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Un viaggio non può iniziare senza un buon sostegno alle spalle, Mammisia &

Peppino, mi avete lasciato partire e sempre mi sostenete, senza voi non avrei

mai iniziato neanche il cammino. Se mai dovessi consigliare un’ agenzia di

viaggi vi suggerirei l’agenzia “Belli-Antonio-David”, non solo mi hanno ven-

duto il biglietto facilmente ma sono stati presenti in ogni tappa del percorso,
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Introduction

Since ancient times, fishing has been a major source of food for humanity and a

provider of employment and economic benefits to those engaged in this activity.

However, with increased knowledge and the dynamic development of fisheries

it was realized that aquatic resources, although renewable, were not infinite

and needed to be properly managed if their contribution to the nutritional,

economic and social well-being of the growing world’s population was to be

sustained (Garćıa et al., 2000).

In recent years, world fisheries have become a dynamically developing sector

of the food industry, and coastal states have striven to take advantage of their

new opportunities by investing in modern fishing fleets and processing factories

in response to growing international demand for fish and fishery products. It

became clear, however, that many fishery resources could not sustain an often

uncontrolled increase in exploitation.

Concerns have been expressed about the contribution of fisheries to sustain-

able development and about overfishing, excess catching capacity, the depletion

of some stocks, human-induced changes in ecosystems, as well as the increase

and globalization of the fish trade with its potential impact on local supplies

and equity.

In order to address these problems, the United Nations Food and Agri-

culture Organization (FAO) has called for the application of an Ecosystem

Approach to Fisheries Management (EAFM), which aims to achieve a sustain-

xiii



xiv Introduction

able exploitation of commercial fisheries, providing specific consideration of the

interactions between fishing gears and marine ecosystems (Cotter et al., 2009).

EAFM takes into account that fisheries are embedded into the environment and

cannot be managed in isolation (Gascuel et al., 2012). It has to be considered

as the application of sustainable development principles to the fishing sector,

combining ecological sustainability, economic viability and social fairness.

Nevertheless, while it is widely recognized that fishing is important to sus-

tainable development and that its contribution could be improved, the amount

of objective scientific information about fishing is limited and what exists is

difficult to access.

The reliability of scientific advice for the management of natural resources is

highly dependent on the quantity and quality of data that are available for sci-

entific assessment and interpretation (Jennings and Polunin, 1996). Although

large amounts of certain types of data about marine ecosystems are readily

available, as in the case of satellite-derived remote sensing data or observations

based on automatic telemetry, it is far more common to have to deal with lim-

ited and irregularly spaced data (e.g. on fish and other marine fauna), and the

data may not always be strictly comparable due to variations in environmental

conditions between sampling periods.

The main reason is that in fishery research the collection of data is both

time-consuming and expensive. Data are difficult to obtain, and the prob-

lems increase when the goal of the research is to study long time series on

a macro-scale, with the purpose of examining changes in the dynamics of a

whole ecosystem. In all these cases that require large databases, with an ade-

quate coverage in space and time of a variety of variables, information is almost

non-existent.

In addition, information about the status of fisheries can be derived from

different sources such as fishery-independent surveys, fishery-dependent surveys

(skipper logbooks and/or observers) and FAO official landings (Vasconcellos

and Cochrane, 2005). Each of these sources provides different types of infor-

mation with additional details, and must be carefully selected according to the
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type of study and the objectives pursued.

Fishery-independent surveys rely mostly on expensive research campaigns

performed over relatively short periods of time. Survey data are considered to

be of superior quality because they are independent of management measures,

standardized fishing procedures are used, and both sampling statistics and the

biological information on target species are taken into consideration during

survey design (National Research Council, 2000). However, they generally have

a limited coverage in space and time (both in terms of seasonality and the

number of years of data), which could lead to biased and imprecise estimations

(Hilborn et al., 1992). In brief, there are two main issues regarding fishery-

independent surveys: the one of timing in relation to the seasonal cycle and

location of the target species (leading to unrepresentative sampling, i.e. bias)

and the fact that only a limited amount of data can be collected.

Fishery-dependent surveys can provide a long time series, wide spatial cov-

erage all year round, and information on a large variety of target species, gear

types, landing sites and distribution channels (Lunn and Dearden, 2006). Data

of this kind sometimes lack particular details such as the location of fishing

grounds and species identity (catches are mostly identified to a higher taxo-

nomic level), and then there are issues of bias due to constraints imposed by

management and the deliberate misreporting of catches. Some of the disadvan-

tages of fishery-dependent surveys can by overcome by using on-board observers

but inevitably only a small fraction of fishing activity can be covered in this

way.

FAO official landings are often the only source of data available due to their

connection to the economy and business. The main issue in this source of infor-

mation is that in many fisheries (official) landings and the actual catch are not

necessarily the same. Large amounts of unreported or underreported catches,

discards and illegal catches are not recorded in landing data (Vasconcellos and

Cochrane, 2005), and not all landings enter official statistics (e.g. black land-

ings, sales by small-scale fisheres directly to consumers, etc.). Furthermore,

while previous data sources imply a spatial reference where species have been
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captured, the FAO official landings have no georeferencing.

However, the data collected by on-board observers and that from research

surveys have relatively recent time series, while official landing data have been

available for most FAO countries since 1950 (www.fao.org).

The quantity and quality of information varies depending on the country of

the fisheries studied. In most countries, detailed information is available and

management processes are in place for some important fisheries, while others

are poorly documented and hardly managed at all. In particular, but not

exclusively, developing countries reflect these data-poor situations, given that

the resources and infrastructure needed to collect relevant data, assess system

status and implement management requirements have not increased at the same

time as the recent rise international trade in fishery products.

Moreover, the need to move towards an EAFM has resulted in an increase

in the need for data at different spatio-temporal scales and many areas are

currently in a data-poor situation for the purposes of implementing it (Bianchi,

2010). The problems increase when the goal is to study long time series on a

macro-scale, with the purpose of examining changes in the dynamics of a whole

ecosystem. In all these cases, where sophisticated ecosystem models cannot be

applied due to the lack of detailed data, the first step towards applying the

EAFM should be to set more realistic goals and use flexible tools that can work

effectively despite uncertainty and limited information (Trenkel et al., 2007).

Within this context, the main aim of this thesis is to analyze the differ-

ent available sources of information on fishery resources, in order to propose

new methodologies for efficient fishery management both in terms of data-poor

situations, macro-scale/long time series studies, and micro-meso-scale detailed

studies.

Several scenarios have been addressed depending on the source of fisheries

data used and the objective pursued. For each one of them, a specific method-

ology has either been developed (when there was no available method) or de-

scribed (when there was), showing its strengths and limitations, and discussing

its implications for the fishery management.
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This thesis is organized as follows. After this introduction, Chapter 1

reviews the concept and main aims of the Ecosystem Approach to Fisheries

Management (EAFM) in detail, introducing the fishing issues that will be dis-

cussed in the thesis, outlining the methodologies described, the different fishing

datasets and the types of spatial-temporal scales with which these issues can

be addressed.

In Chapter 2 we present two different methodological approaches to studing

fishing exploitation through the analysis of selected ecological indicators. These

methodologies are very useful in data-poor situations, when the only available

source of data are fish market landings, without any additional information,

and for macro-scale and long data series studies. The first approach allows

us to assess the trends of ecological indicators over time through bootstrap

and smoothing tecniques, highlighting shifts, if there are any, in the ecosystem

trophic dynamic due to fishing exploitation. The second approach focuses on

how the distributions of ecological indicators evolve over time, through the

nonparametric estimation of Gaussian kernel density functions and, according

to this, show what the probable long run distribution might be. Three different

case studies are presented to illustrate these methods.

In Chapter 3 we present a Bayesian hierarchical spatial model to esti-

mate and predict the distribution of fishery non target species using fishery-

dependent data. In all these cases, the selection of the sampling locations does

not depend on the values of the spatial variable and so these are stochastically

independent of the field process. As a result, the species’ occurrence is an

unbiased indicator of its presence/absence pattern. We present three different

types of practical examples. The first two examples use presence/absence data

as response variables to estimate and predict the distribution of pelagic and

demersal species in specific studied areas. In contrast, the third example is

based on a Gaussian response variable in order to address a very topical issue

in fisheries: the spatio-temporal distribution of discards.

In Chapter 4, we present a Bayesian hierarchical spatial model to estimate

the distribution of fishery target species using fishery-dependent data. In these
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specific cases, in which the data are collected following a preferential sampling,

predicting the distribution of the target species using traditional application

of geostatistical methods, could lead to biased predictions. The basic idea is

to interpret the data as a marked point pattern, where the sampling locations

form a point pattern and the measurements taken in those locations are the

marks. As a practical example, we model the abundance of European hake

(Merluccius merluccius) in the Gulf of Alicante.

In Chapter 5 we propose a Bayesian hierarchical spatial-temporal model

to identify fish nurseries for fisheries management purposes. We applied our

approach to juvenile European hake (Merluccius merluccius) in the central

Mediterranean Sea. Time series of fishery-indipendent data were used to map

juvenile hake distribution with Bayesian kriging, and to verify density hot-spots

persistence.

Finally, in Chapter 6 we present some concluding remarks and future lines

of research.
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Desde la antigüedad, la pesca ha sido una fuente importante de alimentos para

la humanidad, aśı como fuente de empleo y beneficios económicos para quienes

se dedican a esta actividad. Sin embargo, con el aumento de los conocimientos

cient́ıficos y la evolución dinámica de la pesca se hizo evidente de que los re-

cursos acuáticos, aunque renovables, no eran infinitos y era necesario gestionar

adecuadamente su contribución al bienestar nutricional, económico y el bienes-

tar social de la población mundial para un crecimiento y desarrollo sostenible

(Garćıa et al., 2000).

En los últimos años, la pesca mundial se ha convertido en un sector dinámico

y de desarrollo de la industria alimentaria. Los estados costeros han procurado

aprovechar sus nuevas oportunidades invirtiendo en flotas pesqueras modernas

y fábricas de procesamiento en respuesta a la creciente demanda internacional

de pescado y productos pesqueros. Sin embargo, se ha constatado que la ex-

plotación pesquera no puede mantener un aumento incontrolado sin provocar

un perjuicio a la salud de los recursos pesqueros.

En diversos foros se expresa gran preocupación acerca de la contribución

de la pesca al desarrollo sostenible, la sobrepesca, el exceso de capacidad de

las flotas, el agotamiento de algunas poblaciones, los cambios inducidos por el

hombre en los ecosistemas, aśı como el aumento y la globalización del comercio

pesquero con su potencial impacto en el abastecimiento local.

Para hacer frente a estos problemas, las Organización de las Naciones Unidas

xix
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para la Agricultura y la Alimentación (FAO) ha pedido la aplicación de un en-

foque ecosistémico a la gestión de la pesca (EAFM), cuyo objetivo es lograr

una explotación sostenible de la pesca comercial, que tenga en cuenta las in-

teracciones entre las artes de pesca y los ecosistemas marinos (Cotter et al.,

2009).

Un EAFM tiene en cuenta que la pesca es una componente del ecosistema y

no se puede gestionar de forma aislada (Gascuel et al., 2012). Un EAFM debe

considerar la aplicación de los principios del desarrollo sostenible en el sector

pesquero, la combinación de la sostenibilidad ecológica, la viabilidad económica

y la equidad social.

No obstante, aunque se reconoce que la pesca es importante para el de-

sarrollo sostenible y que su contribución puede ser mejorada, la cantidad de

información cient́ıfica objetiva sobre la pesca es limitada y a menudo la infor-

mación que existe es de dif́ıcil acceso.

La fiabilidad del asesoramiento cient́ıfico para la gestión de los recursos na-

turales depende en gran medida de la cantidad y calidad de los datos disponibles

para la evaluación cient́ıfica y su interpretación (Jennings and Polunin, 1996).

Es cierto que hay una enorme cantidad de datos sobre los ecosistemas marinos

y que además son fácilmente accesibles a través de plataformas online (como

por ejemplo los datos de teleobservación obtenidos por satélite y observaciones

basadas en telemetŕıa automática). Sin embargo, la gran mayoŕıa de los ca-

sos tenemos que lidiar con datos limitados e irregularmente espaciados (por

ejemplo, de peces y otra fauna marina). Además, los datos no siempre son

directamente comparables debido a las variaciones en las condiciones ambien-

tales entre peŕıodos de muestreo. La razón principal es que en investigación

pesquera la recogida de datos es comúnmente costosa tanto en tiempo como en

dinero. Además, los problemas aumentan cuando el objetivo de la investigación

consiste en examinar los cambios en la dinámica de todo un ecosistema medi-

ante el estudio de largas series temporales en una escala macro-espacial. En

estos casos, para los que se requiere grandes bases de datos con una cobertura

adecuada en el espacio y tiempo de una variedad de variables, la información
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es casi inexistente.

Por otra parte, la información sobre el estado de la pesca se puede derivar de

muestreos diferentes tales como los muestreos independientes de las pesqueŕıas

y los muestreos dependientes de la pesca, aśı como los datos de desembarcos de

la FAO (Vasconcellos and Cochrane, 2005). Cada una de estas fuentes ofrece

diferentes tipos de información, que debe ser cuidadosamente seleccionada en

función del tipo de estudio y los objetivos perseguidos.

Los muestreos de datos independientes de la pesqueŕıa se basan principal-

mente en campañas de investigación realizadas durante peŕıodos de tiempo

relativamente cortos. Estos datos se consideran de calidad superior, ya que

son independientes de las limitaciones económicas del muestreo dirigido, uti-

lizan procedimientos normalizados de artes de pesca, y la información biológica

sobre las especies se tiene en cuenta durante el diseño de muestreo (National

Research Council, 2000). Sin embargo, por lo general, tienen una cobertura

limitada en el espacio y el tiempo (tanto en términos de estacionalidad y el

número de años de datos), lo que podŕıa dar lugar a estimaciones sesgadas e

imprecisas (Hilborn et al., 1992). En resumen, hay dos problemas principales

con respecto a los datos independientes de la pesca: la del tiempo en relación

con el ciclo de las estaciones y la ubicación de las especies objetivo (que con-

duce a un muestreo representativo, es decir, sesgo) y el hecho de que sólo una

cantidad limitada de datos puede ser recogidos.

Los datos dependientes de la pesqueŕıa suelen proporcionar series temporales

mucho más largas, una amplia cobertura espacial durante todo el año, aśı

como información sobre una gran variedad de especies objetivo, artes de pesca,

lugares de desembarque y canales de distribución (Lunn and Dearden, 2006).

Los datos de este tipo a veces carecen de detalles espećıficos, como la ubicación

de las zonas de pesca y la identidad de las especies (las capturas son en mucho

casos identificados a un nivel taxonómico superior), aśı como problemas de

sesgo debido a las limitaciones impuestas por la dirección y la información

errónea deliberada de las capturas. Algunas de las desventajas de los datos

dependientes de la pesca se pueden superar mediante el uso de observadores a
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bordo, pero, inevitablemente, sólo una pequeña parte de la actividad pesquera

se puede cubrir de esta manera.

Los desembarcos registrados por la FAO son a menudo la única fuente de

información disponible debido a su conexión con las actividades económicas.

La problemática principal de esta fuente de información es que en muchas

pesqueŕıas los desembarcos y las capturas no son necesariamente lo mismo.

Grandes cantidades de capturas no declaradas, descartes y capturas ilegales no

se registran en los registros de los desembarques (Vasconcellos and Cochrane,

2005), y no todos los desembarques entran en las estad́ısticas oficiales (por

ejemplo, las ventas directas a los consumidores de individuos que son inferiores

a las tallas mı́nimas, etc.). Además esta topoloǵıa de datos no tiene ninguna

referencia espacial de donde las capturas han sido efectuadas, a diferencia de

las dos fuentes de datos precedentemente mencionadas.

Sin embargo, los datos recogidos por los observadores a bordo y en campañas

cient́ıficas disponen de series temporales relativamente recientes, mientras que

los datos oficiales de la FAO son disponible (para la mayoŕıa de páıses de la

FAO), desde el 1950 (www.fao.org).

La cantidad y calidad de la información vaŕıa según el páıs y las pesqueŕıas

estudiadas. En la mayoŕıa de los páıses, hay información detallada accesible

y que además está bien procesada. Aun aśı existen otros páıses donde la in-

formación es escasa o inexistente. En particular, pero no exclusivamente, los

páıses en desarrollo reflejan estas situaciones de escasez de datos, dado que los

recursos y las infraestructuras necesarias para una buena recogida de los datos

y para su posterior evaluación de manera, no han aumentado al mismo tiempo

que el reciente aumento del comercio internacional de los productos pesqueros.

Por otra parte, la necesidad de avanzar hacia un EAFM se ha traducido

en un aumento de la necesidad de datos a distintas escalas espacio-temporales

y muchas áreas se encuentran actualmente en una situación de escasez datos

para su aplicación práctica (Bianchi, 2010). Los problemas aumentan cuando

el objetivo de los estudios es el análisis de series temporales largas o con una

macro escala espacial, con el fin de examinar los cambios en la dinámica de
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todo un ecosistema. En todos estos casos, donde los modelos ecosistémicos

complejos no pueden ser aplicados debido a la falta de datos detallados, el

primer paso hacia la aplicación del EAFM es establecer objetivos más realistas

y utilizar herramientas flexibles que pueden funcionar con eficacia a pesar de la

incertidumbre y la información limitada (Trenkel et al., 2007).

Dentro de este contexto, el objetivo principal de esta tesis es analizar las

diferentes fuentes de información disponibles sobre los recursos pesqueros, con el

fin de proponer nuevas metodoloǵıas para una gestión pesquera eficaz tanto en

situaciones de escasez de datos, de macro escalas espaciales, de series temporales

largas y estudios más detallados.

Varios escenarios se han tratado según los datos pesqueros utilizados y el

objetivo perseguido. Para cada uno de ellos, una metodoloǵıa espećıfica ha

sido bien desarrollada (cuando no hab́ıa ningún método disponible) o descrita

(cuando ya exist́ıa una), mostrando sus ventajas y limitaciones, y explicando

cuales podŕıan ser sus implicaciones para la gestión de la pesca.

El resto de esta tesis se organiza de la siguiente manera. Después de esta

introducción, el Caṕıtulo 1 revisa en detalle el concepto y los principales ob-

jetivos del enfoque ecosistémico de la gestión de la pesca (EAFM), introduce

las problemáticas en ecoloǵıa pesquera que se discutirán en la tesis, describe

las metodoloǵıas utilizadas, los distintos tipos de datos pesqueros y los tipos

de escalas espacio-temporales con los cuales serán abordadas las problemáticas

pesqueras mencionadas.

En el Caṕıtulo 2 se presentan dos enfoques metodológicos diferentes para es-

tudiar la explotación pesquera a través del análisis de unos indicadores ecológi-

cos seleccionados. Estas metodoloǵıas son muy útiles en situaciones de escasez

de datos, cuando la única fuente de datos son los desembarques pesqueros ofi-

ciales, sin ningún tipo de información adicional, y cuando el objetivo del estudio

es utilizar una macro escala espacial y series temporales largas. El primer en-

foque permite evaluar las tendencias de los indicadores ecológicos a través del

tiempo, a través técnicas de suavizado y bootstrap. Estas técnicas permiten

evidenciar los cambios debido a la explotación pesquera, si los hay algunos, en
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la dinámica trófica de los ecosistemas. El segundo enfoque se centra en cómo las

distribuciones de los indicadores ecológicos evolucionan con el tiempo, a través

de la estimación no paramétrica de funciones de densidad kernel y, de acuerdo

con esto, para predecir lo que podŕıa ser sus distribuciones a largo plazo. Se

presentan tres casos de estudio diferentes para ilustrar estos métodos.

En el Caṕıtulo 3, se presenta un modelo espacial jerárquico Bayesiano para

estimar y predecir la distribución de la pesqueŕıa de especies no objetivo con

datos recogidos por observadores a bordo. En todos estos casos, la selección de

las localizaciones del muestreo no depende de los valores de la variable espacial,

por lo que estos son estocásticamente independientes del proceso analizado.

Como resultado, la ocurrencia de la especie es un indicador parcial de su pa-

trón de ocurrencia. Se presentan tres tipos diferentes de ejemplos prácticos. Los

dos primeros ejemplos utilizan los datos de presencia/ausencia como variables

respuesta para estimar y predecir la distribución de especies pelágicas y dem-

ersales en las zonas estudiadas. En cambio, el tercer ejemplo, se basa en una

variable respuesta Gaussiana, con el fin de abordar un tema de gran actualidad

en el sector pesquero: la distribución espacio-temporal de los descartes.

En el Caṕıtulo 4, se presenta un modelo espacial jerárquico Bayesiano para

estimar la distribución de las especies objetivo de la pesca a partir de datos

de observador a bordo. En estos casos espećıficos, en los que se recogen los

datos siguiendo un muestreo preferencial, la predicción de la distribución de las

especies objetivo mediante la aplicación de los métodos geoestad́ısticos tradi-

cionales, podŕıa conducir a resultados sesgados. La idea básica es la de interpre-

tar los datos como un patrón puntual marcado, donde los lugares de muestreo

forman un patrón puntual y las mediciones realizadas en estos lugares son las

marcas. Como ejemplo práctico, modelamos la abundancia de merluza europea

(Merluccius merluccius) en el Golfo de Alicante.

En el Caṕıtulo 5 se propone un modelo espacio-temporal jerárquico Bayesiano

para identificar áreas de reclutamiento de especies pesqueras. Presentamos

como ejemplo práctico de esta metodoloǵıa la evaluación de las áreas nurs-

ery de la merluza europea (Merluccius merluccius) en el Mediterráneo central
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utilizando datos de campañas cient́ıficas.

Por último, en el Caṕıtulo 6 se presentan algunas conclusiones y las ĺıneas

futuras de investigación.
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Chapter 1

The Ecosystem Approach

to Fisheries Management

In this chapter we review the concept and main aims of the Ecosystem Ap-

proach to Fisheries Management (EAFM) in detail, introducing the fishing

issues that will be discussed in the thesis, outlining the methodologies used, the

different fishing datasets and the types of spatial-temporal scales with which

these issues can be addressed.

1.1 Overview

Many of the world’s fish populations are overexploited and the ecosystems

that sustain them are degraded (FAO, 2002). The unintended consequences of

fishing, including habitat destruction, incidental mortality of non target species,

evolutionary shifts in population demographics, and changes in the function and

structure of ecosystems are being increasingly recognized. Fishery management

to date has often been ineffective; it focuses on maximizing the catch of a

single target species and often ignores habitat, predators and prey of the target

1
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species, and other ecosystem components and interactions. The indirect social

and economic costs of the focus on a single species can be substantial (Pikitch

et al., 2004).

In order to address the critical need for a more effective and holistic man-

agement approach, a variety of advisory panels have recommended that ecosys-

tem considerations should be considered broadly and consistently in managing

fisheries. The Ecosystem Approach to Fishery Management (EAFM) is a new

direction for fishery management, essentially reversing the order of management

priorities in order to start with the ecosystem rather than the target species.

The overall objective of EAFM is to sustain healthy marine ecosystems

and the fisheries they support. In particular, EAFM should (i) avoid the

degradation of ecosystems, as measured by indicators of environmental qual-

ity and system status; (ii) minimize the risk of irreversible change to natural

assemblages of species and ecosystem processes; (iii) obtain and maintain long-

term socio-economic benefits without compromising the ecosystem; and (iv)

generate knowledge of ecosystem processes sufficient to understand the likely

consequences of human actions.

Standardized systems, reference points and control rules analogous to single

species decision criteria must therefore be derived and developed. The objec-

tive must be to ensure that the total biomass removed by all fisheries in an

ecosystem does not exceed the total amount of system productivity, after ac-

counting for the requirements of other ecosystem components (e.g. non target

species, protected and vulnerable species, habitat considerations, and various

trophic interactions). Maintaining system characteristics within certain bounds

may protect ecosystem resilience and avoid irreversible changes (Pikitch et al.,

2004).

EAFM must delineate all marine habitats utilized by humans in the context

of vulnerability to fishing-induced and other human impacts, identify the poten-

tial irreversibility of those impacts, and elucidate sensitive habitats for species

for vital population preservation processes. Protecting essential habitats for fish

and other important ecosystem components from destructive fishing practices
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increases fish diversity and abundance (Sainsbury et al., 2000). Thus, ocean

zoning, in which the type and level of allowable human activity are specified

spatially and temporally, will be a critical element of EAFM.

In addition, EAFM devote particular attention to the protection of nursery

areas. The implementation of management measures should aim at reducing

the effects of fishing on juveniles and their habitats, and consequentely the

spatial identification of nurseries is needed.

Another goal of EAFM is to reduce the excessive levels of bycatch and dis-

cards (i.e. killing of non target species or undersized individuals of the target

species), because juvenile life stages and unmarketable species often play impor-

tant roles in the ecosystem (Bellido et al., 2011). Single-species management

has been successful at reducing the incidental catch of vulnerable species in

some cases, but EAFM would also manage the indirect effects. The annual

global discards in commercial fisheries have been conservatively estimated at

27 million tonnes, equivalent to one third of the weight of all reported marine

landings in commercial fisheries worldwide (Alverson, 1998). Discard problems

can be addressed through a depth knowledge of the factors that influence dis-

card rates as well as of their spatio-temporal patterns in order to implement an

efficient fishery management.

Finally, EAFM must manage target species in the context of the overall

state of the system, sensitive habitat, vulnerable species, and non target species.

Single-species target and limit reference points are still appropriate, but they

will need to be modified in the context of these other factors.

The EAFM implementation in systems that differ in levels of information

and uncertainty can be applied through the judicious use of a precautionary ap-

proach. This means selecting the management targets and limits with caution

when information is sparse or uncertain. Greater uncertainty would be asso-

ciated with more stringent management measures. Because ecosystem man-

agement involves a wide range of objectives, great ecosystem complexity and

a high level of uncertainty in predicting impacts, EAFM inevitably requires

robust statistical methods to obtain the best estimates of uncertainty. Ideally,



4 Chapter 1. The Ecosystem Approach to Fisheries Management

EAFM would shift the burden of proof so that fishing would not take place

unless it could be shown not to harm key components of the ecosystem.

In data-poor situations with little or no information about target species

status or ecosystem processes and where sophisticated ecosystem models can-

not be applied, EAFM may simply involve using flexible tools that can work

effectively despite uncertainty and limited information (Trenkel et al., 2007).

Targeted management and improved data collection (ecosystem-based ref-

erence points and measures of system status) for high-priority ecosystem in-

teractions could promote more comprehensive EAFM in the future. With the

increased richness of data, management evolves toward a system in which per-

formance indicators for each ecosystem-based objective are monitored. With

more data, there could be fewer precautionary measures.

Progression from data-poor to data-rich EAFM will be facilitated by adap-

tive management and a greater understanding of how ecosystems respond to

alternative fishing strategies. Moreover, EAFM should be tailored to the man-

agement capacity available and allow for sequential improvements.

New analytical models and management tools will be needed as well. Ro-

bust models and trophic measures must be refined and expanded to better

account for system-level uncertainties, to derive system level reference points

and to evaluate the ecosystem-level consequences of proposed EAFM actions.

Because EAFM emphasizes habitat and ecosystem function in the context of

fluctuations, advanced models for EAFM should incorporate spatial structure

and environmental processes.

In a fishery management plan, the impact of management action would be

assessed with respect to the ecosystem as well as individual species. It is entirely

possible that a fishery could be considered overfished within the ecosystem plan

(ecosystem overfishing) when it is not overfished in a single-species context.

This can occur when a forage species that serves as a prey resource for marine

predators is also the target of a fishery or when overfishing of large predators

causes food web shifts. Rebuilding ecosystems from their degraded state, in

turn, might inflict short term economic hardship on fishermen. The transition
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to EAFM might thus involve compensating fishermen and providing incentives

to other stakeholders to support EAFM as a long-term strategy.

It will not be easy to make the transition from an established management

system based on maximizing individual species yields to an ecosystem-focused

approach that acknowledges the uncertainty inherent in marine ecosystems.

The difficulties are not insurmountable, however, and should not delay progress.

EAFM should move forward now despite current uncertainties about ecosys-

tems and their responses to human actions because the potential benefits of

implementation are as large as or greater than the potential risks of inaction.

1.2 Fishery sampling: options for data collec-

tions

The reliability of scientific advice for the management of natural resources is

highly dependent on the quantity and quality of data that are available for sci-

entific assessment and interpretation (Jennings and Polunin, 1996). In fishery

research, several methods are used to collect fishery and biological data. These

include fishery observer data, logbooks, official FAO landings and research sur-

vey data. Each one of these has positive and negative aspects and the decision

to use any particular one usually depends on their availability and the research

objectives purpused.

1.2.1 Fishery-dependent data

Fishery observers

Fishery observer programmes are used worldwide to collect fishery data includ-

ing biological data, species composition, discards, etc. This is the preferred

means of gaining accurate and in-depth data, but it is more costly than other

fishery-dependent data gathering methods. Observers receive training in collec-

tion and sampling techniques from fishery professionals involved with, and often
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employed by, the fishery organization that manages the fishery. Observer pro-

grammes tend to be introduced after a fishery has demonstrated a decline, but

their use is a wise monitoring strategy in well-managed or developing fisheries

as well. The number of data observers depends on the goals of the management

organization.

Under the European Union (EU) Data Collection Framework (DCF), EU

members are obliged to collect economic, biological and transversal data. The

first DCF ran from 2000 to 2008, while the new framework is covering the

period 2009 to 2013.

Data are collected on board a commercial fishing vessel only with the agree-

ment of its skipper, and no financial or other compensatory incentive is provided

to encourage vessels to carry an observer.

The selection of vessels for sampling trips is not random in the strict sta-

tistical sense. In the early years, the sampling trips were carried out on vessels

operating from ports in the locality of the observer’s base. Currently, sampling

is based on a métier approach (subdivision of a fishery by vessel type), with

métiers defined with regard to the DCF (EC Regulation 199/2008), which is

based on landing percentage composition, type of gear used, mesh size, and area

of operation. Trip selection within a métier is quasi-random, because practical

considerations arise (e.g. cooperation of the vessel’s skipper) and as a result

not all vessels have an equal probability of being selected. Such considerations

could compromise the estimation of true variance and bias.

Data-collection protocols and management procedures were established at

the outset, but have been refined over time. In 2009 the métier approach in-

volved a shift in the sampling strategy, which changed from a specific species

sampling to a concurrent sampling of all commercial species (retained and dis-

carded), prioritizing target species. Fishing trips were defined as the primary

sampling units, and hauls within a fishing trip as secondary sampling units.

Biological information (i.e. lengths, weights and otolith samples) are col-

lected from the catch, together with vessel, type of gear used, geographical

position and environmental attributes (depth, bottom type). For each observed
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haul, an estimate of the total catch weight is made by the fishermen and the

observer in collaboration. The total catch is then sorted into the retained

and discarded components by the commercial fishermen. The total weights of

each individual species retained are recorded. If the abundance of a species is

small, total numbers and lengths are recorded, otherwise a subsample is taken,

numbers and lengths recorded and raised accordingly. The total weight of the

discarded portion is approximated, a subsample taken, and then sorted by the

observer into species. The total weights and numbers of each discarded species

in the subsample are determined and raised based on the total approximated

discarded weight.

Logbooks

Logbooks are used in many fisheries but logbook data can be highly variable

and therefore suspicious. Despite this, logbook data are commonly used in

stock assessments and are one of the major data collection sources in numerous

fisheries. Fishermen are required to fill out logbooks while at sea. The following

data can be recorded in logbooks: species identification, number caught, type

of gear used and amount used, location, time of set and haul back, depth and

water temperature. It is widely recognized that fishermen do not always record

data about their catches accurately and frequently identify species incorrectly.

Fishermen busy bringing in and working on their catch are unlikely to record

accurate data at the expense of fishing productivity. Many fishermen do not fill

in their data at the time of fishing and recreate data from memory at later dates.

Fishermen’s illiteracy is a problem in some regions. The correct identification of

species is a major issue, because most fishermen are not scientifically trained in

proper identification techniques. In addition, many fishermen dislike any type

of management planning and are unwilling to go out of their way to collect

data (Lordan et al., 2011). Finally, there may be no quality control of logbook

data, with no on-board monitoring of logbook entries. However, this type of

data collection is inexpensive and is often the only method available.
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FAO official landings

In the 1990s, the FAO completely revised the fishery production statistics time

series available, computerizing them back to 1950, disaggregating data by fish-

ing areas, taking account of political changes (e.g. the emergence of new coun-

tries), adjusting species identification (as taxonomy evolves), and improving the

discrimination between aquaculture and capture fisheries production. In cases

where data are missing or are considered unreliable, the FAO includes esti-

mates based on the best available information from any source, such as regional

fishery organizations, project documents, industry magazines, or statistical in-

terpolations. The resulting data sets have been made widely available on the

FAO web (www.fao.org). These data sets consist of recorded nominal catches

and do not include discards. In the areas in which the FAO has not yet had

the means to work effectively e.g. production from illegal fishing, there is no

information at all at global level. The great advantage of the FAO’s landings

statistics is that they are global in coverage, have complete time series since

1950 and are regularly updated, so they can be used to provide overview trends

in fisheries by region and to provide resource status indicators when other data

are lacking.

1.2.2 Fishery-independent data

One of the major problems with using commercial catch data for estimating

stock distribution and abundance is that fishermen go where the fish are. Fish-

ing effort is normally concentrated on the highest densities of fish and attempts

to assess the range or total abundance of fish from commercial catch and effort

data can be expected to be biased. Management agencies normally attempt to

avoid the biases of commercial catch data by using research surveys, either by

chartering commercial fishermen or using government research vessels.

Indeed, fisheries independent data include surveys that are not directly in-

fluenced by harvesting activities and provide critical information on the status

of fish and shellfish stocks (Morgan and Burgess, 2005). Fishery surveys are
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specifically designed to satisfy multiple objectives and are often cross disci-

plinary in nature. In addition to collecting fishery data, the surveys provide

important information on the wider marine environment.

Fishery-independent surveys provide valuable measures of relative abun-

dance, rates of population change and size and sex composition for a wide

range of species. As these measures are obtained from scientific sampling or

within an experimental design, they are less subject to the unknown and of-

ten confounding factors that complicate the interpretation of fishery-dependent

indices of stock status. The major problem with surveys is cost. Operating

vessels are so expensive that the number of samples is not usually nearly as

large as would be desired by the scientific staff using the data.

Fishery surveys can been divided into two main types: monitoring surveys

for pelagic species and monitoring surveys for demersal species. The main

difference between these species is that pelagic fish live near the surface or

in the water column, in contrast to demersal fish, which live on or near the

bottom.

In order to determine the relative abundance of the target pelagic species,

acoustic surveys are usually carried out. This information is then used to de-

termine catch rates and management advice for the following year. They are

generally carried out on spawning and pre-spawning aggregations of fish. Out-

side the spawning season many pelagic species are generally very scattered over

a large geographical area and difficult to detect using acoustic methods. These

surveys use sound waves emitted from a transducer to estimate the density of

plankton and fish shoals. The survey vessel tows the transducer under water,

and it is linked to an echo sounder in the vessel which records the shoals of fish

as marks on a screen or paper trace. The species composition of each mark is

then identified by taking samples. The density and number of marks are then

converted into the biomass (weight) of the different species.

Systematic bottom trawl survey surveys intend to produce basic information

on benthic and demersal species in terms of population distribution as well as

demographic structure, on the continental shelves and along the upper slopes



10 Chapter 1. The Ecosystem Approach to Fisheries Management

at a global scale.

During the survey, the scientists use a trawl net to fish at different depths.

The species caught in the trawl are brought on board, identified and measured.

For commercial species, as well as species of specific scientific interest, other

biological information such as weight, age, sex and maturity is also collected.

The major advantage of survey use of fishing gear over commercial data

is that the survey can use a planned sampling design rather than relying on

fishermen’s choices of where to fish. Additionally, conditions of gear use (tow

speed, soak time, etc.) can be better controlled. The use of research survey

fishing is well established, particularly for trawl gear. The major problem with

fish gear surveys is estimating the proportion of fish captured by the gear. Trawl

surveys normally take the area swept by the gear, and expand the catches by

the proportion of the area surveyed.

1.2.3 Fishing gear and methods

Fishing gear is defined as the tools used to capture marine/aquatic resources,

whereas how the gear is used is the fishing method. Additionally, a single type

of gear may also be used in multiple ways. Different target species require

different fishing gear to effectively catch the target species. Fishing gear falls

into two general categories, active gear and passive gear. Active gear is designed

to chase and capture target species, while passive gear generally sits in one

place, allowing the target species to approach the capture device.

A common way to classify fishing gear and methods is based on the prin-

ciples of how the fish or other preys are captured and, to a lesser extent, on

the construction of the gear or the gear materials used. Following the FAO’s

definition and classification, the main categories of fishing gear are as follows:

� Surrounding nets

The net is roughly rectangular in shape without a separate bag. It is set

vertically in water to surround the school of fish, generally of a pelagic
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nature. The nets are subdivided into three categories: a one-boat seine, a

two-boat seine; and a surrounding net without a purse line.

� Seine nets

Seine nets are cone-shaped nets with two wings where in the wings are

normally larger than those of trawl nets. The net is pulled towards a

stationary boat or onto a beach.

� Trawl nets

A conical bag-shaped net with two or more wings, pulled by one or two

boats for a period of time, to catch mainly demersal fish or other aquatic

animals that live directly on, or stay near, the seabed. The trawl is

subdivided into three major types: bottom trawl, pair trawl and beam

trawl.

� Lift nets

A sheet of net, usually square, but which may sometimes be conical,

mounted either by several rods and ropes or on a frame and is either at

the bottom or in mid-water for some time and then lifted to trap the fish

lying above it.

� Gill nets

Gill nets are curtain-like nets that are fitted with sinkers on the lower

end and floats on the upper end and are set transversely to the path of

migrating fish. Fish trying to make their way through the net wall are

entangled, gilled or enmeshed in the mesh.

� Scoop nets

A bag-shaped net with a fixed or variable opening and is usually operated

in shallow waters. The gear catching mechanism is operated by filtering

a certain volume of water and trapping the fish into it in a scooping

manner.
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� Traps

The gear is set or stationed in the water for a certain period of time to

trap moving fish in the water. Trapping is done with the use of a non-

return valve fitted in the entrance of the gear. The gear may or may not

include a netting material.

� Hooks and Lines

The gear generally consists of line(s) and hook(s) to which artificial or

edible baits are attached to lure and catch fish or other aquatic animals.

� Other Fishing Gear And Methods

This group covers a variety of fishing gear and methods not classified into

the above groups, such as the use of gleaning along the shore for shellfish,

seaweed or fish.

Fishing methods have continuously evolved throughout recorded history.

Fishermen are inventive and not afraid of trying new ideas. The opportunities

for innovation have been especially good in recent decades with advances in

fibre technology, the mechanization of gear handling, improved performance of

vessels and motorization, computer processing for gear design, navigation of

aids, fish detection, to mention only a few technologies (FAO, 2002).

In the past the technological development of fishing gear and methods was

aimed at increasing production. On the contrary, nowdays, gear development

is focussed on selective fishing and gear with less impact on the environment,

due to the present situation of overfished stocks and concerns about the envi-

ronmental impact of the fishing operation.

1.3 The importance of the spatial and temporal

scales

With the development of an EAFM, research has increasingly focused on the

environmental effects of fishing in marine habitats as well as on management
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scenarios or options (e.g. effort reduction, closed areas, technical measures) that

take these impacts into account (Sainte-Marie et al., 2009). Therefore, more

than in traditional fishery management, this produces the need for a reappraisal

of the issue of scale in space and time when estimating the impact of fishing,

which, in most cases, boils down to one question: what is the appropriate scale

for the study of a particular fishery problem?

Many studies that estimated the impact of fishing emphasized the impor-

tance of the spatial and temporal component even though the scale on which

they studied the relationship differed. Problems range in scale from local to

global. Moreover, local effects might scale-up cumulatively to be more-than-

additive (Leuven and Poudevigne, 2002) and some phenomena apparent on one

scale can either disappear or be subsumed at other scales. Therefore, con-

clusions about fishery phenomena from one scale might be modified partly or

completely on other scales (Thompson and McGarigal, 2002).

Dinmore et al. (2003) studied the microscale distribution of fishing on the

scales of 1 x 1, 2 x 2, 4 x 4, and 8 x 8 nautical miles (n.mi.) and observed that

the spatial scale may have a critical effect on any interpretation of the impact

of fishing.

Ideally, diagnosis and response require explicit recognition of scale hierar-

chies, but this is challenging for several reasons.

First, fish biology is scale-dependent across life stages or activities. Exam-

ples are daily feeding, which varies between habitats, and seasonal migration

which extends within or beyond the whole ecosystem. These scale dependent

activities vary within and between fish species.

Secondly, although fishery research increasingly addresses scale, studies re-

lating fish (and many other organisms) to their environment overwhelmingly in-

volve small spatio-temporal extents. At the other extreme, true large-scale pat-

terns in marine systems are often obscured by non-independent sampling, weak

inference and models that are poorly tested or over-extrapolated (Vaughan and

Ormerod, 2005). These challenges prevent fishery managers from quantifying

the importance of large-scale, anthropogenic disturbances.
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Thirdly, the restoration and conservation of fish communities are limited

by scale and complexity. Actions often involve small segments, thereby ex-

cluding larger-scale environmental processes that often control fish distribution

(Ormerod, 2004). This is because the proper selection of the spatial-temporal

scale of a research should be detected before data collection. Ideally, this would

be accomplished beforehand via a benchmark survey, which would determine

whether the pattern or process studied was on a local, regional or global scale.

This is rare in real field research, however, due to the lack of time and funding

and consequentely the availability of data driving the scale selection.

In observation, scale determines the relative fineness and coarseness of dif-

ferent details as well as the selectivity among the patterns that these data may

form. Thus scale becomes a filter, or a window of perception through which

analysis, observation, knowledge, and information can be considered and/or

defined.

Obviously, aggregated global syntheses necessarily leave out local details,

because the quality and quantity of data available for a local scale are usually

higher than a global scale. In addition, there is a positive correlation between

the spatial extent of a study and the time window that it addressed. This

pattern is consistent with the expectation that processes with relatively coarse

spatial extents will also have relatively long temporal windows. Consequentely,

long time series, such as macro-scale studies, do not provide the same detailed

information that recent time series ensure.

As a result, each type of scenario provides a different approximation. Large-

scale and long time series studies give a broader and more complete view of an

ecosystem’s status, an outcome which is usually not achievable in the case of

smaller-scale studies. On the contrary, specific studies in space and time offer

very detailed information on a particular habitat or species, while a meso-scale

analysis indicates a scale size that falls between the micro and macro-scale,

and may also reveal connections between them. Different scales contribute an

understanding of different processes, or alternative views of the same process.

In this context a multiscale approach is the best option for improving our
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understanding of the fishery dynamics of fisheries and marine resources. The

use of a multiscale approach would provide information benefits by improving

the assessment findings, and their applicability, on all scales.

1.4 Can we implement the Ecosystem Approach

to Fishery Management in data-poor fish-

eries?

Many fisheries worldwide have limited data, particularly but not exclusively in

developing countries. In some circumstances even catch statistics might not be

reliable and effort statistics may not be available. Many of these fisheries often

have only very general or no clear management objectives, and infrastructure

and resources are insufficient to support comprehensive and continuous data

collection, scientific research, and fishery management.

Moreover, data-poor problems increase in long time series and macro-scale

studies, which have the main purpose of examining changes in the dynamics of

a whole ecosystem as the principles of EAFM require.

Finally, poor communication and coordination in policy formulation and

the implementation of management plans among agencies and stakeholders are

common problems that result in data-poor fishery situations (Hilborn et al.,

1992).

Implementing an EAFM in these fisheries should still be feasible and needs

first to set the objectives realistically and to develop management strategies

that can operate effectively with limited information in the face of uncertainty

and to monitor the fishery cost-effectively. In all these cases a shift is from

require model-based to qualitative common-sense, and data- and knowledge-

based indicators corresponding to management objectives are required (Trenkel

et al., 2007).

One approach, for this purpose, is the development and selection of a suit-

able set of ecological indicators that can provide a readily understood, cost-
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effective tool for assessing trends regarding sustainable development objectives

without requiring extensive and costly data collection and complex modelling

for describing the current state of fishery resources and fishery activity.

Indicators are succinct measures that aim to describe as much of a system

as possible in as few points as possible, in order to understand, evaluate and

improve it. In order to be useful, ecosystem indicators should be sensitive

to changes in ecosystem integrity through space and time, easily measured,

understandable, informative and based on accessible data. Indicators do not

necessarily need to be precise; they just need to give a reliable picture of the

ecosystem they represent.

At the macro-scale level, countries can use indicators to produce a holistic

picture of the fisheries sector and its environment, while at the micro-scale level,

indicators provide an operational tool in fisheries management, as a bridge

between objectives and management action.

Like any reductionist approach, an indicator must be understood in context.

An indicator rarely captures the complete richness and complexity of an ecosys-

tem, but a set of indicators could greatly improve the situation, especially in

all the data-poor cases in which they are the only tools that can be used.

1.5 Towards an Ecosystem Approach to Fishery

Management: Marine Spatial Planning

Marine Spatial Planning (MSP) is an emerging tool to support the implemen-

tation of an EAFM. By means of managing current and future sea uses, marine

plans assist in solving potential conflicts between multiple uses of the marine

environment (Douvere, 2008).

Despite its broad acceptance and wide range of principles, definitions and

guidelines, the EAFM is still more a concept which is widely discussed at

scientific fora, but with few examples of actual practice. It is increasingly

clear that governments and stakeholders lack the necessary tools to make an
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ecosystem approach operational in marine environment.

A range of tools and measures will be needed to implement the multiple

objectives of an EAFM, but a focus on the spatial and temporal aspects of

EAFM is one way to make this approach more tangible. MSP can do this

because it:

� Addresses the heterogeneity of marine ecosystems in a practical manner.

MSP takes into account that some things only occur in certain places.

Important ecological areas, for example, are located in areas of high di-

versity, sensitive habitats of vulnerable species, spawning and nursery

areas, and migration stopover points. At the same time, economic activ-

ity will (and can) only take place where the marine resources are located.

Acquiring spatio-temporal knowledge of marine resources could allow the

management of this overlap.

� Focuses on influencing the behaviour of humans and their activities over

time.

Although goals and objectives for a certain area are usually set for both

ecosystem/natural processes and human activities, it is only the human

component (human activities and resource use) that can be managed (not

the ecosystem itself), e.g. through management measures (incentives)

that change the behaviour of fisheries activities over time.

� Makes conflicts and compatibilities among human uses visible, and there-

fore tangible.

Through the mapping of ecosystems, their characteristics and the human

activities affecting it, one can see where conflicts are or will be located.

The place-based characteristics of ecosystems, natural resources, and human

activities affecting them, increases the need to look at the “system” from a

spatial and temporal perspective and implies that all policies and management

strategies (e.g. fisheries management, marine transportation management, and
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marine protected area management) directed toward influencing the human use

of ecosystems and their resources will inherently have a spatial and temporal

dimension.

In order to achieve these aims, the MSP requires an integrated assessment

of multiple marine plan objectives and potential conflicts of use, and the risk

of the combined effects of multiple uses on the marine environment. Such

an integrated assessment requires practical tools to both visualise spatially

complex relationships and assess marine spatial planning scenarios under given

planning objectives. In turn, the analysis of spatial relationships and planning

options requires sound methods by which to assess interconnectivity between

pressures and the response of the marine environment within the study area of

interest.

To date, a number of studies have assessed empirically the spatial and

temporal patterns of multiple human uses and their combined pressures and/or

impacts on ecosystem components to support an EAFM (Dalton et al., 2010).

Fundamental to any spatially-explicit risk assessment is information on the

sensitivity of the environment to a pressure and a measure of the frequency of

the occurrence of a pressure. While for most physical pressures empirical data

on their temporal and/or spatial pattern exist, a measure of ecosystem sensi-

tivity is often expressed as expert knowledge or another qualitative measure

(Stelzenmüller et al., 2010). Both components of such a risk-assessment model

introduce uncertainty into the analysis of the relationship between human pres-

sures and adverse effects on the ecosystem. As a MSP describes the spatial

and temporal allocation of resource use, it is crucial to assess the uncertainty

associated with the data used, and to visualise the uncertainty associated with

the outcomes of possible spatial management scenarios.

The three dimensions of uncertainty in a model-based decision support tool

are described by Walker et al. (2003) as location (where the uncertainty occurs

in the model complex), level (where the uncertainty occurs on the gradient

between knowledge and ignorance), and nature (whether uncertainty is due to

knowledge gaps or to variability inherent in the system). Thus the develop-
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ment of spatial management scenarios to support marine planning requires a

spatially-explicit framework that incorporates various sources of uncertainty.

By utilizing an appropiate statistical approach that accounts for uncertain-

ties in such settings, one is able to obtain accurate estimations and predictions

(in space and or time) and in-depth knowledge of marine resources.

1.6 Spatial analysis: need for Marine Spatial

Planning

In order to be applicable, the Marine Spatial Planning process requires the use

of software tools and well-defined spatially-explicit methodologies.

The first step in understanding ecosystem processes is to identify spatial

patterns. Fishery data are usually characterized by spatial structures due to

spatial autocorrelation. Spatial autocorrelation refers to the pattern in which

observations from nearby locations are more likely to have a similar magnitude

than by chance alone. The magnitude, intensity as well as extent of spatial

autocorrelation can be quantified using spatial statistics. Most fishery data

exhibit some degree of spatial autocorrelation, and this influences the interpre-

tation of statistical models by affecting tests of signficance of the association

between distributions of species and environmental factors as well as calculating

correlations among such variables (Babcock et al., 2005).

In addition, geographically contagious biotic processes (such as population

growth, geographic dispersal and competition dynamics) can also promote spa-

tial autocorrelation in the distributions of species. In many instances, these two

influences operate simultaneously, inducing spatial heterogeneity in ecological

communities (Babcock et al., 2005).

The goal of employing spatial statistical models is to account explicitly for

the effects of these two sources of influence. Taken together, space can be

seen as a predictor, when the goal is to exploit the mechanisms (e.g. shared

common factors, geographic diffusion) that generate spatial autocorrelation in
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distributions of species in space, and/or as a covariable when the goal is to

adjust for spatial variation when testing for associations between distributions

of species and environmental factors.

Once the spatial structures of the studied variable are assessed, and the

spatial statistical model (such as linear, generalized or additive models) is used

to relate the observed structure to the hypothesized generating processes, pre-

diction tecniques (such as kriging) are applied to obtain spatial estimation of

the observed variable at any point in the studied area. In this way, predicted

spatial maps of marine resources are generated as efficient tools for fishery

management.

Nevertheless, different issues arise in spatial prediction. First, there are

problems related to sampling. In general, the spatial area covered by the re-

sources is vastly larger than the area sampled and, correspondingly, the spatial

unit of prediction is usually larger than the sites sampled on the ground. An

additional sampling problem relates to the heterogeneity of sampling intensity:

while large parts of a domain may be unsampled, other parts may be rela-

tively heavily sampled. There may also be sample bias in the available data,

so that sampling locations and/or intensity are unevenly distributed with re-

spect to relevant characteristics of the region sampled (Latimer et al., 2006).

These problems are often ignored in spatial modeling, or are addressed indi-

rectly by attempting to minimize bias through stratified sampling across major

environmental gradients (Elith et al., 2006).

Second, as we mentioned above, there is the problem of spatial dependence

or spatial autocorrelation. Using models that ignore this dependence can lead

to inaccurate parameter estimates and inadequate quantification of uncertainty.

Equally important, to ignore this spatial dependence is to throw out meaning-

ful information (Wikle 2003). Ecological prediction often ignores this problem

or deals with it in a less than satisfactory way (see Guisan and Zimmermann

(2000)). One might, for example, include latitude and longitude through a

trend surface in the mean to improve prediction, but this approach may still

miss spatial dependence which explicit modeling of spatial association can cap-
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ture. Another alternative provided by the generalized regression analysis and

spatial prediction (GRASP) modeling package treats spatial autocorrelation at

the data stage, by feeding into the model a new data layer that reflects neigh-

borhood values in model predictions (software available online). This approach

does deal with autocorrelation, but fails to quantify explicitly the strength of

spatial patterns in the residuals and its associated uncertainty.

Third, spatial modeling presents problems in quantifying uncertainty. Pre-

dictions frequently involve extrapolation to unobserved parts of the study region

and to larger-scale areal units. Assessment of uncertainty in such predictions is

crucial when they are used to set conservation policy or to evaluate the impact

of climate change on species.

In this way, Bayesian spatial models can be used to deal with these three

kinds of problems in a straightforward, transparent way and as practical tools

to allow the implementation of MSP.

1.7 The Bayesian framework as a practical tool

to support Marine Spatial Planning

Mathematical models are commonly used to describe fishery data (Hilborn

et al., 1992). To relate a model to data observed in a fishery, an appropri-

ate method is required to estimate parameters in the model. In general, there

are two statistical approaches that can be used for parameter estimation: fre-

quentist and Bayesian approaches. The statistical problem is similar for these

two approaches: both are used to make statistical inferences about unknown

parameters in the model (Gelman et al., 2004).

Frequentist inference is commonly used in fishery studies (Hilborn et al.,

1992). It assumes that the parameters being estimated are a fixed constant and

that data are random observations from some unknown statistical population.

An objective function needs to be defined based on assumptions made on ran-

dom variables. Parameters and their confidence intervals can then be estimated
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by optimizing the objective function.

Bayesian inference has been used increasingly in fisheries (Zhang and Holmes,

2010; Cao et al., 2011; Viana et al., 2011). This approach assumes that param-

eters are random as opposed to constant for frequentist inference. Instead of

estimating the “true” values of the parameters as in frequentist inference, it

only looks at the statistical distributions of the parameters values.

Bayesian modelling uses Bayes’ theorem to combine the information in the

data with additional, independently available information (the prior) to pro-

duce a full probability distribution (posterior distribution) for all parameters

(Gelman et al., 2004). The Bayesian perspective allows us to ask directly how

probable the hypotheses are, given the data.

The posterior probability distribution provides a full picture of what is

known about each parameter based on the model and the data, together with

any prior information. For a particular parameter, this posterior distribution,

unlike the mean and confidence interval produced by classical analyses, enables

explicit probability statements about the parameter. Thus the region bounded

by the 0.025 and 0.975 quantiles of the posterior distribution has an intuitive

interpretation: under the model, the unknown parameter is 95% likely to fall

within this range of values.

One feature of Bayesian models, and also a source of much debate within the

statistics community, is their ability to incorporate already-known or “prior”

information about parameters into the models. In some applications, this can

be a critical advantage, particularly when data are sparse, decisions must be

made, and expert opinion is available (Gelman et al., 2004). However, when

the primary interest in a particular study is to learn what information is con-

tained in the data, the use of vague or uninformative prior distributions allows

posterior distributions for all parameters to be driven by the data.

In the spatial context, the Bayesian approach is particularly appropriate

because it allows both the observed data and model parameters to be random

variables (Banerjee et al., 2004), resulting in a more realistic and accurate

estimation of uncertainty. Spatial autocorrelation can be incorporated into a
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regression model through random effects that capture spatial dependence in the

data. Since the random effects are model parameters, they also emerge with

a full posterior distribution that allows the quantification of uncertainty. By

adding hierarchical levels to a regression model, issues of sampling intensity

and gaps in the data can be dealt with explicitly (Gelfand et al., 2006).

Hierarchical models are statistical models in which data can enter at various

levels and thus model parameters or unknowns are themselves functions of other

model parameters and data. These hierarchical stages can describe conceptual

but unobservable latent processes that are ecologically important, such as error

in the observation process. In this way, uncertainty attached to unknowns at

different model stages is propagated across model levels to more accurately

reflect overall inferential uncertainty.

Bayesian spatial models may also aid analyses of data with geographically

uneven levels of survey effort because such a bias can be incorporated within

the spatial random-effect term, thereby reducing its influence on estimates of

the effects of environmental variables. By treating spatial effects as a variable

of interest, hierarchical Bayesian spatial models can suggest the identity of

additional environmental covariates that may improve model fit or the existence

of area effects that may limit population viability.

Crucial to the Bayesian approach is the notion of transparency. One reaction

of ecological modelers to the problems inherent in spatial analysis is to adopt

more flexible methods like neural networks, random forest, and discriminant

analysis (Moisen and Frescino, 2002). These methods offer the advantages of

responding flexibly to interactions and nonlinearities in data relationships, but

often at the expense of interpretability or mechanistic insights.

Implementing an effective MSP in order to establish an EAFM requires an

accurate knowledge of the spatial-temporal distribution of marine resources in

relation to the environment, and Bayesian methods could be the appropriate

tools.

The Bayesian framework can support the decision making process by help-

ing to provide informed decisions, through the assessment of potential outcomes
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and related uncertainty from management measures in a spatial context, and

by offering a visualisation tool that facilitates the engagement of different stake-

holders in such a process.



Chapter 2

Ecological indicators for

data-limited fisheries

In this chapter, we present two different methodological approaches to study

fishing exploitation through the analysis of selected ecological indicators. These

methodologies are very useful in data-poor situations, when the only available

source of data are official landings without any additional information, and for

macro-scale and long data series studies.

The first approach allows us to assess the trends of the ecological indicators

over time through bootstrap and smoothing tecniques, highlighting shifts, if

there are any, in the ecosystem trophic dynamic due to fishing exploitation.

The second approach focuses on how distributions of ecological indicators

evolve over time, through the nonparametric estimation of Gaussian kernel

density functions and, according to this, to show how the probable long term

distribution might be. Three different cases study are presented to illustrate

these methods.

25
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2.1 Introduction

An Ecosystem Approach to Fisheries Management (EAFM) extends fishery

management to all the aspects of fisheries. This extension increases informa-

tion needs and the complexity of the system under consideration and therefore

also increases model complexity and the multiplicity in stakeholders and ob-

jectives as well as the uncertainty involved in assessing ecosystem states and

the outcomes of management scenarios. On the contrary, data-poor fisheries do

not have sufficient data to support complex assessments and models. To over-

come the data limitation and inability to make use of sophisticated modelling,

ecological indicators may prove the most realistic approach.

Many structural and functional properties of ecosystems are difficult to mea-

sure directly, and therefore easier-to-measure indicators can be used as proxies

for the difficult-to-measure properties. For data-limited fisheries, the indicators

should (1) be observable and understandable by all stakeholders, (2) be based

on easily obtainable and reliable data, and (3) adequately reflect the condition

of the resource.

In order to assess the fishing exploitation on a whole ecosystem, fishery

ecological indicators can be used to monitor trends in condition over time, and

to provide an early warning signal of changes in the ecosystem.

In particular, fishery-based trophic indicators can describe the stages of

exploitation of resources and analyze the state of the ecosystem relative to

past periods for which there are no other data available except the amount of

landings from fish markets (Pauly et al., 1998; Caddy et al., 1998; Stergiou and

Karpouzi, 2002).

According to Pauly and Watson (2005), in marine ecosystems, it would

be possible to use the Mean Trophic Level (MTL) of landings as an index

of sustainability of the level of exploitation of fish resources. Pauly et al.

(1998) used aggregated landing statistics from the United Nations (UN) Food

and Agriculture Organization (FAO) and estimates of Trophic Level (TL) for

individual species derived from food web models, to demonstrate that the MTL
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of global fisheries has declined significantly since the late 1950s.

This phenomenon, known as Fishing Down the marine Food Webs (FDFW),

occurs because the species most susceptible to collapse and generally more often

targeted are those of greater size with long life cycles; once these stocks become

depleted, exploitation is directed toward smaller sized species with a faster

growth rate, and thus the MTL of landings decreases (Pauly et al., 1998).

Nevertheless, several criticisms have been made on the interpretation of the

MTL indicator and, in particular, Branch (2010), demonstrated the potential

danger to interpret the trend of a single indicator to assess the ecological health

of an ecosystem, which could lead to misleading conclusions. Indeed, the in-

terpretation of an indicator could be excessively subjective. Points of reference

or limit values with which to unequivocally assess the results obtained with an

indicator are very difficult to establish due to the complexity of ecosystems.

Secondly, the indicators, by definition, must be simple and general, and as

a result might overlook some key ecological features in the assessment of the

ecological balance of an ecosystem.

In order to obtain a comprehensive view of ecosystem dynamics it is essential

to assess a number of indicator trends jointly.

In this chapter we propose a set of selected ecological indicators derived

from Trophic Level (TL) information to assess the ecological balance of ma-

rine ecosystems in data-poor situations and for long time-series. Two different

methodological approaches to study the fishing exploitation through the analy-

sis of these indicators are presented.

Firstly, a combination of smoothing techniques and bootstrapping is shown

in order to highlight the changes in the ecosystem trophic dinamic. Smoothers

are non-parametric estimators that produce smooth estimates of regression

functions. The bootstrap (Efron, 1979) is a computer-intensive approach that

can provide measures of uncertainty (confidence intervals, standard errors, etc.)

for a wide range of problems. It is based on the basic idea of repeated re-

sampling with replacement from an original sample of data in order to create

replicate datasets from which inferences can be made on the quantities of inter-
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est. Thus for the trophic level indicators, bootstrapping allows resampling of

the data to create multiple series which have similar stochastic structure to the

original series.

Moreover, both discards and Illegal, Unreported and Unregulated fishing

(IUU) may represent a significant source of error in assessments of fishery dy-

namics (Fernández, 2009) and they could also influence the performance of

indicators based on the trophic levels of landed fish. In the absence of data on

IUU and discards, these effects could be investigated using simulations.

The use of a combination of ecological indicators together with bootstrap

and smoothing techniques and discard simulations, could be a first step in the

EAFM implementation in data-poor fisheries situations. We applied this first

approach to two different Large Marine Ecosystems (LMEs) with a macro-scale

study level to obtain a wider view of these ecosystems dynamics.

LMEs are regions of the world’s oceans, encompassing coastal areas from

river basins and estuaries to the seaward boundaries of continental shelves and

the outer margins of the major ocean current systems. They are relatively

large regions on the order of 200,000 km2 or greater, characterized by distinct

bathymetry, hydrography, productivity, and trophically dependent populations.

The system of LMEs has been developed by the US National Oceanic and

Atmospheric Administration (NOAA) to identify areas of the oceans for con-

servation purposes. The objective is to use the LME concept as a tool for

enabling ecosystem approach to provide a collaborative way to management of

resources within ecologically-bounded transnational areas.

LME-based conservation is based on recognition that the world’s coastal

ocean waters are degraded by unsustainable fishing practices, habitat degra-

dation, eutrophication, toxic pollution, aerosol contamination, and emerging

diseases, and that positive actions to mitigate these threats require coordinated

actions by governments and civil society to recover depleted fish populations,

restore degraded habitats and reduce coastal pollution. Although the LMEs

cover only the continental margins and not the deep oceans and oceanic is-

lands, the 64 LMEs produce 95% of the world’s annual marine fishery biomass
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yields. Most of the global ocean pollution, overexploitation, and coastal habitat

alteration occur within their waters.

Secondly, a meso-scale level study is proposed to accurately capture the

fishing exploitation in the Mediterranean ecosystem. Nonparametric density es-

timation, stochastic kernel distributions and transition probability matrices are

used in a complementary way. This methodology allows to ascertain whether

there is a tendency for Mediterranean countries to converge in their character-

istics, either towards the best or worst practice fisheries, and consequently, on

ecosystems impacts.

2.1.1 Fishery ecological indicators:

Fishery ecological indicators quantify the magnitude of stress, degree of expo-

sure to the stresses, or degree of ecological response to the exposure and are

intended to provide a simple and efficient method to examine the ecological

composition, structure, and function of complex ecosystems (Dale and Beyeler,

2001).

In order to be useful, fishery ecological indicators should be sensitive to

changes in ecosystem integrity through space and time, easily measured, under-

standable, informative and based on accessible data. Indicators do not necessar-

ily need to be precise; they just need to give a reliable picture of the ecosystem

they represent.

Following these criteria, we have selected three different fishery ecological

indicators:

The Marine Trophic Index

The Marine Trophic Index (MTI) was developed based on the assumption that

a decline of the mean trophic level of fisheries catches (mTL=MTI) is generally

due to a fishery-induced reduction of the biomass and hence reduced biodi-

versity of vulnerable predators (Pauly et al., 1998). The MTI tracks changes

in mTL and is calculated from a combination of fisheries landings and diet
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composition data for the landed fish species. It is computed, for each year k

from:

mTLk =

∑
(TLi)(Yik)∑

(Yik)
(2.1)

where mTL is the mean trophic level of all landings in year k, Yik refers to the

yield (landings) of species i in year k and TLi is the Trophic Level of species i.

Changes in this index could provide useful indications of changes in the

landings of high trophic level species that are usually the target fishery species

(Vivekanandan et al., 2005).

The Marine Trophic Index3.25

The use of the MTI as a measure of the impact of fisheries on marine ecosystems

was questioned by Caddy et al. (1998), who had in mind ecological processes

that may result in a natural increase in the abundance of planktivores, thus

lowering mean TL. As a diffuse and general problem eutrophication can modify

the ration between predator and prey abundances, which then could be confused

with effects of fisheries. To overcome this problem Pauly and Watson (2005)

suggested that the MTI should in fact be based on time series that exclude

low-TL organisms. This would lead to an indicator labeled as “cutMTI”, with

the “cut” referring to the lowest (cut-off) TL value used in the computation.

Pauly proposes the cut-off value of 3.25 (MTI3.25). With a cut-off value of 3.25,

all species (or groups of species) with TL lower than 3.25 are removed from the

computation of the MTI, in order to eliminate the herbivores, detrivores and

planktivores whose biomass tends to vary widely in response to environmental

factors (Pauly and Watson, 2005).

Fishing in Balance Index

The average efficiency of energy transfer is 10% between trophic levels (Pauly

and Christensen, 1995). Pauly et al. (2000) predicted that a fall of one trophic

level at which a fishery operates would lead to a 10-fold increase in poten-
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tial catches. To study this effect Pauly et al. (2000) and Christensen (2000)

introduced the Fishing-in-Balance (FIB) index as following:

FIBk = log

(
Yk

1

TE

MTIk
)
− log

(
Y0

1

TE

MTI0
)
, (2.2)

where Y corresponds to landings in year k, TL is the mean TL of the landings

in year k, TE is the transfer efficiency (here set at 0.1 following Pauly et al.

(2000)), and 0 refers to any year used as a baseline to normalize the index

(Pauly et al., 2000; Christensen, 2000; Cury et al., 2005).

The FIB index has the property of increasing if catches increase faster than

would be predicted by TL declines, and of decreasing if an increase in catches

fails to compensate for a decrease in TL. This is due to the fact that, in the

absence of geographic expansion or contraction, and with an ecosystem that has

maintained its structural integrity, moving down the food web should result in

increased catches (with the converse being true in the event of an increase in

TL), with the FIB index remaining constant.

Pelagic/demersal index

Changes in the trophic composition of marine communities can be tested in

terms of large trophic groups such as planktivorous, benthivorous, or pisciv-

orous animals (Caddy, 2000). The expected effect of fishing (although not

exclusive) is a decrease in the proportion of piscivorous fish. This is an easily

understood indicator that can be estimated based on the knowledge of the biol-

ogy of the species present in the community rather than on extensive diet data.

A related index that has been proposed as an indicator for marine environ-

ments is the pelagic (P) to demersal (D) fish biomass ratio in fishery landings

(de Leiva Moreno et al., 2000). However, the P/D ratio in fisheries catches is not

exclusive in that it might be an indicator of eutrophication rather than exploita-

tion (de Leiva Moreno et al., 2000). The pelagic fish are positively influenced by

nutrient enrichment when it stimulates the plankton production (Caddy, 1993),

while the demersal fish are influenced by the dynamics of benthic community,
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which generally responds negatively to the conditions of excessive enrichment.

It follows that a positive trend over time in the P/D index may depend both

on the eutrophication both from the overexploitation of resources (Libralato

et al., 2004). In addition, like other catch-based indicators, it will be sensitive

to changes in the fishing targets and methods.

2.2 First statistical approach: smoothing tech-

niques and bootstrapping.

A smoothing function is a function that attempts to capture general patterns

in stressor-response relationships while reducing the noise and it makes min-

imal assumptions about the relationships among variables. The result of a

smoothing application is a line through the moving central tendency of the

stressor-response relationship and is especially useful to visually assess the re-

lationship between two variables for large datasets, where trends can be hard

to visualize.

One of the most common types of smoother, which is implemented in many

of the most popular statistical and mathematical packages, is the local polyno-

mial regression smoother. Here, each series of indicators was smoothed using

locally weighted scatterplot smoothing (lowess), an outlier-resistant method

which estimates a polynomial regression curve using local fitting (Cleveland,

1979). The basic idea is to start with a local polynomial least squares fit and

then use robust methods to obtain the final fit. Specifically, at each point a low-

degree polynomial is fitted to a subset of the data, using explanatory variable

values near the point the response of which is being estimated. The polynomial

is fitted using weighted least squares, giving more weight to points near the

point the response of which is being estimated and less weight to points fur-

ther away. The value of the regression function for the point is then obtained

by evaluating the local polynomial, using the explanatory variable values for

that data point. The fit is complete after regression function values have been
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computed for each of the n data points.

We applied bootstrapping to the data pairs (x,y) in the original plots and

then fitted lowess curves to each simulated bootstrap series.

The bootstrap was introduced by Efron (1979). In order to understand

the bootstrap tecnique, we suppose it is possible to draw repeated samples

(of the same size) from the population of interest, a large number of times.

Then, one would get a fairly good idea about the sampling distribution of a

particular statistic from the collection of its values arising from these repeated

samples. But, that does not make sense as it would be too expensive and

defeat the purpose of a sample study. The purpose of a sample study is to

gather information cheaply in a timely fashion.

The idea behind bootstrap is to use the data of a sample study at hand

as a “surrogate population”, for the purpose of approximating the sampling

distribution of a statistic; i.e. to resample (with replacement) from the sample

data at hand and create a large number of “phantom samples” known as boot-

strap samples. The sample summary is then computed on each of the bootstrap

samples (usually a few thousands).

The calculated sampling distribution allows to infer via confidence intervals.

Several different techniques were developed to build confidence intervals using

the bootstrapped estimate of the sampling distribution. Among them, the

percentile method was chosen to deal with the calculations presented in this

chapter.

The basic approach can be sum up as follows: a small percentage, say

100(α/2)% (usually α = 0.05 ), is trimmed off from the lower as well as from

the upper end of these numbers. The range of remaining 100(1-α)% values

is declared as the confidence limits of the corresponding unknown population

summary number of interest, with level of confidence 100(1-α)%.

The resulting bootstrapped series can be used to assess, both pointwise and

globally, the variability in the original lowess fit. With this methodology, each

ecological indicator would have a 95% confidence interval for the original lowess.

Finally, for the MTI, FIB and MTI3.25 indicators, which depend on TLs
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(obtained with their corresponding Standard Errors), it is possible to include

random normal variation in the bootstrap procedure in order to propagate the

SE of the indicators in all the years and final results.

2.3 A case study: the Mediterranean Large Ma-

rine Ecosystem.

The Mediterranean Large Marine Ecosystem (LME) area comprises all the ma-

rine waters bounded from the Strait of Gibraltar to the Suez Canal and is

considered to be one of the 64 LMEs (see www.lme.noaa.gov for details). The

Mediterranean Sea is bordered by 21 countries. It has a narrow continental

shelf and covers a surface area of about 2.5 million km2, of which 1.43% is

protected, with 0.4% of the world’s seamounts. A warm-temperate climate and

several district bio-geographical sub-units characterize this LME. The Mediter-

ranean LME is considered a Class III low productivity ecosystem (Robinson,

2000). It presents a composite structure of environmental conditions, with local

areas of upwelling, wind-driven currents, high water temperatures at least in

some periods of the year, and nutrient inputs from rivers and human activi-

ties (Caddy, 1993). The major inflow into the Mediterranean is nutrient-poor,

oxygenated Atlantic surface water through the Strait of Gibraltar, resulting in

generally well-oxygenated bottom-waters.

The highest levels of productivity occur along the coasts, near major cities

and estuaries, while the lowest levels occur in the southeastern Mediterranean

(Stergiou, 1997). Generally, the Western and Eastern basins are considered

separately, mainly due to climate and atmospheric circulation. Long-term vari-

ability of the Western Basin is linked to the North Atlantic Oscillation, whereas

Eastern Basin variability is linked to the Indian monsoon.
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The dataset

Fishery data were extracted from FishStat plus, the FAO Fishery Statistic

Database (www.fao.org). The FishStat plus system allows users to select and

deselect separate fishery data time series easily and directly in the software.

This is a complete world-wide database, thus we refer only to the data set

Landings of GFCM Area 37 from 1970 to 2005. This data set also includes

the Black Sea, which in fact is another separate Large Marine Ecosystem (as

identified by NOOA) and therefore was analyzed separately in the following

section.

Data on capture production are reported to FAO by Member Countries as

collected by the national institutions in charge of fishery statistics. The data

set consists of recorded nominal catches and does not include discards. In many

case the identification and separation of landings by species is rather difficult

as landings are reported at a higher taxonomic level than species. Of the 200

species present in the original database, 195 species were selected. The species

of sponges and echinoderms were eliminated from the study.

The typical Trophic Level (TL) and the respective standard error (SE) of

the fish species were obtained from (Stergiou and Karpouzi, 2002) and Fish-

Base (www.fishbase.org); the latter also provides TL estimates from food items

for many fish species. For the invertebrates, the TL estimates and their SE

have been based on the ISCCAAP Table of FishBase 2000 (Froese and Pauly,

2011), which is in turn based largely on estimates from food web models (Eco-

path), and from SeaLifeBase (www.sealifebase.org). For fish family groups or

generic groupings (such as Clupeoids nei), TL estimates were obtained using

the weighted mean derived from the TLs of species of the class and their relative

landings. Demersal and pelagic species, used to calculate the P/D index, have

been defined according to the criteria used by FishBase (www.fishbase.org).
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Simulation of Discards & Illegal, Unreported and Unregu-

lated fishing (IUU)

In order to explore the contribution of discards and Illegal, Unreported and

Unregulated fishing (IUU) to our approach and to avoid over/understimation

of the ecosystem indicator trends, we simulate different scenarios including

various percentages of discards and IUU (treated together as a single value).

With the aim to set levels of discards and IUU for the simulation we have

taken into account the review carried out by Kelleher (2005), which puts the

level of discards in the Mediterranean Sea at less than 5%. However, it should

be noted that there is a huge variability in discard rates on a fishery by fishery

basis. Some particular trawl fisheries can reach up to 50% discards. On the

other hand, most of the small-scale fisheries and small pelagic fisheries show

discard rates that can be considered as negligible because the schools tend

to be monospecific and the fish tend to be of a similar size (Kelleher, 2005).

Although a discard level of 5% in the Mediterranean Sea can be considered low

we have to be aware that pelagic catches in particular (with a zero or negligible

discard rate) comprise more than 58% of the total catch of the Mediterranean

LME for the study period. We also have to consider that traditional fishing in

the Mediterranean can be considered quite efficient, with a low level of discards

for several reasons: catches are wholly destined for human consumption and

there are no exports to other areas. This has produced a better utilization of

the resource and discards are lower than in other fishery areas (e.g. Atlantic

Ocean).

We suggest simulating a minimum of three different scenarios with diverse

percentages of additional discards and IUU to landings (e. g. 5%, 10% and

15%). Moreover, since the discards are usually lower TL species in most fish-

eries, it is advisable use a cut-off (e. g. 3.25, see Pauly and Watson (2005))

to separate trophic groups into two main categories, i.e. low TLs (≤ 3.25) and

high TLs (≥ 3.25). The percentage of discards and IUU applied can then be

apportioned differently between low TL and high TL species, e.g. 50% low TL
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and 50% high TL, 75% low TL and 25% high TL, etc. Thus the scenarios used

were finally as follows:

� Scenario 1 (a), (b) and (c)

– Landings + 5% discards & IUU= 50% low TL, 50% high TL;

– Landings + 5% discards & IUU= 75% low TL, 25% high TL;

– Landings + 5% discards & IUU= 90% low TL, 10% high TL.

� Scenario 2 (a), (b) and (c)

– Landings + 10% discards & IUU= 50% low TL, 50% high TL;

– Landings + 10% discards & IUU= 75% low TL, 25% high TL;

– Landings + 10% discards & IUU= 90% low TL, 10% high TL.

� Scenario 3 (a), (b) and (c)

– Landings + 15% discards & IUU= 50% low TL, 50% high TL;

– Landings + 15% discards & IUU= 75% low TL, 25% high TL;

– Landings + 15% discards & IUU= 90% low TL, 10% high TL.

Results

Commercial catches in the Mediterranean LME are dominated by small pelagic

species, mainly sardines and anchovies. Catches increased from 1950 to the

mid-1980s, levelling off at around 900,000 tonnes in the 1990s, with landings

over 1 million tonnes recorded in 1994 and 1995. Demersal landings in the

Mediterranean are dominated by young fish and the European hake is the most

important demersal resource, followed by red-mullet, nephrops, shrimps and

whiting. Landings increased in this LME by about 48% since 1970 with high

exploitation of both bottom-living (demersal) and big pelagic stocks, e.g. tuna

and swordfish.
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The Mediterranean MTI index shows a slight increase of 0.02, from 3.18 to

3.20, in the first decade (from 1970). In contrast, from 1980 to 1990 the values

of the MTI index decline from 3.20 to 3.17. The MTI increased again in the

1990s, reaching a maximum value of 3.19 in 1995. After this year the trend

decreased to a minimum value of 3.12 in 2005 (Figure 2.1).
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Figure 2.1. The Marine Trophic Index (MTI) for the entire Mediterranean

Large Marine Ecosystem from 1970 to 2005. The continuous line represents

the Lowess fit and the dotted lines the 95% confidence bands.

The simulations of the MTI with different percentages of discards & IUU

show the same trend as the index computed without these (Figure 2.2). In the

first decade the index increased and reaches the highest values in all the simu-

lations. From 1980 to 1990 the index decreased, but in the 1992 increased again

(Figure 2.2). In the last 10 years the index trend decreased, reaching a value of

3.14 in 2005. The MTI simulations values are greater than 0.02-0.04, compared
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to the values of the 95% confidence band of the MTI (Figure 2.2). The highest

values of MTI are seen in the simulation in which the 10% of additional discards

& IUU is split 50-50% between the high and low TL (Figure 2.2). Conversely,

the smallest values are seen in the simulation in which the 10% is distributed

25-75% (Figure 2.2).

The FIB index increases to 0.45 from 1970 to 1985. In the second half of

the 80s the FIB index remained constant. Since 1990, the values increase from

0.44 to a maximum value of 0.50 in 1995 (Figure 2.3). The last ten years show

a continuous decrease. Indeed from 1995 to 2005 the index fell by 0.35, with a

minimum value of 0.15 in the last year of the time series examined (Figure 2.3).

In the first decade the P/D index shows a slight increase from values around

2 to 2.1. After 1980, the index decreased steadily, reaching a minimum value of

1.6 in 1993. In the last twelve years, the index value increased continuously to

2.2 in 2005 (Figure 2.4).

Regarding MTI3.25 index, in the first five years of the series the index de-

creased from 3.69 to 3.67. From 1975 to 1985 the index increased to a maximum

value of 3.71. From the late 80’s until the early 1990’s the MTI3.25 index de-

creased to 3.69. From 1990 to 1995 the index values showed an increase of 0.02.

Over the past 10 years there was a steady decline to a minimum value of 3.61

in 2005 (Figure 2.5).

Discussion

Results show a declining trend for the MTI, MTI3.25 and FIB indeces, while

the P/D show an increasing trend. This suggests that the excessive fisheries

expansion led to TL changes that are not supported by the ecosystem. In

particular, the MTI index show a decline trend, decreasing by 0.02 per decade

in the Mediterranean ecosystem in the last 36 years. This result supports

the assertion of Pauly et al. (1998) that there have been major changes in

the world fish communities, although the decrease observed in Mediterranean

data was lower than that estimated by these authors on a global scale (0.1
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Figure 2.2. Mediterranean Marine Trophic Index with discards & IUU

simulations. Three different proportions of discards and IUU are repre-

sented: 5%, 10% and 15% of the total landings distributed for low and

high Trophic Level species in different ways. In the first column of graph-

ics discards and IUU are represented equally for high and low TL species

(50%-50%); in the second 75% are low TL species and 25% high TL species;

and in the final column 90% belong to low TL species and 10% to high TL

species.

per decade). Comparing the speed at which this decline is occurring in marine

ecosystems, we can say that these changes are taking place much more slowly

in the Mediterranean Sea. This is probably due to the high biodiversity of this

ecosystem, where there is a large functional redundancy of species.
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Figure 2.3. Mediterranean Fishing in Balance index between 1970 and

2005.

Pinnegar et al. (2003) found a decrease in average trophic level of landings

(about 0.15 TL over 26 years) in the Western Mediterranean, analyzing data on

commercial catch and aquaculture, a much higher value than ours (about 0.07

TL over 36 years). It must be emphasized that our study focuses on a longer

time series and does not include data coming from aquaculture. Although

several different scenarios were tested, with different percentages of discards

and different disallocation of theses between the high and low trophic level

groups, the trend of the MTI was always the same even if the absolute values

differed slightly.

The results show that in the Mediterranean LME fisheries has been sup-

ported by high-medium trophic levels (i.e. trophic levels higher than 3.25).

The exploitation of these species has evolved over the years much faster than
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Figure 2.4. Mediterranean ratio of pelagic/demersal landings from 1970

to 2005 (P/D index).

their ability to recover. Indeed, in the last decade Mediterranean landings and

MTI have shown downward trends.

The increasing trend of the FIB index in the 1970s probably indicate an

expansion of fisheries, both geographically and in terms of the previously un-

exploited or only lightly exploited stock (Caddy and Garibaldi, 2000). This

fishery expansion is probably a consequence of direct government support for

the fishing sector as well as the implementation of technological advances. The

modernization of small and large-scale fishing fleets (i.e., larger boats, of higher

tonnage and engine horsepower, improved fishing gears, use of high-technology

equipment) led to the expansion of fishing in areas previously inaccessible to

fishing vessels because of strong winds and in deep water areas (Stergiou, 1997).

As a result, new resources, for the most part of high trophic levels, have begun
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Figure 2.5. Mediterranean Marine Trophic Index3.25 from 1970 to 2005.

to be exploited, such as Trachurus spp.

The FIB decrease in recent years could indicate that fisheries have with-

drawn an excess of biomass from the Mediterranean ecosystem (Pauly and

Watson, 2005). The technological growth and demand for fish in the 1980s has

led to the over-exploitation of marine resources, particularly in the case of the

highest trophic level demersal resources. This suggests that the changes in the

food web could be influenced by the impacts of progress in fishing technologies

and changes in market-driven exploitation (Stergiou and Karpouzi, 2002).

The increasing trend of the P/D index over the last decade is probably more
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the result of reduced demersal abundance than of a real increase in pelagic land-

ings. Pinnegar et al. (2003) suggested that the MTI decline reported by Pauly

et al. (1998) in the western Mediterranean may be explained by the increase

of landings due to the unwarranted inclusion of farmed bivalves (planktivorous,

i.e. low TL) in catch statistics. The decreasing trend in the MTI3.25 index ex-

cludes this hypothesis in the Mediterranean LME and confirms a real decrease

in the higher TL resources.

The increased importance of small pelagic species in Mediterranean Sea

landings may, in part, be a response to the scarcity of more traditional target

species, but it might also be related to technical innovation and the devel-

opment of new fishing gear designs. This, in turn, has greatly increased the

vulnerability of small pelagic stocks world-wide (Caddy and Garibaldi, 2000).

Almost all the new Mediterranean Sea fisheries of the last 20 years or so (blue

whiting, mackerel, horse-mackerel) have targeted species that feed mainly on

zooplankton. This is in contrast to the post-war fisheries, which targeted high

trophic level species such as hake, haddock and small sharks. Indeed, many

of these predatory fishes feed primarily on those species which are now being

harvested by the fishery, which implies that modern vessels are operating a

full trophic level lower than their post-war counterparts. The composition of

historical landings may be affected by phenomena such as natural oscillations

in species abundance, changes in fishing technology and economic factors which

are likely to have influenced the Mediterranean MTI of landings.

The contents of the Section 2.3 have been submitted in a peer-reviewed

journal.
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2.4 Assessing the fishing exploitation on the Black

Sea Large Marine Ecosystem.

The study area

The Black Sea is the world’s most isolated sea. It is connected to the Oceans

via the Mediterranean Sea through the Bosphorus, Dardanelle and Gibraltar

straits, and linked with the Sea of Azov in the northeast through the Kerch

Strait (http://www.icpdr.org). The Black Sea is a highly productive ecosystem

with a continental climate. The fluvial discharge, the natural winter produc-

tion the presence in summer of upwelling and a strong density stratification,

making the Black Sea the largest anoxic basin of the global ocean. The deep

waters do not mix with the upper layers of water that receive oxygen from

the atmosphere. As a result, over 90% of the deeper Black Sea volume is

anoxic water. The most peculiar feature of the Black Sea is the absence of

marine life at depths beyond 150-200 m., except for a few anaerobic bacte-

ria (www.encyclopediaofukraine.com). In the shallow waters of the continental

shelf and river mouths along the northwestern coast are concentrated living

organisms. The number of registered alien species at the regional level amount

to 217. This number, together the high level of pollution, suggests a serious

impact on the Black Sea native biological diversity and negative consequences

for human activities.

The data set

In this study we use the fishery landings of the Black Sea Large Marine

Ecosystem (see www.lme.noaa.gov for more details) for the years 1970-2005.

Fishery data and TLs of the species were extracted from the database in

http://www.seaaroundus.org. The data set consists of recorded nominal catches

and does not include discarded species. Specific landings were grouped into 11

trophic groups taking into account their trophic level (Table 2.1).
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Table 2.1. Trophic groups with the respective trophic levels (TL) and

standard error (SE).

Groups TL SE

Bivalvia 2.02 0.03

Crustaceans 2.53 0.7

Molluscs 2.82 0.8

Engraulidae 3.11 0.45

Flatfishes 3.13 0.32

Cupleidae 3.15 0.19

Scorpion-fishes 3.56 0.45

Carangidae 3.64 0.32

Percidae 3.66 0.19

Gadidae 4.05 0.68

Sharks and rays 4.15 0.79

Results

Total reported landings in the Black Sea showed critical peaks and troughs,

driven primarily by the fluctuation in the landings of European anchovy (En-

graulis encrasicolus) with a peak landing of 790,000 tones recorded in 1984

(Figure 2.6). The landings have increased following a precipitous decline from

1989 to 1991. However, have not returned to the level achieved in the mid

1980s.

MTI showed an increase of 0.2 in the first two decades. In fact the values

of MTI growed from 3.22 to 3.42 from 1970 to 1990 (Figure 2.7). In contrast,

from 1990 to 2000 the MTI index showed an abrupt decline, with a decrement

of 0.22 (Figure 2.7). Only in the last five years of the time series the MTI index

showed a slight increase from a value of 3.20 to 3.25 (Figure 2.7).

The FIB index showed negative values in all 35 years of the series (Fig-

ure 2.8). The increase in the FIB index from the 1970s to the mid 1980s is

driven by the increased reported landings during this period (Figure 2.8).

In contrast, the decrease in the MTI values since 1990 in not countered by
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Figure 2.6. Black sea landings from 1970 to 2005. The continue line

represented the lowess fit and the dotted lines the 95% confidence bands.

an increase in landings, thus the FIB index has also declined in the early 1990.

After reaching the minimum value of -1.8, the FIB index increased by 0.5 from

1995 to 2005 (Figure 2.8).

The MTI3.25 showed a drastic decline in the 1984, the same year when the

landings of European anchovy peaked (Figure 2.9). In the mid 1990s the index

increased from 3.69 to 3.77 in the 1995 (Figure 2.9). In contrast, in the last

five years the MTI3.25 index showed a strong decrease from 3.77 in 1995 to

3.69 in 2005 (Figure 2.9). The P/D index showed positive values for all the

times series (Figure 2.10). This trend showed a decreasing trend since the early

1970s until recorded the minimum values in the 1990. In the following years the

index started to increase slowly showed a maximum value of 9.7 in the 2002. In

contrast, the last three years of the time series showed a decrease in the index

from 9.2 to 4 (Figure 2.10).
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Figure 2.7. Black sea Marine Trophic Index between 1970 and 2005.

Discussion

The indeces show an ecosystem heavily exploited, where the overfishing and the

anthropogenic eutrophication are probably the responsible. The decline of the

MTI and of the FIB show a Fishing Down the marine Food Web situation in

this ecosystem. Fishing down has been tested on Mediterranean Large Marine

Ecosystems, but the speed with which changes occur in Black Sea fish commu-

nities is much higher. Our results support precedent studies that show strong

changes fish community of the Black Sea during the last years (Lleonart, 2005).

The fishery eliminated the top predator during the 1970s; that led to re-

duced predation on planktivores, causing them increasing in the 1980s. Intense

and unregulated fishing pressure in these years led to severe overexploitation

of most of the major fish stocks (Black Sea Commission, 2002). The MTI

and FIB decrease may indicate that fisheries withdraw so much biomass from
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Figure 2.8. Black sea Fishing in Balance Index between 1970 and 2005.

the ecosystem that its functioning could be impaired (Pauly and Watson, 2005).

The technological growth and demand of fishery in the years 80s, has developed

over-exploitation of marine resources, particularly for highest trophic demersal

resources. This suggests that the changes in the food web could be influenced

by the impacts of advancement of fishing technologies, and changes in market-

driven exploitation (Caddy and Garibaldi, 2000).

Indeed, the top predators as swordfish and tuna, were heavily exploited

with the introduction of purse seining and through large scale surface longline

and gill-net fisheries in the 1980s in this Large Marine Ecosystem (Caddy,

1993). Some demersal species have pratically disappeared. This has been

exacerbated by destructive fishing practices such as catching of under-sized

fish. Furthermore, the invasion of the warty comb jelly (Mnemiopsis leidyi)

contributed to a catastrophic decline of the fish stocks in the mid 1980s. The

trend of the MTI3.25 and P/D index confirmed this shift in the mid 1980s. The
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Figure 2.9. Black sea Marine Trophic Index3.25 between 1970 and 2005.

The cut-off value of 3.25 removed from the computation of the index all

species whose biomass tend to vary widely in response to environmental

factors.

warty comb jelly eats eggs and larvae of pelagic fish and it caused a dramatic

drop in fish populations. The trend of the P/D index showed that the dramatic

fall of the black sea fish catch was most pronounced for small pelagic species

with a four-fold reduction in the catches between 1988 and 1991, although

the landings of these species have partially recovered over the past decade, as

showed the trend of the MTI. The P/D index shows this increasing trend in

recent years for the small pelagic species, which are r species with a higher

turnover, especially in a highly eutrophic ecosystem as the Black Sea. Also,

this increase of small planktivorous species might have been a result of the

transition of the ecosystem from an oligotrophic to eutrophic stae caused by

nutrient enrichment (Caddy, 1993).
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Figure 2.10. Black sea Pelagic/Demersal Index between 1970 and 2005.

This phenomenon is confirmed by the decrease in recent years of the MTI3.25

index. This trend indicating that the resources with high TL, which corresponds

the demersal fishes, are running out while the low TL species are increasing.

These results indicate a lack of sustainability in the ecosystem studied and the

need for intervention.

The contents of the Section 2.4 have been published in:

M.G. Pennino, J.M. Bellido, D. Conesa and A. López-Qúılez (2011). Trophic

indicators to measure the impact of fishing on an exploited ecosystem, Animal

Biodiversity and Conservation, 34(1): 123-131.
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2.4.1 General conclusions

The Large Marine Ecosystem (LME) concept emerges as a possible practical

structure upon which the EAFM could be operationalized. In fact, the use of

the ecosystem indicators presented have made it possible to identify important

trends in two different LMEs, such as the Mediterranean and Black Sea, for a

long time-series and in a data-poor situation. The reliability of historical data

series of catches in these ecosystems is variable, but data on effort are almost

absent. Given the complexity and diversity of the fisheries the available data

are probably not sufficient for regular and trustworthy assessments for most

species.

We should remember that this approach intends to find a compromise be-

tween the different spatial scales and the availability of relevant data to im-

plement an EAFM. This approach is not about understanding the functioning

of the ecosystem at a micro-scale level, but about increasing knowledge of the

functioning of whole ecosystems.

Indicators rarely give definitive answers but they nearly always suggest the

next best question to ask that ultimately will give the answer required. Con-

sequently, indicators very often make people and organisations feel vulnerable,

exposed and defensive. This feeling is not likely to change unless more is done

to help people understand and accept the strengths, as well as the limitations,

of these important measurement tools. One of the biggest problems with devel-

oping good indicators is that frequently the best indicators are those for which

there is no data. However, there are several advantages to use simple indicators.

First, the data are more likely to be readily available and can be used to com-

pare communities. Second, the indicators can help to define problem areas and

can be combined with more indicators to overcome each other’s weaknesses.

Discussions that include the phrase but you can’t get that data are not

going to lead to better indicators. In fact, if you define a list of indicators and

find that the data are readily available for every one of them, you probably

have to wait too long to act on the ecosystem improvement. It is better to try
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to define the best indicators and only settle for less as an interim step while

developing data sources for better indicators.

Nevertheless, the interpretation of trophic indicators is still very subjective.

References points and limit values have not been established so the interpre-

taion of the results obtained with these indicators is often unambiguously. The

sheer complexity of ecosystems doesn’t allow to fix and standardize these val-

ues. Each ecosystem trophic structure consists of a specific and unique and

it is very difficult to identify critical threshold values that are suitable for all

ecosystems.

In order to obtain a comprehensive view of ecosystem dynamics it is essential

to assess a number of indicator trends jointly: for instance, trends in the MTI

must be accompanied by an examination of the MTI3.25 , FIB and P/D trends.

Jointly these indeces are a great way to compare the dynamics of different

ecosystems, since the important aspect for the ecosystem study is the indeces

trends over the times and not the values that they assume. Sustainability,

however defined, must imply some notion of permanence in at least some of the

entities or processes being evaluated. Thus, if there is, in a given ecosystem, a

clear trend of the relative abundance of high-TL to low-TL fishes, as indicated

by declining MTI values, then this indicates the absence of sustainability and

the need for intervention. A multispecies fishery can safely be assumed to be

unsustainable if the mean TL of the species it exploits keeps going down (Pauly

and Watson, 2005).

In conclusion we recommend the use of these indicators to analyze an ecosys-

tem with a macro-scale approach and get an overview of the ecosystem in this

whole. The causes and the drivers that led to the changes highlighted by the

analysis must be verified at the micro-scale, when and where you have better

data available. We mean that ecosystem indicators are considered promising

tools to assess ecosystem conditions because easy to standardize and to esti-

mate with commonly available data. Application of the selected indicators to

other marine ecosystems is encouraged so as to evaluate fully their usefulness

to a broad selection of LMEs, to evaluate fully their usefulness for an EAFM
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and to establish international comparability.

2.5 Second statistical approach: nonparametric

density estimation, stochastic kernels and

transition probability matrices

techniques.

In this Section, we present another way for analyzing ecological indicators with

the final aim of estimating Mediterranean fisheries exploitation throughout the

period 1992-2008 using a meso-scale level. In particular, we have focused on

how distributions of fishery ecological indicators evolve over time, through the

nonparametric estimation of Gaussian kernel density functions and, according

to this, what might be the probable long run distribution. The picture emerging

from the results is that the excessive fisheries expansion, both geographically

and in terms of exploitation of stocks, led to trophic levels changes that are not

supported by the Mediterranean ecosystem. Mediterranean countries persist in

their fishery behaviours along the time series, but in the long run they show a

tendency to cause similar negative effects on the ecosystem.

Introduction

As previously mentioned, the Mediterranean basin is a complex region that

gathers many different ecosystems characterized by a very high level of biodi-

versity. It is the crossroad between three continents, Asia, Africa and Europe,

with very different cultural backgrounds, forms of governments and levels of de-

velopment (González-Riancho et al., 2009). Mediterranean fisheries are highly

diverse and vary geographically, not only because of the existence of different

marine environments, but also because of different socio-economic situations.

The complex structure of Mediterranean fisheries (e.g. atomised fleet, a huge
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number of landings points and multispecies catches) makes the data collec-

tion and the consequentely fishery management difficult and expensive. Given

the complexity and diversity of Mediterranean fisheries the only fairly reliable

historical data series available, for all countries, are fish market data.

However, these countries’ heterogeneity can be exploited to achieve an effi-

cient fishery management in this LME, through the study of the behaviour of

the fishing exploitation in different Mediterranean countries. The overfishing

phenomena that is affecting the ecosystems and fish stocks of developed coun-

tries, is generating negative effects that could be prevented and smoothed in

developing countries.

Here, we address this issue in a complementary way using a meso-scale

approach. Specifically, we consider three different ecological indicators that

not only assess the fishing exploitation over the time, but also provide an early

warning signal of dynamic patterns that might be taking place in the ecosystem.

In particular, we use the Marine Trophic Index, the Marine Trophic Index3.25

and the Fishing in Balance index. These selected ecological indicators are very

useful tools in a data-poor situation, like ours. Moreover, with an only number

they can describe a large variety of complex processes occurring within an

ecosystem.

In order to accurately capture the fishing exploitation in the Mediterranean

basin and its effects on the ecosystem, we propose a methodology that analyzes

its evolution over time through the use of ecological indicators, nonparamet-

ric density estimation, stochastic kernels and transition probability matrices.

These methodologies allows us to ascertain whether there is a tendency for

Mediterranean countries to converge in their characteristics, either towards the

best or worst practice fisheries, and consequently, on ecosystems.

Our approach is also motivated by the dynamic nature of ecosystems, spe-

cially when subjected to an industry, such as fishing, undergoing rapid change.

At any particular moment some fisheries will be more, or less, harmful than

others, but this ranking will vary over time. Countries will differ in their

adjustment to shifts in the fishery industry (new technologies, market prices
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and national laws), both in their speed of reaction and preparation for such

shifts. Looking only at landings statistics (a snapshot of fishing exploitation on

a ecosystem) could provide maybe a too restrictive view, as it does not com-

prehensively capture whether ecosystem are adapting to any potential shocks

neither if fisheries could be more sustainable or not over time.

The dataset

Fishery data were extracted from FishStat plus, the FAO Fishery Statistic

Database (www.fao.org). This is a complete world-wide database. In our case,

we have only selected landings from 1992 to 2008 of the 14 Mediterranean coun-

tries whose data had continuity over time (Albania, Algeria, Croatia, Egypt,

France, Greece, Italy, Lybian, Malta, Montenegro-Serbia, Morocco, Slovenia,

Spain, Tunisia).

The database is the same that was used in Section 2.3, except that landings

are now divided for the different countries. Here, we use a meso-scale approach,

which allows us to reanalyze the patterns previously studied (Section 2.3) and

to verify if the use of different spatial scale provides different results in the same

ecosystem.

Statistical analysis

Mediterranean fisheries are highly diverse on each country, not only because

of the existence of different marine environments, but also because of different

socio-economic situations. In order to take into account these differences, and

to avoid this affecting the analysis, before applying our techniques, ecological

indicators have been normalized using a conditioned approach. In particular,

each ecological indicator has been normalized relative to the yearly mean of

countries grouped according to their Gross domestic product (GDP). The GDP

data have been extracted from official statistics (http://www.kushnirs.org) be-

tween 1992 to 2008.

In order to obtain the statistically different groups in terms of the GDP,
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Cluster Analysis (CA) was performed on a Euclidean similarity matrix with

the average method, considering the GDP (1992-2008) of each country to iden-

tify similarity between them and to obtain the groups statistically different. In

order to evaluate how the hierarchical structure of the CA represented the ef-

fective distance between the countries assemblages, the coefficient of cophenetic

correlation (Rc, “cophenetic” function, “stats” library of the R (R Development

Core Team, 2012)) was computed.

Normalizing each ecological indicator has also the benefit of isolating shocks

that could bias the analysis, as each indicator could show a tendency either

to increase or to decrease. It also permits us to partly offset the distorting ef-

fects of outlying observations, to which nonparametric methods are particularly

sensitive.

Nonparametric estimation of the univariate density func-

tions

The first step to evaluate how the entire distribution of each ecological indicator

evolves over time is to estimate nonparametrically their corresponding density

functions in each sample year. The dynamic implications of this analysis are

clear: if probability mass tends to be more markedly concentrated around a

certain value, convergence is achieved, namely, (normalized) ecological indicator

values tend to equalize. If such a value were unity, the outcome would be a

convergence process to the average. In other words this would mean that the

behaviour of the different fisheries of the Mediterranean countries tend to be

gradually more similar. On the contrary, the opposite outcome (divergence)

would imply probability mass being increasingly spread across a wider range,

implying different behaviours of the Mediterranean fisheries.

Although in many cases the parametric analysis is the most powerful, data

might be strongly non-normal, asymmetric or multi-modal. In this sense, one of

the most important challenges of data analysis consists of uncovering all com-

plexities that could be hidden and in such attempts, the parametric approach
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turns out to be clearly unsatisfactory (Tortosa-Ausina, 2002).

However, relying too much on the visual aspect of data has historically been

strongly criticized. The first objection the sceptic may argue is logical: this

type of analysis is meaningless if graphical representation allows any intrinsic

feature in the data to be uncovered. However, in most situations, as the num-

ber of observations increases we can see nothing. As we already mentioned

in Section 2.2, in order to solve such a problem, data must be smoothed, the

histogram being the most simple example of smoothing. Indeed, this is the

second objection against the nonparametric approach to estimate density func-

tions: why not simply use the histogram to uncover data structure? Although

it is not a bad starting point, it has well-known shortcomings (Silverman, 1986)

that lead us to choose another way to smooth data.

Specifically, the basis of this approach will be kernel smoothing. It provides

a way of uncovering data structure without imposing any parametric model.

This allows us to prevent features like a bi-modal structure, which is impossible

to uncover through a parametric uni-modal model.

Kernel smoothing consists primarily of estimating the following density

function for the ecological indicators computed:

f̂(x) =
1

Sh

S∑
s=1

K

(
x− EIs

h

)
, (2.3)

where S is the number of countries being analyzed, EIs is the specific ecological

indicator, K is a kernel function and h is the bandwidth, window width or

smoothing parameter.

Multiple options for the kernel selection exist, such as the Epanechnikov, tri-

angular, Gaussian, rectangular, etc. The Gaussian kernel is easily computable,

and its expression in the univariate case is the following:

K(t) =
1√
2π
e−

1
2 t

2

. (2.4)
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Thus, equation (2.3) becomes:

f̂(x) =
1

Sh

S∑
s=1

1√
2π
e−

1
2 (

x−EIs
h )2 . (2.5)

Whereas kernel selection determines the form of the bumps when graphically

representing function (2.5), the smoothing parameter h influences it differently,

by determining the width of such bumps. However, bandwidth selection is far

more important than kernel selection. If h is too small, an excessive number of

bumps is generated, thus making it difficult to clearly distinguish data struc-

ture. This phenomenon is known as undersmoothing. On the other hand, when

h is too large we have oversmoothing, in such a way that some features present

in the data (such as multi-modal structures) are hidden. Underlying these con-

cepts lies the traditional trade-off between bias and variance which depends on

the smoothing parameter: as h increases, variance decreases and bias increases,

and vice versa.

Prior research studies applying the nonparametric estimation of density

functions to the analysis of convergence or time evolution of inequalities hardly

emphasize the h chosen. In most of them the issue is not even mentioned,

while others simply indicate that the smoothing parameter has been chosen

automatically—referring to the least squares cross validation method—. How-

ever, as it has been pointed out, choosing different hs significantly influences

the results, which forces us to look for a more suitable bandwidth.

Jones et al. (1996) compare different hs, and conclude by stating the impor-

tance of this topic. Among them, they state that some first generation methods

do not sufficiently smooth data in many circumstances (undersmoothing), while

the opposite occurs for others (oversmoothing). Second generation methods of-

fer a reasonable balance between these two extremes or, equivalently, between

bias and variance. The higher performance of the second generation methods

has been increasingly reported in the literature on kernel smoothing (Cao et al.,

1994; Park and Turlach, 1992).

These arguments have led us to choose the bandwidth proposed by Sheather
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and Jones (1991). It is based on the second generation method solve-the-

equation plug-in-approach, and its superior performance relative to the first

generation methods has been further verified (Jones et al., 1996). It is known

as hSJPI, which has its origins in the authors’ names and in the approach

followed.

Intra-distribution mobility: stochastic kernels

Nonparametric estimation of the univariate density functions does not inform

on some dynamic patterns. In particular, it can be argued that the dynamic

evolution of a distribution might not offer a clear pattern either towards con-

vergence or divergence, in the sense described above, but that important intra-

distribution movements were taking place. In other words, although the exter-

nal shape of the density function might not be affected, changes in countries’

relative positions could be taking place.

In order to overcome such shortcomings, a law of motion of the cross-section

distribution is required. Thus, dynamics can be modelled. Finding out such a

law and, therefore, drawing conclusions on the patterns of the variables’ cross-

section distribution dynamics, requires modelling the stochastic process that

takes values that are probability measures (λt) associated to the cross-section

distribution at time t (Ft), where:

∀ y ∈ R : λt((−∞, y]) = Ft(y). (2.6)

Bearing this in mind, we attempt to build a formal statistical structure

which captures the stated phenomena—intra-distribution mobility and, as will

be shown later on, long-run behaviour. However, the standard analysis does

not provide suitable instruments to model the sequence of the distributions’

dynamics. Pursuing such aims, we can consider on Markov Processes Theory

and establish a duality to approach the problem.

In the same way that transition probability functions describe the dynamics

of a scalar process, stochastic kernels describe the dynamics or law of motion
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of a sequence of distributions. In other words, the stochastic kernel is a mathe-

matical operator that transforms distributions to distributions.

Let λt be the probability measure associated to the distribution of each eco-

logical indicator Ft at time t, then the stochastic kernel describing the evolution

from λt to λt+1 is the mapping Mt to [0,1] of the Cartesian product of a specif

ecological indicator and Borel-measurable sets such that (Durlauf and Quah,

1998):

∀ set A Borel-measurable : λt+1(A) =

∫
Mt(y,A)dλt(y). (2.7)

Note that the values taken by equation (2.7) are measures or distributions

instead of scalars or finite dimensional vectors. Additionally, assuming Mt

time-invariant, equation (2.7) could be re-written as:

λt+1 = M ∗ λt, (2.8)

where M is a representation of the stochastic kernel which encodes information

on how starting with a probability measure λt associated to the cross-section

distribution Ft, we end up with λt+1 (associated to Ft+1), i.e., on the different

countries’ relative positions, which is equivalent to partly knowing the dynamics

we attempt to model. Thus, estimation of M from the available data allows

empirically quantifying distribution dynamics.

Additionally, considering equation (2.7) and iterating:

λt+s = (M ∗M ∗ · · · ∗M) ∗ λt. (2.9)

This expression allows (when s→∞) the ergodic distribution to be char-

acterized, thus completely characterizing the dynamics of fishing exploitation.

The ergodic distribution should not be considered exactly as a prediction of the

future, as future realizations of the variables could be influenced in many ways.

This concept should be more properly considered as a characterization of past

years’ tendencies.
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Long-run tendencies: ergodic distribution

Stochastic kernels distributions provide some further insights on the Mediter-

ranean ecosystem dynamic, by identifying fisheries’ changes in their relative

ecological indicators trends. But it still leaves the long-run behaviour or er-

godic distribution unsolved.

In order to computing the ergodic distribution and characterizing long-run

behaviour, the ecological indicators space has to be discretized. In such a case,

measures λt are probability vectors and the stochastic kernel M becomes a

transition probability matrix Q. Hence, M and Q both refer to the stochastic

kernel, but in the continuous and discrete contexts, respectively:

Ft+1 = Qr×r · Ft, (2.10)

where Qr×r is a transition probability matrix from one state to another, as-

suming a countable state space:

E = {e1, e2, . . . , er}, (2.11)

for the analyzed variable. The discretization of the observations’ space in which

the variables may take values in r states ei, i = 1, . . . , r allows intra-distribution

mobility to be interpreted straightforwardly. In addition, cell pij in Qr×r matrix

shows the probability that a country initially affiliated to state i transits during

the period or periods (l) considered to state j. Cell pij is defined as:

pij =
1

T − 1

T−1∑
t=1

Nij,t
Ni,t

, (2.12)

where T is the number of periods in the sample (17 years), Nij,t is the number

of countries transiting during a period from state i to state j and Ni,t is the

total number of countries starting the period in state i. In addition, each row

in the matrix represents a transition probability vector. Such vectors help to

better understand the analogy with the continuous case: they are equivalent to

the density probability defined for each point in E, when cutting the figure at

that point by a plane parallel to t+ l.
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When computing annual transitions (1-year transitions) through transition

probability matrices, the available observations for the 17 years are divided into

five states E = {e1, e2, . . . , e5}. The states’ upper limits have been selected in

such a way that the initial distribution (1992) is uniform. This strategy gives

different limits to the states according to the different definitions of output.

If transition probability matrix were the identity matrix, distributions would

be invariant and, in addition, no intra-distribution movements would occur. In

contrast, if probability tended to be more strongly concentrated off the main di-

agonal then high intra-distribution mobility would exist (Tortosa-Ausina, 2003).

Results

The similarity dendrogram for the Gross domestic product (GDP) revealed the

existence of four different assemblages for the Mediterranean countries (Rc=

0.78). France and Italy form a separate group, as well as Spain and Greece,

and Malta and Slovenia, while all other countries are included in a single group.

This latter group comprises 8 out of the 14 of Mediterranean countries, includ-

ing Albania, Algeria, Croatia, Egypt, Lybian, Montenegro-Serbia, Morocco and

Tunisia.

As for the analysis of the fisheries exploitation dynamics, we will apply the

methodology described in the previous sections to each ecological indicator.

The first stage corresponds to the nonparametric estimation of density func-

tions by means of Gaussian kernel smoothing, for the selected four-year intervals

(1992-1995, 1996-1999, 2000-2004, 2005-2008). These periods were chosen, af-

ter several attempts, because they allow for the best visual comparison of the

shapes of the distributions.

The Marine Trophic Index (MTI)

Figure 2.11(a) shows the time evolution of the distribution of the Marine

Trophic Index (MTI) for all sample years with the Gaussian kernel smooth-

ing approach. The MTI displays a clear multi-modality distribution on 1992,
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which almost vanishes by 2008—even though it seems that the process has un-

dergone a deceleration by 2005 (Figure 2.11(a)). The initial scenario reveals

the existence of three different clusters of countries, one below MTI average

(the significant peak below 1), another with above average (the “shoulder” at

about 1.1), and another lower than the average (the “shoulder” at about 0.85).

Densities have become increasingly spread from 1992 to 2005, suggesting that

countries are less similar over time. Nevertheless, the last 4 years of the series

show a change in the MTI dynamic, and their corresponding densities become

more closer to the MTI average. Over time, the three clusters merged, and

virtually a main significant peak (mode) emerges.

Stochastic kernels, describing intra-distribution mobility of the MTI, are

reported in Figures 2.11(b) and 2.11(c). Specifically, they represent bivariate

density functions of the MTI. Each coordinate direction represents a period,

and the stochastic kernels attempt to describe the transition from period t to

period t+ 1 (for 1-year transitions, Figure 2.11(b)) and from 1992 to 2008 (for

17-year transitions, Figure 2.11(c)), or how a distribution turns into another

one over time.

Through their analysis, it may be inferred that inter-annual mobility is not

very high for either output specification, at least compared to 17-year transi-

tions. Such a pattern is suggested by a probability mass concentrated along the

positive sloped diagonal in the contour plots, which indicates persistence in the

countries positions.

These conclusions are not mirrored when considering Figure 2.11(c), which

displays transitions from 1992 to 2008 (17-year transitions). In these cases,

intra-distribution mobility is higher. In fact, the probability mass seems to

concentrate horizontally at about 1 in 1992, suggesting that initial relative

positions are more disperse than the final ones.

In the case of the stochastic kernels, persistence was suggested by probabil-

ity mass concentrated along the positively sloped diagonal. Equivalently, tran-

sition probability matrices suggest persistence if these matrices are the identity

matrix. In fact, transition probability matrices are just discretized versions of
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the stochastic kernels, enabling computation of long run tendencies (ergodic

distribution). Thus, Tables 2.2 and 2.3 are the discretized counterparts to the

MTI stochastic kernel distributions provided by Figures 2.11(b) and 2.11(c).

Table 2.2. Convergence in Mean Trophic Level (1-year transitions)

MTI

Upper limit

0.96 0.98 1.00 1.06 ∞
(50) 0.84 0.12 0.04 0.00 0.00

(52) 0.20 0.58 0.16 0.07 0.00

(53) 0.00 0.25 0.53 0.22 0.00

(49) 0.00 0.07 0.18 0.73 0.02

(52) 0.00 0.00 0.00 0.04 0.96

Ergodic distribution 0.27 0.20 0.19 0.22 0.12

Table 2.3. Convergence in Mean Trophic Level (17-year transitions)

MTI

Upper limit

0.96 0.98 1.00 1.05 ∞
0.67 0.00 0.00 0.33 0.00

0.00 0.33 0.00 0.33 0.33

0.25 0.25 0.25 0.00 0.25

0.00 0.00 0.50 0.50 0.00

0.00 0.00 0.00 0.00 1.00

Ergodic distribution 0.00 0.00 0.00 0.00 1.00

In Table 2.3 numbers in parentheses in both 2.2 and 2.3 indicate the to-

tal number of observations in each relative MTI state at period t. Thus, as

suggested by Table 2.2, there are 53 observations (out of the total number of

observations for the 17 years in the sample) initially in state 3 of relative MTI,
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i.e., ranging between 1.00 and 1.06 times the average. The interpretation of

each entry in each matrix is the following: they represent the probability of

each countries’ to either remain or move to another state of relative MTI. For

instance, in Table 2.2, the state 3 shows that in the next period (t+1), 53% out

of these 53 observations remained in the same state of relative MTI, whereas

22% moved to another state of higher MTI (state 4); the remaining 25% moved

to state of less relative MTI (state 2). On the same line, annual transitions

show that 84% of countries with initial MTI below 0.96 times the average re-

mained in the same state in the following period, whereas 12%, and 4% moved

to states 2 and 3, respectively. The state 5 shows that by the following period

t + 1, 96% out of these 52 observations remained in the same state of relative

MTI, whereas 4% moved to the lower MTI state 4. Diagonal entries average to

0.72, show a persistence pattern as the continuous counterpart suggested.

Results differ when only initial and final periods are compared (17-year

transitions). Diagonal entries average is much lower (0.55). As Table 2.3 shows,

all countries starting in a given state of MTI by 1992 move to other lower or

higher states by 2008, except for state 5, that persists to 100%.

The ergodic distributions inform about the probability of a country ending

up in a certain state of MTI. Results suggest that probability mass ends up

being more concentrated in state 1 of MTI (27%, Table 2.2), including those

countries with MTI values ranging between 0.96 and 0.98 times MTI aver-

age. The highest MTI state 5 account for almost 12% of probability. On the

contrary, the ergodic distribution of the 17-year transitions matrix shows that

probability mass ends up being totally concentrated in state 5 of MTI (100%)

(Table 2.3).

The Marine Trophic Index3.25 (MTI3.25)

Gaussian kernel distributions of the Marine Trophic Index3.25 (MTI3.25) reveals

an initial scenario with a clear multi-modality distribution with three different

clusters of countries, which persist over time (Figure 2.12(a)). The cluster below
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MTI3.25 average shows a steady increase with respect to the other clusters, as

suggested by probability mass increasingly concentrated at about 1.

The MTI3.25 multi-modality distribution is corroborated by the stochastic

kernels (Figures 2.12(b) and 2.12(c)). The probability mass concentrated along

the positive sloped diagonal in the contour plots indicates persistence in the

countries positions.

In Table 2.4 annual transitions show that 95% of countries with initial

MTI3.25 below 0.96 times the average remained in the same state in the fol-

lowing period, whereas only 5% moved to states 2. Similarly, 93% of countries

starting in the highest MTI3.25 state, remained in the same state in the follow-

ing period, whereas only 7% moved to the lower states 4. The diagonal entries

average to 0.87 corroborate this persistence pattern.

Table 2.4. Convergence in Mean Trophic Level3.25 (1-year transitions)

MTI3.25

Upper limit

0.96 1.02 1.11 1.21 ∞
(42) 0.95 0.05 0.00 0.00 0.00

(42) 0.07 0.81 0.12 0.00 0.00

(41) 0.00 0.12 0.80 0.07 0.00

(41) 0.00 0.00 0.10 0.85 0.05

(42) 0.00 0.00 0.00 0.07 0.93

Ergodic distribution 0.32 0.21 0.21 0.16 0.11

Results of ergodic distribution suggest that probability mass ends up being

more concentrated in state 1 of MTI (32%, Table 2.4), including those countries

with MTI3.25 values ranging between 0.96 and 0.98 times MTI3.25 average. On

the contrary, the ergodic distribution of the 17-year transitions matrix shows

that probability mass ends up being more concentrated in state 3 (60%) and 4

(40%) of MTI3.25 (Table 2.5).
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Table 2.5. Convergence in Mean Trophic Level3.25 (17-year transitions)

MTI3.25

Upper limit

0.96 1.02 1.11 1.21 ∞
0.67 0.00 0.00 0.33 0.00

0.50 0.50 0.00 0.00 0.00

0.00 0.00 0.33 0.67 0.00

0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.00 0.25 0.75

Ergodic distribution 0.00 0.00 0.60 0.40 0.00

The Fishing in Balance Index (FIB)

Gaussian kernel distributions of the FIB show a steady tendency towards di-

vergence in FIB values, as suggested by probability mass increasingly spread

across a wider range (Figure 2.13(a)). Density functions show a tighter distri-

bution in the first period of the time series (1992-1995), that has become more

wider over the time.

Figure 2.13(a) shows that inter-annual mobility is not very high for either

output specification, at least compared to 17-year transitions. Indeed, while

Figure 2.13(a) shows that the probability mass is concentrated along the posi-

tive sloped diagonal, Figure 2.13(b) shows that the probability is concentrated

horizontally at about 0 in 1992, suggesting that initial relative positions are

more disperse than final ones.

The intra-distribution mobility patterns are corroborated by the transition

probability matrices (Tables 2.6 and 2.7). Table 2.6 shows that, for state 1,

by the following period (t + 1), 84% out of these 43 observations remained

in the same state of relative FIB, whereas 14% and 2% moved to higher FIB

states (states 2 and 3, respectively). On the same line, annual transitions show

that 79% of countries with the higher FIB state remained in the same state
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in the following period, whereas 14%, 2% and 5% moved to states 4, 3 and 2,

respectively.

Table 2.6. Convergence in Fishing in Balance (1-year transitions)

FIB

Upper limit

-0.20 -0.05 0.03 0.14 ∞
(43) 0.84 0.14 0.02 0.00 0.00

(42) 0.17 0.55 0.21 0.04 0.02

(42) 0.04 0.11 0.63 0.20 0.02

(40) 0.00 0.07 0.04 0.62 0.27

(43) 0.00 0.05 0.02 0.14 0.79

Ergodic distribution 0.21 0.16 0.15 0.20 0.28

Table 2.7. Convergence in Fishing in Balance (17-year transitions)

FIB

Upper limit

-0.20 -0.05 0.03 0.14 ∞
0.84 0.14 0.02 0.00 0.00

0.19 0.53 0.21 0.04 0.02

0.04 0.13 0.57 0.23 0.02

0.02 0.07 0.15 0.50 0.25

0.00 0.05 0.02 0.16 0.77

Ergodic distribution 0.24 0.17 0.16 0.19 0.25

The ergodic distribution shows that the probability mass ends up being

more concentrated in state 5 of FIB (28%, Table 2.6). Nevertheless, the

probability is distributed almost uniformly in the other states (about 20%),

and more in the the 17-year transitions matrix (Table 2.7).
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Conclusions

Over the last decade there has been a strong move towards Ecosystem Approach

to Fisheries Management (EAFM) world-wide (Shin and Shannon, 2010). The

EAFM is a holistic approach to fisheries management that includes partic-

ipatory approaches and consideration of a broader view of ecosystem issues

including fishing effects on ecosystems (Fluharty, 2005).

In order to achieve these purposes, new methodologies are required since so-

phisticated ecosystem models are difficult to apply to macro-scale and long time

series studies, due to the lack of detailed data. In all these data-poor situations,

the most readily available fisheries data are commercial landings, due to their

connection to the economy and business, and ecological indicators would appear

to be an effective method of highlighting fishing effects on ecosystems, offering

ease of interpretation and, ideally, also suggesting the appropriate intervention.

In this Section a new approach and ecological indicators have been con-

sidered to estimate Mediterranean fishery exploitation throughout the period

1992-2008. This approach makes possible to answer questions as to how the

distribution of the ecological indicators evolve (estimating nonparametrically

density functions, via the kernel method), and there are changes in countries

relative positions over time and what would be the likely long run (ergodic)

distribution of such indicators. This type of analysis permits the uncovering

of some features of the distribution that could be hidden if only landings are

analyzed, such as a strong multi-modality distribution persistent over time.

Indeed, a clear multi-modality distribution is detected by the analysis of

the MTI and in particular of the MTI3.25 index. The two indices show similar

trends, however, much more pronounced in the analysis of the MTI3.25 index.

The remove of low trophic levels species (trophic levels lower than 3.25) from

the calculation of MTI, whose biomass tends to vary widely in response to

environmental factors, highlights the persistence of three different clusters in

the Mediterranean ecosystem.

One of these clusters shows MTI and MTI3.25 values higher than average
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of these indices, which implies fisheries supported by high-medium trophic lev-

els (i.e. trophic levels higher than 3.25). Opposite, the cluster with MTI and

MTI3.25 values lower than the average indicates the existence of fisheries sup-

ported by low trophic levels. Both groups show a strong persistence over time.

Conversely, intra-distribution mobility is higher in countries in the third clus-

ter, which includes medium MTI and MTI3.25 values. This cluster shows a

steady tendency towards convergence in MTI and MTI3.25 average, reflecting

ecological appropriate changes in landings.

Nevertheless, ergodic distributions, which inform about the probability of a

country ending up in a certain state of MTI and MTI3.25, show that most of

Mediterranean countries would be in the long run in the lower limit of these

indices. This highlights a trend of the increasing prevalence of low trophic levels

species over high trophic levels species in the long run, indicating a lack of sus-

tainability in the ecosystem. Currently Mediterranean fisheries are supported

by high-medium trophic levels species, but their exploitation could evolve much

faster than their ability to recover, generating a fishery shift towards low trophic

levels species.

This trend is confirmed by the divergence pattern shown by FIB index.

In the first period (1992-1995) all Mediterranean countries showed a similar

behaviour, with FIB values close to zero, index that trophic levels changes

match ecological appropriate changes in landings.

In the following periods the FIB shows a steady tendency towards diver-

gence, resulting in different behaviours of the Mediterranean countries. During

the time series the FIB values move away from zero, equivalent to a sustainable

fishery behaviour, and assume values greater or lower than zero.

FIB values greater than zero indicate an expansion of fisheries, both geo-

graphically and in terms of the previously unexploited or only lightly exploited

stock (Pauly et al., 2000). FIB values lower than zero indicate that fisheries, al-

ready exploited, have withdrawn an excess of biomass from the Mediterranean

ecosystem. The ergodic distribution confirmed these patterns and show that

the probability mass ends up being more concentrated in the higher and lower
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limits of this index. This suggests that changes in trophic levels could be

influenced by the impacts of progress in fishing technologies and changes in

market-driven exploitation.

The picture emerging by results is that the excessive fisheries expansion,

both geographically and in terms of exploitation of stocks, led to trophic levels

changes that are not supported by the Mediterranean ecosystem. Mediter-

ranean countries persist in their fishery behaviours along the time series, but

in the long run show a tendency to similar negative effects on the ecosystem.

Developing countries have increased their catches and the fishing fleet relatively

recently and are developing similar behaviours previously shown by developed

countries that are currently in a persistent negative phase.

This complementary nonparametric approach provides a new view to ex-

plore the fishing exploitation and on what might be the probable long run

ecosystem integrity. Regarding a macro-scale approach (Section 2.3), this

study provides more detailed information and enlight some hidden patterns

than a broader view does not allows. However, in order to apply this method-

ology on meso-scale level, we were forced to analyze only half of the time series

available. In fact, from 1950 to 1992 data for countries were not available, while

in the previous approach (Section 2.3) it was possibile to analyze the entire

time series (1950-2005).

In this way a multiscale approach is the best option in order to improve

our understanding of the fishery dynamics of fisheries in a particular ecosys-

tem. The use of a multiscale approach, and of complementary methodologies,

would provide information benefits by improving the assessment findings, and

the applicability of fishery management measures, particulary in data limited

fisheries.

The contents of this Section 2.5 have been submitted in a peer-reviewed

journal.
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Figure 2.11. Gaussian kernel smoothing of the Marine Trophic Index

between 1992-2008 (a); Stochastic kernels of the MTI index with 1-year

transitions (b) and with 17-year transitions (c).
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Figure 2.12. Gaussian kernel smoothing of the Marine Trophic Index3.25

between 1992-2008 (a); Stochastic kernels of the MTI3.25 with 1-year tran-

sitions (b) and with 17-year transitions (c).
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Figure 2.13. Gaussian kernel smoothing of the Fishing in Balance Index

between 1993-2008 (a); Stochastic kernels of the FIB with 1-year transitions

(b) and with 17-year transitions (c).
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Chapter 3

Modelling the spatial

distribution of non target

species

In this chapter, we present a Bayesian hierarchical spatial model to estimate and

predict the distribution of fishery non target species using fishery-dependent

data. In all these cases, the selection of the sampling locations does not depend

on the values of the spatial variable and so these are stochastically independent

of the field process. As a result, the occurrence of a species is an unbiased

indicator of its presence/absence pattern. We present three different types

of practical examples. The first two examples use presence/absence data as

response variables to estimate and predict the distribution of pelagic and de-

mersal species in determinate studied areas. In contrast, the third example, is

based on a Gaussian response variable, in order to address a very topical issue

in fisheries: the spatio-temporal distribution of discards.

77
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3.1 Introduction

Modelling patterns of the presence/absence of a species using local environ-

mental factors has been a growing problem in Ecology in the last few years

(Chakraborty et al., 2010). This kind of modelling has been extensively used to

address several issues, including identifying Essential Fish Habitats (EFHs) in

order to classify and manage conservation areas (Pressey et al., 2007), and pre-

dicting the response of species to environmental features (Midgley and Thuiller,

2007; Loarie et al., 2008).

Different approaches and methodologies have been proposed for modelling

the distribution of species (Guisan and Thuiller, 2005; Hijman and Graham,

2006; Wisz et al., 2008). Generalized linear and additive models (GLM and

GAM) (Guisan et al., 2002), species envelope models such as BIOCLIM (Busby,

1991), neural networks (Zhang, 2007; Zhang et al., 2008) and the multivariate

adaptive regression splines (MARS) (Leathwick et al., 2005) are some of them.

Most of these applications are only explanatory models that seek to assess

the relationship between the presence of species and a suite of one or more

explanatory variables (e.g. precipitation, bathymetry, etc.) (Guisan et al.,

2002). Moreover, the theory of these methods is based on the fact that the

observations are independent, while the fishery data are often inclined to spatial

autocorrelation (Kneib et al., 2008). Spatial autocorrelation should be taken

into account in the species distribution models, even if the data were collected

in a standardized sampling, since the observations are often close and subject

to similar environmental features (Underwood, 1981; Hurlbert, 1984). As a

consequence, ignoring spatial correlations in this type of analysis could lead to

misleading results (Kneib et al., 2008). Note also that extensive spatiotemporal

variability, which characterizes dynamic marine ecosystems, presents inherent

difficulties for the development of predictive species-habitat models (Valavanis

et al., 2008a).

Other complications also arise in the modelling of the occurrence of species

due to imperfect survey data such as observer error (Royle et al., 2007; Cressie
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et al., 2009), gaps in the sampling, missing data, and spatial mobility of the

species (Gelfand et al., 2006).

It is also worth mentioning that only a few studies have been developed for

predictive models although these models, in addition to offering an estimate of

the processes that drive the distribution of species, also provide the probability

of the occurrence of species in unsampled areas (Chakraborty et al., 2010).

Our interest here is to propose a hierarchical Bayesian model to predict the

occurrence of species by incorporating the environmental and spatial features

of each fishing location. The Bayesian approach is appropriate to spatial hi-

erarchical model analysis because it allows both the observed data and model

parameters to be random variables (Banerjee et al., 2004), resulting in a more

realistic and accurate estimation of uncertainty (see, for instance, Haining

et al., 2007, as an example of the advantages over conventional –non-Bayesian–

modelling approaches).

Another advantage of the Bayesian approach is the ease with which prior

information can be incorporated. Note that prior information can usually be

very helpful in discriminating spatial autocorrelative effects from ordinary non-

spatial linear effects (Gaudard et al., 1999). Finally, an important feature of

our approach is that maps of predicted probabilities of presence in unsampled

areas are generated using Bayesian kriging (Handcock and Stein, 1993; Gaudard

et al., 1999).

As usual with this kind of hierarchical model, there is no closed expres-

sion for the posterior distribution of all the parameters, and so numerical ap-

proximations are needed. In our case, we use the integrated nested Laplace

approximations (INLA) methodology (Rue et al., 2009) and software (http:

//www.r-inla.org) as an alternative to Markov Chain Monte Carlo (MCMC)

methods. The main reason for this choice is the speed of calculation: MCMC

simulations require much more time to run, and performing prediction has been

practically unfeasible. In contrast, INLA produces almost immediately accurate

approximations to posterior distributions even in complex models. Another ad-

vantage of this approach is its generality, which makes it possible to perform

http://www.r-inla.org
http://www.r-inla.org
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Bayesian analysis in a straightforward way and to compute model comparison

criteria and various predictive measures so that models can be compared easily

(Rue et al., 2009). INLA’s performance has been compared with MCMC and

has shown a similar reliability (Held et al., 2010)

In order to provide a realistic view of our methodology, and with the aim

to demonstrate that can be used for various species and life stages, in differ-

ent areas and with a several types of data, we present a variety of practical

applications of our approach.

The remainder of this Chapter is organized as follows. After this introduc-

tion, in Section 3.2, we present a general Bayesian hierarchical spatial model

that accounts for the presence/absence of fish species, allowing both for in-

ference and prediction in unsampled locations. This is commonly known as

Bayesian kriging (Banerjee et al., 2004). In Section 3.3, we describe how to

implement this model using INLA. In Section 3.4, we apply this methodology

in a particular setting with fishery-dependent data from purseine fleet in or-

der to describing the distribution of Mediterranean horse mackerel (Trachurus

mediterraneus) in the bay of Almeŕıa. In Section 3.5, we present the appli-

cation of this model in order to identify the sensitive habitats of the three

most caught elasmobranch species (Galeus melastomus, Scyliorhinus canicula,

Etmopterus spinax) in the Gulf of Alicante, based on fishery-dependent bot-

tom trawl data. Unlike the previous practical Sections (3.4 and 3.5) in which

we demostrate the usefulness of our methodology to estimate and predict the

distribution of different species using presence/absence data, in Section 3.6 we

apply this approach to a Gaussian response variable to assess the problem of

fishery discards in the Gulf of Alicante. Finally, in Section 3.7, we present some

concluding remarks and future lines of research.

3.2 Modelling fish presence

This section will describe Bayesian kriging and its application to presence/ab-

sence data in fishing. We also discuss the implementation of this kind of model
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with INLA and introduce the SPDE approach to modelling the spatial compo-

nent.

3.2.1 Bayesian kriging for a binary response

Point-referenced spatial models (Gelfand et al., 2000) are very suitable for sit-

uations in which we have observations made at continuous locations occurring

within a defined spatial domain. This particular case of spatial models also

has the appealing characteristic that the spatial domain is unchanging, even

though the precise locations will change over time. In fisheries, this resolves

the dimensional control guaranteeing that the inference is realized in relation

to the domain instead of the current observed positions, which can change over

the years.

In these models, the estimation of the response in unsampled locations can

be seen as a statistical prediction problem. When the response is Normal, this

is known as kriging prediction. Using a Bayesian hierarchical model (Banerjee

et al., 2004) such as the one we present in this section allows naturally for

non-Gaussian responses, and for taking into account uncertainty in the model

parameters. This is known as Bayesian kriging, and the rest of this section

discusses its application to fishery data.

Basically, when analyzing fish species distribution, we can encounter two

different types of observed data: the amount of catch or just presence/absence

data. In the first case it is possible to calculate the absolute abundance of

species by standardizing the catch with the fishing effort of the studied fleet,

and so it is possible to assess the quantitative spatial distribution of the species

within the area of interest. In the second case, presence/absence information

can be used as a measure of the relative occurrence of species at each pre-

cise observed location, thereby giving a different (but very valid and useful)

approximation for the spatial distribution of the species.

For most species, especially for those which are not targeted, information

about the absolute abundance of the species is not available. In these situa-
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tions, the spatial distribution can be obtained by using presence/absence as a

response variable of interest instead of absolute abundance. Then, assuming

that the probability of catching a species is related to its presence, we model

presence/absence by using a point-referenced spatial hierarchical model in line

with Diggle et al. (1998).

Specifically, if Zi represents presence (1) or absence (0) at location i (i =

1, . . . , n) and πi is the probability of presence, then:

Zi ∼ Ber(πi)

logit(πi) = Xiβ +Wi

(3.1)

where Xiβ represents the linear predictor for observation i; Wi represent the

spatially structured random effect; and the relation between πi and the covari-

ates of interest and random effects is the usual logit link. Wi is assumed to be

Gaussian with a given covariance matrix σ2
WH(φ), depending on the distance

between locations, and with hyperparameters σ2
W and φ representing respec-

tively the variance (partial sill in kriging terminology) and the range of the

spatial effect:

W ∼ N (0, σ2
WH(φ)) . (3.2)

This modelling could be augmented by incorporating an additional pure error

term (usually Gaussian distributed with variance called nugget effect in kriging

terminology) describing the “noise” associated with replication of measurement

at each location. Nevertheless, as in this case we are dealing with Bernoulli

response, sensitivity to prior assumptions on those random effects precision

parameters should be dealt carefully (Roos and Held, 2011).

Once the model is determined, the next step is to estimate its parameters.

As we are using the Bayesian paradigm, we have to specify the prior distribu-

tions for each parameter involved in the model (β, σ2
W , φ). In this context, the

usual choice (see, for instance, Banerjee et al., 2004) is to deal with independent

priors for the parameters, i.e.

p(β, σ2
W , φ) = p(β)p(σ2

W )p(φ) . (3.3)



Chapter 3. Modelling the spatial distribution of non target species 83

When there is an aim of expressing initial vague knowledge about the param-

eters, useful (but not the only) candidates are non-informative Gaussian prior

distributions for β and inverse gamma distributions for σ2
W . Specification of

p(φ) will depend on the choice of the correlation function which determines the

covariance matrix H. Note that the final choice for the priors will also depend

on the type of modelling and parameterization chosen. We will return to this

topic later on.

As mentioned above, expressions from (3.1) to (3.3) contain all our knowl-

edge about the spatial occurrence but do not yield closed expressions for the

posterior distributions of all the parameters. And so in order to make inference

about them, numerical approximations are needed. One possible choice for do-

ing this would be using Markov Chain Monte Carlo (MCMC) methods. This

could be done using WinBUGS (Spiegelhalter et al., 1999), flexible software for

performing the Bayesian analysis of complex statistical models (see Banerjee

et al., 2004) for examples of how to implement spatial hierarchical Bayesian

models with WinBUGS). Nevertheless, this option turns out to be very slow

when interest is focused on prediction (as in our case), so we have to resort to

another approach.

3.2.2 Implementing Bayesian kriging with INLA

The key idea underlying what follows is to realize that these hierarchical models

can be seen as Structured Additive Regression (STAR) models (see, for instance

Fahrmeir and Tutz, 2001 for a detailed description of them and Chien and

Bangdiwala, 2012 for an applied example of their use). In other words, models

in which the mean of the response variable Zi is linked to a structured predictor

that accounts for the effects of various covariates in an additive way. But, more

specifically, point referenced spatial hierarchical Bayesian models can also be

seen as a particular case of STAR models called Latent Gaussian models (Rue

et al., 2009), namely those assigning Gaussian priors to all the components of

the additive predictor. In this framework, all the latent Gaussian variables can
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be seen as components of a vector which is the latent Gaussian field.

The great bonus here is that for Latent Gaussian models, we can directly

compute very accurate approximations of the posterior marginals using INLA

(Rue et al., 2009). In spite of its wide acceptance and its good behaviour in

many Latent Gaussian models (see for instance, Schrödle and Held, 2011, for a

description of how to use INLA in spatio-temporal disease mapping), until now it

has not been feasible to fit the particular case of continuously indexed Gaussian

Fields with INLA, as is the case with our spatial component W . The underlying

reason is that a parametric covariance function needs to be specified and fitted

based on the data, which determines the covariance matrix H and enables

prediction in unsampled locations. But from the computational perspective, the

cost of factorizing these (dense) matrices is cubic in their dimension. Despite

computational power today, this problem is still a computational bottleneck in

many situations.

Lindgren et al. (2011) have proposed an alternative approach by using an ap-

proximate stochastic weak solution to a Stochastic Partial Differential Equation

(SPDE) as a Gaussian Markov Random Field (GMRF, Rue and Held, 2005;

Rue et al., 2009) approximation to continuous Gaussian Fields with Matérn

covariance structure. Specifically, they use the fact that a Gaussian Field x(u)

with Matérn covariance is a solution to the linear fractional SPDE

(κ2 −∆)α/2x(u) =W(u), u ∈ Rd, α = ν + d/2, κ > 0, ν > 0, (3.4)

where (κ2−∆)α/2 is a pseudo-differential operator defined in terms of its spec-

tral properties (see Lindgren et al., 2011). They then use a finite-elements

method on a triangulation of the region (see Figure 3.1) to construct an ap-

proximate GMRF representation of the Matérn Field with parameters κ and

ν = 1. They fix ν to 1 for identifiability reasons. An additional parameter τ is

used to adjust the scale of the field.

Some important features arise here. Firstly, a GMRF is a discretely indexed

Gaussian field x = (x1, . . . , xn), where the full conditionals π(xi|x−i), i =

1, . . . , n depend only on a set of neighbours of each site i. This Markov property
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makes their precision matrix sparse, enabling the use of efficient (and faster)

numerical algorithms.

Secondly, the Matérn covariance function is a really flexible and general

family of functions generalizing many of the most-used covariance models in

spatial statistics. Its expression, giving the covariance between the values of a

random field at locations separated by a distance d > 0, can be parameterized

as

C(d) =
σ2

2ν−1Γ(ν)
(κd)νKν(κd),

where Kν is the modified Bessel function of the second kind and order ν > 0

(Abramowitz and Stegun, 1970, §9.6), κ > 0 is a scaling parameter and σ2 is

the marginal variance. The parameter ν is a smoothness parameter determining

the mean-square differentiability of the underlying process, although it is fixed

in the SPDE approach since it is poorly identified in typical applications. For

more information on the Matérn covariance model see Handcock and Stein

(1993); Stein (1999). Finally, GMRFs fit seamlessly with the INLA approach,

which requires the latent field to be a GMRF.

Under this perspective, for each vertex i = 1, . . . , n, the full model can be

stated as follows:

Zi|πi
iid∼Ber(πi)

logitπi =β0 + Xiβ +Wi

π(β0) ∝1

βj
iid∼N (0, 1e-05)

W ∼N (0,Q(κ, τ))

2 log κ ∼N (mκ, q
2
κ)

log τ ∼N (mτ , q
2
τ ) .

(3.5)

In contrast with the previous specification, when using the SPDE approach

the correlation function is not modelled directly. Instead, the Gaussian field W

is found numerically as a (weak) solution of the SPDE (3.4), depending now

on two different parameters κ and τ which determine the range of the effect
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and the total variance, respectively. More precisely, the range is approximately

φ ≈
√

8/κ while the variance is σ2
W = 1/(4πκ2τ2).

Consequently, we have to specify the prior distributions for the parameters

involved in this approach (β0,β, κ, τ). We set the intercept apart because INLA

by default specifies a flat improper prior on the intercept, and independent

zero-mean Gaussian priors with a fixed vague precision (1e-05) a priori on the

fixed effects in β. The priors for κ and τ are specified over the reparameteri-

zations log τ and 2 log κ as independent Gaussian distributions. We also used

the default values for their parameters. Specifically, mκ is chosen automatically

such that the range of the field is about 20% of the diameter of the region, while

mτ is chosen so that the corresponding variance of the field is 1. For instance,

in the dataset described in Section 3.4, this gives mκ = −16.8 and mτ = 7.16.

Finally, the default a priori precisions for log τ and 2 log κ distributions are

q2κ = q2τ = 0.1.

The INLA program can be used through the R (R Development Core Team,

2012) package of the same name. It is worth noting that the SPDE module

of INLA is still under development and enhancement, but a fully-functional

version is readily available by upgrading INLA from R with the command

inla.upgrade(testing=TRUE). As there is still a lack of documentation, there

is a downloadable worked-out case study in http://www.r-inla.org/examples/

case-studies of Lindgren et al. (2011) paper that demonstrates the function-

ality of the module.

3.3 Estimation and prediction using INLA

In what follows we present the basis of how to perform the fitting and pre-

diction in unobserved locations for the Latent Gaussian model in (3.5) using

INLA’s SPDE module and a brief guide to its syntaxis. It is worth saying

that both model fitting and prediction are done simultaneously. Moreover, the

fact that INLA can be used through R provides a familiar interface with the

model specification, which is accomplished through the R’s formula approach.

http://www.r-inla.org/examples/case-studies
http://www.r-inla.org/examples/case-studies
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However, INLA provides some additional syntaxis for the definition of random

effects, namely the f() terms.

Using this syntaxis, the latent field in model (3.5) can be specified as

formula = Y ~ 1 + X + f(W, model=spde)

where 1 stands for the intercept term, X is a fixed linear effect and W represents a

smooth spatial effect. More terms could be added in the same way if additional

covariates were available (for instance, + X2 + X3) or if a noise term were

required ( + f(U, model=’iid’)). It is worth noting that while X is a variable

containing the covariate values at each observation, W is only a numeric vector

linking each observation with a spatial location.

INLA provides different approximation strategies for the posterior marginal

distributions. In this study we have used the default ones: the simplified

Laplace approximation for the marginalization, and the Central Composite De-

sign for the numerical integration of the hyperparameters. These are the default

and recommended settings providing reasonable accuracy with maximum com-

putational efficiency (Held et al., 2010).

The standard output of a run returns the marginal posterior distributions

for all the parameters in the model as well as summary statistics, together with

several model selection and predictive measures. Specifically, the Deviance In-

formation Criterion (DIC) is a well-known Bayesian model-choice criterion for

comparing complex hierarchical models (Spiegelhalter et al., 2002). Addition-

ally, the Conditional Predictive Ordinate (CPO, Geisser, 1993) is defined as

the cross-validated predictive density at a given observation, and can be used

to compute predictive measures such as the logarithmic score (Gneiting and

Raftery, 2007) or the cross-validated mean Brier Score (Schmid and Griffith,

2005). The latter is more adequate for a binary response, measuring the degree

to which the fitted probabilities of fish presence at location i coincide with the

observed binary outcomes Zi (Roos and Held, 2011).

As mentioned above, along with the inferential results about the parameters

in (3.5), INLA’s SPDE module can be used simultaneously to perform prediction
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in unobserved locations, which constitutes the real interest in this problem. The

basic idea is to deal with the species’ occurrence at a new location as a random

variable with a certain probability of success and to calculate a point estimation

of this probability, and even its full predictive density.

The SPDE module has a handful of functions to create prediction locations.

It allows the construction of a Delaunay triangulation (Hjelle and Dæhlen,

2006) covering the region. As opposed to a regular grid, a triangulation is a

partition of the region into triangles, satisfying constraints on their size and

shape in order to ensure smooth transitions between large and small trian-

gles. Initially, observations are treated as initial vertices for the triangulation,

and extra vertices are added heuristically to minimize the number of triangles

needed to cover the region subject to the triangulation constraints. These ex-

tra vertices are used as prediction locations. This has at least two advantages

over a regular grid. First, the triangulation is denser in regions where there

are more observations and consequently there is more information, and more

detail is needed. Second, it saves computing time, because prediction locations

are typically much lower in number than those in a regular grid. This parti-

tion is usually called mesh and an example (the one obtained using the data

introduced in the section 3.4) can be appreciated in Figure 3.1.

Once the prediction is performed in the selected location, there are addi-

tional functions that linearly interpolate the results within each triangle into

a finer regular grid. As a result of the process, a faceted surface prediction is

obtained which approximates to the true predictive surface.

The prediction in INLA is performed simultaneously with the inference, con-

sidering the prediction locations as points where the response is missing.
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Figure 3.1. Sampling locations for the presence (�) and the absence (◦)
of the Mediterranean horse Mackerel in the bay of Almeŕıa (see the section

3.4).

3.4 Presence of Mediterranean horse mackerel

in the bay of Almeŕıa

In this Section we present a first application of the model explained in the

previous Sections. In particular, we estimate and predict the distribution of

a pelagic species, such as Mediterranean horse mackerel (Trachurus mediterra-

neus), using fishery-dependent data from purseine vessels.

The case study

The study was conducted in the westernmost portion of the Mediterranean Sea,

specifically in the bay of Almeŕıa, Spain (see Figure 3.1 for a map of the region).

The Mediterranean horse mackerel, in spite of its low commercial value, plays

an important role in the ecosystem being a food source for other commercially

important predators (Froese and Pauly, 2011). But more importantly, this is

not a targeted species for commercial fishing, so its occurrence is an unbiased
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indicator of its presence/absence pattern. Moreover, it also means that the

selection of the sampling locations does not depend on the values of the spatial

variable and so these are stochastically independent of the field process. This

is an important issue as it allows us to predict in all the locations of the bay,

including those in which there is no information about the presence/absence of

the species.

The dataset

The reference fleet for this study was the purseine fleet with landings in the

southwestern Spanish ports. This fleet operates in waters on the continental

shelf around 200 m. isobaths. The fishing time for each haul lasts around

one hour. The data set includes 147 hauls of 15 different purseine vessels

and has been provided by the Instituto Español de Oceanograf́ıa (IEO, Spanish

Oceanographic Institute). The IEO provides the national input of the European

Plan for collecting fishery data. In particular, they collect samples from the

commercial fleet with observers on board. This sampling has been carried out

for six years, usually involving about 2-3 observations every month. From this

database we have used the geographical location and occurence of the mackerel

for each haul.

With respect to the enviromental covariates used in this analysis, we have

included those we had information about and those we thought were potentially

relevant for a pelagic species like Mediterranean horse mackerel. In particular,

the two covariates used were chlorophyll-a (an environmental covariate that

usually provides great spatial and temporal coverage Valavanis et al., 2004)

and bathymetry (see Figure 3.2 for two maps of both covariates in the region

analyzed). The chlorophyll-a data were obtained from satellite data provided

by the IEO, while the bathymetry data were obtained from the WFS service of

the Spatial Data Infraestruture of the Junta de Andalućıa (Andalucian Local

Goverment). It is worth noting that if we had had information about other

factors such as precipitation, sea surface temperature, etc., they could have
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(a) Bathymetry

(b) Chlorophyll-a

Figure 3.2. Maps of the covariates in the bay of Almeŕıa. The bathymetry

map is presented as it was obtained via the Andalucian Goverment, while

the Chlorophyll-a is the result of the IEO processing of satellite data.

been included in the analysis via the linear predictor.

Results

All the resulting models obtained from combining those two covariates and the

logarithm of the bathymetry were fitted and compared. DIC was used as a

measure for goodness-of-fit, while the logarithmic score (LCPO) and the cross-

validated mean Brier Score (BS) measured the predictive quality of the models.

As shown in Table 3.1, all measures agree on the same model, with a reasonable
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predictive quality. In particular, the model comparison indicates that (apart

from the spatial effect) the logarithm of the bathymetry and the chlorophyll-a

concentration play a determining role in Mediterranean horse mackerel distri-

bution.

Table 3.1. Model comparison.

Model LCPO BS DIC

1 1 0.69 0.25 202.77

2 1 + Depth 0.69 0.24 200.87

3 1 + logDepth 0.67 0.24 197.03

4 1 + Chlorophill-a 0.67 0.24 197.60

5 1 + θ 0.66 0.23 195.59

6 1 + Depth + Chlorophill-a 0.67 0.23 196.19

7 1 + Depth + θ 0.67 0.23 195.13

8 1 + logDepth + Chlorophill-a 0.66 0.23 192.18

9 1 + logDepth + θ 0.65 0.23 191.21

10 1 + Chlorophill-a + θ 0.65 0.23 192.18

11 1 + Depth + Chlorophill-a + θ 0.66 0.23 191.48

12 1 + logDepth + Chlorophill-a + θ 0.64 0.22 187.83

As can be seen in Table 3.2 and Figure 3.3, both covariates have a significant

influence on driving the mackerel distribution. Table 3.2 shows a numerical

summary of the posterior distribution of the effects, shown in Figure 3.3. In

both cases, they show that depth affects the distribution of the species studied

negatively, while the chlorophyll-a concentration has a positive relationship.

Results therefore indicate that the occurrence of Mediterranean horse mackerel

is greater in shallow waters (near the coast) where the concentration of the

chlorophyll-a is higher with to respect to deeper waters. The underlying reason

may be that Mediterranean horse mackerel is a pelagic migratory fish occurring

at a depth of between 40 and 500 m., usually in surface waters, but at times

near the bottom (Ragonese et al., 2003).

In Ecology, chlorophyll-a can be used as an indicator of the primary pro-

duction of an ecosystem. The spatial variability of the primary production
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Table 3.2. Numerical summary of the posterior distributions of the fixed

effects.

mean sd Q0.025 Q0.5 Q0.975

(Intercept) 0.80 1.56 -2.31 0.78 3.99

log Depth -0.67 0.29 -1.29 -0.66 -0.14

chlorophyll-a 3.69 1.52 0.79 3.66 6.75

modifies trophic conditions (Katara et al., 2008) of the examined area and thus

the distribution of the marine species. Coastal waters are usually zones of high

productivity while in surface waters away from coastlines, there is generally

plenty of sun but insufficient nutrients. In our case, although captures were

scanty in the upper part of the slope (down to 300 m. depth, see Figure 3.1),

mackerel was caught on the shelf over practically all the area investigated.

-6 -4 -2 0 2 4 6 8

(a) Intercept

-2.0 -1.5 -1.0 -0.5 0.0 0.5

(b) log(Depth)

-2 0 2 4 6 8 10

(c) Chlorophill-a

Figure 3.3. Posterior distributions of the fixed effects.

Figure 3.4 displays the posterior mean and standard deviation of the spatial

component. This component shows a strong effect with positive values in the

western part of the bay of Almeŕıa, with values around zero in the middle and

with negative values in the eastern part of the area. This results in a clear

dependence with respect to longitude in Mediterranean horse mackerel distri-



94 Chapter 3. Modelling the spatial distribution of non target species

bution. The western area of the bay of Almeŕıa is a protected coastline, the

Punta Entinas-Sabinar Natural Park, made up of sand dunes interspersed with

a series of freshwater and saline lakes. Its size and development are directly

associated with groundwater flows that, jointly with strong hydrochemical vari-

ability and an anthropogenic influence due to intensive agriculture, produce a

significant concentration of nutrients in the coastal waters. All these factors

make this a highly productive area that is the ideal habitat for Mediterranean

horse mackerel.

We can also obtain a precise estimation of the complete linear predictor

by calculating the corresponding combination of the means of the different

effects, as shown in Figure 3.5. The posterior mean of the linear predictor

confirms that depth plays a key role in the distribution of Mediterranean horse

mackerel, along with the concentration of chlorophyll-a. Along the coast, mean

values of the linear predictor show positive values, where the concentration of

chlorophyll-a is higher, and as we move away from the coast to the offshore

area the mean values become negative.

In order to make the results more understandable, we have also generated

maps of predicted probabilities of occurrence using the distribution of the pa-

rameter πi. In this specific case, it is not a linear transformation from the

linear predictor, so it is not possible to compute the posterior distribution of

the parameter πi. However, we can obtain any quantile using the corresponding

quantiles of the linear predictor. Figure 3.6 shows the median posterior proba-

bility of occurrence and the first (b) and third (c) quartiles for this probability.

In this way we get not only a point estimate for the probability of occurrence,

but also an assessment of the uncertainty of this estimation. Figure 3.6 confirms

that the probability of finding this species is greater in areas near the coast at

a shallow depth and where the chlorophyll-a concentration is higher. In deeper

waters the occurence probability is lower where the nutrient concentration is

less. Also, the western part of the bay of Almeŕıa shows a higher probability of

occurence with respect to the eastern zone due to the presence of the Natural

Park and the intensive agriculture that releases a high concentration of organic
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Figure 3.4. The posterior mean (above) and standard deviation (below)

of the spatial effect

material into the sea.

Conclusions

The main goals of this study case have been to predict the occurrence of the

Mediterranean horse mackerel in unsampled areas and to estimate its distribu-

tion with respect to environmental and geographical factors. The results have
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Figure 3.5. Posterior mean of the lineal predictor

shown that the distribution of Mediterranean horse mackerel is influenced by a

spatial effect, as well as the depth and the concentration of chlorophyll-a. These

environmental and geographical factors can play an important role in directing

local distribution and variability in the occurrence of this species.

This modelling could be expanded to the spatiotemporal domain by incor-

porating an extra term for the temporal effect, using parametric or semipara-

metric constructions to reflect linear, nonlinear, autoregressive or more complex

behaviours. A first analysis in this line can be seen in the Chapter 5. Neverthe-

less, in this case, the information available did not include a reasonable enough

number of years for performing any temporal analyses.

The contents of Section 3.2, 3.3 and 3.4 have been published in:

F. Muñoz, M.G. Pennino, D. Conesa, A. López-Qúılez and J.M. Bellido

(2013). Estimation and prediction of the spatial occurrence of fish species

using Bayesian latent Gaussian models, Stochastic Environmental Research

and Risk Assessment Journal. In press.
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Figure 3.6. Median for πi|Z and its corresponding variability.

3.5 Modelling sensitive elasmobranch habitats

In this section we present the application of the model explained in the previ-

ous sections in order to identify the sensitive habitats of the three most caught

elasmobranch species (Galeus melastomus, Scyliorhinus canicula, Etmopterus

spinax) in the Gulf of Alicante, based on fishery-dependent bottom trawl data.

This second application shows the flexibility of our approach which in this case

is applied to demersal species and in a different area with respect to Section

3.4. Moreover, this second case demonstrates the usefulness that this method-

ology could provide to fisheries management, identifying sensitive habitats of

vulnerable species, such as elasmobranchs, with the aim of improving regional

management.
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The case study

There is increasing concern worldwide over elasmobranch species because their

K-selection life-history traits make them susceptible to population depletion as

a result of anthropogenic activity, including unsustainable fisheries, by-catch,

and habitat modification (Dell’Apa et al., 2012). Most elasmobranchs are

predators at or near the top of marine food chains and thus, play an im-

portant role in marine ecosystems, potentially regulating the size and dynamics

of their prey populations (Stevens et al., 2000). Their removal could affect the

structure and function of marine ecosystems, inducing changes in trophic in-

teractions at the community level due to selective removal of predators or prey

species, competitors and species replacement.

In the Mediterranean Sea, this is of particular concern since sharks and rays

make up an important percentage of the by-catch (Carbonell and Azevedo,

2003) and their mobile nature makes them potentially accessible to several fish-

eries at various bathymetric ranges (Ferretti et al., 2008). Bottom trawling is

considered responsible for a large proportion of the by-catch of elasmobranch

species in the Mediterranean Sea, and throughout the world in general (Mar-

avelias et al., 2012). Evidence of changes in the number of elasmobranchs

and the decrease in the abundance of several species (e.g. Raja clavata and

Dipturus batis) over the last decade have been reported for the whole of the

Mediterranean Sea and in particular, for the highly exploited area of the Gulf

of Lions (Abdulla, 2004). As a result cartilaginous fishes can be used as eco-

logical indicators and their study and monitoring is considered essential for the

conservation of the marine ecosystem (Stevens et al., 2000).

In 2009 the European Commission adopted the first Action Plan for the

conservation and management of elasmobranchs (EU, 2009) with the aim of

rebuilding their stocks under threat, and of setting down guidelines for the sus-

tainable management of the fisheries concerned. Moreover, the implementation

of an ecosystem approach to fisheries management (EAFM) and marine spatial

planning (MSP) contemplates the protection of priority habitats, a policy of



Chapter 3. Modelling the spatial distribution of non target species 99

reducing by-catches and the study of current and expected impacts with a view

to preparing efficient strategies for the preservation of the marine environment

and in particular its living marine resources (Katsanevakis et al., 2009).

In order to achieve these purposes the prerequisites are a solid knowledge of

species-environment relationships and the identification of priority areas using

robust analysis of existing information and databases (Massut́ı and Moranta,

2003). Habitat and species mapping is essential for conservation programmes

because it provides a clear picture of the distribution and extent of these ma-

rine resources, and thus facilitates managing the marine environment (Barberá

et al., 2012).

To this end we have analysed a group of georeferenced data of the pres-

ence/absence of the most common demersal cartilaginous species collected from

fisheries-dependent bottom trawl sampling carried out along the continental

shelf and slope of the Western Mediterranean Sea (GFCM Geographical Sub

Area 06) during a six-year period of time. In particular, we have modelled the

occurrence data of the three most frequently captured species: smallspotted

catshark (Scyliorhinus canicula, Linnaeus, 1758), blackmouth catshark (Galeus

melastomus, Rafinesque, 1810) and velvet belly (Etmopterus spinax, Linnaeus,

1758), which comprise more than 80% of the total demersal elasmobranch abun-

dance caught during the period 2006-2011. Cluster Analysis (CA) and Multi

Dimensional Scaling (MDS) techniques have been applied to observers’ data in

order to verify whether the three species studied are in fact representative of

the whole elasmobranch community of this area.

In this case our methodology allows us both to estimate the processes that

drive the distribution of elasmobranchs and also to generate predictive maps of

the distribution of species in the study area, especially in non-observed loca-

tions.

The establishment of regional marine protected areas for protecting sensitive

habitats would benefit from an improved understanding of the spatial distribu-

tion of vulnerable species, such as elasmobranchs, and could help towards the

more efficient management and control of marine resources.



100 Chapter 3. Modelling the spatial distribution of non target species

The study area

The study area was the Gulf of Alicante (Western Mediterranean), between

37º15.6’ and 38º 30.0’ N, and 1º 0.0’ W and 0º 30.0’ E (Figure 3.7). The

Gulf of Alicante has a surface area of 3, 392 km2 and an average shelf width of

approximately 32 km.

Figure 3.7. Map of the Gulf of Alicante with the sampling locations

indicated by black dots.

The largest fleet is the bottom trawl one, with 169 vessels landing an av-

erage of 8,000 t per year. Seabed trawling usually takes place on the shelf,

yielding a multispecific catch with European hake (Merluccius merluccius) as

the main target species. The elasmobranch species most frequently caught are:

Galeus melastomus, Scyliorhinus canicula, Etmopterus spinax, Raja clavata,

Raja asterias and Squalus acanthias. Their distribution and abundance vary

according to depth.
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The dataset

The data set includes 400 hauls of 25 different trawler vessels and has been

provided by the Spanish Oceanographic Institute (Instituto Español de Oceano-

graf́ıa, IEO). The IEO provides the national input of the European Observers

Programme for collecting fishery-dependent data. In particular, they collect

samples from the commercial fleet with observers on board. This sampling

has been carried out since 2003, usually involving about 2-3 observer samplings

every month for the trawler fleet, accounting for an average of 10 hauls monthly.

From this database we have used the geographical location and occurrence of

the elasmobranch species for each haul. The fisheries were multispecies and

none of the elasmobranchs were target species.

Extrinsic factors influencing the spatial distribution of elasmobranch species

used were depth, which is often the main gradient along which faunal changes

occur when analyzing shelf and upper slope assemblages (Kallianiotis et al.,

2000), type of substratum (Demestre et al., 2000), slope of seabed and physical

characteristics of the water masses (Maravelias et al., 2007).

For ocean processes, chlorophyll-a concentration and Sea Surface Temper-

ature (SST) data can be used to locate thermal and productivity-enhancing

fronts and marine productivity hotspots and thus determine the influence of

such features on species distribution (Valavanis et al., 2008b). In addition, SST

and Chl-a are also strong functional links between surface primary productivity

and biological activity at the sea floor through the episodic deposition of par-

ticulate material (Nodder et al., 2003). Previous studies have shown that the

distributions of many demersal fish species are likely to be influenced by overall

ecosystem productivity (Matern et al., 2000; Hopkins and Cech, 2003; Martin

et al., 2012).

In particular, Chl-a concentration can be used as an index of primary pro-

duction of an ecosystem (de Leiva Moreno et al., 2000). Obviously, primary

production depends on a range of factors, including light, light penetration and

temperature, which could not be taken into account here due to the absence of
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data. Nevertheless, the mean value of Chl-a concentration can be used as an

independent index of primary production in the area of interest, since its vari-

ability could modify trophic conditions of the species’ habitat from oligotrophic

to mesotrophic (Katara et al., 2008).

(a) Chlorophyll-a (b) Sea Surface Temperature

Figure 3.8. The spatial patterns of the environmental variables used to

map the habitat models, including (a) satellite derived Chlorophyll-a mean

values; (b) satellite derived sea surface temperature mean values.

Sea Surface Temperature (SST) is strongly related with primary productiv-

ity and is thus a possible candidate to explain the distribution of the species

(Valavanis et al., 2004). Previous studies on elasmobranchs have implied that

SST plays an important role in their distribution (Matern et al., 2000; Martin

et al., 2012) from a physiological standpoint. The majority of coastal elas-

mobranchs are ectothermic and changes in the environmental temperature are

rapidly transferred to the body of the animal, thus impacting most physiological

processes (Hopkins and Cech, 2003).

The environmental satellite (SST and chlorophyll-a) data has been extracted
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as a monthly mean from the SeaWiFS (http://oceancolor.gsfc.nasa.gov).

We have interpolated the raster surface of the SST and chlorophyll-a variables,

using the Spline tool of ArcGIS 10. The Spline method is an interpolation

method that estimates values using a mathematical function that minimizes

overall surface curvature, resulting in a smooth surface that passes exactly

through the input points. In particular, we have used the Tension method,

which controls the stiffness of the surface according to the character of the mod-

elled phenomenon. This method creates a less smooth surface with values more

closely constrained by the sample data range (http://help.arcgis.com/en/

arcgisdesktop/10.0/help/index.html#//009z0000006q000000.htm) (Figu-

re 3.8).

(a) Bathymetry (b) Slope

Figure 3.9. The spatial patterns of the (a) bathymetry and (b) slope of

the Gulf of Alicante.

Bathymetry and type of substratum data were obtained from the IEO geo-

portal, accessible through the website of the Spanish Institute of Oceanography

(http://www.ieo.es). In order to obtain the value of depth at any precise

http://oceancolor.gsfc.nasa.gov
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//009z0000006q000000.htm
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//009z0000006q000000.htm
http://www.ieo.es
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location of the study area we have interpolated the bathymetric map, using

GRASS GIS (http://grass.fbk.eu), first rasterizing contours with a resolution of

500 m. and then using the function r.surf.contour, following guidelines given in

the website (http://grass.osgeo.org/wiki/Contourlines_to_DEM) (Figure

3.9). Log-transformed bathymetry was included in the analysis for smoothing

the effect and preserving the linearity of this variable.

The slope map has been derived by the bathymetry map, using the Slope

tool of the ArcGIS 10. Slope values reflect the maximum rate of change (in

degrees) in elevation between neighboring values derived with ArcGIS Spatial

Analyst extension (http://webhelp.esri.com/arcgisdesktop/10/) (Figure

3.9). The type of substratum polygon shapefile includes a classification of ten

categories and a reduced version with four levels: Sand, Mud, Gravel and Rock.

In order to reduce the level of variability in the analysis, since we have no

observations in all categories, we have used the simplified version (Figure 3.10).

Moreover, in the study area there are no areas of gravel, so the categories have

been reduced to the remaining three.

Figure 3.10. Map of the type of substratum in the Gulf of Alicante.

http://grass.osgeo.org/wiki/Contourlines_to_DEM
http://webhelp.esri.com/arcgisdesktop/10/
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Multivariate analysis

Our data set included 23 different elasmobranch species. We used multivariate

analysis techniques in order to verify whether the three most captured species

(Scyliorhinus canicula, Galeus melastomus and Etmopterus spinax) were truly

representative of the whole elasmobranch community in this area. In partic-

ular, we applied Cluster Analysis (CA) and Multidimensional Scaling (MDS)

techniques to analyse the 400 bottom trawl hauls. If results show a high degree

of similarity in the species assemblage of the different hauls, we can assume

that sensitive habitats identified for the three species studied are shared by the

remaning elasmobranch species. Consequently, the conservation of these habi-

tats would go a long way to protecting the entire community of elasmobranchs

in this area.

Both multivariate analyses were performed on a Euclidean similarity matrix

with the average method, considering the occurrence of each species to identify

possible differences between the habitats studied.

Model evaluation and calibration

Given that in this application the greater purpose is the spatial prediction of

sensitive habitats, we performed a validation predictive procedure to formally

evaluate overall model prediction using the area under the receiver-operating

characteristic curve (AUC) (Fielding and Bell, 1997), specificity, sensitivity and

kappa.

The dataset was randomly split into two main subsets: a training dataset

including 70% of the total observations, and a validation dataset containing

the remaining 30% of the data. The relationship between occurrence data and

the environmental variables was modelled by using the training dataset and the

quality of predictions was then assessed by using the validation dataset. We

repeated validation 10 times for the best model for each species and results

were averaged over the different random subsets.

AUC measures the ability of a model to discriminate between those sites
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where a species is present and those where it is absent, and has been widely

used in the species distribution modelling literature (Elith et al., 2006). AUC

ranges from 0 to 1, with values below 0.6 indicating a performance no better

than random, values between 0.7-0.9 considered as useful, and values > 0.9 as

excellent. AUC is tabulated through the confusion matrix indicating the true

positive (TP), false positive (FP), false negative (FN), and true negative (TN)

predictions. We can summarize that there are two types of prediction errors:

false positive (FP) and false negative (FN). FP leads to an over-prediction while

FN or omission error, leads to an under-prediction. From the confusion matrix

we calculated the specificity, sensitivity and kappa criteria. Specificity is the

proportion of TN correctly predicted and reflects a model’s ability to predict an

absence given that a species in fact does not occur at a location. Sensitivity is

the proportion of TP correctly predicted and reflects a model’s ability to predict

a presence given that a species in fact occurs at a location. Kappa measures

the proportion of correctly classified units after accounting for the probability

of chance agreement. It requires a threshold to be applied to the predictions

in order to convert them to presence-absence predictions. Kappa provides an

index that considers both FP and FN errors. In this study, a maxKappa is used

for each model generated.

Results

The similarity dendrogram for the bottom trawl hauls revealed the existence of

three different assemblages for the elasmobranchs, which were confirmed by the

MDS analysis (Figure 3.11).

Note that picked dogfish (Squalus acanthias) and common eagle ray (Mylio-

batis Aquila) form a separate group, bull ray (Pteromylaeus bovines) are in

a group of their own, and all the other elasmobranch species are included in

one single group. This latter group includes 20 out of the 23 of elasmobranch

species caught in the study area, including the three most caught species which

are the ones used in this study.
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(a) CA dendrogram (b) MDS ordination

Figure 3.11. Analysis Cluster dendrogram (a) and MDS ordination (b) of

elasmobranch species caught during bottom trawl commercial hauls carried

out in the Gulf of Alicante.

A total of 400 trawl fishery operations were observed during a period of

six years. In the case of the smallspotted catshark (Scyliorhinus canicula), its

presence was recorded in 204 of these hauls, that of the blackmouth catshark

(Galeus melastomus) in 135 and that of the velvet belly (Etmopterus spinax) in

54. The main predictors of elasmobranch habitats in the western Mediterranean

Sea were depth, slope and type of substratum.

SST and chlorophyll-a concentration show a negative relationship with speci-

es occurrence but affect only the distribution of S. canicula (Table 3.3). The

final models with the best fit for G. melastomus and E. spinax do not include

SST and chlorophyll-a concentration as relevant variables (Table 3.3).

No important yearly differences were found in this area for the occurrence

of these species. All the models that include the temporal effect, show higher

Deviance Information Criterion (DIC) than those without it.

The model selected for its best fit (based on the lowest DIC, LCPO and BS)
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Table 3.3. Numerical summary of the posterior distributions of the fixed

effects for the best model of the three species studied. This summary con-

tains the mean, the standard deviation, the median and a 95% credible

interval, which is a central interval containing 95% of the probability under

the posterior distribution.

Species predictor mean sd Q0.025 Q0.5 Q0.975

S. canicula (Intercept) 0.23 2.14 -4.23 0.73 4.32

Log Depth 1.06 0.63 -0.32 1.04 2.05

Seabed(Mud) -0.32 0.42 -1.16 -0.33 0.51

Seabed(Rock) -1.91 0.95 -3.87 -1.88 -0.12

Slope 0.21 0.11 -0.51 0.22 0.74

Chlorophyll-a -13.96 7.83 -29.96 -13.82 1.24

SST -0.52 0.27 -0.22 -0.51 1.05

G. melastomus (Intercept) -1.72 2.91 7.53 -1.89 4.94

Log Depth 0.33 -0.27 0.25 0.35 0.85

Seabed(Mud) 0.41 -0.50 0.40 0.42 1.29

Seabed(Rock) -0.72 1.28 -3.36 -0.68 1.69

Slope 0.19 0.02 -0.06 0.20 0.33

E. spinax (Intercept) -2.35 12.76 -32.34 -2.72 28.65

Log Depth 5.45 3.63 2.70 5.35 10.39

Seabed(Mud) 0.08 0.85 -1.61 0.09 1.73

Seabed(Rock) -0.73 1.28 -3.36 -0.68 1.70

Slope 0.09 0.03 -0.06 0.08 0.10

with S. canicula has log-transformed bathymetry, type of substratum, slope,

SST and chlorophyll-a concentration as covariates, and a stochastic spatial

component that accounts for the residual spatial autocorrelation. Table 3.3

presents a numerical summary of the posterior distributions of the fixed effects

for this final model. This summary contains the mean, the standard deviation,

the median and a 95% credible interval, which is a central interval containing

95% of the probability under the posterior distribution.

Results showed a positive relationship between bathymetry and the pres-

ence of S. canicula (posterior mean = 1.06; 95% CI = [-0.32,2.05]). Conversely,
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chlorophyll-a concentration showed a negative relation with respect to the pres-

ence of this species (posterior mean = -13.96; 95% CI = [-29.96,1.24]). For low

SST values, the occurrence of S. canicula is higher (posterior mean = -0.52; 95%

CI = [-0.22,1.05]). Rock substratum is the type of seabed that shows the lowest

estimated probability of occurrence (posterior mean = -1.91; 95% CI = [-3.87,-

0.12]) with respect to the reference level (sand substratum). Muddy substrata

also showed a lower estimated coefficient than the reference level (posterior

mean = -0.32; 95% CI = [-1.16,0.51]), leaving sandy substrata as the kind of

sediment granulometry category with the highest probability of the presence of

S. canicula. A positive correlation is characterized by a high slope gradient and

the probability of occurrence (posterior mean = 0.21; 95% CI = [-0.51,0.74])

of S. canicula. As can be appreciated in Figure 3.12 (a), the median posterior

probability of the occurrence of S. canicula in the Gulf of Alicante, is greater

over a high slope gradient, in deeper waters where chlorophyll-a and SST values

are higher, and where there are sandy seabeds.

Habitats associated with hard substrata and sandy beds, mainly from deeper

waters and with a high slope gradient, show a greater probability of the presence

of G. melastomus than those associated with mud from shallow waters and low

slope gradient (Table 3.3 and Figure 3.12 (b)). Table 3.3 showed a positive

relation between log-bathymetry and the presence of G. melastomus (posterior

mean = 0.33; 95% CI = [0.25,0.85]). Rock substratum is the type of seabed that

shows the highest estimated probability of occurrence (posterior mean = -0.72;

95% CI = [-3.36,1.69]) with respect to the reference level (sand substratum).

Muddy substrata showed a lower estimated coefficient than the reference level

(posterior mean = 0.41; 95% CI = [0.40,1.29]). High slope gradient positively

influences the probability of occurrence of G. melastomus (posterior mean =

0.19; 95% CI = [-0.06,0.33]). Figure 3.12 (b) shows high median posterior

probability of occurrence of G. melastomus over steeper slopes, in deeper waters

and where there are rocky and sandy seabeds.

The results for E. spinax are very similar to those for G. melastomus. The

best model fit for this species included depth, slope of seabed and type of
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(a) S. canicula (b) G. melastomus

(c) E. spinax

Figure 3.12. Median of the posterior probability of the presence of the

studied elasmobranchs: S. canicula (a); G. melastomus (b); E. spinax (c).

Sampling locations for the presence (�) and the absence (�) were plotted.

substratum as relevant covariates. Table 3.3 shows a positive relation between

log-bathymetry (posterior mean = 5.45; 95% CI = [2.70,10.39]), slope (posterior

mean = 0.09; 95% CI =[-0.06,0.10]) and E. spinax occurrence. Habitats associ-

ated with hard substrata (posterior mean = -0.73; 95% CI = [-3.36,1.70]) show

the highest estimated probability of occurrence with respect to the reference
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level (sand substratum), the lowest corresponding to muddy beds (posterior

mean = 0.08; 95% CI = [-1.61,1.73]).

Figure 3.12 (c) shows a map of the median posterior probability of occur-

rence of E. spinax, with a marked influence of depth. High probabilities appear

in deep water, and low probabilities in coastal waters.

Model prediction performance statistics of all models are presented in Table

3.4. All models have achieved AUC values greater than 0.80, which indicates

an excellent degree of discrimination between those locations where a species is

present and those where it is absent. All maxKappa values are between 0.55

and 0.70, which represents a good degree of similarity between the occurrence

of the species and the available real evidence. Specificity and sensitivity also

show high values (> 0.8), reflecting a high ability of the model to predict true

negative and true positive predictions correctly.

Table 3.4. Model prediction performance statistics for the three species

studied. AUC (Area Under the receiver-operated characteristic Curve),

maxKappa, sensitivity and specificity.

AUC maxKappa sensitivity specificity

S. canicula 0.88 0.63 0.87 0.81

G. melastomus 0.84 0.69 0.95 0.90

E. spinax 0.90 0.72 0.84 0.92

Conclusions

The estimated parameters have contributed to quantify habitat use and reveal

important relationships of environmental variables with each species’ habitat.

With the available data, the main predictors of elasmobranch habitats in the

western Mediterranean were found to be depth, slope of seabed and type of

substrate.

Elasmobranch species from the Gulf of Alicante show different optimum

depths, which may indicate certain of fine-tuned bathymetric segregation, al-
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though they were in fact found to coexist on shelf and slope bottoms.

However, the direct effect of depth on species occurrence is expected to be

relatively small in relation to the indirect effects of bathymetry due to its corre-

lation with many crucial environmental and biological parameters. Due to this,

in the absence of such data (e.g. CTD data for oceanographic characteristics in

the near bottom), a good knowledge of the bathymetric distribution of species

could explain the spatial pattern and it is essential for fisheries management.

From our results, we can summarize that, in our study area, E. spinax

inhabits the deepest stratum, G. melastomus the middle and upper slope and

S. canicula the shelf and the middle slope. On the upper slope, maps show a

habitat overlap between G. melastomus and E. spinax, and on the middle slope

a slight overlap between G. melastomus and S. canicula. Habitat overlap does

not necessarily imply competition, except when resources are in short supply.

Otherwise, on rich shelf bottoms, species that are spatially segregated are not

driven to differentiate their diets and may easily converge in the use of resources

in overlapping areas.

Our spatial results are in accordance with a recent trophic study of these

species in the Balearic Islands (Valls et al., 2011). S. canicula and G. melas-

tomus both prey mainly on euphausiids and share the habitat. However, in

our study, G. melastomus expressed a wider and deeper distribution trend with

respect to S. canicula. A possible explanation for this could be a phenomenon

of competitive exclusion due to the exploitation of similar resources. Based on

the competitive exclusion principle, other species are forced to retreat to the

bathymetric and/or geographic range to which they are most highly adapted in

relation to the other potential inhabitants. In this case G. melastomus retreat

to a depth interval of between 400 m. and 700 m., usually home to the biomass

peak of decapod crustaceans, which constitute an important part of the diet of

this species. E. spinax feeds preferentially on cephalopods, while euphausiids

are only a small part of the diet. This different trophic pattern with respect to

G. melastomus would be a mechanism for reducing competition in the deepest

stratum.
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In general, our results show a negative relationship between all the elas-

mobranch species studied and depth, and high slope gradient values. In ad-

dition, for S. canicula, the probability of their presence is higher where SST

and chlorophyll-a concentration values are lower. This may be explained by

the fact that shallow sunlight waters above the continental shelf are usually

areas of high productivity and SST mean values, while the deeper waters away

from coastlines usually lack sunlight and nutrients, and present low values of

chlorophyll-a concentration and SST.

This study confirms the importance of the type of substratum in the pat-

terns of elasmobranch spatial distribution, as substrate type was included

among the best models for all species. Our analysis shows that elasmobranchs

prefer hard and sandy substrates while muddy ones affect their occurrence nega-

tively. This preference has already been documented (Skjæraasen and Bergstad,

2000) and is probably it is partly attributable to the distribution of their pre-

ferred prey, which as mentioned earlier, are crustaceans (Holden and Tucker,

1974).

These patterns were also consistent with those from other studies reporting

on habitat utilization by various species (e.g. R. brachyura, R. montagui and

S. stellaris in (Ellis et al., 2005); R. clavata in (Hunter et al., 2005); S. canicula

in (Vaz et al., 2008)).

Although the present study was limited to three species, multivariate analy-

sis of elasmobranch assemblage show that 20 out of 23 species of elasmobranchs

caught in this area are always fished jointly with one of the species examined.

These results indicate that sensitive habitats identified for the three species

studied are shared by the other, less frequently caught elasmobranchs. The

preservation of these habitats may be useful for protecting the majority of the

species of the elasmobranch community in this area.

The contents of the Section 3.5 have been published in:

M.G. Pennino, F. Muñoz, D. Conesa, A. López-Qúılez and J.M. Bellido (2013).

Modelling sensitive elasmobranch habitats, Journal of Sea Research. In press.
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3.6 Assessing spatio-temporal discard models in

a demersal trawl fishery

In previous Sections (Section 3.4 and 3.5) we have illustrated the usefulness of

our methodology to estimate and predict the distribution of different species

using presence/absence data. Instead, in this section we present a different

application for which this method can be used: the problem of fishery discards.

We illustrate how the model can be easily adapted to a Gaussian response vari-

able, the abundance of discards, with the aim of improving our understanding

of those factors that influence the quantity of discards and to identify their

spatial-temporal distribution in the study area.

The case study

Discarding is currently one of the most important issues in fisheries manage-

ment, from both an economic and environmental point of view (Bellido et al.,

2011). Discarding occurs for a range of reasons and is influenced by an even

more complex array of factors that still remain poorly understood due, among

other things, to incomplete knowledge on the spatio-temporal pattern of dis-

cards, which tend to be highly variable in space and time (Feekings et al.,

2012).

There are indications that the practice of discarding has altered ecosystem

functioning at several levels, causing cascading effects throughout the trophic

chains. Various seabird and marine mammals species use discards and offal

as feeding resources. This has led to at least two important negative effects.

Firstly, to an increase in the numbers of certain species due to the availability

of food via discards (Valeiras, 2003; Votier et al., 2004), and secondly to an

increase in the bycatch of various species of turtles, sharks, seabirds and ma-

rine mammals (Jenkins et al., 2004). But moreover, the remaining discarded

biomass ends up on the seabed and its fate is poorly known although some scav-

enger benthic species, including fish, crabs, shrimps and other invertebrates,
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may consume them. The decrease in the abundance of the above-mentioned

vulnerable species could be followed by increases in that of these other advan-

taged benthic species.

All these negative trends are the manifestation, expressed by the European

Union, that there is a need to quantify discards in order to understand their

causes and effects so as to manage them effectively.

However, an assessment of discard trends is not available from many coun-

tries owing to the limited spatial and temporal coverage of the fleet for discard

sampling. Before 2002, European discard sampling programmes were often

based on short-term projects rather than being seen as an integral part of the

process of collecting fisheries information. Nevertheless, in 2002, with the es-

tablishment of the data collection regulation (EC Regulation 1639/2001), the

monitoring of discards became a mandatory part of the European fisheries sam-

pling programme (Viana et al., 2011).

The current literature on discards has mainly been descriptive, with a focus

on understanding discard rates of specific species (Welch et al., 2008), estimat-

ing the amount or proportion of total catch discarded from particular fisheries

(Rochet et al., 2002), as well as global discard assessment (Kelleher, 2005).

These studies have contributed to improving our understanding of the discard

problem, although discarding behaviours are still mainly unknown (Depestele

et al., 2011). Therefore, further knowledge of the factors that influence discard

rates as well as of their spatio-temporal pattern is needed.

The use of modelling approaches on discard data provides the opportunity

to estimate which different drivers (technical and environmental factors) could

influence the discard process while also offering important insights for predicting

future catches and discards in terms of both quantity and location.

Furthermore, most of the existing studies have mainly focused on analysing

on discards of commercially targeted species (Viana et al., 2011; Feekings et al.,

2012). An evaluation of Spanish Mediterranean trawling indicates that discard

rates of target species are close to zero, practically negligible. The estimation

of total discard rates, however, is considerably higher (Carbonell and Mallol,
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2013). The discrepancy between target species and total discard rates lies in

the fact that discard is comprised of invertebrate species and fish with a low

commercial value. These are benthic and semi-pelagic species caught together

with the target species. Consequently, modelling only discards of target species

may lead to biased conclusions.

The main goal of this study is to address the discard issue by examining the

data collected in the GSA06 (Geographical Sub-Areas) South area, identifying

the factors that influence discarding within the Spanish trawling fleet and their

spatio-temporal distributions. Specifically, our study focuses on the Gulf of

Alicante, which is bounded by the Cape de las Huertas and Santa Pola (see

Figure 3.7 in the Section 3.5). It has a surface area of 3, 392 km2 and an

average shelf width of approximately 32 km.

Two different métiers were analyzed, the bottom otter trawl demersal species

métier (OTB-DES), which includes trawlers that operate on the continental

shelf with European hake (Merluccius merluccius) and the octopus (Octopus

vulgaris) as target species; and the bottom otter trawl deep-water species métier

(OTB-DWS), which includes trawlers that operate in deep waters with red

shrimp (Aristeus Antennatus) as its target species. On-board sampling data

on the fishery is directly related to fishing strategy and is useful for analyzing

discard trends (Essington, 2010).

In the first place, we analyzed discards of both métiers in order to under-

stand their quantity and species composition. Secondly, we have focused our

analysis on factors influencing discards so as to identify their spatial-temporal

patterns in the study area.

A detailed knowledge of spatio-temporal discarding patterns could make it

possible to further develop spatial fishery management. Predictive maps could

be essential tools for selecting high discard areas and thus facilitate the move to

discard-free fisheries as part of the proposed reforms of the Common Fisheries

Policy (CFP).
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The dataset

Under the European Union Data Collection Framework based on (EC Regu-

lation 199/2008), EU members are obliged to collect biological data including

discards. Sampling of discards by the Instituto Español de Oceanograf́ıa (IEO,

Spanish Oceanographic Institute) is based on a métier approach, i.e. a formal

segmentation of a fishery by vessel types characterised by the same fishing gear

and catch composition.

Discards are sampled at a haul level, by randomly collecting one box of

discarded catch from as many hauls as possible during each trip. For each ob-

served haul, an estimate of the total weight discarded is made by the fishermen

and the on-board observer, by subtracting the landings weight from the total

catch weight. The fraction by weight of the discarded fish in the sample is

then multiplied by the total discarded weight of the trip recorded to obtain

the total weight of fish discarded per trip (Viana et al., 2011). The discard

sample is sorted by the observer into species. Total weights and numbers of

each discarded species in the subsample are determined and based on the total

approximate discarded weight.

The reference fleet for this study was the trawl fleet which operates in

the GSA06 South area (see Section 3.5, Figure 3.10). This trawl fleet has

been divided into two different types of métier: the bottom otter trawl demer-

sal species métier (OTB-DES) and the bottom otter trawl deep-water species

métier (OTB-DWS).

The OTB-DES includes trawlers that usually operate in continental shelf

waters (from 50-200 m. depth) with European hake (Merluccius merluccius)

and the octopus (Octopus vulgaris) as target species. They make short hauls

of about 2-4 hours trawling, comprising about 2-3 fishing hauls per trip.

The OTB-DWS involves trawlers that usually operate in deep waters with

red shrimp (Aristeus Antennatus) as its target species. They generally make

a single haul per trip, of about 5-6 hours trawling. The monthly frequency of

the sampling usually consists of about 2-3 trips for the OTB-DES métier, and
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about 1 trip for the OTB-DWS métier.

In our case, 343 OTB-DES hauls and 97 OTB-DWS hauls, sampled from

2009 to 2012, were analyzed. Our study was performed using the logged dis-

cards per unit effort (DPUE) as response variable. The logarithm of DPUE

was used to downweight extreme values and to ensure that the values fitted

were strictly positive. For each métier, DPUE was calculated as discard weight

(Kg.) per haul duration (hours).

3.6.1 Modelling discards abundance

Hierarchical Bayesian spatial-temporal models were used to account discards

dependence between explanatory variables, as well as to describe the main

spatial distribution changes over time. These models can also be considered as

an alternative of the models explained in Sections 3.4 and 3.5 that can be used

when the response variable is a Gaussian distribution.

In particular, if Y represents the value of DPUE in each haul, we can

express its relationship with the spatial, temporal, technical and environmental

covariates according to this new general formulation:

Yij ∼ N (µ, σ2), i = 1, ....., n ; j = 1, ...., q

µij = Xiβ +Wi + vj

W ∼ N (0,Q(κ, τ))

2 log κ ∼ N (mκ, q
2
κ)

log τ ∼ N (mτ , q
2
τ )

vj ∼ N (0, 1/ρv)

(3.6)

where β represents the vector of the regression coefficients, X is the matrix of

variables, v is the component of the temporal unstructured random effect at

the year j, and Wi represent the spatially structured random effect.

A total of 12 potential variables have been considered for each of the models

(for each métier). The exact terms are listed in Table 3.5.
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In particular, from the onboard observer data set we have extracted the

characteristics of sampled vessels, the spatial location, year, quarter, moon

phase, daylight and CPUE of the observed hauls. As previously mentioned in

the case of discard abundance we have used a log-transformation of the CPUE

variable, computed from the total catch (Kg.) per haul duration (hours).

In order to verify interannual variations in discard abundance we have in-

troduced the quarter variable in the analysis to specify the period when the

haul was sampled.

Another potential source of variation in discard quantity is unobserved dif-

ferences between vessels, which can be the result of either a skipper effect or

unobserved gear characteristics. Ignoring such non-independence in the data

may lead to invalid statistical inference. In order to differentiate between corre-

lations caused by vessel-specific differences in fishing operation and spatiotem-

poral patterns in the discards distribution, we have included a vessel effect.

Since the exact nature of the vessel effect is of negligible interest, we have

included vessel as a random effect.

Bathymetry, slope and type of substratum spatial patterns are the same

used in the case study of Section 3.5 (see Figures 3.9 and 3.10).

3.6.2 Bayesian inference

Once the model is determined, the next step is to estimate its parameters.

Following Bayesian reasoning, the parameters are treated as random variables,

and prior knowledge is incorporated via prior distributions. In particular, for

the parameters involved in the fixed effects, we use Gaussian distribution β ∼
N(0, 100).

For the hyperparameters derived from the spatial effect, κ and τ which

represent respectively the range and scale of the spatial effect, we assume prior

Gaussian distributions with zero mean and covariance matrix depending of each

hyperparameters. For the temporal effect we assume, following Rue and Held

(2005), LogGamma prior distribution for the precision ρv with hyperparameters
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a=1 and b= 5e -05.

As usual in this context, the resulting hierarchical Bayesian model has no

closed expression for the posterior distribution of all the parameters, and so

numerical approximations are needed. Here, due to speed of calculation, we use

the integrated nested Laplace approximation (INLA) methodology and software

(http://www.r-inla.org) as an alternative to the Markov chain Monte Carlo

(MCMC) methods. INLA provides different approximation strategies for the

posterior marginal distributions. Here, we used the Stochastic Partial Differ-

ential Equation module (SPDE), which allows us to fit the particular case of

continuously indexed Gaussian Fields by INLA, as is the case with our spatial

component (Lindgren et al., 2011).

A model selection approach has been used to select relevant variables.

Specifically, the Deviance Information Criterion (DIC) is a well-known Bayesian

model-choice criterion for comparing complex hierarchical models (Spiegelhal-

ter et al., 2002). The smaller the DIC represent the better compromise between

fit and parsimony.

3.6.3 Bayesian kriging

Once the inference is carried out, the next step is to predict the discards abun-

dance in the rest of the area of interest, especially in unsampled locations. Here,

we adopted a Bayesian kriging to calculate posterior predictive distributions of

the discards abundance for the whole region. Using Bayesian kriging, we in-

corporated parameter uncertainty into the prediction process by treating the

parameters as random variables.

A common method for performing prediction with a Bayesian kriging is to

take observations and construct a regular lattice over them. In this study, we

have considered a triangulation approach exactly as in the previous Sections

(3.4 and 3.5).

Once the prediction is performed in the sampled fishing location, there are

additional functions that linearly interpolate the results to the whole area.
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As a result of the process, for each point of the area we obtain a predictive

posterior distribution of the discards abundance. This means that for each

posterior distribution, unlike the mean and confidence interval produced by

classical analyses, we are able to explicit the probability statements about the

estimation. Thus, the region bounded by the 0.025 and 0.975 quantiles of

the posterior distribution has an intuitive interpretation: under the model, the

unknown discards estimation is 95% likely to fall within this range of values.

For each métier, maps of the posterior mean from the predictive distribution

were plotted to illustrate the predicted discards abundance in this area. In

addition, the posterior mean and standard deviation of the spatial component

were displayed to detect hidden spatial patterns.

Results

A total of 440 hauls (343 OTB-DES and 97 OTB-DWS) were analysed over

the period 2009 to 2012 in the study area. For the OTB-DES the total catch

in the whole time series is approximately 81,126 Kg. with a total discard of

about 27,406 Kg., representing a discard proportion of 34% of discards. This

proportion is about 20% for the OTB-DWS, with a total catch of 15,158 Kg.

and about 3,100 Kg. of total discards.

Table 3.6 lists the five most discarded and caught species for the two differ-

ent métiers, giving the respective quantitties discarded and caught during the

time series.

For the OTB-DES métier, the bogue (B. boops) represents approximately

23% of total discards between 2009 and 2012, followed by the axillary seabream

(P. acarne) with 11% and the small-spotted catshark (S. canicula) with 8%. In

addition to being the most discarded species, the bogue is also the most caught

species, representing 8% of the total catch of the OTB-DES. The octopus,

which is one of the target species of this métier, is the second most captured

species, representing 7% of the total catch and with only 3% of discards. The

axillary seabream is the third most captured species, representing about 6% of
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the total catch of this métier. European hake, which is one of the main target

species of this métier, is only tenth in abundance, accounting for approximately

4% of the total catch.

For the OTB-DWS métier, the jewel lanternfish (L. crocodilus) accounts for

19% of total discards, followed by the blackmouth catshark (G. melastomus)

with 15% and the silver scabbardfish (L. caudatus) with 7%. The red shrimp is

the target species of this métier and the most caught one, representing 26% of

the total catch and with only a 0.3% of discards. Blackmouth catshark is the

second most captured species, in addition to being the second most discarded

species. It represents 10% of the total catch for this métier and has a discard

rate of 32%. Blue whiting (M. poutassou) is the third most caught species

for this métier, accounting for 9% of the total catch. For both métiers the

major proportion of both catch and discards consists of non-target and low

commercial value species.

Models showed that the relative importance of each variable was different

for each métier, with a certain number of similarities. For both métiers, no

important yearly differences were found in this area for discard variability. All

the models that include the temporal effect show higher DICs, LCPO and BS

than those without it.

In the OTB-DES métier the model selected for its best fit (based on the low-

est DIC, LCPO and BS) includes the bathymetry, the log-transformed CPUE,

the moon phase and the vessel random effect as covariates, and a stochastic

spatial component that accounts for the residual spatial autocorrelation. Table

3.7 presents a numerical summary of the posterior distributions of the fixed

effects for this final model.

Among the environmental variables slope, orientation and the type of seabed

were found to be irrelevant for the variability of DPUE abundance. No differ-

ence was found between day and night trawling. The vessel random effect was

relevant for all models, while the characteristics of sampled vessels (GRT, power

and length) were of no relevance.

Results showed a negative relationship between bathymetry and the DPUE



Chapter 3. Modelling the spatial distribution of non target species 125

Table 3.7. Numerical summary of the posterior distributions of the fixed

effects for the OTB-DES métier.

Predictor Mean Sd Q0.025 Q0.5 Q0.975

(Intercept) -2.54 0.48 -3.48 -2.54 -1.60

Moon(Full) -0.25 0.16 -0.56 -0.25 0.06

Moon(Crescent) 0.17 0.16 -0.14 0.17 0.48

Moon(Waning) 0.10 0.16 -0.21 0.10 0.41

Depth -0.22 0.07 -0.35 -0.22 -0.09

Log(CPUE) 1.43 0.05 1.34 1.43 1.52

Quarter 2 1.85 0.55 0.78 1.85 2.92

Quarter 3 1.55 0.57 0.43 1.55 2.67

Quarter 4 0.16 0.55 -0.92 0.16 1.25

(posterior mean = -0.22; 95% CI = [-0.35,-0.09]). Conversely, the log-transformed

CPUE showed a positive relation with respect to the amount of DPUE abun-

dance (posterior mean = -1.43; 95% CI = [1.34,1.52]).

The full moon phase shows a lower estimated DPUE abundance (posterior

mean = -0.25; 95% CI = [-0.56,0.06]) with respect to the reference level (new

moon). Also, the waning moon showed a lower estimated coefficient than the

reference level (posterior mean = 0.10; 95% CI = [-1.21,0.41]), leaving the cres-

cent moon as the lunar category with the highest estimated DPUE abundance

for the OTB-DES métier (posterior mean = 0.17; 95% CI = [-1.14,0.48]).

All the estimated coefficients of the quarters of the year show higher DPUE

abundance than the reference level (first quarter). In particular, the second

quarter shows the highest estimated DPUE abundance (posterior mean = 1.85;

95% CI = [0.78,2.92]) with respect to the baseline.

Higher values of DPUE in the OTB-DES métier occur in shallow waters,

during the crescent moon and in the second quarter of the year, and when the

CPUE is higher.



126 Chapter 3. Modelling the spatial distribution of non target species

Figure 3.13 shows the predictive spatial abundance of discards of the OTB-

DES métier, influenced by the relevant factors, in the GSA06 South area. These

discards show a longitudinal gradient, with the highest values in the central

western part of the GSA06 South, along the coastline.

Figure 3.13. Posterior mean of the predictive discard abundance of the

OTB-DES métier.

Figure 3.14 displays the posterior mean (a) and standard deviation (b) of the

spatial component. The effect of the spatial component was consistent for all

models. This component shows different marked hot spots with positive values

in the western part, near the coast, and sporadic areas that show negative

values.

The best model fit for the OTB-DWS métier includes the log-transformed

CPUE, quarter of the year, moon phase, vessel length and type of substratum

as relevant covariates together with the vessel and spatial random effects (Table

3.8).

Moon effects change smoothly declining from full moon (posterior mean =

-0.07; 95% CI = [-0.50,0.35]) through to the waning moon phase (posterior
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(a) Posterior mean (b) Standard deviation

Figure 3.14. The posterior mean (a) and standard deviation (b) of the

spatial effect of the OTB-DES métier.

mean = -0.28; 95% CI = [-0.69,0.12]) with respect to the reference level (new

moon).

As in the OTB-DES métier, the log-transformed CPUE shows a positive

relationship with respect to DPUE abundance (posterior mean = 1.09; 95% CI

= [0.93,1.24]).

Regarding seabed, the rock substratum shows the lowest estimated DPUE

abundance (posterior mean = -0.07; 95% CI = [ -0.75,0.60]) with respect to

the reference level (sand substratum). Muddy substrata showed a higher esti-

mated coefficient than the reference level (posterior mean = 0.12; 95% CI =

[-0.26,0.49]).

In this case depth is not relevant, and nor is the slope and orientation of

the seabed, as in the OTB-DES métier. Neither was the presence or absence of

light during the hours of trawling found to be a relevant variable for the DPUE

abundance in this métier.
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Table 3.8. Numerical summary of the posterior distributions of the fixed

effects for the OTB-DWS métier.

Predictor Mean Sd Q0.025 Q0.5 Q0.975

(Intercept) 0.05 0.23 -0.41 0.05 0.51

Moon(Full) -0.07 0.22 -0.50 -0.07 0.35

Moon(Crescent) -0.12 0.20 -0.51 -0.12 0.28

Moon(Waning) -0.28 0.21 -0.69 -0.28 0.12

Log(CPUE) 1.09 0.08 0.93 1.09 1.24

Vessel length 0.06 0.03 0.01 0.06 0.12

Seabed(Mud) 0.12 0.19 -0.26 0.12 0.49

Seabed(Rock) -0.07 0.35 -0.75 -0.07 0.60

Quarter 2 0.13 0.15 -0.16 0.13 0.42

Quarter 3 0.10 0.16 -0.22 0.10 0.41

Quarter 4 -0.02 0.15 -0.32 -0.02 0.29

The second quarter of the year shows the highest estimated DPUE abun-

dance (posterior mean = 0.13; 95% CI = [-0.16,0.42]) with respect to the ref-

erence level (first quarter), while the fourth quarter show the lowest estimated

coefficient (posterior mean = -0.02 ; 95% CI = [-0.32,0.29]).

The vessel random effect was relevant in all the models run, while among the

technical characteristics of the vessel, only the length is found to be relevant.

In particular, longer vessels show higher DPUE values (posterior mean =0.06;

95% CI = [0.01,0.12]).

The higher values of DPUE for the OTB-DWS métier are recorded for longer

vessels, on muddy substrata, in the second quarter of the year, when the moon

phase is new and the CPUE is higher.

Both the map of the predictive spatial abundance of discards and that of the

posterior mean of the spatial effect (Figures 3.15 and 3.16 (a)) show a patchy

distribution of the DPUE of the OTB-DWS méteir with three marked hot spots
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of higher DPUE values.

Figure 3.15. Posterior mean of the predictive discard abundance of the

OTB-DWS métier.

Conclusions

Estimation of discards and knowledge about the reasons why discarding oc-

curs, have been recognized to be crucial for improving stock assessments and

exploring the impacts of fishing on the ecosystem (Tsagarakis et al., 2012).

The latter has gained attention during the last decade, ever since an ecosystem

approach to fishery management (EAFM) has been established as a priority in

fishery science (Bellido et al., 2011). Solving the problem of discards is a com-

plex issue, since discards show high variability across time, space and métiers

due to the numerous factors affecting them, including, among others, technical

characteristics, environmental conditions and species composition (Rochet and

Trenkel, 2005).

In this study we have analyzed about 440 trawl fishing operations, sampled
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(a) Posterior mean (b) Standard deviation

Figure 3.16. The posterior mean (a) and standard deviation (b) of the

spatial effect of the OTB-DWS métier.

between 2009 and 2012, to improve our understanding of those factors that

influence the quantity of discards and to identify their spatial-temporal distri-

bution in the study area. Two different métiers were analyzed, the bottom

otter trawl demersal species métier (OTB-DES), and the bottom otter trawl

deep-water species métier (OTB-DWS). Firstly, we analyzed the discards of

both métiers in order to understand their quantity and species composition.

Secondly, we have focused our analysis on factors influencing discards so as to

identify their spatial-temporal patterns in the study area.

It is known that, among different fishing gears, the trawl is responsible

for most fisheries discards (Tsagarakis et al., 2008). In the Mediterranean,

the discarded fraction of otter-trawl catches ranges from 20 to 70% by weight

(Carbonell et al., 1998; Machias et al., 2001; Kelleher, 2005). In our study area,

for the whole sampled fleet of trawlers, the discarded fraction accounted for

31% of the total catch, more specifically 34% and a 20% of the total catch for
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the OTB-DES and OTB-DWS métiers, respectively.

Similar studies on demersal trawls, on a broad scale, reported higher discard

ratios, as in the case of the northeastern Mediterranean sea (38-49%; (Machias

et al., 2001; Tsagarakis et al., 2008)). However, the discard ratio of the OTB-

DES and OTB-DWS métiers in the study area was higher than that of midwater

trawls in the Turkish Black Sea (5.1%; (Kelleher, 2005)) and the Adriatic (up

to 15%; (Santojanni et al., 2005)), as well as that of the artisanal fishery in

Greek waters (10%; (Tzanatos et al., 2007)) and the purse seine fisheries in the

western Mediterranean Sea (13-15%; (Kelleher, 2005)).

From the point of view of species composition, the results show that the

major proportion of catch and discards is represented by non-target and low

commercial value species. In particular, in the OTB-DES métier, bogue and

axillary seabream are the most discarded and caught species, representing up

to 32% of total discards. In the OTB-DWS métier the most captured species

corresponds with the target species (red shrimp) of this métier, unlike the

OTB-DES where the main target species is European hake, which is the tenth

most captured species. Among the high commercial value species, such as

the red shrimp and octopus, discards are negligible for both métiers (0.3%

and 3% respectively). Moreover, a significant fraction of the discards of both

métiers (10%) consists of elasmobranch species, which are considered vulnerable

species due to their biology and K-selection life-history traits. The discarding

of non-target species may have negative consequences for both commercial and

no-ncommercial species due to its effects on species interactions and cascading

effects throughout the trophic web.

Previous studies that have investigated the spatial-temporal variability of,

and factors influencing, discards have focused only on target species or species

with a high commercial value, as well as global discard estimates. To investi-

gate only the spatio-temporal variability and quantity of target species discards

could lead to underestimated and biased conclusions concerning this fleet.

In order to overcome this problem, and to understand which factors influ-

ence the variability of the discards, the DPUE of each haul, shared by métier,



132 Chapter 3. Modelling the spatial distribution of non target species

was modeled with respect to the environmental and technical characteristics of

fishing operations for each métier.

Our analysis, perfomed using Bayesian methods, showed that the relative

importance of each variable was different for each métier, although with a few

similarities were observed. Interestingly, for both métiers, the discarded quanti-

ties were not found to be related to factors such as vessel power, GRT, daylight

during the haul or enviromental factors such as seabed slope and orientation.

Among the vessel characteristics, only for the OTB-DWS métier does vessel

length influence the abundance of discards. A longer vessel implies a greater

catch and, implicitly, a higher discard fraction. Indeed, one of the main driving

variables that explain the discard variability is the abundance of catch. Our

results show a direct and positive relationship between the CPUE and the

DPUE, with more catch involving an increase in discard abundance for both

métiers.

Surprisingly, for both métiers, the moon phase was relevant for discard vari-

ability. As mentioned previously, a considerable proportion of discards consists

of elasmobranch species, whose distribution has been related with the lunar

phases by several studies (Poisson et al., 2010; Cuevas-Zimbrón et al., 2011).

The type of seabed was only relevant for the OTB-DWS métier. Muddy

substrata are those with the highest amount of discards, reflecting the selection

of fishing grounds by fishermen and the distribution of the target species of the

métier.

Furthermore, discarding is a process decided on board based on the size of

the catch and market prices of species, taking into account legal constraints. In

our results, the random vessel effect collects this hidden variability that depends

only on of the vessel’s crew.

Discards fluctuated greatly in each métier, but showed no relevant temporal

trends between years. On the contrary, interannual variability was a relevant

variable for both métiers. In particular, the second quarter of the year is the

period which recorded the highest abundance of discards for both métiers. This

seasonal pattern of discards can be attributed to the targeting behaviour of the



Chapter 3. Modelling the spatial distribution of non target species 133

fishermen and the condition/behaviour of species in the different seasons.

The spatial effect explained much of the variability in discarded quantities

for both métiers. The spatial component may reflect the effect of other factors

considered and of factors that are not directly taken into account, such as

community composition, distance from the coast or productivity gradients, etc.,

and can contribute to making a good estimate of discards. Maps show a clear

spatial longitudinal gradient for the OTB-DES métier, with the highest discards

occuring in the central western part of the study area, along the coastline. This

trend is confirmed by the relevant negative relationship between the abundance

of discards and the fishing depth variable. The abundance of discards is higher

in shallow water and along the coastline, and may reflect the selection of fishing

grounds in this métier.

The map of the spatial component of the the OTB-DES métier shows several

hot spots with high discard values and sporadic areas with lower abundance

of discards. This trend reflects resources distribution, and is very useful for

identifing sensitive areas that could be avoided by fisheries in order to decrease

discards.

Moreover, the spatial predictive discards map and the spatial effect map of

the OTB-DWS métier also highlight clear hot spots of discard abundance.

The identification of these areas of high concentration of discards could be

an important benefit for the spatial management of the fleet. The interannu-

al/spatial effects could potentially be exploited in an overall strategy of spatial

management strategy in order to reduce discard rates, providing the necessary

economic incentive for fishermen to adopt selective temporal rotation of fishing

grounds. Our findings show that the spatial variability in discard rates can

potentially be exploited in a general strategy to reduce discards. A similar

approach was proposed for the USA mixed species otter trawl fisheries of the

Georges Bank-Southern New England region. By limiting directed fishing to

times and places where resources are segregated, the quantity of unintended

catch could potentially be reduced (Murawski, 1996). To achieve these pur-

poses, predictive spatial maps, such as the ones generated by our approach
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could be essential tools for implementing an efficient spatial management and

control schemes to reduce discards.

The contents of the Section 3.6 have been submitted in a peer-reviewed

journal.

3.7 General conclusions

Improved knowledge of the spatial distribution of commercially fish species and

their relationships with the marine environment could form an integral aspect

of a precautionary approach (Thrush and Dayton, 2010). There is growing

worldwide support for the argument that fisheries should be conducted in a

way that is robust to environmental change, and thus that fish stocks should

never be exploited to a point where they cease to be resilient to environmental

change.

In order to achive this purpose, the European Marine Strategy Framework

Directive has specifically requested the incorporation of any existing knowledge

about environmental drivers in the assessment of ecosystems and fisheries and

in advice (Wiegand et al., 2011).

Implementing plans and control schemes that would specific species assem-

blages, based on a good knowledge of the species’ spatial distribution in relation

to the environment, could serve as a sustainable approach to fisheries manage-

ment and also for other marine activities and uses (Martin et al., 2012). The

establishment of marine protected areas for protecting sensitive habitats, in line

with the recent trends for a holistic ecosystem-based approach to management

and Marine Spatial Planning, would also benefit from an improved understand-

ing of the spatial distribution of vulnerable species. To achieve these objectives,

predictive habitat maps, such as those generated by the approach presented in
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this chapter, could be useful source of information in the selection of areas for

improved regional management or technical measures adoption.

Species habitat analysis should be able to identify those areas within the

distribution of a species that contribute most to sustain the long-term viability

of a population. Although it may be complicated to define the boundaries

of sensitive habitats, the definition of these areas, combined with an efficient

fishery management that recognizes the importance of such areas, represents

the first step towards facilitating an EAFM approach (Valavanis et al., 2008b).

Accuracy is not always easy to achieve because there is often a large amount

of variability surrounding the measurements of response and environmental

variables (Latimer et al., 2006). This variability leads to uncertain predictions,

and consequently to uninformed decision making. It is therefore important to

develop tools which account for measurements with significant variability. Here,

we have shown a Bayesian spatial hierarchical model that makes it possible

to identify sensitive habitats together with a full specification of associated

uncertainty.

However, in all the presented cases, species, discards and environmental

data are sampled during a limited period of time and space, and thus the

models fitted can only reflect a snapshot view of the expected relationship. Fu-

ture studies should compare these temporal and spatial trends from additional

sources of data with a wider spatial and temporal coverage, such as fishery-

independent scientific survey, which is often considered as being a more reliable

abundance index because of its scientifically rigorous design (Cao et al., 2011).

However, this first approximation could be serve to promote a greater effort

in data collection and to identify the areas on which future research attempts

should concentrate.

It should be noted that although the fishery-dependent data that we used

were collected with a systematic sampling design, Bayesian spatial models may

also aid analyses of data with geographically uneven levels of survey effort

because such bias can be incorporated within the spatial random-effect term,

thereby reducing its influence on estimates of the effects of environmental vari-
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ables. By treating spatial effects as a variable of interest, hierarchical Bayesian

spatial models can suggest the identity of additional environmental covariates

that may improve model fit or the existence of area effects that may limit

population viability.

In all the practical cases presented, the main advantage of the Bayesian

model formulation is the computational ease in model fit and prediction com-

pared to classical geostatistical methods. Both the stationary and especially

the non-stationary models have a large number of parameters. Also, in clas-

sical geostatistical applications, the full range of uncertainties that are always

associated with species distribution models is not correctly measured, as many

parameters that are considered to be “known" are actually estimated through

the statistical model (Diggle and Ribeiro, 2007), a potential cause of optimistic

assessments of predictive accuracy. Using Bayesian kriging, we have incorpo-

rated parameter uncertainty into the prediction process.

The main goal of these studies has been to predict the occurrence of the

species and the discard abundance in unsampled areas. To do so, instead of

MCMC we have used the novel integrated nested Laplace approximation ap-

proach. More precisely, we have applied the work of Lindgren et al. (2011),

which provides an explicit link between Gaussian Fields and Gaussian Markov

Random Fields through the Stochastic Partial Differential Equation approach.

Thanks to the R INLA library, the SPDE approach can be easily implemented

providing results in reasonable computing time (in contrast to MCMC algo-

rithms). The simplicity of the SPDE parameter specifications provides a new

modelling approach that allows an easy construction of non-stationary models

that provides a good, computationally very efficient, local interpretation. For

these reasons, the SPDE approach has proved to be a powerful strategy for

modelling and mapping complex spatial occurence phenomena.

Finally, we would like to mention that the analytical approach we used here

to document the spatial patterns of these specific cases can be extended to

different species and life stages to improve knowledge of the role of habitat for

populations and marine processes.



Chapter 4

Modelling the spatial

distribution of target

species

In this chapter, we present a Bayesian hierarchical spatial model to estimate

the distribution of fishery target species using fishery-dependent data. In these

specific cases in which the data are collected following a preferential sampling

method, predicting the distribution of the target species using the traditional

application of geostatistical methods could lead to biased predictions. To avoid

this bias, the basic idea is to interpret the data as a marked point pattern, where

the sampling locations form a point pattern and the measurements taken in

those locations are the marks. As a practical example, we model the abundance

of European hake (Merluccius merluccius) in the Gulf of Alicante.

137
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4.1 Introduction

The increasing interest in species distribution models for management and con-

servation purposes has focused the attention of ecologists on the use of spatial

models (Sangermano and Eastman, 2007). Spatial species distribution models

can be addressed for theoretical and practical problems, including estimat-

ing the relationship between species and their environment, identifying and

managing protection areas and predicting their potential response to ecological

changes (Latimer et al., 2006). In all these contexts, the main issue is to use

and link information on the presence/absence or abundance of a species and the

environmental variables associated with predicting where (and how) the species

is likely to be present in unsampled locations.

In species distribution models one of the most difficult steps to overcome

is obtaining observation data on the species studied (Kery et al., 2009). With

the exception of a few pilot methodological studies (Thogmartin et al., 2006),

species distributions must frequently be derived from opportunistic observa-

tions due to the high cost and time consuming nature of collecting data in the

field (Kery et al., 2009). The development of a well designed sampling scheme

to estimate directly the distribution of a specific species over the entire study

area is quite often unfeasible (Brotons et al., 2007). As an example, stud-

ies on sea mammals commonly resort to the affordable technique of sampling

from recreational boats (so-called platforms of opportunity), whose bearings

are neither random nor systematic (Rodŕıguez et al., 2007). Most of the data

obtained in bird monitoring are also provided by volunteers who concentrate

the sampling process in areas where they expect to find the species of interest

(Brian, 2011). Moreover, in a fishery ecology context, the most readily available

data are fishery-dependent surveys from commercial fleets, usually monitored

by observers on board, due to their connection to the economy and business

(Vasconcellos and Cochrane, 2005).

Although most of the time they are all that is available, data of this kind

raise a practical complication: the sampling process that determines the data lo-
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cations and the species observations are stochastically dependent (Diggle et al.,

2010). Spatial species distribution models usually assume, if only implicitly,

that sampling is non-preferential and that the selection of the sampling loca-

tions does not depend on the values of the spatial variable. However, data from

commercial fishery are a clear example of preferential sampling. Fishermen

clearly go to fish in areas where they are likely to find target species.

This problem not only arises in fishery, preferential designs can arise in other

contexts, and the underlying reasons could be either because sampling locations

are deliberately concentrated in areas where the values of the species of interest

are thought likely to be greater (or lesser) than average (Diggle et al., 2010).

As a result, traditional application of geostatistical methods performed

solely on the basis of data obtained from these frameworks could lead to biased

results if we do not take into account the choice of monitoring locations. The

underlying reason is that geostatistical models focus on inferring a continuous

spatial process based on data observed at finitely many locations, with the lo-

cations typically assumed to be non-informative. These models assume that

sampling location and the process being modelled are stochastically indepen-

dent. But what should we do when this is not the case?

Diggle et al. (2010) showed how ignoring preferential sampling could lead to

misleading inferential conclusions. The authors addressed the issue of prefer-

ential sampling indicating how this can be approximately evaluated using Log-

Gaussian Cox processes (LGCPs) and likelihood-based inference Monte Carlo

methods. However, the resulting methods are computationally intensive, as the

authors recognize in their discussion, which implies that it is quite complicated

to use in practical situations, especially when the objective of the analysis is

to perform the prediction in many unobserved locations using environmental

covariates. This is an important issue as prediction is often the main utility of

the modelling, making then the effect of preferential sampling rely more on the

resulting predictive surface than on parameter estimation.

Rue et al. (2010) indicated, in the discussion on Diggle et al.’s paper, that

the preferential model is an example of a latent Gaussian model for which
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Bayesian inference based on integrated nested Laplace approximation (INLA) is

both fast and efficient.1

In this Chapter we re-examine the methodology for performing preferential

sampling models using the approach proposed by Rue et al. (2010). In order to

illustrate how preferential sampling affects the performance of standard meth-

ods, we apply the preferential approach to assess the spatial distribution of

European hake (Merluccius merluccius, Linnaeus 1758) in the Gulf of Alicante.

Furthermore, we present the possibility of incorporating an additional spa-

tially structured effect in the model that reflects how wrong the observers were.

Indeed, in some cases, the observers will sample in areas where they believe

that the variable studied has high values, but they might not be absolutely

right. This is because the sampling locations do not in fact directly depend on

the “true” availability of the sample but on the observers’ idea about what the

availability is.

The remainder of this Chapter is organized as follows. After this intro-

duction, in Section 4.2, we review all the different ingredients required to fit

a preferential sampling model. Section 4.2.2 explains the modelling approach

for the preferential sampling and its improvement. Section 4.3 validates the

performance of this methodology through an application within the context of

mapping the distribution of the European hake in the Western Mediterranean

Sea. We end with a general discussion in Section 4.4.

4.2 Tools for implementing preferential sampling

In this section we review all the necessary tools to fit a preferential sampling

model. For a more detailed explanations of the processes presented here see for

instance Stoyan et al. (1995), Møller et al. (1998), Diggle (2003), Møller and

Waagepetersen (2004), Illian et al. (2008), Ho and Stoyan (2008), Law et al.

(2009) and Illian et al. (2012) and references cited therein.

1Code for solving Diggle et al.’s presented example is available in the (INLA) project web

page (http://www.inla-project.com).
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Formally, a spatial point pattern describes the spatial location of events

in a defined study region. Spatial point processes are mathematical models

used to describe and analyse these spatial patterns formed by objects that are

irregularly or randomly distributed in one or more dimensional space. Examples

include locations of plants in a wood, parasites in a culture microbiology and

concentrations of contaminants in the air or in the soil.

The most common theoretical model for a spatial point pattern is the Pois-

son process, usually described in terms of its intensity function Λ(x). This

function represents the mean number of events per unit area at the sampling

location. Intensity may either be constant over space, resulting in a homoge-

neous or stationary pattern, or vary in space with a spatial trend, resulting in

a non-homogeneous pattern. The homogeneous Poisson process represents an

idealized form of spatial randomness, where the intensity function is constant

and each event occurs independently of the others, as a result of a uniform

distribution in space. Nevertheless, the assumption of stationarity is generally

unrealistic in most practical applications, making non-homogeneous Poisson

processes a better choice to describe reality.

Among all spatial point processes, the class of Cox processes is a flexible

family of models, also called “doubly-stochastic” processes, as they arise as

non-homogeneous Poisson processes with a random intensity measure. Cox

processes provide a statistically tractable class of models for aggregated point

patterns in which the spatial trend can reflect underlying heterogeneity due to

unknown conditions such as environmental variability.

In Cox processes the variability is assumed to be a stochastic process in

itself. In addition, spatial autocorrelation and variation are expressed with

a random structure based on an underlying (or latent) random field, which

describes the stochastic intensity Λ(s), assuming independence from this field.

Log-Gaussian Cox processes (LGCPs) are a particular class of Cox processes in

which the logarithm of the intensity surface is a Gaussian field. More formally:

log(Λ (s)) = Z (s) (4.1)
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where Z (s) is a Gaussian random field, s ∈ R2 and is conditional on the

unknown conditions. In other words, given the random field, the points are

independent and hence form a non-homogeneous Poisson process.

The practical fitting of LGCP models to point pattern data remains difficult

due to intractable likelihoods as it requires a complicated computation of the

integral of the intensity function and its stochastic nature. Methods based

on Markov chain Monte Carlo (MCMC) can be very time-consuming both to

tune and to run and fitting complex models can easily become computationally

expensive.

Nevertheless, LGCPs are a special case of the more general class of latent

Gaussian models, which can be described as a subclass of Structured Additive

Regression (STAR) models. In these models the mean of the response variable is

linked to a structured predictor, which can be expressed in terms of linear and

non-linear effects of covariates. In a Bayesian framework, by assigning Gaussian

priors to all random terms in the predictor, we obtain a latent Gaussian model.

As a result we can directly compute LGCP models using the Integrated nested

Laplace approximation (INLA)(Rue et al., 2009). INLA provides a fast and yet

reasonably exact approach to fitting latent Gaussian models, and makes the

inclusion of covariates and marked point processes mathematically tractable

with computationally efficient inference (Simpson et al., 2011).

Marked point processes provide a very useful tool in spatial statistics. They

represent a natural approach to the analysis of data where random variables are

observed at random positions. Indeed, in many applications the natural set of

covariates under consideration will include attributes to event positions. This

can be both a qualitative (such as species identification) or quantitative (such

as height) measure, usually referred to as marks.

Formally, a marked point process is a random sequence Ψ = {[xn : mn]}
with points xn ∈ R2 and marks mn in some mark space. The character Ψ

denotes the random measure and is assumed to be stationary and isotropic.

Two different kinds of marked point process models can be considered:

processes where marks are a response variable and processes where marks are
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included as an explanatory variables.

When marks are treated as a response variable and are modeled near to the

pattern in a joint model, it is necessary to consider a separate likelihood and

latent field, as well as a set of hyperparameters, specific to the marks. In this

case, a joint model is particularly appropriate and model comparison methods

can be used to assess whether or not the model fit improves when the fields are

consider separate or jointly.

To end this Section we would like to remark that very few attempts have

been made at fitting models to both the pattern and the marks, in particular

to patterns with multiple dependent continuous marks, whilst joint models of

covariates and patterns have not been considered.

4.2.1 Fitting models with INLA

Unlike MCMC, which makes use of stochastic simulation for fitting, INLA use

deterministic approximation. It has been designed to work for a large class

of models, namely latent Gaussian models, and these are fitted in a Bayesian

setting. While INLA cannot be used for all models, the class of latent Gaussian

models comprises a lot of models, including time series models, generalised

additive models and survival models, among others (Rue et al., 2009). Latent

Gaussian models consist of three levels: the observations, an underlying latent

structure and a vector of hyperparameters:

� The observations (y) encode information about observed data, including

design and collection issues, where:

π(y|η) =
∏
k∈K

π (yk|ηk) (4.2)

where K is an index for grid cells and given a latent field, the observations

are considered independent;

� the latent field (η) is a latent (Gaussian) random field, relating to observed

and unobserved (spatial) covariates and is included to reduce (spatial)
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autocorrelation,

π(η|θ) = N
(

0,
∑

(θ)
)

(4.3)

� and hyperparameters (θ) that are parameters for the latent field

π (θ) (4.4)

In INLA, the Gaussian field is approximated by a Gauss Markov random

field (GMRF). As a result it is possible to exploit all the characteristics of the

latent GMRF model. Firstly, GMRFs are discretely indexed, so the Markov

property makes their precision matrix sparse

Q (θ) =
∑−1

(θ) , (4.5)

is computationally elegant and allows fast numerical integration if the dimen-

sion of the vector of hyperparameters θ is chosen to be small. In summary, the

structure of the latent Gaussian model allows INLA to approximate and speed

up the fitting process by exploiting the fact that the latent field is Gaussian

such that a Laplace approximation may be used. As a result, the time required

for fitting models is substantially reduced.

Moreover, the Matérn covariance function is a highly flexible and general

family of functions covering many of the most-used covariance models in spatial

statistics (Stein, 1999) (although in this approach it is limited to ν = 1).

Finally, GMRFs fit seamlessly with the INLA approach, which requires the

latent field to be a GMRF.

4.2.2 Implementing the Preferential sampling approach

In this Section we review the Rue et al. (2010) approach proposed in the dis-

cussion of Diggle’s paper while presenting some improvements such as the pos-

sibility of incorporating an additional spatially structured effect in the model

which reflects how wrong the observers were.

In preferential sampling, the data structure is a spatial point pattern formed

by the sampling locations x = (ξ1, . . . , ξn) and associated quantitative marks
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m = (m1, . . . ,mn). The spatial point pattern xn depends on an observed

random field {Z (s)} and forms an LGCP with an intensity function Λ(s) with

the form:

Λ (s) = exp {α+ βS (s)} , (4.6)

where parameters α and β are real and the marks mn are simply the value of

the background random field {Z (s)}.
Moreover, marks m are assumed to follow an exponential family distribution

F1θ1 with parameter vector θ = (θ1, . . . , θq) (such as a normal distribution with

parameter θ1 = µ and θ2 = σ2) and to depend on the intensity of the point

pattern.

Since INLA uses a GMRF approximation to the Gaussian random field the

observations have to be discretised. For this purpose, the observation window

is discretised into N = nrow × ncol grid cells {sij}, each with area |sij |, i =

1, . . . , nrow, j = 1, . . . , ncol. The points in the pattern can then be described by

{ξijkij} with kij = 1, . . . , yij , where yij denotes the observed number of points

in grid cell sij . The observed number of points in each grid cell is assumed to

be Poisson distributed given the latent field ηij , i.e.

yij |ηij ∼ Po(|sij | exp(ηij)), (4.7)

see (Rue et al., 2009).

We model ηij as

ηij = β0 +Wf (sij) + uij , (4.8)

where Wf (sij) refers to a spatially structured effect (i.e. a GMRF) that reflects

spatial variation in the pattern and uij denotes a spatially unstructured i.i.d.

error term with uij ∼ N(0, 1).

For the marks, we construct a model where the marks m depend on the

pattern by assuming that they depend on the same spatially structured effect

Wf (sij). Specifically, we assume that m(ξijkij )|κijkij ∼ N(κijkij , σ
2) with

κijkij = β02 +Wf (sij) + vijkij , (4.9)
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where vijkij is another error term.

Usually, the spatial effect is modelled using a second-order random walk on

a lattice, using vague gamma priors for the hyperparameter and constrained

to sum to zero. Here we propose the use of a Matérn correlation function on

the regular lattice. As mentioned in the Section 3.2.2, the Matérn covariance

function is a really flexible and general family of functions generalizing many

of the most-used covariance models in spatial statistics. Its expression, giving

the covariance between the values of a random field at locations separated by a

distance d > 0, can be parameterized as

Corr(d) =
1

2ν−1Γ(ν)
(κd)νKν(κd),

where Kν is the modified Bessel function of the second kind and order ν > 0

(Abramowitz and Stegun, 1970, §9.6), κ > 0 is a scaling parameter and the

range is defined to be

r =
√

8ν/κ

which about the distance where the covariance function becomes about 0.1.

The hyperparameters of the spatial effect are the precision parameter τ and the

range r,

W = (τ, r)

The latent field has marginal variance 1/τ and range (as defined above) r. The

hyperparameters are represented internally as

(log(τ), log(r))

and the prior are assigned to these quantities. For instance, in the dataset de-

scribed in Section 4.3, we specify minimally informative priors LogGam(1,0.0005).
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Under this perspective, the Point Process model can be stated as follows:

x|η ∼P(exp (η))

η = 1β0η + Xηβη +W

π(β0) ∝1

βj
iid∼N(0, 1e-05)

(4.10)

and the model for the marks as:

yi|κi
iid∼N(κi, τ

2)

κi = β0κ + Xiκβκ +Wi

π(β0) ∝1

βj
iid∼N(0, 1e-05)

(4.11)

In order to feed this model into INLA we need to use a specific structure

in the dataset (see the section models with more than one type of likelihood at

http://www.r-inla.org/models/tools). Namely, we have to put the obser-

vations yij corresponding to the point pattern and the observations mij of the

marks into a matrix of the form

Y =

[
yp×1 NAp×1

NAn×1 mn×1

]
.

Where p = nrow · ncol is the size of the grid and NAn×1 stands for a n × 1

matrix filled with NA values.

Correspondingly, the dataframe with the covariates will also be split into

two parts with p elements each. Each covariate will be a column with the

corresponding values in the first p elements if the covariate affects the point

process model and NAs in the last p elements, or viceversa, if the covariate

affects the marks models.

Since INLA by default uses a common intercept for all the data, we need to

remove it (using −1 in the formula specification), and use a factor to represent

fixed effect with two levels.

http://www.r-inla.org/models/tools
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During the modelling process, methods for model comparison based on the

deviance information criterion (DIC) (Spiegelhalter et al., 2002), will be used

to compare these three different models.

Non-Preferential model

A joint model without preferential sampling will consist of carrying out infer-

ence separately over the point process and the marks. In this way, we will be

treating the marks as sampled in a random process:

ηij = β0 +Wf (sij) + uij , (4.12)

κijkij = β02 +Wg(sij) + vijkij , (4.13)

where Wg(sij) refers to a separate spatially structured effect of the marks

model.

Improving the preferential model

In some cases, the observers will sample in areas where they believe that the

variable studied has high values, but they not be absolutely right. This is

because the sampling locations do not really directly depend on the “true”

availability of the sample but on the observers’ idea about the availability is. In

these cases we assume an additional spatially structured effect Wh(sij) in the

model for the marks, and the equation (4.8) changes as follows:

ηij = β0 +Wf (sij) + uij , (4.14)

κijkij = β02 +Wf (sij) +Wh(sij) + vijkij . (4.15)

This additional random field would reflect how wrong the observers were.
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4.3 Distribution of European hake in the Gulf

of Alicante

In this section we present a practical application of the preferential approach

within the context of mapping the distribution of the of European hake (Mer-

luccius merluccius, Linnaeus 1758) in the Western Mediterranean Sea.

The European hake is among the most important commercial species in the

Mediterranean, suffering from high fishing pressure and currently overexploited

(Lleonart, 2005). It is a demersal species with wide geographical distribu-

tion throughout the Atlantic Ocean and the Mediterranean and, as such, has

been extensively studied (Goñi et al., 1999; Alvarez et al., 2001; Kacher, 2005).

Nevertheless, none of these studies have taken into account the fact that the

fishery-dependent data come from preferential sampling.

The study area and trawl survey data

The study was conducted in the eastern Spanish coastal area of the Mediter-

ranean Sea, corresponding to the GFCM fisheries management Geographical

Sub-Area 06 (GSA 06) (see Chapter 3, Section 3.5, Figure 3.7). Specifically,

our study focuses on the Gulf of Alicante, which is bounded by the Cape de

las Huertas and Santa Pola. It has a surface area of 3,392 km2 and an average

shelf width of approximately 32 km. The largest fleet of the Gulf of Alicante

is the bottom trawl, with 169 vessels landing an average of 8, 000 t per year.

Seabed trawling usually takes place on the shelf, yielding a multispecific catch,

with European hake (Merluccius merluccius, Linnaeus, 1758) being one of the

main target species (Garćıa-Rodŕıguez et al., 2005).

The reference fleet for this study is comprised of the trawler fleet which

lands its catch in the Santa Pola port. This fishery is a medium-distance fleet

that usually operates in waters from the continental shelf around the 200 m.

isobaths. It makes short hauls of about 2-4 hours trawling, comprising about 2-

3 fishing hauls per trip. The fleet has been monitored onboard since 2003, when
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routine yearly sampling was unified through the EU Data Collection Regulation

1639/2001. Data on European hake abundance were collected for 8 years,

with some 3-4 observations usually being deployed every month. The data set

includes 481 hauls from 15 different trawler vessels and has been provided by

the Instituto Español de Oceanograf́ıa (IEO, Spanish Oceanographic Institute).

Since the catches vary considerably between vessels, we computed the catch

for unit effort (CPUE) as the ratio of totally catches and the hours of the haul

duration for each fishing operation. In this case the CPUE are the marks and

the fishing locations are the patterns. In this first approximation to the issue

of preferential sampling, no covariables were included.

Results

All the resulting models obtained were fitted and compared and DIC values

were used as a measure for goodness-of-fit of the models.

In particular, the first model, named Non-Preferential, consistsof carrying

out inference separately over the point process and the marks. In this way,

we are treating the hake CPUE (marks) as if they had been sampled in a

random process, while at the same time we have a reference model to compare

them with. In the second case (Preferential sampling) we link the two

components of the model through a spatially structured effect, assuming no

fishermen error. The third and last case is an extension (Err-Preferential

sampling) that includes an additional spatial effect to account for fisherman

error.

As mentioned in the Section 4.2.2, originally this approach used a second-

order random walk (rw2d) to model the structured spatial effects. Here, we

have used the Matérn latent model as an alternative to rw2d, obtaining getting

better results.

It is worth mentioning that in this approach the inference is based on cell-

counts and cell-means.

As shown in Table 4.1, DICs values indicate that the best model is the
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Err-Preferential sampling.

Table 4.1. Model comparision.

Model Formula for κ DIC

Non-Preferential β0κ + Wg(sij) 3398

Preferential sampling β0κ + Wf (sij) 3295

Err-Preferential sampling β0κ + Wf (sij) + Wh(sij) 2994

In complex systems, such as marine systems, considering preferential sam-

pling only might be too simplistic. In fact, the difference between the Non-Prefe

rential model and the Preferential sampling model is appreciated, but the

real improvement is obtained when the error of the fisherman is introduced in

the model.

Figure 4.1 (a) displays the posterior mean of the spatial component of the

preferential sampling model with fisherman error. This component shows clear

hot spots of high-CPUE density, indicated by the positive values, for the studied

species, and particularly low-CPUE density areas, indicated by the negative

values.

On the contrary, Figure 4.1 (b) shows the spatial component of the non-

preferential sampling model. In this case the spatial component surface is

smoother and no particular hot spot is marked for this species.

Another interesting result, independent of the species analyzed, is for com-

putational level. Running the three models together took about 15 minutes.

4.4 Conclusions

In this Chapter we presente a modelling approach that could be very useful

for the fisheries management and for marine resources in general. In fact, this

methodology make it possible to use of opportunistic data, such as those arising

from commercial fisheries, to acquire in-depth knowledge on marine species.

In fisheries ecology this approach could suppose a major step forward, given
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(a) Err-Preferential sampling (b) Non-Preferential

Figure 4.1. Posterior mean of the spatial effect of the preferential sampling

model with fisherman error (a) and (b) the non-preferential sampling model.

that most of the available data are those related to fisheries, although until now

they could not be used properly in order to estimate the spatial distribution

of the target species. Alternatively, other studies have used data from surveys

(when available) to estimate the spatial distribution of the target species. In

these cases, the drawback is that, given the high cost that supposes surveys,

these are done in a limited time and space. As a result, these studies can only

show a restricted temporal distribution over the year of the species studied.

The practical application of the European hake presented here as an ex-

ample, shows that there is a real improvement in the estimation of the spatial

distribution of the target species when a preferential sampling model is used.

Moreover, the addition of the error of the fisherman, further enhances this

approach.

Another advantage is undoubtedly the use of INLA in this context, which

principally presents two essential benefits, the first being the speed of compu-
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tation. As mentioned in the Results Section, running the three models together

took about 15 minutes. Secondly, in the fishery context, adjusting spatial mod-

els can be problematic due to the boundary effect between sea and land when

using the second-order random walk model. In the European hake application

we succesfully used the Matérn latent model, given its ease of implementation

in INLA.

Nevertheless, the next interesting step towards gaining more knowledge on

marine species will be to include environmental variables in the model and to

provide specific details about the essential habitat of the species studied. In

addition, it could be interesting to take into account the differences between

years by including a random temporal effect in the model. All these necessary

integrations in the model could result in an increase in the computational time.

Moreover, this approach involves two different approximations, the latent

Gaussian random field Z(s) and the position of the points. Assessing the

position of the data with a high degree of precision requires a great deal of

effort because the quality of the likelihood approximation depends on the size

of the grid. Consequentely, a much finer grid than the one needed to calculate

latent Gaussian random field might be more appropriate. Furthermore, lattice-

based methods do not allow the user to refine a specific local approximation to

the latent random field. This could greatly affect the posterior inference in all

those cases in which there is a large area for which no data is available. To avoid

wasting computational resources to generate a high resolution approximation

to the latent field over this area, it would be convenient to have the option of

changing the resolution of the approximation locally, reducing the resolution in

this area without compromising the resolution of sampled areas.

A good solution, could be the use of a computational mesh for represent-

ing the latent Gaussian random field using the Stochastic Partial Differential

Equation (SPDE) of Lindgren et al. (2011) presented in Chapter 3. The great

bonus of this approach could be that, for a finite dimensional, continuously

specified Gaussian random field it could be possible to compute the term in the

likelihood that depends on the data using the exact positions of the data points
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for any underlying grid. As a result, these triangulations could allow a more

realistic modelling for spatial point processes without being computationally

wasteful.



Chapter 5

A Bayesian approach to

identifying fish nurseries

In this Chapter we propose a 2-step generalized linear Bayesian hierarchical

spatio-temporal model, which consists in applying consecutively a binomial

and a Gamma model, to analyze the occurrence and density data on juveniles.

In particular, using European hake (Merluccius merluccius) as a model species,

we estimate the distribution of juvenile occurrence and densities with respect to

enviromental and geographical factors, using Bayesian spatial models, Bayesian

kriging and fishery-independent data.

5.1 Introduction

The study of the potential areas of distribution of the species is a subject of

great interest to fisheries science and marine ecology and questions about the

spatial structure of fish populations and its links with environmental features

are currently widely debated topics. The principal focus has been on under-

standing the spatial patterns of juvenile distribution, since a reduction in the

155
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fishing mortality of immature fish represents a fundamental prerequisite for

sustainable fisheries (Beverton et al., 1957).

Furthermore, reducing any adverse impact, primarily from fishing, on ju-

venile habitats which are essential to allow the completion of a full life-cycle

of a species, is one of the mandates of an Ecosystem Approach to Fishery

Management (EAFM) (Garofalo et al., 2011).

Within this framework, a suitable and recommended management tool is

the implementation of Marine Spatial Planning (MSP), which protects impor-

tant ecological areas, such as nursery areas. MSP aims to establish a network

of fishery restricted areas (FRA) or marine protected areas (MPA), sited where

target species are known to aggregate in critical phases of their life cycle (e.g.

juveniles/recruits) (Caddy, 2009). It is well recognised that temporary nurs-

ery closures from fishing activity could preserve the reproductive potential of

populations and increase recruitment (Berkeley et al., 2004).

Usually, the definition of nursery takes into account the spatial persistence

of hot spots of recruitment densities over long periods. Any area where juveniles

occur in relatively high densities has been considered as a nursery (Dahlgren

et al., 2006), but no clear definition has been provided.

Dahlgren et al. (2006) introduced the concept of Effective Juvenile Habitats,

referring to habitats that make a greater than average overall contribution

to the adult population. The spatio-temporal consistency of areas of high-

density aggregations of juveniles can be interpreted as an indirect measure of

nurseries due to their adaptive response of species life cycles to environmental

factors. In fact, the maintenance of a population depends on the successful

recruitment of young fish to nursery areas and from nursery areas back to

the parent population (Hinckley et al., 2001). Colloca et al. (2009) suggested

that this may represent a criterion for identifying a juvenile habitat when the

number of juveniles which are successfully recruited to the adult stock cannot

be estimated.

Implementing plans and control schemes that would target specific juve-

niles assemblages, based on a good knowledge of their spatial distribution in
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relation to the environment, could serve as a sustainable approach to fishery

management and also for other marine activities and uses (Martin et al., 2012).

The establishment of FRA and MPA for protecting nursery areas, in line with

the recent trends for a holistic EAFM and MSP, would also benefit from an

improved understanding of the spatio-temporal distribution of species recruits.

To achieve these objectives, predictive juvenile habitat maps could be a

useful source of information in the selection of areas for improved regional

management or the adoption of technical measures. In this context, the use

of modelling approaches can provide the opportunity to estimate which differ-

ent drivers could influence the recruit processes and to map essential juvenile

habitats.

In this study we propose a 2-step generalized linear Bayesian hierarchical

spatial-temporal model, which consists of a binomial and a Gamma model,

to analyse the occurrence and density data on juveniles. In particular, using

European hake (Merluccius merluccius) as a model species, we estimate the dis-

tribution of juvenile occurrence and densities with respect to enviromental and

geographical factors, using Bayesian spatial models, Bayesian kriging (Diggle

and Ribeiro, 2007) and fishery-independent data.

The Bayesian inferential paradigm is an attractive alternative to the classi-

cal statistical approach because of its philosophical foundation, its unified ap-

proach to data analysis, and its ability to formally incorporate random process

error both into observed data and model parameters (Banerjee et al., 2004).

This is essential in a study like this, where the main goal is to identify juvenile

hot spots and to verify their persistence over time, with the least possible error.

We selected European hake as a case study because it is among the most

important commercial species in the Mediterranean, suffering from high fish-

ing pressure and currently overexploited (Lleonart, 2005). In fact, in many

Mediterranean countries there is still a high marketability of small hake. As a

result, this juvenile fraction is particularly exposed, especially to trawl fishery

after the bottom settlement stage, when they aggregate over nursery grounds.

Reducing fishing effort on these juvenile stages is of the utmost importance and
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effective management requires a detailed understanding of their spatio-temporal

knowledge.

5.2 The data set

Data on juvenile hake were collected during the EU-funded MEDIterranean

Trawl Survey (MEDITS) (Bertrand et al., 2002) trawl survey project, carried

out from spring to early summer (May to July). The MEDITS project uses

a stratified sampling design based on depth (5 bathymetric strata: 10-50, 51-

100, 101-200, 201-500 and 501-700 m.) and Geographical Sub-Area (GSA).

Sampling stations were placed randomly within each stratum at the beginning

of the project and were sampled in all subsequent years.

Figure 5.1 shows the sampling locations of the MEDITS survey in the study

area, which includes the GSA06 North and South. A total of 90 hauls, divided

into the various bathymetric strata, are made every year. Each haul, conducted

during daytime hours (06:00 to 18:00 h), lasts from 30 min (hauls up to 200 m.

in depth) to 60 min (hauls below 200 m. in depth).

In our analysis, we included all available data from MEDITS collected from

the 2000 to 2012. For each haul, we have considered only hake recruits, defined

as those individuals less than 15 cm. in total length. This length limit was

selected using the slicing method. The slicing approach is part of a length-

based cohort analysis which assumes that the size of the distributions for each

cohort are normal and overlap each other. Thus, it seeks the point where the

upper tail of the first cohort and lower tail of the second cohort are balanced

in density and therefore it is possible to approximate a size for each age of the

species. Once the length of the hake juveniles was established, our next step was

to obtain the density of recruits for each haul as the total weight of juveniles

(Kg.) for each 30 minutes of trawls (min). Our study was performed on the

quadratic transformation of the density of recruits to ensure the normality of

the response variable.

With respect to the enviromental covariates used in this analysis, we have
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Figure 5.1. Sampling locations (�) of the MEDITS survey in the study

area.

included those for which we have information, which also happen to be po-

tentially relevant to decscribe the hake distribution. In particular, the two

covariates used were bathymetry and the type of substratum. Both covari-

ates were obtained from the IEO geoportal, accessible through the website

of the Spanish Institute of Oceanography (http:\www.ieo.es). Quadratic-

transformed bathymetry was included in the analysis for smoothing the effect

and preserving the linearity of this variable.

The type of substratum polygon shapefile includes a classification of eight

categories and a reduced version with three levels: sand, mud and rock. In order

to reduce the level of variability in the analysis, since we have no observations

in all categories, we have used the simplified version (Figure 5.2).

5.3 Modelling nursery areas

We present an extension of the Bayesian hierarchical model explained in Chap-

ter 3.

http:\www.ieo.es
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Figure 5.2. Map of the type of substratum in the study area.

Here we develope a 2-step generalized linear Bayesian hierarchical spatio-

temporal model with the final aim of analysing both the occurrence and density

data on juvenile hake.

Basically, we use two different types of observed data: the density of ju-

veniles and their presence/absence data. In the first case it is possible to

approximate the absolute abundance of species and to assess the quantitative

spatial distribution of the juveniles within the area of interest. In the second

case, presence/absence information can be used as a measure of the relative oc-

currence of species at each precise observed location, thereby giving a different

approximation for the spatial distribution of the species. Note that this 2-step

model is a very suitable approach for dealing with high numbers of zero obser-

vations, because the model deals with and consequently predicts the juvenile

abundance and occurrence of juveniles separately.

Specifically, if Y represents the occurrence of hake recruits for each haul,
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then we can model it as:

Yij ∼ Ber(πij), i = 1, ....., n ; j = 1, ...., q

logit(πij) = Xiβ +W + vj

βk ∼ N (µβk
, ρβk

)

W ∼ N (0, Q(κ, τ))

2 log κ ∼ N (µκ, ρκ)

log τ ∼ N (µτ , ρτ )

vj ∼ N (0, ρv)

(5.1)

where πi is the probability of hake presence in the location i, Xiβ represents

the lineal predictor, W represents the spatial random effect, v is the temporal

unstructured random effect which has been included to verify the persistence of

the areas of density aggregation, and the relation between πi and the covariates

of interest and both random effects is the usual logit link.

In the second stage, we model the density of recruits in those places where

the fish is present. In fact, we model the quadratic transformation of the

density of recruits conditioned to the presence of recruits. If Z represents this

new variable, we can express it via the following Gamma model as:

Zij ∼ Ga(a, b), i = 1, ....., n ; j = 1, ...., q

log(µij) = Xiγ +W + vj

log(φij) ∼ N (µφ, ρφ)

γk ∼ N (µγk , ργk)

W ∼ N (0, Q(κ, τ))

2 log κ ∼ N (µκ, ρκ)

log τ ∼ N (µτ , ρτ )

vj ∼ N (0, ρv)

(5.2)

where each density recruits Zij has a Gamma distribution with parameters

a and b, being respectively µij = a
b and ϕij = a

b2 , its corresponding mean
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and variance; φij = ϕµ2 is a convenient reparametrization for the precision;

Xiγ represents the lineal predictor of the covariates of interest; W is the same

random spatial effect of model 5.1; v is also the same temporal unstructured

random effect previously mentioned model 5.1; and the relation between µi and

the covariates of interest and random effects is the usual log link. For both

models the random spatial effect depends on the parameters κ and τ which

determine the range of the effect and the total variance, respectively.

Once the model has been determined, the next step is to estimate its pa-

rameters. Following Bayesian reasoning, the parameters are treated as random

variables, and prior knowledge is incorporated via prior distributions. In par-

ticular, for the parameters involved in the fixed effects of the first model, we

use the Gaussian distribution β ∼ N (0, 10). In the second model, for the same

parameters, we use the Gaussian distribution β ∼ N(0, 100). Moreover, for

the hyperparameters derived from the spatial effect, κ and τ , we assume prior

Gaussian distributions with a zero mean and covariance matrix depending on

each hyperparameter, in particular, W ∼ N (0, Q(κ, τ)), and 2 log κ ∼ N (0, 10)

and log τ ∼ N (0, 10). Finally for the temporal unstructured random effect, we

assume a non-informative prior distribution for the precision ρv, in particular a

very vague LogGamma distribution for the precision ρv with hyperparameters

a=1 and b= 0.000001.

As usual in this context, the resulting hierarchical Bayesian model has no

closed expression for the posterior distribution of all the parameters, and so

numerical approximations are needed. Here, as in the previous Sections, we use

the integrated nested Laplace approximation (INLA) methodology and software

(http://www.r-inla.org) as an alternative to the Markov chain Monte Carlo

(MCMC) methods. In order to obtain posterior marginal distributions, we used

the Stochastic Partial Differential Equation module (SPDE), which allows us

to fit the particular case of continuously indexed Gaussian Fields by INLA, this

being the case with our spatial component (Lindgren et al., 2011).

A model selection approach has been used to select relevant variables.

Specifically, the Deviance Information Criterion (DIC) (Spiegelhalter et al.,

http://www.r-inla.org
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2002) is used as a measure for goodness-of-fit, while the logarithmic score

(LCPO) measure the predictive quality of the models. The smaller the DIC

and LCPO indicate the better the compromise between fit, parsimony and

predictive quality.

5.4 Results

A total of 1080 hauls were analysed over the period 2000 to 2012 in the studied

area. All the resulting models obtained from combining the bathymetry, its

quadratic transformation, the type of substratum factor, the random spatial

component and the temporal effects were fitted and compared. DIC was used

as a measure for goodness-of-fit, while the logarithmic score (LCPO) measures

the predictive quality of the models. Table 5.1 shows both measures for all

the models run with the binomial response variable, while Table 5.2 shows the

response variable for the Gamma distribution.

Table 5.1. Model comparison for the binomial response

Model DIC LCPO

1 + Depth + Depth2+ Substratum + year + θ 478.95 -0.21

1 + Depth + Depth2 +Substratum + θ 479.16 -0.21

1 + Depth + Depth2 + year+ θ 479.58 -0.21

1 + Depth+ Depth2 +θ 479.79 -0.21

1+ Depth*Substratum + Depth2 + year +θ 482.10 -0.22

1 + Depth + Substratum +θ 491.26 -0.22

1 + Depth + year +θ 492.00 -0.22

1 + Depth +θ 492.38 -0.22

1 + Depth*Substratum + year+ θ 495.14 -0.23

1 + Depth*Substratum + θ 495.71 -0.23

1 +Substratum + year +θ Inf -0.23

1+ Substratum+θ Inf -0.23

In particular, following the Parsimony criterion, we select the final model

that includes, the bathymetry, its quadratic transformation and the spatial
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effect for the binomial response. On the contrary, for the Gamma model the

final model involves in addition the type of substratum factor and the temporal

effect.

Table 5.2. Model comparison for the Gamma response

Model DIC LCPO

1 + Depth*Substratum + Depth2 + Depth2:Substratum + year+ θ 906.62 -0.64

1 + Depth*Substratum + Depth2 + year + θ 907.09 -0.61

1 + Depth + Depth2 +Substratum + year+ θ 907.87 -0.61

1 + Depth + Substratum + year + θ 909.18 -0.62

1 + Depth + Depth2 + year+ θ 912.30 -0.61

1 + Depth + year+ θ 915.62 -0.61

1 + Substratum + year+ θ 949.50 -0.66

1 + Depth*Substratum + Depth2*Substratum+ θ 1026.38 -0.69

1 + Depth + Depth2 + θ 1027.48 -0.69

1 + Depth*Substratum +θ 1028.36 -0.69

1 + Depth + Substratum + θ 1028.50 -0.69

1 + Depth + θ 1030.35 -0.69

1 + Substratum + θ 1066.44 -0.73

As can be seen in Table 5.3 and Figure 5.3, the bathymetry has a relevant

influence on driving hake occurrence. Table 5.3 shows a numerical summary of

the posterior distribution of the effects, shown in Figure 5.3.

Table 5.3. Numerical summary of the posterior distributions of the fixed

effects for the binomial response variable.

mean sd Q0.025 Q0.5 Q0.975

(Intercept) 2.07 0.78 0.49 2.09 3.57

Depth 1.74e-02 6.79e-03 4.61e-03 1.73e-02 3.13e-02

Depth2 -6.34e-05 1.37e-05 -9.19e-05 -6.28e-05 -3.79e-05

Specifically, a cuadratic relationship was found between the bathymetry and

the occurrence of hake recruits. This relationship shows that the probability
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Figure 5.3. Posterior distributions of the fixed effects: (a) Intercept; (b)

Depth; (c) Depth2.

of finding recruits is greater in shallow waters, specially on the continental

shelf (from 0 to 300 m.), with to respect to deeper waters (after 300 m.).

No relevant difference was found between the type of substratum. Figure 5.4

displays the posterior mean and standard deviation of the spatial component.

This component shows a strong effect with positive values along the shelf break

and the upper slope of the Spanish Mediterranean coast and with negative

values in deeper waters.

Figure 5.5 shows the median posterior probability of occurrence and high-

lights high-presence aggregation areas, mainly along the shelf break and the

upper slope. The probability of finding hake recruits is greater for water be-

tween 150-300 m. deep.

With respect the second model, results show again a cuadratic relationship

between the bathymetry and the juveniles of hake density (Table 5.4 and Figure

5.6), and again finding hake recruits is highly related to lower waters. Regarding

the type of substratum, sand substratum shows the lowest estimated density of

hake juveniles (posterior mean = -0.29; 95% CI = [ -0.73, 0.13 ]) with respect

to the reference level (rock substratum). Muddy substrata showed a higher

estimated coefficient than sandy seabeds.
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(a) Mean (b) Standard deviation

Figure 5.4. The posterior mean (left) and standard deviation (right) of

the spatial effect for the occurrence of the hake juveniles

Table 5.4. Numerical summary of the posterior distributions of the fixed

effects for the Gamma response variable.

mean sd Q0.025 Q0.5 Q0.975

(Intercept) -0.15 0.26 -0.65 -0.15 0.36

Mud -0.08 0.22 -0.51 -0.07 0.34

Sand -0.29 0.22 -0.73 -0.29 0.13

Depth 3.10e-03 1.53e-03 5.59e-05 3.11e-03 6.09e-03

Depth2 -1.61e-05 3.07e-06 -2.20e-05 -1.61e-05 -9.95e-06

Both the map of the predictive spatial density of hake juveniles and that of

the posterior mean of the spatial effect (Figures 5.7(a) and 5.8(a)) show marked

high-density aggregations (hot spots) of juvenile individuals. The higher-density

aggregations are recorded on muddy and rock substrata, in water between 150-
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(a) Median (b) Standard deviation

Figure 5.5. Median (left) and standard deviation (right) for πi|Z.

300 m. deep.

5.5 Discussion

We proposed a methodological approach for the identification of fish nurseries

on the basis of their spatio-temporal persistence, which can be helpful when

quantitative data on the contribution of nursery habitats to the adult popula-

tion are lacking.

We applied our approach to European hake recruits, using presence/absence

and density data collected over 12 years of trawl surveys along the Spanish

Mediterranean Sea. Trawl surveys represent one of the most important sources

of data for the study of demersal fish, despite the inevitable inherent biases

that characterise these datasets.
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Figure 5.6. Posterior distributions of the fixed effects of the Gamma

model: (a) Intercept; (b) Mud Substratum; (c) Sand Substratum; (d) Depth;

(e) Depth2.

However, the proposed Bayesian spatial models can improve analyses of data

with biases characterised by treating spatial effects as a variable of interest.

These methods make it possible to incorporate the spatial correlation of the

variables and the uncertainty of the parameters into the modelling process,

resulting in a better quantification of uncertainty.

High-presence and density aggregation areas are recorded mainly along the

shelf break and the upper slope, between 150-300 m. deep, and on muddy

and rock substrata. This bathymetric distribution agrees with the recruits’
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(a) Mean (b) Standard deviation

Figure 5.7. The posterior mean (left) and standard deviation (right) of

the density of hake juveniles

diet of small planktonic crustaceans (Euphausiacea), which inhabit the coastal

continental shelf.

Orsi-Relini et al. (2002) found that hake biomass and abundance were af-

fected by depth. They observed the greatest density coinciding with the bathy-

metric stratum, where most nursery grounds of hake in the Mediterranean Sea

are located. Similar results were found by other authors in different areas and

with a variety of spatial analytical approaches (Abella et al., 2005).

The type of seabed was only relevant for the density juveniles model. Muddy

and rocky substrata are those with the highest amount of density, reflecting the

diet selection of this species.

Both the map of the predictive spatial density of hake juveniles and that of

the posterior mean of the spatial effect, showed two stable areas characterized
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(a) Mean (b) Standard deviation

Figure 5.8. The posterior mean (left) and standard deviation (right) of

the spatial effect of the density of hake juveniles

by high concentrations of juveniles which were identified near C.po Creus and

on the continental shelf near Tarragona and Castellón. These areas are high

productivity areas due to downwelling processes (Revenga, 2012) and ground-

water flows.

We considered the stability in space and time of high-density areas to be

a useful measure to evaluate their importance as nurseries. Similarly, Colloca

et al. (2009) showed that juvenile distribution over time was a good indicator

of unit-area productivity of nursery areas of European hake.

Despite many controversial and sceptical arguments regarding the benefits of

MPAs for fishery management, it is becoming increasingly acknowledged that

the establishment of MPAs is an essential tool for maintaining or rebuilding

stocks and protecting their habitat (Roberts et al., 2005).
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The importance of the area identified in this study results from a combina-

tion of multiple factors: 1) the high persistence per unit area is a proxy of the

high recruitment efficiency of these grounds in comparison to that of nearby

areas; 2) the high predictability in time and space of nurseries provides more

chances of protecting recruits effectively over time; 3) the persistent nurseries

are described at a spatial scale relevant to management.

The temporal closures from fishing activity of the high-density areas iden-

tified could preserve the reproductive potential of the hake populations, and

increase its recruitment.

The analytical approach that we used here to document the persistence

of spatial patterns in the distribution of juvenile hake can be extended to

different species and life stages to improve knowledge of the role of habitat for

populations and communities. This kind of information can be combined with

data on the distribution of fishing fleets and with multiple species datasets for

an effective EAFM in the Mediterranean.



172 Chapter 5. A Bayesian approach to identifying fish nurseries



Chapter 6

Conclusions and further

work

The implementation of the Ecosystem Approach to Fisheries Management

(EAFM) is the current challenge for a proper management of marine ecosys-

tems and resources. Nevertheless, its practical implementation will take time.

A fully-developed EAFM requires scientific knowledge, based on appropriate

data collection, that is largely unavailable at present. Its development will be a

lengthy, complex and costly process. Consequently, the full implementation of

EAFM can only be a long-term objective, to be achieved gradually.

However, nowadays, the development and use of appropriate methodologies

to use the data currently available, could be a first step towards the practical

implementation of the EAFM, in order to achieve its set of objectives. Indeed,

one of the difficulties of the application of the EAFM is that involves a number

of different objectives that require several methodologies depending of the kind

of data available.

In particular, the EAFM directly aims to:

� Move away from traditional single stock fisheries management to a more

173
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broader approach in a manner that addresses the wider interactions be-

tween fisheries and the whole ecosystem;

� Develop indicators to measure ecosystem health/stability. These indica-

tors should be integrated in a common tool kit to be applied in different

fishery. Once the indicators are developed they can then be applied as a

management tool;

� Protect areas/sites, which have particular significance in terms of habitat

or species protection, taking due account of fisheries interests. Reinforce-

ment of the protection of special or sensitive habitats;

� Reduce by-catches and discards with, if appropriate, targeted measures

to protect vulnerable species;

� Reduce the effects of fishing on juveniles and protect their habitats.

� Use a multiscale approach in order to provides a different approximations

of the fishery issues.

In this dissertation, some of those problems have been addressed, depending

on the available fisheries source of data, with several methodologies.

In Chapter 1 we have revised the concept and the main aims of the EAFM,

introducing the fishing issues that we have discussed, describing the different

fishing datasets used, and the types of spatial-temporal scales with which we

have addressed these issues.

In Chapter 2 we have proposed specific methodologies that could allow the

identification of changes in the dynamics of an ecosystem caused by fishing.

The use of ecological indicators associated with statistical techniques such as

the bootstrap and smoothing tecniques, have allowed to identify the trends of

different ecosystems with different spatial scales. The use of ecological indica-

tors is one of the objectives of the EAFM as they allow the identification of

patterns and changes in an ecosystem in a simple manner and also in data-poor

situations.
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In our particular case, we used them to study the dynamics, from 1950

to today, of two Large Marine Ecosystems such as the Mediterranean and the

Black Sea. The proposed methodology is easily reproducible and would be

applicable to any ecosystem and any spatial scale, as it uses a data source such

as the FAO landings that are available to any country. It is obvious that, despite

the macro scales used in this approach, the view provided of the ecosystems is

not complete. The environmental, economic and social factors that influence

the ecosystems have not been introduced in the study. This is due to the fact

that, for a broad spatial and temporal scale as that used, few data are available

and therefore usable.

In addition, the ecological indicators should be used only as indeces that

identify where there is a problem, which will need to be studied in detail with

other methods more specific.

The nonparametric techniques, described in the second approach of Chap-

ter 2, provide a different view of the dynamics of an ecosystem, using the same

dataset and ecological indicators, but with a different spatial scale. With re-

spect to a macro-scale approach, the meso-scale one provides more detailed

information and hidden patterns than a broader view does not allows. How-

ever, in order to apply the second methodology on a meso-scale level, the data

available were reduced and the time series analyzed was shortest. This is a

common compromise that the use of broader spatial-temporal scales implies.

In this context a multiscale approach results the best option in order to

improve our understanding of the fishery dynamics of fisheries in a particular

ecosystem. The use of a multiscale approach, and of complementary methodolo-

gies, would provide information benefits by improving the assessment findings,

and the applicability of fishery management measures, particulary in data lim-

ited fisheries.

Other methodologies could be applied using this type of data and to im-

prove our understanding of the dynamics of fishing on marine ecosystems. For

example, the use of longitudinal models could provide a more comprehensive

view and a different approximation to the dynamics of fishing using FAO land-
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ings. Further, bootstrap technique could be improved from a Bayesian point of

view and consequently with a greater uncertainty estimation.

In Chapter 3 we have addressed the problem of species distribution models

using fishery-dependent data. The approach presented has several advantages.

From the point of view of the management of fisheries, the use of fishery-

dependent data that otherwise could not be employed and that instead rep-

resented a huge source of information that is no used due to the absence of

appropiate techniques.

Moreover, using this approach it is possible to estimate the relationship

with a particular species and its habitat, to identify its essential habitat and

predict what might be its distribution in areas that were not sampled. All these

results are supplied with maps that are ideal tools to transmit information

from researchers to stakeholders and administrators. From the methodological

point of view, the Bayesian approach provides an accurate estimation of the

mentioned results, which is essential for effective fisheries management. The

data collection has always bias and Bayesian inference addresses these gaps.

From the computational point of view, the use of INLA and its module SPDE

allows that all these advantages are obtained in a minimum computational time

and that the user can manage a familiar programming language as that of R.

Until now, the use of other software and the slowness of the computation had

slowed the use of Bayesian analysis that instead, as shown, is a useful tool in

Ecology.

Moreover, the same methodology can be applied to different cases, in order

to achieve the proposed objectives by the EAFM, and to address important

issues in fisheries such as discards. The assessment of spatio-temporal distribu-

tion of discards could provide the use of additional measures to the manage-

ment of this problem, such as the temporal of specific hot spots duly identified

in which the discards are particularly higher.

Nevertheless, this methodology could be improved with the introduction

of splines, if necessary, and a structured temporal component, which could

improve the estimation of the temporal variability of data.
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In Chapter 4 we review a theme that Diggle et al. (2010) had already

addressed and that in Ecology and especially in fishery is of great importance:

the use of data collected with a preferential sampling. Indeed, until now, the

data collected with a preferential sampling were used to assess the distribution

of target species of the fishery without taking into account that this could be

strongly biased.

In our practical application the lack of covariates implies no particularly

interesting results at the biological level for the species studied. Nevertheless,

the case study has allowed us to verify that the implementation of traditional

application with these data led to biased results.

Moreover, the addition of the error of the fisherman, further enhances this

approach.

Finally, the use of INLA to address this modelling, provides the advantage

of computational speed, the use of more flexible covariance matrix and an easier

programming.

Regarding this type of modelling many future lines remain still open. A

real improvement could be obtained by using the module SPDE of INLA. This

would allow to address a wider range of more complex models, introducing

covariates and the time component, without losing efficiency at a computational

level. Moreover the use of a triangulation approach instead of a regular grid

one, could improve not only the speed of computation but also the inference,

eliminating problems such as the edge effect and improving the accuracy of

prediction.

In Chapter 5 we used fishery-independent data to analyze the occurrence

and density data on juveniles and thus identify nurseries. The protection of

juveniles and specifically of the nursery areas, is an essential objective of the

EAFM and methods, like the one presented, could be essential in the future

management of fisheries. Indeed, the analysis provided not only an accurate

estimation of the relationships between the juveniles and its environment, but

also a prediction of its spatial distribution on a meso-scale level. As in Chapter

3, this modeling allows generation of predictive spatial maps that are essential
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for an easy interpretation of the results. The maps presented have predictive

character but also you can generate maps of the spatial effect that, as shown,

can highlight hidden trends that would otherwise not be identifiable.

This model could be improved by introducing the model of CPUE as a sub-

model of the Binomial one. This would provide a detailed spatial distribution of

species, quantifying, when it is present, the specific abundance in each location

and by relating the two processes with a spatial effect.

In this thesis we presented a multi-scale approach to discuss several spatio-

temporal scales and type of data. As mentioned above, in Chapter 1, the choice

of the scale implies a compromise in the quality and quantity of data. The use

of a global scale and long historical series, implies in most cases, a quality and

quantity of data much lower than in a study in micro-scale. Specific approaches

in order to understand the dynamics of the fishery on a macro-meso-scales

have been proposed. On the contrary, in Chapter 3 and 4, the metodologies

presented have been applied on micro-scale studies that have provided very

detailed results. It is worth mentioning that all the methodologies presented

could be applied in other spatio-temporal scales if the data are available.

Finally, it would be interesting develop a set of methodologies that can be

used together to analyze jointly the different sources of fishery data presented

in order to take full advantage of existing information and deepen our under-

standing of marine systems and its resources.
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