la restauración de la dieta normal.

� La relación del género Prevotella con el aumento en la capacidad de ex-

tracción de enerǵıa a partir de polisacáridos complejos de la dieta puede

explicar su asociación con la obesidad en los páıses desarrollados. La posi-

ble contribución al desarrollo de la obesidad de las bacterias del género

Prevotella encontradas en obesos debeŕıa ser testada in vivo.

Observaciones generales:

� Las diferencias entre individuos en la estructura de la microbiota intesti-

nal sugiere que existe redundancia funcional entre microorganismos o

consorcios de distintas comunidades microbianas. Esta redundancia se

confirma por el parecido en los perfiles funcionales obtenidos a partir de

metagenomas y metatranscriptomas de comunidades fecales que difieren

significativamente en el perfil de microorganismos presentes y activos.

� La estabilidad en la composición de la microbiota fecal, con fluctuaciones

relativamente pequeñas en la abundancia relativa de los distintos taxones,

y la capacidad de recuperación de la comunidad después de su pertur-

bación por una intervención dietética, son indicativas de la existencia de

fuerzas selectivas que mantienen la estructura de la microbiota instestinal

en adultos.
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Jernberg, C., Löfmark, S., Edlund, C., and Jansson, J. K. (2007). Long-term

ecological impacts of antibiotic administration on the human intestinal mi-

crobiota. The ISME Journal, 1(1):56–66.
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Salojärvi, J., Palva, A., Salonen, A., and de Vos, W. M. (2012). Comparative

metaproteomics and diversity analysis of human intestinal microbiota testi-

fies for its temporal stability and expression of core functions. PLoS ONE,

7(1):e29913.

Koropatkin, N. M., Cameron, E. A., and Martens, E. C. (2012). How glycan

metabolism shapes the human gut microbiota. Nature Reviews Microbiology,

10(5):323–335.

Krogius-kurikka, L., Lyra, A., Malinen, E., Aarnikunnas, J., Tuimala, J.,
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P., and Doré, J. (2005). Biodiversity of the mucosa-associated microbiota

Is stable along the distal digestive tract in healthy individuals and patients

with IBD. Inflammatory Bowel Diseases, 11(5):473–480.

Levitt, M. D. (1971). Volume and composition of human intestinal gas deter-

mined by means of an intestinal washout technic. The New England Journal

of Medicine, 284(25):1394–1398.

Levy, R. L., Jones, K. R., Whitehead, W. E., Feld, S. I., Talley, N. J., and

Corey, L. A. (2001). Irritable bowel syndrome in twins: heredity and social

learning both contribute to etiology. Gastroenterology, 121(4):799–804.

Lewis, S. J. and Heaton, K. W. (1997). Stool form scale as a useful guide to

intestinal transit time. Scandinavian Journal of Gastroenterology, 32(9):920–

924.
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Schäfer, J. and Strimmer, K. (2005a). A shrinkage approach to large-scale

covariance matrix estimation and implications for functional genomics. Sta-

tistical Applications in Genetics and Molecular Biology, 4:Article 32.



204 APPENDIX B. BIBLIOGRAPHY
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C Glossary and list of abbreviations

16S rRNA. 16S ribosomal RNA. RNA component of the small subunit of

prokaryotic ribosomes. See rRNA.

ANOSIM. Analysis of similarities.

Antibiotic. Any substance produced by a microorganism that can destroy

or inhibit the growth of other microorganisms. Synthetic antibiotics, usually

chemically related to natural antibiotics, have been produced to accomplish

comparable tasks.

CA. Correspondence analysis.

CD. Crohn’s disease. See IBD.

cDNA. Complementary DNA. DNA synthesised from an RNA template in a

reaction catalysed by the enzymes reverse-transcriptase and DNA polymerase.

CHO. Carbohydrate.

Colonisation. The spreading of one or more species into a new habitat.

Colonisation resistance. When applied to host-associated microorganisms,

the mechanisms whereby the resident microbiota protects against the colonisa-

tion by new and potentially harmful microorganisms.

Commensalism. Symbiotic relationship between two organisms where one

benefits without affecting the other.

DCA. Detrended correspondence analysis.

DGGE. Denaturing gradient gel electrophoresis. See Fingerprinting.

Dysbiosis. A state of imbalance among the microorganisms naturally

occurring in a body site, often resulting in health problems.

Ecological succession. The process by which an ecological community un-

dergoes more or less orderly and predictable changes following disturbance or

initial colonisation of a new habitat.

Fermentation. Anaerobic energy-yielding process in which ATP is formed

by substrate-level phosphorylation through association with redox transforma-

tions between organic compounds. Primary fermentation consumes monomers
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released by the hydrolysis of polysaccharides and proteins; secondary fermen-

tation further transforms the products of primary fermentation.

Fingerprinting. When applied to a microbial community, set of techniques in

molecular biology that are used to quickly profile the diversity of the community

by showing how many variants of a gene are present. They include denaturing

gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis

(TGGE), and terminal restriction fragment length polymorphism (T-RFLP).

Functional redundancy. The ability of one microbial taxon, consortium, or

community to carry out a process at a similar rate as another under the same

environmental conditions, regardless of differences in taxonomic composition.

GF animal. Germ-free animal. An animal lacking a microbiota, born and

reared under sterile conditions for research purposes.

GI. Gastrointestinal (GI tract, GI microbiota, etc.)

Gnotobiotic animal. Specially reared laboratory animal in which only cer-

tain known microorganisms are present. The term also includes germ-free ani-

mals, since the status of their microbial community is known.

Host. When a distinction is made between two organisms in a symbiotic rela-

tionship, the host is the larger of the two and may or may not derive a benefit,

while the smaller organism is the symbiont and is always a beneficiary in the

relationship.

IBD. Inflammatory bowel disease. Group of chronic conditions that cause in-

flammation of the intestines. The most common forms of IBD are ulcerative

colitis (UC) and Crohn’s disease (CD). UC is restricted to the colon and the

rectum, while CD can affect any segment of the gastrointestinal tract, although

it most commonly affects the terminal ileum. The inner lining of the intestine

(mucosa) becomes inflamed in UC, while CD causes inflammation that extends

much deeper into the layers of the bowel wall and generally involves the entire

bowel wall.

IBS. Irritable bowel syndrome. Functional disorder of the intestine that is

characterised by chronic abdominal pain, discomfort, and alteration of bowel

habits in the absence of any detectable organic cause. Diarrhoea or constipa-

tion may predominate, or they may alternate (classified as IBS-D, IBS-C, or

IBS-A, respectively). Post-infectious IBS (PI-IBS) is a special subtype of IBS

in which chronic symptoms appear following an episode of acute gastroenteri-

tis.

Metagenome. The genetic material in a given environment, consisting of the

genomes of different organisms.
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Metagenomics. Study of the genetic material directly isolated from an envi-

ronmental sample (i.e. the metagenome) to assess the genetic potential of the

whole community, bypassing the need to isolate and culture individual species.

The field may also be referred to as environmental genomics, community ge-

nomics, or ecogenomics.

Metatranscriptome. The set of RNAs produced in a given environment,

consisting of the transcriptomes of different organisms.

Metatranscriptomics. Study of the RNA isolated from an environmental

sample (i.e. the metatranscriptome) to assess the gene expression of the whole

community.

Microbiota. The microbial community that inhabits an ecosystem, such as

some part of the body of an animal host (commonly referred to according to

the habitat that it occupies, e.g. the gastrointestinal microbiota).

mRNA. Messenger RNA. RNA that carries coding information for protein

synthesis.

Mutualism. Symbiotic relationship between two organisms that is mutually

beneficial. Also referred to as symbiosis by some authors; however, symbiosis

is a broad category, defined to include any type of persistent biological interac-

tion.

OR. Odds ratio.

OTU. Operational taxonomic unit. Any of the groups (taxa) being examined.

An OTU can refer to any level of the taxonomic hierarchy, including individuals

of a species, or different species, or different genera, and so on.

Pathogen. Organism that causes acute or chronic disease following infection

of the host. Obligate pathogens must cause disease in order to be transmitted

from one host to another. Opportunistic pathogens cause disease when the

host is immunocompromised or when normal microbial antagonism is affected;

otherwise, they can be transmitted from one host to another without having to

cause disease. Opportunistic pathogens are distinct from pathobionts, which

are symbionts that do not normally cause disease, but are able to promote

pathology when specific conditions are altered in the host.

PCA. Principal components analysis.

PCoA. Principal coordinates analysis.

PCR. Polymerase chain reaction. Technique in molecular biology to amplify

a single or a few copies of a DNA fragment across several orders of magnitude.

The method relies on thermal cycling, consisting of cycles of repeated heating

and cooling of the reaction for DNA melting and enzymatic replication of the
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DNA.

Phylogenetics. Branch of biology that reconstructs the evolutionary relation-

ships among organisms. In molecular phylogenetics, the relationships among

organisms or genes are studied by analysing hereditary differences in DNA or

protein sequences.

Phylotype. Biological type that classifies an organism by its evolutionary

relationship to other organisms. The term is most often used in microbio-

logy, where groups of organisms are defined by its sequence similarity, typically

using the 16S ribosomal RNA genes. A sequence identity of 97–99% indicates

approximately a species-level taxon.

Prebiotic. Non-digestible food ingredient that stimulates specific changes

in the composition and/or activity of the gastrointestinal microbiota in ways

claimed to be beneficial to host health (e.g. inulin, fructo-oligosaccharides,

galacto-oligosaccharides).

Probiotic. Live microorganism that, when administered in adequate amounts,

confers a health benefit to the host. Lactic acid bacteria and bifidobacteria

are the most common types of microbes used as probiotics. Probiotics are

commonly consumed as part of fermented food.

Resilience. When applied to a microbial community, the ability to return to

its original composition after being disturbed.

rRNA. Ribosomal RNA. RNA component of the ribosome, the cell structure

that is the site of protein synthesis. Ribosomes can be broken down into two

subunits, the small subunit (SSU) and the large subunit (LSU). In prokaryotes,

the SSU contains the 16S rRNA, and the LSU contains the 5S and 23S rRNAs.

The genes coding for the 16S rRNA are the most extensively used in recons-

tructing phylogenies.

SCFA. Short-chain fatty acid. Fermentation end-product, formed from

polysaccharide, oligosaccharide, protein, peptide, and glycoprotein precursors

by anaerobic bacteria. In quantitative terms, dietary polysaccharides resistant

to hydrolysis by the host enzymes are the most important SCFA precursors in

the colon, and the main SCFAs are acetate, propionate, and butyrate.

Symbiont. An organism in a symbiotic relationship. When a distinction is

made between two interacting organisms, the symbiont is the smaller of the

two and is always a beneficiary in the relationship, while the larger organism

is the host and may or may not derive a benefit.

Symbiosis. An intimate and often long-term relationship between different

species, which was originally defined as “living together”. Although it is often
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referred to beneficial relationships (mutualisms), symbiosis does not necessarily

imply that either partner gains an advantage. Symbiotic relationships include

those associations in which one organism lives on or inside the other. They

may be obligate, i.e. necessary for the survival of the organisms, or facultative,

when the relationship is not essential for the survival of the organisms.

TGGE. Temperature gradient gel electrophoresis. See fingerprinting.

T-RFLP. Terminal restriction fragment length polymorphism. See finger-

printing.

UC. Ulcerative colitis. See IBD.

Xenobiotic. Chemical compound that is found in an organism but that is not

normally produced or expected to be present in it. It can be toxic, even at low

concentrations.












