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Th 1/2 T helper type 1 /2 cytokine 

TNFα (Tnfa) Tumor necrosis factor α 

SIBLING small integrin binding ligand, N-linked glycosylation 

SIRP signal-regulatory protein 

Sca1 Mouse Stem Cell Antigen 

SC subcutaneous 

SH2 Src homology 2 domains 

SHC Src Homology 2 domain 

SHIP 2 SH2-containing inositol phosphatase 2 

SOCS suppressor of cytokine signaling proteins 

Spp1-/- Osteopontin-deficient mouse 

SRE sterol-regulatory-elements 

SREBP1c (Srebf1) steroid regulatory element-binding protein 1 

SVF stroma-vascular fraction 

TG triglycerides 

UCP1 uncoupling protein 1 
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V visceral 

VEGF A (Vegfa) vascular endothelial growth factor A 

VLDL very low density lipoprotein 

WAT white adipose tissue 

WC waist circumference 

WHO World health organization 

WHR waist-hip ratio circumference 

WT wild type 
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1. INTRODUCTION 

1.1. Insulin  

Insulin is the most potent anabolic hormone and is essential for 

appropriate tissue development and growth as well as the 

maintenance of whole-body glucose homeostasis (Chang et al., 

2004). Insulin is secreted by the β cells of the pancreatic islets of 

Langerhans in response to increased circulating levels of glucose and 

regulates glucose homeostasis by reducing hepatic glucose output via 

decreased gluconeogenesis and glycogenolysis and increasing the 

rate of glucose uptake into muscle and adipose tissue (Rinderknecht 

and Humbel, 1978, Burks and White, 2001) 

Human insulin contains 51 amino acids (molecular weight 5700 

daltons) and is structurally homologous to insulin-like growth factors 1 

and 2 (IGF1 and 2) and also to the ovarian hormone, relaxin (Bell et 

al., 1980, Dull et al., 1984, Nussey S, 2001). It is synthesized in the β 

cells of the pancreatic islets. The gene for insulin codes for pre-

proinsulin which is made up of a signal sequence, and the B chain, 

connecting (or C) peptide and A chain (Figure 1). The A and B chains 

are joined together by two disulfide bonds between common cysteine 

amino-acid residues. The C peptide is essential to the formation of 

these disulfide bonds and is cleaved in the Golgi apparatus leaving 

the joined A and B chains which form the active insulin molecule 

(Duckworth, 1988) The cleaved C peptide is co-secreted with insulin, 

a point of great clinical importance. Previously considered to have no 

physiological role, C peptide is now recognized to have G-protein-

coupled cellular receptors and is likely to have some function in 

regulating blood flow and renal function (Philippe, 1991). 
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Figure 1: Synthesis of insulin.  
1. Structure of the insulin gene, 2. Mature messenger RNA after exicision of the introns, 
3. Structure of proinsulin after cleavage of the signal sequence from pre-proinsulin, 4. 
Cleavage of the C peptide leaving biologically active insulin, 5. Packaging of insulin and 
C-peptide in secretory granules for storage and release (Nussey S, 2001). 
 

When β cells are appropriately stimulated, insulin is secreted by 

exocytosis and diffuses into the blood of islet capillaries. Insulin is 

secreted in pulses and has a t1/2 in the systemic circulation of 

approximately 3 minutes (Rubenstein et al., 1972, Lang et al., 1979). 

About 50% is removed by the liver. This is known as the ‘first-pass’ 

effect (i.e. the first time insulin passes through the liver). Insulin that 

has escaped the liver's inactivating activity exerts important regulatory 

actions on peripheral tissues. C peptide is released in a 1:1 ratio with 

insulin and since it is not significantly removed by the liver, has a t1/2 of 

30 min. For this reason, the measurement of C-peptide has been used 
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as an index of insulin secretion (Rubenstein et al., 1972, Horwitz et 

al., 1975). 

1.1.1. Physiological effects 

Insulin regulates energy metabolism by stimulating cells in peripheral 

tissues to incorporate glucose from the blood and stimulating the 

storage of glycogen in the liver and muscle and lipids in adipose 

tissue. The ultimate effector system for regulating glucose disposal is 

the translocation of vesicles containing glucose transporters (GLUT) 

to the plasma membrane to increase the rate of cellular glucose 

transport (Suzuki and Kono, 1980). When insulin is absent, glucose is 

not taken up by body cells and the body begins to use fat as an 

energy source. The hyperglycemia observed in diabetes results from 

impairments in insulin secretion, insulin action, or a combination of 

both (Kahn et al., 1993, Kahn, 1998).  

The action of insulin in controlling the overall flow of fuels is 

summarized in Table 1. In the liver, insulin promotes glycogen 

synthesis by stimulating glycogen synthetase and inhibiting glycogen 

phosphorylase although it has no direct effect on the GLUT 2 and, 

hence, the uptake of glucose into hepatocytes (Board et al., 1995). In 

contrast, insulin induces a rapid uptake of glucose in muscle and fat 

tissue by recruiting intracellular GLUT 4 and, thus, increasing their 

cell-surface expression (Klip and Pâquet, 1990). As a consequence, 

muscle converts glucose to glycogen. In adipose tissue, glucose is 

converted to fatty acids for storage as triglyceride. Insulin also 

stimulates the uptake of amino acids into muscle. At the same time, 

insulin suppresses mobilization of fuels by inhibiting the breakdown of 

glycogen in the liver, the release of amino acids from muscle and the 

release of free fatty acids from adipose tissue. This explains, in part, 
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why patients with Diabetes Mellitus (DM) lose weight although they 

have normal or increased appetite (Woods et al., 1979, Ikeda et al., 

1986, Schwartz et al., 1992, Baskin et al., 1999, Burks et al., 2000). 

INSULIN ACTION 

Liver Muscle Adipose tissue 
+ glycogen 
synthesis + glucose uptake + glucose uptake 

+ glycolysis + amino acid 
uptake 

+ free fatty acid 
uptake 

- glycogenolysis - proteolysis - lipolysis 

- gluconeogenesis   
- ketogenesis   

 

Table 1: Effects of insulin on the flow of fuels in the body.  
(+) stimulates and (-) inhibits. 

1.1.2. Insulin receptor 

Insulin action is initiated through binding and activating its cell surface 

receptor (IR), which consists of two α subunits and two β subunits that 

are disulfide linked into an α2β2 heterotetrameric complex (Pessin 

and Saltiel, 2000).  IGF1 signals via the type 1 IGF1 receptor (IGF1R), 

a widely expressed cell-surface heterotetramer, highly similar to the 

IR, which possesses intrinsic kinase activity in its cytoplasmic domains 

(Favelyukis et al., 2001).  Insulin binds to the extracellular α subunit of 

the IR/IGF1R and modifies the α subunit dimer which mediates trans-

autophosphorylation between the membrane-spanning β subunits 

(White, 1997).  This activates the intrinsic tyrosine kinase activity of 

the intracellular β subunit of the receptor which then leads to tyrosine 

phosphorylation of a variety of docking proteins.   

Interestingly, unlike other receptor tyrosine kinases that bind directly 

to the cytoplasmic tails of downstream effectors, the IR and the IGF1R 
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1.1.3. Insulin signal transduction 

Once activated, the IR phosphorylates a number of important proximal 

substrates on tyrosine, including members of the insulin receptor 

substrate family (IRS1/2/3/4), the SHC adapter protein isoforms, 

signal-regulatory protein (SIRP) family members, growth factor 

receptor bound protein 2 associated protein 1 (GAB1), Casitas B-

lineage lymphoma (CBL) , and SH2B adaptor protein 2 (APS) 

(Pawson and Scott, 1997, White and Yenush, 1998, Nelms et al., 

1999). Tyrosine phosphorylation of the IRS proteins creates 

recognition sites for additional effector molecules containing Src 

homology 2 (SH2) domains (Burks and White, 2001, Rui and White, 

2003). These include the small adapter proteins growth factor receptor 

bound protein 2 (GRB2) and non-catalytic region of tyrosine kinase 

adaptor protein (NCK), the SHP2 protein tyrosine phosphatase and, 

most importantly, the regulatory subunit of the type 1A 

phosphatidylinositol 3 kinase (PI3K) (Figure 3).  

Two classes of serine/threonine kinases are known to act downstream 

of PI3K (Coffer et al., 1998), namely the serine/threonine kinase AKT, 

also known as protein kinase B (PKB) or thymoma viral proto-

oncogene 1, and the atypical protein kinase C isoforms z and l 

(PKCz/l) Each IRS protein contains a highly conserved NH2-terminal 

pleckstrin homology (PH) domain followed by a phosphotyrosine- 

binding (PTB) domain, which together couple IRS proteins to the 

activated insulin or IGF1 receptors (Myers et al., 1998, Yenush et al., 

1996). IRS proteins contain 8–18 potential tyrosine phosphorylation 

sites in various amino acid sequence motifs, which bind after 

phosphorylation to the SH2 domains in effector proteins, including the 

regulatory subunit of the lipid kinase PI3K, GRB 2, NCK, and SHP2 

(Myers Jr and White, 1996, Sun et al., 1995). Products of PI3K 
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activate a network of serine-threonine kinases implicated in the action 

of insulin on glucose transport, glycogen synthesis, protein synthesis, 

antilipolysis, and the control of hepatic gluconeogenesis (White, 2006) 

(see Figure 3).  

Activated AKT induces glycogen synthesis, through inhibition of 

glycogen synthase kinase 3 beta (GSK3β), protein synthesis via 

mammalian target of rapamycin serine/threonine kinase (mTOR) and 

downstream elements (Engelman et al., 2006), and cell survival, 

through inhibition of several pro-apoptotic agents (BCL2-associated 

agonist of cell death (BAD), forkhead family transcription factors, GSK 

3). PI3K and AKT play critical roles in GLUT4 translocation 

(Fasshauer et al., 2000). Stable expression of a constitutively active 

membrane-bound form of AKT in 3T3L1 adipocytes results in 

increased glucose transport and persistent localization of GLUT4 to 

the plasma membrane (Hill et al., 1999). Conversely, expression of a 

dominant interfering AKT mutant inhibits insulin-stimulated GLUT4 

translocation.PKCz is also activated by polyphosphoinositides, which 

accumulate in insulin-treated cells; PKCz is, therefore, also sensitive 

to pharmacologic PI3K inhibitors, such as wortmannin (Fasshauer et 

al., 2000). Expression of PKCz or PKCl is also reported to induce 

GLUT4 translocation, whereas expression of a dominant-interfering 

PKCl inhibited GLUT4 translocation.  

 

Insulin promotes the uptake of fatty acids and the synthesis of lipids, 

whilst inhibiting lipolysis (Kahn, 2001). Lipid synthesis requires an 

increase in the transcription factor steroid regulatory element-binding 

protein 1c (SREBP1c) (Shimomura et al., 2000). However, the 

pathway leading to changes in SREBP expression are unknown. 

Insulin inhibits lipid metabolism through decreasing cellular 

concentrations of cyclic adenosine monophosphate (cAMP) by 
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activating a cAMP specific phosphodiesterase in adipocytes (Kubota 

et al., 1999, Kahn, 2001). Insulin signaling also has growth and 

mitogenic effects, which are mostly mediated by the AKT cascade as 

well as by activation of the RAS/RAF/mitogen-activated protein (MAP) 

kinase (RAS/MAPK) cascade. A negative feedback signal emanating 

from AKT, PKCΖ, p70 S6K and the MAPK cascades results in serine 

phosphorylation and inactivation of IRS signaling (White, 2003).  

 

Figure 3: A simplified view of insulin/IGF1 signaling through IRS proteins.   
Activation of the receptors for insulin and IGF-I results in tyrosine phosphorylation of the 
IRS proteins. The IRS proteins then recruit PI 3-kinase, Grb2/son of sevenless (SOS), 
and SHP-2. The Grb2/SOS complex mediates the activation of p21ras, thereby 
activating the ras/raf/mitogen-activated protein (MAP) kinase kinase (MEK)/MAP kinase 
cascade. SHP-2 feeds back to inhibit IRS protein phosphorylation by directly 
dephosphorylating the IRS protein and may transmit an independent signal to activate 
MAP kinase. The activation of PI 3-kinase by IRS protein recruitment results in the 
generation of PI-3,4-diphosphate (PI3,4P2) and PI-3,4,5-triphosphate (PI3,4,5P3). In 
aggregate, PI3,4P2 and PI3,4,5P3 activate a variety of downstream signaling kinases, 
including the mammalian target of rapamycin (mTOR), which regulates protein 
synthesis via PHAS/p70 S6 kinase (p70S6k). These lipids also activate 
phosphoinositide-dependent kinase (PDK) isoforms. The PDKs (PDK1, PDK2) activate 
protein kinase B (PKB or AKT), which mediates glucose transport in concert with the 
atypical PKC isoforms. AKT also regulates glycogen synthase kinase 3 (GSK-3) in 
glycogen synthesis, and a variety of regulators of cell survival. (White, 2002). 
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1.1.4. Insulin Receptor Substrates 

The Insulin Receptor Substrate (IRS) proteins are a family of 

cytoplasmic adaptor proteins that were first identified based on their 

role in insulin signaling. At least 11 intracellular substrates of the 

IR/IGF1R have been identified and at least four of these belong to the 

IRS family of proteins  (Taniguchi et al., 2006). The first family 

member to be identified, IRS 1, was initially characterized as a 185kD 

phosphoprotein that was detected in anti-phosphotyrosine 

immunoblots in response to insulin stimulation (White et al., 1985). 

IRS 2 was discovered as an alternative insulin receptor substrate, 

initially named 4PS, in insulin-stimulated cells derived from from Irs1-/- 

mice (Patti et al., 1995, Sun et al., 1995). 

IRS 1 appears to be ubiquitously expressed. IRS 2 was identified as a 

component of the interleukin 4 (IL4) signaling pathway, but it is now 

known to be expressed in nearly all cells and tissues (Boura-Halfon 

and Zick, 2009). IRS 3 is predominantly expressed in adipose tissue, 

and it was purified and cloned from rat adipose tissue (Lavan et al., 

1997). However, IRS3 has not been detected in humans (Björnholm et 

al., 2002). IRS 4 was purified and cloned from HEK293 cells, where it 

is the major IRS protein. IRS 4 is expressed predominantly in the 

pituitary, thymus, and brain (Fantin et al., 1999).  

Despite their significant structural homology (Figure 4), it is clear from 

the genotypes of knockout mice that the IRS proteins have non-

redundant physiological functions. Irs1-/- mice are born small and 

remain so throughout their lives, implicating a role for this IRS protein 

in somatic growth regulation (White, 1997, Withers et al., 1998). A 

similar contribution of the IRS homolog Chico to the regulation of cell 

size and growth in Drosophila has been observed (Böhni et al., 1999). 

Mice deficient for Irs1 develop insulin resistance but do not progress 
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to diabetes because they maintain normal pancreatic β-cell numbers. 

Irs2-/- mice are normal in size but have brain defects, the result of a 

50% decrease in neuronal proliferation. In contrast to Irs1-/- mice, 

IRS2-deficient mice develop early-onset diabetes due to a 

combination of peripheral insulin resistance and a loss of β-cell 

function (Withers et al., 1998, Burks and White, 2001). Irs2-/- females 

are also infertile, which together with evidence from insulin-signaling 

in Drosophila and C. elegans, supports a conserved mechanism for 

integrating reproduction and metabolism (Burks et al., 2000). Irs4-/- 

mice are phenotypically normal, with only mild growth, reproductive 

and insulin sensitivity defects (Mardilovich et al., 2009). Thus, 

IRS1/IRS2 are not redundant and appear to regulate unique signals in 

various tissues, whereas in certain tissues two IRS proteins might 

reinforce each other as in the case of IRS1/IRS3 in adipocytes (White, 

2002). A summary of phenotypes resulting from deletion of IRS 

proteins is presented in Table 2. 

 
Table 2: Murine phenotypes produced by IRS protein deficiency (Burks and 
White, 2001). 

1.1.4.1. Structure and isoforms 

Alignment of the amino acid sequences of the IRS proteins reveals 

important similarities and differences (Figure 4). Mammalian IRS1,2,3, 

and IRS4, and the Drosophila ortholog Chico contain an NH2-terminal 

PH domain adjacent to a phosphotyrosine-binding domain (Burks et 
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al., 1998). The PH domain possibly directs IRS proteins to the 

membrane in proximity to the IR/IGF1R and the PTB domain binds to 

phosphotyrosine 960 located in a NPXY (Asparagine-Proline-

Unspecified-Tyrosine) motif of the juxtamembrane region of the 

IR/IGF1R (Biddinger and Kahn, 2006) but hindrance of these 

interactions by serine/threonine phosphorylation negatively affects 

insulin signalling (Voliovitch et al., 1995). The structures of these 

domains are remarkably similar, and both facilitate recruitment of IRS 

proteins to the activated insulin and IGF-1 receptors. Deletion of both 

domains almost completely prevents tyrosine phosphorylation, even 

when insulin receptors are expressed at high levels (Burks et al., 

1997). PH domains can be exchanged among IRS proteins without 

noticeable loss of bioactivity, but chimeric IRS proteins composed of 

heterologous PH domains that are known to bind phospholipids are 

not phosphorylated by the insulin receptor (Burks et al., 1997). The 

center and C-terminus contain up to 20 potential tyrosine 

phosphorylation sites that after phosphorylation by the IR/IGF1R, bind 

to intracellular adaptor molecules that contain Src-homology-2 (SH2) 

domains, such as the p85 regulatory subunit of PI3K or GRB2. 

Serine/Threonine phosphorylation adjacent to tyrosine 

phosphorylation sites impedes binding of the SH2 domains of IRS 

proteins, thus inhibiting insulin signalling (Boura-Halfon and Zick, 

2009). More distantly related IRS family members IRS 5 and IRS 6, 

also known as DOK4 and DOK5 (Cai et al., 2003, Favre et al., 2003), 

share homology in their N-termini, but have truncated C-termini 

(Figure 4).  

IRS2 contains a unique region of undefined structure that binds to the 

phosphorylated regulatory loop of the insulin receptor kinase called 

the kinase regulatory loop-binding (KRLB) domain (Sawka-Verhelle et 

al., 1997). Phosphorylation of tyrosine residues in the KRLB domain 
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by the insulin receptor inhibits IRS2 binding to the receptor, 

suggesting a novel mechanism regulating

receptor and IRS2 that might distinguish the signal of IRS2 from IRS1. 

There are also multiple amino acid sequence differences between 

IRS1 and IRS2 that might create unique interaction sites for other 

partner proteins to fi

2003). 
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The crucial role of IRS proteins in insulin action has been 

demonstrated using transgenic knockout mouse models. A compelling 

molecular link to diabetes emerged from the finding that loss of the 

IRS2 branch of the insulin/IGF signaling system in mice impairs the 
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capacity of the pancreatic β-cells to compensate for insulin resistance 

(Burks and White, 2001). Targeted disruption of the Irs2 gene was first 

reported by the laboratory of Morris White (Withers et al., 1998). Irs2 

deficiency causes peripheral insulin resistance due to defective insulin 

action but it also prevents β cell compensation. Histological analysis 

revealed that, as early as 4 weeks, β cell mass is reduced by 17% 

compared with wild-type, in marked contrast to the 85% increase in β 

cell mass in Irs1-/- islets (Withers et al., 1998, Burks and White, 2001). 

Irs2-/- mice develop hyperinsulinemia as young adults, and males 

usually die by 12 weeks of age whereas diabetes in females 

progresses less rapidly and many live until around 24 weeks of age 

(Burks et al., 2000). As the disease progresses, pancreatic islet size 

invariably decreases and β cell function fails.  

Irs2-/- mice also display profound peripheral insulin resistance, 

particularly at the hepatic level (White, 1997, Withers et al., 1998, 

Previs et al., 2000). More recent studies with conditional knockout 

models have confirmed the importance of IRS2 signals for maintaining 

hepatic insulin sensitivity (Dong et al., 2006). Irs2-/- mice also display 

dysregulated lipolysis characteristic of insulin resistance (Garcia-

Barrado et al., 2011). Thus, the Irs2-deficient model provides proof-of-

concept that a single gene mutation can induce both peripheral insulin 

resistance and the β cell deficiency typical of T2D (Brady, 2004). In 

contrast, Irs1-/- mice never develop diabetes because they display 

lifelong, compensatory hyperinsulinemia (White, 2002, White, 2006). 

The progression of Irs2-/- mice toward diabetes is retarded or 

prevented by modifying elements of the insulin/IGF-signaling cascade 

that promote compensatory β cell function, including downregulation 

of protein tyrosine phosphatase PTP1b or the transcription factor 

Foxo1; or upregulation of AKT or pancreatic duodenal homeobox 1 

(PDX1). Transgenic upregulation of Irs2 in pancreatic β cell also 
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prevents diabetes in Irs2-/- mice, obese mice, and streptozotocin-

induced diabetic mice by promoting sufficient and sustained 

compensatory insulin secretion (Lin et al., 2004).  

Irs2 null mice also display a dysregulation of appetite at the 

hypothalamic level (Bruning et al., 2000, Lin et al., 2004). 

Furthermore, increased food intake is further complicated by 

abnormalities in fuel storage; Irs2-/- mice weigh 20% more and store 

twice as much body fat as age-matched controls (Burks et al., 2000). 

Interestingly, the development of peripheral insulin resistance could 

be uncoupled from increased fat mass, suggesting that the reduction 

in hypothalamic IRS2 mediated signalling affected insulin sensitivity in 

other tissues (Kubota et al., 2004, Taguchi et al., 2007). Irs2-

deficiency also causes elevated leptin levels and central nervous 

system (CNS) resistance to leptin (Burks et al., 2000), suggesting 

crosstalk between leptin and insulin signaling in regulating 

hypothalamic neuronal energy sensing and appetite. Irs2-deficient 

females are infertile due to reduced pituitary size and gonadotroph 

numbers, a decrease in concentrations of luteinizing hormone (LH) in 

plasma, a reduction in ovary size, reduced numbers of follicles, and 

consequent anovulation (Burks et al., 2000). Although IRS2 signaling 

in the CNS plays crucial roles in energy homeostasis (Choudhury et 

al., 2005), signaling events downstream of IRS2 in the ovary play 

critical roles in follicular development and ovulation by regulating key 

components of the cell-cycle (Neganova et al., 2007). However, the 

mechanisms by which reduced Irs2 expression in the brain diminishes 

both central leptin sensitivity and peripheral insulin sensitivity are 

unclear (Brady, 2004).  
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1.2. Type 2 Diabetes Mellitus 

1.2.1. Definition and epidemiology 

Type 1 diabetes (T1D) is due primarily to autoimmune-mediated 

destruction of pancreatic β cell islets, resulting in absolute insulin 

deficiency. Its frequency is low relative to type 2 diabetes, which 

accounts for over 90% of cases globally (Amos et al., 1997). Type 2 

diabetes (T2D) is characterized by insulin resistance and/or abnormal 

insulin secretion, either of which may predominate. Patients with T2D 

are not dependent on exogenous insulin, but may be required if 

control of blood glucose levels if this is not achieved with diet alone or 

with oral hypoglycaemic agents (Campbell, 2000). The “diabetes 

epidemic” particularly describes T2D, and is occuring both in 

developed and developing nations.  

Prevalence of diabetes in adults worldwide was estimated to be 4.0% 

in 1995 and to rise to 5.4% by the year 2025 (King et al., 1998). It is 

higher in developed than in developing countries. The world 

prevalence of diabetes among adults (20-79 years) will be 6.4%, 

affecting 285 million adults, in 2010, and will increase to 7.7%, and 

439 million adults by 2030 (Shaw et al., 2010). Between 2010 and 

2030, there will be a 69% increase in numbers of adults with diabetes 

in developing countries and a 20% increase in developed countries. 

The countries with the largest number of people with diabetes are, 

and will be in the year 2025, India, China, and the U.S. In developing 

countries, the majority of people with diabetes are in the age range of 

45-64 years. In the developed countries, the majority of people with 

diabetes are aged 65 years. 

The Di@bet.es Study is the first national study to examine the 

prevalence of diabetes and impaired glucose regulation in Spain. The 
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results of this study indicate an increase in the prevalence of diabetes 

mellitus: 13.8% of the Spanish population over 18 years of age suffers 

from diabetes, whereas 30% present with either impaired fasting 

glucose or impaired glucose tolerance (Soriguer et al., 2012). 

Diabetes mellitus and impaired glucose regulation (IGR) were 

significantly associated with a greater frequency of obesity, high blood 

pressure, hypertriacylglycerolaemia and low HDL cholesterol 

(Soriguer et al., 2012, Marcuello et al., 2012).  

The current criteria for the diagnosis of T2D established by the 

American Diabetes Association Expert Committee on Diagnosis and 

Classification of Diabetes Mellitus are: a random plasma glucose of 

≥200mg/dl (11,1 mmol/l); or a fasting plasma glucose (FPG) of 

≥126mg/dl (7,0 mmol/l); or a two-hour oral glucose tolerance test with 

plasma glucose ≥200 mg/dl. Abnormal FPG is ≤110mg/dl (6,1 mmol/l) 

and a FPG 110–126mg/dl is defined as impaired glucose tolerance, 

impaired fasting glucose, or prediabetes (Lieberman, 2003).   

1.2.2. Inflammation and potential molecular mechanisms of 
insulin resistance 

The ability of insulin to stimulate glucose disposal varies at least six-

fold in healthy individuals, and approximately one-third of the 

population is resistant to insulin action. When insulin-resistant 

individuals cannot maintain the hyperinsulinemia needed to overcome 

the defect in insulin action, T2D develops, and this was the first 

clinical syndrome identified as insulin resistance. The combination of 

insulin resistance and hyperinsulinemia increases the risk of 

developing other diseases involved in other tissues (Reaven, 2004b, 

Reaven, 2004a). 
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Defects in insulin-receptor function are associated with insulin-

resistant states such as obesity and T2D. Mutations in the IR gene 

have been identified in patients with genetic syndromes of extreme 

insulin resistance (Taylor, 1992). In other patients, insulin resistance 

results from a decrease in the number of insulin receptors on the cell 

surface (Gavin et al., 1974, Epstein et al., 1991) However, defects in 

downstream signalling cascades may account for insulin resistance in 

most T2D patients. Most if not all insulin signals are produced or 

modulated through tyrosine phosphorylation of IRS 1, 2, its homologs, 

or other scaffold proteins. Dysregulation of these IRS proteins by 

proinflammatory cytokines impairs glucose tolerance as a result of 

peripheral insulin resistance (Starr et al., 1997, Yasukawa et al., 2000, 

Rui et al., 2001, Yuan et al., 2001). The idea that inflammation is 

associated with insulin resistance has been known for a long time and 

is consistent with the finding that stress-induced cytokines tumor 

necrosis factor α (TNF-α) and interleukin 6 (IL6) cause insulin 

resistance, suggesting that diet, physiological stress, and obesity 

promote insulin resistance (Derek LeRoith  MD, 2003).  

TNF α via activation of their transduction pathways, are able to alter 

insulin signaling by inactivating IRS through serine/threonine 

phosphorylation (Hotamisligil et al., 1996). There are many 

serine/threonine kinases are involved in the inhibition of 

phosphorylation of insulin signaling: I-kappa-β kinase (IKKβ), c-Jun 

NH2-terminal kinase (JNK) and protein kinase C θ (PKC θ). JNK 

phosphorylates numerous cellular proteins, including IRS 1 and IRS 2, 

SHC, and GAB1 (Rui et al., 2001, Lee et al., 2003, Taniguchi et al., 

2006, Boura-Halfon and Zick, 2009) A role for JNK during insulin 

action is compelling, as both IRS 1 and IRS 2 contain JNK binding 

motifs. Both factor pathways are activated in obesity, not only in 

response to adipokines, but also by increased free fatty acid 
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concentrations and oxidative stress. As well as its link with insulin 

resistance, JNK activity regulates insulin production, while selective 

inhibition of JNK improves insulin production in the pancreatic islets of 

obese mice in response to glucose (Hirosumi et al., 2002). 

Ubiquitin-mediated degradation of IRS1 and IRS2 also promotes 

insulin resistance (Rui et al., 2002). IL6 secreted from leukocytes and 

adipocytes increases expression of suppressor of cytokine signaling 

proteins (SOCS), which are known for their ability to inhibit cytokine 

receptor signaling. However, SOCS1 and SOCS3 also recruit an 

elongin BC-based ubiquitin ligase into the IRS protein complexes to 

mediate ubiquitinylation. Protein or lipid phosphatases, including 

protein-tyrosine phosphatase 1B (PTP1B), SH2-containing inositol 

phosphatase 2 (SHIP2) or phosphatase and tensin homologue 

deleted on chromosome ten (PTEN) inhibit insulin signaling. 

Disruption of each gene in mice increases insulin sensitivity (White, 

2003, White, 2002).  

1.3. Obesity 

1.3.1. Definition and epidemiology 

Obesity has been classified as a ‘global epidemic’ by the WHO. At 

least 2.8 million adults die each year as a result of being overweight or 

obese. The WHO estimates that globally there are more than 1 billion 

overweight adults [Body Mass Index in kg/m2 (BMI) > 27], 300 million 

of whom are obese (BMI > 30). Overweight and obesity are linked to 

more deaths worldwide than underweight pathologies (Wang et al., 

2002, Popkin and Gordon-Larsen, 2004, Mendez et al., 2005). In 

adults, obesity is associated with an increased risk of diseases that 
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secreting hormones, cytokines, and proteins that affect the function of 

cells and tissues throughout the body (Gesta et al., 2007). 

The CNS influences energy balance and body weight through three 

mechanisms (Spiegelman and Flier, 2001): (1) effects on behaviour, 

including feeding and physical activity; (2) effects on autonomic 

nervous system activity, which regulates energy expenditure and 

other aspects of metabolism; and (3) effects on the neuroendocrine 

system, including secretion of hormones such as growth hormone, 

thyroid, cortisol, insulin, and sex steroids. 

1.3.2. Adipose Tissue  

All animal species, from C. elegans to Homo sapiens have developed 

a mechanism for storing excess energy in the form of fat for future 

needs. In most species, fat storage occurs in a mesodermal tissue 

(Gesta et al., 2007). Adipose tissue (AT) has been historically 

considered as an inert tissue, providing a site for passive fat 

accumulation, insulation against heat loss and mechanical and/or 

structural support. However, newly recognized endocrine, paracrine 

and autocrine activities of AT have forced a re-evaluation of this static 

view of AT biology. Research of the last two decades has 

demonstrated the importance of white adipose tissue (WAT) 

metabolism and WAT-derived factors in the development of obesity 

and systemic insulin resistance. WAT secretes bioactive molecules, 

generally termed  adipokines ,that modulate fat storage, adipogenesis, 

energy metabolism, and food intake (Zulet et al., 2012). 

When the intake of energy chronically exceeds energy expenditure, 

the excess energy is stored in the form of triglycerides (TG) in 

adipocytes. Increased AT mass may be produced by an increase in 
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cell size, cell number, or both since adipose cells are variable in size, 

reflecting principally the amount of stored TG (Björntorp, 1974, 

Johnson et al., 1978, Björntorp et al., 1982). Mild obesity mainly 

reflects an increased adipose cell size (hypertrophic obesity) while 

more severe obesity also involves an increased fat cell number 

(hyperplastic obesity). The reversible response to obesity treatment 

may be related to the plasticity of AT. Studies in humans and other 

models of obesity indicate that an increase in cell size (adipocyte 

hypertrophy) often precedes increases in cell number (adipocyte 

hyperplasia). The development of hyperplastic adipose tissue is 

associated with the most severe forms of obesity and has the poorest 

prognosis for treatment (Hausman et al., 2001). 

1.3.2.1. Types of adipose tissue 

The AT of mammals is classified into 2 types: white and brown 

adipose tissue. Both share many metabolic characteristics but WAT 

mainly stores excess energy for subsequent metabolic demand 

whereas BAT functions as an energy-dissipating organ (Cannon et al., 

1982, Cinti, 2001b, Cannon and Nedergaard, 2004, Cinti, 2005). WAT 

is found as subcutaneous (SC) and visceral (V) depots. Classically, 

the V depot was considered to be more metabolically active as it 

released factors can be delivered to the portal venous system and, 

thus, can directly impact liver metabolism (Björntorp, 1990). In 

humans, WAT is dispersed throughout the body with major intra-

abdominal depots around the omentum, intestines, and perirenal 

areas, as well as in SC depots in the buttocks, thighs, and abdomen 

(Figure 7). WAT can be found in many other areas, including in the 

retro-orbital space, on the face and extremities, and within the bone 

marrow. Some AT is responsive to sex hormones, such as adipose 

tissue in the breasts and thighs (Cinti, 2001a).  
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The developmental patterns of BAT and WAT are distinct. BAT 

emerges earlier than WAT during fetal development. Morphologically, 

BAT can be distinguished from WAT by multilocular lipid inclusions, 

rich vascularization, and abundant mitochondrial density (Cinti, 

2001b). BAT responds to cold-induced energy loss through the 

expression of uncoupling protein 1 (UCP 1) found in the mitochondria 

membrane that allows dissipation of the proton electrochemical 

gradient generated by respiration in the form of heat (Nicholls and 

Locke, 1984). With the exception of UCP 1, which is generally 

accepted as the defining marker of brown fat, most other differentially 

expressed genes show only relative differences between the two 

types of adipose cells. These include among others the fatty acid 

activated transcription factor PPARα and the peroxisome proliferator-

activated receptor gamma coactivator 1 alpha (PGC 1α) as well as 

factors involved in mitochondrial biogenesis and function (Gesta et al., 

2006). Leptin, the nuclear corepressor RIP140, and the matrix protein 

fibrillin-1 are more enriched in WAT than BAT. At the cellular level, 

both BAT and WAT appear to originate from MSC (Gesta et al., 2007, 

Powelka et al., 2006).  
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Figure 7: Types of AT and distribution in the human body. 
In humans, depots of WAT are found all over the body, with SC and V depots 
representing the main compartments for fat storage. BAT is abundant at birth and still 
present in adulthood but to a lesser extent (Gesta et al., 2007). 

 

The distribution of WAT not only varies considerably between species 

but also between individuals of the same species. In humans, 

variations of WAT distribution have gained considerable interest due 

to their association with metabolic disorders. There are two major 

theories about why these different fat distributions are differentially 

linked to metabolic complications. The first is based on anatomy and 

the fact that V fat drains its products (FFA and various adipokines) 

into the portal circulation where they can act preferentially on the liver 

to affect metabolism (Björntorp, 1990). The second reflects cell 

biology and is based on the concept that fat cells in different depots 

have different properties causing them to be linked to a greater or 
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lesser development of metabolic disorders (Lafontan and Berlan, 

2003). Depot-specific variations in gene expression and adipose 

tissue function appear to be intrinsic. Thus, isolated cloned human 

preadipocytes from SC adipose tissue exhibit a greater ability to 

differentiate in culture than those from V depots (Hauner and 

Entenmann, 1991, van Harmelen et al., 2004). These differences are 

conserved over multiple cell generations and are associated with 

different patterns of gene expression, suggesting that these adipose 

depots could result in part from different precursor cells (Tchkonia et 

al., 2002, Tchkonia et al., 2005, Tchkonia et al., 2006, Tchkonia et al., 

2007). 

Sensitivity of AT to insulin is also depot-dependent. Lipogenesis is the 

pathway of TG synthesis and is promoted by insulin via activation of 

lipoprotein lipase (LPL) and by adenosine, the autocrine regulator 

(Mauriege et al., 1990, Bouchard and Perusse, 1993, Bouchard, 

1997). Insulin acts as a potent lipogenic agent, both by promoting lipid 

synthesis (LPL activity, glucose transport and TG synthesis) and by 

reducing catecholamine sensitivity via down regulation of β adrenergic 

receptors (Engfeldt et al., 1988). Adipocytes isolated from V fat depots 

have reduced (via decreased β 1 and β 2 receptor expression) lipolytic 

response to catecholamines when compared to SC abdominal 

adipocytes (increased β 1 and β 2 and decreased α 2 receptor 

expression). SC abdominal fat cells have a higher affinity for insulin 

and are more sensitive than V fat cells (Bouchard et al., 1993). There 

are marked differences between AT origen, particularly in women, in 

LPL expression (SC < V) and in the sensitivity of AT to insulin 

stimulated increases in LPL activity (Fried et al., 1993). There are also 

important depot-specific differences exist in replication, adipogenesis 

and apoptosis. Adipose depots appear to possess differing 

proportions of preadipocyte populations with differing capacities for 
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replication and apoptosis. Human preadipocytes and adipocytes from 

the V depot display greater rates of apoptosis than cells from SC 

depots of the same subject. Human V adipocytes are also more 

susceptible to apoptosis induced by TNF α (Henry et al., 2006).  

1.3.2.2. Developmental Origen of Adipose Tissue 

The prevailing developmental model suggests that mesoderm/ 

mesenchymal stem cells (MSC) give rise to bone, muscle, WAT, and 

BAT in response to appropriate developmental cues (Wassermann, 

1965). The formation of the mesoderm begins with the migration of a 

layer of cells between the primitive endoderm and ectoderm. This 

layer spreads along the anteroposterior and dorsoventral axes of the 

developing embryo giving rise to the axial, intermediate, lateral plate, 

and paraxial mesoderm. MSC were initially identified in postnatal 

human bone marrow and are capable of differentiating into 

adipocytes, osteoblasts, chondrocytes, myoblasts, and connective 

tissue (Grigoriadis et al., 1988, Pittenger et al., 1999, Zuk et al., 2001). 

Although the exact number of intermediate stages between a MSC 

and a mature adipocyte is uncertain, it is believed that the MSC gives 

rise to a common early precursor (preadipocyte), which in turn 

develops into committed white and brown preadipocytes that under 

appropriate stimulatory conditions differentiate into mature adipocytes 

of different types (Figure 8). However, as none of these precursor 

cells possesses any unique morphological characteristics or definitive 

gene expression markers, it is not clear if separate preadipocytes for 

BAT and WAT exist or if there are different white preadipocytes for 

different white adipose depots (Gesta et al., 2007). Recent studies 

suggest that WAT and BAT may actually derive from distinct precursor 

populations. Skeletal muscle progenitor cells can give rise to either 

muscle cells or brown fat cells, but not white fat cells and the decision 
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of this precursor to become muscle or BAT is controlled by the 

transcription factor PRDM16 (Seale et al., 2007, Seale et al., 2008). 

Expression of PRDM16 causes Myf5 expressing muscle precursors to 

commit to becoming brown fat cells, whereas reduction of PRDM16 

expression by shRNA targeting induces the myogenic differentiation 

program  (Seale et al., 2008). The discovery that muscle and BAT 

share common progenitor cells may also help to explain the functional 

dimorphism of adipose tissues, with WAT acting primarily to storage 

lipid and BAT serving to metabolize lipids to produce heat. Although 

the WAT and BAT are superficially similar in that they both contain 

lipid droplets, they appear to arise from divergent developmental 

programs (Won Park et al., 2008)  
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Figure 8: Development of AT from Mesoderm Lineage.  
Mesenchymal stem cells are precursors of bone, muscle, and fat cells. WAT 
differentiation is driven by the transcription factors PPARγ and C/EBPs, giving rise to 
TG storing WAT. Brown fat cells share precursors (Myf5+) with muscle cells but not with 
white adipocytes. Adapted figure from American College of Cardiology and (Won Park 
et al., 2008). 
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1.3.2.3. Function and metabolism of adipose tissue 

The main role of WAT is the storage of TG during energy consumption 

and release of fatty acids (FA) when energy expenditure exceeds 

energy intake (Figure 9). As de novo lipogenesis from glucose or 

other precursors is reduced in human AT, most of the substrate for 

storage is obtained from circulating lipids, either in the form of 

lipoprotein particles or complexed with albumin (Henry et al., 2006). 

This regulation is achieved through endocrine, paracrine and 

autocrine signals that allow the adipocyte to regulate the metabolism 

of other fat cells or cells located in brain, liver, muscle or pancreas. 

Adipocytes and AT are actively involved in metabolic processes such 

as angiogenesis, adipogenesis, extracellular matrix dissolution and 

reformation, steroid metabolism, immune response and hemostasis 

(Vázquez-Vela et al., 2008).  

The adipocyte has developed a system for the control of the storage 

and release of FA. The following proteins involved in lipogenesis 

program have an impact on insulin sensitivity and circulating lipid 

levels:  

 Lipoprotein lipase (LPL) catalyzes the release of FA from 

circulating lipoproteins. LPL activity is greater in SC WAT 

compared to V WAT (Fried et al., 1993).  

 Fatty acid transporters: The uptake of long chain FA (LCFA) into 

adipocytes is a saturable process and at least a portion of FFA 

diffusion is protein mediated (Stahl, 2004). Several proteins are 

involved including plasma membrane fatty acid-binding protein 

(FABP), fatty acid transport protein (FATP) and fatty acid 

translocase (FAT).  

 Fatty acid-binding proteins (FABP): Subsequent to diffusion and 

transport, cytosolic FFA bind to FABPs. FABPs increase the 
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solubility of FFAs, augment FFA uptake by increasing the FFA 

concentration gradient and serve to direct intracellular FFAs to 

specific fates (Haunerland and Spener, 2004). Nine members of 

the FABP subfamily of lipid-binding proteins have been identified 

(Glatz and Storch, 2001).  

 Phosphoenolpyruvate carboxykinase (PEPCK): Efficient storage 

of FA requires esterification to TG. The backbone for TG 

formation is provided by glycerol-3-phosphate (G3P), arising from 

glucose uptake into the cell during the fed state. The key enzyme 

in the glyceroneogenesis pathway is the cytosolic PEPCK 

(Reshef et al., 2003, Beale et al., 2003). 

 Perilipin: properly stored TG does not exist as lipid micelles. 

Rather, the lipid droplet is coated by members of the family of 

lipid droplet-associated proteins (Londos et al., 1999, Tansey et 

al., 2004). In adipocytes, this role is filled by the perilipin family of 

lipid-binding proteins, including perilipin, adipophilyn and TIP47. 

Alternative splicing of the perilipin gene results in two products, 

perilipin A and B; perilipin A is the hormone sensitive form 

(Greenberg et al., 1993).  

 Hormone-sensitive lipase (HSL): Stoed TG are hydrolyzed by 

HSL to generate FFA when needed. Three isoforms of HSL have 

been identified (Holm, 2003, Yeaman, 2004). 

 Glucose transporters (GLUT): WAT represents a secondary site 

for glucose utilization. Glucose transport into adipocytes is 

mediated by two members of the family: GLUT1 and GLUT4. 

GLUT1 is constitutively expressed and predominately localized to 

the plasma membrane and is primarily responsible for basal 

transport. Meanwhile, GLUT4 is responsible for insulin-stimulated 

increases in cellular transport in cardiac and skeletal muscle and 

adipocytes, rapidly translocating from intracellular pools to the 

cell surface (Yokomori et al., 1999, Uldry and Thorens, 2004) 
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Figure 9: Regulation of lipogenesis and lipolysis in adipocytes.  
Under lipogenic conditions, insulin stimulates translocation of GLUT4 to the plasma 
membrane. Intracellular glucose is converted to G3P. Insulin also activates LPL located 
on the cell surface of the vascular endothelium. Activated LPL removes fatty acids from 
intestine-derived chylomicron (CM) and liver-derived very low density lipoprotein 
(VLDL), and then fatty acids are incorporated into adipocytes. Under lipolytic conditions, 
catecholamines stimulate adrenergic receptors to translocate HSL, a key enzyme 
hydrolyzing TG to FFA and glycerol, to the lipid droplets. FFA and glycerol are released 
into the bloodstream and utilized for thermogenesis and gluconeogenesis, respectively 
(Hibuse et al., 2006). 

 

1.3.2.4. Control of Adipose tissue: cell size vs number 

Hyperplasia (increase of cell number) and hypertrophy (cell size 

increase) are two possible mechanisms for increasing AT mass 

(Hirsch and Batchelor, 1976). Radio-tracing studies of human AT 

suggest that adipocyte number may be determined early in life 

(Spalding et al., 2008), providing a possible basis for the concept of a 

fixed individual body weight. AT adipocytes are remarkably variable in 

size, reflecting principally the amount of stored TG. Fat cell size 

reflects the integrated effect of a number of factors affecting cellular 

lipid metabolism. Adipocyte volume has been correlated with lipolytic 

activity in human WAT (Björntorp, 1974, Mauriege et al., 1990). 
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Adipocyte size correlates positively with insulin resistance and 

IL6/TNFα secretion. In addition, severely obese individuals with a 

healthy metabolic profile have smaller adipocytes than obese 

individuals with altered metabolism (O'Connell et al., 2010). The 

mechanism underlying this phenomenon is poorly understood but the 

hypothesis suggests that as an adipocyte increases in size it 

eventually reaches a state where it can no longer store lipids. This 

causes an ‘overflow’ of FA into ectopic sites such as the liver and 

muscle, promoting insulin resistance. Individuals with a low adipocyte 

endowment or impaired lipid storage may be more susceptible to 

obesity related diseases than individuals with superior lipid storage 

potential (Henry et al., 2012).  

1.3.2.5. The role of inflammation and adipokines in metabolic 
diseases 

Obesity is associated with a state of chronic low-grade inflammation 

such as elevated serum concentrations of C reactive protein (CRP) 

and inflammatory cytokines produced by immune cells located within 

the AT (Rajala and Scherer, 2003, Pickup et al., 1997). The number of 

macrophages present in WAT strongly correlates with obesity and 

adipose tissue macrophages (ATM) are considered as a critical factor 

for the development of obesity-induced insulin resistance and the 

progression to T2D (Falcão-Pires et al., 2012, Rupnick et al., 2002, 

Maury and Brichard, 2010, Trayhurn and Wood, 2004). Moreover, AT 

itself is a source of inflammation: increased TNFα and IL6 expression 

are implicated in both whole-body and local insulin resistance (Pittas 

et al., 2004, Ofei et al., 1996, Bastard et al., 2002). 
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Figure 10: Relationship between obesity, inflammation and insulin resistance. 
Different pathways through which adipokines generated by an expanding adipose tissue 
can contribute to the development of the metabolic complications associated with 
abdominal obesity such as insulin resistance and atherogenic dyslipidemia. Figure 
adapted from the International Chair on Cardiometabolic Risk. 
 

Adipokines are factors that are produced and secreted by AT and 

induce responses in various tissues through binding to specific 

receptors (Calle and Fernandez, 2012). Some adipokines such as 

adiponectin or lepitn are exclusively produced by the adipose tissue 

whereas others like TNF α or IL6 can be secreted by diverse cell 

types in different organs (Antuna-Puente et al., 2008, Kiefer et al., 

2010, Zeyda et al., 2011). Obesity is associated with altered 

expression of the following adipokines:  

 LEPTIN is the product of the the ob gene (Zhang et al., 1994). 

Leptin is secreted mainly by SC fat (Montague et al., 1997). 

Plasma leptin and mRNA expression in AT are directly related to 

obesity severity, as an increase of fat mass is associated with an 

increase of leptin (Considine and Caro, 1997). Leptin activates its 
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receptors (gen db) in hypothalamus, inhibiting food intake and 

promoting energy expenditure (Vaisse et al., 1996, Friedman and 

Halaas, 1998). Additionally, leptin is associated with inflammation 

since it can modulate TNFα production and macrophage 

activation (Kiguchi et al., 2009). Insulin resistance characterizes 

states of severe leptin deficiency or resistance, such as ob/ob or 

db/db mice, or genetic models of lipoatrophic diabetes. (Kahn, 

2001, Adilson Guilherme, 2008). 

 ADIPONECTIN, also called Acrp30 or adipoQ (gen Adipoq), is a 

fat cell derived peptide that, in contrast to other adipokines, is 

downregulated in obese patients with insulin resistance or T2D 

(Hu et al., 1996). Acute treatment of mice with this adipokines 

decreases insulin resistance, decreases plasma FFAs and the 

TG content of muscle and liver, and increases expression of 

genes involved in FA oxidation and energy expenditure (Kahn, 

2001). A genome-wide scan in humans mapped a susceptibility 

locus for type 2 DM and metabolic syndrome to chromosome 

3q27 in a region near the adiponectin gene (Kahn, 2001, Adilson 

Guilherme, 2008). 

 RESISTIN: Initial studies suggested that resistin might cause 

insulin resistance, as levels were increased in obese mice and 

reduced by anti-diabetic drugs of the TZD class (Steppan et al., 

2001). However, studies of resistin in humans have failed to 

reveal a clear relationship with obesity and T2D and more recent 

studies suggest a role for this factor in inflammation. Resistin can 

directly injure endothelium not only by inducing synthesis and 

secretion of endothelin 1 by endothelial cells, but also by altering 

vascular cell adhesion molecule (VCAM1) and monocyte 

chemoattractant protein 1 (MCP 1) expression (Calabro et al., 

2004).. 
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 RETINOL BINDING PROTEIN (RBP) 4: RBP4 levels are 

elevated in insulin-resistant mice and humans with obesity and 

type 2 DM. Transgenic overexpression of human RBP4 or 

injection of recombinant RBP4 in normal mice causes insulin 

resistance. Conversely, genetic deletion of Rbp4 enhances 

insulin sensitivity (Qin Yang, 2005). 

 Tumor Necrosis Factor (TNFα) is a proinflammatory cytokine 

produced by numerous cells, but mainly macrophages and 

lymphocytes. Adipocytes also produce TNFα in rodents, and to a 

lesser extent in humans (Hotamisligil et al., 1993). TNFα is 

increased in fat of obese rodents and humans, and has been 

shown to produce serine phosphorylation of IRS, resulting in 

reduced insulin receptor kinase activity and insulin resistance 

(Hotamisligil et al., 1996). 

 Interleukin 6 (IL6) is a cytokine produced by several cells 

(fibroblasts, endothelial cells, monocytes) and by AT, which is 

increased in obesity. Capacity to secrete IL6 is six times higher in 

V than in SC adipose tissue (Fried et al., 1998, Fain et al., 2004). 

Several studies suggest that IL6 could be implicated in insulin 

resistance and its complications (Bastard et al., 2000, Bastard et 

al., 2002) . One of its major actions is control of the hepatic 

production of inflammatory proteins such as CRP. There is a 

positive relationship between IL6 levels in AT and circulating 

CRP levels which is an important cardiovascular risk factor.  

 MONOCYTE CHEMOATTRACTANT PROTEIN 1 (MCP1) is 

secreted in large amounts by hypertrophied adipocytes where it 

functions as a chemoattractant that enhances macrophage 

infiltration into adipose tissue in obese mice and humans (Sartipy 

and Loskutoff, 2003, Weisberg et al., 2003, Cancello et al., 

2005). Consistent with this role of MCP1, AT of lean subjects 

usually consists of approximately 5–10% macrophages, whereas 
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in obese patients, macrophage content in adipose tissue can be 

as high as 50% of the total number of cells. Thus, the increased 

production of MCP1 by larger adipocytes might contribute to a 

pro-inflammatory st

Figure 11: Contribution of adipokines to obesity and metabolic syndrome
The schematic overview 
central metabolic processes. Macrophage
the inflammatory response modulation, but their interaction with endothelial cells and 
adipocytes is also fundamental. ROS: reactive oxygen species
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the result of an increase in size and number of adipocytes. As the 

proliferation of mature adipocytes in vivo is very limited, this pool of 

APC is responsible for the renewal of adipocytes and the potential of 

this tissue to expand in response to chronic energy overload (Dani 

and Billon, 2012). 

1.4.1. Identification and phenotype of APC 

Considerable controversy exists regarding the specific makers  

expressed by preadipocyte  and thus, the only definitive criteria that 

identifies preadipocytes is their subsequent ability to differentiate to 

cells that express adipocyte markers and accumulate lipid. It is also 

important to realize that even cell lines considered good models of 

WAT do not express all WAT markers. For example, mouse 

preadipocytes line 3T3L1 produce little, if any, leptin compared to 

normal white adipocytes (Gesta et al., 2007). 

APC have been detected in the proximity of WAT vasculature. Using 

FACS to analyze the expression of cell surface and stem cell markers, 

two cell populations were isolated: one CD24+ (lin-

:CD29+:CD34+:Sca-1+:CD24+) and one CD24-. Transplantation of 

this CD24+ population into the fat depots of A-Zip lipodystrophic mice 

(lipoatrophic diabetic phenotype) led to the development of fat depots 

with normal adipocyte morphology (Rodeheffer et al., 2008). However, 

the CD24- and CD34- populations failed to reconstitute WAT after 

transplantation into A-ZIP mice, suggesting that CD24+ populations 

are the true source of white APC in vivo (Won Park et al., 2008).  

APC isolated from different depots display different characteristics in 

terms of proliferation, differentiation, and gene expression profiles. 

The cellular and molecular mechanisms underlying these fat depot 
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dependent differences are currently unknown. However, several 

observations suggest that developmental mechanisms contribute to 

regional variation in function. Consequently, studies on the origins of 

APC could verify that adipocytes derived from different developmental 

origins or cellular sources are functionally different (Gesta et al., 2006, 

Tchkonia et al., 2007, Dani and Billon, 2012). 

1.4.2. Molecular regulation of adipogenesis 

Adipogenesis is the process by which preadipocytes mature into 

adipocytes. The transition from preadipocyte to adipocyte involves 

four stages: growth arrest, clonal expansion, early differentiation, and 

terminal differentiation (Gregoire et al., 1998). These stages are 

orchestrated by a cascade of transcription factors (Spiegelman and 

Flier, 1996). Initial growth arrest coincides with the expression of the 

transcription factors peroxisome proliferator activated receptor γ 

(PPARγ) and CCAAT/ enhancer binding protein α (C/EBPα). The 

induction of these two proteins is characterized by a second, 

permanent period of growth arrest followed by expression of the fully 

differentiated phenotype (Figure 12). 

PPARγ is a member of the nuclear-receptor superfamily, and is both 

necessary and sufficient for adipogenesis (Tontonoz et al., 1994b, 

Tontonoz et al., 1994a). Thus, it has been called the master regulator 

of adipogenesis. Most pro-adipogenic factors active PPARγ 

expression or activity. Indeed, the pro-adipogenic C/EBPs and 

Kruppel-like factors (KLFs) have all been shown to induce at least one 

of the two Pparγ promoters. By contrast, anti-adipogenic GATA 

factors function in part by repressing PPARγ expression (Rosen and 

MacDougald, 2006). PPARγ exists as two isoforms (γ1 and γ2) 

formed by alternative splicing and differing in their N-termini. PPARγ2 
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is expressed at high levels in adipose tissue, while levels of PPARγ1 

can be found in many other tissues. This receptor is induced very 

early in adipose cell differentiation, and is present at higher levels in 

preadipocytes than other fibroblastic cells (Zhu et al., 1995, Fajas et 

al., 1997). The adipogenic activity of PPARγ, like the well established 

3T3-L1 and 3T3-F442A preadipocyte cell lines, is markedly enhanced 

by presence of insulin (Spiegelman and Flier, 1996). Roles for PPARγ 

in energy homeostasis have been extensible studied following the 

discovery that PPARγ ligands decrease blood glucose of patients with 

T2D (Yki-Järvinen, 2004, Rangwala and Lazar, 2004) (Figure 12).  

PPARγ is not the only transcription factor that is significantly elevated 

in adipocyte differentiation. C/EBP α, β and δ are all markedly induced 

during differentiation in culture (Cao et al., 1991). C/EBPβ and 

C/EBPδ are induced early during the differentiation upon hormonal 

stimulation and this is followed by the induction of PPARγ and 

C/EBPα, since both C/EBPβ and C/EBPδ play a role in the initiation of 

the adipogenic program (Wu et al., 1996). Ectopic expression of 

C/EBPβ promotes adipogenesis in both pre-adipocytes and fibroblasts 

by inducing the expression of PPARγ. C/EBPα, like PPARγ, directly 

binds to many fat cell–specific genes and it is increased late in the 

process of adipogenesis. Precocious expression of C/EBPα can 

accelerate the endogenous differentiation program of preadipocytes, 

while antisense mRNA blocks the differentiation markedly. The 

genetic disruption of C/EBPα causes a major reduction in the lipid 

content of the fat tissue; however, fat cell differentiation apparently still 

occurs (Spiegelman and Flier, 1996, Wu et al., 1999). C/EBPα may 

also play a role in glucose homeostasis and appears to regulate 

insulin sensitivity during adipogenesis (Rosen and Spiegelman, 2000, 

Gerin et al., 2006). 
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1.4.3. Insulin and IGF1 in adipogenesis 

Efficient differentiation of APC to adipocytes requires insulin (Hauner 

et al., 1989, Litthauer and Serrero, 1992). In the early stages of 

adipogenesis, insulin functions predominantly through IGF1 receptor 

signalling. Fibroblasts and brown pre-adipocytes from mice that lack 

insulin receptors are deficient in adipogenesis (Blüher et al., 2002). 

The loss of individual IRS proteins inhibits adipogenesis in brown 

adipocytes, with an order of importance of IRS1>IRS3>IRS2>IRS4 

(Tseng et al., 2004). Combined deletion of Irs1 and Irs3 induce 

significant lipoatrophy, although brown-adipose tissue is relatively 

unaffected (Laustsen et al., 2002).  

 

1.5. Osteopontin 

Osteopontin (OPN, gene Spp1), also called secreted phosphoprotein-

1 and sialoprotein-1, is a multifunctional protein expressed in activated 

macrophages and T cells, osteoclasts, hepatocytes, smooth muscle, 

endothelial, and epithelial cells. OPN was originally classified as a T 

helper type 1 (Th1) cytokine that is involved in physiological and 

pathological mineralization in bone and kidney, cell survival, 

inflammation, and tumor biology (Mazzali et al., 2002, Kiefer, 2010, 

Kiefer et al., 2010). OPN can exist as a soluble cytokine or a 

mineralized matrix-associated molecule. The OPN gene consists of 7 

exons, of which exon 1 is non-coding (Craig and Denhardt, 1991, 

Hijiya et al., 1994).  Similarities in gene location and exon structure, 

but not amino acid sequence have led to the proposal that OPN is a 

member of a family of proteins termed the small integrin binding 

ligand, N-linked glycosylation (SIBLING) family.  Other members of 

this family include bone sialoprotein (BSP), dentin matrix protein 1 
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(DMP1), dentin sialophosphoprotein (DSPP), and matrix extracellular 

phosphoglycoprotein (MEPE) (Fisher et al., 2001, Kazanecki, 2007). 

1.5.1. Structure and functions 

OPN is a negatively‐charged acidic hydrophilic protein of 

approximately 300 amino acid residues, and is secreted into all body 

fluids (Mazzali et al., 2002). The OPN cDNA from various mammalian 

species exhibits a high degree of sequence homology. The molecule 

undergoes post‐translational modification, and is phosphorylated and 

glycosylated (Sørensen et al., 1995, Jono et al., 2000). OPN has an 

arginine‐glycine‐aspartic acid (RGD) cell binding sequence, a calcium 

binding site and two heparin binding domains.  Alternate splice forms, 

different alleles, and polymorphisms of OPN have been reported, 

however the significance of these changes with regard to OPN’s 

function have not been elucidated.  

Cells may bind OPN via multiple integrin receptors including the 

vitronectin receptor (αvβ3) as well as various β1 and β5 integrins. 

OPN does not bind the standard form of CD44 (hyaluronic acid 

receptor) but does bind various isoforms of CD44. The interaction of 

CD44 and OPN has been implicated in migration of macrophages and 

tumor cell lines. A feedback loop may also exist as many researchers 

have shown that OPN increased expression of CD44, primarily using 

cancer cell lines such as the breast cancer cell line 21NT (Khan et al., 

2005), liver carcinoma cell line HepG2 (Gao et al., 2003), melanoma 

cells (Samanna et al., 2006) or macrophages. OPN may be cleaved 

by thrombin, resulting in the exposure of additional cryptic binding 

sites as well as the production of functional chemotactic fragments 

(Kazanecki et al., 2007). Osteopontin’s function in many tissues is to 

promote adhesion and facilitate migration of a variety of cell types 
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through interaction with the integrin and CD44 variants; it is also a 

cytokine that activates many signaling pathways and supports cell 

survival. 

In bone, OPN is one of the more abundant non-collagenous proteins 

in bone and is localized to cell-matrix and matrix-matrix interfaces. 

OPN is expressed by all the major bone-specific cell types: 

osteoblasts, osteoclasts and osteocytes (Merry et al., 1993). The 

major role for OPN is in stress-induced bone remodeling, with most 

studies focusing on stresses that induce bone resorption by 

osteoclasts. In addition to its effects on the cells in bone, OPN is also 

a regulator of crystal growth, including hydroxyapatite (HA) the crystal 

of bone (Shapses et al., 2003).  

In kidney and urine, OPN protein has been shown to be a component 

of kidney stones and its expression is upregulated in the diseased 

state (Xie et al., 2001). OPN promotes accumulation of macrophages, 

and may play a role in macrophage-mediated renal injury. However, 

OPN has some renoprotective actions in renal injury, such as 

increasing tolerance to acute ischemia, inhibiting inducible nitric oxide 

synthase and suppressing nitric oxide synthesis, reducing cell 

peroxide levels and promoting the survival of cells exposed to 

hypoxia, decreasing cell apoptosis and participating in the 

regeneration of cells. In addition, OPN is associated with renal stones, 

but whether it acts as a promoter or inhibitor of stone formation is 

controversial (Xie et al., 2001). 

In immune response and inflammation, OPN induces the expression 

of a variety of proinflammatory cytokines and chemokines in 

peripheral blood mononuclear cells (O’Regan et al., 2000). Moreover, 

it functions in cell migration, particularly of monocytes/macrophages, 

and stimulates expression of matrix metalloproteases to induce matrix 
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degradation and facilitate cell motility. In a mouse model of systemic 

lupus, OPN produced by T cells stimulated IgM and IgG production by 

B cells. OPN expression is increased in response to cellular injury, 

attracting and supporting the infiltration of macrophages and T 

lymphocytes into sites of injury and inflammation (Wang et al., 2005, 

Wang and Denhardt, 2008). OPN is chemotactic for many cell types 

including macrophages, dendritic cells, and T cells; it enhances B 

lymphocyte immunoglobulin production and proliferation. In 

inflammatory situations it stimulates both pro- and anti-inflammatory 

processes, which on balance can be either beneficial or injurious 

depending on what the cell is receiving. OPN influences cell-mediated 

immunity and has been shown to have Th1 cytokine functions. OPN 

deficiency is linked to a reduced Th1 immune response in infectious 

diseases, autoimmunity and delayed type hypersensitivity. OPN’s role 

in the central nervous system and in stress responses has also 

emerged as an important aspect related to its cytoprotective and 

immune functions (Wang and Denhardt, 2008). OPN plays a role in 

various inflammatory disorders, such as rheumatoid arthritis and 

atherosclerosis, in diabetic macro- and microvascular diseases and 

hepatic inflammation. Hepatic OPN expression is upregulated in 

obesity and in various models of liver injury where OPN is localized to 

macrophages and Kupffer cells. Furthermore, OPN is involved in the 

pathogenesis of non-alcoholic fatty liver disease (NAFLD), which is 

strongly associated with visceral obesity (Gómez-Ambrosi et al., 2007, 

Kiefer et al., 2011, Zeyda et al., 2011).  

1.5.2. Role of OPN in Diabetes and Obesity 

OPN plasma concentrations are elevated in morbidly obese patients 

but data are conflicting in murine models of obesity (Zeyda et al., 

2011, Kiefer et al., 2011). Adipose tissue macrophages (ATM) 
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infiltrating into obese adipose tissue from the circulation are a key 

source of inflammation in obesity and provide a causal link between 

obesity and the development of adipose tissue insulin resistance. 

Macrophage recruitment during inflammatory processes is dependent 

on the expression of OPN (Ashkar et al., 2000). Consistent with this 

notion, OPN expression in obese adipose tissue colocalized with 

macrophages and that OPN mRNA is highly expressed in 

macrophages isolated from the SVF (Nomiyama et al., 2007). 

Although OPN is expressed in proliferating fibroblasts, earlier reports 

documenting decreased OPN mRNA levels in differentiated 

adipocytes as compared with preadipocytes (Senger et al., 1983, 

Dorheim et al., 1993). Interestingly, OPN has previously been 

characterized as a PPARγ target gene in macrophages, and 

overexpression of PPARγ or ligand treatment with a thiazolidinedione 

suppresses OPN transcription (Wang et al., 2005, Wang and 

Denhardt, 2008). 

OPN is rapidly expressed after cellular activation, and it is abundantly 

secreted by activated macrophages but not resting macrophages or 

monocytes. The MAPK kinase kinase 1/c-Jun N-terminal kinase 

(JNK)1/activator protein, which is also strongly activated upon obesity, 

is activated by OPN in a myeloma cell line (Philip and Kundu, 2003, 

Rangaswami et al., 2006). Importantly, JNK is readily phosphorylated 

by OPN treatment in adipocytes. OPN inhibits adipocyte insulin 

sensitivity of differentiating or fully mature adipocytes (Hotamisligil, 

2006, Weisberg et al., 2003, Nomiyama et al., 2007). Moreover, 

inflammatory signaling can be induced in adipocytes by OPN. Hence, 

adipocytes express functional receptors for OPN. Therefore, OPN 

could contribute to adipose tissue insulin resistance in obesity by a 

direct action on adipocytes in addition to its role in macrophage 

migration (Zeyda et al., 2011)..  
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Hepatic levels of OPN are upregulated in obesity, and hepatic OPN 

levels correlate with liver TG content (Sahai et al., 2004b, Sahai et al., 

2004a, Kiefer et al., 2008, Bertola et al., 2009). Within the liver, OPN 

is predominantly produced in inflammatory cells but also hepatocytes. 

Antibody-mediated OPN neutralisation was shown to protect against 

high-fat diet-induced hepatic macrophage infiltration and D-

galactosamine- induced inflammatory liver injury. However, a 

functional role of OPN in obesity-associated hepatic steatosis and 

liver insulin sensitivity still remains unclear (Nomiyama et al., 2007, 

Kiefer et al., 2011) . 

1.5.3. OPN knockout model 

Loss of osteopontin (Spp1-/-) prevents high-fat diet-induced hepatic 

steatosis and inflammation in mice, and markedly improves insulin 

signalling and insulin sensitivity in the liver, thereby improving hepatic 

glucose and lipid homeostasis (Nomiyama et al., 2007, Kiefer et al., 

2010, Kiefer et al., 2011). Spp1-/- mice are protected from obesity 

induced hepatic steatosis. Reduced hepatic TG synthesis underlies 

this absence of steatosis. Indeed, V WAT weight is increased in obese 

Spp1−/− mice indicating that OPN deficiency facilitates fat storage in 

adipose tissue, thereby preventing its ectopic accumulation in the 

liver. Decreased inflammatory alterations in V WAT of obese Spp1-/-

mice could contribute to the improvement of metabolic parameters. 

Moreover, decreased steatosis in obese Spp1-/- mice was paralleled 

by improved whole-body insulin sensitivity due to reduction in hepatic 

insulin resistance and glucose production. Phosphorylation of IRS2 

and AKT is enhanced in liver of OPN deficient mice (Kiefer et al., 

2011).  
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Macrophages are the major source of obesity associated inflammatory 

cytokine production in liver and adipose tissue. Loss of OPN is also 

associated with downregulated hepatic gene expression of MCP1, a 

chemokine that promotes hepatic macrophage infiltration and 

steatosis (Kanda et al., 2006, Obstfeld et al., 2010, Kiefer et al., 

2011). Since OPN and MCP1 cooperate in monocyte chemotaxis, 

abrogation of inflammatory cell migration is likely to account for 

reduced abundance of macrophages in livers from obese Spp1−/− mice 

(Kiefer et al., 2011). 

The observation that OPN is primarily expressed by macrophages in 

obese adipose tissue combined with the important autocrine role of 

OPN in macrophage function suggest a model in which endogenous 

OPN amplifies macrophage recruitment in the early stages of obesity 

(Giachelli et al., 1998). Ex vivo experiments demonstrate increased 

macrophage chemotaxis toward the SVF isolated from obese mice, 

indicating that the continued recruitment of macrophages within the 

SVF may further exacerbate macrophage infiltration. In contrast, 

migration toward the SVF was substantially decreased in obese Spp1-

/- mice (Nomiyama et al., 2007). Decreased ATM accumulation in 

OPN-deficient mice is associated with increased insulin sensitivity: 

Spp1-/- mice developed less obesity-associated hyperinsulinemia, 

cleared glucose more rapidly following an intraperitoneal glucose 

challenge, and exhibited an enhanced insulin response after an 

intraperitoneal injection of insulin. Increased insulin sensitivity 

associated with OPN deficiency was unlikely a result of altered 

adipokine secretion, since plasma levels of 3 adipokines implicated in 

insulin resistance (adiponectin, resistin, and leptin) were not 

significantly different in Spp1-/- mice. Macrophages present in adipose 

tissue directly interfere with insulin signaling and insulin-stimulated 

glucose uptake in adipocytes by decreasing GLUT4 and IRS 1 
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expression, leading to a decrease in Akt phosphorylation and impaired 

insulin-stimulated GLUT4 translocation to the plasma membrane 

(Nomiyama et al., 2007). 
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2. MATERIALS AND METHODS 

2.1. Animals 

Mice were maintained in an enclosed, pathogen-free facility with a 

controlled photoperiod of 12h light and 12h dark per day at 23ºC with 

free access to food and water. All studies involving rodents were 

approved by animal welfare committee of the Principe Felipe 

Research Center (CV-46007, CIPF, Valencia). Animal 

experimentation was conducted according to the regulations of the 

Spanish and European law (RD 1201/2005, B.O.E. 252, 10th October 

2005 and European Convention 1-2-3 18th March 1986). For this 

study, only female mice were used. Irs2-deficient (Irs2-/-) mice were 

produced and maintained on a C57BL/6 background as described 

(Withers et al., 1998). Wild-type (WT) mice of the same genetic 

background were employed as controls. Irs2-/- were identified by 

genotyping using a published PCR strategy (Withers et al., 1998)  

The mice used during the collaboration in Vienna were produced and 

maintained on a C57BL/6J WT. B6.Cg-Spp1tm1Blh/J (referred to as 

OPN knockouts or Spp1-/-) mice were purchased from Charles River 

Laboratories (Sulzfeld, Germany). All mice were housed in a specific 

pathogen-free facility with a 12 h light/ dark cycle. Mice had free 

access to food and water. The protocol was approved by the local 

ethics committee for animal studies and the Austrian Federal Ministry 

for Science and Research and complied fully with the guidelines on 

accommodation and care of animals formulated by the European 

Convention for the Protection of Vertebrate Animals Used for 

Experimental and Other Scientific Purposes. Animals were fasted for 

12-16 h.  
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Females of 12-16 weeks were used in all experiments. Animals were 

sacrificed by decapitation and blood was collected to measure 

glucose and hormones. 

2.2. Tissue collection  

Upon sacrifice, visceral (V) WAT was excised from the abdominal 

cavity and subcutaneous (SC) WAT was excised from the inguinal 

skin-folds. Tissue samples were weighed and were frozen in liquid 

nitrogen for protein and gene expression studies. For histological 

analysis, WAT was fixed in 4% paraformaldehyde.  

2.3. Glucose and hormones measurements 

Blood glucose was determined upon decapitation of mice using a 

glucometer (Ascensia ELITE®, Bayer HealthCare). Collected blood 

was centrifuged (13200rpm 20 minutes 4ºC) and serum was frozen for 

hormone analysis. Insulin levels were determined by Ultrasensitive 

Mouse Insulin ELISA (Mercodia®). Leptin, Adiponectin and Resistin 

were estimated by Luminex® technology using the Millipore 

commercial kit MILLIPLEX™ Multi-Analyte Profiling (MAP). MAP 

technology performs a variety of immunoassays on the surface of 

fluorescent-coded beads known as microspheres, which are then read 

in a compact analyzer. Using flow cytometry-based bead isolation, two 

lasers and high-speed digital-signal processors, the analyzer reads 

signals on each individual microsphere particle. The multiple 

conjugated beads permit the measurement of various hormones from 

a sample of 10µL of serum.  
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Figure 13: Scheme of the Luminex® technology.  
The method is based on the use of 2 different wavelengths for detection of antigen-
antibody reactions. The 633nm laser distinguishes the color of the bead and the type of 
analyte detected. The second laser at 522nm permits quantification by indirect 
measuring of the Streptavidin-Phycoerythrin conjugate. 

2.4. Histological analysis of WAT depots 

Fat tissue was fixed overnight by immersion in 4% paraformaldehyde, 

washed, dehydrated in ethanol and embedded in paraffin as 

described (Cinti, 2001b) using the Spin Tissue Processor (Myr; STP 

120-2, El Vendrell, Spain). The processor consists of a metal wire 

chamber and 12 buckets which are set up in a circle.  The plastic 

cassettes which contain the fat are placed into the chamber and 

covered with a lid. 3µm sections were cut using a microtome 

(Microm/Thermo Scientific; HM 340E, Walldorf, Germany) and placed 

on 25 x 75 x 1mm polylysine slides (VWR International, Leuven, 

Belgium).  For assessment of V and SC WAT architecture and 

structure, sections were stained with hematoxylin and eosin. Tissue 

sections were first placed in xylene for 15 min to remove the paraffin, 

then hydrated in decreasing concentrations of ethanol (96% and 70%) 

for 5 min each, then rinsed in distilled H2O for 5 min.  Slides were then 

immersed in Harris Hematoxylin solution (Sigma) for 1 min and 

washed with water for 5 min before being rinsed 10 times in 1% 

hydrochloric acid/70% ethanol. Tissue sections were rinsed in water 

for 5 min and subsequently stained in Eosin Y Solution (Sigma) for 10 
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min. After a 5 min rinse in water, tissue sections were dehydrated in 

increasing concentrations of ethanol (70% and 96%) for 5 min each 

and finally cleared in xylene for 10 min.  Samples were allowed to dry 

and then were mounted using Entellan (Merck #107961, Darmstadt, 

Germany) and covered with a 24 x 60mm coverslip (Menzel-Glaser, 

Braunschweig, Germany). Images of stained WAT sections were 

captured using a Leica DM microscope and the Leica Application 

Suite (v 2.4.0 RI) imaging software. The diameter of the adipocyte 

was measured with ImageJ (v 1.43u, NIH, USA), a public domain 

Java image processing and analysis program. At least 40 cells were 

measured from each image. V and SC depots were analyzed from 12 

mice of each genotype. 

2.5. Analysis of mRNA expression by Real Time Polymerase 
Chain Reaction (RT-PCR) 

To isolate RNA, frozen tissue or cell samples were homogenized in 

TRIzol® reagent (Invitrogen/Life Technologies, Carlsbad, CA, USA) 

and processed based on manufacturer’s instructions. RNA quality was 

assessed using the 280/260 nm absorbance ratio which provides an 

assessment of RNA integrity and 280/230 nm absorbance ratio which 

indicates the contamination of the sample with salts or organic 

compounds. RNA concentrations were quantified using a ND-1000 

Nanodrop Spectrophotometer (v3.7, Thermo Scientific, Wilmington, 

DE, USA) and RNA was stored at -80ºC until used for cDNA 

synthesis. 

Total RNA (1µg) was treated with DNase I and transcribed into cDNA 

using Superscript II and random hexamer primers (Invitrogen). The 

samples were incubated for 50min at 42ºC, 15min at 70ºC to 

inactivate the enzyme. Quantitative PCR was performed using Step 
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One Plus Real Time PCR System (Applied Biosystems) with the 

TaqMan probes (Applied Biosystems) summarized in Table 3. The 

RT-PCR reaction contained: 12.5µL TaqMan® Universal PCR Master 

Mix 2x (Applied Biosystems), 1.25µL primer mix (Applied Biosystem) 

1µL cDNA (sample) and 10.25µL MilliQ water. The comparative 

threshold cycle (CT) method was used to calculate the relative 

expression (Livak and Schmittgen, 2001) and Stem One ™ Software v 

2.1. was used to analyze the data. The cycling conditions were as 

followed: an initial step called Holding stage for the reaction initiation 

(50ºC for 2 min and 95ºC for 10 min) followed by 40 cycles of the 

Cycling Stage (95ºC for 15 sec and 60ºC for 1 min). Each reaction 

was performed in duplicate and the value of the gene of interest was 

normalized to the expression of Ubiquitin C.  A negative control (MilliQ 

water) was included for each gene and data were analyzed by the 

comparative Ct method (2-ΔΔCt).  
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Gene Name Assay ID 

Ubc Ubiquitin C Mm01201237_m1 

Spp1 OPN, secreted phosphoprotein 1 Mm00436767_m1 

Irs1 Insulin receptor substrate 1 Mm01278327_m1 

Irs2 Insulin receptor substrate 2 Mm03038438_m1 

Irs3 Insulin receptor substrate 3 Mm01207023_m1 

Insr Insulin receptor Mm01211875_m1 

Gsk3β Glycogen synthase kinase 3 beta Mm00444911_m1 

Slc2a4 Glucose transporter member 4 (GLUT4) Mm00436615_m1 

Pparg Peroxisome proliferator activated receptor gamma Mm01184322_m1 

Fabp4 Fatty acid binding protein 4 Mm00445878_m1 

Adn Complement factor D, adipsin (ADN) Mm01143935_g1 

Fasn Fatty acid synthase Mm00662319_m1 

Ppargc1a Peroxisome proliferative activated receptor gamma 
coactivator 1 alpha (PGC1) Mm00447183_m1 

Srebf1 Sterol regulatory element binding transcription 
factor 1 Mm01138344_m1 

Dgat1 Diacylglycerol O-acyltransferase 1 Mm00515643_m1 

Dgat2 Diacylglycerol O-acyltransferase 2 Mm01273905_m1 

Adipoq Adiponectin Mm00456425_m1 

Rbp4 Retinol binding protein 4 Mm00803266_m1 

Retn Resistin Mm00445641_m1 

Hif1a Hypoxia inducible factor 1 Mm00468869_m1 

Vegfa vascular endothelial growth factor A Mm01281447_m1 

Ccl2 Chemokine (C-C motif) ligand 2, monocyte 
chemotactic protein-1 (MCP1) Mm00441242_m1 

Emr1 EGF-like module-containing mucin-like hormone 
receptor-like 1, F4/80 Mm00802530_m1 

Tnf Tumor necrosis factor alpha Mm00443258_m1 

Il6 Interleukin 6 Mm00446190_m1 

Ptprc Protein tyrosine phosphatase receptor type C 
(CD45) Mm01293575_m1 

Cd3e CD3 antigen epsilon polypeptide Mm01179194_m1 

Cd8a CD8 antigen alpha chain Mm01182108_m1 

Table 3: Summary of primers used in mRNA expression studies.  
The complete name of the gene and the Applied Biosystem reference number are 
provided.  
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2.6.  Preparation of Stromal-Vascular Fraction (SVF) from 
mouse WAT 

SC-WAT tissue was obtained from inguinal skin-fold and V-WAT was 

obtained from the abdomen of female mice. Tissue was minced with 

scissors and then digested in adipocyte isolation buffer Krebs Ringer 

containing: NaHCO3 24mM, HEPES 10mM, Bovine Serum Albumin 

(BSA) 2.5% (Sigma 7906), Collagenase 1mg/mL (GIBCO CAT Nº 

17104-019 1.362 PZU/mg), Dispase 1mg/mL (GIBCO Cat No. 17105-

041 1.7 units /mg), Desoxirribonuclease 1 0,25mg/mL (Sigma DN25), 

1% v/v of Penicillin /Streptomycin (Gibco Cat.Nº 15140-122) and 

0,005mg/mL Amphotericin B (Sigma 9528). Subsequently, samples 

were incubated in 3 mL of buffer Krebs Ringer/g WAT for 40-60 min at 

37 ºC in a shaker bath. The digested tissue was passed through a 

nylon screen and rinsed several times with PBS/2,5% BSA/antibiotics 

to remove the collagenase. The suspension was centrifuged at 300xg 

for 10 minutes and the pellet was resuspended in complete 

Dulbecco’s Modified Eagle high glucose Medium (DMEM, Gibco 

41966) supplemented with 10% (v/v) of Fetal Clone III Bovine Serum 

(FcBS) (HyClone SH30109.03) and Penicillin/ Streptomycin 1% 

(Gibco Cat.Nº 15140-122). This suspension was filtered through a 

100 cell-strainer and centrifuged again at 300xg for 10 minutes. The 

pellet was resuspended and filtered first through a 70 cell strainer 

and subsequently through a 40 cell strainer. The resulting cells were 

counted and 1x105 cells were seeded in 60cm2 plates or sorted by 

Fluorescent Activated Cell Sorting Analysis (FACS) to obtain the 

specific APC population.  
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2.7. Fluorescent Activated Cells Sorting (FACS) Isolation of 
APC 

To isolate the APC population from the stroma vascular fraction (SVF) 

of WAT, a FACS enrichment strategy was developed based on 

published methods (Rodeheffer et al., 2008). The High Speed Cell 

Sorter MoFlo (Beckman Coulter, CA, USA) is equipped with 3 lasers 

(488nm, 351nm y 635nm), two detectors for the light forward (FS) and 

side (SS) scatter and eight photomultipliers for fluorescence detection. 

This optical configuration allows a selection procedure based on 

staining of five antibodies specific to certain cell populations (Table 4). 

Each antibody was tittered and the corresponding isotype was 

analyzed to minimize possible false positive.  

Conjugated 
Primary 

Antibody 
Manufacturer 

Cell 
population 

Quantity 
(µg/106 cells) 

λem (nm) 

Sca1 

FITC 

eBioscience  

11-5981 
Stem cell 0.25 530 ± 40 

CD31 

PE 

eBioscience  

12-0311 

Endothelial 

cells 
0.4 580 ± 40 

Ter119 

PE Cy5 

eBioscience  

15-5921 

Erythroid 

cells 
0.25 670 ± 30 

CD34 

Alexa 647 

eBioscience  

51-0341 
Stroma cells 1.5 670 ± 20 

CD45 

PE Cy7 

eBioscience  

25-0451 

Hematopoietic  

cells 
0.125 > 740 

DAPI 
Sigma  

D8417 
dead cells 1µg/µL 405 

Table 4: Fluorescent-conjugated primary antibodies utilized for APC isolation.  

 



MATERIALS AND METHODS 

91 
 

Cells isolated from SVF were incubated with the antibodies for 1h at 

4ºC. Just prior to FACS, DAPI was added to each sample in order to 

identify and eliminate dead cells. First, the endothelial, erythroid and 

hematopoietic cells were depleted from the SVF by staining for CD31, 

Ter119 and CD45 antigens, thereby generating a lineage-negative 

(Lin-) population. Subsequently, the Lin- population was further sorted 

based on CD34 and stem cell antigen 1 (Sca1), two cell-surface 

proteins expressed on stem cell populations from different tissues 

(Spangrude et al., 1988, Zuk et al., 2002, Rodeheffer et al., 2008). 

The sorting criterion was based on the double staining for CD34 

antigen and Sca1. From the live cell population (DAPI-), two 

populations were recovered: CD34-/Sca1- and CD34+/Sca1+. Double 

negative population was frozen and double positive population was 

seeded in 60mm2 cell culture plates and fresh medium with βFGF was 

added as described above. All the data were processed by Summit 

V4.3 software (Beckman Coulter, CA, USA). 

2.8.  Magnetic Cell Sorting Analysis (MACS®) 

To isolate the APC from Spp1-/- and WT mice, indirect Magnetic Cell 

Sorting (MACS®) technology was used since these experiments were 

performed at the University of Vienna with different tools. This two-

step procedure is summarized in Figure 14.  

Cells from the SVF were first labeled with a similar set of antibodies as 

employed for FACS analysis. CD45, CD31 and Ter119 were 

incubated for 1h at 4ºC. Subsequently, the cells were incubated with a 

primary rat IgG antibody coupled to magnetic beads (Goat Anti-Rat 

IgG Microbeads, Miltenyi Biotec 130-048-502). The cell suspension 

was passed through a MACS® column, which is placed in the 

magnetic field of MACS Separator. The magnetic labeled (CD45, 

CD31 and Ter119) positive cells were retained within the first column. 
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The unlabelled cells which flowed through the column were then 

labeled with the second set of primary rat IgG antibodies (CD34 and 

Sca1) for 1h at 4ºC. After removing the column from the magnetic 

field, the magnetically retained cells were eluted to obtain the 

positively-selected cell fraction (CD45- CD31- Ter119- CD34+ and 

Sca1+).  

 

Figure 14: MACS® strategy used for APC isolation from V and SC-WAT from WT 
and Spp1-/-.   
Cells were first incubated with CD45, CD31 and Ter119 antibodies and the negative 
population was collected for further incubation with Sca1 and CD34. Then, the positive 
population was retained in the magnetic field to isolate and establish the APC culture. 

2.9. Routine culture of primary APC 

Mouse APCs were cultured at 37ºC and 5% CO2. The cell culture 

medium was Dulbecco’s Modified Eagle high glucose Medium 

(DMEM, Gibco 41966) supplemented with 10% (v/v) of Fetal Clone III 

Bovine Serum (FcBS) (HyClone SH30109.03), Penicillin / 

Streptomycin 1% (Gibco Cat.Nº 15140-122). To passage the cells, the 

medium was removed and the cells were washed with PBS without 

calcium and magnesium (Gibco). The cells were incubated with 

incubation with 0.25% trypsin / 0.02% EDTA (Gibco 25200) for 5 min 

at 37ºC and gently shaken to detach the cells. The trypsin/EDTA was 

neutralized by complete medium (DMEM/10% FBS). The suspension 

was then centrifuged at 200xg for 4 min. The supernatant was 

removed and the pellet containing the cells was resuspended in the 
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growth medium and seeded at 2x104 cells/cm2. For normal condition 

growth, the medium was supplemented with 10 ng/ml recombinant 

basic Human Fibroblast Growth Factor (FGFβ or FGF-2, Gibco, 

PHG0026) to maintain their self renewal capacity and inhibit 

differentiation (Rodeheffer et al., 2008, Dani and Billon, 2012).  

2.10. Proliferation studies: cell growth curves and 
doubling time determination 

5x104 of the isolated APCs were seeded in 100 mm culture plates. 

Every day during 5 days one plate was trypsinized and counted to 

establish the growth kinetics of each experimental group. The 

doubling time was calculated with the online tool (http://www.doubling-

time.com/compute.php).  

2.11. Differentiation of APC cultures 

To assess the adipogenic potential of APC, cells were seeded so as 

to reach confluence in 3 days, based on their growth properties. On 

day 0 of the differentiation protocol, cells were switched from growth 

to adipogenic medium: advanced DMEM/F12 (Gibco 12634) with 5% 

heat-inactivated (56ºC for 30min) FBS (Sigma F7524) with different 

factors: insulin (INS, Roche), dexamethasone (DXM, Sigma) and 

Isobutilmethylxantine (IBMX, Sigma). The concentrations and duration 

of treatment are summarized in Figure 15. Samples were taken during 

the time-course of differentiation to analyse differentiation markers by 

immunostaining, Western blotting, or RT-PCR. 
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Figure 15: Adipocyte differentiation scheme.  
Cells were plated to reach confluence after 3 days and then the adipocyte differentiation 
medium was used for 10 days until lipids droplets were detected inside the cells. 

2.12. Flow Cytometry analysis of APC 

The flow cytometry experiments were performed with a Cytomics 

FC500 MCL flow cytometer (Beckman Coulter, CA, USA) equipped 

with two lasers (488nm and 635nm), two detectors for the light 

forward (FS) and side (SS) scatter and five photomultipliers for 

fluorescence detection.  

To detect the fluorescence emission from BODIPY, anti-Sca1 FITC, 

and annexin V FITC, the FL1 (525±20nm) channel in logarithmic 

amplification was used. For BODIPY measures FL1 was also used in 

linear amplification. For propidium iodide measure, FL3 (620±20nm) 

was used in logarithmic amplification for apoptotic assays and to 

exclude the dead cells and in linear amplification for cell cycle and cell 

proliferation studies.  

2.12.1. Cell-cycle analysis by Hypotonic Propidium Iodide 
staining 

To assess the cell cycle, APC cells were stained with propidium iodide 

(PI), a nucleic acid probe which identifies DNA and RNA. Upon 

binding to nucleic acids, the PI fluorescence emission can be detected 

by flow cytometry. Since the binding is proportional to the amount of 

nucleic acid in the sample, different amounts of DNA can be 
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2.12.2. Apoptosis Assay: Annexin V staining

Highly fluorescent Annexin V conjugates provide quick and 

detection methods for studying the externalization of 

phosphatidylserine, an indicator of intermediate stages of apoptosis

Koopman et al., 1994, 

suspended in 100µL of binding buffer containing 10mM HEPES, 

140mM NaCl and 2,5mM CaCl2 adjusted at pH

5µL of Annexin V-FITC (Immunostep, Spain) was added and 

distinguished at distinct cell cycle phases (

staining, cells were suspended in a hypotonic solution of PI (trisodium 

citrate 1mg/mL, Triton X-100 0.1 %

ribonuclease A (RNase A) 100μg/mL) and incubated at 4 

cells from each sample were asses

cytometer. The PI emission was detected in the FL3 

channel and the cellular aggregates were excluded from analysis. The 

histograms were generated with the WimMDI® program and the FL3 

histogram gated for single cells was analyzed wi

obtaining the percentage of cells in each phase of the cell cycle. 

Schematic representation of cellular DNA content changes during cell 

DNA replication during cell cycle is discontinuous, occurring exclusively during S phase. 
replicative G2-phase cells have twice higher cellular DNA content 

compared to the G1 cell (B). (Darzynkiewicz et al., 2010

Apoptosis Assay: Annexin V staining

Highly fluorescent Annexin V conjugates provide quick and 

detection methods for studying the externalization of 

phosphatidylserine, an indicator of intermediate stages of apoptosis

, Zhang et al., 1997

suspended in 100µL of binding buffer containing 10mM HEPES, 

140mM NaCl and 2,5mM CaCl2 adjusted at pH

FITC (Immunostep, Spain) was added and 

MATERIALS AND METHODS

distinguished at distinct cell cycle phases (Figure 

staining, cells were suspended in a hypotonic solution of PI (trisodium 

1 % (v/v), PI 50μg/mL and 

ribonuclease A (RNase A) 100μg/mL) and incubated at 4 

cells from each sample were asses

cytometer. The PI emission was detected in the FL3 

channel and the cellular aggregates were excluded from analysis. The 

histograms were generated with the WimMDI® program and the FL3 

histogram gated for single cells was analyzed with Cylchred® program 

obtaining the percentage of cells in each phase of the cell cycle. 

Schematic representation of cellular DNA content changes during cell 

discontinuous, occurring exclusively during S phase. 
phase cells have twice higher cellular DNA content 

Darzynkiewicz et al., 2010). 

Apoptosis Assay: Annexin V staining 

Highly fluorescent Annexin V conjugates provide quick and 

detection methods for studying the externalization of 

phosphatidylserine, an indicator of intermediate stages of apoptosis

Zhang et al., 1997). A total of 1x10

suspended in 100µL of binding buffer containing 10mM HEPES, 

140mM NaCl and 2,5mM CaCl2 adjusted at pH 7,

FITC (Immunostep, Spain) was added and 

MATERIALS AND METHODS

Figure 16). For DNA 

staining, cells were suspended in a hypotonic solution of PI (trisodium 

(v/v), PI 50μg/mL and 

ribonuclease A (RNase A) 100μg/mL) and incubated at 4 ºC in the 

cells from each sample were assessed with the 

cytometer. The PI emission was detected in the FL3 (620±20 nm) 

channel and the cellular aggregates were excluded from analysis. The 

histograms were generated with the WimMDI® program and the FL3 

th Cylchred® program 

obtaining the percentage of cells in each phase of the cell cycle.  

 

Schematic representation of cellular DNA content changes during cell 

discontinuous, occurring exclusively during S phase. 
phase cells have twice higher cellular DNA content 

 

Highly fluorescent Annexin V conjugates provide quick and reliable 

detection methods for studying the externalization of 

phosphatidylserine, an indicator of intermediate stages of apoptosis

. A total of 1x105 cells were 

suspended in 100µL of binding buffer containing 10mM HEPES, 

7,4. Subsequently,

FITC (Immunostep, Spain) was added and 

MATERIALS AND METHODS 

95 

For DNA 

staining, cells were suspended in a hypotonic solution of PI (trisodium 

(v/v), PI 50μg/mL and 

ºC in the 

sed with the 

(620±20 nm) 

channel and the cellular aggregates were excluded from analysis. The 

histograms were generated with the WimMDI® program and the FL3 

th Cylchred® program 

Schematic representation of cellular DNA content changes during cell 

discontinuous, occurring exclusively during S phase. 
phase cells have twice higher cellular DNA content 

reliable 

detection methods for studying the externalization of 

phosphatidylserine, an indicator of intermediate stages of apoptosis 

cells were 

suspended in 100µL of binding buffer containing 10mM HEPES, 

4. Subsequently, 

FITC (Immunostep, Spain) was added and 



96 
 

incubated for 15 minutes at room temperature in the dark. 1µL of PI 

solution (1mg/mL) was added for 5 min. The cells were analyzed with 

the 525nm channel to detect the emission of Annexin V-FITC and the 

620nm channel for the PI emission. All the data were processed by 

Summit V4.3 software (Beckman Coulter, USA). For the analysis, 

three different groups were identified: (i) live cells (double negative for 

Annexin V-FITC and PI, (ii) early apoptotic cells (positive for Annexin 

V-FITC and negative for PI), and (iii) dead/necrotic cells (positive for 

PI).  

2.12.3. Sca1-FITC Staining  

Fresh APC cells were gently trypsinized and transferred to flow 

cytometry tubes. The cells were carefully centrifuged at 100xg for 5 

min and resuspended into 100µL of PBS containing 0.25g/106 cells 

Sca1 antibody for 1 hour at room temperature in the dark. Then were 

washed with PBS and resuspended in 500µL of PBS containing 

2.5µg/mL of PI 5 min before flow cytometry analysis. All data were 

processed by Summit V4.3 Build 2445 software (Dako Colorado, Inc.).  

2.12.4. BODIPY™ 493/503 Staining  

Detection of cellular lipid droplets with BODIPY 493/503 dye 

(Molecular Probes, D3922) is more specific for than staining with other 

dyes such as nile red (Gocze and Freeman, 1994, Listenberger and 

Brown, 2007). Due to its low molecular weight (262 daltons), the 

diffusion of BODIPY 493/503 dye across membranes is relatively fast 

diffusion. A stock solution of The BODIPY 493/503 was prepared at 

1mg/ml in DMSO. The working solution was freshly prepared and 

incubated (1ng/ml) in suspension of APC cells for 30min at 37ºC. 

Then, 5µg/mL of PI was added to each tube for 5 min before flow 

cytometry analysis. The side scatter (SS) parameter was used to 
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Alternatively, APC were grown in 24-well plate with glass coverslips. 

Before the cells were stained, the culture medium was aspirated from 

the wells and the cells were washed in PBS/Ca+2/Mg+2 pH 7.4, 

incubated in 10% formalin solution (Sigma) for 15 min in the dark, 

washed 3 times with PBS/Ca+2/Mg+2 pH 7.4 and then cells were 

incubated in 500μL of blocking solution containing PBS/Ca+2/Mg+2 pH 

7.4, 10% Horse Serum (HS) (Sigma) and 0.05% Tween-20 (Sigma) 

for 1h at RT. The blocking solution was aspired and cells were 

incubated in each antibody, diluted in the blocking solution, for 2h at 

room temperature (Table 5). Afterwards, the cells were washed three 

times with PBS/Ca+2/Mg+2, and incubated with the secondary antibody 

diluted in the blocking solution for 1h at RT (Invitrogen). Then, cells 

were washed 3 times with PBS/Ca+2/Mg+2, the nuclei was 

counterstained with DAPI (1µg/ml of DAPI in MilliQ H2O) and 

incubated for 5 min at RT (Table 5). The DAPI solution was removed 

by aspiration and stained cells were washed twice for 5 min in distilled 

H2O.  

For BODIPY staining, APC were grown in 24-well plate with glass 

coverslips. Before the cells were stained, the culture medium was 

aspirated from the wells and the cells were washed in PBS/Ca+2/Mg+2 

pH 7.4, incubated in 10% formalin solution (Sigma) for 15 min in the 

dark, washed 3 times with PBS/Ca+2/Mg+2 pH 7.4 and then cells were 

incubated in 500μl of BODIPY staining  containing PBS/Ca+2/Mg+2 pH 

7.4, and 0.5 μg/ml BODIPY 493/503 (Molecular Probes)  for 1h at RT. 

Then, cells were washed 3 times with PBS/Ca+2/Mg+2, the nuclei was 

counterstained with DAPI (1µg/ml of DAPI in MilliQ H2O) and 

incubated for 5 min at RT (Table 5). The DAPI solution was removed 

by aspiration and stained cells were washed twice for 5 min in distilled 

H2O (Table 5). 
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Each coverslip was placed on the top of a glass slide with Dako 

Fluorescent Mounting Medium (Barcelona, Spain). Images were 

captured using a Leica DM 6000B fluorescent microscope attached to 

Leica Application Suite (v 2.8.1) imaging software. Three different cell 

cultures were used for each immunostaining and representative 

pictures are show for each antibody. 

For In-Cell analysis, APC were cultured and processed for 

immunostaining in 24 well plates (Costar 3524. Corning Incorporated 

NY 14831) as described above (Table 5). The images were acquired 

and quantified with the In Cell Analyzer 1000 system (GE Healthcare). 

This system is a high content image analysis instrument with ability to 

capture cell images and quantify different cell parameters. 30 images 

per well were acquired and nuclei staining of both Ki67 and pH3 were 

analyzed.  

Primary  
Antibody Dilution Commercial 

source 
Incubation 
conditions 

Ki67 1/500 Abcam  
5580 2h RT 

Phospho Histone H3 
Serine 10-Alexa 647 1/200 Cell Signaling  

9716S 2h RT 

BODIPY 0.5μg/mL 
in PBS 

Molecular Probes 
D3922 1h RT 

Sencondary Antibody Dilution Commercial 
source 

Incubation  
conditions 

Goat Anti Rabbit Alexa 
488 

1/500 
 

Invitrogen 
A11070 1h RT 

Table 5: Primary antibodies used for immunofluorescence.   
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2.14. Western blotting  

Samples were lysed in a buffer containing: 50mM HEPES, 150mM 

NaCl , 10% glycerol, 1% triton-X-100, pH 7.5. The appropriate 

protease/phosphatase inhibitors were added to the lysis buffer 

immediately before use: 1mM sodium orthovanadate (Na3VO4), 50mM 

sodium fluoride (NaF) and 1x Complete protease cocktail inhibitor 

(Roche Diagnostics, Mannheim, Germany). Tissue samples were 

homogenized (PT-MR 1600E, Kinematica Inc., Littau, Switzerland) in 

ice-cold lysis buffer at a concentration of 50mg tissue per 1ml of lysis 

buffer. The homogenate was cleared by centrifugation at 13200xg for 

20 min. The lipid layer was removed from the top and the supernatant 

transfered to a clean eppendorf tube to discard pellet of debris and 

insoluble material. The protein concentration was estimated using the 

BCA Protein Assay Kit (Thermo Scientific, Rockford, IL, USA). 

Standards were prepared from 2mg/ml Bovine serum albumin (BSA) 

with serial dilutions until 0.125mg/mL.  Colorimetric analysis was 

performed in a 96-well plate using a Multiskan FC Microplate 

Photometer (Thermo Scientific, Finland).  

Laemmli 6x loading buffer, containing 9% sodium dodecyl sulphate 

(SDS, Sigma-Aldrich), 60% Glycerol (Sigma-Aldrich), 10% β-

Mercaptoethanol (Sigma-Aldrich), 0.03% bromophenol blue(Biorad) 

and 0.375M Tris-HCl pH 6.8 was added to extracts at a 1:1 volume. 

Samples were denatured by heating for 2 min at 100oC. 50µg of 

protein were loaded per lane and resolved under reducing and 

denaturing conditions by SDS-polyacrylamide gel electrophoresis 

(Sambrook and Russell, 1989, Schägger, 2006) 

Polyvinylidene fluoride (PVDF) membranes were pre-activated by 

incubating in 100% methanol for 5 min, and then thoroughly rinsed in 

the transfer buffer before beginning the transference. Resolved 
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proteins were transferred from SDS-PAGE gels to PVDF membranes 

at 350mA for 1h30min-2h at 4ºC.  Following transfer, non-specific 

binding of proteins to the PVDF membranes was blocked by 

incubating in blocking solution containing 5% BSA in 1xTBST (Tris-

Buffered Saline-Tween 20) composed for 50mM Tris-HCl pH7.5, 

150mM NaCl and 0.05% Tween-20, for 1h at room temperature on a 

see-saw rocker plate. Primary antibodies (Table 6 for technical 

details) were diluted in 3% BSA solution and incubated on a see-saw 

rocker. After the incubation, the primary antibody was removed and 

the PVDF membrane was washed 3 times for 10 min in 1x TBST on a 

see-saw rocker plate. The appropriate horseradish peroxidase-

conjugated (HRP) secondary antibody (Thermo-Scientific) was diluted 

in blocking solution and incubated with the PVDF membrane for 1h at 

room temperature. The secondary antibody was then removed and 

the PVDF membrane was washed in 1xTBST 3 times for 10 min per 

wash on a see-saw rocker plate. Reactive bands were revealed on X-

ray film CURIX RP2 Plus (AGFA), using Pierce Enhanced 

Chemiluminescent (ECL) Western Blotting Substrate reagents 

(Thermo Scientific #32106).  
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Primary Antibody Dilution Manufacturer Incubation 
Conditions 

C/EBPα 1/200 Santa Cruz 61 14h-4ºC 

GLUT4 1/1000 Millipore 07-1404 14h-4ºC 

HSL 1/500 Santa Cruz 74489 14h-4ºC 

IGF1R 1/500 Santa Cruz 713 14h-4ºC 

IRβ 1/1000 Santa Cruz 711 14h-4ºC 

IRS1 1/1000 Cell Signaling 23825 14h-4ºC 

IRS1 1/1000 Lab. Made PH 14h-4ºC 

IRS2 1/1000 Millipore MAB515 14h-4ºC 

IRS2 1/500 Santa Cruz 8299 14h-4ºC 

IRS3 1/500 Lab. Made 299 14h-4ºC 

ObR 1/200 Santa Cruz 8391 14h-4ºC 

PDGFRβ 1/500 Santa Cruz 432 14h-4ºC 

PPARγ 1/2000 Santa Cruz 7273 14h-4ºC 

β ACTIN 1/10000 Sigma A1978 1h- RT 

Table 6: Primary antibodies used in western blot analysis.  
 

2.15. Statistical Analysis  

All data presented were obtained from at least three independent 

experiments and are expressed as the mean ± SEM.  Paired 

Student’s t test was performed to compare genotypes.  



 

 
 

 

 

 

CHAPTER 

HYPOTHESIS AND OBJECTIVES 

 

 

 

 

3 



 
 



HYPOTHESIS AND OBJECTIVES 

105 
 

3. HYPOTHESIS AND OBJECTIVES 

Defects in insulin signaling are implicated in obesity and T2D. Deletion 

of Irs2 in mice causes insulin resistance and progressive beta cell 

failure, culminating in diabetes. Reduced expression of Irs2 has been 

observed in islets of patients with T2D, suggesting a direct link 

between failed insulin signalling and human metabolic disease. 

Female Irs2-/- animals develop moderate obesity and display 

resistance to catecholamines and leptin. However, the precise role of 

IRS2 in adipose tissue and obesity-related inflammation has not yet 

been defined. Thus, the Irs2 knockout model was used to address the 

following objectives: 

 

1. Characterize WAT of female Irs2-/- mice by assessing markers 

of inflammation, adipocyte function, and insulin signal 

transduction. 

2. Isolate and characterize APCs of WAT to determine whether 

IRS2 plays a role in the development, proliferation and 

differentiation of adipocyte progenitors. 

3. Assess the potential physiological relationship between IRS2 

signaling and the cytokine OPN though the study WAT from 

female Irs2-/- and Spp1-/- mice. 
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4. RESULTS 

4.1. Irs2-/- females mice display increased adiposity 

4.1.1. Analysis of glucose and insulin levels 

Consistent with published results, Irs2-/- females displayed slightly 

elevated blood glucose levels and pronounced hyperinsulinemia 

(Figure 18). Male Irs2-deficient mice develop hyperglycemia earlier 

than females and progress rapidly to severe diabetes (Garcia-Barrado 

et al., 2011). All females used in this study were 8-12 weeks of age 

and although the fasting glucose levels in Irs2-/- were higher than in 

WT (WT 85.6±2.69 mg/dl vs Irs2-/- 95.6±2.34), none presented 

hyperglycemia (fasting glucose > 120 mg/dl) which facilitated the 

study of Irs2-deficiency in the absence of diabetic complications. The 

presence of hyperinsulinemia in these mice is due to insulin 

resistance in peripheral tissues, mainly liver and muscle (Withers et 

al., 1998). 

A B 
Serum glucose 

 

Insulin 

 
Figure 18: Glucose and insulin levels of female WT and Irs2-/- mice. 
Female mice (8-12 weeks of age) were fasted for 14-16 hours. A). Glucose was 
measured by Ascensia ELITE® glucometer. B) Insulin was estimated by ELISA. Results 
are expressed as mean ± SEM. * p<0.05, ** p<0.01, and *** p<0.001. For glucose 
measurements, n= 20 mice per genotype. For serum insulin levels, N=10 mice per 
genotype.  
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4.1.2. Characterization of body weight and WAT depts 

As reported, female Irs2-deficient mice weighed more than controls 

(Figure 19). Increased body weight was associated with increased 

accumulation of WAT in both visceral (V) and subcutaneous (SC) 

depots (% of total body weight).  

                                    A   
Body weight 

 
B C 

% V-WAT 

 

% SC-WAT 

 
Figure 19: Analysis of adipose depots. 
A) Total body weight. B) Visceral white adipose depots (V-WAT) were weighed and 
compared to total body weight. C) Sub-cutaneous white adipose (SC-WAT) depots were 
weighed and compared to total body weight. Results are expressed as mean ± SEM. * 
p<0.05, ** p<0.01, and *** p<0.001. N=20 mice of each genotype. 
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4.1.3.

The increase of WAT present in the 

an increase in the size of adipocytes (hypertrophy) as a result of more 

stored triglycerides or to an increase in the number of adipocytes 

(hyperplasia). To distinguish between these possibilities, histological 

sections of V

eosin and examined

WAT revealed no apparent differences in the average diameter of 

adipocytes between 

suggesting that enhanced adipocyte size does not account for the 

increased fat mass in this model.

A 

B 

Figure 20
Hematoxylin and eosin staining 
adipocyte
expressed as mean ± SEM and paired 
WT and Irs2
Representative images were captured using a 20x objective. The scale bar represents 
50µm.  
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4.1.3. Morphological assessment of WAT

The increase of WAT present in the 

an increase in the size of adipocytes (hypertrophy) as a result of more 

stored triglycerides or to an increase in the number of adipocytes 

(hyperplasia). To distinguish between these possibilities, histological 

sections of V-WAT and SC

eosin and examined. The histological analysis of the V

WAT revealed no apparent differences in the average diameter of 

adipocytes between 

suggesting that enhanced adipocyte size does not account for the 

increased fat mass in this model.

20: Analysis of V and SC 
Hematoxylin and eosin staining 

dipocytes from V-WAT (A)
expressed as mean ± SEM and paired 

Irs2-/-. * p<0.05, ** p<0.
Representative images were captured using a 20x objective. The scale bar represents 
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stored triglycerides or to an increase in the number of adipocytes 

(hyperplasia). To distinguish between these possibilities, histological 

T and SC-WAT were stained with hematoxylin and 

The histological analysis of the V

WAT revealed no apparent differences in the average diameter of 

adipocytes between Irs2-deficient and control mice (

suggesting that enhanced adipocyte size does not account for the 

increased fat mass in this model. 

 

 
 

 
Analysis of V and SC adipocyte size

Hematoxylin and eosin staining of WAT sections 
) and SC-WAT (C)

expressed as mean ± SEM and paired t test was 
* p<0.05, ** p<0.01, and *** p<0

Representative images were captured using a 20x objective. The scale bar represents 
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Morphological assessment of WAT 

Irs2-/- female mice could be due to 

an increase in the size of adipocytes (hypertrophy) as a result of more 

stored triglycerides or to an increase in the number of adipocytes 

(hyperplasia). To distinguish between these possibilities, histological 

WAT were stained with hematoxylin and 

The histological analysis of the V

WAT revealed no apparent differences in the average diameter of 

deficient and control mice (

suggesting that enhanced adipocyte size does not account for the 

adipocyte size in WT and Irs2
sections was used to measure d

) by the ImageJ program.
test was used to assess differences 

and *** p<0.001. N=12 mice for each genotype. 
Representative images were captured using a 20x objective. The scale bar represents 
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4.2. Irs2-deficiency is associated with enhanced expression of 
cytokines and markers of inflammation 

Obesity is associated with low-grade chronic inflammation attributed 

to the dysregulated production and release of cytokines and 

adipokines (Barbosa-da-Silva et al., 2012). Consistent with published 

results (Burks et al., 2000), leptin levels of Irs2-deficient females were 

elevated (Figure 21). Serum adiponectin levels were enhanced 

approximately 2-fold as compared with WT control females. However, 

a reduction in serum resistin was observed in Irs2-/- females. The role 

of resistin in obesity remains controversial (Schwartz and Lazar, 2011) 

but some studies suggest that this cytokine activates the anti-

inflammatory mediator SOCS3 in rodent WAT (Steppan et al., 2001, 

Steppan et al., 2005). SOCS3 is known to decrease insulin signaling 

in adipose and other tissues.  
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B C 
Adiponectin 

 

Resistin 

 
Figure 21: Adipokines serum levels in WT and Irs2-/- mice. 
A, B, C) Serum was obtained from blood samples and adipokines were measure with 
Luminex® technology. Results were expressed as mean ± SEM. * p<0.05, ** p<0.01 
and *** p<0.001. N=8 mice of each genotype.  

To confirm the results obtained by measuring hormones in serum with 

Luminex®, RT-PCR was used to assess the mRNA expression of 

various adipokines in V and SC WAT. All results were normalized to 

the expression in V-WAT of WT mice (100% of expression). As 

observed in serum, adiponectin expression (Adipoq) was up-regulated 

in V and SC WAT of Irs2-/- when the expression is compared with WT 

V-WAT (Figure 22). Resistin was decreased in Irs2-/-, confirming the 

results obtained from serum samples. It was not possible to measure 

some obesity-associated molecules with Luminex® technology 

because the serum values were near the lower limits of detection. 

Thus, Retinol Binding Protein 4 (Rbp4), Interleukin 6 (IL6), Tumor 

necrosis factor α (Tnfα), and Monocyte Chemotactic Protein 1 (Mcp1) 

were assessed by RT-PCR. RBP4, expressed mainly by adipocytes, 

was increased in Irs2-/- V-WAT but reduced in Irs2-/- SC-WAT (Figure 

22).  

Adipocytes express low levels of MCP1 but the adipose tissue of 

obese humans contains increased numbers of macrophages, and 

once activated, these macrophages are responsible for the expression 

of cytokines such as TNFα, IL6, and MCP1 (Vykoukal and Davies, 
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2011). The expression of IL6 was greater in V-WAT and SC-WAT of 

Irs2-deficient mice than in WT controls (Figure 22). IL6 impairs insulin 

signaling in the liver and adipocytes by inducing ubiquitin-mediated 

degradation of insulin receptor substrate through SOCS 1 and 3 

(Kristiansen and Mandrup-Poulsen, 2005). The expression of TNFα is 

also up-regulated in V-WAT but not SC-WAT of Irs2-deficient females. 

However, it should be noted that the expression of TNFα is drastically 

higher in SC-WAT than V-WAT in animals of both genotypes (Figure 

22). This may reflect contamination with lymph nodes in the SC 

samples. In adipose tissue, TNFα is mostly secreted by macrophages 

in the stroma vascular fraction (SVF) and circulating TNFα and 

adipose tissue TNFα gene expression are increased in insulin 

resistance (Kern et al., 2001). MCP1 is a chemoattractant that plays 

an important role in the recruitment of macrophages to the adipose 

tissue (Sartipy and Loskutoff, 2003, Kanda et al., 2006). Obesity is 

associated with increased plasma levels of MCP1 and overexpression 

in adipose tissue (Di Gregorio et al., 2005). MCP1 was increased in V-

WAT of Irs2-/- mice but the expression was equivalent between 

genotypes in SC-VAT. Mice lacking MCP1 receptor (CCR2) have 

decreased adipose tissue macrophage infiltration and improved 

metabolic function (Weisberg et al., 2003, Kanda et al., 2006).  
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Figure 22: Gene expression studies of adipokines in WAT from WT and Irs2-/-.  
Total RNA was extracted from V and SC-WAT with Trizol®. RT-PCR was performed 
using TaqMan probes for the indicated genes. Each reaction was performed in duplicate 
and the value of the gene of interest was normalized to the expression of Ubiquitin C. 
Data was analyzed by the comparative Ct method (2-ΔΔCt) (Livak and Schmittgen, 2001). 
Results are expressed as mean ± SEM.   * p<0.05, ** p<0.01 and *** p<0.001. For data 
presentation, V-WAT of WT mice was considered as 100%. N= 5 mice of each 
genotype. Relative gene expression of Adiponectin (A), Resistin (B), Retinol Binding 
Protein 4 (C), Interluekin 6 (D), Tumor necrosis factor α (E) and Monocyte Chemotactic 
Protein 1 (F) are shown in the graphs.  
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Osteopontin (Spp1, OPN) is a multifunctional protein expressed in 

activated macrophages and T cells that may also  play an important 

role in the inflammatory process in WAT (Mazzali et al., 2002, Standal 

et al., 2004). OPN is a T helper type 1 (Th1) cytokine and has been 

shown to be involved in monocyte/macrophage migration and 

activation (Zeyda et al., 2011). In the Irs2 knockout model, no 

differences were detected in the expression of OPN in either source of 

WAT (Figure 23). Another macrophage marker implicated in obesity-

related adipose inflammation is the glycoprotein F4/80 (Emr1). This 

marker was up-regulated in V-WAT of Irs2-deficient females but not in 

SC-WAT (Figure 23), perhaps reflecting the fact that macrophage 

infiltration occurs to a larger extent in visceral fat.  
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Figure 23: Gene expression studies of osteopontin and F4/80 in WAT from WT 
and Irs2-/-.  
Total RNA was extracted from V and SC-WAT with Trizol®. RT-PCR was performed 
using TaqMan probes for the indicated genes. Each reaction was performed in duplicate 
and the value of the gene of interest was normalized to the expression of Ubiquitin C. 
Data were analyzed by the comparative Ct method (2-ΔΔCt) (Livak and Schmittgen, 
2001). Results are expressed as mean ± SEM.   * p<0.05, ** p<0.01 and *** p<0.001. 
For data presentation, V-WAT of WT mice was considered as 100%. N= 5 mice of each 
genotype. Relative gene expression of osteopontin (A) and F4/80 (B) are shown in the 
graphs.  
 

Another mechanism involved in obesity-induced inflammation is the 

presence of lymphocytes and leukocytes in WAT, chiefly cytotoxic T 

lymphocytes. CD45 (Ptprc), also called leukocyte common antigen, 

was increased in V-WAT of Irs2-deficient mice but no differences were 
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observed between genotypes with respect to SC-WAT (Figure 24). 

CD3 together with the T-cell receptor alpha/beta and gamma/delta 

heterodimers forms the T-cell receptor-CD3 complex (Alarcon et al., 

1988, Blumberg et al., 1990). The expression of CD3 was similar 

between WAT of WT and Irs2-/-. CD8 is a transmembrane glycoprotein 

that serves as a co-receptor for the T cell receptor (Gao and 

Jakobsen, 2000). The expression of this marker was enhanced in V-

WAT, but not SC-WAT, from Irs2-/- when compared to control mice. 

                               A 
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Figure 24: Gene expression studies of lymphocytes markers in WAT of WT and 
Irs2-/-. 
Total RNA was extracted from V and SC-WAT with Trizol®. RT-PCR was performed 
using TaqMan probes for the indicated genes. Each reaction was performed in duplicate 
and the value of the gene of interest was normalized to the expression of Ubiquitin C. 
Data was analyzed by the comparative Ct method (2-ΔΔCt) (Livak and Schmittgen, 2001). 
Results are expressed as mean ± SEM.   * p<0.05, ** p<0.01 and *** p<0.001. For data 
presentation, V-WAT of WT mice was considered as 100%. N=5 mice of each 
genotype. Relative gene expression of leukocyte marker CD45 (A), CD3 (B), and CD8 
(C) are shown in the graphs.  
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4.3. Markers of hypoxia are up-regulated in WAT of Irs2-/- 
females 

Hypoxia is a pathogenic state whereby the surrounding tissue is 

devoid of an adequate supply of oxygen (Semenza, 2000, Hosogai et 

al., 2007). Local hypoxia is observed in WAT of obese mice and 

human subjects. It has been proposed (Kabon et al., 2004, Pasarica 

et al., 2009, Wood et al., 2009) that hypoxia may occur as a result of 

adipocyte hypertrophy which reduces the O2 supply from the 

vasculature, thereby triggering an inflammatory response associated 

with expression of the transcription factor hypoxic inducible factor-1 

(Hif1α) and Vascular endothelial growth factor A (Vegfa). Thus, 

hypoxia-induced inflammation represents a potential underlying cause 

of ATM infiltration in WAT (Finucane et al., 2012). Consistent with this, 

the expression of Hif1a was significantly up-regulated in V-WAT of 

Irs2-deficient mice. Vegfa expression was augmented in both V-WAT 

and SC-WAT when compared to WT control samples (Figure 25).  
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Figure 25: Gene expression studies of hypoxia markers in WT and Irs2-/- WAT. 
Total RNA was extracted from V and SC-WAT with Trizol®. RT-PCR was performed 
using TaqMan probes for the indicated genes. Each reaction was performed in duplicate 
and the value of the gene of interest was normalized to the expression of Ubiquitin C. 
Data was analyzed by the comparative Ct method (2-ΔΔCt) (Livak and Schmittgen, 2001). 
Results are expressed as mean ± SEM.   * p<0.05, ** p<0.01 and *** p<0.001. For data 
presentation, V-WAT of WT mice was considered as 100%. N=5 mice of each 
genotype. Relative gene expression of Hypoxic inducible factor α (A) and vascular 
endothelial growth factor A (B) are presented in the graphs.  
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4.4. Expression of insulin signaling genes 

Inflammatory events decrease the sensitivity to insulin in obese 

patients (Zeyda et al., 2011, Kiefer et al., 2010, Hotamisligil, 2003, 

Hotamisligil, 2006). Elevated serum concentrations of proinflammatory 

impairs insulin-signaling and thus, decreases insulin sensitivity in 

many tissues, including WAT (Belkina and Denis, 2010). Given the 

presence of moderate obesity and insulin resistance in the Irs2 model, 

RT-PCR analysis of some components of the insulin pathway was 

performed from both WAT sources. Irs1 and Irs3 were increased in V-

WAT but not SC-WAT of Irs2-/- mice as compared to WT controls 

(Figure 26). However, the expression of Insr (IRβ) was equivalent 

between V and SC-WAT of both experimental groups. The expression 

of glycogen synthase kinase 3 (GSK3β), a negative regulator of 

insulin signaling (Cross et al., 1995, Sharfi and Eldar-Finkelman, 

2008, Boura-Halfon and Zick, 2009), was enhanced in both WAT 

depots of Irs2-deficient mice (Figure 26). 
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Figure 26: Gene expression analysis of insulin signalling components of WAT 
from WT and Irs2-/- . 
Total RNA was extracted from V and SC-WAT with Trizol®. RT-PCR was performed 
using TaqMan probes for the indicated genes. Each reaction was performed in duplicate 
and the value of the gene of interest was normalized to the expression of Ubiquitin C. 
Data was analyzed by the comparative Ct method (2-ΔΔCt) (Livak and Schmittgen, 2001). 
Results are expressed as mean ± SEM. * p<0.05, ** p<0.01 and *** p<0.001. For data 
presentation, V-WAT of WT mice was considered as 100%. N= 5 mice of each 
genotype. Insulin receptor substrate 1 (A), Insulin receptor substrate 3 (B), Insulin 
receptor (C) and glycogen synthase kinase 3 (D).  

 

4.5. Adipogenesis-related genes are altered in WAT from Irs2-
deficient mice 

Nuclear receptors are key regulators of adipogenesis as they form 

platforms for co-activator proteins and regulate the assembly of these 

cofactors into protein complexes on specific DNA sequences (Glass et 

al., 1997, Spiegelman, 1998, Moras and Gronemeyer, 1998, Wu et al., 
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1999, Glass and Rosenfeld, 2000). Peroxisome proliferator activated 

receptor-γ (Pparg) is a nuclear hormone receptor that promotes the 

conversion of preadipocytes into fully differentiated adipocytes, 

including cell growth arrest, triglyceride accumulation, and improved 

insulin sensitivity (Walkey and Spiegelman, 2008). Pparγ expression 

was increased in both V-WAT and SC-WAT of Irs2-deficient mice as 

compared with control mice (Figure 27). Some co-activators have 

histone acetyltransferase activity that functions to ‘open’ the 

configuration of chromatin, allowing more efficient transcription 

(Puigserver and Spiegelman, 2003). Several co-activators, such as 

PPARγ co-activator‑1α (PGC-1α, gen Ppargc1a) enhance the activity 

of PPARγ. Consistent with attenuated expression of Pparg, the gene 

for PGC-1α was also down-regulated in WAT of Irs2-/- (Figure 27). 

PGC1α is crucial for liver gluconeogenesis and the altered expression 

of this co-activator has been implicated in hepatic insulin resistance of 

Irs2-deficient mice (Dong et al., 2006, Dong et al., 2008, Guo et al., 

2009). Sterol Regulatory Element Binding Protein (SREBP) 1c  

(Srebf1) has emerged as a major protein involved not only in the 

regulation of genes related with carbohydrate and lipid metabolism in 

the liver, but also in adipose tissue, muscle and pancreatic beta cells 

(Tontonoz et al., 1993, Brown and Goldstein, 1997). Srebf1 mediates 

the effects of insulin on gene expression and thus, favours glucose 

utilization and glycogen synthesis, as well as lipid synthesis from 

glucose and triglyceride storage into adipocytes (Kim et al., 1998, 

Fajas et al., 1999). This expression of this gene was increased 

significantly in V-WAT of Irs2-/- (Figure 27). Up-regulation of Srebf1 

may reflect an effort to increase lipid storage or alternatively, may 

represent the effects of chronic hyperinsulinemia in Irs2-deficient 

mice.  
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Figure 27: Gene expression of adipogenesis markers in WT and Irs2-/- WAT.  
Total RNA was extracted from V and SC-WAT with Trizol®. RT-PCR was performed 
using TaqMan probes for the indicated genes. Each reaction was performed in duplicate 
and the value of the gene of interest was normalized to the expression of Ubiquitin C. 
Data was analyzed by the comparative Ct method (2-ΔΔCt) (Livak and Schmittgen, 2001). 
Results are expressed as mean ± SEM.   * p<0.05, ** p<0.01  and ***  p<0.001. For 
data presentation, V-WAT of WT mice was considered as 100%. N= 5 mice of each 
genotype. Relative gene expression of Peroxisome proliferator activated receptor-γ (A), 
PPARγ co-activator‑1α (B) and Sterol Regulatory Element Binding Protein 1c (C) are 
presented in the graphs.  

 

One of the targets of PPARγ, the Fabp4 gene encoding fatty acid 

binding protein (FABP4 or aP2), was increased in the Irs2-/- model, 

perhaps reflecting some compensation mechanism. Adipsin (Adn) and 

Fatty Acid Synthase (Fasn) are acquired during differentiation to 

mature adipocytes (Choy et al., 1992, Spiegelman et al., 1993) and 

both were down-regulated in both types of WAT from Irs2-deficient 

mice (Figure 28). A decrease of Adn and Fasn has been described in 
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other obesity models (Lowell et al., 1990). GLUT4 (Slc2a4), the main 

glucose transporter present in WAT, was increased in V-WAT but not 

SC-WAT of Irs2-/- females. 
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Figure 28: Gene expression of PPARγ targets in WT and Irs2-/- WAT.  
Total RNA was extracted from V and SC-WAT with Trizol®. Real Time PCR was 
performed using TaqMan probes for the indicated genes. Each reaction was performed 
in duplicate and the value of the gene of interest was normalized to the expression of 
Ubiquitin C. Data was analyzed by the comparative Ct method (2-ΔΔCt) (Livak and 
Schmittgen, 2001). Results are expressed as mean ± SEM.   * p<0.05, ** p<0.01 and ***  
p<0.001. For data presentation, V-WAT of WT mice was considered as 100%. N= 5 
mice of each genotype. Relative gene expression of Glucose transporter 4 (A), Fatty 
Acid Binding Protein 4 (B), Fatty acid synthase (C) and Adipsin (D) are shown in the 
graphs.  

 

Synthesis of triacylglycerol (TG) involves acyl CoA diacylglycerol 

acyltransferase (Dgat) enzymes, which catalyze a reaction with 

diacylglycerol and fatty acid (FA) acyl CoA substrates (Bell and 

Coleman, 1980, Cases et al., 1998). Cellular TG storage is directly 
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correlated with levels of DGAT activity. Interestingly, DGAT1 

expression in adipocytes and WAT is regulated by PPARγ activation 

(Sugii et al., 2009). However, although PPARγ expression is reduced 

in Irs2-/- mice, only Dgat1 expression from SC-WAT was reduced in 

Irs2-deficient mice and it was equivalent between V-WAT samples of 

both genotypes (Figure 29). In sharp contrast, Dgat2 was enhanced in 

both V and SC WAT of Irs2-/- females as compared to WT controls. 
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Figure 29: Gene expression of TG synthesis in WT and Irs2-/- WAT.  
Total RNA was extracted from V and SC-WAT with Trizol®. Real Time PCR was 
performed using TaqMan probes for the indicated genes. Each reaction was performed 
in duplicate and the value of the gene of interest was normalized to the expression of 
Ubiquitin C. Data was analyzed by the comparative Ct method (2-ΔΔCt) (Livak and 
Schmittgen, 2001). Results are expressed as mean ± SEM.   * p<0.05, ** p<0.01 and ***  
p<0.001. For data presentation, V-WAT of WT mice was considered as 100%. N= 5 
mice of each genotype. Relative gene expression of acyl CoA diacylglycerol 
acyltransferase 1 (A) and acyl CoA diacylglycerol acyltransferase 2 (B) are presented.  

 

4.6. Adipocyte progenitor cells (APCs) are increased in V-
WAT of Irs2-/- mice 

The development of insulin resistance and its complications are 

related with abdominal adipose tissue accumulation and adipocyte 

enlargement rather than peripheral obesity, which is usually 

associated with a recruitment of new preadipocytes (hyperplasia) 

(Isakson et al., 2009). Since mature adipocytes are postmitotic 
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(Simon, 1965), adipocyte hyperplasia in adults requires that new 

adipocytes be produced from the differentiation of precursor cells. 

Previous reports have shown that cells derived from the stroma-

vascular fraction (SVF) of WAT from mice and humans can 

differentiate into several lineages, including adipocytes (Zuk et al., 

2002). Based on results presented above, the increased adiposity 

observed in Irs2-/- females is not due to cell hypertrophy since 

adipocyte size was similar to control mice. Alternatively, the moderate 

obesity of this model might be due to increased production of new 

adipocytes from APC.  

4.6.1. Establishment of FACS method for isolation of APC 

To assess the effects of Irs2-deficiency on APCs, a FACS-based 

strategy was developed to isolate this population of cells from SVF 

preparations of V-WAT and SC-WAT (Figure 30). WAT was digested 

enzymatically to obtain the SVF fraction which was then sorted based 

on lack of expression of CD45 (hematopoietic marker), CD31 

(endothelial marker) and Ter119 (erythroid marker) to obtain a 

negative lineage (Lin-). The Lin- subpopulation was further separated 

based on expression of stem cell antigen 1 (Sca1) and CD34 

(preadipocyte/stroma marker), markers that are associated with the 

population of primary preadipocytes (Rodeheffer et al., 2008, Tang et 

al., 2008, Joe et al., 2009). 
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A 

 
Figure 30: Strategy for APCs isolation by FACS.  
After the selection of live cells (DAPI-), the sequential  isolation of CD45-, CD31- and 
Ter119- cells guarantees that all the haematopoietic cells (CD45+), endothelial cells 
(CD31+) and erythroid cells (Ter119+) are discarded from the selected fraction. The 
population was then selected positively for CD34 and Sca1.   

 

The population resulting from the FACS strategy displayed the 

following characteristics: CD45- CD31- Ter119- CD34+ Sca-1+. These 

cells were recovered from the Cell Sorting MoFlo and corrected to the 

weight of the starting material (grams of WAT). The APC population 

obtained from Irs2-/- V-WAT was 2.5-fold higher than WT but there 

were no significant differences between genotypes in the APC 

isolated from SC-WAT (Figure 31). After cell sorting the cells were 

plated and the primary culture was established as show the pictures 
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Figure 31
Quantification of APC 
Results were corrected for weight of original WAT sample and then compared to WT V
WAT which was assigned the value of 1. 
images of APC after FACS isolation from V
expressed as 
genotype were used to generate the SVF and five independent isolation experiments 
were analyzed
 

4.6.2.

Based on the expression profile of inflammatory
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populations that might correlate with the observed gene changes. 
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31: Quantification of APC from WT and 
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hematopoietic lineage) CD34- (stroma/preadipocyte cell marker) and 

Sca1- (stem cell marker) (Figure 32) were isolated from the SVF 

fractions of both V and SC WAT. 

A 
 

 
Figure 32: Scheme for FACS isolation of inflamation-related cells.  
After the selection of the live cells (DAPI-), the isolation of CD45+ cells enriches for 
haematopoietic cells in the selected fraction. Negative selection for CD34 - and Sca1 - 
cells eliminates adult stem cells.  

 

The population CD45+CD34-Sca1- was normalized to cells per gram 

of WAT and was 3-fold higher in V-WAT from Irs2-/-, whereas this 

population isolated from SC-WAT was equivalent between genotypes 

(Figure 33).  
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A B 

  
Figure 33: Quantification of inflammatory-related cells in WT and Irs2-/- WAT. 
The CD45+ CD34- Sca1- population was isolated from the SVF fraction of V-WAT (A) 
and SC-WAT (B) as outlined in Figure 32. Results are expressed as mean ± SEM. * 
p<0.05, ** p<0.01 and *** p<0.001. N=3 mice of each genotype were used to generate 
the SVF and five independent isolation experiments were analyzed. 
 

4.6.3. Validation of FACS strategy and long-term 
maintenance of APC phenotype 

To confirm that the population obtained by the FACS strategy indeed 

represented APCs, Western blotting was performed to assess 

expression of an independent marker of adult adipose stem cells, the 

platelet-derived growth factor (PDGF) receptor. PDGFRβ is 

considered one of the main markers in adult stem cells from WAT 

since it is involved in the angiogenesis when new cells are 

differentiated from the precursors (Carmeliet, 2003, Armulik et al., 

2005, Tang et al., 2008). After APC differentiate to a mature 

adipocyte, expression of PDGFRβ is drastically reduced. Consistent 

with this, PDGFRβ was expressed in only the APC population (CD45- 

CD31- Ter119- CD34+ Sca1+) isolated from both genotypes (Figure 

34).  
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A 

 
    + CELLS: CD45- CD31- Ter119- CD34+ Sca1+ 
    - CELLS: CD45+ CD34- Sca1- 

Figure 34 : Western blot analysis of APC obtained by FACS from WAT of WT and 
Irs2-/- mice.  
Sorted cells were lysed and protein was extracted for Western blot analysis of APC 
marker PDGFRβ. βActin was used as a loading control. PDGFR: platelet-derived 
growth factor receptor.  

 

To ensure that when cultured in vitro the APC population maintained a 

stem cell phenotype, FACS was repeated after culturing the SVF 

preparation for five days and compared to cells freshly isolated from 

SVF. The percentage of non-stem cell populations was higher in fresh 

preparations than when the SVF was cultured one week (DMEM + 

10% FcBS + 10ng/mL βFGF). The CD45+ CD31+ Ter119+ cells 

basically disappeared when the cells were cultured (Figure 35B). 

Thus, the CD34+ Sca1+ population represented almost 90% of the 

cells in culture. 
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Figure 35
in culture
(A) FACS analysis of SVF directly isolated from the WAT. 
APC after one week of culture. Enrichment of CD34+ Sca1+ population was 
approximately 90%.
 

4.7.

4.7.1.

To validate the RT

biologically relevant profile of protein expression changes during the 

adipogenic program, WAT from 4

was compared with WAT from 8

This analysis revealed that the expression of IRS2 increased 

dramatically in V

during this time period (

equally in V and SC

detected in 

35: Comparison of FACS analysis from freshly isolated SVF or after 5 days 
in culture.  

) FACS analysis of SVF directly isolated from the WAT. 
APC after one week of culture. Enrichment of CD34+ Sca1+ population was 
approximately 90%. 

4.7.  Adipogenesis 

4.7.1. Characterization of WAT 

To validate the RT-PCR results of adipogenesis markers and to obtain 

biologically relevant profile of protein expression changes during the 

adipogenic program, WAT from 4

was compared with WAT from 8

This analysis revealed that the expression of IRS2 increased 

dramatically in V-WAT of WT mice but remained constant in SC

this time period (

equally in V and SC- WAT of WT animals. As expected, IRS2 was not 

detected in Irs2-/- samples. A slight increase of 

Comparison of FACS analysis from freshly isolated SVF or after 5 days 

) FACS analysis of SVF directly isolated from the WAT. 
APC after one week of culture. Enrichment of CD34+ Sca1+ population was 

dipogenesis is impaired in 

Characterization of WAT 

PCR results of adipogenesis markers and to obtain 

biologically relevant profile of protein expression changes during the 

adipogenic program, WAT from 4-week old mice (recently weaned) 

was compared with WAT from 8-week 

This analysis revealed that the expression of IRS2 increased 

WAT of WT mice but remained constant in SC

this time period (Figure 36). Interestingly

WAT of WT animals. As expected, IRS2 was not 

samples. A slight increase of 

Comparison of FACS analysis from freshly isolated SVF or after 5 days 

) FACS analysis of SVF directly isolated from the WAT. (B) FACS analysis of isolated 
APC after one week of culture. Enrichment of CD34+ Sca1+ population was 

in Irs2-deficient APC

Characterization of WAT maturation in vivo

PCR results of adipogenesis markers and to obtain 

biologically relevant profile of protein expression changes during the 

week old mice (recently weaned) 

week old mice by Western blotting. 

This analysis revealed that the expression of IRS2 increased 

WAT of WT mice but remained constant in SC

). Interestingly, IRS2 was expressed 

WAT of WT animals. As expected, IRS2 was not 

samples. A slight increase of IRS1 expression was 

 RESULTS

131

Comparison of FACS analysis from freshly isolated SVF or after 5 days 

) FACS analysis of isolated 
APC after one week of culture. Enrichment of CD34+ Sca1+ population was 

deficient APC 

maturation in vivo 

PCR results of adipogenesis markers and to obtain 

biologically relevant profile of protein expression changes during the 

week old mice (recently weaned) 

old mice by Western blotting. 

This analysis revealed that the expression of IRS2 increased 

WAT of WT mice but remained constant in SC-WAT

, IRS2 was expressed 

WAT of WT animals. As expected, IRS2 was not 

IRS1 expression was 

RESULTS 

131 

 

 
Comparison of FACS analysis from freshly isolated SVF or after 5 days 

) FACS analysis of isolated 
APC after one week of culture. Enrichment of CD34+ Sca1+ population was 

PCR results of adipogenesis markers and to obtain 

biologically relevant profile of protein expression changes during the 

week old mice (recently weaned) 

old mice by Western blotting. 

This analysis revealed that the expression of IRS2 increased 

WAT 

, IRS2 was expressed 

WAT of WT animals. As expected, IRS2 was not 

IRS1 expression was 



132 
 

detected from 4 to 8 weeks but expression of IRS3 as well as IRβ 

remained constant in both genotypes. Consistent with RT-PCR 

results, Glut4 was up-regulated V-WAT of Irs2-deficient mice (see 

Figure 28 and Figure 36). The expression of various proteins involved 

in the adipocyte metabolism was reduced in WAT from Irs2-/- mice 

including hormone sensitive lipase (HSL) and the leptin receptor 

(ObR). Concerning proteins with a clear role in the adipogenesis, 

PPARγ expression was increased in WAT of WT mice at 8-weeks of 

age compared to 4-week old mice. However, the expression of 

PPARγ was greatly reduced in Irs2-deficient WAT at both time points, 

consistent with qPCR data (see Figure 27 and Figure 36).  

A 
 

 
Figure 36: Western blot from WAT of 4 and 8 weeks old WT and Irs2-/- mice.  
WAT from 4 and 8-week old mice was lysed and Western blot analysis was performed 
for IRS proteins and the main regulators markers of adipogenesis. -actin was used as 
a loading control. IRS2, insulin receptor substrate 2; IRS1, Insulin receptor substrate 1; 
IRS3, insulin receptor substrate 3; IRβ, Insulin receptor; IGF1R, insulin growth factor 
receptor; ObR, leptin receptor, HSL, hormone sensitive lipase; PPARγ peroxisome 
proliferator-activated receptor gamma; GLUT4, glucose transporter 4. 
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4.7.2. Differentiation in vitro of Irs2-/- APC to adipocytes is 
impaired 

Adipocytes are postulated to derive from multipotent mesenchymal 

stem cells (Pittenger et al., 1999). During the first phase of 

adipogenesis adult stem cells commit to the adipocyte lineage. In the 

second phase, which is known as terminal differentiation, the pre-

adipocyte acquires the characteristics of mature adipocyte: transport 

and synthesis of lipids, insulin sensitivity and the secretion of 

adipocyte-specific proteins (Rosen and Spiegelman, 2000, Rosen and 

MacDougald, 2006). To examine the role of IRS2 in adipocyte 

differentiation, APC isolated from SVF were plated (day -3) and 

cultured until confluent (day 0). Adipocyte differentiation was induced 

by a standard protocol that employs a cocktail of insulin, 

glucocorticoids, and isobutylmethylxanthine (see Figure 15 page 93 ).  

At the onset and conclusion of the 10-day differentiation protocol, 

images were captured to assess the morphology of APC cultures. As 

expected, all cultures were fully confluent on Day 0 of the protocol. 

Lipid droplets were observed in cultures of both V and SC APCs 

isolated from WAT of WT mice (Figure 37 B and F). However, few if 

any lipid droplets were noted in 10-day cultures of Irs2-/- APC, 

suggesting that adipogenesis might be impaired in WAT of this model 

(Figure 37 D and H). It is also noteworthy that under the experimental 

conditions used for this study, the adipogenic differentiation of APC 

from SC-WAT was higher than V-WAT in control samples.  
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Figure 37: Phase contrast images of APC cultures from WT and Irs2-/- WAT 
subjected to adipocyte differentiation protocol. 
Phase contrast images of APC at day 0 and day 10 of adipocyte differentiation. A,B) 
WT V-WAT; C,D) Irs2 V-WAT; E,F) WT SC-WAT; G,H) Irs2 SC-WAT. Images were 
captured with 20x objective and 40x objectives (right of the picture). Representative 
images from 3 different experiments are shown. 
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Mature adipocytes are highly specialized for the storage of excess 

lipid and contain triacylglycerol-rich lipid droplets (Björntorp, 1991a, 

Henry et al., 2006). Fluorescent lipophilic dyes, which partition into the 

nonpolar lipid droplet core, are useful lipid droplet markers. Thus, 

BODIPY 493/503 was used to more precisely quantify the 

differentiation of APC to adipocytes. Cells were fixed with 4% 

paraformaldehyde and incubated with BODIPY 493/503 to reveal lipid 

droplets. At day 0, all cultures were devoid of lipid droplets but after 4 

days in adipogenic medium, WT APC display lipid droplets inside the 

cells as detected by BODIPY staining (Figure 38). Consistent with the 

results observed using light microscopy, cultures of Irs2-/- APC were 

negative for BODIPY staining, suggestive of impaired adipocyte 

differentiation. APC isolated from SC-WAT differentiated more 

efficiently than V-WAT in WT control cultures. It is interesting that the 

DAPI staining revealed differences in cell and nuclei size between WT 

and Irs2-/- APC. 
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A 
Day 0 Day 4 

 
 
B 

Day 0 Day 4 

 
Figure 38: BODIPY staining at day 0 and day 4 of differentiation of APC to 
adipocytes.  
The presence of lipids droplets was detected with BODIPY 493/503 (green). DAPI 
(blue) was used to reveal cell nuclei. A) APC from V-WAT; B) APC from SC-WAT. 
Scale bars represent 100μm.  
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Flow cytometry analysis was employed to quantify the differentiation 

of APC to adipocytes. Cells at different points of differentiation 

program (day 0, 4 and 10) were stained first with BODIPY to preserve 

lipid droplets. Subsequently, these cells were incubated with anti-Sca-

1 antibody to assess loss of this stem cell marker during the 

differentiation to adipocyte. BODIPY staining was analyzed in linear 

amplification to estimate the time when the cells started to accumulate 

lipids. The fluorescence intensity of BODIPY detected in cultures of V-

WAT APC from WT was higher at both day 4 and day 10 than Irs2-/- 

cultures (Figure 39). WT acquired lipids faster than Irs2-/- since by day 

4 the curve is completely shifted to right.  

A 

 
B 

 
Figure 39: Quantification of BODIPY staining during the time-course of APC 
differentiation.  
Lineal fluorescent intensity in X axis reflects BODIPY staining. (A) Differentiation of WT 
APC from V-WAT at days 0, 4 and 10. (B) Differentiation of Irs2-/- APC from V-WAT at 
days 0, 4 and 10. Results were expressed as mean ± SEM. N=3 different primary cell 
cultures were analyzed. 
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The profile BODIPY staining during the differentiation time-course was 

inversely related to Sca1 staining in WT cultures of APC: BODIPY 

increased steadily with adipocyte differentiation whereas the stem 

marker Sca1 decreased (Figure 40). However, in cultures of Irs2-/- V-

APC Sca1 expression was not down-regulated along the course of 

differentiation and BODIPY staining was significantly lower as 

compared to V-APC (Figure 40). 

A 

 

Figure 40: Comparison of BODIPY and Sca1 staining in ADP of APC from V-WAT.  
The % of total cells positive for BODIPY or Sca-1 was estimated by FACS. Results are 
expressed as mean ± */# p<0.05, **/## p<0.01, and ***/### p<0.001. N=3 different primary 
cell cultures were analyzed. 
 

Similar results were obtained with cultures of APC from SC-WAT, 

although the differences were more pronounced between WT and null 

samples since the differentiation to adipocytes was generally more 

efficient in these cultures. Between day 4 and 10, the majority of WT 

APC were positive for BODIPY, in contrast to Irs2-/- SC-WAT where 

only a limited number of cells contained lipid (Figure 41).  
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A 

 
B 

 
Figure 41: Quantification of BODIPY staining during the time-course of APC 
differentiation from SC-WAT.  
Lineal fluorescent intensity in X axis reflects BODIPY staining. (A) Differentiation of WT 
APC from SC-WAT at days 0, 4 and 10. (B) Differentiation of Irs2-/- APC from SC-WAT 
at days 0, 4 and 10. Results were expressed as mean ± SEM. N=3 different primary cell 
cultures were analyzed. 

 

Sca1 expression declined only slight from day 0 to day 10 in cultures 

of to Irs2-/- SC-WAT, whereas the adipogenic protocol caused a 

dramatic reduction of this stem marker in WT cultures (Figure 42). 
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A 

 
Figure 42: Comparison of BODIPY and Sca-1 staining in ADP of APC from SC-
WAT.  
The % of total cells positive for BODIPY or Sca-1 was estimated by FACS. Results are 
expressed as mean ± */# p<0.05, **/## p<0.01, and ***/### p<0.001. N=3 different primary 
cell cultures were analyzed. 
 

4.7.3. Western blot analysis of APC differentiation 

To identify potential molecular mechanisms underlying the differential 

capacity of WT versus Irs2-/- APC to differentiate, Western blot 

analysis was performed at various time points during the adipogenic 

protocol. Interestingly, the expression of IRS2 increased significantly 

from day 0 to day 4 during the differentiation of both V and SC APC 

isolated from WT mice (Figure 43). Conversely, IRS1 levels 

decreased from day 0 to day 4, consistent with a role for IRS1 in 

regulating proliferation. PPARγ and C/EBPα were up-regulated as 

expected in cultures of WT APC. However, similar to RT-PCR results 

(see Figure 27), the basal expression of PPARγ was reduced in Irs2-/- 

APC and did not increase during with culture in adipogenic medium. 

These observations suggest that IRS2 may exert a specific role in 

promoting the adipogenic program and may explain, in part, the 

observed failure of Irs2-/- APC to differentiate to adipocytes.  
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A 

 
 
B 

 
Figure 43: Western blot analysis of Adipocyte differentiation of APC.  
APC cultures were harvested at the indicated days during adipocyte differentiation. (A) 
Western blot from differentiation of APC from V-WAT. (B) Western blot from 
differentiation of APC from SC-WAT. Shown is a representative image for 3 
differentiation experiments. Anti- Actin was used to assess protein loading.  
 

4.8. Irs2-deficient APCs display altered proliferation in vitro 

Proliferation of cells within adipose tissue is influenced both by 

circulating factors and neuronal inputs as well as by internal controls 

such as paracrine/autocrine factors secreted from the various cells 
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within adipose tissue (Hausman et al., 1993, Lau et al., 1996, Serrero 

and Lepak, 1996, Mohamed-Ali et al., 1998). Studies have shown that 

conditioned media from adipose tissue of obese subjects stimulates 

the proliferation of preadipocytes better than do those from lean 

individuals (Considine et al., 1996). Adipose tissue is a source of 

growth factors, such as IGF-I, IGF binding proteins, TNFα, angiotensin 

II, and Macrophage colony-stimulating factor (MCSF).  

4.8.1. Characterization of cell growth and estimation of 
doubling time 

Various wells of each culture were plated at the same density and 

proliferation was assessed by counting the cell number at 24-hour 

intervals during 5 days. After day 6, most of the cultures were 

confluent and contact inhibition occurred. Proliferation curves were 

generated by graphing the number of cells during consecutive days. In 

both genotypes, the proliferation rate was higher in SC-APC than V-

APC (Figure 44). However, starting at day 3 of the analysis cell 

number was greater in Irs2-/- cultures as compared to WT controls. It 

should be noted that the curves in Figure 44 are not exponential 

growth curves since primary cultures and need to recover after the 

isolation procedure before their proliferation starts. 
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A 

 
B 

 
Figure 44: Growth curves estimated from cultures of APC. 
APC cultures were harvested and counted on the indicated days from V (A) and SC (B) 
WAT. Results were expressed as mean *p<0.05, ** p<0.01 and *** p<0.001. N=3 
different primary cell cultures were analyzed. 
 

 

The doubling time of the various cultures was calculated using the 

daily cell counts and the online software (http://www.doubling-

time.com/compute.php). Irs2-/- APC displayed a lower doubling time 

than WT APC, suggesting that they need less time to complete the 

cell-cycle (Figure 45).  
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A 

 
Figure 45: Estimated doubling time of APC cultures from WT and Irs2-/- mice. 
APC cultures were harvested and counted as indicated for Figure 45 and the doubling 
time was calculated by the online software (http://www.doubling-
time.com/compute.php). Results are expressed as mean ± SEM.* p<0.05, ** p<0.01 
and *** p<0.001. N=3 different primary cell cultures were analyzed. 
 

4.8.2. Expression of proliferation markers Ki67 and 
phospho-Histone 3 are increased in Irs2-/- APC 

The Ki67 protein (also known as MKI67) is a nuclear antigen 

specifically associated with cell proliferation (Gerdes et al., 1984). 

Expression of Ki67 occurs preferentially during late G1, S, G2 and M 

phases of the cell cycle but cannot be detected in G0 phase 

(Scholzen and Gerdes, 2000). Immunostaining for Ki67 was 

performed 24 hours after initial plating of APCs isolated from both 

genotypes. A greater proportion of Irs2-/- APC (both V and SC WAT) 

were positive for KI67 protein as compared to WT (Figure 46). 
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Figure 46: Quantification of Ki67 staining with In Cell® technology.  
(A) InCell® quantification of Ki67 immunostaining. APCs were isolated from the 
indicated genotypes and plated. 24 hours later, cultures were fixed and stained for Ki67. 
(B) Representative images of APC stained with anti-Ki67 (green). DAPI was used to 
identify cell nuclei (blue). Results were expressed as mean ± SEM * p<0.05, ** p<0.01 
and *** p<0.001. N=3 different primary cell cultures. 
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Anti-pH3 Alexa 647 conjugated (red) and positive cells were quantified 

with In Cell® technology (see Figure 47). Irs2-/- APC from V-WAT 

showed an increase of pH3 staining whereas no differences were 

observed in APC from SC-WAT. 

A 

 
B 
WT.V Irs2-/-.V 
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Figure 47: Quantification of anti-p-H3 in APC cultures.  
(A) InCell® quantification of anti-phospho-Histone 3 immunostaining. APCs were 
isolated from the indicated genotypes and plated. 24 hours later, cultures were fixed 
and stained for p-H3. (B) InCell® quantification of p-H3 immunostaining (red). DAPI 
(blue) was used to reveal cell nuclei. Results are expressed as mean ± SEM. * p<0.05, 
** p<0.01 and ***  p<0.001. Three different primary cell cultures were analyzed. 
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4.8.3. Cell cycle analysis by Flow Cytometry reveals 
abnormalities in APC from Irs2-deficient mice 

To gain further insight into the enhanced proliferation observed in Irs2-

/- APC cultures, the cell-cycle was assessed with propidium iodide 

(PI). PI is a DNA fluorochrome used for cell-cycle analysis of single-

cell suspensions. Flow cytometry analysis revealed enrichment of 

cells with double-quantity of DNA (4n) in Irs2-/-APC, suggesting a 

population which is compounded by polyploidy cells as a result of 

DNA replication in the absence of mitosis. However, no differences in 

cells in S phase were observed. These results might suggest a 

increase in cells undergoing mitosis and/or a failure in cell-cycle 

control in Irs2-/- APC (Figure 48). 
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Figure 48: Analysis of DNA content by PI staining of APC from WT and Irs2-/- 
mice. 
Cells adhering to the dish and detached cells (mitotic) were collected and subjected to 
PI nuclei staining and flow cytometry analysis. A and C, % of cells with different DNA 
content: 2n (normal cells G0-G1), S (synthesis phases of diploidy cells) and 4n (diploidy 
cells in mitosis and G0-G1 tetraploidy cells). B and D, DNA content on a logarithmic 
scale, determined by PI staining. Cells with 2n and 4n DNA are detected at 150 and 
300, respectively, whereas cells between these two populations are cell in S phase. 
Results were expressed as mean ± SEM. * p<0.05, ** p<0.01 and *** p<0.001. N=5 
primary cell cultures. 
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4.8.4. Apoptosis is not increased in APC cultures of Irs2-
deficient mice 

To determine whether Irs2 deficiency might also alter apoptosis in 

APC, flow cytometry analysis was performed with Annexin V 

conjugated to FITC. Apoptotic cells were identified as cells positive for 

both Annexin V and PI. For this study, cells were maintained in normal 

growth medium (DMEM + 10% Serum), apoptotic conditions (DMEM 

without serum) or with supplemented βFGF (DMEM + 10ng/mL βFGF) 

during 24h. All samples were assayed in duplicate. Basal rates of 

apoptosis in APC cultures were similar between Irs2-/- APC and WT 

cultures. Serum withdrawal induced apoptosis in cultures of both V 

and SC APC and no differences were observed between genotypes 

(Figure 49). SC-APCs were more sensitive to serum withdrawal than 

V-APC, since the % of cell death was higher in these cultures. βFGF 

alone in the medium prevented apoptosis in response to serum 

withdrawal. 
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A 
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Figure 49: Detection of apoptosis by flow cytometry analysis of Annexin V. 
Apoptotic cells of APC from V-WAT (A) or SC-WAT (B). Results are expressed as 
mean ± SEM.* p<0.05, ** p<0.01 and *** p<0.001. N=3 different primary cell cultures 
were analyzed. 
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4.9. Osteopontin deficiency (Spp1-/-) reduces inflammatory 
markers in WAT 

Chronic inflammation appears to underlie obesity-induced metabolic 

deterioration including insulin resistance and DT2 (Dandona et al., 

2004, Dandona et al., 2005, Hotamisligil, 2006). Osteopontin (OPN) is 

up-regulated in adipose tissue of obese humans and murine models 

of obesity. OPN acts as a chemokine and an inflammatory cytokine 

that is expressed in many cell types including adipose tissue 

macrophages (M Zeyda, 2007, Kiefer et al., 2010, Zeyda et al., 2011). 

Moreover, OPN added to the medium of primary adipocyte impairs 

differentiation as determined by PPAR γ and adiponectin gene 

expression (Zeyda et al., 2011). Given the impaired differentiation of 

Irs2-deficient APC, the relationship between insulin and OPN 

signalling in WAT was investigated. The results of this section were 

obtained in the laboratory of Dr. Thomas Stulnig of the University of 

Vienna. 

 

4.9.1. Characterization of metabolic parameters in Spp1-
deficient females 

To assess the role of Spp1 in adipose tissue inflammation and insulin 

resistance, female Spp1-/- and WT mice were maintained on a normal 

diet. Most of the previous studies with these mice were performed 

using high-fat diet but components of high-fat chow can themselves 

induce inflammation. Body weight was similar between WT and Spp1 

as were levels of fasting glucose (Figure 50). Adiposity was expressed 

as the quantity of WAT (g) divided by total body weight (g). Although 

there was a tendency for the WAT depots of Spp1-/- mice to weigh 
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less than WT, these differences were not statistically significant 

(Figure 50).  
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Figure 50: Metabolic parameters of WT and Spp1-/-.  
WT and Spp1-/- mice were fed a normal diet for 12 weeks. Mice were weighed (A) 
fasted overnight and blood glucose was measured using a glucometer (B). V and SC-
WAT were excised and weighed (C,D). Results are expressed as mean ± SEM. N=10 
mice of each genotype. Results are expressed as mean ± SEM. * p<0.05, ** p<0.01 and 
*** p<0.001.  
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4.9.2. Spp1-deficiency in mice alters the expression of 
adipokines and inflammatory markers 

Based on the results presented in Figure 18 and Figure 21, Irs2 

knockout mice display increased circulating levels of insulin, leptin, 

TNFand inflammation markers, suggestive of a state of obesity-

induced inflammation and pre-diabetes. To assess the role of OPN in 

WAT and adipose tissue inflammation, gene expression studies were 

performed with V and SC-WAT of Spp1-/- and WT mice. All results 

were compared to expression in V-WAT that was considered as 

100%. Similar to Irs2-deficient animals, adiponectin and Rbp4 were 

up-regulated in both types of WAT from Spp1 knockout mice (Figure 

51). Resistin and IL6 were reduced in Spp1-/- mice as compared to 

control samples, which is the opposite of what was observed in Irs2-/- 

females. Other markers related with inflammation were measured in 

WAT. The genes for IL6, TNFα and MCP1 were all down-regulated in 

V and SC-WAT of Spp1-/- mice (Figure 51), suggesting that loss of 

Spp1 reduces inflammatory cytokines in WAT. 
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Figure 51: Gene expression of adipokines in WAT from WT and Spp1-/-. 
Total RNA was extracted from V and SC-WAT with Trizol®. RT-PCR was performed 
using TaqMan probes for the indicated genes. Each reaction was performed in duplicate 
and the value of the gene of interest was normalized to the expression of Ubiquitin C. 
Data was analyzed by the comparative Ct method (2-ΔΔCt) (Livak and Schmittgen, 2001). 
Results are expressed as mean ± SEM. * p<0.05, ** p<0.01  and ***  p<0.001. For data 
presentation, V-WAT of WT mice was considered as 100%. N= 5 mice of each 
genotype. Relative gene expression of Adiponectin (A), Resistin (B), Retinol Binding 
Protein 4 (C), Interluekine 6 (D), Tumor necrosis factor α (E) and Monocyte 
Chemotactic Protein 1 (F) are shown in the graphs.  
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Markers of inflammatory cells were studied next. To determine 

whether macrophage infiltration was altered in WAT of Spp1- 

deficienct mice, F4/80 (Emr1) was analyzed by RT-PCR and the 

expression of this marker was diminished in both WAT sources 

(Figure 51), indicative of a reduced macrophage infiltration. 

Expression of the mRNA for Leukocyte marker CD45 was also lower 

in Spp1-/- mice as compared with WT WAT. Taken together with the 

reduction of the T-cell infiltration markers CD3 (Cd3e) and CD8 

(Cd8a), these results indicate reduced inflammation in WAT of Spp1-/-. 
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Figure 52: Gene expression of inflammatory-related markers in WAT from WT and 
Spp1-/-. 
Total RNA was extracted from V and SC-WAT with Trizol®. RT-PCR was performed 
using TaqMan probes for the indicated genes. Each reaction was performed in duplicate 
and the value of the gene of interest was normalized to the expression of Ubiquitin C. 
Data was analyzed by the comparative Ct method (2-ΔΔCt) (Livak and Schmittgen, 2001). 
Results are expressed as mean ± SEM.   * p<0.05, ** p<0.01 and ***  p<0.001. For data 
presentation, V-WAT of WT mice was considered as 100%. N= 5 mice of each 
genotype. Relative gene expression of macrophage infiltration marker F4/80 (A), 
leukocyte marker CD45 (B) and T lymphocyte marker CD3 (C) and CD8 (D) are showed 
in the graphs.  
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4.10. Hypoxia markers are down-regulated in Spp1-/- 

WAT 

In the Irs2-deficient model, enhanced expression of inflammatory-

related markers was also associated with up-regulation of the principal 

markers of hypoxia, HIFα and VEGF (see Figure 25), suggesting low 

oxygen availability in WAT. HIFα was down-regulated in both types of 

WAT in Spp1-/- as compared to WT controls (Figure 53). However no 

differences were founded in VEGF. 
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Figure 53: Gene expression studies of hypoxia markers in WAT from WT and 
Spp1-/-.  
Total RNA was extracted from V and SC-WAT with Trizol®. RT-PCR was performed 
using TaqMan probes for the indicated genes. Each reaction was performed in duplicate 
and the value of the gene of interest was normalized to the expression of Ubiquitin C. 
Data was analyzed by the comparative Ct method (2-ΔΔCt) (Livak and Schmittgen, 2001). 
Results are expressed as mean ± SEM.   * p<0.05, ** p<0.01 and *** p<0.001. For data 
presentation, V-WAT of WT mice was considered as 100%. N= 5 mice of each 
genotype. Relative gene expression of Hypoxic inducible factor α (A) and Vascular 
endothelial growth factor A (B) are shown in the graphs. 
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4.11. Expression of Irs2 mRNA is increased in WAT of 
Spp1-/- 

To explore the relation between the reduced inflammation mediated 

by Spp1-deficiency and insulin action in WAT, various genes of the 

insulin signaling were studied by RT-PCR. Interestingly, Irs2 mRNA 

was up-regulated in both depots of Spp1-/- WAT (Figure 54), 

suggesting that a general reduction of the inflammatory milieu might 

positively regulate IRS2 expression and thereby increase insulin 

sensitivity. The expression of Irs1 and Irs3 were decreased in Spp1-/- 

WAT whereas they were up-regulated in WAT of Irs2-deficient mice 

(Figure 54). The Insr was also reduced in V-WAT or SC-WAT from 

Spp1-/- mice. The expression of GLUT4 (Slc2a4) was increased in V-

WAT of Spp1-deficient mice suggesting an increased glucose uptake 

but there were no differences in the expression of Gsk3β between 

genotypes.  
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Figure 54: Analysis of genes of the insulin signalling pathway in WAT from WT 
and Spp1-/-. 
Total RNA was extracted from V and SC-WAT with Trizol®. RT-PCR was performed 
using TaqMan probes for the indicated genes. Each reaction was performed in duplicate 
and the value of the gene of interest was normalized to the expression of Ubiquitin C. 
Data was analyzed by the comparative Ct method (2-ΔΔCt) (Livak and Schmittgen, 2001). 
Results are expressed as mean ± SEM.   * p<0.05, ** p<0.01 and *** p<0.001. For data 
presentation, V-WAT of WT mice was considered as 100%. N= 5 mice of each 
genotype.  Relative gene expression of Insulin receptor substrate 2 (A), Insulin receptor 
substrate 2 (B), Insulin receptor substrate 3 (C), Insulin receptor (D), Glucose 
transporter 4 (E) and glycogen synthase kinase 3 (F) are presented in the graphs.  
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4.12. The major genes associated with adipogenesis 
are up-regulated in WAT from Spp1-/- mice 

To further assess potential differences in Spp1 versus Irs2 deficiency 

for WAT physiology, adipogenic-related genes were measured by RT-

PCR. Pparγ was increased in V-WAT in Spp1-/- mice (Figure 55), 

contrasting the decrease observed in Irs2-deficient females (see 

Figure 27). Fabp4, Fasn, and Adn were also increased in WAT from 

OPN deficient mice (Figure 55). 
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Figure 55: Gene expression of adipogenesis markers in WAT from WT and Spp1-/-. 
RT-PCR was performed using TaqMan probes for the indicated genes. Data was 
analyzed by the comparative Ct method (2-ΔΔCt) (Livak and Schmittgen, 2001). Results 
are expressed as mean ± SEM. * p<0.05, ** p<0.01 and *** p<0.001. For data 
presentation, V-WAT of WT mice was considered as 100%. N= 5 mice of each 
genotype. Relative gene expression of Peroxisome proliferator activated receptor-γ (A), 
Fatty acid binding protein 4 (B), Fatty acid synthase (C) and Adipsin (D) are shown in 
the graphs. 
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The expression of adipogenesis co-regulators Pgc1α and Srebf1 was 

similar between WT and Spp1-/- except that Srebf1 was reduced in 

SC-WAT from Spp1-/- mice (Figure 56). Expression of the two 

enzymes implicated in the synthesis of triacylglycerol, Dgat1 and 

Dgat2, were enhanced in WAT from Spp1-/- mice, suggesting that 

adipocytes lacking OPN may display an increased energy storage 

capacity. Consistent with these results, addition of OPN to culture 

medium has been shown to inhibit the differentiation of progenitors to 

adipocytes (Zeyda et al., 2011). 
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Figure 56: Gene expression of adipogenic coactivators in WAT from WT and 
Spp1-/-. 
RT-PCR was performed using TaqMan probes for the indicated genes. Each reaction 
was performed in duplicate and the value of the gene of interest was normalized to the 
expression of Ubiquitin C. Data was analyzed by the comparative Ct method (2-ΔΔCt) 
(Livak and Schmittgen, 2001). Results are expressed as mean ± SEM.   * p<0.05, ** 
p<0.01 and ***  p<0.001. For data presentation, V-WAT of WT mice was considered as 
100%. N= 5 mice of each genotype. Relative gene expression of PPARγ co-
activator‑1α (A), Sterol Regulatory Element Binding Protein 1c (B), Acyl CoA 
diacylglyceron acyltransferase 1 (C) and Acyl CoA diacylglyceron acyltransferase 2 (D) 
are shown in the graphs.  
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4.13. Flow cytometry analysis reveals a decrease of 
APC isolated from SC-WAT from Spp1-/- mice 

Mice lacking the osteopontin gene are resistant to diet-induced 

obesity (Kiefer et al., 2011), perhaps owing to reduced inflammation. 

Adipose mass is determined by many factors which ultimately regulate 

adipocyte cell size and/or adipocyte cell number. To gain further 

insight into the role of OPN in WAT regulation, APC were isolated 

from the SVF Spp1-/- WAT, as described previously for Irs2-deficient 

mice. The cells were analyzed by Flow cytometry to identify the APC 

population of CD45- CD31- Ter119- CD34+ Sca1+ cells. The % of 

APC obtained from V-WAT was similar between Spp1-/-.and WT 

controls (Figure 57). Surprisingly, the population of APC from SC-

WAT of Spp1-/- mice was reduced, suggesting that an anti-

inflammatory niche may reduce adult stems cells in WAT.  

A  B  

Figure 57: Analysis of APC population in WAT from WT and Spp1-/-.  
Flow cytometry analysis was used to quantify the APC population (CD45-CD31-Ter119-
CD34+Sca1+ cells) in V-WAT (A) and SC-WAT (B). Results are expressed as mean ± 
SEM. * p<0.05, ** p<0.01 and *** p<0.001. The SVF was isolated from 3 mice of each 
genotype in 3 independent experiments for a total n of 9 mice of each genotype.  
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4.14. Spp1-/- APCs differentiate more efficiently to 
adipocytes in vitro 

Previous studies have demonstrated that addition of OPN to cultures 

of human preadipocytes did not grossly alter adipogenesis as 

assessed by lipid droplet formation but analysis of gene expression 

revealed a concentration-dependent inhibition of PPARγ and 

adiponectin expression (Zeyda et al., 2011). Spp1 gene expression is 

up-regulated in obese humans (Gómez-Ambrosi et al., 2007, 

Nomiyama et al., 2007, Bertola et al., 2009). A recent publication 

suggests that OPN deficiency improves diet-induced insulin resistance 

(Kiefer et al., 2011). Therefore, the capacity of Spp1-/-.APC to 

differentiate to adipocytes was tested in vitro. APC were isolated from 

SVF with MACS® technology (see Figure 14 page 91) to obtain cells 

of the following immunophenotype: CD45- CD31- Ter119- CD34+ and 

Sca1+. The differentiation method was the same as used for APC 

from the Irs2-deficient model. APC were grown to confluence (day 0) 

and then exposed to the differentiation medium. After 10 days, the 

presence of lipid accumulation was assessed by phase contrast 

microscopy. The differentiation of SC-APC was more robust than V-

APC in both genotypes. However, Spp1-/-.APC differentiated more 

efficiently to adipocytes than WT controls based on the enhanced 

accumulation of lipid droplets in these cultures (Figure 58). These 

results contrast those obtained with Irs2-/-APC where differentiation 

was impaired compared to control cultures (see Figure 37).  
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Figure 58: Phase contrast images of APC cultures from WT and Spp1-/- WAT 
subjected to adipocyte differentiation protocol.  
Phase contrast images of APC at day 0 and day 10 of adipocyte differentiation. A,B) 
WT V-WAT; C,D) Spp1-/- V-WAT; E,F) WT SC-WAT; G,H) Spp1-/- SC-WAT. Images 
were captured with 20x objective and 40x objectives (right of the picture). 
Representative images from 2 different experiments are shown. 
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To characterize the molecular changes during the differentiation of 

Spp1-/- APC into adipocytes, RT-PCR analysis was performed at 

various time points (day -3, 0, 3, 7 and 10) during the adipogenic 

program. In both V-APC and SC-APC, Irs2 expression increased at 

day 3 but then was down-regulated between day 7 and 10, depending 

on WAT source (Figure 59). Consistent with RT-PCR analysis 

observations in WAT (see Figure 54), Irs2 expression was greater in 

Spp1-/- cultures of V-APC at day 10 and SC-APC at day -3. The 

expression profile of IRβ (Insr) was also distinct different between WT 

and Spp1-/- cultures (Figure 59); in V-APC the expression peaked at 

day 3 whereas in SC-APC, this peak occurred at the end of 

differentiation at day 10. GLUT4 (Slc2a4) expression was significantly 

higher in Spp1-/- SC-APC at day 10.  
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Figure 59: Gene expression analysis of insulin signaling related genes in APC 
from WT and Spp1-/- during differentiation of APC to adipocytes in vitro. 
APC cultures were collected at the indicated days and used to prepare total RNA with 
Trizol®. RT-PCR was performed using TaqMan probes for the indicated genes.  Each 
reaction was performed in duplicate and the value of the gene of interest was 
normalized to the expression of Ubiquitin C. Data was analyzed by the comparative Ct 
method (2-ΔΔCt) (Livak and Schmittgen, 2001). Results are expressed as mean ± SEM.   
* p<0.05 , ** p<0.01  and ***  p<0.001. For data presentation, APC from V-WAT of WT 
mice collected at day -3 was considered as 100%. N= 2 independent experiments. 
Insulin receptor substrate 2 (A), Insulin receptor β (B) and Glucose transporter 4 (C) are 
shown in the graphs. 
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day 7 in both V and SC cultures as compared to WT controls. Fsn 

expression was similar between WT and Spp1-/- with respect to V-

WAT but in APC from SC-WAT, Spp1-/- APC had higher levels than 

WT APC. The peaks of Adn expression were significantly higher in 

Spp1-/- APC (see Figure 60).   
A 

PPARγ 

  
B 

FSN (Fsn) 

  
C 

ADN (Adn) 

  
Figure 60: Gene expression analysis of adipogenesis related genes in APC from 
WT and Spp1-/- during differentiation of APC to adipocytes in vitro. 
APCs were collected at the indicated days and used to prepare total RNA with Trizol®. 
RT-PCR was performed using TaqMan probes for the indicated genes.  Each reaction 
was performed in duplicate and the value of the gene of interest was normalized to the 
expression of Ubiquitin C. Data was analyzed by the comparative Ct method (2-ΔΔCt) 
(Livak and Schmittgen, 2001). Results are expressed as mean ± SEM.   * p<0.05, ** 
p<0.01  and ***  p<0.001. For data presentation, APC from WT V-WAT collected by day 
-3 was considered as 100%. N= 2 independent experiments. Peroxisome-proliferating 
receptor γ (A), Fatty acid synthase (B) and Adipsin (C). 
 

0

50

100

150

200

DAY -3 DAY 0 DAY 3 DAY 7 DAY 10

R
el

at
iv

e 
ex

pr
es

si
on

WT V Spp-/- V

**

0

300

600

900

1200

1500

DAY -3 DAY 0 DAY 3 DAY 7 DAY 10
R

el
at

iv
e 

ex
pr

es
si

on

WT SC Spp-/- SC

**

0

50

100

150

200

250

300

DAY -3 DAY 0 DAY 3 DAY 7 DAY 10

R
el

at
iv

e 
ex

pr
es

si
on

WT V Spp-/- V

0

50

100

150

200

250

300

350

DAY -3 DAY 0 DAY 3 DAY 7 DAY 10

R
el

at
iv

e 
ex

pr
es

si
on

WT SC Spp-/- SC

*

0

250

500

750

1000

1250

1500

DAY -3 DAY 0 DAY 3 DAY 7 DAY 10

R
el

at
iv

e 
ex

pr
es

si
on

WT V Spp-/- V

**

*

0

1000000

2000000

3000000

4000000

5000000

DAY -3 DAY 0 DAY 3 DAY 7 DAY 10

R
el

at
iv

e 
ex

pr
es

si
on

WT SC Spp-/- SC

*

*



 

 
 



 

 
 

 

 

 

CHAPTER 

DISCUSSION 

 

5 



 

 
 



 DISCUSSION 

171 
 

5. DISCUSSION 

Lipids stored in adipose tissue represent the largest reserve of energy 

in the human body. In normal-weight adult humans, white adipose 

tissue represents 10 to 29% of body weight but this mass increases in 

obesity (Wang et al., 2008). Western dietary habits and a sedentary 

lifestyle have produced a worldwide epidemic of obesity. Indeed, at 

least one in 13 annual deaths in the European Union are likely to be 

related to excess weight (Banegas et al., 2003). Obesity predisposes 

patients to the development of cardiovascular disease and T2D, most 

likely due to the state of low-grade chronic inflammation which 

characterizes increased adipose mass. In recent years, various lines 

of evidence have demonstrated that activation of pro-inflammatory 

pathways can modulate insulin action via a number of mechanisms 

including down-regulation of insulin signalling pathway proteins (Starr 

et al., 1997, Hotamisligil, 2003). IRS proteins are the principal targets 

of the insulin receptor tyrosine kinase. Tissues from insulin-resistant 

and diabetic humans exhibit defects in IRS-dependent signalling 

(Copps et al., 2010, Copps and White, 2012), implicating their 

dysregulation in the initiation and progression of metabolic disease. 

Loss of Irs2 expression is associated with beta cell insufficiency in 

both mice and humans with T2D (Withers et al., 1998, Gunton et al., 

2005). The Irs2-deficient mouse model has demonstrated a crucial 

role for this signalling molecule in hepatic insulin sensitivity, brain and 

photoreceptor development, and hypothalamic regulation of appetite 

(Withers et al., 1998, Kubota et al., 2000, Burks et al., 2000, Withers, 

2001, Burks and White, 2001, Schubert et al., 2003, Valverde et al., 

2004, Choudhury et al., 2005, Taguchi et al., 2007). However, the role 

of IRS2 in adipose tissue has not been characterized. The results of 

the present project reveal that deletion of Irs2 causes an increase in 
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stores of both V and SC WAT which is accompanied by a pro-

inflammatory profile of cytokines and immune markers.   

The role of IRS2 in WAT was examined initially by comparing V and 

SC fat between Irs2-/- and control mice. The increased body weight of 

female Irs2-deficient mice was associated with larger stores of both V 

and SC WAT. The % of total body weight reflected by V and SC-WAT 

was almost doubled in Irs2-/- females as compared with control mice. It 

is important to note that only female mice were used in the study since 

male Irs2-/- develop severe diabetes and die by 16 weeks of age 

(Garcia-Barrado et al., 2011). Thus, the study of female mice 

permitted the analysis of Irs2 deficiency without the complications of 

hyperglycemia. Circulating levels of leptin were increased in Irs2-/- 

females but adiponectin was also increased which is surprising since 

adiponectin levels are reduced in obese subjects (Hu et al., 1996). 

However, this may be explained by recent studies which suggest that 

adiponectin levels reflect adipose tissue triglyceride storage capacity 

(Vega and Grundy, 2013). RT-PCR analysis of WAT depots revealed 

that expression of the genes for TNFα, IL6, and MCP1 are also 

increased in Irs2-deficient females. This is consistent with the 

observation that adipose tissue of obese humans contains increased 

numbers of macrophages, and once activated, these macrophages 

are responsible for the expression of various cytokines including 

TNFα, IL6, and MCP1 (Weisberg et al., 2003). TNFα is an important 

mediator of insulin resistance in obesity and diabetes through its 

ability to decrease the tyrosine kinase activity of the insulin receptor 

and inactivate IRS proteins. The present results suggest that reduced 

IRS2 signaling could contribute to obesity in at least two ways, first 

through the simple impairment of insulin signaling pathways and 

second, by increasing the expression of cytokines such as TNFα in 
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WAT which would compound insulin resistance by inhibiting the 

activity of the insulin receptor.  

Increased WAT mass can arise through an increase in cell size, cell 

number, or both. Adipose cells are quite variable in size which 

depends principally on the amount of stored triglycerides. Mild obesity 

mainly reflects an increased adipose cell size (hypertrophic obesity) 

while more severe obesity or obesity arising in childhood derives from 

an increased fat cell number (hyperplastic obesity) (Spiegelman and 

Flier, 1996). Recent studies indicate that the adipocyte population is 

more dynamic than previously believed. In humans, adipocyte number 

increases dramatically throughout the first two decades of life and 

continues to turn over at the rate of about 10% per year throughout 

adulthood (Spalding et al., 2008, Jo et al., 2009). Individuals with 

early-onset obesity develop increased numbers of adipocytes, 

suggesting the concept of a “fixed body weight” since even after 

significant weight loss the number of adipocytes remains constant in 

these individuals. In the Irs2-deficient model, the increase in adipose 

mass was not due to an increase in cell size as a consequence of 

hypertrophy, suggesting that enhanced WAT mass might be 

attributable to increased adipocyte number. This notion was 

corroborated by the upregulation of the main markers of hypoxia HIF 

and VEGFa in WAT of Irs2-/- females. Several laboratories have 

proposed that hypoxia in WAT occurs as a result of adipocyte 

hyperplasia which reduces the O2 supply from the vasculature (Kabon 

et al., 2004, Pasarica et al., 2009). 

Although how pre-adipocytes differentiate into adipocytes has been 

defined through extensive study of in vitro models such as 3T3-L1, 

very little is known about the development and regulation of 

preadipocytes in vivo. As key parts of a homeostatic system that 
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modulates energy balance, the identification of the signaling 

mechanisms that regulate preadipocyte cell growth and differentiation 

are of extreme interest since they represent potential targets for 

controlling obesity. Embryonic mesoderm is thought to give rise to 

mesenchymal stem cells, which in turn give rise to common early 

precursors or adipoblasts (Gesta et al., 2007). Under appropriate 

conditions, adipoblasts develop into committed white and brown 

preadipocytes and, ultimately mature adipocytes. Due to absence of 

specific markers, the specific steps in lineage commitment and 

differentiation, and the factors controlling these pathways have not 

been defined. During the last several years, various laboratories have 

identified APC in the SVF using lineage tracing studies in mouse 

models (Tang et al., 2008). These specialized cells express PPARγ, 

Sca1, and CD34. Although advances have been made towards the 

identification of the APC in vivo, no studies have yet addressed the 

role of insulin signaling in regulating this population in WAT. Based on 

the results of the present study, insulin sensitivity may play a key role 

in establishing the number of APC in vivo. The number of APCs 

isolated from V-WAT of Irs2-/- females was increased more than 2-

fold. However, it remains to be determined whether the increase of V-

WAT progenitors observed in this model is due directly to the loss of 

Irs2 expression or whether it more accurately reflects systemic 

inflammation resulting from Irs2-deficiency.  

WAT depots in different parts of the body have different 

developmental timing and different physiological effects. Although an 

increase of both V and SC fat was observed in Irs2-/- females, the 

population of APC was increased in V but not SC-WAT when 

compared to control mice. This observation is consistent with the fact 

that visceral adiposity, but not subcutaneous adiposity, is associated 

with diabetes and other metabolic diseases (Gesta et al., 2007). 
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Increasing evidence suggest that subcutaneous fat is not related to 

many of the classic obesity-induced pathologies but rather might play 

a protective role. The typically female, pear-shape of body fat 

distribution is subcutaneous fat, and appears to pose less of a health 

risk compared to visceral fat (Kissebah and Krakower, 1994). 

Under the experimental conditions employed, the differentiation of SC-

APC to adipocytes was more robust than V-APC in both genotypes. 

An interesting observation from this study is the fact that IRS2 

expression increased greatly during the early phases of the 

differentiation of WT APC in vitro. In contrast, IRS1 and IRS3 were 

slightly down-regulated, suggesting that IRS2 signals may be 

important for initiating the transcriptional program that directs 

adipogenesis. Consistent with this hypothesis, cultures of Irs2-/- APC 

from both V and SC-WAT differentiated poorly to adipocytes in vitro as 

determined by the accumulation of lipid by BODIPY. The impaired 

differentiation of Irs2-/- APC correlated with decreased expression of 

the principal adipogenic transcription factors PPARγ and C-EBPα and 

markers of adipocyte function. Moreover, cultures of both V and SC 

Irs2-/- APC proliferated more rapidly than control cells, suggesting that 

enhanced doubling time might explain, in part, the failure of Irs2-

deficient precursors to differentiate (Figure 61). The mitotic index of 

mature adipocytes is quite low since these cells exit the cell cycle in 

order to differentiate and mature functionally. The increased 

proliferation might be explained by the observation that IRS1 

signaling, unopposed by IRS2, is mitogenic as evidenced by the 

hyperplasia of beta cells in Irs1-deficient mice (Withers et al., 1998). 

How is possible that Irs2-/- APC display impaired differentiation to 

adipocytes in vitro yet Irs2-deficiency causes moderate obesity in 

vivo? Interestingly, it has been recently reported that the differentiation 
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potential of human preadipocytes is inversely correlated with obesity, 

whereas the pool of precursors cells was positively correlated to BMI, 

suggesting that the obese microenvironment is capable of inducing 

proliferation of human preadipocytes while inhibiting their 

differentiation (Permana et al., 2004, Isakson et al., 2009). Medium 

conditioned by macrophages stimulates proliferation of human 

preadipocytes in vitro (Lacasa et al., 2007, Keophiphath et al., 2009). 

The expression of MCP1 was increased in V-WAT but not SC-WAT of 

Irs2-/- females, providing yet an additional explanation for the 

enhanced proliferation and impaired proliferation of the APC 

population. Therefore, it seems quite likely that pro-inflammatory 

signals or cells that accumulate within adipose tissue with obesity 

might contribute to fat mass enlargement through paracrine effects on 

progenitor cells. In addition to increased expression of cytokines and 

adipokines, the population of immune cells was increased in V-WAT. 

Moreover, the expression of enzymes involved in synthesis and 

storage of lipids was altered in WAT of Irs2-deficienct mice, 

suggesting the possibility that although there are more adipocytes 

present in the WAT of these animals, these cells are not fully mature 

at a functional level. Indeed, WAT of Irs2-/- females regulation of 

lipolyis is resistant to catecholamines due to increased expression of 

HSL (Garcia-Barrado et al., 2011).   
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IL6 and MCP1 were greatly reduced in WAT of Spp1-/- mice as were 

makers of hypoxia such as HIF1α and VEGFa. Interestingly, the 

expression of Irs2 was up-regulated in WAT of Spp1-/- mice, whereas 

the expression of Irs1 and Irs3 were moderately down-regulated, an 

opposite pattern to that observed in Irs2-/- WAT. Additionally, the 

expression of the insulin receptor gene was also decreased in WAT of 

these mice, perhaps reflecting the presence of general insulin 

sensitivity. These observations suggest a relationship between 

inflammation, Irs2 expression, and insulin sensitivity whereby Irs2 is 

increased in an anti-inflammatory setting and diminished in a pro-

inflammatory environment.  

OPN inhibits expression of PPARγ and adiponectin in cultures of 

human preadipocytes (Zeyda et al., 2011) However, the precise role 

of OPN in regulating APC development and differentiation has not 

been characterized. The results of the present study reveal that the 

expression of genes required for efficient adipogenesis such as 

PPAR are increased in WAT of Spp1-/- mice. Quantification of APC 

progenitors revealed a decrease in this population isolated from SC-

WAT, whereas the population from V-SC was similar to WT controls. 

However, these Spp1-/- APC from SC-WAT differentiated more 

efficiently to adipocytes than WT controls based on the enhanced 

accumulation of lipid droplets in these cultures (Figure 62). These 

results contrast those obtained with Irs2-/-APC where differentiation 

was impaired. The genetic approach used for this study suggest that 

that adipogenesis and adipocyte physiology are improved in Opn-

deficiency but impaired in the absence of IRS2 signals. The key to 

these observations may be the presence of a pro-inflammatory 

environment in WAT of Irs2-/- females in contrast to the anti-

inflammatory detected in Spp1-/- mice. 



 

Figure 62

 

Reversing or controlling the worldwide epidemic of obesity requires a 

more precise knowledge of adipogenesis and WAT function. 

Collectively, the observations of this study suggest that inflammation 

and loss of insulin sensitivity negatively modulate the po

adipocyte precursors which reside in WAT in vivo. Reduced IRS2 

function causes insulin resistance and is associated with inflammation 

and impaired differentiation of APC to adipocytes. In contrast, loss of 

the cytokine OPN increase insulin sens

and enhances adipogenesis. These findings reveal a potential 

therapeutic strategy of targeting obesity

mediators including lifestyle changes and/or drugs that promote IRS2 

expression. 

 

62: Propose model of the role of OPN in regulation of WAT.

Reversing or controlling the worldwide epidemic of obesity requires a 

more precise knowledge of adipogenesis and WAT function. 

Collectively, the observations of this study suggest that inflammation 

and loss of insulin sensitivity negatively modulate the po

adipocyte precursors which reside in WAT in vivo. Reduced IRS2 

function causes insulin resistance and is associated with inflammation 

and impaired differentiation of APC to adipocytes. In contrast, loss of 

the cytokine OPN increase insulin sens

and enhances adipogenesis. These findings reveal a potential 

therapeutic strategy of targeting obesity

mediators including lifestyle changes and/or drugs that promote IRS2 

expression.  

Propose model of the role of OPN in regulation of WAT.

Reversing or controlling the worldwide epidemic of obesity requires a 

more precise knowledge of adipogenesis and WAT function. 

Collectively, the observations of this study suggest that inflammation 

and loss of insulin sensitivity negatively modulate the po

adipocyte precursors which reside in WAT in vivo. Reduced IRS2 

function causes insulin resistance and is associated with inflammation 

and impaired differentiation of APC to adipocytes. In contrast, loss of 

the cytokine OPN increase insulin sens

and enhances adipogenesis. These findings reveal a potential 

therapeutic strategy of targeting obesity

mediators including lifestyle changes and/or drugs that promote IRS2 

Propose model of the role of OPN in regulation of WAT.

Reversing or controlling the worldwide epidemic of obesity requires a 

more precise knowledge of adipogenesis and WAT function. 

Collectively, the observations of this study suggest that inflammation 

and loss of insulin sensitivity negatively modulate the po
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function causes insulin resistance and is associated with inflammation 
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and enhances adipogenesis. These findings reveal a potential 

therapeutic strategy of targeting obesity-associated inflammatory 

mediators including lifestyle changes and/or drugs that promote IRS2 
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6. CONCLUSIONS 

I. Deletion of Irs2 causes increased accumulation of both 

visceral and subcutaneous adipose tissue in female mice. 

This adiposity may reflect a specific role for IRS2 signaling in 

the regulation of energy stores and/or the effects produced 

directly by Irs2-deficiency in pancreatic beta cells and liver.  

 

II. The expression of cytokines and adipokines are dysregulated 

in Irs2-deficient female mice, reflecting a profile consistent 

with obesity-induced inflammation. The results of this study 

suggest that Irs2 null mice represent a physiologically relevant 

model for studying the role of inflammation in the progression 

from pre-diabetes to diabetes.  

 

III. The population of adipocyte progenitor cells located within the 

stroma-vascular fraction was increased in visceral WAT of 

Irs2-deficienct mice. Irs2-deficient progenitor cells from both 

visceral and subcutaneous WAT failed to differentiate to 

adipocytes in vitro. Impaired differentiation was associated 

with reduced expression of key adipogenic transcription 

factors such as PPARγ and C/EBPα in vitro and in vivo. 

Additionally Irs2-deficient APCs proliferated more rapidly in 

culture. Collectively, these results implicate a role for IRS2 

signals in regulating the development and differentiation of 

adipocyte progenitors. IRS2 signaling may mediate the 

insulin-dependent transcriptional program of adipogenesis as 

well as in the regulation of proliferation. Maturation to 
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functional adipocytes may be particularly sensitive to loss of 

IRS2. 

 

IV. In contrast to the Irs2 model, the expression of cytokines and 

markers of inflammation are reduced in WAT of mice deficient 

for osteopontin (Spp1). Irs2 expression was enhanced in 

Spp1-/- WAT. These observations suggest that reduced Irs2 

expression is associated with obesity and inflammation 

whereas anti-inflammatory settings such as Spp1-deficiency 

are associated with enhanced Irs2 expression.   

 

V. Adipocyte progenitors isolated Spp1-/- mice differentiate more 

efficiently to adipocytes in vitro than WT control progenitors. 

The enhanced differentiation was associated with increased 

expression of PPARγ. These findings suggest that cytokines 

such as osteopontin may negatively regulate adipocyte 

differentiation.  
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7. RESUMEN 

 

INTRODUCCIÓN 

Insulina y acciones fisiológicas 

La insulina es la hormona anabolizante más importante, es secretada 

por las células β pancreáticas de los islotes de Langerhans y es 

responsable del control de los niveles de glucosa circulantes. Además 

posee importantes acciones a nivel de desarrollo, diferenciación y 

crecimiento. A nivel de metabolismo, los órganos diana de la insulina 

son el hígado, el músculo y el tejido adiposo. Sus funciones incluyen 

la regulación de la incorporación de glucosa en el músculo y en el 

tejido adiposo, la gluconeogénesis y lipogénesis en el hígado así 

como la lipogénesis y la adipogénesis en el tejido adiposo. También 

tiene la capacidad de influir en el apetito al actuar sobre el hipotálamo 

junto con la acción de la leptina. Además, la insulina, a través de su 

ruta se señalización puede participar en la expresión de genes, en la 

síntesis de proteínas y en proliferación y supervivencia celular.  

La insulina ejerce su función a través de su interacción con el 

receptor de insulina (IR) que transmite la señal a través de la 

fosforilación, gracias a su actividad quinasa, a las proteínas IRS (del 

inglés Insulin Receptor Substrate). A partir de aquí se activan una 

serie de rutas en las que están involucradas otras proteínas tales 

como AKT y MAP quinasas entre otras, cuya consecuencia final es la 

activación de proteínas y factores de transcripción que regulan la 

expresión génica con consecuencias en el metabolismo, crecimiento, 

diferenciación y supervivencia celular. 
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Modelo deficiente en IRS2: ratón Irs2-/-. 

Los ratones deficientes en la proteína IRS2 son un 10% más 

pequeños que los silvestres, muestran un descenso en la masa de 

células β que junto con la resistencia a insulina que también 

acompaña a este modelo, desencadenan la aparición de diabetes tipo 

2. Además, las hembras deficientes en IRS2 desarrollan obesidad por 

un incremento del tejido adiposo y una desregulación del sistema 

hipotalámico que a través de la leptina regula el apetito, provocando 

una mayor ingesta de alimento en ratones deficientes para IRS2. 

Añadir además la relación entre el sistema reproductivo y la función 

de IRS2, siendo las hembras Irs2-/- infértiles.  

 

Diabetes Mellitus tipo 2 

La diabetes Mellitus (DM) es una enfermedad metabólica 

caracterizada por niveles altos de glucosa en sangre. Principalmente 

existen dos tipos de DM. La DM tipo 1 es una enfermedad 

autoinmune en la que se desarrollan anticuerpos que atacan a las 

células beta del páncreas, encargadas de la síntesis de insulina, 

resultando en una falta total de ésta, y por lo tanto, una necesidad 

absoluta de aporte exógeno. El otro tipo es la DM tipo 2, mucho más 

frecuente que la anterior, que se desarrolla por una resistencia a la 

acción de la insulina sobre los tejidos periféricos (hígado, musculo y 

tejido adiposo principalmente) que acaba por un fallo en la secreción 

de ésta, apareciendo una hiperinsulinemia inicial que trata de 

compensar la falta de acción, seguida de un fallo en la síntesis debida 

a la desaparición progresiva de las células β pancreáticas, que por 

tanto desencadena la aparición de DM. La estrategia terapéutica 

seguida en la DM tipo 1 es el aporte exógeno de insulina, mientras 
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que en la DM tipo 2, acciones en la dieta y ejercicio pueden regular 

inicialmente la glucemia de los pacientes, aunque a medida que 

aparecen las complicaciones de la resistencia a insulina, fármacos 

hipoglucemiantes e incluso en último caso, insulina exógena, acaban 

siendo necesarias para el control de la glucemia. 

El estudio “Di@betes” es el estudio epidemiológico más importante 

hecho hasta ahora en territorio español, tasa en un 13,8% la 

prevalencia de DM en población mayor de 18 años. Mientras que a 

nivel mundial los estudios estiman que en 2025 habrá 300 millones de 

personas con DM, suponiendo esto un 5,4% de la población mundial, 

siendo el aumento más pronunciado en países en desarrollo.  

La DM forma parte del conjunto de enfermedades presentes en el 

Síndrome Metabólico (SM) y, junto con la obesidad, es considerada 

por la Organización Mundial de la Salud (WHO, por sus siglas en 

inglés) como el mayor riesgo para padecer muerte cardiovascular. 

Además de las consecuencias de la glucotoxicidad y la resistencia a 

insulina presente en la DM, ésta a su vez se acompaña de un estado 

inflamatorio reactivo que causa una retroalimentación a la DM 

empeorando la deficiente señalización por insulina en los tejidos 

periféricos e impidiendo en normal funcionamiento de la célula β 

pancreática. Citoquinas como Factor de Necrosis Tumoral α (TNF-α 

por sus siglas en inglés) o las interleuquinas 1 y 6 (IL-1, IL-6) son ya 

reconocidos como agentes que entorpecen la acción de la insulina 

inhibiendo/promoviendo fosforilaciones que dificultan la transmisión 

de la señal, por ejemplo, inactivando a las proteínas IRS mediante 

fosforilación en residuos de serina/treonina. 
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Obesidad y tejido adiposo 

La obesidad ha sido descrita por la WHO como la pandemia del siglo 

XXI afectando a más de 1 billón de personas en todo el mundo. Se 

define como un exceso de masa corporal como consecuencia de un 

desequilibrio entre un mayor aporte de energía a la que es capaz de 

consumir el organismo, agravada a su vez por factores ambientales, 

genéticos y psicosociales. El índice de masa corporal (BMI por sus 

siglas en inglés) es la herramienta que ha sido utilizada para 

diagnosticar los distintos grados de obesidad, aunque hoy en día se 

encuentre en entredicho por la importancia que está adquiriendo la 

distribución de la grasa en el cuerpo. El BMI es un parámetro 

obtenido al dividir el peso en kilogramos entre el cuadrado de la altura 

en metros (BMI=kg/m2), considerando individuos con sobrepeso a 

aquellos con un BMI≥ 25 y obesidad cuando BMI ≥ 30.  

En la obesidad se produce un aumento del tejido adiposo, fenómeno 

que ha sido explicado por dos teorías, la hiperplasia y la hipertrofia de 

los adipocitos, aunque actualmente se postula que lo que ocurre es 

una combinación de ambas. La hiperplasia es un aumento del tejido 

adiposo por un aumento en el número de adipocitos tras la 

diferenciación de células progenitoras presentes en el nicho del tejido 

adiposo, sin embargo, la hipertrofia es un aumento del tamaño de los 

adipocitos ya presentes, aumentando así su capacidad para 

almacenar triglicéridos. 

El tejido adiposo es el órgano encargado de almacenar el exceso de 

energía en forma de lípidos y es uno de los tejidos más importantes 

metabólicamente hablando, tanto como almacén de lípidos como por 

ser el encargado de su movilización ante necesidades. Además de 

este papel pasivo de depósito energético, hoy en día se considera al 

tejido adiposo cómo un órgano metabólicamente activo con funciones 
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endocrinas, paracrinas y autocrinas que influyen de una forma 

importante en la homeostasis general del organismo, influyendo en el 

metabolismo lípidos y glucosa, inflamación y regulación del apetito 

entre otros. 

El origen embrionario del tejido adiposo es el mesodermo, junto con 

músculo y huesos. Las células mesenquimales (MSC por sus siglas 

en inglés) provenientes de esta capa embrionaria son capaces de 

diferenciarse a adipocitos, osteoblastos, condrocitos y mioblastos, 

aunque el número exacto de pasos hasta que las MSC se convierten 

en adipocitos maduros no está bien establecido. 

Existen dos tipos de tejido adiposo: blanco y marrón, con un mismo 

origen embrionario pero con funciones metabólicas muy distintas. El 

tejido adiposo blanco (WAT, por sus siglas en inglés) está encargado 

principalmente para la reserva energética y el tejido adiposo marrón 

(BAT, por sus siglas en inglés), por el contrario, está encargado de 

disipar la energía que sobra en forma de calor por un proceso 

denominado termogénesis. Ambos tipos de tejido adiposo se 

distribuyen por el cuerpo de forma distinta, mientras que los mayores 

depósitos de WAT se localizan principalmente en la zona intra-

abdominal (tejido visceral) y de una forma subcutánea en nalgas, 

muslos y abdomen. Por el contrario, depósitos de BAT son más 

abundantes en la etapa postnatal reduciéndose en el etapa adulta a 

pequeños depósitos en la zona cervical, supraclavicular y 

paravertebral. Ambos no presentan diferencias única y 

exclusivamente en cuanto a coloración, sino también en cuanto a su 

morfología, distribución, expresión genes y función. También hay 

diferencias en cuanto a vascularización, tamaño celular, expresión de 

receptores de esteroides y factores de crecimiento y expresión de 

proteínas. Además, tanto WAT como BAT están enervados por 
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distintos sistemas, mientras que el sistema adrenérgico está 

encargado del control del WAT, el noradrenérgico se encarga del 

BAT. El tejido adiposo marrón posee adipocitos multiloculares con 

abundantes mitocondrias que expresan altas cantidades de proteína 

desacoplante 1 (UCP-1), la cual es responsable de la actividad 

termogénica de este tejido. Por el contrario, el tejido adiposo blanco 

está formado por adipocitos uniloculares, que al contrario que los 

adipocitos del BAT, producen por ejemplo, leptina, una hormona que 

informa al cerebro del estado nutricional para regular la ingesta y el 

gasto energético. Además de las diferencias existentes entre el WAT 

y el BAT, dentro del WAT, en función de su localización, también 

existen diferencias entre el tejido adiposo blanco visceral (V) o 

subcutáneo (SC). Adipocitos de depósitos V son menos sensibles a la 

insulina que los que se localizan en el tejido SC, y por tanto, a los 

efectos lipogénicos de ésta. La capacidad reguladora del 

metabolismo de los lípidos la ejercen los adipocitos gracias a un 

conjunto de proteínas reguladoras, entre otras cabe destacar: 

lipoproteína Lipasa (LPL), transportadores de ácidos grasos, 

proteínas de unión a ácidos grasos (FABP, por sus siglas en inglés), 

fosfoenolpiruvato carboxilasa (PEPCK, por sus siglas en inglés), 

perilipina, hormona sensible a la lipasa (HSL, por sus siglas en inglés) 

y por último, los transportadores de glucosa (GLUT), en concreto 

GLUT4. 

Cómo se ha comentado antes, la función principal del WAT es 

almacenar triglicéridos (TG) en los momentos de exceso energético o 

liberar ácidos grasos (AG) cuando las necesidades energéticas así lo 

requieran, pero además en el WAT se produce la síntesis de 

adipoquinas, hormonas y citoquinas tanto por lo adipocitos como por 

otras células presentes en el tejido adiposo, como macrófagos y 

linfocitos T, de ahí el importante papel del WAT a nivel endocrino, 
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autocrino y paracrino. Entre las adipoquinas y citoquinas que se 

sintetizan desde el WAT cabe destacar: la LEPTINA (gen ob), la 

ADIPONECTINA (gen adipoq); la RESISTINA (gen retn); la Proteína 

de unión al retinol 4 (RBP4, por sus siglas en inglés, gen rbp4); TNFα, 

(gen tnfa); IL6 (gen il6);  Proteína quimioatrayente de monocitos 1 

(MCP1, por sus siglas en inglés, gen Ccl2). Estas moleculas son el 

nexo de unión entre la obesidad, la diabetes y la inflamación que 

construyen una compleja red de retroalimentación en la que también 

se implican otros sistemas del organismo. 

Células progenitoras de adipocitos (APC) 

Son las células madre adultas presentes en el tejido adiposo 

procedentes de células mesenquimales. Aunque las células 

progenitoras son más abundantes en las etapas tempranas de la 

vida, también están presentes en la etapa adulta del organismo. Se 

pueden localizar en la fracción estroma-vascular del tejido adiposo 

(SVF, por sus siglas en inglés) tras una digestión enzimática del WAT 

y un posterior aislamiento mediante marcajes específicos con 

anticuerpos, entre ellos Sca1+ (antígeno específico de células madre 

de ratón), CD45- (antígeno común de leucocitos), CD34+ (proteína 

presente en células del estroma) y Ter119– (molécula de superficie 

de plaquetas) entre otros. Hay que destacar las diferencias existentes 

en cuanto a proliferación, capacidad de diferenciación y expresión de 

genes de APC aisladas de distintas fuentes de tejido adiposo, por lo 

que acaban siendo funcionalmente diferentes. El proceso por el cual 

los progenitores acaban siendo adipocitos maduros y funcionales se 

denomina adipogénesis y aparece tanto en etapas jóvenes como 

adultas ante la necesidad de renovación celular cómo la de nuevas 

células para aumentar la masa de tejido adiposo en obesidad. La 

adipogénesis conlleva 4 estadios: interrupción de proliferación, 
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expansión clonal, diferenciación temprana y diferenciación tardía. 

Esta última etapa ha sido ampliamente estudiada en líneas celulares 

de preadipocitos murinos como los 3T3L1 y en ella intervienen 

numerosos factores, entre los que cabe destacar: 

- PPARγ: receptor nuclear clave en la adipogénesis cuya 

expresión es obligatoria para la diferenciación completa hacia 

adipocitos maduros.  

- Familia C/EBPs: formadas por las proteínas C/EBP α, β, δ, , 

. Las isoformas α, β y δ son las implicadas en la 

adipogénesis.  

- ADD1/ SREBP1: proteína que se expresa de forma tardía en 

la diferenciación. Interactúa directamente con PPARγ y con 

ello regula la actividad de genes relacionados con el 

metabolismo de ácigos grasos y TGC.  

Osteopontina 

La osteopontina es una molécula expresada por macrófagos activos, 

linfocitos T, osteoclastos, hepatocitos y células endoteliales, 

epiteliales y de la musculatura lisa de la vasculatura. Tiene un papel 

esencial en la respuesta inmunitaria y en los procesos de inflamación 

a nivel sistémico además de estar involucrada en la patología de la 

esteatosis hepática no alcohólica asociada a la obesidad (NAFDL, por 

sus siglas en inglés). Además la OPN favorece la infiltración de 

macrófagos en obesidad que ayuda al desarrollo de resistencia a 

insulina en el tejido adiposo, con consecuencias ya mencionadas 

previamente. 

Durante la estancia en el laboratorio del Dr. Thomas Stulnig en Viena 

se utilizaron ratones deficientes en Osteopontina (OPN, gen Spp1). 

Se ha descrito que el modelo deficiente en osteopontina Spp1-/- es 
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resistente a las complicaciones metabólicas e inflamatorias que se 

desarrollan en la obesidad inducida por una dieta rica en grasa, tanto 

a nivel hepático, evitando la esteatosis, como a nivel del tejido 

adiposo, mejorando la sensibilidad a la insulina y disminuyendo la 

infiltración de macrófagos responsables del aumento de marcadores 

de inflamación. Por ello, este modelo es una importante herramienta 

para estudiar la importancia de la inflamación, o mejor dicho, la 

ausencia de ésta en el proceso de diferenciación hacia adipocitos de 

las células progenitoras residentes en el tejido adiposo. 

 

HIPÓTESIS Y OBJETIVOS 

Defectos en la señalización por insulina están implicados en la 

aparición de DM tipo 2 y obesidad. La deficiencia en Irs2 produce 

resistencia a insulina y defectos en las células beta pancreática en 

ratones. Además las hembras deficientes en Irs2 desarrollan 

obesidad y resistencia a leptina y catecolaminas. Sin embargo, la 

función exacta que desempeña IRS2 en el tejido adiposo está aún por 

esclarecer. Además, teniendo en cuenta el papel de la osteopontina 

en la inflamación del tejido adiposo, postulamos que puede existir una 

relación entre la función de la osteopontina en el WAT y la 

señalización por IRS2. Para definir el papel de IRS2 en adipogénesis 

y obesidad se proponen los siguientes objetivos: 

1. Caracterización del tejido adiposo blanco de hembras 

deficientes en Irs2 estudiando marcadores funcionales de 

adipocitos, de inflamación así como de la señalización de 

insulina. 
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2. Aislamiento y caracterización de APC de grasa y 

determinación del papel de IRS2 en la diferenciación y 

proliferación de estas células. 

3. Evaluar la posible relación fisiológica entre la señalización por 

IRS2 y la citoquina OPN mediante el estudio de tejido adiposo 

procedente de ratones hembras Irs2-/- y Spp1-/- . 

 

MATERIAL Y MÉTODOS 

Animales de estudio 

Hembras silvestres y deficientes en IRS2 (Irs2-/-) de la cepa C57BL/6J  

de 12-16 semanas de edad. Los procedimientos empleados están 

aprobados por el Comité de Ética y Bienestar Animal (CEBA) del 

CIPF. Animales silvestres y deficientes en osteopontina (Spp1-/-) de la 

cepa C57BL/6J  de 12-14 semanas de edad del laboratorio del Dr. 

Stulnig en Viena utilizados durante la colaboración científica. 

Análisis de glucosa y hormonas en sangre  

Extracción de suero de la sangre de los ratones en ayunas y posterior 

determinación de glucosa (tiras reactivas), insulina (ELISA) y 

adipoquinas y otras citoquinas por Luminex®. 

Análisis histológico del tejido adiposo 

Cortes histológicos en parafina y análisis morfológico de los 

adipocitos mediante tinción de Hematoxilina/Eosina.  
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Análisis de la grasa V y SC del modelo deficiente para Irs2 y para 
Osteopontina (Spp1-/-). 

Extracción de mRNA mediante Trizol® y posterior estudio por PCR 

cuantitativa de los genes involucrados en la señalización de insulina, 

la adipogénesis e inflamación en el tejido adiposo V y SC así como 

estudio mediante western blot de las proteínas más importantes de 

los procesos señalados anteriormente. 

Aislamiento e identificación de APC 

Para el aislamiento enzimático se siguió un protocolo modificado del 

publicado por Smith-Hall J et al. y posteriormente se identificaron 

utilizando los marcadores: Sca1, CD34, CD45, CD31 y Ter119, junto 

con DAPI para el marcaje de viabilidad. 

 Aislamiento de APC mediante MACS®: utilizando anticuerpos 

conjugados a microbolas magnéticas. Las poblaciones 

celulares se aíslan haciendo usos de imanes y las distintas 

combinaciones de los anticuerpos. 

 Aislamiento de APC mediante FACS: utilizando anticuerpos 

conjugados con fluorocromos. Las poblaciones celulares se 

aíslan utilizando un clitómetro High Speed Cell Sorter MoFlo 

equipado con 3 láseres con los que excitar los distintos 

fluorocromos y poder así aislar las poblaciones de interés. 

Cultivo de las APC 

Para el cultivo rutinario, tras su aislamiento por FACS o MACS se 

cultivaron en medio DMEM, 10% Suero Bovino Fetal de un clon 

específico (FcBS) y 10ng/mL de FGFβ. Se realizaron ensayos 

celulares de proliferación y apoptosis. 
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Para la diferenciación hacia adipocitos maduros, las APC se dejaron 

crecer hasta 100% de confluencia con el medio de cultivo descrito 

anteriormente  y luego se cultivaron en un medio formado por DMEM 

avanzado (aDMEM/F12) y suero bovino fetal (FBS, por sus siglas en 

inglés) con diferentes  factores (insulina (INS), dexametasona (DXM) 

e isobutilmetilxantina (IBMX)) para la diferenciación hacia adipocitos 

maduros como se indica en la tabla: 

día -3 a 0 día 0 a 4 día 4 a 7 día 7 a 12 
DMEM aDMEM/F12 aDMEM/F12 aDMEM/F12 

10% FcBS 5% FBS 5% FBS 5% FBS 

10ng/mL βFGF INS 20µg/mL INS 20µg/mL  

 DXM 10µM   

 IBMX 0.5mM   

Se tomaron muestras a días 0, 4 y 10 para su posterior estudio 

molecular con técnicas de inmunotinción, citometría de flujo,  western 

blot y PCR cuantitativa para evaluar la diferenciación mediante la 

expresión de marcadores clave en la adipogénesis tales como las 

proteínas relacionadas con la señalización de insulina así como 

aquellas que directamente intervienen en la adipogenesis como 

PPARγ. 

Análisis estadístico  

Para evaluar si las diferencias obtenidas en los resultados eran 

estadísticamente significativas, se utilizaron los programas GraphPad 

Prism 5 y Microsoft Excel con la función del test t de Student. 
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CONCLUSIONES 

I. La ausencia en ratones hembras de Irs2 en provoca un 

aumento del tejido adiposo tanto visceral como subcutáneo. 

Este aumento puede relacionar la señalización por IRS2 con 

la regulación de las reservas energéticas. 

II. Los niveles de expresión de citoquinas y adipoquinas en el 

tejido adiposo están alterados en hembras deficientes para 

Irs2, algo relacionado con la inflamación presente en la 

obesidad. Por ello el modelo deficiente en Irs2 podría ser 

relevante para estudiar que papel juega la inflamación en la 

progresión desde un estado prediabético a la aparición de 

diabetes. 

III. Hay un aumento de células progenitoras de adipocitos en el 

tejido adiposo visceral de ratones deficientes para Irs2 pero 

estas células tienen alterado el mecanismo molecular de la 

adipogenesis in vitro. Además los progenitores aislados del 

tejido adiposo de ratones deficientes para Irs2 proliferan más 

rápido que los controles. Todo ello indica que IRS2 está 

involucrada en la diferenciación dependiente de insulina de 

los adipocitos así como en la regulación de la proliferación. 

IV. La deficiencia de osteopontina causa una reducción en todos 

los marcadores de inflamación en el tejido adiposo. Adamas 

la expresión de Irs2 está aumentada en grasa.  

V. Celulas progenitoras de adipocitos aisladas del tejido adiposo 

de ratones deficientes para osteopontina diferencian mejor 

que los progenitores aislados de ratones controles. Por ellos 

citoquinas como la osteopontina entorpecen la diferenciación 

completa hacia adipocitos. 
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