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« Il y a des millions d’années que les fleurs 
fabriquent des épines. Il y a des millions 
d’années que les moutons mangent quand 
même les fleurs. Et ce n’est pas sérieux de 
chercher à comprendre pourquoi elles se 
donnent  tant de mal pour se fabriquer des 
épines qui ne servent jamais à rien?...” 

Antoine de Saint-Exupéry 
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1.- Symbiosis 
 

1.1 Definition and classification 

 

Symbiosis (which derives from Greek sym “together” and biosis “living”) 

is defined in biology as long-term associations between individuals of two or 

more species that have established a relationship of interdependence at any 

biological level (behavioural, metabolic or genetic).  

The term was proposed in 1879 by the botanist Anton de Bary in his 

work “Die Erscheinungen des symbiose”, based on his observations on the 

lichen biology. In the de Bary’s definition, it was not expressed any 

judgement about the effects of the interaction on the fitness of the 

participants. In the most extreme cases, both members can constitute a new 

living being, with his own physiologically properties. In this sense, short-

term associations are not considered symbiotic.  This definition of symbiosis 

is not universally accepted. Since the birth of the term, several authors 

restricted the symbiosis to those cases where both organism take profit of the 

interaction (Saffo 1992), or in the most extreme sense, only when new 

metabolic capabilities arise in a determined organism through the association 

with other organism of a different species (Douglas 1994). The debate 

between those that defend this more restricted definition of symbiosis and 

those which still defend the broad sense, i.e., closer to the original definition 

proposed by de Bary (Paracer and Vernon 2000), remains open. 

Under the broad sense conception of symbiosis, we can distinguish 

among three subtypes of association depending on the fitness effect that the 

establishment of the symbiotic relationship has on both partners. Thereby, if 

one of the members benefits from the other without causing neither harm nor 

benefit to the other partner, we are talking of commensalism, while if one of 

the members is beneficed by causing a decrease in the fitness of the other 
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partner the relationship is known as parasitism. Finally, when both 

members are benefited from the relationship the term used is mutualism. 

The three terms were described, even before de Bary proposed the term of 

symbiosis, by Pierre-Joseph van Beneden in the book Les commensaux et les 

parasites (1876).   

Depending on the localization of the symbiont respect the host it is called 

ectosymbiont when the symbiont lives on the host's body surface, including 

internal surfaces like the digestive tube lining and the ducts of glands, and 

endosymbiont, when the symbiont dwells within a cell of the host. Finally, 

according to the degree of the symbiotic association it is facultative or 

obligate, depending on the ability of the organism to survive outside of the 

symbiotic consortium or not. 

 

1.2 Symbiosis as a major evolutionary force 

 

Despite the controversy about the role of the symbiosis in evolution, there 

is a common agreement that symbiosis is essential on the origin and early 

evolution of the eukaryotic cell. The first eukaryote may have appeared 

through a symbiotic event between a bacterium and an archea (Duve 2007). 

Subsequently, some of the organelles of the eukaryotic cell were the result of 

the invasion of the primitive eukaryotic cell by several prokaryotes, a 

hypothesis known as Serial Endosymbiotic Theory (SET) proposed by Lynn 

Margulis (Margulis 1993 and references therein) (Figure 1). Thus, the 

mitochondrion may be originated from an ancestral α-proteobacterium in 

one unique event of symbiosis. On the other hand, the chloroplast evolved 

from an ancestral cyanobacterium that have been engulfed and retained by 

the host cell. Despite the initial controversy, the symbiotic origin of 

mitochondria and chloroplasts is nowadays well supported by physiological, 
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morphological and molecular data (Gray and Spencer 1996; Martin et al. 

1998).  

 

Figure 1. Origin of eukaryotic cell, and organelles through symbiogenesis (Moya 
and Peretó 2011 adapted from Latorre et al. 2011). 
 

In addition to the role in the origin and early evolution of eukaryotic 

cells, symbiosis has shaped the evolution of life in many other ways. 

Thereby, the evolution of the immune system of complex eukaryotes has 

been deeply influenced by pathogenic interactions with other organisms. The 

mutualistic relationships that plants and animals established with 

prokaryotes and fungi would had furnished them with new metabolic 

capabilities, allowing the colonization of other niches that otherwise would 

be inaccessible.  

An indicator to evaluate the importance of symbiosis in the evolution of 

life is the huge variety of symbiotic associations described in nature with 

examples in the three domains of life, with all type of combinations (Moya 
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et al. 2008; Mcfall-Ngai 2008; Moya and Peretó 2011). Particularly 

numerous are those symbiotic associations in which at least one of the 

members is a prokaryotic microorganism, but there are also examples for 

symbiosis where the two members are eukaryotes. Of these, probably the 

most renowned are lichens, which are associations between an algae and a 

fungus, but there are also associations of fungi with protists, animals, plants 

or other fungi. Paracer and Ahmandjian (2000) and Moya et al. (2008) have 

compiled multiple examples for these associations. 

Prokaryotes possess an impressive set of metabolic capabilities that 

allowed them to colonize a broad range of ecosystems and environmental 

conditions, even the most extremes. This feature makes the prokaryotes good 

candidates to colonize the surfaces and inner spaces of other organism. Thus, 

many prokaryotes live physically attached to other living beings. Biofilm 

formation is a clear example of an association between different species of 

prokaryotes (Hall-Stoodley et al. 2004). But the symbiotic association 

between eukaryotes and prokaryotes are the most studied. Actually, there 

have been described symbiotic associations with prokaryotes in practically 

all branches of the eukaryotic tree of life (Figure 2). Eukaryotes, and 

especially animals, have limited metabolic capabilities and through the 

association with bacterial symbionts they acquired several metabolic 

pathways like nitrogen fixation (Kneip et al. 2007), methanogenesis (Schink 

1997), chemolithoautotrophy (Stewart et al. 2005), nitrogen assimilation 

(Minic and Hervé 2004) and biosynthesis of several nutrients lacking in the 

diet (Zientz et al. 2004).  
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Figure 2. Phylogenetic distribution of the symbioses between eukaryotes and 
prokaryotes (bacteria or archea). Orange boxes indicate the phyla of the symbiont. 
Asterisks indicate that the genome sequence was available at the time of the review 
(Moya et al. 2008). 
 

 

1.3 Bacterial endosymbionts in insects 

 

Endosymbiosis is the most intimate relationship that a symbiont can 

establish with its host. In this case, the symbiont lives inside the host cell. 

Many bacteria live during part o through its whole life cycle inside the cells 

from other organisms. These organisms can be other bacteria, like in the case 

of Bdellovibrio bacteriovorus (Rendulic et al. 2004), or eukaryotic cells, like 

Legionella pneumophila (Cazalet et al. 2004). In both examples, the 

symbiotic bacteria only dwell within the host cell during a small part of their 

life cycle. In some other cases the relationship is even more intimate, like 

bacterial endosymbionts of animals, where the bacteria are transmitted 
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vertically from mother to offspring and usually reside in specialized cells , 

called bacteriocytes. Paul Buchner catalogued a large amount of these 

associations in 1965 in his book Endosymbiosis of Animals with Plant 

Microorganisms. Since these organisms are uncultivable, this work has been 

the main source of knowledge for this kind of associations until the 

emergence of modern genomic sciences. Thanks to new sequencing 

technologies it has been possible to deal with the study of these consortia at 

genomic level. Thus, during the last 15 years, and thanks to a wide range of 

studies on these systems, it has been possible to elucidate the role several of 

these bacteria play on the biology of their host. In his work, Buchner 

described endosymbionts in many animal phyla, including nematodes 

(Taylor et al. 2005), sponges (Schmitt et al. 2007), annelids (Graf et al. 

2006), bryozoans (Sharp et al. 2007) and molluscs (Newton et al. 2007). But, 

by far, insects are the phyla that have received the most attention to the study 

of their intracellular symbionts.  

Insects appeared in the Devonian (between 350-400 Mya “million years 

ago”) (Engel and Grimaldi 2004), and diversified very quickly until they 

become the most diverse and successful lineage among the animals with 

approximately 1,000,000 described species around the world (according to 

diverse estimations other 5,000,000 remain to be discovered or described) 

(Mora et al. 2011). Insects have colonized a broad range of ecosystems and 

despite being quite uniform regarding nutritional requirements (Dadd 1985), 

they feed on a number of different diets. There are examples from generalist 

(omnivores or scavengers) to specialists that feed, for instance, on blood, 

sap, skin, fungi or nectar (Slansky and Rodriguez 1987). In many cases, the 

food source of insects does not satisfy their nutritional requirements, so they 

rely on the metabolic ability of microorganisms for the synthesis of diverse 

compounds absent in the diet. There are also cases where the symbionts 

participate in the digestion of nutrients, or in the detoxification of certain 
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foodstuff (Douglas 2009). In summary, symbiotic associations between 

insects and endosymbiotic bacteria are widespread in nature. Actually 

insects seem to be, among multicellular organisms, the most tolerant to live 

with other organisms, out or within their bodies. Thereby, it has been 

estimated that around 15 to 20% of insects have established symbiotic 

associations with intracellular bacteria. Particularly, three orders of insects 

are especially rich in species with endosymbiotic bacteria, Blattaria, 

Homoptera and Curculionidae (Dasch et al. 1984). A common feature for 

many endosymbionts is the diet of their host, being this usually very 

specialized and imbalanced for some nutrients, like the phloem or the xylem 

(lacking essential amino acids and other metabolites, Sandström and 

Pettersson 1994), blood (poor in vitamin B) or stored grains (poor in both 

vitamins and amino acids). In the abovementioned cases, it seems clear that 

the association has a nutritional value. Nevertheless, these associations may 

be involved in other functional roles since there are also present in insects 

with complex diets like cockroaches (Blochmann 1887) or ants (Blochmann 

1884). The associations with mutualistic endosymbiotic bacteria may, in 

some way, explain the great success of insects that, thanks to the metabolic 

capabilities of their symbionts, can exploit food sources that otherwise 

would not be enough to fulfill their nutritional demands. 

Depending on the grade of dependence and the age of the association, we 

can distinguish between two kinds of symbionts: primary endosymbionts (P-

endosymbionts) and secondary or facultative endosymbionts (S-

endosymbionts). P-endosymbionts are transmitted vertically from mother to 

offspring, live inside specialized host cells called bacteriocytes, and cannot 

survive out of their host. In these associations, that are generally very 

ancient, both members are necessary for the survival of their partner, i.e., it 

is a case of obligate mutualism. On the other hand, S-endosymbionts are 

facultative, and its presence is not universal among their probable host. Like 
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P-endosymbiont they are vertically transmitted; however, cases of horizontal 

infection have been documented (Sandstrom et al. 2001; Russell et al. 2003). 

S-endosymbionts are not necessarily confined in bacteriocytes or in a 

specific tissue, and can be found in other places like the haemolymph, glands 

or other non-specialized tissues, surrounding the bacteriocytes. In some 

cases, they can live inside their own bacteriocytes called in this case 

secondary bacteriocytes. S-endosymbionts cannot be considered simple 

commensals since it has been experimentally proved that their presence has 

several effects (both positive and negative) on the fitness of their host 

(McGraw and O’Neill 2004). The effects of the S-endosymbiont on the host 

are varied: some confer resistance to thermic stress (Chen et al. 2000; 

Russell and Moran 2006), and other protect the host against parasitoid 

attacks (Oliver et al. 2003, 2005) or fungal parasites (Ferrari et al. 2004). 

Finally, in many cases the effect of the S-endosymbionts depend on the 

environmental conditions in which the host grows (Tsuchida et al. 2004; 

Oliver et al. 2008). A third category of endosymbionts would appear when 

the metabolic capabilities of the P-endosymbiont are not enough to fulfill the 

requirements of their host. In these cases a second symbiont is needed to 

carry out the metabolic steps lacking in the P-endosymbiont, establishing a 

consortium of three members: the host and two co-primary endosymbionts 

with complementary metabolic pathways (Wu et al. 2006; Gosalbes et al. 

2008; Lamelas et al. 2011a). Examples of symbiotic associations between 

bacteria and insects are summarized on Table 1. 

 

 1.3.1 Primary endosymbionts 

 

One model system for studying symbiotic associations between insects and 

mutualistic intracellular bacteria is the one formed by aphids (Hemiptera: 
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Aphididae), specifically the aphid Acyrtosiphon pisum, and the γ-

proteobacterium Buchnera aphidicola. Aphids feed on phloem, which is rich 

in carbohydrates but certain essential amino acids and vitamins are scarce 

(Douglas 1993; Sandström and Pettersson 1994; Dinant et al. 2010). At 

present, the genome sequence for seven strains of B. aphidicola are 

available: strains of the aphids A. pisum (Shigenobu et al. 2000), Schizapis 

graminum (Tamas et al. 2002), Baizongia pistacea  (van Ham et al. 2003), 

Cinara cedri (Pérez-Brocal et al. 2006), Cinara tujafilina (Lamelas et al. 

2011b), Acyrthosiphon kondoi and Uroleucon ambrosiae (Degnan et al. 

2011). The analyses of these genomes show that the biosynthetic pathways 

of essential amino acids are complete, while those for the synthesis of 

several non-essential amino acids are absent. Additionally, in some lineages 

the genes involved in the synthesis of tryptophan and leucine are amplified 

through its translocation to plasmids (Latorre et al. 2005). Thus, the role of 

B. aphidicola as essential amino acid supplier, suggested by previous 

experimental works on aposymbiotic aphids, and metabolic inference 

(Prosser and Douglas 1992; Douglas 1998) has been confirmed after its 

genome sequencing.  
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Table 1. Endosymbiotic bacteria in insects, its classifcation and function 
Host Diet Symbionts (Type) Phyla Metabolic capability 

Aphids  

(Acyrthosiphon pisum) 

Phloem Buchnera aphidicola (primary) γ-proteobacteria Essential amino acids and vitamins 

Hamiltonella defensa (secondary) γ-proteobacteria Protection against parasitoids 

Regiella insecticola (secondary) γ-proteobacteria Protection against pathogenic fungi 

Serratia symbiotica (secondary) γ-proteobacteria Protection against heat stress 

Aphids  

(Cinara cedri) 

Phloem Buchnera aphidicola (coprimary) γ-proteobacteria Essential amino acids and vitamins 

Serratia symbiotica (coprimary) γ-proteobacteria Tryptophan and vitamins 

Psyllids (Pachyosylla venusta) Phloem Carsonella rudii (primary) γ-proteobacteria Essential amino acids? 

Tsetse fly  

(Glossina brevipalpis) 

Blood Wigglesworthia glossinidia (primary) γ-proteobacteria B-family vitamins 

Sodalis glossinidia (secondary) γ-proteobacteria Inmunity 

Louse (Pediculus humanus) Blood Ca. Riesia pediculicula (primary) γ-proteobacteria B-family vitamins 

Sharpshooters 

(Homalodisca vitripennis) 

Xylem  Sulcia muelleri (coprimary) Bacteroidete Essential amino acids 

Baumannia cicadellinicola (coprimary) γ-proteobacteria Histidine, methionine, cofactors and vitamins 

Cicadas 

(Diceroprocta semicincta) 

Xylem Sulcia muelleri (coprimary) Bacteroidete Essential amino acids 

Hodgkinia cicadicola (coprimary) α-proteobacteria Histidine and methionine 

Spittlebugs 

(Clastoptera arizonana) 

Xylem Sulcia muelleri (coprimary) Bacteroidete Essential amino acids 

Zinderia insecticola (coprimary) β-proteobacteria Histidine, methionine and tryptophan 

Ants (Camponotus spp.) Omnivorous Blochmannia spp. (primary) γ-proteobacteria Nitrogen metabolism 

Mealybug  

(Planococcus citri) 

Phloem Tremblaya princeps (corpimary) β-proteobacteria Essential amino acids 

Moranella endobia (corpimary) γ-proteobacteria Essential amino acids 

Weevils (Sythophilus oryzae) Grain SOPE (S. oryzae primary endosymbiont) γ-proteobacteria Essential amino acids and vitamins 

Arthropods   Wolbachia spp. α-proteobacteria Host reproductive parasite 
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 The association between Carsonella rudii (γ-proteobacteria) and the 

psyllid Pachyosylla venusta (Hemiptera: Psylloidea) is one of the most 

striking associations of this kind described so far. The genome of C. rudii 

has only 160 kb and 182 coding sequences (Nakabachi et al. 2006). Psyllids 

feed also on phloem and would need an additional source for essential amino 

acids, so the function of C. rudii must be similar to that of B. aphidicola in 

aphids. Further analyses on this genome revealed that Carsonella has lost the 

capacity to provide the host with the essential amino acids histidine, 

phenylalanine and tryptophan. In addition, it has lost essential genes to carry 

out DNA replication, transcription and translation, thus it should not be 

considered anymore a living being but a new entity between a living cell and 

an organelle (Tamames et al. 2007). The most remarkable trait of this system 

is that many other psyllids harbours a S-endosymbiont, that is not the case of 

P. venusta, where Carsonella seems to be the only known endosymbiont 

(Fukatsu and Nikoh 1998; Thao et al. 2000, Nakabachi et al. 2006, Sloan and 

Moran 2012).  

Tsetse flies (Diptera: Glossinidae) also harbour a mutualistic 

endosymbiotic γ-proteobacteria, Wigglesworthia glossinidia. Like aphids 

and psyllids, tsetse flies feed on a restricted diet, in this case vertebrate 

blood, which is deficient in vitamins. Antibiotic treated flies showed reduced 

growth and fecundity rates (Nogge 1976), which can be restored when B-

complex vitamins are supplied (Nogge 1981), suggesting that 

Wigglesworthia is supplying these vitamins to the fly. The analysis of the 

genome sequence from W. glossinidia endosymbiont of Glossina brevipalpis 

reinforced these evidence, since it codes for a number of genes involved in 

the biosynthesis of cofactors and vitamins (Akman et al. 2002). The human 

body louse, Pediculus humanus, also feeds on blood and like tsetse flies 

needs a supply of vitamins B, in this case these vitamins are synthetized by 



18 
 

another γ-proteobacteria endosymbiont, Riesia pediculicola (Kirkness et al. 

2010).    

Ants from the genus Camponotus, in spite of being omnivorous, also 

harbour mutualistic intracellular bacteria. Their association with 

Blochmannia spp., is the first bacteryocite associate symbiosis described 

(Blochmann 1884). Currently, there are available three genomes of 

Blochmannia species: B. floridanus, symbiont from the ant C. floridanus 

(Gil et al. 2003), B. pennsylvanicus, symbiont from C. pennsylvanicus 

(Degnan et al. 2005) and B. vafer the symbiont of C. vafer (Williams and 

Wernegreen 2010). Given the diet and that aposymbiotic ants did not 

showed any deficiency, the role of Blochmannia was not clear (Sauer et al. 

2002). However, the analysis of the genome of B. floridanus pointed out that 

Blochmannia was supplying their host with essential amino acids and 

reduced sulfur, as well as being involved in the metabolism of nitrogen (Gil 

et al. 2003). Further analyses showed that when ants were fed with a diet 

enriched with essential amino acids, there were no differences between 

aposymbiotic and ants carrying the endosymbiont. However, when the diet 

lacked essential amino acids, aposymbiotic ants raised less brood than xenic 

ones (Feldhaar et al. 2007). It has been observed that wild ants feed on plant 

or sap sucking insect exudates and could be considered as “secondary 

hervibores”, having the same diet deficiencies than other sap sucking insects 

(Davidson et al. 2003). Thus, the presence of Blochmannia may allow 

Camponotus ants to exploit other sources of food that otherwise would be 

limited in several nutrients. Other works suggest that Blochmannia may not 

be necessary during the whole life cycle of ants, since the replication activity 

of B. floridanus varies greatly according to the developmental stage of the 

host, being higher in pupae close to the hatching and decreasing in older 

adults. Even in old queens there are no more symbionts (Wolschin et al. 

2004). Other studies showed how the expression of several genes involved in 
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nitrogen recycling and metabolism of aromatic amino acids is regulated 

according to the developmental stage (Zientz et al. 2006). These results 

suggested that Blochmannia is important at definite points of the 

development of the host. Finally, works on C. fellah suggested that 

Blochmannia also improves the host immune system (De Souza et al. 2009). 

In some cases, two or more endosymbionts cohabit in the same host, 

being all of them necessary for its survival, i.e. co-primary endosymbionts. 

That is the case of the consortium formed by B. aphidicola (BCc) and 

Serratia symbiotica (SCc) in the cedar aphid, C. cedri. The 416 kb genome 

of B. aphidicola BCc is the most reduced genome among sequenced 

Buchnera strains (Gil et al. 2002). B. aphidicola BCc cannot synthetize 

tryptophan and riboflavin, thus being unable to fulfil the nutritional 

requirements of its host (Pérez-Brocal et al. 2006). S. symbiotica is a 

facultative symbiont for a number of aphid species, however it has been 

observed that is present in all individuals of C. cedri with a similar density to 

that of B. aphidicola (Gómez-Valero et al. 2004). The sequence and 

metabolic reconstruction of S. symbiotica from C. cedri (SCc) genome 

suggested that its main role would be the biosynthesis of cofactors and 

vitamins, but the synthesis of essential amino acids would still be under the 

responsibility of B. aphidicola with the exception of tryptophan, since both 

symbionts are necessary for the synthesis of this amino acid (Gosalbes et al. 

2008; Lamelas et al. 2011a). 

Insects classified into the suborder Auchenorryncha from the order 

Hemiptera, which comprises, among others sharpshooters, cicadas or 

spittlebugs, possess one of the most striking symbiotic systems, and a 

number of species have two or more symbionts. The most widely distributed 

is Sulcia muelleri, a Bacteroidete that infected the common ancestor to all 

Auchenorryncha in the Permian between 260 to 280 Mya (Moran et al. 

2005). Up to now, four S. muelleri genomes have been sequenced, those 
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from  the sharpshooters Homalodisca vitripennis (GWSS) and 

Draeculacephala minerva (DMIN) (McCutcheon and Moran 2007; Woyke 

et al. 2010) the cicada Diceroprocta semicincta (DSEM) (McCutcheon et al. 

2009a) and the spittlebug Clastoptera arizonana (CARI) (McCutcheon and 

Moran 2010). All these strains possess an extremely reduced genome 

ranging from 243 kb to 277 kb. The analysis of their metabolic networks 

indicate that all strains are able to synthetize most of the essential amino 

acids with the exception of histidine and methionine, and the strain CARI 

has also lost the entire tryptophan operon. As pointed above, most of 

Auchenorryncha have additional symbionts, and three of them have also 

been sequenced, namely, Baumannia cicadellinicola (γ-proteobacteria) from 

H. vitripennis (Wu et al. 2006), Hodgkinia cicadicola (α-proteobacteria) 

from D. semicincta (McCutcheon et al. 2009b) and Zinderia insecticola a β-

proteobacteria symbiotic from C. arizonana (McCutcheon and  Moran 

2010). Like S. muelleri, the last two possess extremely reduced genomes 

(144 and 208 kb respectively); whereas the genome of B. cicadellinicola 

(686 kb) is not so reduced. These three co-symbionts have evolved to 

complement the genome of their respective S. muelleri partners, thus all 

three are able to synthetize histidine and methionine, Zinderia possess the 

machinery necessary for the synthesis of tryptophan (McCutcheon and 

Moran 2010), and B. cicadellinicola can also synthetize cofactors and B-

family vitamins (Wu et al. 2006). 

Probably, the most extreme case of dual symbiosis is the one described in 

the mealybug Planococcus citri (Hemiptera: Pseudococcidae) which 

harbours two endosymbionts, a β-proteobacteria (Tremblaya princeps) and a 

γ-proteobacteria (Moranella endobia) that dwells inside the first 

endosymbiont (Dohlen et al. 2001). T. princeps is distributed among all 

mealybugs and seems to be originated in a single event of infection in the 

common ancestor of the mealybugs. Thereby, the second partner should 
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have been acquired through subsequent infections of bacteria from multiple 

origins (Thao et al. 2002). The sequencing and analysis of the genome of 

both symbionts suggest that they are supplying their host with essential 

amino acids since, similarly to aphids, mealybugs feed on phloem sap 

(McCutcheon and Dohlen 2011; López-Madrigal et al. 2011). 

  

 1.3.2 Secondary endosymbionts 

 

Several additional bacteria can infect aphids, besides the association that 

they have established with Buchnera. As stated before, these bacteria, known 

as secondary or facultative symbionts, are not essential for the survival and 

reproduction of their host and, in contrast to Buchnera, are not universally 

distributed. But in some occasions the infection by these symbionts provides 

the aphid with new adaptive traits. Thus, aphids infected with Hamiltonella 

defensa (γ-proteobacteria) show resistance to the attack of the parasitoid 

wasps Aphidius ervi and Aphidius eadyi (Oliver et al. 2003). The genome of 

H. defensa possess several strains of a lysogenic bacteriophage called APSE 

(A. pisum Secondary Endosymbiont) that code for several eukaryotic toxins 

(Degnan et al. 2009), which are related to the resistance A. pisum phenotype 

associated to H. defensa infection (Degnan and  Moran 2008). Regiella 

insecticola, a γ-proteobacterium, confers protection against the infection by 

the fungi Pandora neoaphidis (Ferrari et al. 2004). H. defensa and R. 

insecticola share a relatively recent common ancestor, and both are 

themselves obligate symbionts depending on the essential amino acids 

synthetized by Buchnera, since they are only capable to synthetize lysine 

and threonine, but possess transporters for the other essential amino acids 

(Degnan et al. 2010). Other secondary symbiont, S. symbiotica, protect the 

host against environmental heat stress (Russell and Moran 2006). This 

symbiont, just like Hamiltonella and Regiella, has lost the genes for the 
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synthesis of several essential amino acids (Burke and Moran 2011). It is 

worth to mention, as pointed above, that in some lineages of the subfamily 

Lachninae, S. symbiotica has become a co-obligate endosymbiont together 

with B. aphidicola, because both endosymbionts are needed to fulfil the 

metabolic requirements of the whole system (Lamelas et al. 2008; 2011b).  

Tsetse flies, besides W. glossinidia possess a facultative S-endosymbiont, 

Sodalis glossinidia. There is evidence suggesting that the infection by this 

symbiont favours the infection by trypanosomes in the midgut of the fly 

(Aksoy 2000) and the selective elimination of this symbiont reduces de 

lifespan of the host (Dale and Welburn 2001). The genome and metabolic 

network of S. glossinidius is closer to a free living bacterium than to a 

symbiotic one (Toh et al. 2006; Belda et al. 2010; Belda et al. 2012). 

The most widespread intracellular bacteria are Wolbachia (α-

proteobacteria), because they infect up to 40% of terrestrial arthropods (Zug 

and Hammerstein 2012). This high incidence is probably due to the fact that 

these bacteria are able to manipulate the host reproduction in their own 

benefit through mechanisms such as cytoplasmic incompatibility, 

parthenogenesis, male-killing and feminization (Stouthamer et al. 1999). 

 

1.4 Genomic changes in endosymbiotic bacteria  

 

There are several drastic changes that occur during the transition from 

free-living bacteria to intracellular endosymbionts. The most prominent are 

reduced genome size encoding for a small number of genes and high AT 

content (McCutcheon and Moran 2012). Two main factors can drive genome 

shrinkage in these bacteria: first, the particular environment where the 

bacteria reside and, second, the particular population dynamics to which 

endosymbionts are subjected (Moya et al. 2008). Living inside a eukaryotic 

cell renders several genes unnecessary or redundant, since the coded 
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functions can be achieved by the host. Thus, the loss of these genes has no 

effect on the bacterial fitness and the pressure of natural selection over them 

is relaxed. The strict vertical transmission from the mother to the offspring 

reduces the effective population size, increasing the effects of random 

genetic drift (Moran 1996). These two factors facilitate the fixation of 

slightly deleterious mutations in non-essential genes producing their 

inactivation and posterior loss. Among the genes affected by these processes 

are those involved in DNA repair, recombination and DNA uptake. Losing 

genes in such functions brings to further increases in the mutation rate and 

prevent the genetic exchange by means of homolog recombination. In 

addition, the isolation to which these bacterial populations are subjected 

eliminates the possibility of gaining new genetic material through horizontal 

gene transfer events that could compensate the losses.  

The genome reduction processes can be divided in two main phases. 

First, soon after the establishment of the symbiosis, there is a huge 

proliferation of mobile elements, like insertion sequences (IS), favoured by 

the relaxation of purifying selection (Moran and Plague 2004; Gil et al. 

2008). The accumulation of IS enhances the reduction process by increasing 

the events of intrachromosomal homolog recombination, which induces 

genome rearrangements and loss of large genomic fragments (Parkhill et al. 

2003). Further transposition can inactivate individual gene that would be 

degraded afterwards (Gil et al. 2008). In a second stage the genome 

reduction continues through the pseudogenization and loss of individual 

genes scattered throughout the genome (Silva et al. 2003). At this point 

genomes are completely stabilized and there are not more rearrangements 

(Tamas et al. 2002), since mobile elements are absent in the genomes of 

bacteria that have reached this stage (Moya et al. 2008) (Figure 3). 
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Figure 3. Graphic representation of the different stages of the genome reduction 
process in obligate endosymbiotic bacteria (McCutcheon and Moran 2012).   
  

Two possible explanations have been proposed to explain the strong bias 

towards AT that show these genomes. The first one suggest that this bias is a 

consequence of the loss of DNA repair systems and the mutational pressure 

from GC to AT (Wernegreen 2005; Lind and Andersson 2008). The higher 

energetic cost of the biosynthesis of GTP and CTP nucleotides with respect 

to the cost of producing ATP or TTP has also been suggested as a possible 

reason of the bias towards AT (Rocha and Danchin 2002). The existence of 

this bias has strong consequences, such as the loss of codon-usage bias 

observed in endosymbionts (Rispe et al. 2004). Additionally, the amino acid 

composition of the proteome of these bacteria has been dramatically altered 

decreasing the thermal stability of their proteins. The overexpression of a 

chaperonin like GroEL could compensate the altered structure of many of 

these proteins (Fares et al. 2004). 
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2.- The cockroaches 

 

Cockroaches (Blattodea) together with termites (Isoptera) and mantids 

(Mantodea) form the superorder of Dictyoptera, mainly characterized by 

having a perforation in the tentorium (the internal skeleton of the head) and 

enclosing their eggs in an ootheca (Kristensen 1981). The relationships 

within this group have been recently revised demoting the order Isoptera to a 

family (Termitidae) nested in the order Blattodea, rendering the cockroaches 

as a paraphyletic group (Inward et al. 2007). 

Cockroaches are one of the most ancient groups of insects described so 

far, as they are the oldest exemplars reported in the fossil record coming 

from deposits from the Middle Carboniferous. Later, in the same period, 

cockroaches were the dominant insect but it was not until the transition 

between the Jurassic and the Cretaceous (140 Mya) that the extant families 

appeared (Table 2). Nowadays, about 5,000 living species are described with 

1,000 more being extinct (Vrsansky et al. 2002). The families Blattidae, 

Blattellidae and Blaberidae comprise the majority of the 5,000 classified 

species. Cockroaches have three developmental stages: egg, nymph and 

adult, and like other hemimetabolous insects, early stage nymphs resemble 

adult specimens without wings (Bell et al. 2007).   

Despite its negative reputation, only four species are adapted to human 

habitats, and therefore responsible of domestic pests. Most cockroaches 

inhabit forests and are much less adapted to other environments, like water, 

caves or nest than other insect species. However, the vast majority of studies 

are focused on those species which live in close contact to humans, mainly 

because the health problems linked to these species, like allergies, asthma or 

infections caused by pathogenic organisms associated with them (Robinson 

2005). 
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Table 2. Classification of the order Dictyoptera based on the proposition from 
Inward et al. 2007. 
 
Order Superfamily Family 

Blattodea Polyphagoidea Nocticolidae 

  Polyphagidae 

 Blattoidea Blattidae 

  Cryptocercidae 

  Termitidae 

 Blaberoidea Blattellidae 

  Blaberidae 

Mantodea  Mantoida 

 

2.1 Blatta orientalis and Blattella germanica 

 

Two species of cockroaches have been used during the development of 

this work, Blatta orientalis (Blattoidea: Blattidae) and Blattella gemanica 

(Blaberoidea: Blattellidae). Natural populations of B. orientalis occur in the 

litter leaf of forest from zones with warm summer and moderate winter on 

the Crimean Peninsula and the regions around the Black and Caspian seas 

(Robinson 2005). Despite no natural populations have been described for B. 

germanica, their natural habitats probably are, like for B. orientalis, moist 

litter leaf in the ground of forest in west Africa (Robinson 2005; Guthrie and 

Tindall 1968). Both species are now worldwide distributed, and always 

associated to human habitats, being two of the four cockroach species 

considered as domestic pests. The major biological properties of these two 

species are summarized in Table 3, notwithstanding most of these features 

are highly influenced by environmental conditions, mainly the temperature 

and the humidity.  
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Table 3. Biological features of the two cockroach species used during the 
development of this work (Guthrie and Tindall 1968; Robinson 2005; Short and 
Edwards 1991). 
 

 
Cockroach species 

 
B. orientalis 

 
B. germanica 

 
Classification Blattoidea: Blattidae 

 
Blaberoidea: Blattellidae 

Habitat Fresh (2–29 ºC) and humid 
places like basements, 
cellars crawls, and pipes. 
Fresh and moist 
environments. 

Live only indoors, in warm 
(30 ºC), humid dark places, 
like behind refrigerators, 
stoves or water heaters in the 
kitchens.  
 

Morphology Black colour and wings not 
fully developed. 

Pale brown, with two marked 
stripes in the pronotum. Wings 
fully developed. 
 

       Males 17–29 mm, reduced wings 
that do not reach the tip of 
the abdomen. 
 

10–13 mm, elongated 
abdomen, larger than the 
wings. 

     Females 20–27 mm, wings do not 
reach the abdomen. 
 

12–15 mm, darker than males, 
with a more round abdomen. 

Embryonic 
development 

45–56 days. 
 
 

15–30 days. 

Nymph period 185–215 days, 7-9 instars in 
males and 8–10 in females. 
 

60–65 days and 6 instars.  

Adult life span 143.6 ± 4.1 days for females 
and 87.2 ± 9.1 days for 
males.  
 

180 ± 6 days for both sexes. 

No. of eggs/ 
oothecae  

12–18. 35–48, declining with the age. 
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2.2 Fat body anatomy 

 

In cockroaches, like in other insects, the fat body has a central role in a 

number of physiological processes during the insect life. Beyond the role in 

the storage of nutrients, this organ has also endocrine functions, participates 

in the insect immune system and has a role in the detoxification of nitrogen 

(Arrese and Soulages 2010). Additionally, it is in the fat body where 

cockroaches harbour its endosymbiotic bacteria, B. cuenoti (Buchner 1965). 

Cockroach fat body is distributed among the abdominal haemocoel very 

close to the gut. Three cell types have been identified in the cockroach fat 

bodies (Figure 4): thropocytes, bacteriocytes and uricocytes. Thropocytes are 

located on the peripheral layers of the fat body lobes, whereas the other two 

cell types remain internal (Cochran 1985). The trophocytes, the most 

numerous, show different features according to the cockroach life stage. In 

nymphs and aged adult females these cells contain lipid droplets and a huge 

amount of glycogen. However, in young adult females, glycogen is severely 

reduced and the cell is completely filled with lipid droplets. The 

bacteriocytes, the cells containing Blattabacterium (Figure 4A and 4B), are 

rich in glycogen, with few organelles and most of the cytoplasm filled with 

bacteria (Piceis et al. 1986). The last cell type, uricocytes, are rich in 

glycogen, but the most remarkable trait of these cells is the presence of the 

urate structural units, which are vacuolar bodies with a dark centre 

surrounded by a greyish area. Urates are deposited around the dark area 

(Piceis et al. 1986; Cochran et al. 1979). 
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Figure 4. Visualising Blattabacterium cells. A and B. Bacteriocytes from a whole 
mount B. germanica hybridised with probes Eub338 for eubacteria and blb6 specific 
for Blattabacterium (López-Sánchez et al. 2008), labelled with FAM and Cy3 
respectively using confocal microscopy (following the protocol described by Koga 
et al. 2009). C. The three cell types on the P. americana fat body. L, Trophocytes, 
U, uricocytes; arrow, urate spherule (amplification x850) (Cochran et al. 1979). Note 
how uricocytes are surrounding the bacteriocytes (M).  
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3.- Blattabacterium cuenoti, primary endosymbiont of cockroaches 
 

3.1 Morphological characterization, localization and transmission 

 

The endosymbionts of cockroaches were one of the first intracellular 

mutualistic bacteria described (Blochmann 1887). Initially they were known 

as Blochmann bodies, and later were named as Bacillus cuenoti (Mercier 

1906), and is not until 1931 that a new genera was proposed to classify these 

bacteria that were renamed as Blattabacterium cuenoti (Hollande and Favre 

1931). They are found inside specialized cells called bacteriocytes (formerly 

known as mycetocytes) in the visceral fat body of the abdomen of all 

cockroaches, and in the termite Mastotermes darwiniensis (Bandi et al. 

1995). The only group of cockroaches that have lost Blattabacterium are 

cave dweller cockroaches from the genus Nocticola (Lo et al. 2007), whereas 

it has been lost in all the higher termites. The cells of Blattabacterium are 

rod shaped, with a diameter of 0.9 µm and between 1.5 to 8 µm of length 

that varies according the species: in B. orientalis are 2.5–5.3 µm long, while 

in B. germanica are about 3 µm (Kambhampati 2010). Endosymbionts are 

also localized in the follicular epithelium of the ovarioles and in this case 

they are shorter than those located in the fat body (Sacchi et al. 1996). The 

cytoplasm is uniformly granular and dense, with a low density area in the 

centre corresponding to the nuclear body (Piceis et al. 1986). The cell wall is 

very thin (from 5 to 10 nm) and there is a plasma membrane measuring 

between 1.7 and 3.5 nm inside it (Brooks 1970). Each bacterium is 

surrounded by a host derived vacuolar membrane, leaving a variable width 

vacuolar space between the bacterium and the membrane (Piceis et al. 1986; 

Kambhampati 2010). 

Like other obligate mutualistic intracellular bacteria, Blattabacterium is 

transmitted vertically from mother to offspring. The infection of the ovaries 
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by the symbionts starts early in the development as, during embryonic life, 

bacteriocytes are in close contact with the ovary. However, the ovaries are 

sterile until the hatching and at this time, bacteriocytes invade the ovarioles 

and get adhered to the oocyte. Later, the bacteria are released from the 

bacteriocytes and migrate through the tunica propia and the follicular 

epithelium to the space between the latter and the oocyte (Sacchi and 

Grigolo 1989). In a further step, bacteria are engulfed by a pseudopod-like 

structure from the egg membrane and internalized (Sacchi et al. 1996).  

 

3.2 Phylogenetic position 

 

Initially, cockroach endosymbionts were classified into the genera 

Bacillus (Mercier 1906). However, due to these bacteria do not form spores, 

in 1931 Hollande and Favre (1931) re-described the symbiont and proposed 

a new genus, Blattabacterium. Until the availability of molecular data, the 

taxonomic assignation of Blattabacterium was quite difficult, mainly due to 

the fact that it is not possible to growth these bacteria outside of 

cockroaches. Blattabacterium were initially classified within the order 

Rickettsiales (Dasch et al. 1984). However, the first molecular phylogenetic 

analysis clearly clustered Blattabacterium into the Cytophaga-

Flavobacterium-Bacteroides phylum (Bandi et al. 1994). This result was 

lately corroborated by our group (Figure 5) (López-Sánchez et al. 2008). In 

addition, the endosymbiont of the termite M. darwiniensis was also 

unambiguously placed into the clade formed by Blattabacterium (Bandi et 

al. 1995).  
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Figure 5. Phylogenetic position of Blattabacterium among the Bacteriodetes, 
according the 16S rDNA sequences. Tree obtained with the maximum likelihood 
method by López-Sánchez and coworkers (2008). 
 

 

The tree representing the phylogeny of different strains of 

Blattabacterium is congruent with the tree of their hosts (Lo et al. 2003). 

These results point to a monophyletic origin of the primary endosymbionts 

of cockroaches and a co-cladogenesis between hosts and endosymbionts. 

Thus, a single infection event may have occurred in the common ancestor of 

cockroaches and termites more than 140 Mya, when the extant families of 

cockroaches appeared in the fossil record (Vrsansky et al. 2002), but 
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probably cockroach ancestors and Blattabacterium are coevolving much 

earlier.  

 

3.3 Functional role of Blattabacterium 

 

Traditionally, most of the knowledge about the biochemical and 

physiological functions of Blattabacterium came from studies with 

aposymbiotic roaches. The offspring of aureomycin-treated parents were free 

of Blattabacterium. These nymphs were weaker, smaller and lighter than 

normal nymphs. Additionally, when they were reared with commercial dog 

food, the usual laboratory diet, cockroaches did not moult even after thirty 

days, when normal roaches usually moult every ten days. Aposymbiotic 

nymphs only reached mature state if their diet was supplemented with dried 

brewer’s yeast and, even in this case, they needed twice the time than normal 

roaches to become adults, and in no case these animals were fertile (Brooks 

and Richards 1955). Experimental data showed that B. germanica could 

incorporate sulfate into cysteine and methionine. However, aposymbiotic 

individuals when injected with labelled [35S]-sulfate were not able to 

incorporate it to cysteine and methionine (Block and Henry 1962). 

Furthermore, aposymbiotic hosts are unable to synthetize the essential amino 

acids phenylalanine, isoleucine, valine, threonine, arginine and tyrosine 

(Henry 1962). It is also remarkable that the fat body of aposymbiotic P. 

americana individuals has lower concentrations of ascorbic, folic and 

pantothenic acids (Ludwig and Gallagher 1966). 

Besides the synthesis of essential amino acids and vitamins, classical 

works also pointed to an involvement of Blattabacterium in the uric acid 

metabolism of their hosts, since it was observed that in aposymbiotic 

cockroaches there was a huge increase in the amounts of uric acid stored in 

the fat body (Malke and Schwartz 1966; Valovage and Brooks 1979). This 
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association between the endosymbionts and the uric acid production and 

storage was reinforced by the observation that bacteriocytes are usually 

surrounded by uricocytes (Cochran et al. 1979). Contrary to most insects, 

cockroaches do not excrete excess of nitrogen as uric acid. Instead, the major 

nitrogen waste product is ammonia (Mullins and Cochran 1972; Mullins and 

Cochran 1976; Cochran 1985), thus cockroaches seem ammonotelic and not 

uricotelic as expected for a terrestrial insect (Needham 1937). By contrast, it 

is well known that cockroaches are able to produce uric acid and store it in 

the fat body mainly in the uricocytes (McEnroe and Forgash 1957). The 

stores of uric acid became extremely increased when cockroaches were 

reared with diets with a high protein content, even reaching a toxic level 

(Haydak 1953; Mullins and Cochran 1974; Mullins and Cochran 1975a). In 

other experiments, cockroaches were allowed to increase their levels of 

stored uric acid with a protein-rich diet. Later on, these animals were fed 

with a diet poor in nitrogen. In these cases the amount of uric acid in the fat 

body drooped dramatically (Mullins and Cochran 1974; Mullins and 

Cochran 1975b). From these observations, it was assumed that stored urates 

in the fat body act as a metabolic reservoir of nitrogen that would be 

mobilized in periods of scarcity of this element (Cochran 1985). At cellular 

level, it became clear that as nitrogen dietary levels increase, uricocytes 

become enlarged and filled with urate spherules in P. americana (Figure 6), 

while individuals fed on a nitrogen free diet for 4 to 6 weeks showed a lower 

number of bacteriocytes and a decrease in uricocyte size (Cochran et al. 

1979).  
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Figure 6. Cytological changes in the fat body of P. americana according the protein 
content of their diet (X800) (Cochran et al. 1979). U, uricocytes, M, bacteriocyte; T, 
trophocyte. White spheres within uricocytes are the urate spherules. A, Cockroach 
fed with dextrin, 0% protein. N1, N2 and N3 are the nucleus of the trophocyte, the 
urocyte and the bacteriocytes respectively. B, Cockroach with a diet with 42% of 
protein content. C, Cockroach with a diet with 66% of protein content. Note how the 
urate spherules increase with the diet protein content, and compare with Figure 5 
(animals fed with commercial dog food). 
 
 

3.4 Genomic features of Blattabacterium 

 

During the development of this thesis five genome sequences from 

different Blattabacterium strains have been released: BBge, endosymbiont of 

B. germanica (Blattellidae) (López-Sánchez et al. 2009) and BBgi, from 
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Blaberus giganteus (Blaberidae) (Huang et al. 2012) both members of the 

Blaberoidea superfamily, BPam the endosymbiont from P. americana 

(Blattidae) (Sabree et al. 2009), and BCpu and BMad, endosymbionts from 

the subsocial cockroach Cryptocercus puctulatus (Cryptocercidae) (Neef et 

al. 2011), and the termite M. darwiniensis (Termitidae) (Sabree et al. 2012), 

respectively. The last three species belong to the superfamily Blaberoidea, 

and in contrast to the other roaches that are considered omnivorous, both, M. 

darwiniensis and C. punctulatus, are xylophagous (See Table 2 for 

taxonomy).  

The genome of Blattabacterium shows all the typical features of other 

insect primary endosymbionts: (i) a reduced genome (from 590 to the 640 

kb) in comparison with free living Flavobacteria (genome sizes ranging from 

2.2 to 6.1 Mb); (ii) all strains show a low GC content (from 23.8 to 28.2 %); 

(iii) despite the long-time divergence among all the Blattabacterium 

compared, synteny has been maintained mainly unaltered, with only two 

detected chromosomal rearrangements: one inversion in BPam (about 19 kb) 

and other in BMda of 242 kb (Sabree et al. 2010, 2012); (iv) finally, these 

bacteria exhibit elevated rates of nonsynonymous substitutions per 

nonsynonymous site (dN) (comparison between BPam and BBge) in 

comparison with free living relatives (Sabree et al. 2010). 

Blattabacterium from omnivorous cockroaches (i.e., strains BPam, BBge 

and BBgi) possess the biosynthetic capabilities for the synthesis of ten 

essential and six non-essential amino acids, being auxotrophic for glutamine, 

glycine, proline and asparagine. Additionally, they must be able to supply 

their hosts with cofactors and vitamins (López-Sánchez et al. 2009; Sabree et 

al. 2009, Huang et al. 2012). These results are in concordance with 

observations obtained previously with aposymbiotic animals that suggested a 

possible role of Blattabacterium as an essential amino acid and cofactor 

supplier for the cockroaches (Henry 1962; Ludwig and Gallagher 1966). The 
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symbionts from the C. punctulatus and M. darwiniensis, have lost the 

capability to synthetize seven out of ten essential amino acids, retaining only 

the pathways for the synthesis of phenylalanine, histidine, tyrosine and 

arginine and BCpu has also lost the genes for the synthesis of cysteine. 

These functional losses could be compensated by gut microbiota (Neef et al. 

2011; Sabree et al. 2012). 

All Blattabacterium strains sequenced up today possess the urea cycle as 

well as the genes coding for urease. As suggested by López-Sánchez et al. 

(2009) (Figure 7), the presence of this enzyme is a key factor to explain the 

intriguing ammonotelism showed by the cockroaches (Mullins and Cochran 

1972; Mullins and Cochran 1976), and the physiological use of uric acid as a 

nitrogen storage (Cochran et al. 1979; Cochran 1985). Nevertheless, urease 

is not enough to explain the process of nitrogen recycling from uric acid, 

since additional activities for the synthesis and catabolism of urates, as well 

as the presence of the activity glutamine synthase to incorporate the released 

ammonia by the urease into the metabolism, are required. None of these 

activities are encoded by the endosymbiont genome and thus must be carried 

out by the host, and/or by the gut microbiota. Since it has been demonstrated 

that some tissues of P. americana code for urate oxidase, it seems plausible 

that animal could produce urea from uric acid degradation (Figure 7).  
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Figure 7. Proposed model for the nitrogen recycling in cockroaches by López-
Sánchez et al. (2009). 
 

The stoichiometric analysis of the central metabolic pathways of BBge 

showed the potential of the endosymbiont to produce ammonia (López-

Sánchez et al. 2009). 
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This work is embedded in a research program devoted to the study of the 

reductive evolution in endosymbiotic bacteria from insects, as well as the 

adaptation of these bacteria to the intracellular life. Comparative genomic 

studies carried out on the genomes of the sequenced endosymbiotic bacteria 

in different evolutive stages, have shed light on how the transition from free-

living bacteria to an obligate symbiont of insects might have occurred. Most 

of these studies have been performed with endosymbionts belonging to the 

γ-Proteobacteria, and there is less information from other phyla of 

endosymbiotic bacteria. This work is focused on the symbiotic consortium 

formed by cockroaches and its Bacteroidete endosymbiont B. cuenoti. The 

genome analysis of several strains of this bacterium suggests its role in 

nitrogen metabolism, particularly how the endosymbiont allows cockroaches 

to use uric acid as nitrogen storage.  

 

The main goal of this work is depicting the evolutionary history of 

Blattabacterium through the genome sequencing of a new strain, the 

endosymbiont of the cockroach Blatta orientalis (BBor) and its comparison 

with other Blattabacterium genomes, as well as the function of the shared 

nitrogen metabolism between the host and the symbiont using B. germanica 

as model. 

 

The specific objectives are: 

 

1. To obtain the complete genome sequence and annotation of the 

genome of Blattabacterium, strain BBor. 

2. To perform comparative evolutionary and metabolic analyses of the 

six strains of Blattabacterium with complete genome published so 

far. 
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3. To perform functional studies by sequencing transcriptomes from 

different host tissues. 

4. To compare the expression of genes involved in uric acid 

metabolism in response to dietary protein levels. 

 

 

The results of this thesis, and other related works, have been published and 

presented in scientific meetings. 

 

Refeered journal papers 
- López-Sánchez MJ, Neef A, Patiño-Navarrete R, Navarro L, 

Jimenéz R, Latorre A, Moya A. 2008. Blattabacteria, the 

endosymbionts of cockroaches, have small genome sizes and high 

genome copy numbers. Environmental Microbiology 10: 3417-3422. 

- López-Sánchez MJ, Neef A, Peretó J, Patiño-Navarrete R, Pignatelli 

R, Latorre A, Moya A. 2009. Evolutionary convergence and 

nitrogen metabolism in Blattabacterium strain Bge, primary 

endosymbiont of the cockroach Blattella germanica. PLoS Genetics. 

5:e1000721. 

- González-Domenech C, Belda E, Patiño-Navarrete R, Moya, A, 

Peretó J, Latorre A, 2012. Metabolic stasis in an ancient symbiosis: 

genome scale metabolic networks from two Blattabacterium cuenoti 

strains, primary endosymbionts of cockroaches. BMC Microbiology 

12 (Suppl 1):55. 

- Patiño-Navarrete R, Moya A, Latorre A, Pereto, J. 2013. 

Comparative genomics of Blattabacterium cuenoti: the frozen 

legacy of an ancient endosymbiont genome. Genome Biology and 

Evolution 5:351-361. 



43 
 

- Patiño-Navarrete R, Piulachs MD, Moya A, Bellés X, Latorre A, 

Peretó J. Uric acid degrading enzymes genes response to different 

dietary protein levels in the fat body of Blattella germanica. In 

preparation.  

 

Communications and conference papers 
- Patiño-Navarrete R, Peretó J, López-Sánchez MJ, Neff A, Moya A, 

Latorre A. (2009) Secuenciación y análisis evolutivo de 

Blattabacterium cuenotii, endosimbionte primario de Blatta 

orientalis.  Segundo Congreso de la Sociedad Española de Biologia 

Evolutiva.València. (Poster). 

- Patiño-Navarrete R, Peretó J, López-Sánchez MJ, Neef A, Moya A, 

Latorre A. (2010). Genome sequence and evolutionary analysis of 

Blattabacterium cuenotii, endosymbiont of the cockroach Blatta 

orientalis. Workshop of Genomics and Metagenomics, COST action 

FAO0701 “Arthropod symbioses: from fundamental studies to pest 

ans disease management”. Funchal, Portugal. (Poster). 

- Patiño-Navarrete R, Peretó J, Latorre A. (2010). Comparison of the 

strains of the cockroach endosymbiotic bacteria Blattabacterium 

cuenoti, from the cockroaches Blattella germanica, Periplaneta 

americana and Blatta orientalis. GDRE of Comparative Genomics 

meeting. Barcelona. (Oral Communication) 

- Patiño-Navarrete R, Peretó J, Piulachs MD, Bellés X, Moya A, 

Latorre A. (2011). Análisis del transcriptoma de tres tejidos de 

Blattella germanica: Metabolismo compartido entre B. germanica y 

Blattabacterium sp. XXXVIII Congreso de la Sociedad Española de 

Genética. Murcia. (Poster) 

- Patiño-Navarrete R, Ponce de León M, Montero F, Moya A, Peretó 

J, Latorre A. (2012). Chromosomal and metabolic stasis in 



44 
 

Blattabacterium cuenoti, the ancient primary ensdosymbiont of 

cockroaches. Global Questions on Advanced Biology, Societat 

Catalana de Biologia. Barcelona. (Poster) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III Material and Methods 
  



46 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 
 

 

1.- Insects 

 

Two species of cockroaches had been used; B. orientalis (Blattaria: 

Blattidae), to sequence its Blattabacterium endosymbiont, and B. germanica 

(Blattaria: Blattellidae) for transcriptomic and physiological studies. 

 

1.1 Blatta orientalis 

 

The strain of B. orientalis used during the present work was originated 

from a population sample collected in 2005 at the locality of Tarazona de la 

Mancha (Spain) and maintained in the laboratory at 26 ºC and 70% of 

relative humidity at the insect chambers of the “Institut Cavanilles de 

Biodiversitat i Biologia Evolutiva”. The animals are fed with commercial 

dog food and water is supplied ad libitum.  

 

1.2 Blattella germanica 

 

The B. germanica individuals used for the whole transcriptome analysis 

were obtained from the population reared at the “Institut de Biologia 

Evolutiva (CSIC-UPF)” (IBE), Barcelona at 30 ºC and 70% of relative 

humidity and fed with commercial dog food.  

The B. germanica individuals used to quantify the expression of genes 

involved in nitrogen metabolism under different dietary protein levels were 

also maintained at the facilities of our center under the conditions previously 

described for B. orientalis. This population was founded from a sample of 

the above-mentioned population from the IBE. 
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The individuals used in the gene expression experiments were reared in 

the abovementioned conditions during their whole life cycle until they moult 

into the adult form. As soon as they moult in the adult form, they were 

separated from the colony and reared with commercial dog food for two 

days; thereafter the animals were put on the experimental diets for two more 

days, until they are four old days’ adults. Some animals were maintained on 

the common diet and were used as controls. The experimental diets are based 

on those described by Mullins and Cochran (1974). Diets are described in 

Table 4. 

 

Table 4. Composition and protein content of the diets administered to the 
cockroaches. 
 
 Dextrine Low protein High protein Control 

Protein content 0% 5% 50% ~25% 

Composition 4g WSMa 

96g dextrin 

20g cellulose 

4g WSMa

10g YEb 

106g cellulose 

4g WSMa

10g YEb 

45g caseine 

41g Dextrine 

Commercial dog 

food 

aWesson salt mixture (Wesson 1932). 
bYeast Extract (Scharlau). 
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2.- Nucleic acids isolation and purification 
 

2.1   Isolation and purification of genomic DNA from Blattabacterium strain 
BBor 

 

 2.1.1 Enrichment of Blattabacterium from fat body samples of B. 
orientalis 

 

Adult B. orientalis females were sacrified and dissected while immersed 

in buffer A (35 mM Tris-HCL; 250 mM sucrose; 100 mM EDTA; 25 mM 

KCl; pH 7.5). Fat body, which is easily recognizable because its 

characteristic white color (Figure 8), is collected with the aid of 

entomological forceps and stored at 4 ºC.  

 

 
Figure 8. Internal anatomies of the cockroach B. orientalis. A, Panoramic view of a 
dorsally dissected animal. B, Detail of a fat body lobe. C, Zoom of the image B. D, 
Fat body enclosing trachea. FB, fat body; blue arrow, malpighian tubule; green 
arrowhead, trachea. 
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The sample was enriched for Blattabacterium following the method of 

Harrison (Harrison et al. 1989) with modifications as described in López-

Sánchez et al. (2009). The whole procedure was carried out on ice to reduce 

as much as possible the histolysis and the degradation of genomic DNA 

from the symbionts. The fat body was homogenized in pre-cooled buffer A, 

and sieved in a series of filters with a decreasing pore size (80 µm, 20 µm 

and 11µm; Millipore) up to a final volume of 50 ml. The homogenate was 

later on centrifuged at 4000g for 15 min at 4 ºC, by this procedure the fat, 

which remained in the top of the Falcon, was separated from the other 

biological material, including the Blattabacterium cells, which were 

concentrated on the bottom. The Blattabacterium enriched pellet was 

washed twice with PBS  (Phosphate buffer saline: 137 mM NaCl; 2.7 mM 

KCl; 10 mM Na2HPO4; 2 mM KH2PO4; pH 7.4), and finally resuspended in 

1 ml of DNase I buffer (10 mM Tris-HCl pH 7.6; 2.5 mM MgCl2; 0.5 mM 

CaCl2). The sample was digested with DNase I (1mg/ml, Roche) for 10 min 

at room temperature. In this way, genomic DNA from the insect is degraded 

by the action of the DNase, whereas genomic DNA from Blattabacterium is 

protected by the bacterial cell wall. To inhibit the DNase, 500 µl of 0.5 M 

EDTA were added. Finally, the mixture is centrifuged (4000g, 15 min, 4 ºC), 

after removing the supernatant (containing the DNase); the pellet is washed 

twice with PBS for a proper elimination of the possible rests of DNase. 

Finally, the pellet was resuspended on TE buffer (10 mM Tris-HCl pH 7.5; 1 

mM EDTA).  
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2.1.2 Extraction, purification and quantification of genomic DNA 

 

Genomic DNA from Blattabacterium was extracted using the CTAB/Na 

(Cetyltrimethylammonium bromide) method (Ausubel, 1999; Murray and 

Thompson, 1980). This method was originally designed for the extraction 

and purification of good quality DNA from plants, since it is especially 

indicated for the elimination of polysaccharides and polyphenolic 

compounds that otherwise may alter the quality of DNA. These features 

make this protocol suitable to extract DNA from the fat body of cockroaches 

(López-Sánchez et al. 2009; Sabree et al. 2012). The protocol includes a 

phenolization step that extracts those contaminants that do no precipitate 

during the CTAB incubation like proteins, polysaccharides and other cellular 

components. The resultant DNA pellet is finally resuspended in LTE buffer 

(1 mM Tris-HCl pH 7.5; 0.1 mM EDTA) with RNase (20 µg/ml). 

DNA was quantified spectrophotometrically with the system Nanodrop® 

ND-1000. To assess the purity of DNA, the 260/280 and 260/230 ratios are 

calculated, both of them must be between 1.8 and 2.0. 

 

2.2 Total RNA extraction from several tissues of B. germanica 

 

 2.2.1 Insect dissection and storage 

 

Insects were anesthetized with CO2 and kept on ice until the dissection. 

The insects were fixed with entomological needles over its dorsal side, 

immersed in Krebs-Ringer bicarbonate buffer (Sigma-Aldrich) and opened 

ventrally in a way that the organs of interest remain exposed  (ventral fat 

body lobes, ovaries (Figure 9) and the epithelium beneath the pronotum). 
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Tissues dissected were immediately frozen with liquid nitrogen and stored at 

-80 ºC until the RNA extraction. 

 

 
Figure 9. Dissection process for B. germanica. A. The animal was fixed with the 
ventral part up;after opening the abdomen the gut appears well defined (blue arrow); 
fat body lobes were in the laterals (black arrowheads). B. Once removed the gut, the 
ovaries become clearly visible (green arrow). C. After removing the ovaries the fat 
body (red arrows) was swiped. 
 

2.2.2 Total RNA extraction and quantification 

 

All the material and surfaces used during the RNA extraction process 

were chemically treated with RNase Zap Wipes (Ambion), or by heat 12 

hours at 180 ºC, for inactivating the RNases. Total RNA was extracted with 

the GenEluteTM Mammalian Total RNA Miniprep Kit (Sigma-Aldrich). This 

system avoids the use of organic compounds such as phenols or chloroform; 

instead, RNA binds to a silica membrane. For the RNase inactivation, in 

addition to guanidine thyocianate, uses a reducing agent like β-

mercaptoethanol. After this protocol, the RNA integrity was evaluated by 

agarose gel electrophoresis. Finally, the quantity as well as the quality was 

measured with the spectrophotometer (Nanodrop® ND-1000; Nanodrop 

Technologies, Inc), in a similar way that described in the previous section 

for the DNA.   
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3.- Nucleic acid sequencing, assembly  and quantification of 
selected genes 

 

3.1 Genome sequencing of Blattabacterium strain BBor 

 

 3.1.1 Sanger approach 

 

Shotgun libraries were constructed after random mechanical shearing of 

the genomic DNA with ultrasounds. Different sized DNA fragments were 

separated by pulse field gel electrophoresis (PFGE) and those fragments 

corresponding to the ranges 5-2 kb, 2-1 kb, and < 1kb were selected to 

construct the genomic libraries. The DNA was purified from the agarose 

slides with the system Ultrafree® (Millipore), and cleaned by phenolization. 

DNA was prepared for ligation with the Single dATM Kit (Novagen), 

which blunts DNA ends and adds a single deoxyadenine nucleotide on the 3’ 

end, rendering the DNA fragment suitable to be cloned. Once the extremes 

were prepared, DNA fragments were ligated into the plasmid vector pCR®-

XL-TOPO® (Invitrogen). Afterwards, these plasmids were used to transform 

Escherichia coli cells by electroporation applying 1.8 kV with the 

Electroporator 2510 (Eppendorf).  Resistance genes to kanamycin and 

ampicilin harbored in the vector were used to select those cells that had 

incorporated the vector. The discrimination of those cells that incorporate 

non-recombinant vectors was possible because the insert interrupts the gene 

lacZ-α, making that colonies remain white in presence of X-Gal. Those 

transformed colonies with recombinant plasmids were grown (overnight at 

37 ºC in agitation) and subjected to a miniprep procedure with the system 

MultiPROBE II with reactives of Millipore. Finally, the plasmidic DNA was 

sequenced with the universal primers for the XL-Topo, pUC18b (5’-
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GTAAAACGACGGCCAGT) and pUC18g (5’-

CAGGAAACAGCTATGAC), with the kit BigDye (Applied Biosystems). 

Sequencing was carried out in the sequencing facility of the SCSIE (Servei 

Central de Suport a la Investigació Experimental) at the Universitat de 

València.  

 

 3.1.2 Pyrosequencing 

 

The emergence of the so-called next-generation sequencing technologies 

(NGS) has improved the ability to sequence new genomes. To complete the 

genome of the Blattabacterium strain BBor the system Genome Sequencer 

FLX (454 Life Sciences, Roche), based on the pyrosequencing technology 

(Ronaghi et al. 1998) was used.  A total of 5 µg of DNA was sent to Life 

Sequencing (València) where they were processed and sequenced as 

described in Margulies et al. (2005). 

 

 3.1.3 Assembly 

 

All the sequences obtained with the classical Sanger method, were edited 

with the program Trev 1.9 included in the software Staden Package, to trim 

out vector or bad quality sequences (Staden et al. 2000). Then, the reads 

were analyzed by homology search against a protein database with the 

BLASTX algorithm of the BLAST (Altschul et al. 1997). All sequences 

which matched with eukaryotic organisms or non-Bacteriodete bacteria were 

discarded. After the trimming process, selected sequences were assembled 

with Gap 4 (also included in the Staden Package), creating a database. The 

assembly of the sequences coming from the Genome Sequencer FLX was 

done with the Newbler software (Roche). Since the output format from 
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Newbler is not readable by Staden Package, it was necessary to convert it 

into a readable format with CAF2GAP. Both databases, the one with the 

Sanger sequences and the second with 454 sequences, were joined with the 

tool copy_db implemented in the Staden Package. The final assembly was 

performed manually on the Staden Package. The different contigs were 

properly orientated taking as reference the gene order on the other 

Blattabacterium strain genomes, given that in endosymbiotic bacteria the 

stasis is highly maintained along its evolution (Tamas et al. 2002; Latorre et 

al. 2005). The comparison of the contigs obtained for the endosymbiont of B. 

orientalis with the strains symbiotic from P. americana and B. germanica 

was done with the Artemis Comparative Tool (Carver et al. 2005).  

 

3.2 Sequencing of RNA samples from different tissues of B. germanica 

 

Whole transcriptome from three different tissues were analyzed with the 

aim of getting a deeper understanding about the relationships at gene 

expression level between Blattabacterium and its host B. germanica. Two 

tissues, fat body and ovaries harbor Blattabacterium, while the third one, the 

epithelium, was chosen as a control tissue, given that do not harbor 

Blattabacterium. Between the two tissues where Blattabacterium dwells, the 

main interest was to describe the differences of how B. germanica interacts 

whit its symbionts in the fat body, where they carry out the metabolic 

functions and in the ovaries where the symbionts are only to infect the 

progeny and thus few transcriptional activity is expected. Fat body and 

ovaries of adult females from 3 to 5 days old were dissected, while the 

control tissue was obtained from the epithelial tissue beneath the pronotum 

of stage 6 nymphs from days 5, 6 and 7. RNA was sequenced in GATC-

Biotech (Konstanz, Germany), thereby 9.59, 9.63 and 9.88 µg of RNA from 

fat body, ovaries and epithelium respectively were sent to sequence.  
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 Complementary DNA (cDNA) was synthetized using the Smart cDNA 

Construction Kit (Clontech). For the synthesis of the first strand an oligo 

(dT) was used obtaining by this way only mRNA from the host followed by 

a cap-primed second strand synthesis. Given that there were cDNAs coming 

from three different tissues it was necessary to mark each DNA with a 

barcode depending on its origin, the barcodes are defined in Table 5. 

The cDNA was sequenced using the same procedure described in the 

section 3.1.2, but in this case the Titanium chemistry was used, which allows 

obtaining longer reads. As a result of the sequencing process, a sff file with 

the raw sequences was obtained, which was afterwards trimmed for bad 

quality regions, giving as output a Fasta and Fasta Quality files. Trimmed 

sequences were cleaned of endosymbiotic reads by mapping all the 

sequences against the genome sequence from the Blattabacterium strain 

BBge using the program MEGABLAST (Altschul et al. 1997) with an e-

value cut-off of 10-5 and an identity percentage of 95. The sequences 

identified as belonging to the endosymbiont were removed from the Fasta 

and Fasta Quality files using a customized perl script. Once the sequences 

from the endosymbiont have been removed, the reads are assembled with 

MIRA 3.2 (Chevreux et al. 1999) in the EST working mode.  

 

 

 

Table 5. Barcodes assigned to each tissue. 

Tissue Barcode 

Fat body AATGT 

Ovaries CTGCT 

Epithelium ACTCT 
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3.3 Quantitative real time PCR. 

 

After two days on the experimental diets described in Table 4, B. 

germanica females were dissected. Then, total RNA was extracted from fat 

body and ovaries of these females. A total amount of 400 ng of this RNA in 

a final concentration of 50 ng/µl was used for synthetize the cDNA. Even 

when the GenEluteTM kit used during RNA extraction shears and remove 

most DNA contamination, prior cDNa synthesis the sample was treated for 

30 min at 37 ºC with 1 U of DNaseI (Promega).  The Transcriptor First 

Strand cDNA Synthesis Kit (Roche) was selected for cDNA synthesis. The 

primming method used in this case was the random hexamers that allows the 

synthesis of cDNA from bacterial mRNA. All the procedure was performed 

according the manufacturer instructions, but an optional step of denaturation 

(10 min at 65 ºC) to the RNA-random hexamers mixture was applied to 

denature secondary structures in RNA that may impair the union of the 

hexamers to the template. The synthesis reaction was done with 10 U of 

reverse transcriptase, and an incubation of 10 min at 25 ºC for extending the 

primers, 30 min at 55 ºC for the extension and finally 5 min at 85 ºC for 

inactivating the enzymes. In all procedures, one sample was used as a 

negative control (known as “RT-”), to prove the inexistence of genomic 

DNA, those controls were treated equally than the normal samples, but no 

reverse transcriptase was used. The result of the synthesis was tested by 

amplifying a 300 bp fragment of the actin gene with the primers 95 and 96 

(Table 6), with a profile of 35 cycles of 95 ºC for 30 s, 58 ºC for 30 s and   

72 ºC for 30 s. The response of genes involved in uric acid metabolism as 

well as the glutamine synthetase (Table 6) to the protein dietary levels was 

evaluated by real-time quantitative PCR by relative quantification method. 

Three individuals fed with each diet for all the analyses were used. The 

endogenous controls were the actin for those genes coded by the host and the 
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gene for the elongation factor EF-Tu (tuf) for the endosymbiotic urease gene. 

All qPCR were carried out in a Lightcycler 2.0 (Roche) with the kit 

FluoCycle IITM SYBR® (Euroclone). The genes measured and the primers 

selected for each gene are described in Table 6. 

Each quantitative PCR was run with 1 U of Taq polymerase and 250 µM 

of each primer. The temperature profile was 95 ºC for 10 min followed by 40 

cycles of 95 ºC for 5 s, 55 ºC for 8 s, and 72 ºC for 20 s. Finally a melting 

curve analysis was performed to ensure that there is only one product 

amplified. Each reaction was run per triplicate, and non-template negative 

controls were used.  

Statistical analysis were done with the REST package tool (Pfaffl et al. 

2002). This software estimates the changes of gene expression between two 

groups (in our case a control group, formed by those animals fed with dog 

food and the experimental comprising the animals fed with one of the 

artificial diets), taking the distribution of the threshold values (CT) as input 

without any assumption about the distribution. It uses a pair wise fixed 

reallocation test to evaluate the significance of the results (Pfaffl et al. 2002). 

Results are given graphically as copies of RNA per 1000 copies of the 

reference gene, based on the method proposed by Schmittgen and Livak 

(2008). 
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Table 6. Genes and primers used in protein level experiments.  
 
Gene Primer Sequence 

Actin 95 5’-TCGTTCGTGACATCAAGGAGAAGC-3’ 

96 5’-TGTCGGCAATTCCAGGGTACATGGT-3’ 

512 5’-AGCTTCCTGATCGTCAGGTGA-3’ 

Urate oxidase               

 

URTOf 5’-AAATCATTGGTGGGCTTCGTGGTC-3’ 

URTOr 5’-TCACGTCTGGCAACGTTCTGTACT-3’ 

Allantoinase        

 

ALNf 5’-TCTGACAGCAGAAACCTGTCACCA-3’ 

ALNr 5’-GCTGCCCAAAGACGTTCCTTGTTT-3’ 

Allantoicase        

 

ALTf 5’-GGAATTATGCACCTCGCTTCTCTC-3’ 

ALTr 5’-CACTCCCTATTCTACTGTTCCGAC-3’ 

Glutamine synthetase          BgGSaf 5’-TACAAAGATCCATTCAGGCCA-3’ 

BgGSar 5’-CACGTATGCCTTTGATTTGTGG-3’ 

Elongation factor EF-Tu TU1f 5’-AAGGAAGAAGGAGGACGACACACT-3’ 

TU1r 5’-TAGGCTGATGCAATTCCACCTCCA-3’ 

Urease  

 

UC1f 5’-GTCCAGCAACTGGAACTATAGCCA-3’ 

UC1r 5’-CCTCCTGCACCTGCTTCTATTTGT-3’ 

 

 

4.- Annotation and comparative analyses 

 

4.1 Annotation and functional analysis of Blattabacterium strain BBor 

 

The annotation process consisted on the identification and localization of 

genes, pseudogenes and intergenic regions (IGS) in the genome sequence. 

First of all, the putative Open Reading Frames (ORF) in the genome were 

predicted with the software GLIMMER v.3.02 (Delcher et al. 2007). Since 

this program needs to be trained, the complete set of nucleotide sequences 

for all protein coding genes from the Blattabacterium strains of B. 
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germanica and P. americana, were used as a training set. The minimum 

gene length was fixed in 100 bp. Once the open reading frames (ORF) of all 

probable protein coding genes were identified, their coordinates were 

charged on the genome sequence using the genome browser ARTEMIS 

(Rutherford et al. 2000), which allows us to manually identify and curate 

start and stop codons as well as annotate probable ORF not detected by 

GLIMMER. The protein sequences of all ORF identified was written in a 

multifasta file. Once the ORF were identified, it was necessary to assign a 

function to each gene. First, orthologous genes in the previously sequenced 

Blattabacterium strains as well as with the free living Bacteriodete F. 

psychrophilum were identified using the OrthoMCL algorithm (Chen et al. 

2006). Then, the protein coding genes of all bacteria were compared all-

against-all using BLASTP, minimum E-value was established at 1e-05, a per 

cent match cutoff of 70 and inflation value of 1.5. As a result, it was 

obtained a table were each gene was classified in groups of orthology. 

BLAST searches were also performed against the gene non-redundant 

KEGG database (www.genome.jp) with a cut-off e-value of 10-3 and an 

identity value of 50. Finally, searches with BLASTN and BLASTX were 

performed on the IGS to identify possible genes or, most probably, 

pseudogenes overlooked by GLIMMER.  

Protein coding genes were classified according to the functional 

categories described in Cluster of Orthologous Groups of proteins (COG) 

(Tatusov et al. 2003). The COG database was downloaded from NCBI, and 

the proteomes of the six strains of Blattabacterium were compared with this 

database whit BLASTP searches (e-value 0.0001). Genes were also 

assigned, when it was possible, to KEGG Orthology (KO) numbers 

(www.genomenet.jp). Finally, EC numbers according to Brenda enzymes 

database (http://www.brenda-enzymes.info/) were assigned to each enzyme 

coding gene. Once identified all genes it became evident that, as in the 
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otherBlattabacterium strains, there are neither dnaA boxes nor dnaA gene, so 

it was not possible to locate the origin of replication. In that case, the method 

used to predict the origin was through the GC skew using the software 

OriginX (Worning et al. 2006).  

RNA genes were identified using INFERNAL (Nawrocki et al. 2009), an 

algorithm that searches structures and sequences against an RNA database. 

By this way ribosomal RNAs, ncRNAs and the tRNAs were detected. For 

the last ones an additional search with the tRNA-Scan (Lowe and Eddy 

1997) was performed. All RNA genes have been also confirmed through 

searches on the Rfam database (Gardner et al. 2011). 

Genes were named respecting, when possible, the name assigned in the 

previously sequenced strains. In case of conflict, the name assigned in E. coli 

was chosen. In addition, each gene was identified with a number, 

corresponding to its position respect to the origin of replication, preceded by 

the locus tag code BLBBOR. 

Metabolic reconstruction was done with the KASS-KEGG server 

(Moriya et al. 2007, http://www.genome.jp/tools/kaas/), a web-tool able 

to generate maps with the metabolic paths of an organism from the amino 

acid sequences of their CDS. However, the metabolic map was also 

manually curated with the information obtained from the metabolic 

reconstructions of the strains BPam and BBge (González-Domenech et al. 

2012) and the information found in the MetaCyc database 

(www.metacyc.org). 

The GC content of the whole genome for all strains was calculated with 

the software GeeCee, included in the EMBOSS package (Rice et al. 2000).  

For the estimations of the average GC content in genes, IGR and CDS (in the 

whole gene and in the different codon position) a costumized perl script was 

used. 
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4.2 Comparative genomics and inferred metabolisms among the 
Blattabacterium sequenced strains  

 

Graphic representation of genome-compared graphs between the six 

Blattabacterium strains were obtained with the genoPlotR package (Guy et 

al. 2010). Orthologous genes linked in the representations were obtained 

from the orthology table generated with orthoMCL (Annex 1). 

For the comparative analyses among all six Blattabacterium strains, the 

first step was the construction of the pan-genome, thus it would be possible 

to determine which genes form the core (i.e those genes present in all six 

strains), and which genes form the dispensable genome. The graphic 

representation of an Euler diagram was done with the R package Vennerable 

(Swinton 2011).  

The gene counts for each space were made from the gene orthology table 

obtained from the orthoMCL. The coverage of the genome was measured by 

means of rarefaction curves performed with the specaccum function of the 

Vegan library of R (Oksanen et al. 2012), which is used in ecological studies 

to calculate the species richness for a given number of samples. In our case, 

the species were the number of orthologous groups, while the number of 

samples was the number of sequenced genomes. 

COG distribution profiles were compared among all Blattabacterium 

strains. To assess if there were different distributions, a χ2 test was 

performed, using as a reference the COG profile of BBge, given that possess 

the most complete metabolism. With the heatmap.2 from the gplots library 

(Warnes 2011) a heat map was drawn using the COG distribution 

frequencies for all six Blattabacterium strains, with the pseudodata sets 

generated from the pan-genome and the core genome COG profiles, using 

the free living Bacteriodete F. psychrophilum as an outgroup. All strains 
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were clustered putting closer the most similar datasets; COG categories 

ordered in the rows were also clustered in a similar way.  

To assess the effects of gene loss in the metabolism of BBor, a 

stoichiometric analysis was performed with METATOOL (Pfeiffer et al. 

1999), centered on the reactions involving the urea and Krebs cycles.  

 

4.3 Annotation and functional analysis of RNA samples 

 

The annotation and functional analysis of the complete transcriptomes for 

the three chosen tissues of B. germanica was carried out with Blast2GO 

(www.blast2go.com) (Conesa et al. 2005). This program starts with BLAST 

searches to identify similar sequences to the input ones. In our case, the 

contigs obtained from the assembly process with MIRA have been used as 

input sequences. The nucleotide sequences were compared with BLASTX to 

the non-redundant protein database from the NCBI with an e-value cut-off 

fixed on 1e-06. The minimal length of the hit was established in 30 

nucleotides, and low complexity regions were filtered. Once the BLASTX 

was finished, Gene Ontology terms (GO) were assigned to our sequences by 

searching the hits of each sequence on the mapping files provided by the 

NCBI, gene_info (ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/) and 

gene2accesion 

(www.ncbi.nlm.nih.gov/entrez/query/static/help/LL2G.htmlfiles), as well as 

in the GO database directly (www.geneontology.org). Finally, an EC number 

was assigned to the enzymes. Blast2GO also offers the possibility of 

generate the KEGG metabolic maps. In some occasions, these pathways 

were interrupted, and manual searches on the transcriptome were done in 

order to close those gaps in the pathways, always with the help of the 

MetaCyc database (www.metacyc.org). 
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4.4 Comparative analysis of the transcriptome 

 

Blast2GO has integrated the Gossip (Blütghen et al. 2005) that allows us 

to perform the Fisher exact test, which is indicated to assess the differences 

between the annotation of two sets of sequences with respect to the 

distribution of GO terms. The data were corrected for multiple testing, and 

the two-tailed option was used. 

 

5.- Evolutionary analysis  

 

5.1 dN/dS test 

 

The synonymous (dS) and non-synonymous (dN) substitution rate were 

calculated with the program yn00 included in the software package PAML 

version 4.6 (Yang 2007) using the approximated method proposed by Yang 

and Nielsen (2000), which takes into account the transition/transversion rate 

bias and the base frequency, the two most important features in the mutation 

dynamics, since  it has been shown that adding further complications do not 

improve the results (Yang 1994). Once estimated these two rates, the value 

of the ratio among them (dN/dS, ω) will indicate the evolutionary force 

operating in each gene, positive when ω > 1, neutral when ω = 1 and 

purifying when ω < 1. Previous to running YN00, each pair of proteins were 

aligned with MAFFT (Katoh et al. 2005) and a nucleotide alignment was 

obtained using the amino acid alignment as a template with Tranalign (Rice 

et al. 2000). 
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5.2 Phylogenetic analysis 

 

Protein sequences for all genes present in the core genome with an 

orthologous gene in F. psycrhophilum were aligned with MAFFT, using 

accurate oriented method L-INS-i (Katoh et al. 2005). These alignments 

were posteriorly concatenated with a customized perl script 

catfasta2phyml.pl (http://www.abc.se/~nylander/). Thereafter, the best-fit 

models of amino acid replacement was estimated with ProtTest 3 with the 

AIC information criteria (Darriba et al. 2011). The maximum likelihood 

(ML) best tree was calculated with 100 bootstrap replicates with RAxML 

using the PROTGAMMA algorithm (Stamatakis et al. 2005). 

 

5.3 Testing the molecular clock hypothesis 

 

Nucleotide alignments of all genes present in the core genome of 

Blattabacterium were obtained with the program Tranalign from the 

EMBOSS package (Rice et al. 2000)  using protein alignments obtained with 

MAFFT (Katoh et al. 2005) as a template. To minimize the problem of 

saturation of nucleotide site, third codon positions were removed from the 

analysis. Maximum likelihood models are known to be robust to violation of 

the model, including divergence times and saturation. Moreover, first and 

second positions account for non-synonymous sites, which are often subject 

to selection and are less prone to saturation. The best fit evolutionary model 

for each alignment was selected with the jModelTest 2.1, with three 

substitution schemes (Darriba et al. 2012). A likelihood ratio test (LRT) was 

performed running the Baseml program in the PAML package (Yang 2007), 

with the selected evolutionary models. Using the tree topology estimated by 
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ML in the previous section, but without F. psychrophilum, each gene was 

tested under two models, one assuming homogenous rates (rooted model 

where n-1 branch lengths are estimated) were all branches evolve at the 

same rate, and the other which allows each branch to evolve under different 

rates (unrooted model, 2n-3 branch lengths are estimated). The LRT 

compares the differences in the log likelihood (l) values for each model (2Δl) 

with a χ2 distribution with n-2 degrees of freedom, where n was the number 

of Blattabacterium strains. Those genes that (i) do not reject the null 

hypothesis of homogeneous rates, (ii) possess an orthologous gene in the F. 

psychrophilum genome, (iii) do not accumulate more than 2.5 substitutions 

per site, and (iv) continue to accept the molecular clock after the addition of 

the free living Bacteroidete, where used to determine the date of the 

divergence between pairs of strains (i.e., BBor/BPam, BMda/BCpu and 

BBge/BBgi). We used as a calibration point the divergence between the 

Blaberoidea (BBge and BBgi) and the Blattoidea (BBor, BPam, BCpu and 

BMda) superfamilies of cockroaches, estimated by fossil data in 140 Mya 

(Sabree et al. 2010; Vrsansky et al. 2002). Nucleotide alignments were 

obtained following the above mentioned procedure, also removing third 

codon positions. 
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1.- Genome sequencing and analysis of Blattabacterium from 
Blatta orientalis (BBor). 

 

1.1 Genome characteristics 

 

The genome of Blattabacterium strain BBor has a total size of 638,184 bp 

and is composed by a circular chromosome of 634,449 bp and a plasmid of 

3,735 bp, with a GC content of 28.2 and 30.6%, respectively.  

As pointed out in Material and Methods, the chromosome was sequenced 

by a hybrid approach, using the Sanger method and the Genome Sequencer 

FLX system of Roche (454). Using the Sanger approach, 727 sequences 

belonging to Blattabacterium were obtained, which were assembled in 351 

contigs spanning 138 kb of the genome, with a low coverage.  

The 133,562 good quality reads obtained with the 454 technology were 

assembled with the Newbler software obtaining 1,201 contigs with an 

average length of 846 nucleotides and coverage of 30X. Nonetheless, 97% of 

these reads (129,647 readings) were located into the 39 bigger contigs (those 

≥500 bp), being twelve of them bigger than 5,000 kb. Both databases were 

combined using the copy_db tool implemented in the Staden Package, 

obtaining a hybrid database with contigs coming from both technologies. 

These contigs were assembled and finally, produced two circular contigs, 

one of 634,449 bp and 125,049 reads for the chromosome and other one of 

3,735 bp and 2,275 reads for the plasmid. The final average consensus 

coverage was 42X with 41.5X for the chromosome and 118X for the 

plasmid, when taken separately.  

The number of annotated genes as well as IGS present in the genome of 

Blattabacterium BBor is summarized in Table 7. In this genome there are 

several overlapping regions between different genes that have been 

considered as a category of IGS. 
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Table 7. Number of genes and intergenic regions in the genome of Blattabacterium 
strain BBor. Gene numbers in the plasmid are in parentheses. 
 
1. Genes   627 (7) 

 1.1 CDS  579 (7) 

 1.2 RNAs  39 

  1.2.1 tRNA 33 

  1.2.2 rRNA 3 

  1.2.3 Other ncRNAs 3 

 1.3 Pseudogenes 9 

2. Intergenic regions   628 (8) 

 2.1 non-overlapping  504 (7) 

 2.2 overlapping  124 (1) 

 

 

The GC content was calculated for the whole genome as well as for the 

genes taken individually. Additionally, in protein coding genes, GC content 

has been measured separately for the 1st+2nd and for the 3rd codon position. 

Finally, it was also calculated for the intergenic non-coding regions (Table 

8). The detailed results for each gene can be consulted in the Annex 2. 

Comparing the six sequenced strains, only BCpu shows lower values in 

GC content. The values for the other five Blattabacterium strains are quite 

similar, especially the symbionts from P. americana and B. orientalis, where 

the values are almost equal in several categories. 

As usual in endosymbiotic bacteria, it was identified only one copy of 

each ribosomal gene. In BBor, as in the other Blattabacterium, all three 

ribosomal genes (23S, 16S and 5S) form an operon. There were identified 33 

tRNA, with the anti-codon sequence for all 20 amino acids, and three non-

coding RNA genes: tmRNA, RNA of the signal recognition particle, and the 

RNA fraction of the ribonuclease-P.  
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Table 8. Summary of GC content in the genome for all Blattabacterium strains 
analyzed.  
 

G+C (%) BBor BPam BCpu BMda BBgi BBge 

1. Genome   28.2 28.2 23.9 27.5 26.0 27.2 

 1.1 Chromosome  28.2 28.2 23.8 27.5 25.7 27.1 

 1.2 Plasmid  30.6 28.5 30.4 31.9 30.9 29.9 

2. Genes   28.6 28.6 24.6 27.8 27.1 27.5 

 2.1 CDS  28.4 28.4 24.2 27.6 25.6 27.2 

  2.1.1  1st+2nd position 33.7 33.4 30.8 33.1 31.5 33.0 

  2.1.2  3rd position 17.7 17.6 11.2 16.6 13.7 15.7 

 2.2 Pseudogenes  24.8 28.0 19.5 25.3 23.0 19.3 

 2.3 RNA genes  47.0 47.1 43.1 46.7 50.3 46.8 

3. Intergenic region   20.7 20.1 14.6 18.8 15.7 18.9 

 

Nine genes were finally annotated as pseudogenes. Two of them, cysH 

and cysI, encoding for products involved in the sulfate assimilatory pathway, 

3’-phosphoadenosine 5’-phosphosulfate sulfotransferase and the 

hemoprotein subunit of the sulfite reductase, respectively. Three are 

involved in the synthesis of heme groups, hemC, hemD and cysG, coding for 

hydroxymethylbilane synthase, uroporphyrinogen III synthase and siroheme 

synthase, respectively, being the last one indirectly related to the sulfate 

assimilatory pathway, since the siroheme is the heme group present in sulfite 

reductase (Murphy and Siegel 1973). The other pseudogenes were dut, 

coding for deoxyuridine triphosphatase, which participates in the synthesis 

of timidine nucleotides; a thermonuclease family protein annotated as lpxP 

in BMda and BPam; an ATP-binding cassette transporter, with functional 

homologs in BCpu, BMda, BBgi and BBge clustered in the orthology group 

blb_595 (see Annex 1). The last one code for an hypothetical protein, with 

homologs in BPam, BCpu, BBge and BBgi, which are clustered in the 

orthology group blb_0578 (Annex 1). 
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Seven duplicated genes were found, those coding for 2-

methylthioadenine synthetase (miaB), dihydrolipoyl dehydrogenase (lpdA), 

rod-shape determining protein RodA (rodA), phosphoserine transaminase 

(serC), peptidylprolyl isomerase (ppiC), acetylornithine transaminase (argD) 

and ATP-dependent DNA helicase (uvrD). Additionally, for two of the 

pseudogenes, dut and hemD, a functional copy was found, being remarkable 

that functional dut copy is the one located in the plasmid. 

The calculus of gene length, summarized in Table 9, was performed at 

different levels.   

 

Table 9. Total and mean length of the genome of Blattabacterium strain BBor. 
  
 Length (nt) Mean (nt) 
1. Genome   638184 - 
 1.1 Chromosome  634449 - 

 1.2 Plasmid  3735 - 
2. Genes   607213 968.4 
 2.1 CDS  594851 1027.4 

 2.2 RNA  7625 195.5 

  2.2.1 tRNA 2521 76.4 

  2.2.2 rRNA 4337 1445.7 

  2.2.3 Other ncRNAs 765 109.3 

 2.2 Pseudogenes  4746 527.3 
3. Intergenic region   31635 64.6 

 
Close to 95% of the genome encodes for any class of gene. This value is 

in concordance with the values observed for the other Blattabacterium, 

which ranged between 96.3% in BBge and 93.4% in BCpu.  Due to the high 

density in gene content in this genome, the length of IGS is quite reduced, 

41% of them have less than 20 nucleotides of length (Figure 10). Besides, in 

124 cases the end of a gene and the beginning of next gene are overlapped 

(Table 7).  
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Figure 10. IGS length distribution in BBor genome. 

 

 

Every coding gene was classified by its function according to the COG 

categories (Table 10). It was possible to assign a COG category to 511 of 

579 coding genes; five of them were assigned to two different COG 

categories. All genes with two assigned COG functional categories code for 

proteins that possess two domains, each of them with a different orthologous 

gene in the COG database. Thus the carbohydrate kinase encoded by yjeF 

has been classified into the categories G and S, lpxC has homologs into the 

categories I and M, a fhlA into K and T categories, topA was classified in L 

and R, and finally ccoN was grouped into the categories C and O.   
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Table 10. COG classification 
 

COG Description 
J Translation 
K Transcription 
L Replication, recombination and repair 
D Cell cycle control 
M Cell/wall membrane biogenesis 
N Cell motility 
O Posttranslational modification protein turnover, chaperones 
P Inorganic ion transport and metabolism 
T Signal transduction mechanism 
U Intracellular trafficking and secretion 
V Defense mechanism 
C Energy production and conversion 
E Amino acid transport and metabolism 
F Nucleotide transport and metabolism 
G Carbohydrate transport and metabolism 
H Coenzyme transport and metabolism 
I Lipid transport and metabolism 
Q Secondary metabolites biosynthesis transport and catabolism 
R General function prediction only 
S Function unknown 

 
 

The categories involved in metabolic processes (C, G, E, F, H, I and Q) 

account for 36.6% of the genes, 25.7% were placed into the informational 

processing and storage categories (J, K and L), 17.9% are part of the cellular 

processes categories (D, O, M, N, P, T, U and V ), 8.8% were classified into 

the poorly characterized proteins (R and S), and finally for 68 genes it was 

not possible to assign any functional category. The most represented 

functional categories are J, E, C and H with 105, 68, 37 and 36 genes, 

respectively.  

Genes also were classified according to the KEGG orthology system 

(KO) and 468 genes were assigned to their corresponding KO category. 

Finally, an EC number was assigned to 296 proteins encoded in this genome.  
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1.2 Comparative genomics of Blattabacterium strains 

 

After the identification, annotation and classification of all genes present 

in the genome of Blattabacterium strain BBor, we performed a comparative 

genomic analysis of this strain with the five previously sequenced, those 

from the cockroaches P. americana (BPam), B. germanica (BBge), B. 

gigantenus (BBgi) and C. punctulatus (BCpu), and the strain from the 

termite M. darwinensis (BMda). The general genomic features for the six 

sequenced Blattabacterium strains are summarized in Table 11. Data for the 

previously sequenced strains were extracted from the GenBank files 

available for each genome (see Material and Methods). By this study we 

aimed to obtain a major comprehension of the evolutionary history of the 

symbiotic system established more than 140 Mya (Lo et al. 2003) in the 

common ancestor of cockroaches and termites. It was especially interesting 

the comparison of Blattabacterium strains from omnivore cockroaches 

(BBor, BPam, BBge and BBgi) with that of xylophagous (BCpu and BMda). 

The genomes from BBor, BPam and BBge show a high degree of 

similarity in all analysed parameters. The genomes of BCpu and BMda are 

5% and 8% smaller, respectively, when compared with the other strains. The 

average size of CDS and RNA genes varies scarcely among the different 

strains. The most remarkable difference lies on the longer IGS found in 

BCpu than in the other strains. However, this last feature has not a great 

influence in the genome structure, since IGSs represent a minor fraction 

within these genomes. Thus, the genomic reduction in BCpu and BMda is 

mainly due to gene loss events. 
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Table 11. General genomic features of the six sequenced Blattabacterium strains: 
BBor, Blattabacterium from B. orientalis; BPam, Blattabacterium from P. 
americana; BBge, Blattabacterium from B. germanica; BCpu, Blattabacterium from 
C. punctulatus and BMda for Blattabacterium from M. darwiniensis. 
 

Strain BBor BPam BCpu BMda BBge BBgi 
Genome size (bp) 638183 640442 609561 590554 640335 632588 

Plasmids 1 1 1 1 1 1 
Plasmid size (bp) 3735 3448 3816 3306 3485 3423 
Chromosome size 

(bp) 
634448 636994 605745 587248 636850 629165 

GC content (%) 28.1 28.2 23.8 27.5 27.1 26.0 
Total number of 

genes 
618 
(7)a 

620 
(4)a 

586 
(3)a 

582 
(4)a 

630 
(4)a 

616 
(4)a 

CDSs 579 582 548 544 590 577 
rRNAs 3 3 3 3 3 3 
tRNAs 33 33 32 34 34 33 

Other ncRNAs 3 3 3 3 3 3 
Pseudogenes 9 6 3 9 1 1 

CDS Coding region 
% 

93.2 93.8 91.9 94.3 95.1 95 

CDS average length  1027 1033 1023 1024 1032 1039 
IGS average length 65 59 83 45 52 58 

aIn parentheses, number of genes coded in the plasmid. 

 

The gene order in BBor was compared with the other sequenced strains. 

The synteny (i.e., gene order conservation) for those orthologous genes 

conserved among the different strains remains mainly unaltered (Figure 11). 

Actually, there are few re-arrangements; only three inversions were detected 

(in blue in Figure 11): one of ~242 kb in BMda, the breakpoints being 

localized first at the IGS between the genes carB and argF, and the second 

one at the IGS between the genes coding for cytochrome c and the probable 

peptidase M16. The second inversion is a fragment of  ~19 kb in the 

Blattidae family symbionts (BBor and BPam), with the breakpoints localized 

at the IGS between the genes mdh and one coding for a thiamine 

pyrophosphokinase, the first and the second in the IGS of the genes lnt and 

yjeF. From these two previously described inversions, only the second one is 
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present in BBor. It has been identified a third inversion in BMda, with a size 

of 2.9 kb that contains the genes rffH, dut and wzxC.  

 
Figure 11. Whole-genome comparison between the six sequenced strains of 
Blattabacterium, yellow boxes represent the CDS coded in the leading strand, red 
boxes represent CDS coded in the lagging strand. Green lines connect orthologous 
genes with the same orientation. Blue lines connect orthologous genes with different 
orientation. 
 
 

Despite that genomes from insect endosymbiotic bacteria are quite 

compact, nine duplicated genes were identified in BBge (López-Sánchez et 

al. 2009). All strains maintained at least one of the copies for all nine genes 

(Table 12) and only five of the nine genes maintain both copies in all strains, 

rodA, uvrD, lpdA, miaB and argD. The gene hemD is only duplicated in 

BBge, the other strains only keep one of the copies, but different paralogs 

are retained in different strains. 
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Table 12. Duplicated genes on Blattabacterium strain BBge, and their orthologs in 
other strains. It has been been taken as reference the position on the genome of 
BBge strain. +, presence; –, absence; ψ, pseudogene. 
 

gene Locus in BBge BBor BPam BCpu BMda BBgi 
rodA BLBBGE_005 + + + + + 

BLBBGE_387 + + + + + 
uvrD BLBBGE_138 + + + + + 

BLBBGE_475 + + + + + 
lpdA BLBBGE_147 + + + + + 

BLBBGE_214 + + + + + 
miaB BLBBGE_207 + + + + + 

BLBBGE_350 + + + + + 
argD BLBBGE_315 + + + + + 

BLBBGE_623 + + + + + 
ppiC BLBBGE_093 + + + + + 

BLBBGE_620 + + + - + 
serC BLBBGE_144 + + - + + 

BLBBGE_428 + + + + + 
dut BLBBGE_606 ψ + + + + 

BLBBGE_p002 + + + + + 
hemD BLBBGE_290 + + + - + 

BLBBGE_576 ψ ψ - + - 

 
 
 

1.3 Pan-genome reconstruction and functional profile 

 
The full complement of genes within any bacterial species forms the pan-

genome, which is composed by the core complement, which includes those 

genes present in all strains, and the dispensable or accessory genome, formed 

by those genes present in at least one, but not all strains of the species. A 

previous step to describe the pan-genome is the identification of all 

orthologous groups among the CDS coded in all strains of a species. In our 

case, from a data set of 3,417 CDS from all six Blattabacterium strains 

orthoMCL clustered 3,399 proteins (>99 % of total set of CDS among the 

six strains) in 599 clusters of proteins, leaving 18 proteins with any known 

orthologs in the other strains, which are the so-called strain-specific proteins. 

There were identified 502 groups containing sequences for all six strains, 
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which form the core complement of Blattabacterium, while the remaining 97 

groups plus the 18 ungrouped proteins form the accessory genome, which is 

distributed as follows: 18 CDS are strain specific, 15 are shared by two 

strains, 8 by three strains, 35 by four strains and 39 by 5 strains.  

It is worth to mention that two annotated CDS that were embedded in the 

23S rRNA gene in BMda (Sabree et al. 2012) one of them also present in 

BBgi (Huang et al. 2012), namely MADAR_308 and his ortholog in BBgi 

(BGIGA_329) annotated as cell wall hydrolase, and MADAR_309 

(hypothetical hydrolase), were removed from the accessory genome since 

they should be considered false positives as result of missannotations as 

shown by Tripp et al. (2011). Figure 12 shows, through an unweight Euler 

diagram, the localization of protein clusters in the different subspaces of the 

pan-genome. 

Additionally, 37 RNA genes (31 tRNAs, 1 rRNA operon and three more 

ncRNA) should be added to the core genome. Three more tRNA genes are 

present in the accessory genome, one for proline (anti-codon GGG) lost in 

three independent events in BCpu, BPam and BBgi), other for arginine (anti-

codon CCG), lost in BCpu and the last one for valine (anticodon TAC), lost 

in BBor. 
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Figure 12. Non-proportional Euler diagram representing the pan-genome of 
Blattabacterium strains; numbers represent the total amount of clusters of 
orthologous proteins in each subspace. 
 

In summary, the pan-genome of Blattabacterium would be composed by 

655 genes (615 CDS, 34 tRNAs, 3rRNA and 3 ncRNA) while the core 

genome represents the 82.3 % of the pan-genome and comprises 539 genes 

(502 CDS, 31 tRNAs, 3 rRNA and 3 ncRNA). When BCpu and BMda, the 

two symbionts from xylophage hosts, were removed from the analysis, the 

differences between the pan-genome and the core (647 and 598 genes 

respectively) were reduced. In this case the core represented the 92.4 % of 

the pan-genome.  
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Finally, a rarefaction analysis was performed to assess the coverage of 

the Blattabacterium pan-genome (Figure 13). Rarefaction curves show when 

Blattabacterium pan-genome has reached a plateau, indicating that the 

addition of new strains would not increase the number of genes significantly 

(what it is referred as a closed pan-genome). These data are in concordance 

with other insect endosymbionts, like B. aphidicola or S. muelleri (this last 

not depicted in the graphic). By contrast free living bacteria possess an open 

pan-genome because they usually need of more genomes to reach a plateau, 

like in the case of E. coli, where the curve is still increasing despite eight 

genomes were added to the analysis. In facultative intracellular parasites, 

like in the case of the bacterial genus Bartonella, the pan-genome also 

remains open (Figure 13). 

Genes for the six Blattabacterium strains were classified according COG 

functional categories. The total number of genes classified in the different 

COG categories among Blattabacterium strains show a similar functional 

profile (Figure 14) with the only exception of genes involved in the amino 

acid transport an biosynthesis (E category), which are reduced in BMda and 

BCpu. As usual, the most represented functional category in the 

endosymbiont genomes, are genes involved in translation (J) accounting for 

20% of all genes, while the second most represented, especially on the 

omnivorous species, is the category of genes devoted to the amino acid 

transport and metabolism (E), and shows the main gap between xylophages 

species and the rest. 
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Figure 13. Rarefaction curves applied to different strains of Blattabacterium (6 
genomes), E. coli (8 genomes), Bartonella (6 genomes) and B. aphidicola (7 
genomes). 
 

 
Figure 14. Absolute numbers of genes for each COG category in every 
Blattabacterium strain sequenced. COG categories as in Table 10. 
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A χ2 test was applied to check if there are differences in COG distribution 

among the different strains of Blattabacterium. The observed distribution for 

COG categories in BBge was taken as a model for calculating the expected 

distribution in the other strains, since BBge is the strain with a most 

complete CDS dataset. Table 13 compiles the observed and expected values 

as well as the results of the analysis.  

 
Table 13. Observed COG values in the six strains and values for the Chi square test 
performed over the COG distribution values in the different strains. For avoiding the 
multiple testing problems, the Bonferroni correction has been applied, so the 
significance level for each individual test was 0.05/5. 
 

COG BBge BBor BPam BCpu BMda BBgi 

J 104 105 104 101 98 101 
K 14 15 15 13 14 14 
L 29 29 30 28 29 28 
D 9 9 9 9 9 9 
M 32 33 32 30 30 31 
N 1 1 1 0 1 1 
V 6 5 4 4 5 6 
O 30 30 30 28 28 29 
C 40 37 37 39 39 40 
G 18 18 18 18 18 17 
E 70 68 70 46 52 69 
F 32 31 32 30 30 30 
H 39 36 38 36 36 36 
I 19 21 21 18 19 19 
P 15 13 13 12 14 12 
Q 2 1 1 1 1 1 
T 2 2 2 2 0 2 
U 11 11 11 10 9 10 
R 37 37 37 38 39 25 
S 14 14 14 15 10 13 
Chi2 Statistic 1.7042 1.9715 8.8034 6.392 1.1877 
Df 19 19 19 19 19 
Chi2 p-value 1 1 0.977 0.997 1 
MC p-value 1 1 0.972 0.998 1 
P<0.01 Not 

rejected 
Not 

rejected 
Not 

rejected 
Not 

rejected 
Not 

rejected 
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The results for the χ2 showed that there are not differences in COG 

distribution between the different strains. Despite the results obtained on the 

statistical test, the gene loss events in the strains BCpu and BMda are 

focused in those genes involved in amino acid metabolism and transport, 

grouped in the COG category E (Figure 14 and Table 13), even so χ2 test 

performed only in the E category yields no statistical significative 

differences (p-value = 0.105).   

Finally a clustering diagram was done using the functional profile of F. 

psychrophilum as out-group. In this diagram, symbionts from omnivorous 

cockroaches show a functional profile closer to that observed in the pan-

genome, being BBge the strain most closely related to this simulated dataset. 

On the other hand, the functional profiles of the strains BCpu and BMda 

cluster with the core genome dataset. The heat-map shows that the main gap 

between wood-feeding species and the rest are the loss of genes grouped in 

the E category in the BCpu and BMda (Figure 15). 
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Figure 15. Heat-map comparisons of COG frequency profiles among different 
Blattabacterium strains with their pan-genome and core genome and the free-living 
Bacteroidete F. psychrophilum.   
 

1.4 Differential gene losses and evolutionary history of Blattabacterium 
genomes 

 

In order to obtain a reliable topology of the different Blattabacterium 

lineages and reconstruct the chronology of gene losses, a phylogenetic 

reconstruction was performed with the six Blattabacterium strains and the 

free-living F. psychrophilum as outgroup. The 465 protein coding genes 
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found to be homologs among Blattabacterium strains and possessing 

orthologs in F. psychrophilum were used for the analysis (see the list on 

Annex 1). They gave rise to a concatenated alignment of 173,523 sites. The 

best evolutionary model for this dataset, estimated with ProtTest 3 (Darriba 

et al. 2011) was CpREV+G+F. The Phylogeny obtained (Figure 16) places 

both Blattidae endosymbionts as a sister clade to the one formed by BCpu 

and BMda, while BBge and BBgi are clustered together thus corroborating 

the previous analyses with host genes (Inward et al. 2007). 

The phylogenetic reconstruction of the six Blattabacterium lineages, the 

corresponding pan-genome, and the set of retained genes in each genome 

were used to establish the evolutionary history of gene losses, following the 

same strategy proposed by Lamelas et al. (2011b). The underlying 

assumption to our analyses is that the endosymbiotic genomes have 

experienced no gene gain, thus the retained genes are only vertically 

inherited. Despite this assumption is commonly accepted, since these 

bacteria are enclosed in a eukaryotic cell and lack of the complete set of 

recombination genes, the existence of events of horizontal gene transfer 

(HGT) was tested without finding any evidence for such events (Annex 3).  

Through these assumptions, it was possible to reconstruct the ancestral 

genome of Blattabacterium that would contain 655 genes, 648 in the 

chromosome and seven in the plasmid. Of the 655 genes, 615 were protein 

coding genes and the remaining 40 coding for RNA genes (34 tRNA, 3 

rRNA, SRP RNA, tmRNA and the RNA component of the ribonuclease P) 

(Figure 17).      
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Figure 16. Phylogenetic reconstruction obtained for Blattabacterium strains 
sequenced up today. Tree obtained by maximum likelihood using RAxML on amino 
acid sequences of 465 concatenated proteins (173,523 aligned sites). Numbers 
represent the number of amino acid substitutions per site. F. psychrophilum was 
used as outgroup and its branch has been manually shortened. 
 

Taking into account that no HGT events have been detected, the status of 

each ancestral gene in each extant Blattabacterium genome was evaluated: 

unique or convergent losses and active or pseudogenaized sequence (Table 

14). Unique losses are those affecting one specific strain or occurring before 

divergence of related strains (i.e., the loss took place in their most recent 

common ancestor). On the other hand, when unrelated lineages show 

specific pseudogenaized sequences or the absence of a gene, a convergent 

gene loss event was assumed. During the evolutive history of 

Blattabacterium, since the LSCA (Last Common Symbiotic Ancestor) to the 

extant strains, 183 gene loss events were identified (Table 14). In these 
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events only 113 and 3 tRNAs have been involved, because several events of 

convergent gene loss have occurred.  Of them, 70 genes have been lost in 

unique events. Convergent losses affect to 43 genes, 21 of them have been 

lost twice, while 22 have been lost three times, these convergent losses 

account for a total of 114 events. The gene loss events were placed over the 

topology obtained for the Blattabacterium strains in the phylogenetic 

analysis (removing F. psycrophilum) (Figure 17). 

Since both superfamilies (Blattoidea and Blaberoidea) diverged, few gene 

loss events took place during the evolution of Blattoidea before split between 

Blattidae and Cryptocercidae plus Termitidae families, losses affected 6 

genes coding for hypothetical proteins and the gene sirBC (bifunctional 

precorrin-2 dehydrogenase/sirohydrochlorin ferrochelatase).  
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Figure 17. Gene losses during Blattabacterium diversification. Number of genes in each strain is indicated. Numbers above the 
branches indicate gene loss events. Host family names are indicated on each branch. Last common symbiotic ancestor would be 
situated in the root. Blue rectangles indicate approximated split times. 
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Table 14. Classification of gene losses in different Blattabacterium strains. +, 
present gene; -, absent gene, or pseudogene. 

BBor BPam BMda BCpu BBge BBgi n Genes 
One gene lost event 

- - - - + + 1 blb_613 
+ + + + - - 1 blb_523 
- - + + + + 4 gltA, acnA, icd, msbA 
+ + - - + + 25 ilvA, ilvB, ilvC, ilvD, ilvH, leuA, 

leuC, leuD, leuB, trpE, trpG, 
trpD, trpC, trpB, trpA, thrB, thrC, 
lysA, argH, metC, ygfA,  asnC, 
ung, blb_0546, blb_0548 

- + + + + + 4 dut, blb_543, blb_544, tRNA-val 
+ - + + + + 1 secE 
+ + - + + + 19 ubiE, ribD, nadD, mvaK1, mvaD, 

efp, trmH, nth, lolE, hemD, ppiC, 
clpX, dksA, secDF, blb_0525, 
blb_0518, blb_0522, blb_0525, 
blb_0541 

+ + + - + + 14 metE, metF, cysE, cysK, serC, tgt, 
luxE, clpB, mdlA, msbA, 
blb_0537, blb_0507,  blb_0536, 
blb_0542 

+ + + + + - 3 ccoQ, rpmF, tRNA-arg 
Two gene lost events 

- - - - - + 3 BGIGA_344, BGIGA_431, 
BGIGA_467 

- - - - + - 3 sirBC, BLBBGE_159, 
BLBBGE_195 

- - + + - - 2 ywrO, blb_0586 
+ + + - - - 1 desA 
+ + - + - - 1 blb_565 
+ + - - + - 1 blb_035 
+ + - + + - 3 truB, era, blb_529 
+ - - + + + 1 lolD 
+ - - - + + 1 blb_591 
- + + + - - 1 ccoS 
- + + - + - 3 cysH, cysG, hemC 
- + - + + + 1 blb_578 

Three gene lost events 
+ - - - - - 4 BLBBOR_609, BLBBOR_p001, 

BLBBOR_p002, BLBBOR_p007 
+ - + - + - 1 tRNA-pro 
+ - + - - - 1 blb_585 
+ - - + - - 2 rnpA, blb_587 
- + - - - - 1 BPLAN_099 
- + + - - - 1 lpxP 
- + - - + - 1 blb_596 
- + - - - + 1 trpF 
- - + - - - 1 MADAR_453 
- - + - + - 5 cysD, cysN, cysI, hemD, blb_595 
- - - + - - 5 BLBCPU_006, BLBCPU_149, 

BLBCPU_186, BLBCPU_463, 
BLBCPU_511 
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The common ancestor of BBor and BPam should have already suffered 

the deletion of three genes from the Krebs cycle: gltA (citrate synthase), 

acnA (aconitase), and icd (isocitrate dehydrogenase). The sulfate 

assimilatory pathway would be also impaired because the inactivation of the 

genes coding for ATP sulfurylase (cysN and cysD) and the loss of one of the 

subunits of the sulfite reductase (cysI) (Figure 18). The gene hemD and an 

ABC-type multidrug transporter and twelve genes coding for hypothetical 

proteins were also inactivated. During the evolution of BBor two more genes 

of the sulfate assimilatory pathway, cysH and cysG (phosphoadenosine 

phosphosulfate sulfotransferase and siroheme synthase, respectively), have 

been inactivated and the synthesis of uroporphyrinogen III should be 

affected by the inactivation of hemC (hydroxymethylbilane synthase).  The 

losses of dut and trpF during the evolution of this lineage (Table 14) have no 

metabolic effect since a copy for dut remains active in the plasmid, and trpF 

is fused to trpB in the genome of BBor. The other genes that have been lost 

are lpxP, ccoS and five coding for hypothetical proteins. The endosymbiont 

of P. americana (BPam) has lost two genes involved in the mobilization and 

transport of proteins through membranes, secE and lolD, the first is the 

translocase of the Sec secretory system and the last is the ATPase of the Lol 

system involved in sorting lipoproteins to the outer membrane. The other 

genes lost or inactivated are rnpA (the protein component of the ribonuclease 

P) and 7 genes coding for hypothetical proteins.   

The branches leading to BMda and BCpu account for the major number 

of losses, 34 in the branch leading to their common ancestor and 32 and 28 

during the evolution of BMda and BCpu, respectively (Figure 17). The 

ability to synthetize several essential amino acids was already lost before the 

split of both strains, thus the common ancestor to BCpu and BMda would be 

unable to synthetize branched chain amino acids because of the loss of ilvA, 

ilvH, ilvC, ilvD, leuA, leuC, leuD and leuB. In the same way, the operon for 
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the synthesis of tryptophan was completely loss. The synthesis of amino 

acids of the aspartate family is impaired by the losses of thrB, thrC, metC 

and lysA. Finally, the loss of argH (argininosuccinate lyase) affects the 

biosynthesis of arginine and breaks the urea cycle. In addition the genes ygfA 

(5-formyl tetrahydrofolate cycloligase), which participates in the recycling 

of 5-formyltetrahydrofolate, ung (uracil-DNA glycosylase) a DNA repair 

gene and the gene coding for the transcription regulator AsnC had been lost.  

Along the evolution of BCpu, it has been lost the complete pathway for 

sulfate assimilation and cysteine biosynthesis (Figure 18), as well as the 

genes for the synthesis of heme groups (hemC and hemD). Besides, 

additional genes that participate in amino acid synthesis are lost, like the 

genes metF and metE, involved in the synthesis of methionine, or the gene 

serC that codes for a transaminase that participates in the serine 

biosynthesis. Other gene losses in this lineage affect the maturation of 

tRNAs (tgt) or the synthesis of linoleic acid (desA). Other losses are 

summarized in Table 14. During the evolution of BMda, like in the case of 

BPam, the transport and sorting of proteins through membranes is affected 

by the losses of genes for the Sec secretory system (secDF) and genes for the 

Lol system (lolD and lolE). The synthesis of several cofactors could be 

affected by the inactivation of the genes ubiE, ribD and nadD. The loss of 

mvaK (mevalonate kinase) and mvaD (diphosphomevalonate decarboxylase) 

prevent the synthesis of isopentenyl diphosphate. A number of genes 

involved in the informational storage and processing are lost or inactivated 

in this genome, like def (peptide deformilase), era (involved in ribosome 

maturation), efp (elongation factor P), three genes involved in the maturation 

of tRNAs (truB, trmH and rnpA), a transcriptional regulator (dksA) and an 

endonuclease III involved in DNA repair. 
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Figure 18. Sulfate assimilatory pathway genes in different Blattabacterium strains. 
+, present gene; –, absent gene ψ, pseudogene. Trd, thioredoxin; acSer, acetylserine. 

 

Finally, the lineage leading to BBge and BBgi has undergone 21 losses 

before the split between both strains. Most of them are genes for 

hypothetical proteins, or with only general predicted functions (16                     

out of 21). All genes with an assigned function lost in this lineage have also 

been lost in some of the other strains (ywrO, lpxP, ccoS, rnpA and desA) and 

their losses do not affect any metabolic pathway. Along the evolution of the 

lineage BBgi, 17 additional CDS have been lost, among them, the sulfate 

assimilatory pathway, two genes involved in the synthesis of heme groups, 

hemC and one of the copies of hemD and two genes involved in 

informational storage and processing era and truB. Two genes are 

exclusively lost in this strain, the ones coding for the subunit IV of the 

cytochrome oxidase (ccoQ) and the ribosomal protein L32 (rpmF). Finally, 

only four genes losses occurred in the branch to BBge, three of them 
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affecting hypothetical proteins and the fourth is the gene trpF, which in this 

strain is fused to trpB. 

 

1.5 Comparative metabolism within Blattabacterium strains 

 

The metabolism of the symbiotic Blattabacterium from the four omnivore 

cockroaches (B. germanica, P. americana, B. gigantenus and B. orientalis), 

and probably also the metabolism of the LCSA, is remarkably conserved. 

Actually, the metabolic network of BBge and the LCSA are nearly 

equivalents, as far as the LCSA is an estimation inferred only from the 

sequenced strains. As it is pointed in the previous section, gene losses in 

BBge mainly involve genes coding for hypothetical proteins.   

In the above section, it was stated that one of the main metabolic 

differences in Blattabacterium strains from the Blattidae family were the 

absence of the three first steps of Krebs cycle. To evaluate the effect of these 

losses, an stoichiometric analysis was performed using the program 

METATOOL on the enzymes involved in the Krebs and urea cycles, 

together with the enzymes that catalyse related reactions like urease and 

malate dehydrogenase, as well as those enzymes involved in the amino acid 

biosynthesis linked to these pathways (Figure 19). There were obtained five 

elementary modes (i.e., minimal metabolic routes feasible in steady state in a 

determined network), three of them forming the convex basis (i.e. those 

reactions that characterize the whole metabolism in the enzyme subset) 

(Table 15).  The output of this analysis shows that both BBor and BPam, 

with the same metabolic structure, are able to produce ammonia through the 

catabolism of amino acids. The input and output files for METATOOL are 

included in the Annex 4. 
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Figure 19. Blattabacterium metabolic pathways used for the stoichiometric analysis. 
Double-headed arrows indicate reversible reactions. Metabolites and enzymes are 
written as in the input file for METATOOL (Annex 4).  Metabolites are written in 
black (Pyr, pyruvate; Mal, malate; OAA, oxaloacetate; OG, 2-oxoglutarate; 
SucCoA, succinyl-CoA; Succ, succinate; Fum, fumarate; CP, carbamoylphosphate; 
Orn, ornithine; Citru, citrulline; ArgSuc, argininosuccinate, Ala, alanine; Glu, 
glutamate; Arg, arginine; Asp, asparagine). Enzymes are shown in red (IlvE, 
branched chain aminotransferase; MaeB, malate dehydrogenase; Mdh, malate 
dehydrogenase NAD-dependent; AspC, aspartate aminotransferase; Gdh, glutamate 
dehydrogenase; SucAB, 2-oxoglutarate dehydrogenase; SucCD, succinyl-CoA 
synthetase; Sdh, succinate dehydrogenase; Fum, fumarase; ArgH, argininosuccinate 
lyase; RocF, arginase; CarAB, carbamoylphosphate synthase; ArgF, ornithine 
carbamoyltransferase; ArgG, argininosuccinate synthase).   
    

The analysis in BBge resulted in 14 elementary modes, five of them 

corresponding to the convex basis, and 11 out of 14 elementary modes 

producing ammonia as a final product (López-Sánchez et al. 2009). 
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Table 15. Results of the stoichiometric analysis on the central networks for BPam 
and BBge.  
 

 Overall reaction Participating 
enzymes 

Metabolic function 

Convex basis 
1 NADP + NADH + Asp = 

CO2 + NADPH + NAD + Ala 
AspC -Mdh IlvE 
maeB irreversible 

Transhidrogenase 
dependent of Asp 
decarboxylation to 
Ala 

2 ADP + FAD + 2 NAD + Glu 
+ P = CO2 + ATP + FADH2 
+ 2 NADH + Asp 

-AspC SucCD Sdh 
Fum Mdh SucAB 
irreversible 

Partial catabolism 
of Glu (second half 
of Krebs cycle) 

3 2 ATP + NADPH + NAD + 
Gln + 3 H2O = ADP + NH3 + 
NADP + NADH + Glu + 
AMP + diPP + P 

-AspC Fum Mdh Gdh 
carAB ArgF ArgH 
rocF ArgG Urease 
irreversible 

Urea cycle coupled 
with urease. 

Elementary modes
4 ADP + FAD + NADP + NAD 

+ Glu + P = 2 CO2 + ATP + 
FADH2 + NADPH + NADH 
+ Ala 

SucCD Sdh Fum IlvE 
SucAB maeB 
irreversible 

Partial catabolism 
of Glu 

5 2 ATP + Asp + Gln + 3 H2O 
= ADP + CO2 + NH3 + Ala + 
Glu + AMP + diPP + P 

Fum Gdh IlvE maeB 
carAB ArgF ArgH 
rocF ArgG Urease 
irreversible 

Decarboxylation of 
Asp to Ala 

 

One of the main metabolic differences in the different strains is the sulfur 

source (Figure 18). While the symbionts from B. germanica and M. 

darwiniensis possess the complete set of genes for assimilate inorganic 

sulfate, the other strains (BCpu, BPam, BBor and BBgi) must use sulfide 

directly. As mentioned above, the genes cysDNHIJG are lost in a convergent 

manner in three events, one in the branch leading to BCpu and other in the 

branch leading to BBgi. Finally, in the family Blattidae the genes that code 

for ATP-sulfurylase (cysND) and the hemoprotein component of the sulfide 

reductase (cysI) have been lost before the split between P. americana and B. 

orientalis. Furthermore, during the evolution of B. orientalis the genes for 

the PAPS sulfotransferase (cysH) and siroheme synthase (cysG) have been 
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inactivated. In the strain BPam active copies for cysH ans cysG remain, the 

last not directly implied in the pathway, since only participates in the 

synthesis of the heme group of the sulfite reductase, which do not seem to be 

active. Actually in the FBA analyses carried out for this strain, this step was 

removed (González-Domenech et al. 2012).  

Metabolic differences among omnivorous roaches, both Blattidae (BPam 

and BBor) and Blaberoidea (BBge and BBgi), are basically restricted to both 

cases pointed above. Beyond the Krebs cycle and sulfate assimilation, the 

only remarkable difference is that BBor, BPam and BBgi are all three able to 

convert oleic acid into linoleic acid by means of the desaturase activity of the 

product of desA. 

 

1.6 Evolutionary analysis on Blattabacterium 

 

 1.6.1 Dating the split times 

 

Genes that follow a molecular clock were identified by performance of a 

LRT analysis, where each gene in the core was tested under two models, first 

assuming molecular clock, which would be the null hypothesis (H0), and 

second allowing each branch to evolve at different rate, which would be the 

alternative hypothesis (H1). LRT supported molecular clock hypothesis for 

296 CDS out of a total of 502 (Annex 5). From this set of 296 core CDS, 275 

have an ortholog in F. psychrophylum and 261 of them do not reject the 

molecular clock hypothesis. In addition, to deal with the problem that 

nucleotide substitution saturation can suppose, the 37 genes which show 

more than 2.5 substitution per site were discarded, resting, finally, 224 CDS. 

These genes allowed us to estimate the divergence time between the 

Blattidae lineages as well as between both Blaberoidea and the divergence 
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among xylophage lineages. Thus, the divergence time between BPam and 

BBor must have occurred 12.3 ± 7.6 Mya, while the split between the BCpu 

and BMda should have occurred 87.0 ± 18.8 Mya. In the branch leading to 

the Blaberoidea, it have been estimated that the split between the B. 

germanica and B. gigantenus must be happened parallel to the split of wood-

feeding branch individuals, 89.5 ± 17.7 Mya (see blue rectangles in figure 

17).  

 

 1.6.2 Synonymous and non-synonymous nucleotide substitutions. 

 

The number of synonymous (dS) and non-synonymous (dN) substitutions 

per synonymous and non-synonymous site, respectively between each pair 

of orthologous genes was estimated using the approximated method 

proposed by Yang and Nielsen (2000), which takes into account the 

transition/transversion ratio bias and unequal base frequencies. The dN/dS 

changes have been calculated for every coding gene to determine whether 

they are under purifying, neutral or positive selection. The values for the dN, 

dS and the ratio dN/dS (ω) for each pair of orthologous among the different 

Blattabacterium strain can be found in the Annex 6. The results for each 

comparison are summarized in the Table 16.  

Purifying selection is the main force operating in these organisms. 

Nevertheless, when we compare genes between the strains BBor and BPam, 

two genes seem to be under neutral selection (ccoQ and atpH, coding for a 

cbb3-type cytochrome oxidase subunit and the subunit III of the ATPase, 

respectively), whereas other three (greA, nadD and ribE, a transcription 

elongation factor, the nicotinate-nucleotide adenylyltransferase and the 

riboflavin synthase alpha subunit, respectively) seem to be subject of 

positive selection. However, these results might be taken cautiously as they 

must be due to sampling errors. Additionally, with regards to dS values, 
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there are elevated in most comparisons above mentioned, with an average 

value close to 2. This high value indicates saturation for synonymous sites. 

 
Table 16. Comparison of dN, dS and ω among the six Blattabacterium strains  
 
Strains No. of comparisons Average ω Average dS Average dN 

BBor-BPam 565 0.218 ± 0.744 0.104 ± 0.056 0.016 ± 0.012 

BBor-BCPu 529 0.073 ± 0.063 1.850 ± 0.840 0.108 ± 0.059 

BBor-BMda 515 0.078 ± 0.059 1.629 ± 0.705 0.106 ± 0.055 

BBor-BBge 566 0.068 ± 0.055 2.292 ± 0.979 0.126 ± 0.065 

BBor-BBgi 563 0.077 ± 0.064 2.355 ± 4.171 0.140 ± 0.069 

BPam-BCpu 532 0.075 ± 0.066 1.782 ± 0.815 0.106 ± 0.059 

BPam-BMda 529 0.081 ± 0.070 1.593 ± 0.751 0.104 ± 0.057 

BPam-BBge 575 0.069 ± 0.069 2.264 ± 0.953 0.124 ± 0.068 

BPam-BBgi 565 0.075 ± 0.059 2.351 ± 4.166 0.137 ± 0.068 

BCpu-BMda 516 0.087 ± 0.071 1.406 ± 0.704 0.094 ± 0.042 

BCpu-BBge 530 0.066 ± 0.066 2.497 ± 1.013 0.128 ± 0.060 

BCpu-BBgi 531 0.074 ± 0.060 2.520 ± 4.297 0.138 ± 0.062 

BMda-BBge 529 0.064 ± 0.055 2.301 ± 0.949 0.128 ± 0.061 

BMda-BBgi 525 0.080 ± 0.073 2.181 ± 0.888 0.140 ± 0.067 

BBge-BBgi 572 0.079 ± 0.070 1.685 ± 4.126 0.096 ± 0.050 
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2.- Transcriptome analysis of host tissues      

                                                                                                                                              

The studies carried out on the reconstruction of the metabolic networks of 

the different Blattabacterium strains have been useful to suggest its key role 

in the physiology of cockroaches. However, the activities carried out by the 

host have only been inferred and functional studies should be done. As a first 

approach, the whole transcriptome of three tissues of B. germanica was 

characterized. Two of these tissues, fat body and ovaries, harbour 

Blattabacterium, while in the third one, the epithelium, endosymbionts are 

absent and was chosen as control. Moreover, it has been postulated that 

Blattabacterium activity is reduced if any, in the ovaries.  

 

2.1 Assembly and annotation of the 454 sequences 

 

From the sequencing process, 554,403 reads from the three analysed 

tissues were retrieved. These sequences were sorted according to their origin 

thanks to the barcode sequence attached to them during the cDNA synthesis 

process, and classified in three datasets, one for each tissue. The reads were 

also trimmed for low quality regions. The statistics for the trimmed 

sequences are summarized in Table 17. 

 

Table 17. Main statistics of the sequencing project. 

Sample Fat Body Ovary Epithelium 
No. of sequences 164,677 166,672 223,054 
Bases (bp) 38,729,289 39,279,123 50,422,530 
Reads range (bp)  15-785 15-823 15-842 
Mean length (bp) 235 235 226 
N50a (bp) 299 297 293 
CG content (%) 41.01 38.71 37.91 

aLength for which the all contigs of equall or more length contains the 50% of the 
sequences.  
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Prior to the assembly, all the reads from each dataset were mapped 

against the genome of Blattabacterium strain BBge to identify those 

sequences belonging to the endosymbiont. In the fat body, 10,578 reads were 

identified, representing the 6.42% of the sequences of this dataset. On the 

other hand, only 104 sequences matched with Blattabacterium genes in the 

ovaries, and just three reads from the epithelial tissue. B. germanica 

sequences were posteriorly assembled with Mira 3.2. In a second step, all the 

sequences showing similarity to Blattabacterium sequences, where removed 

from the analysis to deal only with host mRNAs. The results of the assembly 

process are summarized in Table 18. 

 

Table 18. Statistics for the assembly process. 

Sample Fat Body Ovary Epithelium 

Input reads 154,099 166,568 223,051 
Assembred reads 83,802 110,628 136,070 
Contigs 11,905 17,159 23,318 

≥500 bp 3,500 6,393 6,393 
Total Consensus 5,529,891 8,738,873 10,269,711 
Coverage 3.89 3.29 3.25 
N50 (bp) 512 572 491 
Mean (bp) 466.9 512.4 442.5 
Range (bp) 40-9,738 40-4,267 40-5,014 

 

Most of the reads were incorporated to contigs bigger than 500 bp.  Thus, 

71.4, 73.5 and 66.1% of the assembled reads from the fat body, ovary and 

epithelium, respectively, were incorporated in the so-called big contigs.  

After the assembly process, the contigs were annotated with Blast2GO 

software (Conesa et al. 2009) that perform BLAST searches to identify 

similar sequences to our query. Afterwards, GO terms are assigned by using 

the BLAST hits as a query against the GO database. This gene ontology 

initiative seeks to standardize the name and function of every gene product 

across all domains of life. Each gene was described in three main domains, 
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according its properties. These domains were: (i) cellular component, which 

refers to its localization, or the structure that the products form; (ii) 

biological process, which refers to a series of molecular events with defined 

starts and ends, and (iii) molecular function, which describes the activity 

carried out by the gene product. In last step, Blast2GO, uses the GO to EC 

mapping file in the GO web site to assign an EC annotation to the enzymes 

present in the query dataset. The annotation process for all three tissues is 

summarized in Table 19 and in the Figure 20. 

 

Table 19. Annotation statistics. 

Tissue Fat body Ovary Epithelium 

No. of Contigs 11,905 17,159 23,318 

BLASTXa 5,848 (3,113) 8,052 (6,782)  6,396 (4,126) 

Contigs with assigned GO 3,993 5,376 3,623 

Average GOs per contig 5.3±1.9 5.7±1.9 5.7±1.9 

a In parenthesis, number of different accession numbers 

 

Close to a half of the sequences from fat body and ovaries have 

significantly positive BLAST hits, conversely only the 27.4% of the 

sequences from the epithelium have significant matches with sequences from 

the non-redundant NCBI database. However, since there are several contigs 

that code for the same product, the number of different accession numbers is 

smaller than the number of contigs showing similarity with sequences in the 

NCBI database.   

The accession numbers of the BLAST hits were used to assign GO terms 

to each sequence through searches against the GO database. Thus, 33.5, 31.3 

and 15.5% of the total amount of contigs of the fat body, ovaries and 

epithelium datasets, respectively, were properly annotated (Figure 20).   
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Figure 20. Overview of the annotation process in the three different analysed 
tissues. In blue, the initial number of contigs; in red, sequences matching with any 
sequence when searched against non-redundant GenBank protein database with 
BLASTX, and in green, number of sequences properly annotated. 
 

2.2 Metabolic capabilities of three tissues in B. germanica 

  

 2.2.1 Fat body 

 

A total of 2,708 unique GO terms in 17,109 occurrences were assigned to 

the fat body sequences. A total of 3,273 contigs were grouped under 

biological processes, 3,684 under molecular function and 2,060 under 

cellular components. To have a broad level overview, GO terms were 

mapped against the GO-slim vocabulary. Given that GO classification is 

organized as a Directed Acyclic Graphs (DAG) where each term is linked to 

one or more other terms, most of the times of the same domain, and the 

higher domains are too broad, pie charts of the distribution for the lowest 
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levels were obtained for each one of the three domain of the GO 

classification (Figure 21).  

 

Figure 21. Fat body multilevel pie chart of sequence distribution according to GO 
classification for the three main GO categories. 
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Using the information of GO terms, 1,559 Enzyme Commission numbers 

(EC numbers) were assigned to 1,146 different sequences. These enzymes 

are localized in 116 out of 164 KEGG metabolic maps. 

For evaluating the completeness of the library, four of the central 

metabolic pathways present in animal phyla were searched, namely 

glycolysis and gluconeogenesis, pentose phosphate pathway and the Krebs 

cycle.  

The fat body dataset include annotated sequences for eight out of ten 

genes coding for enzymes involved in the glycolysis pathway (Figure 22), 

being the non-detected transcripts those genes coding for 

phosphofructokinase (PFK) and phosphoglycerate mutase (PGM). The 

gluconeogenesis process shares most of the enzymes with glycolysis, except 

for the three irreversible steps in the catabolic pathway, i.e., hexokinase 

(HK),  PFK and pyruvate kinase (PK), which are replaced by glucose-6-

phosphatase (G6Pase), fructose biphosphatase (FBPase) and the couple 

pyruvate carboxylase/PEP carboxykinase (PC/PEPCK) (Figure 22), 

respectively. In this second pathway only transcripts for two genes were 

absent, the corresponding to PGM and G6Pase. For the pentose phosphate 

pathway transcripts for six out of seven required genes were identified. Four 

were properly annotated, the ones coding for glucose-6-phosphate 

dehydrogenase (G6PDH), phosphogluconate dehydrogenase (PGDH), 

ribulose-5-phosphate 3-epimerase (RPE) and transaldolase (TA). Transcripts 

for two other enzymes, 6-phosphogluconolactonase (PGLS) and 

transketolase (TK) were identified with BLAST searches among the 

transcriptome sequences. Only for ribulose-5-phosphate isomerase (RPI) 

there was no signal in the whole dataset (Figure 23). Finally, there are 

annotated sequences for all genes encoding for Krebs cycle enzymes except 

for aconitase (Figure 24). 
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Figure 22. Glycolysis and gluconeogenesis. Empty squares indicate that no 
transcripts for the corresponding enzyme have been found in the corresponding 
tissue. Compounds: Glc, glucose; G6P, glucose-6-phosphate; F6P, fructose-6-
phosphate; FBP, fructose-1,6-bisphosphate; G3P, glyceraldehyde-3-phosphate; 
DHAP, dihydroxyacetonephosphate; BPG, 1,3-bisphosphoglycerate; 3PG, 3-
phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; Pyr, 
pyruvate; OAA, oxaloacetate. Enzymes: HK, hexokinase; PGI, phosphoglucose 
isomerase; PFK, phosphofructokinase; FBA, fructose bisphosphate aldolase; 
GAPDH, glyceraldehyde phosphate dehydrogenase; TPI, triosephosphate isomerase; 
PGK, phosphoglycerate kinase; PGM, phosphoglycerate mutase; ENO, enolase; PK, 
pyruvate kinase; PC, pyruvate carboxylase; PEPCK, phosphoenolpyruvate 
carboxykinase.  
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Figure 23. Pentose phosphate pathway. Empty squares indicate that no transcripts 
for the corresponding enzyme have been found in the corresponding tissue. 
Compounds: Ru5P, ribulose-5-phosphate; R5P, ribose-5-phosphate; X5P, xylulose-
5-phosphate; E4P, erythrose-4-phosphate. Enzymes: G6PDH, glucose-6-phosphate 
dehydrogenase; PGLS, 6-phosphogluconolactonase; RPI, ribose-5-phosphate 
isomerase; RPE, ribulose-5-phosphate epimerase; TK, transketolase; TA, 
transladolase. 
 

 
Figure 24. Krebs cycle. Empty squares indicate that no trasncripts for the 
corresponding enzyme have been found. Compounds: Cit, citrate; IsoCit, isocitrate; 
OG, α-ketoglutarate; SucCoA, succinyl-CoA; Suc, succinate; Fum, fumarate; Mal, 
malate; OAA, oxaloacetate. 
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For the metabolic reconstruction of Blattabacterium strain BBge, it was 

assumed that several non-essential amino acids like asparagine, glutamine, 

glycine and proline, as well as other compounds such as porphobilinogen 

and pantotheine-4-phosphate, should be supplied by the host (González-

Domenech et al. 2012). The transcripts of the genes required for the 

synthesis of all four non-essential amino acids were annotated among the 

sequences of the library from the fat body. Thus, asparagine can be 

synthetized from oxaloacetate via aspartate, since transcripts for aspartate 

amino transferase and asparagine synthetase have been identified. There 

have been found transcripts for glutamate dehydrogenase and glutamine 

synthetase required for the synthesis of glutamine. There have been 

identified transcripts of genes coding for the required enzymes for the 

synthesis of glycine from 3-phospho-D-glycerate via serine, namely: 

phosphoglycerate dehydrogenase, phophoserine transaminase, 

phosphoserine phosphatase (which synthetize serine from 3-phospho-D-

glycerate), and serine hydroxymethyl transferase that converts serine into 

glycine. Finally proline is synthetized from glutamate-δ-semialdehyde with 

pyrroline-5-carboxylate reductase. Glutamate-δ-semialdehyde can be 

synthetized from glutamate by glutamate demialdehyde dehydrogenase, or 

from the ornithine through the action of ornithine-δ-transaminase. 

In addition to genes needed for the synthesis of non-essential amino 

acids, the expression of genes involved in the synthesis of porphobilinogen 

from glycine, aminolevulinic acid synthase and porphobilinogen synthase, 

were detected. Besides, there is the complete pathway for the synthesis of 

protoheme IX, with the exception of uroporphirinogen III synthase (this 

enzyme is encoded by the endosymbiont genome) and protoporphyrinogen 

oxidase. It was also detected the expression of the gene for pantothenate 

kinase gene. Finally, transcripts from genes coding for the necessary 
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enzymes for the synthesis (xanthine dehydrogenase) and degradation (urate 

oxidase, allantoinase and allantoicase) of uric acid were annotated.   

 

 2.2.2 Ovaries 

 

A total of 28,889 GO’s, corresponding to 4,236 different terms were 

assigned to the ovary dataset. A total of 4,003 sequences were assigned to 

GO terms from the biological process domain, 4,651 sequences were 

assigned with GO linked to molecular function domain and 3,633 in the 

cellular compartment domain. Like in the fat body, GO terms assigned in 

this tissue were mapped against the GO-slim library, and multilevel pies 

were generated for each one of the main GO categories (Figure 25). 

As for the fat body, the principal metabolic pathways were analyzed at 

first. In this tissue, the annotated genes for the glycolysis/gluconeogenesis 

pathway showed the same profile than in the fat body transcriptome, where 

there were no annotated sequences for the PFK, PGM and G6Pase (figure 

22). The same situation was observed for the pentose phosphate cycle, with 

the identification of six out of seven enzymes with the exception of the RPE 

(Figure 23). As in the fat body, TK was identified only by BLASTX 

searches against the non-redundant database. Finally, the complete set of 

enzymes for the Krebs cycle was annotated (Figure 24).  

Finally, no transcripts from genes coding for the necessary enzymes for 

the synthesis (xanthine dehydrogenase) and one involved in the uric acid 

degradation (allantoinase) were found. 
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Figure 25. Ovary multilevel pie chart of sequence distribution according to GO 
classification for the three main GO categories 
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2.2.3 Epithelium 

 

A total of 18,903 GO terms, which counted to 2,923 different terms, were 

assigned to the sequences obtained from this tissue. The three main domains 

accounted for 2,687 sequences in the biological process category, 3,227 on 

the molecular function and 2,334 on the cellular function category. As for 

the previous tissues, multilevel pies with the sequence/GO distributions were 

generated after mapping the GO terms obtained to the GO-slim library 

(Figure 26). 

In the glycolysis/gluconeogenesis pathway, the expression of the four 

genes coding for PFK, PGM, G6Pase and HK were not detected (Figure 22). 

Only four genes (out of seven) were annotated for the phosphate pentose 

pathway being the lacking enzymes PGLS, RPI and TK (Figure 23). 

Sequences for all the Krebs cycle enzymes, with the sole exception of the 

succinyl-CoA synthetase were detected (Figure 24). 

In this case transcripts from genes coding for the necessary enzymes for 

the synthesis (xanthine dehydrogenase) and degradation of uric acid (urate 

oxidase, allantoinase and allantoicase) were not found. 

 

 



112 
 

 
Figure 26. Epithelial multilevel pie chart of sequence distribution according to GO 
classification for the three main GO categories 
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2.3 Comparative tissue metabolism 

 

2.3.1 Amino acid metabolism 

As mentioned above, Blattabacterium possess the enzymes for 

synthetizing most of the essential amino acids, however needs an external 

supply for several non-essential amino acids, namely asparagine, glutamine, 

glycine and proline.  The presence of gene expression for genes encoding the 

required enzymes for the synthesis of these amino acids was assessed in the 

three tissues. As shown in Table 20, the expression of the genes for all the 

enzymes needed for the synthesis of the above-mentioned amino acids has 

been detected only in the fat body. 

 
Table 20. Presence (+) or absence (-) of several gene transcripts related to non-
essential amino acid biosynthesis in the three analysed tissues. 

Gene EC  Fat body Ovary Epithelium 

Asparagine biosynthesis 

Aspartate aminotransferase 2.6.1.1 + + + 

Asparagine synthetase 6.3.5.4 + + - 

Glutamine biosynthesis 

Glutamate dehydrogenase 1.4.1.3 + + + 

Glutamine synthetase 6.3.1.2 + + + 

Proline biosynthesis 

Glutamate-semialdehyde dh 2.7.2.11 + - - 

Ornithine-δ-transaminase 2.6.1.3 + + - 

Pyrroline-5-carboxylate reductase 1.5.1.2 + + - 

Glycine biosynthesis 

Phophoglycerate dehydrogenase 1.1.1.95 + + + 
Phosphoserine transaminase 2.6.1.52 + + - 
Phosphoserine phosphatase 3.1.3.3 + - - 
Serine hydroxymethyl transferase 2.1.2.1 + + + 
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2.3.2 Biosynthesis of heme groups 

Blattabacterium metabolic network seems to require the input of 

porphobilinogen (González-Domenech et al. 2012). In the fat body there 

were present all but the sequences coding for two enzymes of the heme 

biosynthetic pathway, being the tissue were the pathway was more complete 

(Table 21).   

 

Table 21. Presence (+) or absence (-) of transcripts for heme biosynthetic enzymes 
in the three analysed tissues. 

Gene EC  Fat body Ovary Epithelium 

Aminolevulinic acid synthase 2.3.1.37 + + - 

Porphobilinogen synthase 4.2.1.24 + - + 

Porphobilinogen deaminase 2.5.1.61 + + + 

Uroporphobilinogen III synthase 4.2.1.75 - + - 

Uroporphobilinogen III 
decarboxylase 

4.1.1.37 + + - 

Coproporphyrinogen III oxidase 1.3.3.3 + - - 

Protoporphyrinogen oxidase 1.3.3.4 - - - 

Ferrochelatase 4.99.1.1 + + + 

 

2.3.3 Uric acid metabolism 

The process of nitrogen recycling in cockroaches involves the 

degradation of uric acid to urea, and later degradation of this metabolite by a 

Blattabacterium urease. We have previously postulated that the released 

ammonia by the endosymbiont would be used by the host encoded glutamine 

synthetase to produce glutamine (López-Sánchez et al. 2009; González-
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Domenech et al. 2012). This could be the way to incorporate ammonia to the 

insect amino acid metabolism, probably also through the enzyme glutamate 

synthase. Transcripts for this enzyme have been identified in all three 

tissues. The genes involved in the synthesis and degradation of uric acid 

were annotated in the fat body transcriptome. The complete pathway was not 

found in the ovaries, while no transcripts were found in the epithelium 

(Table 22). 

Table 22. Presence (+) or absence (-) of transcripts for uric acid metabolism 
enzymes, in the three analysed tissues. 

Gene EC Fat body Ovary Epithelium 

Xanthine dehydrogenase 1.17.1.4 + - - 

Urate oxidase 1.7.3.3 + + - 

Allantoinase 3.5.2.5 + - - 

Allantoicase 3.5.3.4 + + - 

 

2.4 Statistical analyses on the fat body and ovary transcriptomes 

The libraries from fat body and ovaries were compared among them to 

find those functional terms enriched in the fat body, the tissues where 

Blattabacterium is supposed to carry out its metabolic function. A two-tailed 

Fisher test applying a multiple test correction was used. Only most specific 

terms were reviewed in this analysis. In Table 23, the over-represented ones 

at cellular process level are summarized. By contrast 31 terms were under-

represented; most of them with nucleus or nucleic acid machinery related 

GO terms (Annex 7). 
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Table 23. Cellular component GO terms significatively enriched in the fat body 
respect to the ovaries (corrected p-value by False Discovery Rate [FDR] control) 

GO identity Term FDR 
GO:0005615 extracellular space 1.88E-005 
GO:0070469 respiratory chain 9.02E-005 
GO:0005788 endoplasmic reticulum lumen 0.00181 
GO:0005753 mitochondrial proton-transporting ATP synthase 

complex 
0.02774 

 

Regarding biological processes GO category, fat body library was 

enriched for nine GO terms (Table 24).  Most of them are related to energy 

production processes and the metabolism of energy sources. Terms related 

with the serine metabolism were also enriched in the fat body. By contrast 

101 terms were overrepresented in the ovary (Annex 7).  

Table 24. Biological processes GO terms enriched significatively in the fat body 
(corrected p-value by False Discovery Rate [FDR] control). 

GO identity Term FDR 
GO:0006869 lipid transport 1.85E-265 
GO:0009303 rRNA transcription 5.40E-007 
GO:0046113 nucleobase catabolic process 0.01373 
GO:0006096 Glycolysis 0.01947 
GO:0042775 mitochondrial ATP synthesis coupled electron 

transport 
0.01952 

GO:0009152 purine ribonucleotide biosynthetic process 0.02207 
GO:0009070 serine family amino acid biosynthetic process 0.03867 
GO:0006094 gluconeogenesis 0.04920 
GO:0006563 L-serine metabolic process 0.04920 

 
 

Finally, a total of 15 GO terms at molecular level were found over-

represented in the fat body (Table 25). Among them those related to the lipid 

metabolism of the storage of nutrient reservoirs. Face the 15 terms in which 

the fat body is enriched respect the ovaries there are 35, which are over-

represented, in the second tissue (Annex 7). 
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Table 25. Molecular processes GO terms enriched significatively in the fat body 
(corrected p-value by False Discovery Rate [FDR] control). 

GO identity Term FDR 
GO:0005319 lipid transporter activity 1.08E-270 
GO:0005344 oxygen transporter activity 7.50E-035 
GO:0045735 nutrient reservoir activity 1.19E-017 
GO:0004497 monooxygenase activity 5.25E-013 
GO:0003837 beta-ureidopropionase activity 2.97E-007 
GO:0020037 heme binding 5.62E-005 
GO:0009055 electron carrier activity 1.70E-004 
GO:0004872 receptor activity 2.74E-004 
GO:0004129 cytochrome-c oxidase activity 2.98E-004 
GO:0008134 transcription factor binding 0.00296 
GO:0009374 biotin binding 0.00626 
GO:0000036 ACP phosphopantetheine attachment site 

binding involved in fatty acid biosynthetic 
process 

0.03077 

GO:0016885 ligase activity, forming carbon-carbon bonds 0.03453 
GO:0005272 sodium channel activity 0.04214 
GO:0008553 hydrogen-exporting ATPase activity, 

phosphorylative mechanism 
0.04275 
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3.- Uric acid metabolism: the response to dietary nitrogen levels 
 

To evaluate the response of B. germanica to the dietary protein levels, 

recent moult adult females (day 0) were separated from the colony and fed 

during two days with commercial dog food (approx. protein content 25%). 

Then, some animals were maintained fed in dog food as a control and others 

were changed to one of the three experimental diets, with different protein 

content: (i) dextrin (with 0% of protein); (ii) yeast extract with added 5% 

casein; (iii) 50% casein  (see Material and Methods, Table 4, for diet 

composition). We, then, measured the differential expression of genes 

involved in the catabolism of uric acid (urate oxidase, allantoinase and 

allantoicase), as well as the Blattabacterium encoded urease, which degrades 

urea to CO2 and ammonia. Besides, it was measured the expression of host 

glutamine synthetase since this enzyme would incorporate the released 

ammonia to metabolism. According to the model presented in the 

introduction (Figure 7), during periods of nitrogen scarcity, uric acid would 

be degraded to urea by the action of the three first enzymes, whereas the 

generated urea must enter into the endosymbiont cell where it would be 

degraded to CO2 and ammonia. The released ammonia should be used by the 

host glutamine synthetase to produce glutamine from glutamate (Figure 27).  

Actine was used as a reference gene for all host genes and the 

Blattabacterium elongation factor EF-Tu for Blattabacterium urease. The 

gene expression was measured in ovary and fat body by qPCR. 
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Figure 27. Proposed model for uric acid mobilisation. Uric acid is degraded to urea 
by the successive action of urate oxidase (an oxygen-dependent, peroxisomal 
enzyme), allantoinase and allantoicase. Then, urea is degraded to ammonia and 
carbon dioxide by the endosymbiotic urease. Finally, ammonia would be 
incorporated to glutamine through glutamine synthetase. The overflow of produced 
ammonia may be released by the system and explains the classic observation on the 
apparent ammonotelism in cockroaches (Mullins and Cochran 1972; 1976). 
 

 

Among the five measured genes only statistical significative differential 

expression was detected in two of them. Table 26 shows the expression 

levels for each gene in those animals fed with the experimental diets respect 

to those fed with commercial dog food. 

The first gene of the proposed pathway (urate oxidase) showed 

significant differential expression levels in both tissues when animals are fed 

with low level protein diets, respect to those kept on commercial dog food 

(Figure 28). In those animals fed with dextrin diet (without protein), urate 

oxidase was expressed a mean of 8.3 and 3.1 times more in fat body and 

ovary respect those animals fed with dog food. In animals fed with 5% 

protein diet urate oxidase expression was increased 6.9 and 2.5 times in fat 

body and ovaries respectively, when compared to control animals. 
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Table 26. Relative expression for uric acid metabolism genes. Relative expression 
mean value levels with its ranges in parenthesis are shown. 
 

Genes 
Fat body Ovary 

Dextrine 5% 50% Dextrine 5% 50% 

Urate 
oxidase 

8.301 

(3.66-17.51) 

6.948 

(3.37 -17.89)

1.745 

(0.42 - 6.46)

3.124 

(1.73 - 5.17) 

2.549 

(1.39 - 4.09)

1.630 

(1.18 - 2.39) 

Allantoinase 1.220 

(0.70 – 3.00) 

1.292 

(0.28 - 5.60) 

0.577 

(0.04 - 4.56)

1.036 

(0.49 - 3.14) 

1.366 

(0.50 - 2.76)

1.269 

(0.49 - 3.33) 

Allantoicase 1.033 

(0.58 - 2.410) 

1.223 

(0.65 - 2.43) 

1.879 

(0.87 - 6.06)

1.256 

(0.73 - 2.22) 

1.200 

(0.70 - 1.86)

1.256 

(0.72 - 1.99) 

Urease 0.691 

(0.31 - 1.26) 

0.839 

(0.50 - 1.54) 

0.725 

(0.43 - 1.24)

1.562 

(1.11 - 2.42) 

1.028 

(0.60 - 2.46)

1.950 

(1.04 - 4.85) 

Glutamine 
synthetase 

2.271 

(1.17 - 7.37) 

1.794 

(0.74 - 4.66) 

1.069 

(0.29 - 4.62)

0.961 

(0.60 - 1.61) 

0.364 

(0.17 - 1.25)

0.448 

(0.33 - 0.78) 

 

 

 
Figure 28. Expression pattern of urate oxidase (UO) gene in the fat body and ovary 
under the different diets expressed in copies of urate oxidase mRNA per copies of 
actin mRNA per 1000. Asterisk represents statistically significant differences 
respect to control (p<0.05). 
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For allantoinase and allantoicase, the other two necessary enzymes for 

degrading uric acid to urea, even if there were detected small increases in the 

expression in both low protein diets respect to control, these were not 

statistically significant (Figure 29). Neither was the case for the urease 

encoded in Blattabacterium (Figure 30).  

Finally, it was found a significant differential expression of glutamine 

synthetase in fat body on dextrine fed animals, with expresion levels 2.3 

times higher when compared with control-fed animals. Additionally, this 

enzyme seem to be significatively down-regulated in the ovaries of the 

animals fed with protein rich diets (Figure 31) 

 

 
Figure 29. Expression pattern for allantoinase (ALN) and allantoicase (ALC) in the 
fat body and ovaries under the different diets expressed as in Figure 28. 
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Figure 30. Expression pattern for urease in the fat body and ovaries under the 
different diets expressed as in Figure 28. 
 
 

 

 
Figure 31. Expression pattern of the glutamine synthetase (GS) in the fat body and 
ovaries under the different diets expressed as in Figure 27. Asterisk represents 
statistically differences respect control (p<0.05). 
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Blattabacterium comparative genomics: the frozen legacy of an 

ancient endosymbiont genome 

 

Cockroaches and Blattabacterium are evolving together for at least 140 

Mya, since the common ancestor of cockroaches and termites was infected 

by an ancestral member of the Flavobacteriaceae family (Lo et al. 2003; 

Inward et al. 2007). Actually, all the extant cockroaches, with the sole 

exception of species from the genus Nocticola, live together with 

Blattabacterium (Lo et al. 2007). Conversely, Blattabacterium has been lost 

in the Termitidae, with the sole exception of the basal termite M. 

darwiniensis (Bandi et al. 1995). Many of the insects that harbour 

intracellular mutualistic bacterial symbionts are characterized by feeding on 

unbalanced food sources. In these cases the insect take advantage of the 

metabolic capabilities of the bacterium to obtain the nutrients lacking in the 

diet (Moya et al. 2008; Baumann 2005). However, in cockroaches, which 

feed on a complex diet, the role of endosymbionts was less clear. Studies on 

aposymbiotic cockroaches suggested that Blattabacterium may participate in 

the biosynthesis of essential amino acids (Henry 1962), and in the 

metabolism of nitrogen (Cochran 1985). Most recently, the complete 

genome sequence of the symbionts from B. germanica (López-Sánchez et al. 

2009) and P. americana (Sabree et al. 2009) as well as the FBA performed 

over their inferred metabolic networks (González-Domenech et al. 2012), 

reinforced the thesis that this endosymbiont plays a role in the host nitrogen 

metabolism. Nowadays, the genome sequences for six different 

Blattabacterium strains are available, the two above mentioned plus the 

strains from B. gigantenus (Huang et al. 2012), B. orientalis (Patiño-

Navarrete et al. 2013), the wood-feeding roach C. punctulatus (Neef et al. 

2011), and the wood-feeding termite M. darwiniensis (Sabree et al. 2012). 

All these strains possess typical features showed by other insect 
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endosymbionts as a reduced genome size, ranging from 591 kb to 640 kb, 

low GC content (between 23.8% and 28.2%) and gene order maintenance.   

The genome of BBor presented in this work has confirmed the extreme 

stability of the genome architecture in Blattabacterium, despite that all 

strains are evolving separately for more than 140 Mya. Only three 

chromosomal inversions have been identified but the synteny is highly 

maintained. Other remarkable feature is that all six strains maintain an 

extremely similar gene content with up to 82% of the genes from the pan-

genome represented in the core. If xylophage roaches are removed from the 

analysis this proportion raises to 93.4%. These values are similar to those 

observed in Blochmannia spp., the primary endosymbionts from 

Camponotus ants where the core represents the 93.5% of the pan-genome 

(Williams and Wernegreen 2010). However the divergence time among the 

three Blochmannia strains was estimated in 20 Mya (Degnan et al. 2004; 

Gómez-Valero et al. 2008), while the divergence among the cockroaches is 

dated, as stated before, in at least 140 Mya. When the comparison is made 

with similar ancient symbiotic association like the one formed by aphids and 

B. aphidicola, established between 86 and 164 Mya (Dohlen and Moran 

2000), and removing from the analysis the Buchnera symbiotic strains that 

need a complementation with other bacteria (like the case of the cedar 

aphids, which need to be complemented with S.symbiotica), the core spans 

for only the 74% of the pan-genome, a much lower proportion than in 

cockroaches. These facts strongly suggest that massive gene losses occurred 

in Blattabacterium soon after the establishment of its new intracellular way 

of life, and quickly reached a kind of optimal genome size capable of 

fulfilling the host requirements. 

As pointed above, these requirements are likely related to the role of 

Blattabacterium on its host nitrogen metabolism (González-Domenech et al. 

2012). Actually, most of gene losses among omnivorous Blattabacterium 
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lineages affect only to peripheral metabolic activities, affecting for instance 

the sulfur source, or the loss in BBor and BPam of the genes coding for the 

three first enzymes of the Krebs cycle. It was proposed that at least two of 

these steps may be carried out by the 3-isopropylmalate dehydratase (coded 

by leuCD) and the 3-isopropilmalate dehydrogenase (leuD), those catalysed 

by aconitate hydratase (acnA) and the isocitrate dehydrogenase (icd) 

respectively (Sabree et al. 2010), but none other gene was proposed to 

complement the function of the citrate synthase (gltA). Nevertheless, data 

from FBA of the reconstructed network pointed out that these steps could be 

dispensable, even if the complementation could not be ruled out. Even if 

these three steps are absent, the network of BPam is still functional in terms 

of biomass production, provided that the supply of glutamate to the network 

of BPam results in similar performances of the BBge network (González-

Domenech et al. 2012).  

The presence of the urease allows a metabolic network capable of 

catabolizing nitrogenous compounds yielding ammonia as a final waste 

product (López-Sánchez et al. 2009; González-Domenech et al. 2012). The 

presence of urease also can give a biochemical explanation to the classical 

hypothesis stating that urate deposits found in the fat body act as a nitrogen 

storage (Mullins 1974) as well as to the intriguing ammonotelism of 

cockroaches (Mullins and Cochran 1972; González-Domenech et al. 2012). 

Besides, the presence of urease genes in the core genome suggests that the 

role of Blattabacterium in the nitrogen recycling is ancestral and conserved 

among all Blattabacterium strains. The ammonia released by the 

endosymbionts that cannot be incorporated to the metabolism would be the 

one detected by Cochran and Mullins (1972) in their studies about waste 

nitrogen excretion in cockroaches 

The strains from wood-feeding hosts accumulate the major number of 

gene loss events. These events affect the biosynthesis of both, essential and 
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non-essential amino acids, and according to the phylogenetic reconstruction, 

the loss of amino acid biosynthetic capacities took place very early in their 

evolutionary history, before the split between the families Termitidae and 

Cryptocercidae. These loses contrast with the situation of the omnivorous 

cockroaches, where the endosymbionts are able to supply its host with the 

whole set of essential amino acids. It has been postulated that in wood-

feeding roaches the supply of amino acids must be compensated by the gut 

microbiota (Neef et al. 2011; Sabree et al. 2012). Additionally, in BMda and 

BCpu, the gene argH has been lost, which codes for the enzyme 

argininosuccinate lyase (ASL). ASL catalyses the last step of the arginine 

biosynthesis and seems probable that a host-encoded ASL may participate in 

the arginine biosynthesis. By BLAST analysis, we have identified genes 

coding for ASL in eight out of ten insect genomes present in the KEGG 

database. Actually, ASL gene was only absent in the aphid A. pisum, albeit it 

is present in its primary endosymbiont (B. aphidicola) genome, and in the 

human body louse, P. humanus, where the arginine could be acquired from 

the diet (blood). A recent work on metabolic modelling studies supported by 

transcriptomic and proteomic data (Macdonald et al. 2012) suggest that the 

action of host enzymes at the end of amino acid biosynthesis in the pea aphid 

may exhibit regulatory functions.  

During the evolution of the diverse Blattabacterium strains there are a 

number of convergent metabolic traits. The most remarkable is related to 

sulfur metabolism. Among the six strains, only the symbionts BBge and 

BMda possess the genes coding for all the necessary enzymes for the 

assimilation of sulfate, with the sole exception of a 5’-phosphosulfate kinase 

(encoded by cysC). Despite the lack of cysC, this pathway must be operative, 

at least in BBge, since experimental data in aposymbiotic individuals of B. 

germanica indicated the inability to incorporate sulfate into cysteine and 

methionine (Block and Henry 1962). As this pathway is absent in the other 
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strains, and according to the phylogenetic reconstruction, it was most likely 

lost in at least three independent events, once in the lineage leading to 

Cryptocercus, other in the lineage leading to BBgi and the last one during 

the Blattidae species evolution. In BPam, cysI is absent and both cysN and 

cysD are found as pseudogenes, whereas in BBor, these two genes are 

completely lost while cysI is inactivated. Respect to the remaining genes in 

the pathway, cysH and cysG are found as pseudogenes in BBor, but in BPam 

they seem to be functional. Finally, the gene cysJ is present in all sequenced 

Blattabacterium strains, even in those that are not able to assimilate sulfate. 

The product of this gene is a flavoprotein that together with the product of 

cysI forms sulfite reductase. In this case, CysJ may have been recruited by 

other processes like the regeneration of reduced ribonucleotide reductase 

(Covès et al. 1993), or as an electron relay (Siegel and Davis 1974). Seven 

duplicated genes were found in the genomes of BBor, BCpu and BMda 

(Neef et al. 2011; Sabree et al. 2012), while BPam and BBgi possess eight 

duplicated genes (Sabree et al. 2009; Huang et al. 2012). Finally in BBge 

there are nine duplicated genes (López-Sánchez et al. 2009). The presence of 

such genes in a reduced genome like that of Blattabacterium is surprising. 

The fact that most of these genes are present in all six strains (for five out of 

nine genes both copies are intact in the six genomes) points to a possible 

functional role in the bacterium physiology and could be considered as 

ecoparalogs (Sanchez-Perez et al. 2008). 

Similar to what is found in other long-term symbiotic association, hosts 

and their primary endosymbionts show co-cladogenesis when phylogenetic 

reconstruction of cockroaches and Blattabacterium are compared (Lo et al. 

2003; lópez-Sanches et al. 2008). The phylogeny obtained during this thesis 

shares the same topology than the one obtained for the cockroaches by 

Inward and collaborators (2007). The presence of Blattabacterium genes 

evolving under a molecular clock has allowed the determination of split 
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times between the host species. The divergence between Blaberoidea 

cockroaches and the Termitidae and Crypotcercidae lineages was calculated 

close to 90 Mya, whereas the divergence between BPam and BBor was 

stablished around 12 Mya. Summarizing, even if the hosts harbouring 

Blattabacterium are evolving separately for such a long-time, the genomic 

and metabolic architectures of their endosymbionts have remained strikingly 

stable. Thus, the basic genetic and metabolic features of Blattabacterium 

were established in a short period of time since these bacteria infected the 

common ancestor of cockroaches and termites. 

 

The shared role of endosymbiont and host in nitrogen metabolism 

as revealed by transcriptomic analyses 

 

For most of the insect endosymbionts sequenced up today, the genome 

sequence of the host has not been still sequenced. Nowadays, there are only 

the sequences of the pea aphid, A. pisum host of B. aphidicola (Eisen et al. 

2010), the human body louse, P. humanus host of Riesia sp. (Kirkness et al. 

2010) and from C. floridanus host of B. floridanus (Bonasio et al. 2010). The 

availability of the host genome sequence has allowed the characterization of 

the metabolic interdependence network between Buchnera and its host in the 

aphid bacteriocytes (Hansen and Moran 2011). The lack of genomic 

information of the host severely impairs the understanding of other systems. 

The characterization of the transcriptome has been proved to be a good tool 

to overcome the lack of genomic data in a non-model organism (Vera et al. 

2008). Given that the genomic information on B. germanica was limited, it 

was decided that the first step to gain insight into the relationships and 

shared metabolism between Blattabacterium and its host was the 

characterization of the cockroach transcriptome. We chose three tissues, two 

harbouring the endosymbiont, fat body and ovary, and a third one free of the 



131 
 

endosymbiont, the epithelial tissue localized underneath the pronotum of 6 

stage nymphs.  

The cDNA synthesis was done using an oligo-dT, avoiding the tRNA and 

rRNA and enriching the sample in mRNAs. By this method it should be 

expected that mRNAs from Blattabacterium should be also discarded, since 

bacterial mRNA lack of polyA queue. However, the genome of 

Blattabacterium is extremely AT rich, thus a good amount of messengers 

from the endosymbiont has been swept during the cDNA synthesis 

procedure. Up to 6.5% of the reads from the fat body library belong to 

Blattabacterium. Conversely, in the ovaries, where the endosymbiont is also 

present, this proportion is much lower, and hardly a hundred of reads had 

their origin in the bacteria, probably because in this stage Blattabacterium is 

metabolically less active and/or the bacterial population size per cell is 

lower. 

Close to 50% of the sequences from the fat body and ovary libraries show 

significant matches in the BLASTX searches against the non-redundant 

NCBI peptide database, this proportion is reduced to 27.4% in the epithelium 

library. These results might be due to the fact that the closest relative to 

cockroaches with a sequenced genome is Tribolium castaneum. Actually 

most of the best BLAST hits match T. castaneum sequences. Further, the 

proportion of properly annotated sequences is also quite low: around 30% 

for the fat body and ovary libraries and 15% for the transcriptome coming 

from the epithelium are sequences with assigned GO terms. On average, 

each annotated sequence was assigned to 5.7 different GO terms. Albeit 

these proportions may seem to be low, they are in concordance with the 

observations in other transcriptomic analyses performed in non-model 

organism with no close relatives sequenced (Vera et al. 2008; Meyer et al. 

2009; Coppe et al. 2010). 
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Although the precise coverage of the whole transcriptome is difficult to 

estimate without the full genomic sequence, it has been possible a broad 

estimation analysing the expression of genes related to several central 

metabolic pathways present in all animal phyla. The selected pathways were 

the glycolysis/gluconeogenesis, the pentose phosphate pathway and the 

Krebs cycle. In the fat body and ovaries, all pathways are well represented, 

and almost equally distributed between the two tissues. We failed to detect 

transcripts for three out of 11 genes in the glycolysis/gluconeogenesis 

pathways; however it should be taken into account that glycolytic and 

gluconeogenic enzymes may not be expressed at the same time. Also, there 

have not been identified transcripts for one out of seven enzymes involved in 

the pentose phosphate pathway. The Krebs cycle is complete in the ovary but 

in the fat body there is one gene below the detection level, the one coding for 

aconitase. In the epithelium library, these pathways are much less complete, 

lacking three genes from the glycolysis/gluconeogenesis, three more in the 

phosphate pentose pathway and one in the Krebs cycle. Overall, we can 

conclude that there is a good representation of the transcriptome at least in 

ovaries and fat body tissues. 

Statistical analyses confirmed that the library coming from the fat body 

tissue is enriched in GO terms, in all three main categories, related mainly to 

energy production and nutrient storage and mobilization. As expected for 

metabolic active cells, the terms related to lipid and sugar catabolism are 

enriched in this tissue. 

During both, the metabolic reconstruction (López-Sánchez et al. 2009) 

and the FBA of the genome-scale metabolic network (González-Domenech 

et al. 2012), it has been shown that Blattabacterium is auxotroph for some 

non-essential amino acids, namely: proline, asparagine, glutamine and 

glycine (Figure 32). In Buchnera the three first amino acids should also be 

supplied externally as well as glutamate, tyrosine, alanine and serine (Figure 



133 
 

32). Blochmannia strains, that like Blattabacterium are symbionts from 

insects with a complex diet such as ants, rely on a host supply of serine, 

proline, asparagine, alanine and arginine (Figure 32). In addition, B. vafer do 

not encode for a glutamine synthase, so like Blattabacterium is host 

dependent for glutamine. Among these instances, asparagine and proline 

need to be supplied in all three cases. It is worth mentioning that non-

essential amino acids are especially abundant in arthropod haemolymph; for 

example in the aphid A. pisum, alanine, glutamine, proline and asparagine 

represent the 50%  of the total free amino acid content in the haemolymph 

(Macdonald et al. 2012). Proline, glycine and tyrosine are the most abundant 

amino acids in the haemolymph of both P. americana and Blaberus 

discoidalis (Stevens 1961; Osborne and Neuhoff 1974; Sowa and Keeley 

1996). In mosquito’s haemolymph, the most represented amino acids are 

alanine, proline, glutamine and glutamate (Pennington et al. 2003). The 

abundance of proline seems a common feature among insect species. For 

example, this amino acid is used as energy source during flight in 

mosquitoes (Scaraffia et al. 2003) and beetles (Gäde and Auerswald 2002). 

In addition, in the mosquito A. aegypti proline has been also proposed as 

nitrogen sink (Pennigton et al. 2003). In arthropods other than insects, like 

spiders, glutamine is the most represented amino acid, followed by far by 

proline and glycine (Tillinghast and Townley 2008). Manual searches among 

the annotation and the KEGG maps retrieved for each tissue confirmed that 

the genes required for the metabolic synthesis of asparagine, glutamine, 

proline and glycine are expressed in the host fat body. These pathways seem 

incomplete in the ovaries and epithelial tissues. The host supply of non-

essential amino acids has been postulated as a possible mechanism of host 

control on the metabolism of its symbionts. Thus, the FBA analysis 

performed on the metabolic network of Blattabacterium suggested that 

cockroaches could use the supply of glutamine to control their 
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endosymbionts metabolic behaviour or growth rate (González-Domenech et 

al. 2012). Similarly, the obligate aerobic metabolism of the endosymbiont 

could be a target for host control mechanisms considering the sensitivity of 

metabolic functionality to the oxygen availability (González-Domenech et 

al. 2012). Also, A. pisum can control the amount of essential amino acids 

produced by the endosymbiont by controlling the amount of metabolic 

precursors supplied to Buchnera. Some of these precursors are non-essential 

amino acids like aspartate, required for the synthesis of lysine and threonine 

or glutamate, a precursor in the synthesis of arginine (Macdonald et al. 

2011). Interestingly, both, amino acid and oxygen supply have been 

described as control factors of plant hosts over the population of nitrogen 

fixing bacteria (Prell et al. 2009; Kiers et al. 2003). In Rhizobium-legume 

symbioses, a symbiotic auxotrophy for essential branched amino acids has 

been described (Prell et al. 2010). 

Other host compound required by Blattabacterium metabolism is 

porphobilinogen. In the fat body, transcripts of the genes for all enzymes 

involved in the synthesis of this compound have been found, with the 

exception of uroporphorbirinogen III synthase, which is encoded in the 

endosymbiont, and protoporphyrinogen oxidase. This second one is not 

encoded in the Blattabacterium genome, however it has been empirically 

demonstrated that under aerobic conditions the reaction catalysed by this 

enzyme can occur spontaneously (Sasarman et al. 1979). Nevertheless, not 

detecting transcripts of the above-mentioned genes does not mean that the 

corresponding genes are not present in the B. germanica genome. 
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Figure 32. Non-essential amino acid auxotrophies shown by three different insect 
endosymbionts. Inside the area representing each symbiont, the non-essential amino 
acids that can be synthetized are listed. 
 

  

One of the most interesting points of these analyses, was to establish the 

pathway of uric acid recycling in cockroaches (Cochran 1985). In the fat 

body there have been identified transcripts for the three enzymes necessary 

for degrading uric acid (uricase, allantoinase, allantoicase), as well as for the 

uric acid synthesis enzyme xanthine dehydrogenase. In the ovaries, we only 

have detected urate oxidase and allantoicase transcripts, while in the 

epithelium we were not able to find any transcript for these genes. This 

pathway is only present in other three of the insect genomes represented in 
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the KEGG database: the mosquitoes Anopheles gambiae and Aedes aegypti 

and the Jewell wasp, Nasonia vitripennis. The presence of these enzymes, 

together with Blattabacterium urease and a host encoded glutamine 

synthetase, complete a pathway for uric acid recycling in a similar way as 

the one described in the shield bug, Parastrachia japonensis (Kashima et al. 

2006), but with one remarkable difference. While in the shield bug, the 

whole pathway is encoded by Erwinia-like bacteria, an ectosymbiont located 

in the midgut (Hosokawa et al. 2010), in B. germanica the pathway for the 

nitrogen recycling is shared between the endosymbiont and its host. It is 

worth mentioning that in higher termites, where the Blattabacterium 

endosymbiont has been lost, this metabolic process is carried out by the gut 

microbiota (Potrikus and Breznak 1981). It could be interesting to further 

study the transition from a metabolism shared between cockroach fat body 

cells and the bacterial endosymbiont to a gut localized nitrogen metabolism 

performed by ectosymbionts, especially in putative transitional species like 

the wood feeding cockroach C. punctulatus and the endosymbiont 

harbouring termite M. darwiniensis. Although these metabolic studies have 

not been yet performed, the gut microbiota composition in M. darwiniense, 

C. punctulatus and P. americana was studied using the V6-V9 region of the 

bacterial 16S rRNA gene (Sabree et al. 2011). They found that M. 

darwiniensis and C. punctulatus gut microbiome components were similar in 

both species and very constant between individuals. Moreover, they included 

specialized termite gut-associated bacteria that were previously postulated 

that collaborate in fixing nitrogen, degrading lignocellulose, and producing 

nutrients (Warnecke et al. 2007). On the contrary, P. americana gut 

microbiota was very variable among individuals and with a large proportion 

of sequences that were most closely related to environmental sequences and 

not to symbionts represented in current databases (Sabree et al. 2011).  
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Classical studies on the cockroach P. americana describe how the fat 

body deposits of urates raise when individuals of this species are fed with a 

protein rich diet. Conversely, when animals previously kept on the protein 

rich diet where changed to a diet with a low protein content, the amount of 

uric acid stored in the fat body extremely decreased  (Cochran et al. 1979). 

These observations suggested that uric acid was actually a reservoir of 

nitrogen to be mobilized on periods of protein scarcity. The identification of 

sequences coding for the necessary enzymes for uric acid recycling 

prompted us to investigate how the expression of these genes are affected in 

response to the dietary protein levels. After feeding females of B. germanica 

with diets containing 0 or 5% of protein, an increase in the number of 

transcripts for urate oxidase gene (the first step of the catabolic pathway) 

was observed, as well as in the glutamine synthetase gene expression, the 

last step of the pathway of nitrogen mobilization. Actually, in several 

experimental systems, glutamine synthetase has been described as the main 

controlling step for nitrogen metabolism (Urich 1990), an observation 

coherent with the central role played by glutamine as nitrogen donor. Thus, 

when dietary nitrogen sources were scarce, the expression of genes encoding 

for urate oxidase and glutamine synthetase increased. However, in the 

present work it remains unexplained whether there are additional 

posttranslational regulatory mechanisms, especially in those steps where we 

were unable to detect changes in the expression levels. Further functional 

studies, e.g., both proteomic and metabolomic approaches, focusing on 

possible post-transcriptional regulatory mechanisms are needed to establish a 

model of how cockroaches cope with severe changes in nitrogen intake.  

Besides the supply of essential amino acids and cofactors, the metabolism 

of nitrogenous waste products seems to be one of the main roles of insect 

mutualistic bacteria. Actually, while some strains of Blattabacterium had 

lost its ability to synthetize essential amino acids (Neef et al. 2011; Sabree et 
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al. 2012) (Figure 17), the genes for urease and for all the genes needed for 

the urea cycle (with the sole exception of the gene for the ASL, lost in BCpu 

and BMda) are maintained in all sequenced strains (Patiño-Navarrete et al. 

2013). The pathway proposed for Blattabacterium and the cockroaches 

depicted in the Figure 33A, has also been proposed with some modifications 

for other insects. Thus the shield bug, P. japonensis, during its diapause 

period also recycles nitrogenous waste products via the uricotelic pathway. 

In this case, all three enzymes are encoded in an Erwinia-like bacteria 

located in the gastric cecum of the insect (Kashima et al. 2006). The same 

solution has also been adopted by the brown planthopper (Nilaparvata 

lugens), but in this case yeast-like endosymbionts are the responsible of 

degrading the uric acid, at least the step catalysed by uricase (Sasaki et al. 

1996). However, the urease activity has not been found in any of the two 

examples. In a similar way than in cockroaches, Blochmannia, 

endosymbionts of Camponotus ants, also participate in the nitrogen 

recycling via urease and glutamine synthetase, but in this case, both enzymes 

are encoded in the bacterial genome (Figure 33B) (Gil et al. 2003; Degnan et 

al. 2005; Feldhaar et al. 2007). However, the Blochmannia strain from C. 

vafer has lost the gene coding for glutamine synthetase, and as a 

consequence ammonia should be incorporated to amino acid metabolism by 

a host encoded glutamine synthetase, as it is the case in the cockroaches 

(Williams and Wernegreen 2010). The silkworm nitrogen recycling system 

is extremely similar to the one we have proposed for the cockroach-

Blattabacterium association. In this insect, genes for all three uricolytic 

enzymes (uricase, allantoinase, allantoicase) have been annotated but urease 

is not encoded by any microbial symbiont, rather it is obtained from the 

mulberry leaves that the caterpillar eats (Hirayama et al. 1999; Hirayama et 

al. 2000). Buchnera cells in A. pisum are also an obligate partner for nitrogen 

recycling. Initially it was proposed that ammonia may be incorporated to 
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amino acid metabolism through glutamine synthetase and glutamate 

synthase, and then, both glutamine and glutamate, would be used by 

Buchnera to synthetize essential amino acids (Hansen and Moran 2011). 

However, FBA and functional (i.e. transcriptomic and proteomic) analyses 

carried out on the integrated aphid bacteriocyte and Buchnera, suggest that it 

is the host cell the one that produces ammonia, and afterwards this 

compound is incorporated into glutamine and glutamate through the 

activities of glutamine synthetase and glutamate synthase by the so-called 

GS/GOGAT (GS, glutamine synthetase; GOGAT, glutamate synthase) 

cycle. Most of the ammonia assimilated through the GS/GOGAT cycle is 

later incorporated to essential amino acids, especially those whose synthesis 

is shared between Buchnera and A. pisum (Figure 33C) (Macdonald et al. 

2012).  

 

 
Figure 33. Nitrogen recycling models for different insect-endosymbiotic bacteria 
systems based on the different schemes (modified from Macdonald et al. 2012). A 
Cockroach-Blattabacterium. B Ant-Blochmannia, with the exception of the system 
in C. vafer. C Aphid-Buchnera. GS, glutamine synthase; UO, urate oxidase; ALN, 
allantoinase; ALT, allantoicase; GOGAT, glutamate synthase, EAA, essential amino 
acid; OAc, oxoacid.    
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Future studies on the cellular localization and quantification of enzymes 

involved in the metabolism nitrogen, as well as the measurement of activities 

could help to clarify how the system works. Alongside with these researches, 

metabolomic studies focused on the products related to nitrogen metabolism 

must be also valuable. Finally, no Blattabacterium strains from the basal 

family Polyphagidae are sequenced up today. Since the cockroaches of the 

genus Nocticola (Lo et al. 2008), the ones that have lost Blattabacterium, 

belong to this family, the availability of the genome sequence from a 

Blattabacterium strain from one species of this family can give us insights 

about the process underlying the loss of the endosymbiont in Nocticola.   

The studies during this thesis have been useful to describe the 

evolutionary history of Blattabacterium since the divergence of the extant 

cockroach families. The observations obtained depict Blattabacterium as a 

buffered system with no significant variation in the metabolic capabilities of 

the different strains during more than 140 Mya of parallel evolution. In 

addition, the functional studies carried out help us to unravel the metabolic 

machinery behind the classic observations, suggesting that cockroaches use 

uric acid, normally a waste product in terrestrial animals, as a source of 

nitrogen. 
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1- The genomic characteristics of Blattabacterium, primary endosymbiont 

from B. orientalis, are virtually equivalent to the main features of the other 

sequenced strains, especially those from symbiotic bacteria from omnivorous 

cockroaches. 

2- Despite being evolving separately for more than 140 Mya, the genomic 

architecture of Blattabacterium shows an extreme stability, with only few 

rearrangements. 

3- Gene content in Blattabacterium strains has also been maintained along 

its evolutionary history, especially among omnivorous strains. The 

proportion of core genes respect to the pan-genome is similar to species like 

Blochmannia spp., which are evolving separately for a shorter period than 

Blattabacterium. 

4- The architecture of the central metabolic network has been maintained 

across the evolutionary history of Blattabacterium. Most of gene loss events 

affect poorly characterized genes, or genes involved in peripheral metabolic 

activities. 

5- The gene content of the LCSA is not significantly different from its 

closest strain, in terms of gene content, the one from B. germanica. Thus it 

can be postulated that the reduction process occurred soon after the 

establishment of the symbiotic relationship. 

6- The symbiotic strains from the wood-feeding hosts have lost the capacity 

of synthetizing essential amino acids. This loss may have occurred soon after 

the split among the branches leading to the Blattidae family members and 

the branch leading to the Crypotcercidae and Termitidae families, and before 

the split between these last two families. 

7- The presence of urease genes in the core genome strengthens the 

hypothesis that relates Blattabacterium to the host urate and nitrogen 

metabolism. 
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8- Sequences encoding for the necessary enzymes involved in the synthesis 

of those non-essential amino acids that should be supplied to the bacterium 

have been identified in the host fat body. 

9- Transcripts for urate oxidase, allantoinase and allantoicase, the required 

enzymatic repertoire for the catabolism of uric acid to urea, have been 

identified in the fat body, as well as the corresponding to xanthine 

dehydrogenase, involved in uric acid biosynthesis.  

10- Genes for urate oxidase and glutamine synthetase are over-expressed 

when B. germanica is deprived of a protein source. This observation is 

consistent with our hypothesis that cockroaches are mobilizing in their fat 

body the urate reserves to be used as nitrogen source.  
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Introducció 
 

La simbiosi, entesa com la relació de interdependència entre dos o més 

individus de diferents espècies, ha tingut un profunda influència al llarg de 

l’evolució de la vida. De fet, hi ha un ampli consens respecte a la 

importància de les associacions simbiòtiques, en l’aparició i evolució 

primerenca de la cèl·lula eucariota, així com en l’evolució del sistema 

immunitari en eucariotes complexos o en l’adquisició de noves capacitats 

metabòliques en plantes i animals, permetent-los així explorar noves fonts 

d’aliments o ocupar nous nínxols ecològics. Segons l’efecte de la interacció 

sobre els membres de l’associació, es poden distingir tres tipus: 

comensalisme, quan un dels membres es beneficia sense afectar l’aptitud de 

l’altre (o altres); parasitisme, quan un dels participants treu un avantatge 

disminuint l’aptitud de l’altre; i finalment mutualisme, quan ambdós socis 

es beneficien de la interacció. A més, també es poden classificar segons la 

localització del simbiont respecte de l’hoste entre endosimbionts (el 

simbiont habita a l’interior de cèl·lules de l’hoste) i ectosimbionts (quan el 

simbiont viu sobre la superfície de l’hospedador). Finalment, segons el grau 

de dependència, trobarem simbionts facultatius o obligats. S’han catalogat 

un gran nombre d’associacions simbiòtiques, de tot tipus, repartides per tot 

l’arbre de la vida. Aquesta gran diversitat d’interaccions és un clar indicador 

de la importància de les interaccions simbiòtiques per a l’evolució de la vida. 

Un dels casos més estudiats és la simbiosi d’insectes amb un ample 

espectre de bacteris. La presència en molts insectes de bacteris intracel·lulars 

mutualistes, coneguts com endosimbionts, pot ser una de les claus per 

explicar l’enorme èxit evolutiu d’aquest grup d’animals. En general tots els 

insectes tenen unes necessitats nutricionals molt paregudes. No obstant 

mostren una gran diversitat respecte a la dieta que segueixen. Molts insectes 

depenen d’una única font d’aliment, que en molts casos és deficient per a 
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certs nutrients. Aquestes deficiències nutricionals de la dieta són 

compensades per les capacitats metabòliques de l’endosimbiont. Així, els 

pugons obtenen els aminoàcids essencials del seu bacteri  endosimbiont, 

Buchnera aphidicola, ja que la saba de la que s’alimenten, si bé és rica en 

sucre és molt pobra en aminoàcids. D’una forma similar, insectes 

hematòfags com la mosca tse-tse o els polls dels cabells, obtenen vitamines 

del grup B a través de bacteris endosimbiotics. D’aquesta forma, 

l’establiment d’aquestes interaccions hauria permès als insectes explotar 

noves fonts d’aliment que d’altra forma serien insuficients per cobrir les 

seues necessitats nutricionals. No obstant, no tots els insectes que posseeixen 

bacteris endosimbionts depenen d’una única font d’aliment, per exemple, 

formigues o panderoles tot i ser generalistes també posseeixen bacteris 

endosimbionts de caràcter mutualista. La seqüenciació dels genomes de 

Blochmannia spp. i Blattabacterium sp., endosimbionts de formigues del 

gènere Camponotus i de panderoles respectivament, ha confirmat la 

contribució d’aquests bacteris al metabolisme del nitrogen dels seus hostes 

així com en la síntesi d’aminoàcids essencials. 

Segons el grau de dependència i l’edat de l’associació, es poden distingir 

dos tipus de simbionts. Per una banda, tenim els endosimbionts primaris 

(P-endosymbionts), transmesos de forma estrictament vertical i localitzats a 

l’interior de cèl·lules especialitzades de l’hoste anomenades bacteriòcits. 

Aquestes associacions són molt antigues i les relacions de dependència són 

tan fortes que cap dels dos membres del consorci podria sobreviure sense 

l’altre. Molts dels endosimbionts que complementen la dieta de l’hoste són 

d’aquest tipus, com l’abans esmentada B. aphidicola als pugons, 

Wigglesworthia glossinidia a les mosques tse-tse, Riesia pediculicula als 

polls o Carsonella rudii als psil·lids. Per altra banda, hi ha els 

endosimbionts secundaris (S-endosymbionts), que al contrari que els 

primers, no són indispensables per la supervivència de l’hoste, així que no 
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estan universalment distribuïts. Al igual que els endosimbionts primaris, el 

seu mode de transmissió és vertical encara que s’han descrit casos de 

transferència horitzontal. A diferència dels endosimbionts primaris, els 

secundaris no estan necessàriament confinats a un únic teixit o a l’interior 

del citoplasma de cèl·lules especialitzades de l’hoste, podent-se trobar a 

l’hemolimfa, glàndules o altres teixits no especialitzats. Lluny d’ésser 

simples comensals, la presència d’aquest simbionts exerceix efectes tant 

positius com negatius sobre l’aptitud dels hostes. Així, alguns secundaris 

protegeixen els hostes front a l’estrès tèrmic (Serratia symbiotica als 

pugons), confereixen resistència front a l’atac de vespes parasitoides 

(Hamiltonella defensa als pugons també)  o infeccions fúngiques (Regiella 

insecticola). Altres, en canvi, manipulen la sexualitat de l’hoste en benefici 

propi amb Wolbachia spp. es un exemple paradigmàtic ja que s’ha estimat 

que vora un 40% de les espècies d’artròpodes poden ser infectades per 

aquest gènere de bacteris. Finalment, hi ha casos on un sol bacteri no és 

capaç de satisfer les necessitats nutricionals dels seus hostes, i n’és necessari 

un segon, que complemente les capacitats metabòliques del primer. En 

aquest cas els simbionts es coneixen com co-primaris. Aquest tipus 

d’associació es troba al pugó del cedre (Cinara cedri). Buchnera BCc ha 

perdut la major part de gens necessaris per sintetitzar triptòfan, així els 

passos absents a Buchnera són duts a terme per Serratia symbiotica, que en 

aquesta espècie de pugó ha assolit el paper de simbiont co-primari. 

Durant la transició de vida lliure a intracel·lular, es donen de sèrie de 

canvis que modifiquen molt l’estructura genòmica d’aquests bacteris. Les 

característiques més destacades són la reducció genòmica i l’increment en 

contingut en AT. Dos factors són decisius per explicar el procés de reducció 

genòmica d’aquests bacteris. El primer és que al viure a l’interior d’una 

cèl·lula eucariota moltes funcions del bacteri esdevenen innecessàries o 

redundants. Així, la pèrdua dels gens que codifiquen per a les proteïnes 
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encarregades d’aquestes funcions no tindria cap efecte en l’aptitud del 

bacteri, d’aquesta forma la pressió de la selecció natural sobre ells està 

relaxada. El segon factor es la dinàmica poblacional d’aquests bacteris. La 

transmissió vertical provoca continus colls d’ampolla reduint la mida 

efectiva de la població, incrementat així l’efecte de la deriva genètica. Els 

dos factors esmentats, faciliten l’acumulació de mutacions lleugerament 

deletèries a gens no essencials fins inactivar-los i posteriorment eliminar-los. 

El procés de reducció genòmica es dóna en dues fases ben diferenciades. 

Primer, just després l’establiment de la simbiosi, hi ha una proliferació de 

seqüències d’inserció (IS), afavorida per la relaxació de la selecció 

purificadora. L’increment d’IS afavoreix el procés de reducció genòmica i 

provoca reordenacions cromosòmiques mitjançant esdeveniments de 

recombinació homòloga. En una segona fase, les IS desapareixen i es dóna 

pas a un període d’estabilitat genòmica. No obstant, el procés de reducció 

genòmica continua a través de la pseudogeneització i eliminació individual 

de gens repartits per tot el genoma. La pèrdua dels sistemes de reparació del 

DNA durant el procés de reducció genètica així com la pressió mutacional 

de GC cap AT explicarien l’alt contingut en AT que tenen aquests genomes. 

La simbiosi entre Blattabacterium cuenoti i les panderoles és una de les 

associacions d’aquest tipus més antigues descrites. S’estima que ambdós 

espècies estan evolucionant juntes des de fa més de 140 milions d’anys, quan 

un Flavobacteri de vida lliure va infectar l’avantpassat comú de panderoles i 

tèrmits. Els bacteriòcits a l’interior dels quals viu Blattabacterium es 

localitzen al cos gras envoltats per un segon tipus cel·lular, els uricòcits, 

cèl·lules especialitzades dintre de les quals s’acumulen cristalls d’àcid úric. 

La major part de la informació sobre el paper de Blattabacterium al 

metabolisme del seu hoste ve de estudis clàssics basats en l’obtenció de 

panderoles aposimbiòtiques. D’aquesta forma es va poder relacionar 

Blattabacterium amb la síntesi de aminoàcids essencials. Altres estudis 
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clàssics clarament relacionen la presència de Blattabacterium amb el 

metabolisme del nitrogen. Tot i ser amonotèliques, les panderoles tenen la 

capacitat de sintetitzar àcid úric, que en compte de ser eliminat és 

emmagatzemat als uricòcits en forma de sals d’urat.  Aquests depòsits es 

veuen incrementats en individus aposimbiòtics. Paral·lelament, s’ha observat 

que a les panderoles que són alimentades amb una dieta rica en proteïnes, els 

dipòsits d’àcid úric s’incrementen notablement, així com el volum i nombre 

de uricòcits. No obstant, aquests dipòsits es redueixen ràpidament si 

seguidament les mateixes panderoles són alimentades amb una dieta pobra 

en proteïnes.  

Durant els últims anys, s’han seqüenciat els genomes de cinc soques de 

Blattabacterium,  tres d’elles simbionts de panderoles omnívores: Blattella 

germànica (BBge), Periplaneta americana (BPam) i Blaberus gigantenus 

(BBgi), membres de les famílies Blattellidade, Blattidae i Blaberidae 

respectivament. A més, també hi ha disponible el genoma dels simbionts de 

la panderola Cryptocercus punctulatus (Cryptocercidae) (BCpu) i del tèrmit 

Mastotermes darwiniensis (Termitidae) (BMda), ambdós xilòfags i l’últim  a 

més, l’únic membre de la família Termitidae que manté l’endosimbiont. Els 

genomes d’ aquests bacteris presenten les mateixes característiques que la 

resta d’endosimbionts: genomes reduïts (de 590 a 640 kb); baix contingut en 

GC (del 23.8 al 28.2%); manteniment de l’ordre gènic i una elevada taxa de 

substitucions nucleotídiques. Les soques simbionts de panderoles omnívores 

tenen la capacitat de sintetitzar tots els aminoàcids essencials. Per contra, 

tant BCpu com BMda han perdut l’habilitat de sintetitzar set d’aquests 

aminoàcids. En aquestes dos últimes soques, s’ha postulat que es la 

microbiota intestinal l’encarregada de proveir els aminoàcids essencials als 

hostes. 

Finalment, totes les soques de Blattabacterium tenen gens que codifiquen 

per a l’enzim ureasa. A més, les soques de BBge, BPam i BBgi posseeixen 
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els gens codificants per a tots els enzims del cicle de la urea, mentre que a 

BCpu i BMda s’ha perdut el gen argH, que codifica per a la argininosuccinat 

liasa, interrompent d’aquesta forma el cicle de la urea. La presència d’ureasa 

ha permès postular un model que explica tant l’amonotelisme, com el 

reciclatge del nitrogen de l’àcid úric emmagatzemat als uricòcits. La ureasa 

degradaria urea formant amoníac i CO2. L’amoníac generat deurà ésser 

incorporat al metabolisme per l’acció de l’enzim glutamina sintetasa. Ara bé, 

per a que el model funcione cal inferir la presència tant de la glutamina 

sintetasa i dels enzims encarregats de degradar l’àcid úric (urat oxidasa, 

allantoinasa i allantoicasa) a l’hoste, ja que no estan codificats a 

Blattabacterium. L’ anàlisi de balanç de fluxos (FBA)  realitzat sobre la 

xarxa metabòlica dels simbionts de B. germanica i P. americana assenyala 

que Blattabacterium té el potencial per a generar amoníac, quan s’optimitza 

la xarxa per a la producció de biomassa. S’ha proposat un model on es 

suggereix que el nitrogen excedent és emmagatzemat als uricòcits presents al 

cos gras en forma d’urat. En períodes de carència, aquests dipòsits seran 

mobilitzats per l’acció dels enzims urat oxidasa, allantoinasa i allantoicasa, 

que degradaran l’àcid úric a urea. Aquesta serà hidrolitzada a CO2 i amoníac 

per l’acció de la ureasa codificada a Blattabacterium. Finalment, l’amoníac 

alliberat per l’endosimbiont o bé serà incorporat al metabolisme del insecte 

gràcies a l’acció de la glutamina sintetasa de l’hoste, o bé serà excretat. 

 
Material i mètodes 

 

Seqüenciació, anotació i genòmica comparada amb les diferents soques de 

Blattabacterium 

 

Les mostres de cos gras obtingudes de femelles adultes de B. orientalis 

van ser enriquides amb Blattabacterium a través de diversos passos de 

centrifugació i filtració. Seguidament, abans de lisar les cèl·lules de 
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l’endosimbiont, la mostra va ser tractada amb DNasa I, per eliminar el DNA 

de l’hoste però no el de Blattabacterium, ja que aquest últim està protegit per 

la membrana bacteriana. Finalment el DNA genòmic de Blattabacterium es 

va obtenir utilitzant el mètode del CTAB (bromur de cetiltrimetilamoni). 

Una volta purificat el DNA, es va quantificar mitjançant espectrofotometria.  

La seqüenciació es va fer mitjançant el sistema GS-FLX de Roche. 

Addicionalment, es van generar llibreries que es van seqüenciar per el 

mètode de Sanger. Les seqüències resultants del procés de piroseqüenciació 

van ser assemblades amb el programa Newbler. Després es va crear una base 

de dades compatible amb el  programa GAP4, dintre del paquet Staden 

Package, per revisar l’assemblatge manualment. A aquestes base de dades 

van ser adjuntades les seqüències obtingudes pel mètode Sanger.  

Quan el genoma va ser tancat, es va començar el procés d’anotació. Les 

pautes de lectura oberta (ORF), es van identificar mitjançant el programa 

GLIMMER, encara que posteriorment van ser revisades manualment per 

identificar tant els codons d’inici com de parada, a més d’identificar 

possibles ORF obviades pel GLIMMER. L’assignació funcional d’aquestes 

ORF es va fer mitjançant la identificació d’ortòlegs a les altres soques de 

Blattabacterium i amb el Bacteroidete de vida lliure Flavobacterium 

psychrophilum mitjançant l’algorisme OrthoMCL. A més, es van fer cerques 

mitjançant BLASTP contra la base de dades no redundant de la Kyoto 

Encyclopedia of Genes and Genomes (KEGG). Finalment, també es van 

realitzar cerques mitjançant BLASTX i BLASTN a les regions intergèniques 

per tal d’identificar possibles pseudogens no identificats pel GLIMMER. A 

cada gen codificant per proteïnes (CDS) va ser assignat, sempre que fos 

possible,  una o diverses categories COG (Cluster of Orthologous Genes), un 

número de KO (KEGG orthology) així com codis EC (Enzyme Comission 

number). Per la identificació dels gens de RNA es va fer una cerca 

mitjançant el algorisme INFERNAL contra una base de dades de seqüències 
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i estructures de RNA. Davant la manca del gen dnaA o les caixes DnaA, 

l’origen de replicació es va determinar mitjançant la desviació en GC, 

utilitzant el programa OriginX. El contingut G+C per al total del genoma es 

va determinar mitjançant el programa GeeCee, dintre el paquet EMBOSS. 

En canvi per determinar el contingut G+C als diferents gens, així com a 

diferent posicions de codons es va utilitzar un script de  Perl. Finalmentm, la 

representació gràfica de la comparativa genòmica entre les sis soques de 

Blattabacterium seqüenciades es van fer mitjançant el paquet de R 

genoPlotR. 

Per a realitzar l’estudi comparatiu entre les sis soques de Blattabacterium 

el primer pas va ser l’obtenció del pan-genoma. La representació gràfica del 

pan-genoma es va fer amb R, utilitzant el paquet Vennerable. Els valors per 

a cadascun dels subespais es van extreure a partir de la taula d’ortologia 

obtinguda amb OrthoMCL. Es van realitzar corbes de rarefacció per veure la 

cobertura del pan-genoma amb sis soques, mitjançant la funció speccaccum 

del paquet Vegan per R. 

Per veure si la distribució de les diferents categories COG a les sis soques 

era estadísticament diferent es va realitzar una proba de la χ2, utilitzant com a 

referència la distribució a BBge. Les diferents soques també es van agrupar 

segons les distribucions COG utilitzant la funció heatmap.2 del paquet gplots 

per a R.  

Els efectes de la pèrdua dels tres primers gens del cicle de Krebs, als 

endosimbionts de B. orientalis i P. americana, es van mesurar mitjançant 

anàlisis estoiquiomètriques amb el programa METATOOL. 

Per determinar les relacions filogenètiques de les diferents soques de 

Blattabacterium, es va utilitzar un concatenat de tots els alineaments 

obtinguts amb Mafft de les proteïnes presents a les sis soques de 

Blattabacterium, que a més, tingueren un ortòleg a F. psychrophilum. El  

millor model evolutiu es va estimar amb ProtTest, i l’arbre es va obtenir per 
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màxima versemblança, amb 100 pseudorèpliques utilitzant el programa 

RAxML. Posteriorment, es van situar els esdeveniments de pèrdua gènica 

sobre la topologia resultant. 

Finalment es van realitzar dos tipus d’anàlisis evolutives, a partir 

d’aliniaments de nucleòtids obtinguts utilitzant aliniaments de proteïnes com 

a motlle. Primer es van calcular les taxes de substitució sinònima (dS) i no 

sinònima (dN), així con la ràtio entre ambdues (dN/dS), per tal de determinar 

el tipus de pressió evolutiva que està actuant sobre cada gen, utilitzant el 

programa YN00 dintre del PAML. Seguidament es va determinar, mitjançant 

un test de raó de versemblança (LRT), quins dels gens presents a totes les 

soques, estaven evolucionant sota el rellotge molecular. Per evitar el 

problema que la saturació de substitucions nucleotídiques pot suposar per 

aquest tipus d’anàlisi, es van eliminar les terceres posicions de cada codó 

així com els gens que tenien una taxa de substitució igual o superior a 2.5 

substitucions per lloc. El LRT es va realitzar tal com ve determinat al 

programa Baseml utilitzant el model evolutiu seleccionat per a cada 

aliniament mitjançant jModelTest. Es va determinar el valor de 

versemblança sota dues suposicions, primer assumint rellotge molecular i 

l’altra deixant cada rama evolucionar a una taxa diferent.  Tots aquells gens 

que no rebutjaren el rellotge molecular, i que a més tingueren un ortòleg a F. 

psychrophilum, es van utilitzar per a situar els temps de divergència dels 

diferent nodes de la filogènia de Blattabacterium, utilitzant com a calibrador 

el temps de la divergència entre les soques BBge/BBgi i la resta, determinat 

pel registre fòssil fa 140 milions d’anys. 

 
Anàlisi transcriptòmica i resposta al contingut en proteïna de la dieta  

 

Es va obtenir el cos gras i ovaris (tots dos teixits on Blattabacterium 

s’allotja) de femelles adultes, de 3 a 5 dies. Com a control es va utilitzar el 

teixit epitelial situat baix el pronot de nimfes a l’estadi 6 de 
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desenvolupament. La extracció de l’RNA total per a cadascun dels teixits es 

va fer, en condicions lliures de RNases amb el kit GenEluteTM Mammalian 

Total RNA Miniprep Kit de Sigma-Aldrich. Prop de 10 µg de RNA de 

cadascun dels teixits es van enviar a la empresa GATC-Biotech, on es va 

sintetitzar el cDNA utilitzant el kit Smart cDNA Construction Kit de 

clontech. Donat que hi havia mostres de tres teixits diferents, es va adjuntar 

una seqüencia marcadora a cadascuna de les llibreries per tal de diferenciar-

les en posteriors processos. Les mostres es van seqüenciar mitjançant 

piroseqüenciació al 454 de Roche, utilitzant la química Titanium. Com a 

resultat d’aquest procés vam rebre tres conjunts de dades, un  per cada teixit, 

on prèviament s’havien eliminat les seqüències de baixa qualitat. 

Seguidament es van identificar i eliminar les seqüencies provinents de 

Blattabacterium, mitjançant un mapeig amb MEGABLAST contra una base 

de dades formada pel genoma de BBge. Finalment, l’assemblatge es va fer 

amb el MIRA 3.2 treballant amb el mode EST. 

Els contigs obtinguts de l’assemblatge es van anotar amb Blast2GO; 

aquest programa inicia el procés de anotació mitjançant cerques per 

BLASTX contra la base de dades no-redundant del NCBI, seguidament 

assigna termes de Gene Onthology (GO) i codis enzimàtics a cadascuna de 

les seqüències. A partir de les dades obtingudes de la assignació de números 

EC, Blast2GO ens ofereix la possibilitat de generar mapes de rutes 

metabòliques utilitzant els mapes de la base de dades KEGG. Aquest mapes 

van ser curats manualment amb l’ajuda de las base de dades MetaCyc per 

tancar buits a les diferents rutes. Finalment es va comparar la distribució de 

termes GO entre els transcriptomes mitjançant un test de Fischer de dos 

cues. 

Durant l’anàlisi del transcriptoma, es van identificar seqüències gèniques 

per a tots tres gens implicats en la síntesi i degradació de l’àcid úric a urea, 

(xantina deshidrogenasa, urat oxidase, allantoinasa i allantoicasa), així com 
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per a la glutamina sintetasa. Per estudiar la resposta d’aquests gens a la 

quantitat de proteïna ingerida a la dieta, es van dissenyar tres preparats 

alimentaris per a les panderoles amb diferents continguts en proteïna: del 0, 

5 i 50% respectivament. L’aliment per a gossos fou control (25%). Femelles 

just acabades de mudar a forma adulta foren separades de la població general 

i es van mantenir durant dos dies amb la dieta control. Al tercer dia es va 

substituir la dieta control per un dels preparats abans esmentats per dos dies 

més. Al quart dia d’ençà que van mudar a adultes, es van viviseccionar per 

obtenir el cos gras i els ovaris. Es va extreure l’RNA total d’ambdós teixits, i 

es va sintetitzar el cDNA utilitzant hexàmers al atzar. D’aquesta forma es 

sintetitza el cDNA a la vegada de teixits de l’hoste i del bacteri. L’expressió 

relativa dels gens involucrats en el metabolisme de l’àcid úric a B. 

germanica i ureasa a Blattabacterium, així com la glutamina sintetasa de 

l’hoste es va mesurar mitjançant PCR quantitativa. Com a control intern es 

van gastar els gens de l’actina i el factor d’elongació EF-TU segons el gen 

d’interès fos de l’eucariota o del simbiont, respectivament. L’anàlisi 

estadística es va fer amb el programa REST. 

 
Resultats  
 
Seqüenciació i anàlisi comparada de  Blattabacterium endosimbiont de B. 
orientalis 

 

El genoma de Blattabacterium endosimbiont de B. orientalis, està 

composat per un cromosoma de 634.449 bp i un plasmidi de 3735 bp. En 

total s’han anotat 627 gens (set d’ells al plasmidi) distribuïts de la següent 

forma: 579 codifiquen per a proteïnes, 39 per gens de RNA (33 rRNA, un 

operó ribosòmic, i tres ncRNA), finalment 9 són pseudogens. Igual que les 

altres soques de Blattabacterium, el contingut G+C es molt baix (28,2%). 

Com a la majoria dels endosimbionts en estats avançats, l’ordre gènic es 

manté a totes les soques, i tan sols s’han descrit tres reordenacions, dos a la 
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soca simbiòtica de M. darwiniensis (una d’elles de 242 kb i altra de 2.9 kb) i 

una tercera de unes 19 kb a les soques BPam i BBor. Tot i que els genomes 

dels endosimbionts de insectes solen ser reduïts, a la soca BBge es van 

trobar nou gens duplicats. D’aquests hi ha cinc que mantenen ambdues 

còpies a totes les soques (rodA, uvrD, lpdA, miaB i argD). El fet que s’hagen 

mantés al llarg de la història evolutiva de Blattabacterium, ens indica que la 

seua presència podria tenir cert significat fisiològic, i podrien ser considerats 

com ecoparàlegs.  

El pangenoma de Blattabacterium consta de 655 gens (615 CDS, 3 

rRNA, 34 tRNA i 3 ncRNA). La corba de rarefacció mostra que ha arribat a 

la saturació. El core (tots aquells gens presents a les 6 soques) per contra 

consta de 539 gens (502 CDS, 3 rRNA, 31 tRNA i 3 ncRNA), i representa el 

82.3% del contingut gènic del pan-genoma. Si treiem de l’anàlisi les soques 

simbionts de les panderoles xilòfagues, la proporció del pan-genoma coberta 

per el core puja fins al 93.4%. Aquestes dades són un clar indicador del grau 

d’estabilitat assolit per l’associació entre Blattabacterium i les paneroles, ja 

que tot i dur evolucionant per separat més de 140 milions d’anys el contingut 

gènic és pràcticament idèntic a les diferents soques. L’estabilitat a 

Blattabacterium es destaca quan comparem les dades abans esmentades amb 

associacions amb una edat similar, com la de Buchnera amb els pugons, on 

el core representa el 74% del pangenoma. Els valors de Blattabacterium són 

similars als de Blochmannia, endosimbionts de les formigues del gènere 

Camponotus, que tan sols porten evolucionant per separat uns 20 milions 

d’anys.  

L’anàlisi estadística sobre el perfil funcional, indica que no hi ha 

diferències significatives respecte a la distribució de les categories COG als 

sis genomes, tot i que BCpu i BMda han perdut gran nombre de gens 

implicat en el metabolisme d’aminoàcids (Categoria E). L’anàlisi 

d’agrupació que es va fer, agrupa les soques BCpu i BMda amb el core, 
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mentre que les altres es van agrupar junt al pan-genoma. Al heat-map es veu 

clarament com les categories COG millor representades son la J (traducció) i 

la E (Metabolisme i transport de aminoàcids), tot i que aquesta última està en 

una proporció menor tant en BMda com en BCpu.  

Amb 465 gens presents a les 6 soques que a més posseïen un ortòleg a F. 

psychrophilum es va fer una reconstrucció filogenètica per màxima 

versemblança. Es van aliniar les seqüències proteiques per a cadascun 

d’aquests gens. Després els aliniaments es van concatenar donant com a 

resultat un aliniament de 174.707 llocs. El millor model evolutiu estimat per 

ProtTest va ser el CpREV+G. La filogènia resultant va deixar BBge i BBgi 

com a grups basals corresponent a la superfamília Blaberoidea. Les altres 

quatre soques, de la superfamília Blattoidea, es van agrupar, formant dos 

subgrups, un on s’incloïen BMda i BCpu, mentre que a l’altre van anar a 

parar BBor i BPam. Aquestes dades coincidien amb la filogènia obtinguda 

per als hostes on es passaven les termites d’ordre a família. La topologia 

resultant d’aquesta anàlisi es va utilitzar per situar tots els esdeveniments de 

pèrdua gènica al llarg que la història evolutiva d’aquest simbionts. Així es 

van identificar un total de 183 pèrdues gèniques, 70 d’elles, esdeveniments 

únics. Per altra banda 43 gens es deuen d’haver perdut al menys en dues 

ocasions durant l’evolució de Blattabacterium. D’aquesta anàlisi es pot 

deduir que la pèrdua de la capacitat de sintetitzar aminoàcids essencials en 

BMda i BCpu deu haver ocorregut prompte al llarg la evolució de l’ancestre 

comú entre ambdues soques. La pèrdua dels tres primers gens del cicle de 

Krebs deu haver ocorregut abans la separació dels llinatges BBor i BPam. 

Pel que fa a la capacitat per assimilar sulfat inorgànic, s’ha perdut en 

almenys 3 ocasions, una durant al evolució de les panderoles de la família 

Blattidae, altra durant la evolució de BCpu i finalment una tercera volta al 

llarg de la evolució de BBgi.  
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Entre els 502 CDS presents al core, 296 no rebutgen la hipòtesi de 

rellotge molecular, d’aquests 275 tenen un homòleg a F. psychrophilum. Per 

la datació dels temps de divergència es van utilitzar finalment 224 gens, 

aquells que continuaven sense rebutjar la hipòtesi de rellotge molecular 

després de l’addició del grup extern a l’anàlisi i que, a més, tingueren una 

taxa de substitucions nucleotídiques per lloc menor de 2,5. Així es va 

determinar que la divergència entre els simbionts de P. americana i B. 

orientalis va tenir lloc fa uns 12,3 ± 7,6 Mya. Per contra les divergències 

entre BBge i BBgi, i BCpu i BMda fou estimada en 89,5 ± 17,7 Mya i 87,0 ± 

18,8 Mya respectivament. Finalment les anàlisis de la raó dN/dS indiquen 

clarament com la selecció purificadora és la que està actuant sobre la gran 

majoria de gens. 

 

Anàlisi del transcriptoma 
 

Com a resultat de la seqüenciació es van obtenir 554.403 lectures per als 

tres teixits analitzats, a raó de 164.677 per al cos gras, 166.672 per als ovaris 

i 223.054 per a l’epiteli. Entre les seqüencies del cos gras un 6,42% eren de 

transcrits provinents de Blattabacterium, en canvi, tant als ovaris com a 

l’epiteli, tan sols van ser identificades 104 i tres lectures originaries de 

l’endosimbiont respectivament. Del procés d’assemblatge d’aquestes dades 

es van obtenir 11.905 contigs per al transcriptoma del cos gras, 17.159 

contigs per a l’ovari i 23.318 per a l’epiteli.  

Per 5.848 dels contigs obtinguts del cos gras, un 49,1% del total, hi va 

haver resultats positius a les cerques per BLASTX contra la base de dades no 

redundant del NCBI.  Ara bé, tan sols 3.993 van ser correctament anotats, 

amb assignació de termes GO o codi enzimàtic. Als ovaris, 8.052 contigs 

(46,9%) van tenir resultats positius a la cerca mitjançant BLASTX, i com al 

cas del cos gras, tan sols 5.376 foren correctament anotades. Al 



187 
 

transcriptoma de l’epiteli, la proporció de contigs amb similitud significativa 

a les bases de dades és menor que als altes dos teixits, així tan sols 6.396 

contigs, un 27,4%, van tenir resultats positius a las cerques per similitud, i 

d’elles tan sols 3.623 van ser correctament anotades.                            

Al cos gras, es va assignar al menys un codi enzimàtic a 1.146 seqüències 

diferents. Amb aquesta informació es van cercar els transcrits dels enzims 

que participen en les principals rutes metabòliques als animals, 

glucòlisi/gluconeogènesi, ruta dels fosfats de pentosa i el cicle de Krebs. Es 

van identificar huit dels deu gens implicats en la glucòlisi. La 

gluconeogènesi comparteix la major part dels enzims de la glucòlisi amb 

l’excepció de tres enzims irreversibles, la hexocinasa, la fosfofructocinasa i 

la piruvat cinasa que són reemplaçats en aquesta ruta per la glucosa-6-

fosfatasa, fructosa-bifosfatasa i la parella formada per la piruvat-cinasa/PEP 

carboxicinasa, es van detectar transcrits per aquests tres últims enzims. Tot i 

que cal tenir en compte que aquestes dues rutes no sempre estaran activades 

al mateix temps. Pel que fa a la ruta dels fosfats de pentosa, es van 

identificar transcrits per sis dels set gens implicats. Finalment, del cicle de 

Krebs tan sols per un dels enzims, l’aconitasa, no es van trobar transcrits del 

seu gen. 

A l’ovari, tant les rutes per a la glicòlisi/gluconeogènesi com per als 

fosfats de pentosa mostraven el mateix perfil que al cos gras, en canvi per al 

cicle de Krebs hi havia transcrits de tots els gens implicats. Finalment a 

l’epiteli, per a la glucòlisi/gluconeogènesi a més dels tres enzims que tampoc 

van ser detectats als anteriors teixits, cal afegir que no es va trobar cap 

transcrit del gen de l’hexocinasa. A la ruta dels fosfats de pentosa, a part de 

no detectar transcrits per a la ribulosa-5-fosfat-isomerasa, tampoc se’n van 

trobar per a la 6-fosfoglucolactonasa i la transcetolasa. Del cicle de Krebs hi 

havia transcrits de tots els gens menys de la succinil-CoA-sintetasa. 
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Durant la reconstrucció del metabolisme de Blattabacterium, i 

posteriorment a través de les anàlisis per FBA, es va veure que ella bacteri 

necessitaria un aportació externa d’aminoàcids no essencials com 

l’asparagina, glicina, glutamina i prolina, així com altres compostos com el  

porfobilinogen i la pantoteina-4-fosfat. Al cos gras es van trobar transcrits de 

tots els gens codificant de enzims implicats en la síntesi de tots quatre 

aminoàcids, així com gran part de la ruta per a síntesi de porfobilinogen. A 

mes, s’ha detectat transcrits per al gen de la pantotenat cinasa necessari per a 

la síntesi de la pantoteïna-4-fosfat. Als ovaris, hi ha transcrits necessaris per 

obtenir els enzims per la síntesi d’asparagina i glutamina. No obstant, no 

s’han detectat transcrits per la glutamat-semialdehid-deshidrogenasa, 

implicada en la síntesi de prolina, ni per a la fosfoserina-fosfatasa, que 

participa  a la síntesi de glicina. Finalment a l’epiteli tan sols s’ha trobat 

completa la ruta per a la síntesi de glutamina. 

Finalment, al cos gras es van detectar transcrits del gens codificant per a 

la síntesi (xantina-deshidrogenasa) i degradació (urat-oxidasa, allantoinasa i 

allantoicasa) de l’àcid úric. Aquesta ruta, essencial per poder explicar l’ús 

que les panderoles fan de l’àcid úric com a reservori de nitrogen, tan sols es 

troba completa al cos gras. De fet cap d’aquest transcrits ha estat detectat a 

l’epiteli, i tan sols transcrits per la urat oxidasa i la al·lantoicasa s’han 

detectat a l’ovari. 

Les anàlisis estadístiques comparades fetes sobre l’ anotació del cos gras i 

l’ovari, indiquen, com era d’esperar, que el cos gras està enriquit en termes 

GO associats a la producció i conversió de metabòlits energètics, així com 

l’emmagatzemament i mobilització de substàncies de reserva. En canvi, a 

l’ovari destaquen tots les processos relacionats amb la regulació de la 

expressió gènica, control del cicle cel·lular, o localització cel·lular. 
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Resposta a diferent nivells de nitrogen a la dieta 
 

L’expressió del gen per a la urat-oxidasa es veu significativament 

incrementada als animals que són alimentats amb una dieta sense o amb 

baixa proporció (5%) de proteïnes. Aquest augment es detecta tant al cos 

gras com a l’ovari. Cap dels altres gens implicats en la degradació de l’àcid 

úric a urea, així com la ureasa de Blattabacterium, veu modificat el seu 

nivell d’expressió segons la quantitat de proteïna a la dieta. Finalment, la 

glutamina-sintetasa, encarregada de recuperar el amoni alliberat com a 

conseqüència del catabolisme de la urea, veu el seu nivell d’expressió 

incrementat, tan sols al cos gras, quan el animal està alimentat amb una dieta 

sense cap traça de proteïna. A més, quan el nivell de proteïnes ingerit es molt 

elevat, baixa la seua expressió a l’ovari.  

 
Conclusions 

 

Durant la present tesi, s’ha seqüenciat una nova soca de Blattabacterium, 

simbiont de la panderola B. orientalis, i s’ha comparat amb les soques 

prèviament seqüenciades. Aquests estudis han confirmat l’extrema estabilitat 

de l’arquitectura genòmica a Blattabacterium tot i que les diferents soques 

porten evolucionant per separat des de fa més de 140 milions d’anys. El 

contingut gènic a penes a variat al llarg de tot aquest temps, sobretot si tan 

sols ens fixem en aquelles soques simbiòtiques d’espècies omnívores. Així 

es pot assumir que el procés de reducció es va donar d’una forma ràpida just 

després de la infecció de l’avantpassat de totes les panderoles i tèrmits, 

arribant ràpidament a una espècie de genoma “òptim” capaç de satisfer les 

necessitats de l’hoste, molt probablement relacionades amb el metabolisme 

del nitrogen. De fet, la major part de les pèrdues gèniques afecten proteïnes 

del metabolisme més perifèric o pobrament caracteritzades. La presència 

d’un nombre destacable de gens que segueixen el rellotge molecular i 
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acumulen un nombre baix de substitucions ha permès establir els temps de 

divergència de les diferents soques: les soques BCpu i BMda haurien 

divergit fa uns 87 milions d’anys, mentre que les dues soques de la 

superfamília Blaberoidea ho haurien fet fa uns 90 milions d’ anys. La 

divergència entre BBor i BPam seria molt més propera, fa uns 12 milions 

d’anys. 

L’anàlisi del transcriptoma a revelat que al cos gras s’expressen els gens 

que codifiquen els enzims necessaris per produir els aminoàcids que 

Blattabacterium necessita adquirir de l’exterior. A més, s’han trobat els 

transcrits dels gens implicats en la degradació del àcid úric a urea, així s’ han 

identificat les eines que fan possible que les panderoles utilitzen l’àcid úric 

com un reservori de nitrogen. Finalment, s’ha comprovat com davant d’un 

període d’escassetat en nitrogen, s’incrementa la transcripció per al gen urat-

oxidasa. No obstant no s’han identificat canvis significatius als altres gens 

implicats. Per altra banda, el gen per a la glutamina-sintetasa, que 

s’encarregaria d’incorporar l’amoníac alliberat per Blattabacterium al 

metabolisme, també mostra un increment en la seua expressió. 

        
 
 


