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In loving memory of my aunt Lina



Neutrinos, they are very small.

They have no charge and have no mas
And do not interact at all.

The earth is just a silly ball

To them, through which they simply pass,
Like dustmaids through a drafty hall

Or photons through a sheet of glass.
They snub the most exquisite gas,

Ignore the most substantial wall,
Cold-shoulder steel and sounding brass,
Insult the stallion in his stall,

And scorning barriers of class,

Infiltrate you and me! Like tall

And painless guillotines, they fall
Down through our heads into the grass.
At night, they enter at Nepal

And pierce the lover and his lass
From underneath the bed-you call
It wonderful; I call it crass.

John Updike, Cosmic Gall
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Resumen de la tesis

Los neutrinos son una de las particulas mas misteriosas del universo. Actualmente sabemos,
por los resultados experimentales de oscilaciones de neutrinos, que los neutrinos son masivos.
Desafortunadamente, los experimentos de oscilaciones no son sensibles a la escala absoluta
de las masas de los neutrinos.

La cosmologia constituye uno de los medios para probar la escala absoluta de masas
y juega un papel importante a la hora de determinar las propriedades de los neutrinos.
Estas particulas afectan tanto a la fisica del fondo de radiacion cosmico (CMB, del inglés
Cosmic Microwave Background), asi como al agrupamiento de las galaxias, dejando una
huella significativa tanto en la forma completa (full shape) de la senal del agrupamiento
(clustering) (explotado por las medidas del espectro de potencias de la materia) como en la
senal geométrica (explotado a través de las medidas de la oscilacion actstica de los bariones
(BAO)).

En esta tesis hemos derivado los limites en las masas y en las abundancias de los neu-
trinos utilizando los datos cosmologicos recientes y considerando un escenario ACDM asi
como otros posibles escenarios cosmologicos.

El Capitulo I contiene una breve description del modelo cosmologico actual y de las
mediciones que lo apoyan. Una descripcion detallada del impacto en cosmologia de las
propiedades de los neutrinos, como su masa y su abundancia, se puede encontrar en el
Capitulo II.

En el Capitulo III hemos estudiado un escenario ACDM con Ng especies totales, in-
luyendo tanto tres neutrinos activos como neutrinos masivos estériles, con el fin de com-
probar los modelos (3+2) con los datos cosmologicos. Hemos encontrado que este modelo
estd permitido a un nivel de confianza del 95 % por los datos cosmolgicos actuales (que
incluyen CMB, agrupamiento de las galaxias y Supernovas la). También hemos considerado
las abundancias del Helio-4 y del Deuterio de Big Bang Nucleosynthesis y hemos encontrado
que estas ultimas medidas puede comprometer la viabilidad de los modelos (3+2). Ademés,
hemos presentado una prediccion para estimar los errores en los pardmetros de los neutrinos
activos y estériles de datos futuros. Los datos cosmoldgicos futuros podrian determinar la
masas, en sub-eV, de los neutrinos activos y estériles y de las abundancias de los neutri-
nos estériles con una precision del 10—30%, para masas de neutrinos estériles en el rango
0.5 eV> m,, > 0.1 eV. Hemos también mostrado que la presencia de neutrinos estériles
masivos en el universo podria deducirse a partir de las inconsistencias entre los valores de la
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constante de Hubble H obtenidos a partir de los datos del CMB y de la agrupacion de las
galaxias y de los derivados a partir de medidas independientes de la constante de Hubble
en la proxima década.

En el Capitulo IV hemos derivado los limites a las masas de los neutrinos a partir del
espectro de potencia angular del catalogo de galaxias BOSS, parte del experimento Sloan
Digital Sky Survey III, Data Release Eight (BOSS DRS), usando la muestra fotométrica de
las galaxias CMASS que hemos dividido en cuatro redshift bins fotométricos, con redshifts
de z = 0.45 hasta z = 0.65, y considerando un libre parametro de bias constante para cada
uno de estas muestras. Hemos calculado los espectros de potencia en dos rangos de multi-
polos, 30 < ¢ < 150 y 30 < ¢ < 200, con el fin de minimizar los efectos no lineares y hemos
considerado un modelo ACDM plano junto con tres neutrinos masivos activos. Combinando
los datos de BOSS DRS8 con los datos de CMB de WMAP7, hemos encontrado un limite
superior a la suma de las masas de los tres neutrinos activos de > m, < 0.56 eV al 95% CL
para ., = 200 y un limite superior de Y m, < 0.26 eV al 95% CL si se incluye también
la medida de la costante de Hubble procedente de los datos del Telescopio Hubble (HST,
del inglés Hubble Space Telescope). También hemos mostrado que considerando los datos
de Supernova y/o BAO los limites de la masa de los neutrinos no mejoran, una vez que se
incluye la medida prodecente de HST.

Las nuevas medidas a altos multipolos del CMB realizada a finales de 2012 y principios
de 2013 por el South Pole Telescope, SPT, y por el Atacama Cosmology Telescope, ACT,
parecen dar resultados diferentes en lo referente a las masas de los neutrinos y sus abun-
dancias. Motivados por las discrepancias existentes entre los resultados de SPT y de ACT,
hemos explorado en el Capitulo V los limites cosmologicos en varios escenarios de neutrinos
y de radiacion oscura, utilizando los datos de CMB (WMAP9), las nuevas medidas a altos
multipolos ¢ de SPT y de ACT |, los datos de BAO, las medidas de la constante de Hubble
(HST) y los datos de Supernovas. En el escenario usual (ACDM), ya sea con tres especies
de neutrinos masivos o con un nimero N de neutrinos sin masa, los dos experimentos
de CMB a altos multipolos, esto es, SPT y ACT, dan resultados similares si los datos de
BAO se eliminan de los anélisis y si se considera también la medida de H, procedente de
HST. En el caso de N especies de neutrinos masivos, el analisis de los datos de SPT y
de ACT muestran resultados muy diferentes en lo que se refiere a »_ m,: mientras que la
evidencia (Y m, ~ 0.5 eV) encontrada por los datos de SPT persiste independientemente
del conjunto de datos combinados en el analisis, los datos de ACT proveen un limite superior
a > m, de ~ 0.4 eV a un nivel de confianza del 95%. A continuaciéon, hemos explorado
dos escenarios cosmologicos extendidos con una ecuacion de estado de la energia oscura y
con una variaciéon del indice espectral y hemos mostrado que la evidencia de la existencia
de masas de los neutrinos detectada por el experimento SPT desaparece para las combina-
ciones de todos los datos. Una vez mas, el acuerdo entre las dos medidas del CMB a altos
multipolos mejora notoriamente al anadir los datos de HST.



En el capitulo VI hemos estudiado un modelo de radiaciéon oscura que interacciona con
la materia oscura, derivando los limites procedentes de los datos cosmolégicos recientes a
la abundancia de la radiaciéon oscura asi como a su velocidad efectiva y a su parametro de
viscosidad. Suponiendo la existencia de especies de radiaciéon oscura adicionales que inter-
actiian con el sector de la materia oscura, las propiedades de agrupacion de estas particulas
adicionales de radiacion oscuras podrian ser diferentes a las de los neutrinos del Modelo
Estéandar (para los cuales ¢ = ¢, = 1/3), ya que las particulas adicionales de radiaciéon
oscura estan acopladas al fluido de la materia oscura. Hemos encontrado que los limites cos-
mologicos en el niimero de especies adicionales de radiaciéon oscura no cambian cuando se
consideran modelos de interaccion, mientras los errores en las propiedades de agrupamiento
de la radiacion oscura incrementan notoriamente (alrededor de un orden de magnitud), so-
bre todo debido a las correlaciones existentes entre la intensidad de la interaccion entre la
radiacion oscura y la materia oscura y c%, c%.. En el caso del parametro de viscosidad
%, los errores sobre este parametro se duplican al considerar escenarios con interacciones
entre la materia y radicion oscuras. Asimismo, hemos analizado las perspectivas con datos
del CMB futuros. Si la radiacién y materia oscuras interaccionan en la naturaleza, pero
los datos se analizan asumiendo el modelo sin interaccion, los valores reconstruidos para la
velocidad efectiva y para el parametro de viscosidad se desplazaran con respecto a su valor
estandar de 1/3 (% = 0.347 0008 v 2, = 0.291005% ambos a un nivel de confianza del 95%)
para datos procedentes de la futura mision COrE de CMB.

Las ultimas medidas de las anisotropias de temperatura del CMB estrenados del satélite
Planck, proporcionan las més estricta restriccion a los parametros cosmologicos hasta la
fecha. Sin embargo, estas medidas no proporcionan un limite fuerte a la suma de las masas
de los neutrinos si no se combinan con otras medidas externas. El limite superior de los datos
de Planck, considerando lensing, combinados con las medidas de polarizacion a bajos multi-
polos ¢ (WMAP9) es > m, < 1.1 ¢V aun nivel de confianza del 95%. Si se a?ande la madida
de constante de Hubble (HST) dicho limite mejora las restricciones a > m, < 0.21 eV a un
nivel de confianza del 95%. Las medidas de Planck no encuentran evidencia de la existencia
de particulas relativistas adicionales més alla de las tres familias de neutrinos en el Modelo
Estandar. El limite obtenido combinando los datos del CMB de Planck con la medida de la
costante de Hubble (HST) es Nog = 3.62 £ 0.25.

El catélo de galaxias futuro Euclid, podria proporcionar la herramienta ideal para probar
las propiedades del neutrino con la cosmologia. Combinando varias medidas de FEuclid con
datos del CMB, la suma de las masas de los neutrinos podria medirse con una precision a un
nivel de 1o (desviacion estandar) de 0,01 eV asumiendo para las predicciones un modelo con
> > m, = 0.056 eV. La misma combinacion de datos puede llegar a un lo de sensibilidad a
Neg de 0.02, con lo cual, la pequena desviacion de 0.046 de la expectativa estandar de 3 (que
resulta mayoritariamente debido al desacoplamiento no instantéaneo del neutrino) podria ser
probado a un nivel de 20.






Introduction

Cosmology is a science whose main purpose is to understand the origin and the evolution
of the structures we observe today in our universe.

The discovery of the recession of galaxies, of the Cosmic Microwave Background (CMB)
radiation, of the abundances and the synthesis of light elements and of the large scale struc-
ture formation, have shown that the Standard Cosmological Model provides an accurate
description of the current universe. The recent measurements of the luminosity distance of
Type Ia supernovae at high redshift have further confirmed the Cosmological Model, imply-
ing an accelerated expansion of the universe. Current cosmological data indicate that the
universe has an almost flat geometry and only a 5% of the total energy density is composed
of ordinary matter (baryonic). The rest is in the form of non visible matter, called dark
matter, whose total amount represents about the 22% of the total energy, and the remaining
73% is attributed to a fluid with a negative pressure, responsible of the current acceleration
of the expansion of the universe and known as dark energy. The nature of the dark matter
and the dark energy components are among the most important problems in physics nowa-
days.

In particular, dark matter has important consequences in the evolution of the Universe
and in the structure formation processes. While the major contribution to the dark mat-
ter component should arise from cold dark matter (CDM), a small component of hot dark
matter (HDM) can also be present. CDM consists of particles which were non-relativistic
at the epoch when the universe became matter-dominated; HDM, by contrast, consists of
particles with large thermal velocities (i.e. they are hot relics) which were relativistic at time
at which they decoupled from the thermal bath. HDM affects the evolution of cosmological
perturbations erasing the density contrasts on wavelenghts smaller than the free-streaming
scale (scale at which the particles move freely in random directions with a speed close to
that of light). An obvious candidate for the HDM component is the neutrino.

In the Standard Model of elementary particles neutrinos have no mass. In this model,
there are three massless neutrino species that only interact through the weak force. Over
the last decades, experiments involving solar, atmospheric, reactor and accelerator neutrinos
have adduced robust evidence for the existence of neutrino oscillations, implying that neu-
trinos have masses. However, oscillation experiments only provide bounds on the neutrino
squared mass differences, and therefore the absolute scale of neutrino masses must come
from different observations. Direct information on the absolute neutrino mass scale can be
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extracted from kinematical studies of tritium beta decay or from searches for neutrino-less
double beta decay. The former (yet unobserved) rare decay sets a limit on the neutrino
mass scale if neutrinos have a Majorana characater.

Cosmological data provide an independent tool to tackle the absolute scale of neutrino
and to study its properties. Neutrinos can leave key signatures in several cosmological data
sets. In the early universe, the standard model neutrinos are in thermal equilibrium at
temperatures larger than about a MeV, after which they decouple when they are still rela-
tivistic, leaving a distribution of relic neutrinos that contribute to the mass-energy density
of the universe. These neutrinos affect the expansion rate of the universe and change the
epoch of matter-radiation equality, leaving an imprint on the CMB anisotropies (through
the so-called Integrated Sachs-Wolfe effect) and on structure formation. After becoming
non-relativistic, the neutrino hot dark matter relics suppress the growth of matter density
fluctuations and, consequently, galaxy clustering. Measurements of all of these observations
have been used to place new constraints on neutrino physics providing an upper limit on
the sum of neutrino masses below ~ 0.5 eV.

The simplest explanation of neutrino masses requires the existence of right handed, sin-
glet neutrino states. However, there is no fundamental symmetry in the Standard Model
that fixes the number of such sterile neutrino states. This means that there could be sterile
neutrinos in nature. Cosmological data allow us also to measure the amount of relativistic
energy density in the universe in terms of the effective number of neutrinos, Neg. The Stan-
dard Model prediction for N.g is 3.046. A larger number of neutrino species, or in general,
of any other hot thermal relic contributing to N.g, will leave an imprint in several cosmolog-
ical observables. As an example, a value of N.g larger than its canonical expectation at the
Big Bang Nucleosynthesis (BBN) era will affect the Hubble expansion rate, causing weak
interactions to become uneffective earlier. This will lead to a larger neutron-to-proton ratio
and will change the standard BBN predictions for light element abundances. Concerning
CMB physics, a larger value of N.g will change the epoch of the matter-radiation equality,
that will occur later in time, and will lead to an enhancement of the height of the first peak
and to a shift of the position of acoustic peaks.

In this Thesis we will focuse on the study of the neutrino properties using the most
recent and available cosmological data. In particular we will explore the bounds on the
active and sterile neutrino masses as well as on the number of dark radiation species within
the ACDM cosmological scenario as well as in other extended scenarios.

The thesis is organized in three parts: a Theoretical Introduction, the Scientific Research
and a final Summary.

In the Theoretical Introductory Chapter we describe the Standard Cosmological Model
and the observations that support its validity. The second introductory Chapter deals with
the basic properties of the CMB, showing the impact of neutrinos and dark radiation on the



CMB and on large scale structure formation.

In the Scientific research we present the scientific work carried out in this thesis where
each chapter contains a scientific referred publication.

In Chapter III we perform an analysis of current cosmological data and derive bounds
on the masses of the active and sterile neutrino states as well as on the number of sterile
states. We also present a forecast to compute the errors on the active and sterile neutrino
parameters from the ongoing Planck CMB mission together with BOSS and Euclid galaxy
survey data.

In Chapter IV we derive neutrino mass bounds from the angular power spectra of the
clustering of galaxies density at different redshifts, in combination with priors from the
CMB and other cosmological data sets. For our analysis we consider the CMASS sample
of 900,000 luminous galaxies with photometric redshifts measured from Sloan Digital Sky
Survey III Data Release Eight (SDSS DRS).

In Chapter V we present new bounds on the dark radiation and neutrino properties
in different cosmological scenarios combining the Atacama Cosmology Telescope (ACT)
and the South Pole Telescope (SPT) data with the nine-year data release of the Wilkinson
Microwave Anisotropy Probe (WMAP-9), BAO data, Hubble Telescope measurements of the
Hubble constant and Supernovae la luminosity distance data. We start with the standard
three massive neutrino case within a ACDM scenario, then we move to the case in which
there are N.g massive species with a total mass given by > m, and at last we enlarge the
minimal ACDM scenario allowing for more general models with a constant dark energy
equation of state or with a running of the scalar spectral index of primordial perturbations.

In Chapter VI we study the cosmological signatures of a dark radiation component which
interacts with the cold dark matter and we derive the cosmological constraints on the dark
radiation abundance, on its effective velocity and on its viscosity parameter. We than ex-
plore the perspectives from future CMB data in dark radiation-dark matter coupled models.

In the Summary and conclusions, we summarize the objectives and achievements of the
work presented in this thesis.
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Chapter 1

The standard cosmological model

The current theory of the evolution of the universe is described by the Standard Cosmological
Model, also known as the Hot Big Bang Model. This model, which provides the expansion
of the universe, is based on two fundamental elements: the Cosmological Principle, which
assumes the isotropy and homogeneity of the universe, and the Einstein Field Equations,
which describe the behavior and the evolution of a physical system under the action of
gravity. In this first chapter we will illustrate the standard cosmological model, deriving the
equations that govern the evolution of the universe as well as describing the main methods
used to measure the parameters which characterize such a universe.

1.1 Friedmann-Robertson-Walker metric

One of the most important assumptions of modern cosmology is the Cosmological Princi-
ple, according to which, on scales larger than 100 Mpc, the universe is homogeneous and
isotropic. The homogeneity implies that the universe has no privileged positions, in other
words, the universe is invariant under translations, while the isotropy implies that there
are no privileged directions, and thus the universe is invariant under rotations. On smaller
scales, the universe is highly inhomogeneous.

The homogeneity and the isotropy implied by the Cosmological Principle seem to agree
with observations of the distribution of galaxies clusters and with observations of the Cosmic
Microwave Background (CMB).

The geometrical properties of a homogeneous and isotropic universe are defined in a
frame of reference in which each point in the space-time is associated with a vector in
the four-dimensional space, having three space components z* (u = 1,2,3) and one time
component ¢t. In this coordinate system, the interval between two points is defined as:

ds* = g, dzdz” (1.1)

where repeated suffixes imply summations and indices p and v range from 0 to 3; the first
one refers to the time coordinate (dz® = dt) and the last three are space coordinates.

The tensor g, is a symmetric tensor known as the metric and describes the space-time
geometry [1].
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In special relativity, the separation between two events in the space-time and in polar
coordinates, can be written as:

ds* = —c*dt® + dr® + r*dQ” | (1.2)

where dQ? = d6? + sin® 0d¢?.

This equation defines the Minkowski metric that describes a space-time flat and static;
therefore not curved by the presence of mass and energy.

In a homogeneous and isotropic universe, in an expanding or contracting phase, in which
is present matter and energy, the Minkowski metric is not suitable to describe the properties
of space-time.

The most general metric for such a universe, in which the Cosmological Principle holds,
is the Friedmann-Robertson-Walker (FRW) metric:

dr?
1 —Fkr?

ds* = c*dt* — a*(t) + r2(d6* + sin? 0d¢?) | | (1.3)

where r, # and ¢ are the comoving coordinates, ¢ is the time measured by an observer who
sees the universe expanding uniformly around her/him, and % is the curvature parameter
which may have three different values: k& = 0 if the universe is flat, k = +1 if the universe
is closed and k& = —1 if the universe is open. The function a(t) is called cosmic scale factor,
it describes the time evolution of the universe.

1.2 Hubble Law and Redshift

It is useful to introduce two new variables related to scale factor a: the Hubble parameter
and the redshift.
The Hubble parameter is defined as:

_1da_a
Cadt a’

H(t) (1.4)

and measures how rapidly the scale factor changes. The value of this parameter evaluated
at the present time (Hubble constant) is known to great accuracy. Recent results from the
Hubble Space Telescope [2], provide a value of H(ty) = Hy = 73.8 4 2.4 km s~ 'Mpc .

At low-redshift, this constant relates the recessional velocity of galaxies and their distance
from the observer by the Hubble Law:

It is conventional to parametrize H, as:

km
Hy =100 h 1.6
0 s Mpc ’ (1.6)
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with h ~ 0.7.

The redshift of a luminous source is defined by the quantity:
Ao — A
=5

z (1.7)
where ) is the wavelength of the radiation from the source observed at 0, that we assume
to be the origin of our coordinate system, at a time ty; A, is the wavelength emitted at a
time t, by the source which is at a comoving coordinate r. It is possible to derive the link
between the redshift and the scale factor.

During its travel from the source to the observer, the radiation propagates along the null
geodesic ds? = 0 and, therefore,

dr
Vish?

The light ray emitted from the source at a time t, reaches the observer at a time ty,
therefore we can write:

cdt = —af(t) (1.8)

o dt 0 d
c/ —:_/7’“. (L.9)
r a(t) m V1 —kr?
The subsequent light ray emitted at a time t. + dt. will be observed at a time ty + dt,
satisfying:

to+dto dt 0 d
c/ _:_/77». (1.10)
() r V1= kr?
Given that equation (1.9) does not change because r is a comoving coordinate and both

the source and the observer are moving with the cosmological expansion, we can combine
the previous equations, (1.9) and (1.10), and we obtain:

to+dto to
/ o / A (1.11)
tetdte a(t) te a(t)

dt.  dto
afte)  alto) -
In particular, if we consider the frequencies of the emitted and observed light, v, = 1/dt,
and vy = 1/dty, we have:

from wich we derive:

(1.12)

vea(te) = voa(to) (1.13)

or, equivalently,

- . (1.14)
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Using the definition of redshift, eq. (1.7), we finally find the relation between redshift
and the expansion factor:

1+2=

(1.15)

We use the usual convention that a(ty) = ap = 1.
Thus the redshift we observe for a distant object depends only on the relative scale factor
at the time of emission.

1.3 Cosmological distances

The proper distance d,(t) between two points, which we take to be in the origin of a set of
polar coordinates r, § and ¢, is the length of the spatial geodesic at a fixed time, dt = 0.
Along the geodesic the angle (6, ¢) is a constant, thus the equation (1.3) reduces to:

_dr
Vif

Integrating the previous equation over the radial comoving coordinate r ! we obtain the
proper distance:

ds = a(t) (1.16)

d, a(t)f(r), (1.17)

(t) a(t) /‘7" dr
0o V 1-— k?‘z
where the function f(r) is:

sin~!(r) if k=1
f(ry=<r if k=0 (1.18)
sinh ™ (r) if k= -1

The proper distance at a time t is related to the proper distance at the present time t
by the relation:

dy(to) = aof(r) = “d (). (1.19)

where ag = 1.

One can define other kinds of distances which are measurable. One of these is the
luminosity distance dy,.

If we know the power L emitted by a source at a point P, it is possible to define dj, using

its measured flux f:
I\ 12
dp, = | — : 1.20
= () 20

Ly is in units of curvature radius
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The area of a spherical surface centred on P and passing through the observation point
Py at a time t, is 4madr?. The expansion of the universe causes the photons emitted by the
source arrive at this surface redshifted by a factor ag/a. Therefore we find that [3]:

L a\?
= [ — 1.21
/ drrar? (ao) ’ (1.21)
from which we derive:
r
d, =a2— . 1.22
L aoa ( )

Using this equation and the definition of the proper distance, eq. (1.19), for a spatially
flat universe, we can derive the relation between the luminosity distance and the proper
distance:

d;, = dp% = (1+2)d, . (1.23)

Astronomers usually employ in place of L and f two quantities empirically defined: the
apparent magnitude m and the absolute magnitude M. The first one is a measure of the flux
of a source as seen by an observer on Earth, while the second one is a measure of the flux
emitted by the source. This is defined as the apparent magnitude that the source would
have if it were placed at a distance of 10 pc (1 pc = 3.086 x 10'¢ m = 3.261 ly).

If we know the apparent magnitude m and the absolute magnitude M of a source, we
can derive the luminosity distance of this:

dp = 10m=M=2)/5 (1.24)

where the quantity m — M is called the distance module.

Another useful distance measurement is the angular diameter distance d,.

Let us suppose we know a proper length ¢ of an object aligned perpendicular to our line
of sight. Measuring the angular size of the object, 46, it is possible to compute the angular
distance from the relation:

!
=55
If the universe is static and Euclidean, this distance is equal to the proper distance.

In a spatially flat universe, the relation between the angular diameter distance and the
luminosity distance is:

da (1.25)

dr

dy= L
A (14 2)?

(1.26)

1.4 Einstein equations

The expansion of the universe is governed by the Einstein field equations [4]:

1
G =R, — §gw,R =81GT ), , (1.27)
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in which G, is the Einstein tensor, R, is the Ricci tensor, R is the Ricci scalar, G is the
Newton’s constant and and 7}, is the stress-energy tensor. The Ricci tensor is defined as:

R, =T%  —T% +T9TI% —1%17 (1.28)

J77eY po,v Ba™ uv B+ pa
where Ffw are the Christoffel symbols:

1 09ue 9o  0g.u
6 _ T da 14 o M
P = 29 (83:” LT 6:6‘1) ’ (1.29)

o . are,
and commas denote derivatives with respect to = (for example, I',, , = 52)

When Einstein proposed these equations, he supposed that the universe was finite and
static and that the primary contribution to the energy density of the universe was from non
relativistic matter. But soon after, he realized that a static universe containing only matter
would tend to collapse, therefore he modified his equations adding a new term, called the
cosmological constant A, in order to allow for a static universe:

1
R, — §gu,,R + g\ =87GT,, . (1.30)

This constant represents a vacuum energy and works as a repulsive force opposed to
the collapse of the universe. In 1929 Hubble discovered the recession of galaxies and, con-
sequently, the expansion of the universe. Einstein abandoned the cosmological constant
referring to it as the greatest blunder of his career. In addition, in 1930, Eddington [5]
showed that the Einstein’s static universe was unstable under spatillay homogeneous and
isotropic perturbations.

Today this constant is considered as mandatory to describe the current universe.

1.5 Friedmann equations
In cosmology, the stress-energy tensor is that of a perfect fluid:
T = (p+)UuUy + DYy (1.31)

where p is the energy density, p is the pressure and U, is the fluid four-velocity which satisfies
the normalization condition: U,U* = 1.
In a homogeneous and isotropic universe 7, can be written as:

—p 00 0
| o poo
Tw=1 "0 0p 0
0 00 p

Combining this tensor with the FRW metric, eq. (1.3), and the Einstein equations, eq.
(1.27), we obtain the Friedmann equations |6, 7|:
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. 2
a GG kA
o> == - =, r .2
(a) 3 23
(1.32)
. a e A
gyp2=2¢ - 7~ 2
+ " 3 (p+3p)+3

If we consider the cosmological constant as a fluid with a constant energy density during
the expansion of the universe:

A
= 1.33
the Friedman equations can be rewritten as:

a\’ 8nG  k
b = =, 1.34
() C, k. (1.31)

a ArG

- = —— 3 1.35
" 5 (p+3p) (1.35)

where p and p are the total energy density and pressure of the universe, including the
cosmological constant contribution.
From these equations, it is possible to define the critical energy density:

3H?
G’
that represents the density with which we would have a spatially flat universe (k = 0). If
the energy density is larger than this value, the universe is positively curved (k = +1); if it
is smaller than this value, the universe is negatively curved (k = —1).

Typically, it is more convenient to use the ratio of the absolute density of the universe
to the critical energy density. This ratio is known as the density parameter *:

Pe = (1.36)

- ﬁ. (1.37)
In terms of this parameter, the first Friedmann equation (1.34) takes the form:
0= (1.38)
Therefore, the density parameter is related to the spatial geometry of the universe as:
for an open universe: Q<1 = k = -1
for a flat universe: Q=1 = k =0

for a closed universe: Q2 >1 = k = -+1

2All of density parameters are characterized by a zero in the subscript if they refer to the present time.
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The right hand side of the eq. (1.38) is known as the curvature parameter:
k

a?H? '’

QO = (1.39)

and its energy density is the so-called curvature density, px = —3k/87a’*G.

The Friedmann equations are not independent and, in order to solve them, we need a
third equation which relates the density and the pressure. This equation is the equation of
state of a perfect fluid:

D = wp. (1.40)

where w is a dimensionless number that depends on each component of the universe. In
order to solve this, we can combine the equations (1.34) and (1.35), obtaining the continuity
equation that it directly follows from conservation of stress-energy tensor:

) a a
A general solution of this equation, for w constant, is:
p o< a 30w (1.42)

The evolution of the universe is complicated by the fact that it contains different com-
ponents (non relativistic matter, radiation and a cosmological constant, or even more exotic
components) with different equations of state. Fortunately the energy density and the pres-
sure for these components of the universe are additive, therefore we can solve the continuity
equation and the Friedmann equations for each of them separately, as long as the different
components do not interact.

e Non relativistic matter

In this case w = 0 and the fluid has zero pressure, consequently the matter density
evolves as p,, o< a—>. We therefore conclude that the energy density associated to non
relativistic matter decreases as the universe expands.

In addition, if we consider a spatially flat universe, it is also possible to solve the
Friedmann equation obtaining the temporal evolution of the scale factor:

a(t) o t2/3 (1.43)

e Relativistic matter

For a universe dominated by radiation, w = 1/3, the energy density evolves as p,
a~*. In this case, for k = 0, the temporal evolution of the scale factor is:

a(t) o t/?% (1.44)
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o Vacuum energy

If the universe was dominated by a cosmological constant, w = —1 and therefore
pa = —pa- For a spatially flat universe, the scale factor grows as:
a(t) o< exp(Ht) . (1.45)

More generally, for a universe with arbitrary k& and having three components, matter,
radiation and a cosmological constant, the total density is:

(@) = ol [0~ + 00~ + 0] | (146
where: a0 a0 A2
8rGp 8mGp c

Q) = o Q= - 0 =— . 1.47

™ 3HZe? TO3HZR AT 3HR (147)

Therefore from the Friedmann equation we can derive the time dependence of the Hubble
function:
H? = H2[0% 2 + 00 = 1 0% 4 00 | (1.48)

and we can obtain the following relation:
Qo+ +O +Q=1. (1.49)

Also the neutrino component contributes to the expansion rate of the universe via its
energy density €2,, but this aspect it will be discussed in detail in the next chapter.

1.6 Cosmological perturbation theory

The homogeneity and isotropy of the universe are true only at first approximation; today
the universe has developed nonlinear structures that take the form, for example, of galax-
ies, clusters and superclusters of galaxies. These structures are formed from small initial
perturbations due to gravitational instability.

In the case of a non relativistic fluid, the perturbations on scales not exceeding the Hubble
horizon * are described by the Newtonian theory of gravity. In the case of a relativistic fluid
we have to use General Relativity for short and long wavelength perturbations.

In this thesis we consider the gravitational instability with the relativistic treatment.

3The growth of perturbations is governed by the distance Ry = H~! known as Hubble horizon. Its
current value is Ry = H, L' = 3000n='Mpc. Therefore we can say that a perturbation with a wavelength A
is inside the horizon if, at the time ¢, al < H~! and it is outside the horizon if e\ > H~!. Introducing the
wave vector k = 2 /), the equivalent conditions:

A=1/aH, k=aH

correspond to the horizon crossing of a perturbation.



12 Chapter 1. The standard cosmological model

1.6.1 Gauge transformations

To perturb the equations we must first of all perturb the metric, writing at first order:
g =93 + 9%

where the homogenoeus background part g,(PV) depends only on cosmic time and the perturbed
metric g,(i,) contains spatially dependent perturbations which are small with respect to the
zero-th order part. The General Relativity equations are invariant with respect to a general
coordinate change. This means that, since the metric ds* = g,,dz"dz” has to remain
constant, changing dx* induces changes in the metric coefficients. Therefore we select a
class of transformations that leaves gfﬁ) as it is, and only changes the coefficient of g,(}).
These transformations are called gauge transformations.

In the following, we consider only two particular gauge choices: the synchronous and the
conformal Newtonian gauge. The first one is commonly used in numerical publicly available
codes because the equations are easier to integrate. In this case the observers are attached
to the free falling particles, so they do not see any velocity field and do not measure a
gravitational potential. Instead, in the Newtonian gauge the observers are attached to the
unperturbed particles so that they can detect their velocity fields and measure a gravitational
potential.

In the synchronous gauge the line element is given by [8]:
ds® = a*(7) [—dr® + (65 + hyj)da'da’] | (1.50)

where 7 is the conformal time defined as dr = dt/a(t), and h;; is the metric perturbation.
From now on, dots will denote derivatives with respect to 7, for example ¢ = da/dr.
Moreover we can rewrite the Hubble parameter as H = (1/a)(da/dT) = aH(t).

The Newtonian gauge is used for the scalar modes of the metric perturbations. In this
case the line element is:

ds* = a*(1) [—(1 + 2¢)dr* + (1 — 2¢)da’dz;] | (1.51)

in which ¢ and ¢ are the gravitational potential and the spatial curvature perturbation,
respectively.
It is convenient to write the Einstein equations in linear perturbation theory:

Synchronous gauge [8|:

la.

k2 — §gh = 4 Ga®ST (1.52a)

k*n = 4rGa* (p+p) 0 , (1.52b)

hot 220 — 2k = —8nGa?ST | (1.52¢)
a

7i+6ﬁ+2g(h+677) — 2k = —24rGa®(p + p)o |, (1.52d)
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where h(k,7) and n(k, 7) are the scalar perturbations in the synchronous gauge.
The variables  and o are defined as:

in wich E; is the traceless component of Tj The o variable is also related to the anisotropic
stress perturbation IT by o = 2I1p/3(p + p).

Newtonian gauge |8]:

k26 + 3— < %@) = AnGa®TY, (1.53a)
( % ) = 4nGa*(p+p) 0 , (1.53b)
¢+ g(@z} +2¢) + (2— —~ —) by (gb ¥) = —wGanST’ (1.53¢)
k(¢ — ) = 127Ga’*(p + p)o . (1.53d)
The perturbed stress-energy tensor is:
5 = —(p+dp), (1.54)
T = —(p+pui=-T1;, (1.55)
sz‘ = —(p+ 5p)5;- + E;- , (1.56)

where for a fluid moving with a small coordinate velocity v; = dz;/dr is a perturbation
similat to dp and dp, which are the density and pressure perturbations, respectively.
Using the stress energy tensor conservation:

Iﬁy _ GMTMV + FZ,BTaﬁ + I‘gBTVB =0 , (157)

we obtain:

Synchronous gauge [8|:

) h a [ op
ot gy gy WLl yas e (1.58b)
a 1+w 1+w
Newtonian gauge |8]:
. 5p
0= —(1+w)0—3p) — 3 7 w)o, (1.59a)
9’:—9(1—3w)9— o 9+5p/5’0k:2(5 ko + k* (1.59b)
a I+w 14w ' '
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in which 6 is the divergence of the fluid velocity and § = §p/p is the density perturbation.
These equations are valid for a single uncoupled fluid. They need to be modified for
individual components if the components interact with each other.

1.6.2 Growth factor

The Newtonian gauge is used in particular when we are interested to study the sub-horizon
modes (k > 'H) and the quasi static limit. In this case equation (1.53b) tells us that
¢+ Hy = 0, so the equation (1.53a) gives the Poisson equation:

k¢ = —4rGa*dp = —;H%p (1.60)

in which we used the unperturbed Friedmann equation. If we consider only a single Cold
Dark Matter (i.e., pressureless, non relativistic and uncoupled) component, the equations
(1.59a) and (1.59b) can be rewritten as:
0 = —0+3p~—0, (1.61)
0 = —HO+ Ko, (1.62)

where ¢ is the cold dark matter overdensity and 6 is the comoving dark matter peculiar
velocity divergence. Deriving equation (1.61) and using equation (1.62), we obtain:

0 =HO— k> . (1.63)

Finally translating the derivatives with respect to the conformal time to the derivatives
with respect to the scale factor we get the growth equation:

" ’ § E . kQ?/J o
5"+ 8 (a+ 7)o =0 (1.64)

in which " = d/da, and, using and neglecting the dark energy component, reads
M+ §+E/ _§Qm7@i
a H 2(H/Hy)?a?
The modes we are interested in are the growing modes. The solution to equation (1.65)
is [1]:

=0. (1.65)

a da/

d(a) = D(a) x H(a)/ GH @)’ (1.66)
that takes the name of growth factor. It describes the amplitude of the growing mode and
for a spatially flat universe dominated by matter is equal to a. For practical purposes, it is
also convenient to define a function that expresses the growth rate of the fluctuations:

~ dInD(a)

fla) = “dlna (1.67)

known as growth function.
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1.7 Cosmological measurements

Current cosmological measurements point to a spatially flat universe (€ = —0.0005"0 0060

[9]), composed by baryonic matter and cold dark matter (,h? = 0.02217 £ 0.00033 and
Q.h% = 0.1186 + 0.0031 [9]), in which the principal element is the dark energy component,
(Qx = 0.693 4+ 0.019 [9]). This dark energy component is responsible for the current accel-
erated expansion of the universe. If it is made of a cosmological constant (representing the
vacuum energy), the equation of state is w = —1. This minimal scenario is the so-called
ACDM cosmology, which is described by six parameters: the baryon and cold dark matter
densities (w, = Qph? and w. = Q.h?), the ratio between the sound horizon and the angular
diameter distance at the decoupling of photons O, the optical depth 7, the scalar spectral
index ng, and the amplitude of the primordial spectrum Ag. Extensions to this ACDM model
include a dark energy fluid, a quintessence field, in which, in general, w is not constant in
time and differs from —1, or modified gravity theories.

In the following, we review the observations that support the cosmological model briefly
described above. In particular we will see how the cosmological parameters (as €, Qu,
Hy and others) can be constrained by measurements of Supernovae luminosity distances,
Cosmic Microwave Background (CMB), Big Bang Nucleosynthesis (BBN), Baryon Acoustic
Oscillations (BAO) and Large Scale Structure (LSS).

1.7.1 Supernovae

We have seen that the Hubble parameter measures the expansion rate of the universe at a
particular time ¢. In order to understand the effect of the acceleration of the universe, we
can define the deceleration parameter:

aa a
v ) 1.68
B a? (aHZ)tO (168)

A positive value of gy corresponds to @ < 0, meaning that the universe’s expansion is
decelerating; a negative value of gy corresponds to @ > 0, so the universe’s expansion is
accelerating. For a universe containing radiation, matter and a cosmological constant:

Q
qo = 7m+Qr—QA s (169)
from which we can see that if observations agree with an accelerated expansion, a cosmo-
logical model with only matter and radiation can not explain it.
Using ¢o and a Taylor series expansion for the scale factor around the present time, we
can rewrite the luminosity distance for z < 1 as:

dp(z) ~ ;I—'Z [1 + %(1 + C_Io)z} . (1.70)

When 2z < 1 we have d;, = czH; "', the Hubble law; at larger redshifts we will have
deviations from this law that are connected with the deceleration parameter.
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Therefore the parameters Hy and ¢y provide a general description of the expansion of
the universe and in order to reconstruct them we need to measure the luminosity distance.

As shown in eq. (1.24), this distance can be obtained measuring the difference between
the apparent and absolute magnitude of a given source. Therefore in order to obtain d;, we
need to find astrophysical sources whose the absolute magnitude M is theoretically known.
These kind of sources are known as Standard Candles.

In recent years, because of a relationship between their peak brightness and light-curve
width, Supernovae are considered as standardizable candles. They are defined as explo-
sive variables and are divided into two classes based on their spectra: type I supernovae
(SNI) that contain no hydrogen absorption lines in their spectra and type II supernovae
(SNII) that contain strong hydrogen absorption lines. All SNII are massive stars whose
cores collapse to form a black hole or a neutron star when their nuclear fuel is exhausted.
SNI are separated into three subclasses Ia, Ib and Ic according to the differences in their
emission spectra and in their light curves (curves that describe the behaviour of luminosity
with time). Type Ib and Ic supernovae are massive stars which lost their outer layers in
a stellar wind before core collapse. They are essentially the same as SNII because in all
these, the iron core of a massive star collapses and rebounds; the only differences in the
spectra of these supernovae are due to superficial differences in the exploding stars. Type Ia
supernovae are completely different and they are considered standard candles because they
are extraordinarily luminous and hence can be seen from a large distance.

The former type of supernova occurs in a binary system in which one of the two stars
is a white dwarf. The companion star, usually a red giant, transfers mass to the white
dwarf that eventually reaches its Chandrasekhar limit, Mc = 1.4Mg.* When this limit is
exceeded, the white dwarf starts to collapse until its increased density triggers a runaway
nuclear fusion reaction. Since all SNIa explode starting from the same initial condition, we
can assume that the produced luminosity is always the same. When a SNla is observed,
we need to study the dependency of its luminosity on time to obtain the light curve; from
this curve we can calculate the apparent and the absolute magnitudes (m and M), thus,
through eq. (1.24), we can obtain the luminosity distance dj.

In addition, the SNIa can also constrain the cosmological parameters as {2, 2, and 2.
Using equations (1.17) and (1.23) and defining the comoving coordinate r in a spatially flat
universe as:

I da’
S , 1.71
r(a) Hy /1/(1+z) a?/Qp + Qa3 + Qua/~4 (7

we can rewrite the luminosity distance in terms of the components of the energy density of
the universe in the following way:

1+ 2z 1 da’
dzle) = : 1.72
L( ) H, /1‘/(14_2) a’z\/QA + Qa3 + Qa4 ( )

“Mg is the mass of the sun: Mg ~ 2 x 103 kg.
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Two research teams, The Supernova Cosmology Project [10] and the High-z Supernova
Search Team [11]| conducted searches for supernovae in distant galaxies. They used light
curves and redshifts of SNIa to measure the cosmological parameters and the acceleration
of the universe. In particular these observations led to discovery of cosmic acceleration.

After these, the combined work of several different teams during the past decade has
provided an impressive increase in the total number of SNIa and in the quality of the
individual measurements.

Currently the most recent SNIa luminosity distance data are provided by the 3 year
Supernova Legancy Survey (SNLS3) [12, 13, 14]. In Fig. 1.1 is plotted the m— M magnitude
versus the redshift for different type Ia supernovae measured from the Supernova Cosmology
Project Union2 [15].

The data are compared to four different models, assuming a spatilally flat universe. From
the plots we can see that a high redshift it is straightforward to rule out the hypothesis that
the universe contains only matter (Q,, =1, Q) = 0).

The ongoing Dark Energy Survey (DES) 5, will discover and make detailed measurements
of several thousand supernovae with the aims of improving both the statistical precision of
supernova cosmology and the control of systematic errors in using supernovae to measure
distances. DES is designed to probe the origin of the accelerating universe and help in
discovering the nature of dark energy by measuring the 14-billion-year history of cosmic
expansion with high precision.

1.7.2 Cosmic Microwave Background

The Cosmic Microwave Background (CMB) contains a wealth of information about the
cosmological parameters of the universe and on specific features of the theoretical models,
as, for instance, dark energy or modified gravity models.

In the primordial universe the photons were tightly coupled to the baryons forming a
plasma, the photon-baryon fluid. At a temperature of roughly 3000 K, protons combined
with electrons to form neutral hydrogen atoms (recombination) and photons decoupled from
baryons to travel freely through space. At this point the universe becomes transparent. The
time at which a CMB photon underwent its last scattering from an electron is known as
epoch of last scattering and the surface that surround every observer of the universe and
from which the CMB photons have been streaming freely is called last scattering surface
(z =~ 1100). Therefore when we observe these photons today, we are looking at the universe
when it was 300,000 years old.

Before recombination the photons were in thermal equilibrium with electrons and thus
they present a black body spectrum:

Arhy?3 1
2  e2rnhw/kpT _ 17

I(v,T) =

(1.73)

http://www.darkenergysurvey.org/
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Figure 1.1: Distance modulus versus redshift for SNIa measured from the Supernova Cosmology
Project Union2 [15]. The plot shows as well predictions from a number of theoretical models
(assuming flatness).
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where (v, T) is the energy per unit of time, per unit of area of the emitting surface, per
unit of solid angle and per unit of frequency, with an average temperature 7' = 2.725 K.

The CMB spectrum was first measured accurately over a wide range of wavelengths by
the COsmic Background Explorer (COBE) satellite [16], launched in 1989, into an orbit 900
km above the Earth’s surface. The COBE observations were crucial for cosmology. From
the point of view of the structures of the universe on the largest angular scales, they show
that the cosmic radiation is homogeneously and isotropically distributed in all directions (in
agreement with the Cosmological Principle), with fluctuations (anisotropies) of the order of
107°. Defining the dimensionless temperature fluctuation around the mean value Ty = (T)
and at a given point on the sky as:

7(97 ¢) = T (1.74)

COBE found that the root mean square of the temperature fluctuations is:

<(‘?)2>W —1.1x 107" (1.75)

It is possible to calculate [1, 17| the evolution of the photon-baryon fluid before the
recombination epoch and therefore to calculate the temperature anisotropies © = (T —
To)/Ty at the last scattering surface.

Since temperature fluctuations are defined on a spherical surface, it is useful to expand
them in spherical harmonics:

O, D7) =Y > am(T,7)Yem(p) | (1.76)

=1 m=—/4

where p is a normalized vector that defines the direction of the sky (Osiy, Psiy), T is the
position of the observer and ag, (%, 7) are the coefficients of the expansion that contain all
the information about the temperature perturbations.

Using the orthogonality property of the spherical harmonics:

/mmmMM@:M%m (1.77)

where Y™* is the complex conjugate of Y and () is the solid angle spanned by p, we can
obtain the equations for the amplitudes ay,,:

- Pk ik-Z % /A 7oA
un@.7) = [ e [, (O Es.7). (1.78)

Given that there is a linear relation between multipoles ay,, and Fourier modes @(/;, DyT),
it is clear that if we assume that the perturbations arise from a gaussian distribution, also the
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ap, are gaussian distributed, and their statistics is fully described by two-point correlation
functions:

<a'fma'zfm’> - 56(’5771771’0( s (179)

where diagonality follows from rotational symmetry.

The mean value of all the ay,,’s is zero but not the variance, that is called angular power
spectrum, CYy. This spectrum is precisely the quantity that we want to compute for a given
cosmological model and to compare with observations. The true harmonic power spectrum
in our universe cannot be extracted from observations, since we only observe one realization
of the universe. However, using the ergotic principle, we can build an estimator of the true
power spectrum, C’g, taking advantage of the fact that all multipoles with a given ¢ should

have the same variance Cj:
+4

A 1
= . . 1.
Cg o0 1 Z A prr, Ao, ( 80)

m=—/{

This estimator has a variance, called cosmic variance (AC,/Cy = [2/(2¢ + 1)]'/?), in-
trinsic in the definition of the estimator itself and it changes with ¢; in fact this variance
decreases with increasing ¢, since for high multipoles we can average over more independent
realizations of the same stochastic process. Moreover there are two general caveats to con-
sider during the CMB measurements. The first one is that can exist any source of noise,
instrumental or astrophysical, which increases the errors. If the noise is also Gaussian and
has a known power spectrum, the variance is given by the sum of the signal and noise power

spectra:
[ 2

Because astrophysical foregrounds are typically non-Gaussian it is usually also necessary
to remove heavily contaminated regions, e.g. the galaxy. In this case the variance is:

2

Al = 20+ 1)f,

(Ce+Cen) (1.82)

in which f; is the fraction of the sky covered.

During the last decade, the value of Cy as a function of the multipole moment ¢ has been
measured from a large amount of experiments detecting a series of acoustic peaks in the
anisotropy power spectrum. The most important and recent are: WMAP, SPT, ACT and
Planck.

The Wilkinson Microwave Anisotropy Probe (WMAP) [18] is a satellite, proposed to
NASA in 1995, launched in 2001. On December 20, 2012, the final nine-year WMAP data
and related images were released. The positioning of WMAP satellite made use of the
lagrangian point L, at ~ 1.5 x 10° km from the Earth, in order to observe over the full
sky. WMAP satellite has produced spectacular all sky maps of the temperature anisotropy
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yielding a highly precise measurement of the angular power spectrum up to multipoles of
¢ ~ 600, corresponding to an angular scale of ~ 20'.

The South Pole Telescope (SPT) is a 10 meter diameter telescope operating at the
South Pole research station since 2007. SPT lies on the Antarctic Plateau, at an altitude
of 2800 m. The low temperature at the South Pole reduces the water vapor content of the
atmosphere, lowering both atmospheric emission and fluctuations in brightness. The SPT
collaboration has recently presented their observations of 2540 deg? of sky, providing the
CMB temperature anisotropy power over the multipole range 650 < ¢ < 3000 [19, 20, 21|,
corresponding to the region from the third to the ninth acoustic peak.

The Atacama Cosmology Telescope (ACT) [22, 23| is a six-metre telescope operating in
the Atacama Desert of Chile at an altitude of 5200 meters. ACT complements measurements
from WMAP by observing from ¢ ~ 300 to ¢ = 10000. This widens the range of data
available to constrain both cosmological parameters through the Silk damping tail of the
primary CMB [24] and the residual power from secondary sources (galaxy clusters) between
us and the surface of last scattering.

Planck [9, 25] is a space telescope of the European Space Agency launched in May
2009. Its aim is to measure the temperature and polarization anisotropies with micro-Kelvin
sensitivity per resolution element over the entire sky. The wide frequency coverage of Planck
(30-857 GHz) was chosen to provide accurate discrimination of the Galactic emission from
the primordial anisotropies.

In Fig. 1.2 we show the CMB power spectra for the best fit parameters for the ACDM
model from Planck together with WMAP, SPT, ACT and Planck data. In the plot we can see
several peaks which indicate the presence of correlations between temperature anisotropies
at different angular separations (0 ~ 7 /). In particular these peaks represent the acoustic
waves in the photon-baryon plasma of the primordial universe. Those waves were originated
from the primordial inhomogeneities in the distribution of dark matter as the result of the
competition between two forces: on one hand radiation pressure acts as a repulsive force,
on the other hand gravity tries to compress matter. The first peak corresponds to the
mode that was compressed once inside potential wells before recombination, the second the
mode that was compressed and then rarefied, the third the mode that was compressed then
rarefied then compressed, etc. Depending on the content of baryons, dark matter and dark
energy in the universe, the shape, position and height of those peaks varies [26] . Therefore,
the study of them reveals information about the cosmological parameters.

The first acoustic peak determines the size of the horizon at the time of decoupling,
providing therefore, information about the geometry of the universe. The position in /(-
space is related to the parameters ng, Q.h? and Qph%. The amplitude of the first peak is
positively correlated with Q. = Q, + Q. + Q, ¢ and the amplitude of the second peak is
negatively correlated to Q,h%. An increase in the baryon density reduces the sound velocity
in the photon-baryon plasma leading to a shift of the acoustic oscillations and and increasing
the height of the peaks of compression (odd peaks). A larger value of ng increases the slope
of the angular power spectrum; increasing the cosmological constant leads a shift of the

6Q),, refers to the neutrino contribution, as we shall see in the following chapter.
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spectrum towards lower multipoles.

Therefore, by measuring the CMB temperature power spectrum it is possible to obtain
information on the primordial universe and on how it evolved after recombination.

Moreover CMB photons are also polarized and observing their polarization pattern it is
possible to extract more information on the evolution of the universe [27]. CMB photons
are in fact polarized by the temperature quadrupole that can be sourced both by scalar
perturbations as well as by tensor perturbations from gravity waves produced by primordial
inflation [1]. Therefore it is possible to describe CMB polarization through £ modes and B
modes, distinguished by the polarization pattern around a considered point in the sky. As
for the temperature, cosmological information can be obtained from the polarization power
spectra and also from their cross correlations; we can in fact define the following angular
power spectra:

Cil = {aimtum)
Cr¥ = (Gumm)
CP% = Aajman,)
Ci" = (aimim)
CiP = (Gimpn)
CrP = (aimainm) ; (1.83)

where the cross correlations T'B and EB are expected to vanish due to the fact that B has
opposite parity to both 7" and FE.

CMB photons are also affected by gravitational lensing due to the matter that is placed
between us and the last scattering surface. In particulae large scale structure between the
last scattering surface and the observer gravitationally lenses the temperature and polariza-
tion anisotropy of the CMB. The effect is that the photons of the CMB are deflected from
their original positions. Gravitational CMB lensing can improve the CMB constraints on
several cosmological parameters, since it is strongly connected with the growth of perturba-
tions and gravitational potentials at redshifts z < 1 and, therefore, it can break important
degeneracies. Therefore, studying CMB lensing it is possible to reconstruct the evolution of
matter perturbations after the last scattering surface.

1.7.3 Big Bang Nucleosynthesis

When the universe was much hotter and denser and the temperature was of order of ~
MeV, there were no neutral atoms or bound nuclei because the vast amount of radiation
ensured that any atom or nucleus produced would be destroyed by a photon with a high
energy. The primordial cosmic plasma consisted of: relativistic particles in equilibrium
(photons, electrons and positrons), decoupled relativistic (neutrinos) and non-relativistic



1.7. Cosmological measurements

23

10000 ]
N i
X 1000 =
< :
B ]
i\'\\ ACDM model ——— .
: r WMAP-9 years data < i
=~ 100 - SPT data +—%— =
© - ACT data +——— ;
1 O 1 1 11111 I 1 1 1 11111 I 1 1 1 11111 I 1
10 100 1000
[
1 0000 : T T T T TTT I T T T L I T T T T T 11T I T :
; -///" \\\ ;
L / \\ / 7, \\ a
N’g / \\

=] 1000 Br— il 3 E
~ r vy 7
S I : i
~ | i

$ ACDM model
;N 100 2_ Planck data _E

1 O 1 1 11111 I 1 1 1 11111 I 1 1 1 11111 I 1
10 100 1000
[
Figure 1.2: Temperature power spectrum versus the multipole moment ¢ for the

best fit parameters for the ACDM scenario from Planck data.

We

depict the

data from the WMAP, SPT, ACT (upper panel) and Planck (lower panel) experi-

ments.

http://pla.esac.esa.int/pla/aio/planckProducts.html.

CMB data have been taken from http://lambda.gsfc.nasa.gov/ and from


http://lambda.gsfc.nasa.gov/
http://pla.esac.esa.int/pla/aio/planckProducts.html
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particles (baryons). These particles were in equilibrium through these reactions:

Y+v = et +e”
n+v. = pte

n+et = p+u.

When the temperature of the universe fell below the binding energy of a typical nucleus,
light elements, like 2H and ®He, began to form. This epoch of nuclear fusion is commonly
called epoch of Big Bang Nucleosynthesis (BBN).

In order to analyze the early universe, it is necessary to know the species which contribute
to the energy of the universe at a given time, as well as their distribution functions. If the
reaction rate I' for an interacting particle is much higher than the expansion rate H, the
interaction can maintain those particles in a thermodynamic equilibrium at a temperature
T. Therefore they can be treated as Fermi-Dirac (+) or Bose-Einstein (-) gases with a
distribution function:

FET) = {exp (i;T“) + 1}1 : (1.84)

where p is the chemical potential, kg is the Boltzamnn constant and E? = p? + m?. From
this function we can compute the number density n, the energy density p and the pressure
p of the different species:

_ g > 47rp?
"o (27Th)3/0 e(E—pu)/kpT L 1dp, (1.85)
— 9 > 47rp?
P W/O Ee(E*u)/kBTi 1dp, (1.86)
9 D Amp
N E d 1.87
P (2mh)3 /0 E eE—m/ksT 1 1P (1.87)

where ¢ is the number of degrees of freedom of the species. The numerical density of a
nucleus with mass number A in the non-relativistic limit is given by:

T 3/2 e
naA = ga (%) e T (1.88)

As long as the reaction rates are higher than the expansion rate, the chemical equilibrium
imposes the chemical potential to be:

ta = Ztp + (A= Z)pn (1.89)

with p,, @, the chemical potential of protons and neutrons and Z the atomic number. Using
this formula and expressing p, and u,, as n, and n,, the eq. (1.88) becomes:

3/2 3(A—1)/2

_ m 21h _, Ba

m=s (o) (nr) e 0w
D n
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in which By = Zm,, + (A — Z)m,, — my is the binding energy of the nucleus.
Introducing a new parameter 7, defining as the baryon-to-photon ratio:

ny

— 1.91
n n,’ (1.91)
and the mass fraction of the element A:
Xy= A =AM (1.92)
Ty Ty

we obtain the abundances of atomic nuclei in thermodynamical equilibrium:
Ba
X4 x nA_lXI)ZXf_Ze’“BT. (1.93)

Since the basic building blocks for nucleosynthesis are neutrons and protons, it is also
important to calculate the ratio between the number of these particles. Defining the dif-
ference in rest energy of the neutron and the proton as @ = m, —m, ~ 1.29 MeV, the

neutron-to-proton ratio is:
fin exp (—i) . (1.94)

At temperature kgT > (), the number of neutrons is nearly equal to the number of
protons. When kgT > @) protons begin to be strongly favored and the neutron-to-proton
ratio decreases exponentially. When the temperature of the universe decreases reaching
an equilibrium point of about 0.72 MeV, the abundance ratio of the neutron-to-proton is
aproximately 1/6. However, this fraction does not remain constant, because neutrons are
still converting into protons via [ -decay. When the temperature reaches 0.1 MeV, the
neutron-to-proton abundance ratio reduces to 1/7.

The Helium abundance is an example that depends on this ratio. This element is com-
posed by two neutrons and two protons (ng. ~ n,/2) and its abundance is:

AnHe o 4(nn/2np)

Y = —
g 1+ (n,/ny)

~ 0.25 (1.95)

assuming a neutron-to-proton ratio of about 1/7. In the Big Bang Nucleosynthesis only
the light elements with nuclei no more massive than "Li (*°H, *He, “He, "Li) are produced.
Heavier nuclei are only synthesized in stars or as a consequence of stellar explosions. The
BBN theory yields precise quantitative predictions for the mixture of these elements, that
is, the primordial abundances at the end of the Big Bang period. Therefore, BBN light
element abundances can be used as another probe to extract the cosmological parameters
describing our universe.

1.7.4 Large Scale Structure

We have seen that, on large scales, the universe can be approximated as being homogeneous
and isotropic. On small scales, the universe contains density fluctuations ranging from
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subatomic quantum fluctuations up to the large supercluster and voids which characterize
the distribution of galaxies in space. Cosmologists use the term Large Scale Structure (LSS)
to refer to all structures bigger than individual galaxies. From the study of these structures,
in particular from the distribution of matter on large scales, we can extract information to
constrain the cosmological parameters.

To understand how to characterize this distribution it is often useful to work in Fourier
space. We consider a catalog of galaxies in a volume V with a mass density p(r) and a
density contrast d(r) = (p — po)/po (po is the mean value of the matter density). From the
Fourier transform of §(r):

1 .
O = v / S(r)e™rd3r (1.96)
S:

we can define the power spectrum P(k) a.
P(k) = V{|ou[*). (1.97)

Introducing the correlation function for the density contrast:

£(r) = (86 +1) = 5= U8R = [ POge T Es (1

where the average is taken over the entire statistical ensemble of points with a comoving
distance r from the point ry, the P(k) can be rewritten as:

P(k) = / E(r)e™dr. (1.99)

Therefore we can see that the power spectrum is the Fourier transform of the correlation
function.

The shape of the power spectrum depends on the cosmological parameters. By using
galaxy catalogs, the power spectrum can be reconstructed, at least in a range of k’s (see
for example [28, 29, 30|). There are several observables to probe large scale structure,
as for example Lyman-alpha systems, weak lensing, quasar clustering, galaxy cluster mass
function (see for example Ref. [31]), but in this thesis we will only focus on galaxy clustering.

In the last decades, a number of galaxy surveys have been designed to measure the large
scale structure in the universe. The most important large survey is the Sloan Digital Sky
Survey (SDSS) [32]. Over eight years of operations (SDSS-I, 2000-2005; SDSS-II, 2005-
2008), it obtained deep, multi-color images covering more than a quarter of the sky and
created 3-dimensional maps containing more than 930,000 galaxies and more than 120,000
quasars. During its first phase of operations, 2000-2005, the SDSS experiment [33] imaged
more than 8,000 square degrees of the sky in five optical band-passes, and it obtained spec-
tra of galaxies and quasars selected from 5,700 square degrees of that imaging. SDSS-III
[34], a program of four new surveys using SDSS facilities, began observations in July 2008
and released Data Release 8 in January 2011 and Data Release 9 in August 2012. SDSS-I11
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will continue operating and releasing data through 2014.

The Baryon Oscillation Spectroscopic Survey (BOSS) is one of the four surveys of SDSS-
III. It aims to measure the cosmic distance scales and to determine the expansion history of
the universe with high precision by using Baryon Acoustic Oscillations, that are an example
of a LSS measurement and that we shall describe in the next section. BOSS is performing a
redshift survey of 1.5 million massive luminous galaxies (0.3 < z < 0.7) and 150,000 quasars
at z > 2.5 and it covers an area of 10,000 deg?. The observations began in 2009, and the last
data will be acquired in 2014. BOSS galaxy selection is based on a series of color-magnitude
cuts. These cuts are intended to select a sample of luminous and massive galaxies with an
approximately uniform distribution of stellar masses from z ~ 0.2 to z ~ 0.6 [35, 36]. In
particular, the selection is the union of two cuts: cut I (Low Redshift sample, LOZ), aimed
at selecting luminous and massive galaxies at 0.2 < z < 0.4 and cut II ( CMASS sample,
for jEconstant massjE [37]), designed to select galaxies at z > 0.4 and with the stellar mass
of the system approximately constant.

From the imaging data in the SDSS it is possible to measure the two-dimensional (2D)
angular power spectrum C, that is closely related to the 3D power spectrum P(k). The
relation between the 2D angular power spectrum of galaxies and the 3D galaxy power
spectrum is [38, 39]:

o dk
Cy = 471'/ Pg(/{i,z)fgaﬁ)Q? : (1.100)
0
where fy(k) is the Bessel transform of the radial selection function f(r), given by the equa-
tion:

fulk) = / ) julkrydr (1.101)

with jy(kr) the spherical Bessel function. Specifically, f(r) = g(r)h(r), in which g(r) is
the probability distribution for the comoving distance from us to a random galaxy in the
survey and h(r) is a bias and clustering evolution term of the order of unity. Considering
the number of galaxies within a sphere of radius r:

(T)O(d_N_dN/dz_H(z)d_N
g dr — dr/dz ¢ dz’

(1.102)

the eq. (1.100) becomes:

03:4W/Pg(k,z)d—: U C;—]:jg(kr)dzr. (1.103)

The evolution of the galaxy power spectrum in linear theory reads:

_ K*P,(k,0) (D(2)\* 1
Py(k,2) = =5 (D(O)) (el (1.104)
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were D(z) is the growth factor, eq. (1.66). The final expression of the 2D power spectrum

Cp = %/Pg(k,o)dek U CZ—]ng(kr) <gzg§) (1;)(142. (1.105)

In the limit of small angles we can use the Limber approximation, kr = ¢. In this limit
the integral of the Bessel function can be approximated as:

°° o (&L s
/0 Je(kr)dr = %; Eég g (1.106)

and the C’s are defined by the following relation:

Oy = /Pg(k:,()) (‘2—]:)2% (ggg;)Q <1+12)2T<i)2dz. (1.107)

In Fig 1.3, upper panel, we show the matter power spectrum for three different models
including the possibility of a dark energy equation of state parameter w different from —1.
We illustrate the case of the best fit parameters from the Planck data set for a ACDM
cosmology and we also include the data from the SDSS II. The lower panel of Fig 1.3
depicts the 2D power spectrum for the same models illustrated in the upper panel. The
data correspond to the observed power spectrum obtained from BOSS DRS in the redshift
bin 0.45< z <0.5 [40].

It is important to note that the density perturbation in observed galaxies, d,(k, z), is
not necessarily equal to the total matter density perturbation §(k,z). So, in the Fourier
space, we can define a function, called bias, that parametrizes the relation between galaxy
clustering and matter clustering:

dy(k, 2)

o) = TS

(1.108)

and we can relate the power spectrum of galaxies to that of total matter power spectrum
via a linear bias model:

P,(k,z) = b (2)P(k, 2) . (1.109)

The bias model should be accounted for when galaxy clustering measurements are used
to extract cosmological parameters, in order to relate the observed galaxy power spectra to
the underlying matter power spectrum, and, in principle, it can dependend on the scale.
Moreover galaxies have peculiar velocities v relative to the general Hubble expansion. Thus
it is necessary, in general, to distinguish between a galaxy’s redshift distance s and the true
distance r, normalized to velocity units [41]:

s = cz, (1.110)
r = Hyd, (1.111)
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Figure 1.3: Upper (lower) panel: The red lines depict the matter power spectra P(k) (2D power
spectra, Cy) for the best fit parameters for a ACDM model from the Planck data set. The
others curves show the two scenarios with a dark energy equation of state parameter w different
from —1. The data correspond to the clustering measurements of luminous red galaxies from
SDSS II Data Release 9 [34] in which we have added a bias of 3, and from the CMASS sample
in Data Release 8 [40] of the Baryon Oscillation Spectroscopic Survey.
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where the first relation holds at relatively low redshifts. The redshift distance s of a galaxy
differs from the true distance r by its peculiar velocity v = (&) - v along the line of sight:

s=r+uv. (1.112)

The peculiar velocity of galaxies, thus, causes them to appear displaced along the line-
of-sight in redshift space and these displacements are known as redshift space distortions.

Although such distortions complicate the interpretation of redshift maps, they have
the advantage of bearing information about the dynamics of galaxies. In particular, the
amplitude of distortions on large scales yields a measure of the linear redshift distortion
parameter (3, which, assuming a ACDM universe, is related to the cosmological density €,

by: f
7=

where f is the linear growth rate, defined in eq. (1.67), and b is the bias. Measurements of
the # parameter can be used as a test to distinguish between dark energy models and models
in which the gravitational sector of the theory is modified to explain the current accelerated
expansion of the universe, since, in this case, the growth factor is scale dependent.

~ Q6 (1.113)

1.7.5 Baryon Acoustic Oscillations

As previously stated, in the photon-baryon fluid at z > 1100, the competition between grav-

ity and radiation pressure brings to oscillations in the plasma which propagate as acoustic

waves, known as Baryon Acoustic Oscillations (BAO), with a velocity ¢, given by:
e

=P _ , 1114
“= 50" Spom  3(L+R) (1.114)

where R = 3p,/4p, and p, and p, are the energy density of photons and baryons, respec-
tively.

At recombination (z ~ 1100), the photons decouple from the baryons and start to free
stream, whereas the pressure waves get frozen. As a result, baryons accumulate at a fixed
distance from the original over-density and this distance is equal to the sound horizon
length at the decoupling time. The result is a peak in the mass correlation function &,
see eq. (1.98) at the comoving scale. The BAO provides a standard rule to measure the
distance to various redshifts using the clustering distribution of galaxies measured from
large galaxy surveys. This distance-redshift relation depends, for example, on the values of
the cosmological parameters so it can be used to infer the cosmic expansion history of the
universe.

We have already explained that in a galaxy survey, we measure distances in term of
angles and redshift. These observed quantities can be related to known distances using the
FRW metric. The differential radial distance is inversely proportional to the expansion rate

H(z) [42]:

C

H{(z)

dr(z) = dz (1.115)
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while the angular diameter distance is proportional to the integral of dr(z):

o = d
14z ), H(2)

da(2) (1.116)

for a spatially flat universe .

To use the BAO method, we must measure the acoustic scale from the clustering of
galaxies. This is typically done statistically using the 2-point correlation function of galaxy
separations, eq. (1.98), or its Fourier transform, the power spectrum, eq. (1.99). From these
functions, it is possible to measure two different quantities corresponding to the oscillations
parallel and perpendicular to the line of sight:

5z, = rs(zd)Hiz), (1.117)
rs(2q)
0, = i (1.118)

in which r4(z4) is the sound horizon dimension at the drag epoch (when baryons became
dynamically decoupled form the photons):

t ey (t)dt 4 coda
(zg) = _ , 1.119
rs(2q) C/o - C/o oZH (a) ( )

The imprint of the baryon acoustic oscillations has been detected in a variety of low-
redshift data sets. Significant detections of BAOs have now been reported by independent
galaxy surveys, spanning a range of redshifts 0.1 < z < 0.8: the SDSS [43], the WiggleZ
Dark Energy Survey [44], the 6-degree Field Galaxy Survey [45] and the SDSS-IIT Baryon
Oscillation Spectroscopic Survey [46].

The WiggleZ Dark Energy Survey is a large-scale galaxy redshift survey of bright emis-
sionline galaxies which was carried out at the Anglo-Australian Telescope between August
2006 and January 2011. The survey is now complete, comprising of order 200,000 redshifts
and covering of order 800 deg? of equatorial sky. The galaxy sample includes a total of
158,741 galaxies in the redshift range 0.2 < z < 1.0 [44].

The 6-degree Field Galaxy Survey is a combined redshift and peculiar velocity survey
covering nearly the entire southern sky. The 6dFGS sample contains 75,117 galaxies dis-
tributed over ~ 17,000 deg® with a mean redshift of z = 0.106.

7An other important technique used to determine the cosmological parameters is the study of the Lyman-
« forest. The spectrum of quasi-stellar objects (QSO) that reach the earth contain lots of information about
the distribution of the intergalactic medium. When the radiation emitted by a QSO penetrates a cloud of
gas containing neutral hydrogen, this will absorb a part of the radiation and the spectrum of quasars will
present absorption lines arising from the Lyman-alpha transition. The use of the Lyman-« forest allow the
study of the distribution of the intergalactic medium at redshifts z ~ 2%4, and can be used to constrain the
cosmological parameters.
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Most of these detection of the BAO have used spherically averaged clustering statistics,
measuring an effective distance:

1/3
Dy = | (14 2)2d%(2)—= 1.120
v= |0 rdeg (1.120)
Usually BAO measurements are given in terms of the relative distance:
rs(24) (1.121)

rBAO = Dv(z) .

Figure 1.4 shows estimates of rga0, as quoted by each of the experimental groups, di-
vided by the best-fit Planck prediction for a ACDM universe. Here we show the results from
four redshift surveys: the SDSS DR7 measurements at z = 0.35 [43], the WiggleZ measure-
ments at z = 0.44, 0.60 and 0.73 [44], the 6dF Galaxy Survey measurement at z = 0.1
[45] and the BOSS DR9 measurement at z = 0.57 [46, 47]. We can see that all the BAO
measurements are compatible with the base ACDM parameters from Planck. We also show
in Fig.1.4 the theoretical predictions for different dark energy models. Here we present the
cases of w = —1.1 and w = —0.9.

A next generation of BAO surveys, eBOSS, BigBOSS and Subaru Prime Focus Spec-
trograph (PFS), plans to map the high redshift Universe in the range 0.6 < z < 3.5. The
Extended Baryon Oscillation Spectroscopic Survey (eBOSS) is a 4-year cosmology project
that pushes the reach of the Sloan Telescope to map large scale structure beyond z = 0.6.
It will measure with high accuracy the expansion history of the Universe throughout eighty
percent of cosmic history and improve constraints on the nature of dark energy and dark
matter. Furthermore, the distribution of eBOSS targets on very large scales will be able
to constrain the mass of the neutrino and the nature of the jEinflationary epochjE in the
very early Universe, which produced the primordial fluctuations leading to the formation of
galaxies and larger structures. BigBOSS is a ground-based experiment designed to probe
the nature of dark energy through the measurement of baryon acoustic oscillations (BAO)
and redshift space distortions. Building on the SDSS-III BOSS survey, BigBOSS will mea-
sure redshifts of luminous red galaxies (LRGs), quasars (QSOs), and emission line galaxies
(ELGs) between 0.2 < z < 3.5. The measurements from BigBOSS will lead to new levels
of precision in the dark energy equation of state and the growth of structures in the uni-
verse. The main goals for the PFS cosmology survey are: to constrain the angular diameter
distance and the Hubble expansion rate via the BAO experiment, use the shape and am-
plitude of galaxy correlation function in order to constrain cosmological parameters as well
as the growth rate of structure formation, use the distance measurements for determining
the dark energy density parameter, derive the BAO constraints in a redshift range that is
complementary to those probed by the existing planned BAO surveys.

The future Euclid mission (http://sci.esa.int/), planned by the European Space
Agency (ESA), in collaboration with NASA, is scheduled to be launched in 2019. The mis-
sion will investigate the distance-redshift relationship and the evolution of cosmic structures
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by measuring shapes and redshifts of galaxies and clusters of galaxies out to redshifts ~ 2.
In this way, Euclid will cover the entire period over which dark energy played a significant
role in accelerating the expansion. To do these measurements, Euclid will use the weak
gravitational lensing and Baryonic Acoustic Oscillations.
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Figure 1.4: The BAO distance-redshift relation divided by the best-fit model for the spatially
flat, ACDM prediction from Planck measurements. We show the results form SDSS-II LRG
[43], WiggleZ [44], 6dF Galaxy Redshift Survey [45] and BOSS DR9 [47] data. We also show
the theoretical predictions from varying the dark energy equation of state, w = —1.1 (green
line) and w = —0.9 (blue line).



34

Chapter 1. The standard cosmological model




Chapter 2

Massive neutrinos and Dark Radiation
in Cosmology

In this chapter we introduce neutrinos and their properties. We discuss the neutrino os-
cillations and the role of neutrinos in cosmology, describing the impact of massless and
massive neutrinos on cosmological perturbations. We also present some basic properties of
the Cosmic Neutrino Background, introducing the dark radiation scenario, and we end the
chapter illustrating the main effects that neutrinos and dark radiation induce in cosmology,
in particular on the CMB and on Large Scale Structure formation.

2.1 Relic neutrinos

The standard hot big bang model predicts the existence of a relic sea of neutrinos that
is in number slightly below to that of relic photons of the CMB. Cosmic neutrinos were
produced at large temperature in the early universe by frequent weak interactions and they
were maintained in equilibrium with other particles of the primordial plasma. Once the
temperature of the universe reached a few MeV they decoupled from the electromagnetic
plasma and could travel as free particles, keeping the perfect Fermi-Dirac distribution, eq.
(1.84). It is important to note that while a massive Fermi-Dirac distribution is not conserved
under free-streaming, this can be ignored because »  m, < 1 MeV.

After neutrino decoupling, the photon temperature dropped below the electron mass
favouring e* annihilation, ete™ = 7, that heated the photons. Neutrinos are basically left
undisturbed by pair annihilation, because the analogous weak process ete™ = v have a low
rate compared to the Hubble parameter, and only a tiny fraction of e goes into neutrinos.
Therefore applying entropy conservation and counting interacting degrees of freedom, we
can calculate the ratio of neutrino and photon temperatures (for more details see [17]):

T, 4N\ /3
~

Given that the CMB temperature is T, o = 2.725 K, the present relic neutrino tempera-
ture is T, = 1.945 K (1.676 x10~* eV). The number density of relic neutrinos per species

35



36 Chapter 2. Massive neutrinos and Dark Radiation in Cosmology

today is given by:

g > 47rp? 3
0T ek /0 Wkt £ 177 = 1" (2.2)

that leads to a value of 113 neutrinos plus anti-neutrinos of each flavour per cm3. The
energy density can be calculated numerically, with two analytical limits (relativistic and
non-relativistic):

T2 [ 4\Y?
<) = 5 (5) 7 -
pv(my, >1T,) = myn, . (2.4)

Thus, when neutrinos become non-relativistic (at a redshift of ~ 2000(m, /1eV)), they
behave as matter; while in the relativistic regime they behave as radiation.

Using the present value of the critical density, p.o = 1.054 x 10*h? eV /cm, and eq. (2.2),
we obtain the neutrino density parameter:

0 h2 _ Zz mMyiNy,o _ EZ My
Y Pe.0 93.3 eV’

(2.5)

in which we sum only over neutrinos which are non-relativistic today. If they were relativistic
today Q,h* =6 x 1075,

Neutrinos fix the expansion rate during the cosmological era when the universe is domi-
nated by radiation. After e* annihilation, the universe was populated only by photons and
neutrinos, therefore the corresponding energy density can be written as:

7 4 4/3

in which it is assumed that there are only three light neutrino species and no other rela-
tivistic species. However, the three neutrino scenario is a minimal scheme, and there is no
fundamental symmetry in nature forcing a definite number of right-handed (sterile) neutrino
species, as those are allowed in the Standard Model fermion content. For this reason, it is
convenient to parametrize the total radiation energy density in terms of the effective number

of relativistic species Neg:
7 4\
1+ 3 <ﬁ) Neg | py - (2.7)

The Standard Model predicts a value of Neg = 3.046, corresponding to the three active
neutrino contribution. The departure of Nog from its standard value, three, is explained in
the following.

In particular, in a more accurate analysis, the assumption of instantaneous neutrino
decoupling can be modified. The main physical reason is that the neutrino plasma receives

Pr =

Pr =
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a contribution from the e® annihilation and, thus, some relic interactions between e* and
neutrinos occur. These processes are more efficient for neutrinos with larger energies that
are more heated, leading to a distortion in the neutrino spectra. A proper calculation
of the process of non-instantaneous neutrino decoupling requires the numerical solution
of the Boltzmann equations (see Refs. [48, 49]). Quantum Electrodynamics (QED) finite
temperature corrections and neutrino oscillations need also to be addressed in the Boltzmann
equations, see Refs. [50, 51]. The final result, after considering non instantaneous neutrino
decoupling, QED corrections and neutrino oscillations is Neg = 3.046.

Measuring N is of great interest today and in this thesis we will consider cosmological
scenarios where this parameter is not fixed to three, and testing, therefore, sterile neutrino
schemes.

2.2 Massive neutrinos

The existence of neutrino was postulated in 1930 by Wolfgang Pauli, as an attempt to explain
the continuous energy spectrum observed in beta-decay experiments. It was postulated as
a neutral particle that scatters only through the weak interaction, and consequently rarely
interacts with matter. In elementary particle physics, neutrinos are fermions with spin 1/2
and they are members of the family of elementary particles called leptons. They differ
from the quarks of the Standard Model (particles with spin 1/2 which participate in strong
and electromagnetic interactions) and from the other leptons, which are charged and thus
interact electromagnetically. Due to their very small cross section, the detection of neutrino
is particularly challenging. The neutrino was first detected in 1956 in an experiment carried
out by Frederick Reines and Clyde Cowan [52], a quarter of a century after the existence of
that particle was predicted.

In the Standard Model of elementary particles, neutrinos are massless particles. How-
ever, during the last several years, oscillation experiments involving solar, atmospheric, re-
actor and accelerator neutrinos have adduced robust evidence for the existence of neutrino
oscillations, implying that neutrinos have masses.

2.2.1 Neutrino oscillations

In 1957 Bruno Pontecorvo realized that if neutrinos were massive there could exist processes,
named neutrino oscillations, where the neutrino flavour is not conserved. The existence of
flavour neutrino oscillations implies that if a neutrino of a given flavour, for example v, is
produced in some weak interaction process at a sufficiently large distance from the detector
location, the probability to find a neutrino of a different flavour, say v,, is different from
ZETO.

Neutrinos are produced and detected, via the weak interaction, as flavour eigenstates v,,
v, or v; and they propagate as mass eigenstates v, 15 or v3. In a three-neutrino scenario,
the flavour states, o = (e, u, 7), are related to the mass eigenstates, i=(1, 2, 3), by a mixing
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matrix called the Pontecorvo-Maki-Nakahawa-Sakata matrix (PMNS) [53, 54]:

|Voz> - Uoz,i |Vz> s (28)
which is parametrized as:
1 0 0 C13 0 8136_26 C12 S12 0
Uoz,i = 0 Co3 S23 0 1 0 —S12 C12 0 s (29)
0 —S8923 Co23 —Slgei(s 0 C13 0 0 1

where ¢;; =cos 0;; and s;; =sin 0,; for ij = 12,23 or 13, and ¢ is a CP-violating phase.

We can order the neutrino masses m; such that ms is the most splitted state and msy >

my, and we can define Am = m7; = m? —m;. With this choice, |[Am3,| and 65 are

1
the atmospheric parameters and Am3; > 0 and 61 are the solar parameters. Oscillation
experiments can only measure squared mass differences and the mixing angles, and their

current 1o allowed regions are (see for example [55, 56, 57]):

Am3, = (7.55015) x 107° eV? | (2.10)
Am3, = (+2.47375067) x 1072 eV? | (2.11)
01, = 33.3670%% , (2.12)

O3 = 40.0721 (2.13)

015 = 8.66704 . (2.14)

Unfortunately these experiments are not sensitive to the absolute scale of neutrino
masses. Also, current oscillation experiments are unable to extract the sign of |Am3|,
leading to two possible schemes, see Fig. 2.1, known as normal and inverted hierarchies and
characterized by the sign of Am3,, positive and negative, respectively.

In Fig. 2.2 we show the sum of the three neutrino masses, m,,, as a function of the
mass of the lightest neutrino mass for the normal and inverted hierarchies. The width of
the curves is related to the current 3o error on the mass splittings. We can note that in the
normal hierarchy scheme, the minimum value for the sum of neutrino masses is >, m,, ~ 0.06
eV while in the inverted hierarchy scheme, this value becomes Y m, ~ 0.1 €V.

Information on the absolute scale of neutrino masses can be extracted from kinematical
studies of weak decays producing neutrinos. The upper bound on the electron-neutrino mass
from tritium beta decay experiments is m < 2.05—2.3 eV [58, 59]. This bound is expected to
be improved by the KATRIN [60] project to measure neutrino masses in the range 0.3 —0.35
eV. The neutrinoless double beta decay experiments also put constraints on neutrino masses,
providing constraints on the so called effective Majorana mass, m.. < 0.36 eV [61]

However the three neutrino oscillation picture is a minimal approach. Additional light
sterile neutrinos (particles that do not interact via any of the fundamental interactions of
the Standard Model except gravity) may exist in nature, since they are not forbidden by
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Figure 2.1: The two neutrino schemes allowed if Am?,}l has a positive or negative sign: normal
hierarchy and inverted hierarchy. The colored bars represent the flavour content of the mass
eigenstates [62].

any symmetry in the standard model, see the review of Ref. [63]. Indeed, there a number
of experiments that investigate neutrino oscillations involving eV-scale sterile neutrino mass
states.

In general, there are two possible types of neutrino oscillations measurements: appear-
ance and disappearance measurements. In the first one, a neutrino of some weak flavour
is produced, and a different neutrino type is observed at some distance from the neutrino
source. In the second one, a known amount of neutrinos of some weak flavour type is
produced, and a smaller amount of that same weak flavour type is observed after some dis-
tance. In 1996 the Liquid Scintillator Neutrino Detector (LSND) [64] experiment reported
evidence for the appearance of 7, in a 7, beam produced via muon decay at rest. The
short baseline of the LSND experiment, coupled with the relatively low neutrino energies
(~ 10-50 MeV) suggests that these oscillations are associated with a mass-splitting on the
order of 1 eV? (corresponding to the ratio between the neutrino energy and the distance
between the source and the detector). This mass splitting is difficult to reconcile with the
atmospheric and solar neutrino oscillations which indicate a mass splitting more that two
orders of magnitude smaller. Attempts to explain the solar and atmospheric neutrino os-
cillations and including as well the results from LSND typically rely on extensions to the
standard model including models with additional sterile neutrino species. The LSND result
has been tested by the MiniBooNE [65] experiment at Fermilab. Recent MiniBooNE an-
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Figure 2.2: " m,, as a function of the mass of the lightest neutrino for both hierarchies. The
blue (red) curve shows the normal (inverted) hierarchy case.
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tineutrino data has some overlap with the evidence for antineutrino oscillations from LSND.
The neutrino mode running also shows an excess at low energy, but the energy distribution
of the excess is marginally compatible with a simple two neutrino oscillation formalism [66].
Models with one additional ~ 1 eV massive sterile neutrino, i.e. the so called (3+1) models,
were introduced to explain LSND short baseline (SBL) antineutrino data [64] by means of
neutrino oscillations. A much better fit to SBL appearance data and, to a lesser extent,
to disappearance data, is provided by models with two sterile neutrinos (3+2) [67, 68| or
with three sterile neutrinos (3+3) [69]. While (3+1) and (3+2) models show some tension
with BBN bounds on N¢T | the extra sterile neutrinos do not necessarily have to feature
thermal abundances at decoupling, and therefore, these models can be perfectly compatible
with current cosmological data. In Chapters III and V we will explore the cosmological
constraints on massive sterile neutrino scenarios.

2.3 Neutrino cosmological perturbations

Here we present the formalism describing the cosmological perturbations of neutrinos in the
massless limit, as well as in the more realistic massive case.

2.3.1 The Boltzmann equation

The evolution of cosmological perturbations associated to relativistic particles, as neutrinos,
is governed by the Boltzmann equation, which takes the form:

a _

i C[f], (2.15)

where C' denotes the eventual collision terms. In the absence of collisions, the distribution
function obeys df /dt = 0.

The momentum of each individual neutrino can be labeled by P;, which is the canonical
conjugate of the comoving coordinate x?. It differs from the proper momentum p; measured
by an observer at a fixed spacial coordinate by:

P, =a(d; 4+ shy)p’ , in synchronous gauge,
P, =a(l—¢)p;, in conformal Newtonian gauge. (2.16)

The phase space distribution of the particles gives their number in a differential volume
dxtdx?dx3dP,dP,d P in phase space:

f(2', P, 7)dz' dx*dz*dPydPyd Py = dN . (2.17)
The zero-th order phase space distribution is [8]:

Js 1

= T (2.18)

fo= folq)
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in which + sign refers to the Fermi-Dirac distribution for fermions and — sign is the Bose-
Einstein distribution for bosons. The factor g, is the number of spin states and Ty = aT
denotes the temperature of the particles today.

Usually, it is convenient to replace P; with the comoving 3-momentum, ¢; = ap;, in order
to eliminate the metric perturbation from the definition of the momenta and it is also possible
to express ¢; in terms of its magnitude and direction: g; = gn;, where n'n; = d;;n'n’ = 1.
This allows us to replace f(a', Pj,7) by f(a' ¢,n;,7) and write the perturbed phase space
distribution as:

f(xi7Q7nj77-) = fO(Q>[1+\P<x27Q7nJ7T)] ) (219)
where the function ¥ < 1 describe the perturbation to fj.

The general expression for the stress-energy tensor computed in terms of the distribution
function and the 4-momentum component is given by:

—-1/2 PP,

T, PO

v = /dpldpgdpg(—g) f(l‘l, Pj, T) s (220)

in which g denotes the determinant of g,,. In the synchronous gauge, we have (—g)~V? =
a1 — 1/2h) and dPdP,dPs; = (1 — 1/2h)q*dqd) up to linear order, where h = h;;
and df) is the solid angle associated with the direction n;. In the conformal Newtonian
gauge, (—g)" Y2 = a=*(1 — 1) + 3¢) and dP,dP,dPs = (1 — 3¢)q*dqdS). Using the relations
[ dQnn; = 4mé;;/3 and [ dQn; = [ dQnmnn, = 0, from eq. (2.20) it follows that, in both
gauges, the form of energy-momentum tensor is [8]:

) = —a4/q2dqu\/q2+m2a2f0(q)(1 + V), (2.21)

T = ot / Pdqdqns fo(q) D | (2.22)
g°nin;

7 = ot [ oo fola)(1+ ) (223)

to linear order in perturbation theory.
We can now write the Boltzmann equation, which describes the evolution of the phase
space distribution, in terms of our variables (z*, g, n;, 7):

ﬁ_g+dxi8f+dq8_f+dni8f_<g)
or) s

(2.24)

dt — 0r  dr o' ' drogq  dr On
The terms % and % are first-order quantities, thus the term %% in the Boltzmann
equation can be neglected to first order. Therefore the Boltzmann equation, in k£ space and

in the two gauges, can be written as [8]:

Synchronous gauge:

WGy o [7'7— h+677(1%-ﬁ)2] _ 1 (ﬁ) , (2.25)
€ c

dr dlng 2 fo \Oor
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Newtonian gauge:

@+¢Q(E-ﬁ)m+ dIn fo [é—if(g-ﬁ)@b] _ 1 (g) . (2.26)
q q C

2.3.2 Massless Neutrinos

The energy density and pressure for massless neutrinos are p, = 3p, = =19 = T!. From eq.
(2.23), the unperturbed energy density p, and pressure p, are given by:

Py = 35, — a~ / Pdadqfo(q) | (2.27)

and the perturbation in the energy density dp,, in the pressure dp,, in the energy flux 577,
and in the shear stress ¥}, = T, — p,0;; are(8] :

op, = 30p, = a_4/q2dquqf0(q)\I/ , (2.28)
0Ty, = a* / q*dqdQqni fo(q) ¥ (2.29)
; _ 1
For a massless neutrino € = ¢, simplifying the Boltzmann equation. To reduce the

number of variables we can integrate out the ¢ dependence in the neutrino distribution
function and expand the angular dependence of the perturbation in a series of Legendre
polynomials B(k - n):

o qudqqfoq\I’ - .
EF,(k,n,1)= = 2l+1 kTPk . 2.31
( ) Fdua (@) ZE L (k, 7)P(k - 7) (2.31)

—

In terms of F,(k,n,7), the perturbations d,, 6, and ¥, can be written as:

5, — L [aar, (k,a,7) = F, (2.32)
4T
6, = = [ 4@ n)F,(F.h ) = SkE (2.33)
v 167’(’ v\lvy Ity 4 vl .
5, = —— [0 {(E ﬁ)Q—l} Fy(zz;’fm):1 . (2.34)
167 3 T 27
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Integrating the equations (2.25) and (2.26) over ¢*dqq fo(¢) and dividing them by [ ¢*dqqfo(q),
the Boltzmann equations for massless neutrino in the two gauges becomes |[8]:

Synchronous gauge

OF,
or

~2h— S 6P (2.35)

Newtonian gauge
oF,
or

L =4 —ikpy) | (2.36)

where p = k- 7 and P = 1/2(3u* — 1) is the Legendre polynomial of degree 2. Using
the Legendre expansion for F', together with the orthonormality property of the Legendre
polynomials and the recursion relation (I+1)P(p) = (204 1)uBy(p) — P-4 (1), we obtain:

Synchronous gauge:

: 4 2.
0y = =30, —3h, 2.37
37 3 (2.37a)
: 1
0, =k* (Zéy — O',,) , (2.37h)
: 8 3 4. 8
Fip =20, = ~=6, — “kFys + —h+ 21 | ).
2 g 15 5 3 + 5 + 57] ( 370)
k
F”l T 9l + 1[ZF -1y — (I + I)FIJ(HI)] >3 (2.37d)
Newtonian gauge:
. 4 _
Oy = =30, +49, (2.38a)
: 1
b, = k* (ﬁu - Ou) +kY (2.38b)
: k
= 2+ 1 [ZFV(l 1) (l + 1>FV(l+1)] A>3 (2.38C)

These equations govern the evolution of the phase space distribution of massless neutri-
nos. Later in this Chapter we shall see how these equations change in the case of a general
dark radiation fluid.

2.3.3 Massive Neutrinos

Massive neutrinos also obey the collisionless Bolztmann equations. However, their distribu-
tion function is complicated by the fact that they have a non zero mass. From eq. (2.23),
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the unperturbed energy density and pressure for massive neutrinos are given by [8]:

py = a* / ¢*dqdQefo(q) , (2.39)
1 2
po = got [ Pdaarita) (240)
where € = \/¢? + m2a?.
The perturbations are:
op, = a_4/q2dquef0(q)\I', (2.41)
L, 2 ¢’
op, = ga q dqu?fo(Q)‘IU (2.42)
1 = ot [ dadfan i)y (2.43)
i —4 2 ¢ 1
X, = a q dqu?(ninj - g@j)fo(Q)‘P : (2.44)

In this case we cannot integrate out the ¢ dependence in the distribution function, as
we did for the massless neutrinos, because €(q,7) depends on the momentum and time.
However, it is possible to expand the perturbation ¥ in multipoles space:

Uk, h,q,7)" i(—i)l(% + 1)U ((k,q,7)P(k - 7) . (2.45)

Therefore the perturbed energy density, pressure, energy flux and shear stress in k-space
become:

op, = 47ra4/q2dqef0(q)‘llo : (2.46)
Y q>
op, = 5@ 4/(1203(1?]00((1)‘1’0 : (2.47)
(P + D)0, = 4mka™ / ¢*dqqfo(q)Vy | (2.48)
B B 8T _, 9 q>
(pu -l—p,,)(fy = ?a q dQFfO<Q)\I’2 . (2-49)

Following the same strategy used for massless neutrinos, we can obtain the Boltzmann
equations for massive neutrinos in the two gauges:
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Synchronous gauge:

o = =0 = h 2.
’ e ' 6 dlng’ (2.50a)
vy = 3—(\1’0 —202) | (2.50b)
€
gk 1. 2.\dhnf
Uy =—(20; —3¥3) — | — - 9.
2= 5 (201 = 3%s) (15h+577> dlng’ (2.50¢)
. gk
V)= ——— V4 — (I +1)¥ [>3. 2 50d
: (2l+1)e[ -1 — (L +D¥aen] 123 (2.50d)
Newtonian gauge:
T qk 'dlﬂfo
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’ e ¢dlnq ' (2.51a)
T qk: ek dlnfo
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1= g el e — U D¥an] 12 (2.51c)

Because of the ¢ dependence, the integration of these equations is computationally ex-
pensive.

2.4 Dark radiation models

One of the major theoretical predictions of standard cosmology is the existence of a relativis-
itc energy component (Cosmic Neutrino Background, CNB), besides CMB photons, whose
energy density is given by eq. (2.7). The cosmological abundance of relativistic particles
as active or steriles neutrinos or any other light particle is parametrized in terms of the
effective number of relativistic degrees of freedom N.g. As we have seen in section 2.1, the
expected value of N.g is 3.046, which corresponds to the standard case of the three active
neutrino species.

In recent years, cosmological data seem to suggest values for N.g higher than the standard
one. Measurements of CMB anisotropies from WMAP combined with ACT, SPT, BAO and
HST data sets have provided the constraint Neg = 3.84 £ 0.40 [18]; more recently, Planck
data combined with WMAP polarization, high-¢ CMB data and BAO have reported the
bound Neg = 3.307021 at 95% CL [9)].

A larger value for N.g could arise from new physics, not only related to sterile neutrinos,
as is the case of axions [70, 71|, decaying of non-relativistic matter models [72], gravity waves
[73], extra dimension [74, 75, 76|, dark energy [77| or asymmetric dark matter models |78].
Information on the dark relativistic background can be obtained not only from its effects
on the expansion rate of the universe but also from its clustering properties. For example,
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if dark radiation is made of massless neutrinos it should behave as relativistic particles also
from the point of view of perturbation theory. Therefore, following [79] and considering the
set of equations that describes perturbations in the massless neutrino case (2.37), one can
derive:

dar = g(l — 3cZy) <5dr + 4%%) - gedr — ;h ; (2.52)
0 = 3k*g (% + g%) — gedr — %k%dr , (2.53)
Tar = gciis (% +a) — ngdr,g , (2.54)
Fpy = QZLH[JFM_U —(l+ D Fy 4] 1 >3 (2.55)

in which ¢Z; is the effective sound of speed that describes pressure fluctuations, %, is

the viscosity parameter, 7. is the anisotropic stress perturbation, and o is the metric shear
defined as o = (h+617)/(2k), with h and 7 the scalar metric perturbations in the synchronous
gauge. The relationship between metric shear and anisotropic stress is parametrized through
the viscosity parameter, c2, :

vis*

Tar = —327% +4ct(Oar + 0). (2.56)

The physical interpretation of this equation is that the anisotropic stress will act to
damp out velocity fluctuations on shear-free frames if ¢, > 0. In other words the viscosity
parameter controls the relationship between velocity /metric shear and anisotropic stresses
in the neutrino background.

For standard neutrinos, we have ¢z = %, = 1/3. This value for ¢?, means that
free streaming of relativistic neutrinos produces anisotropies in the neutrino background; if
c%. = 0, we have the case of a perfect fluid without anisotropic stress, with only density and

pressure perturbations.

2.4.1 Interacting dark matter dark radiation scenarios

Interacting dark radiation arises naturally in the so-called asymmetric dark matter models
(see Ref. [80]) , in which the dark matter production mechanism is similar and related
to the one in the baryonic sector. In these models, there exists a particle-antiparticle
asymmetry at high temperatures in the dark matter sector. The thermally symmetric dark
matter component will annihilate and decay into dark radiation degrees of freedom. Since
the dark radiation and the dark matter fluids are interacting, there was an epoch in the
early universe in which these two dark fluids were strongly coupled. This results in a tightly
coupled fluid with a pressure producing oscillations in the matter power spectrum analogous
to the acoustic oscillations in the photon-baryon fluid before the recombination era. Due
to the presence of a dark radiation-dark matter interaction, the clustering properties of the
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dark radiation component can be modified. In other words, if dark radiation is made of
interacting particles, the values of the clustering parameters ¢?; and % may differ from the
canonical ¢ = ¢, = 1/3.

The dark matter component behaves as a non-relativistic fluid described, in the uncou-
pled case, by the equations (1.53) with 0p/dp = w = 0 and metric shear 0 = 0. The dark
radiation component is described by the equations (2.52) and (2.53). In the presence of a
dark radiation-dark matter interaction, the modified Euler equations for these two fluids

read:

) a 4pdr

em - __em 5 m mfrer_'gmu 2.57
d p +3,0dmcmd Oam—dr (Oa dm) ( )
. 1

edr - _k2(5dr - 27Td7") + andmadm—dr(edm - Hdr) s (258)

4

in which we have considered the standard value of ¢%; for brevity. The term an g, o am—dr (Odm—
04) in eq. (2.58) represents the momentum transferred to the dark radiation component
and the quantity ang,ogm_a- is the differential opacity which gives the scattering rate of
dark radiation by dark matter.
The complete Euler equation for dark radiation, including the interaction term with dark
matter, reads:
a 0y,
a k?
It is convenient [81] to parametrize the coupling between dark radiation and dark matter
through a cross section given by:

: 1 ] 1
Gdr = 3]{)2055 <Z(5dr - ) - g@d, - §k2ﬂ'dr —+ andmadm,drwdm — Hd,,) . (259)

(Tam—ar|V]) ~ Qo Mam (2.60)
if it is constant, or
Q
(Gam—ar|V]) ~ a—j Mdm (2.61)

if it is proportional to T2, where the parameters @y and @, are constants in cm? MeV !
units. It has been shown in Ref. [78] that the cosmological implications of both constant
and T-dependent interacting cross sections are very similar. In Chapter VI we will present
the cosmological constraints on interacting dark radiation schemes assuming a constant in-
teraction rate.

In the next section we will explain the impact of dark radiation species on the CMB and
on Large Scale Structure measurements.

2.5 Neutrino properties and cosmological observations

2.5.1 Standard cosmology plus three massive neutrinos

Cosmology can provide strong bounds for the sum of the neutrino masses. This is because
neutrinos play a relevant role in large-scale structure formation and leave key signatures in
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several cosmological data sets.

If a fraction of the dark matter is made up of neutrinos (2, = Q, + Qpy = U +
Qcpm + €2,), they modify the evolution of matter perturbations. In particular, once the
CDM perturbations enter into the matter dominated era, neutrinos will slow down the
rate at which these perturbations grow. In order to understand this effect, we use eq.
(1.63) to compute the linear growth of CDM perturbations in a universe containing massive
neutrinos. The difference with the equation governing the evolution of CDM perturbations
in a neutrinoless universe is that neutrinos affect the expansion rate:

871G

H* = —3 (Popyr + oy + o) - (2.62)

Let us assume that neutrinos are non-relativistic at some epoch of the matter dominated
era and we introduce the parameter:
ﬁu QV

v — 7 _ — N — T~ 2.63
4 (peprr + oo+ pv) O (263)

whose value remains approximately constant because the neutrino energy density will scale

as p, o< a—>. Then, the scale factor still evolves like 7% and the equation of evolution reads

aslz

2. 6
—dcpm = (1= fi)deom =0, (2.64)

whose solutions are dcpy = AT+ + B1Y—, with:

. —1+/1 +424(1 —f) (2.65)

Therefore, in the matter dominated era, the growth of CDM perturbations is suppressed
by the presence of massive neutrinos as:

5CDM +

Di(a) ~ a' =G/ (2.66)

The growth of CDM perturbations is reduced due the fact that one of the component
in the universe contributes to the homogeneous expansion rate but not to the gravitational
clustering.

In Fig. 2.3 we plot the linear power spectrum, computed with CAMB [82], for a mass-
less neutrino universe using the best fit parameters from Planck measurements, [9], (red
line). We also plot the linear power spectrum of different cosmological models with three
degenerate massive neutrinos.

Notice that neutrinos suppress the power on spatial scales below the free streaming scale
when they become non relativistic (we will carefully explain this effect in Chapter IV). The
redshift at which neutrinos become non relativistic reads

m
14 2y, ~ 1890 ( v ) , 2.67
e 1eV ( )

IThis equation refers to spatial scales smaller than the neutrino free streaming scale.
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Figure 2.3: Linear power spectrum for three cosmological models with three degenerate massive
neutrinos and for one with massless neutrinos. The red line depicts the matter power spectrum
P(k) for the best fit parameters for a ACDM model with massless neutrinos from the Planck
data set. Neutrino free-streaming produces a decrease in the amplitude of the power spectrum
on small scales.



2.5. Neutrino properties and cosmological observations 51

while the wavenumber associated to the free streaming scale is given by

0.677 ( m,

N 1/2 -1
el rewerrcA 6 eV) QY2 Mpe! | (2.68)

being m,, the neutrino mass, and €2, the total matter component, see the Appendix of [83]
for more details.

This suppression comes from the two effects. The first one is that neutrinos modify the
matter radiation equality. This time represents the epoch when the contribution of radiation

to the total energy content of the universe equals the contribution from matter and is given
by:

Q,

S — 2.69
Qp + Qcpu (2:69)

Qeq

with €2, taking contributions from both photons and neutrinos. Since both cosmological
models, with massive or massless neutrinos, make the same contribution to €2, at this epoch
(at the time of matter-radiation equality, neutrinos of masses > m, < 1 eV are relativistic,
so they contribute to the energy density as radiation instead of as matter), the decrease in
Qcpw, which is due to massive neutrinos, modifies the matter radiation equality time by a
factor (1 — f,)7%

agg = aﬁgfo(l — ). (2.70)

Given that perturbations do not grow as fast in the radiation dominated era as in the
matter dominated era, we expect that structures would be less evolved in the case with
massive neutrinos, i.e. the power spectrum on small scales should be suppressed. As we
have explained above, the second one effect is due to the fact that neutrinos slow down the
rate at which CDM perturbations grow, eq. (2.66). This effect produces a suppression in
the matter power spectrum on small scales. On very small scales, the suppression caused
by neutrinos can be estimated to be (see Ref. [84])

p(k)fy

Pl)=0 (1— £,)°[1.9 x 10°g(ao)Qmh? f, /N, )75 (2.71)

with g(ag) a function, evaluated today, that accounts for the change in the growth factor
due to the presence of a cosmological constant. For values of f, < 0.07 the above expression
can be approximated by the well known formula [85]:

P(k) — P(k)=" AP
P(kyf=0  ~ P

~ _gf, . (2.72)

For a model with three degenerate massive neutrinos, we have that for f, < 0.1, neutrino
species are still relativistic at the time of decoupling, and the direct effect of free-streaming
neutrinos on the evolution of photon-baryon acoustic oscillations is the same for both cases
with massive and massless neutrinos. The main effect in the CMB anisotropy spectrum
is due the FEarly Integrated Sachs Wolfe effect. In a matter-dominated universe with zero
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mean curvature, gravitational potentials remain constant to first order in linear perturba-
tion theory. Adding components that do not cluster, while keeping the curvature fixed to
zero, increases the expansion rate which causes the gravitational potentials to decay. As
photons traverse these decaying potentials, new anisotropies are created by the so-called
Integrated Sachs-Wolfe (ISW). The ISW anisotropy is generated in the CDM model both
at early times, as photons free stream after decoupling (the early ISW) and at late times
after the cosmological constant becomes important (the late ISW) [19]. The transition from
the relativistic to the non relativistic neutrino regime will affect the decays of the gravita-
tional potentials at the decoupling period. This produces an enhancement of small-scale
perturbations, especially near the first acoustic peak. Since neutrinos are still relativistic at
decoupling they sould be counted as radiation instead of matter around the time of equality.
Therefore, when f, increases, a., increases proportionally to (1 — f,)~! and the equality is
postponed. When this occurs the time of equality increases slightly the size of the sound
horizon at recombination (that is, the integral of csdta(t) between 0 and 7. ) and the acous-
tic peaks are shifted to the left, towards smaller multipoles. At last, massive neutrinos
suppress the lensing power. We can see these effects in Fig. 2.4 in which we plot the CMB
temperature anisotropy spectrum for three different models.
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C, I(1+1)/2m [uK]

2000
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Figure 2.4: CMB temperature anisotropy spectrum Cy for four models: the massless neu-
trino ACDM model (red line), and three models with three massive degenerate neutrinos. We
consider the best fit parameters for a ACDM model from Planck measurements.
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If neutrinos were heavier than a few eV, they would be already non-relativistic at de-
coupling. This case would require a more complicated description that would affect the
photon-baryon fluid. However, we will see in this thesis that this situation is highly dis-
favoured by current cosmological data.

Since the two-dimensional (2D) power spectrum of galaxies is related to 3D matter power
spectrum P(k), eq. (1.105), in the presence of massive neutrinos, also the angular power
spectrum is suppressed at any redshift and this suppression could be partially compensated
by increasing the cold dark matter energy density. In Fig. 2.5 we illustrate this effect for
four models with different values of > m,,.
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Figure 2.5: Effect of neutrinos on the matter angular power spectra, Cy, for the best fit
parameters for a ACDM model from the Planck data. We consider four cases with different
values of Y m,. The data correspond to the observed power spectrum obtained from BOSS
DR8 in the redshift bin 0.45< z <0.5 [40]. The red line depicts 2D spectra for a ACDM model

assuming no massive neutrino species.

The impact of massive neutrinos on the C;, power spectra will be carefully analysed in
Sec. IV.

Measurements of all of these observables have been used to place new bounds on neutrino
physics from cosmology, setting an upper limit on the neutrino mass below ~ 0.5 €V. Recent
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results from the Planck experiment combined with WMAP polarization, high-¢ CMB data
and BAO measurements provide an upper limit on the sum of the masses of neutrinos of
> om, < 0.23 eV [9].

Additional sterile neutrino species will have the same impact in the cosmological observ-
ables with the difference that, in this case, N.g is also modified. We will explain the impact
of N.g on the different cosmological observables in the next section. Models with additional
sterile neutrino species will be fully examined in Chapters III and V.

2.5.2 Dark radiation

As previously stated, the effective number of neutrinos is Nog = 3.046 in which we take into
account some corrections due to non instantaneous neutrino decoupling. A larger value of
Neg would imply the existence of an extra relativistic component.

To illustrate the effects of N.g on the CMB, we plot the CMB power spectra for several
values of Ng in Fig. 2.6, considering the best fit parameters from the Planck data set [9]
. From Fig. 2.6 we can see that increasing the value of Ng, the height of the first peak
is enhanced and the positions of acoustic peaks are shifted to higher multipoles. Also, the
amplitude on small scales (higher multipoles) is suppressed.

This occurs because one of the main effects of Nog on the CMB temperature anisotropies
arises from the change of the epoch of the radiation-matter equality. By increasing (decreas-
ing) the value of Ng, the radiation-matter equality occurs later (earlier). Thus the increase
(decrease) of Nog gives an almost the same effect of the decrease (increase) of energy density
of matter. This leads to an enhancement of the height of the first peak due to the early
integrated Sachs-Wolfe (ISW) effect in which fluctuations of the corresponding scale, having
crossed the sound horizon in the radiation-dominated epoch, are boosted by the decay of
the gravitational potential [86] . Thus a larger amount of relativistic species drives the first
peak higher. Another effect is the shift of the position of acoustic peaks due to the change
of the radiation-matter equality through the changes of N.g. This position is given by the
acoustic scale 64, which reads:

Ts(zrec)
TG(Zrec)

where 79(2rec) and 75(zpe.) are the comoving angular diameter distance to the last scattering
surface and the sound horizon at the recombination epoch z,.., respectively. Although
T9(2rec) almost remains the same for different values of Neg, 75(2e.) becomes smaller when
Neg is increased. Therefore, the positions of acoustic peaks are shifted to higher multipoles
(smaller angular scales) if the value of Neg is increased. Furthermore, since the position of
the n-th peak can be written as ¢,, ~ nw /04, separations of the peaks become also greater
for larger N.g. However, this effect can be compensated by changing the cold dark matter
density, in such a way that z,.. remains fixed, see ref [87]|. Therefore, due to the degeneracy
with the cold dark matter component, the change induced at low ¢ is negligible and the
largest impact of Neg on the CMB temperature anisotropies comes from its effect on high

04 =

, (2.73)
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Figure 2.6: CMB temperature power spectrum Cy for five models with a different value of Neg
considering the best fit parameters for a ACDM model from the Planck data. The red line
depicts the standard case with Neg = 3.046. An increase of Nog leads to an enhancement of
the first peak and a shift of the acoustic peaks towards higher multipoles.

multipoles ¢, since a higher value of N.g will induce a drop in power at small scales due to
an increased Silk damping. Silk damping refers to the suppression in power of the CMB
temperature anisotropies on scales smaller than the photon diffusion length.

An increase of the effective number of neutrino N.g also produces a suppression in the
matter power spectrum due to the change in the epoch of matter-radiation equality.

A change in the effective sound speed ¢Z; and in the viscosity parameter ¢2, affects both

vis
the CMB spectrum and the matter power spectrum.

Varying c%_ modifies the ability of the dark radiation to free-stream out of the potential

wells. In particular, lowering c2 to the value %, = 0, the TT power spectrum is enhanced
with respect to the standard case. This situation can be explained, roughly, as the dark
radiation component becoming a perfect fluid. That is, we are dealing with a single fluid
characterized by an effective viscosity. Disregarding the fluid nature and the physical origin
of the viscosity, the general consideration holds: for a given perturbation induced in the
fluid, the amplitude of the oscillations that the viscosity produces increases as the viscosity
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is reduced. Therefore, lowering ¢?, diminishes the amount of damping induced by the dark
radiation viscosity, and, consequently, the amplitude of the CMB oscillations will increase,
increasing in turn the amplitude of the angular power spectrum.

On the other hand, a change of ¢% implies a decrease of pressure perturbations for
the dark radiation components in its rest frame. In particular, a decrease in cZ; from its
canonical 1/3 to the value ¢%; = 0 leads to a damping of the CMB peaks, since dark radiation
is behaving as a pressureless fluid from the perturbation perspective. Thus as ¢Z; decreases,
the height of the acoustic peaks decreases.

While varying the viscosity parameter ¢, the matter power barely change, a change
in % changes dramatically. For instance, if ¢%; = 0, dark radiation is a pressureless fluid
which behaves as dark matter, inducing an enhancement of the matter fluctuations.

These perturbation parameters can be constrained through measurements of the CMB
anisotropies since dark radiation is coupled through gravity with all the remaining com-
ponents. This opens a new window for testing the dark radiation component, since, for
example, a smaller value for ¢%, could indicate possible non standard interactions. Con-
straints on these parameters have been obtained by several authors, since the observation of
deviations from the standard values could hint for non-standard physics. The most recent
constraints for ¢Z; and ¢, have been obtained combining current Planck data with WMAP
low-¢ measurements for polarization plus BAO and HST data sets: ¢%; = 0.306 £ 0.013 and
k. =0.53+0.16 [88].

In Chapter V, we will present bounds from recent cosmological data on the dark radia-
tion parameters Nog, % and ¢ extending the ACDM cosmological model and analyzing
the correlations among the dark radiation parameters and the remaining cosmological pa-
rameters, as the dark energy equation of state or the scalar spectral index. In Chapter VI,
we will explore the bounds on Neg,c% and ¢, considering a ACDM cosmology plus a dark

vis
radiation-dark matter interaction.
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Chapter 3

Constraints on massive sterile neutrino
species from current and future
cosmological data

In this Chapter we study a flat ACDM scenario with Neg active plus sterile massive neutrino
species, in order to test the so-called (342) model with cosmological data. This Chapter is
a copy of the paper:

Constraints on massive sterile neutrino species from current and future cosmological
data, Elena Giusarma, Martina Corsi, Maria Archidiacono, Roland De Putter, Alessandro
Melchiorri, Olga Mena & Stefania Pandolfi, 2011, Physical Review D83, 115023.

3.1 Introduction

Solar, atmospheric, reactor, and accelerator neutrinos have provided compelling evidence
for the existence of neutrino oscillations, implying non-zero neutrino masses (see Ref. [89]
and references therein). The present data require the number of massive neutrinos to be
equal or larger than two, since there are at least two mass squared differences (Am?, . and
Am?2 . ) driving the atmospheric and solar neutrino oscillations respectively. Unfortunately,
oscillation experiments only provide bounds on the neutrino mass squared differences, i.e.
they are not sensitive to the overall neutrino mass scale.

Cosmology provides one of the means to tackle the absolute scale of neutrino masses.
Neutrinos can leave key signatures in several cosmological data sets. The amount of primor-
dial relativistic neutrinos changes the epoch of the matter- radiation equality, leaving an
imprint on both Cosmic Microwave Background (CMB) anisotropies (through the so-called
Integrated Sachs-Wolfe effect) and on structure formation, while non relativistic neutrinos
in the recent Universe suppress the growth of matter density fluctuations and galaxy clus-
tering, see Ref. [84]. Cosmology can therefore weigh neutrinos, providing an upper bound
on the sum of the three active neutrino masses, > m, ~ 0.58 eV at the 95% CL [90]. The
former bound is found when CMB measurements from the Wilkinson Microwave Anisotropy

99
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Probe (WMAP) are combined with measurements of the distribution of galaxies (SDSSII-
BAO) and of the Hubble constant Hy, (HST) ! in the assumption of a flat universe with a
cosmological constant, i.e. a ACDM cosmology.

However, the three neutrino scenario is a minimal scheme, and there is no fundamental
symmetry in nature forcing a definite number of right-handed (sterile) neutrino species,
as those are allowed in the Standard Model fermion content. Indeed, cosmological probes
have been extensively used to set bounds on the relativistic energy density of the universe
in terms of the effective number of neutrinos N (see, for instance, Refs. [91, 92, 93,
94, 95|). Currently, WMAP, SDSSII-BAO and HST data provide a 68% CL range on
N = 434708 [90] in the assumption of a ACDM universe. If the effective number of
neutrinos N is larger than the Standard Model prediction of N¢T = 3.046 at the Big
Bang Nucleosynthesis (BBN) era, the relativistic degrees of freedom, and, consequently, the
Hubble expansion rate will also be larger causing weak interactions to become uneffective
earlier. This will lead to a larger neutron-to-proton ratio and will change the standard BBN
predictions for light element abundances. Combining Deuterium and *He data, the authors

of Ref. [93] found N = 3.1717 at the 95% CL.

Models with one additional ~ 1 eV massive sterile neutrino, i.e. the so called (3+1)
models, were introduced to explain LSND short baseline (SBL) antineutrino data [64] by
means of neutrino oscillations. A much better fit to SBL appearance data and, to a lesser
extent, to disappearance data, is provided by models with two sterile neutrinos (3+2) [67, 68|
which can also explain both the MiniBooNE neutrino [65] and antineutrino data [96] if CP
violation is allowed [97]. CP violation can even occur in (3+1) scenarios with only one
relevant mass squared difference in the presence of non standard neutrino interactions (NSI).
Therefore, the (341) NSI model can also nicely explain current data [98]. While (341) and
(3+2) models show some tension with BBN bounds on N¢T| the extra sterile neutrinos do
not necessarily have to feature thermal abundances at decoupling. The first analysis of
both SBL oscillation data and cosmological data was performed by the authors of Ref. [99],
where the usual full thermalization scenario for the sterile neutrino species was not assumed.
Instead, the sterile abundances were computed taking into account the multi flavour mixing
processes operating at the neutrino decoupling period. Robust bounds on sterile neutrino
masses, mixings and abundances were derived. However, the masses of the three active
neutrinos were fixed to my ~ 0, ma ~ /Am2, —and ms ~ /AmZ, .. In Ref. [100] the
authors derived the bounds on a light sterile neutrino scenario enlarging the usual thermal
scenario. More recently, the authors of Ref. [101] have used current cosmological data to
analyze two possible active plus sterile neutrino scenarios, one with massless active neutrinos
(and massive steriles) and the other one with massless steriles states of unknown number
(and massive active species). However, there are no cosmological bounds on the more natural
and oscillation-data motivated scenario in which both the sterile and the active neutrinos
have masses. Active neutrinos are massive; this is what oscillation data are telling us. In the
same way, the LSND and MiniBooNE antineutrino data, if explained in terms of neutrino
oscillations, point to the existence of massive sterile neutrino species. What oscillation data

1For other recent analyses, see also Refs. [91, 92].
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can not tell us is the absolute scale of neutrino masses and this is precisely what we address
in this study, in the spirit of Ref. [102|, via present and future cosmological measurements.
The paper is organized as follows. In Sec. 3.2 we present the constraints on the active
and sterile neutrino masses and on the number of sterile species from current cosmological
data as well as from BBN measurements of light element abundances. Section 3.3 is devoted
to future errors on these parameters. We describe the Fisher matrix method used here for
forecasting errors and discuss the potential results from the ongoing Planck CMB mission
combined with future BOSS and Euclid galaxy survey data. We also describe the induced
biases on some parameters (such as Hy and m,) when the cosmological model does not
account for the presence of sterile states to describe the data. We conclude in Sec. 3.4.

3.2 Current constraints

Here we summarize the constraints from current data on the active neutrino masses and
on the sterile neutrino thermal abundance and masses. We have modified the Boltzmann
CAMB code [82] incorporating the extra massive sterile neutrino parameters and extracted
cosmological parameters from current data using a Monte Carlo Markov Chain (MCMC)
analysis based on the publicly available MCMC package cosmomc|[103]. We consider here a
flat ACDM scenario plus three (N,,) active (sterile) massive neutrino species, described by
a set of cosmological parameters

{wba wca 687 7_7 ’I’LS, log[1010A8]7 mV? mVs? NVs} ’ (31)

where w, = Qph? and w, = Q.h? are the physical baryon and cold dark matter densities, ©,
is the ratio between the sound horizon and the angular diameter distance at decoupling, 7
is the optical depth, ng is the scalar spectral index, A, is the amplitude of the primordial
spectrum 2, m, is the active neutrino mass, m,, is the sterile neutrino mass and N, is
the number of thermalized sterile neutrino species. We assume that both active and sterile
neutrinos have degenerate mass spectra (m, and m,, are the individual masses, not the
sum of the masses). The flat priors assumed on these cosmological parameters are shown
in Tab. 6.1.

Our basic data set is the seven—year WMAP data [90, 104] (temperature and polar-
ization) with the routine for computing the likelihood supplied by the WMAP team. We
consider two cases: we first analyze the WMAP data together with the luminous red galaxy
clustering results from SDSSII (Sloan Digital Sky Survey) [105] and with a prior on the
Hubble constant from HST (Hubble Space Telescope) [106], referring to it as the “runl”
case. We then include to these data sets Supernova Ia Union Compilation 2 data [15],
and we will refer to this case as “run2”. In addition, we also add to the previous data
sets the BBN measurements of the “He abundance, considering separately helium fractions
of Y} = 0.2561 & 0.0108 (see Ref. [107]) and of ¥;? = 0.2565 % 0.0010 (stat.) =0.0050
(syst.) from Ref. [108]. Finally, we also consider the Deuterium abundance measurements
log(D/H) = 4.56 4+ 0.04 from Ref. [109].

2The pivot scale assumed in this study corresponds to kg = 0.05 Mpc~!.
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Parameter Prior
Quh* 0.005-0.1
Q.h? 0.01-0.99
O 0.5-10
T 0.01-0.8
N 0.5-1.5
In (101°A4,) 2.7-4
my, [eV] 0-3
m, [eV] 0-3
N, 0-6

Table 3.1: Flat priors for the cosmological parameters considered here.

It is important to clarify that CMB anisotropies also depend on the value of Y, but
since Y}, is constrained loosely by current CMB/LSS data, it is consistent to fix it to value
Y, = 0.24 in the CMB runs and to consider it as an independent parameter constrained by
BBN observations.

Given a cosmological model, we predict the theoretical primordial abundance of Y, and
log(D/H) by making use of the public available PArthENoPE BBN code (see [110]).

Since running cosmomc and getting at the same time the theoretical predictions from
Parthenope for BBN would be be exceedingly time-consuming we perform importance sam-
pling obtaining the predicted values for Y, and log(D/H) with an interpolation routine
using a grid of Parthenope predictions for each (w,, N,,), as in [111].

Parameter 68% CL(rl) 95% CL(rl) 68% CL (r2) 95% CL (r2)

N, <25 <41 <20 < 3.2
m,, [eV] <0.13 < 0.30 < 0.10 < 0.20
my, [eV] < 0.22 < 0.46 < 0.20 < 0.50

Table 3.2: 1D marginalized bounds on the active and sterile neutrino parameters using the two
combinations of data sets described in the text (rl refers to “run 1”7 and r2 refers to “run 27,
respectively).

Table 3.2 shows the 1D marginalized bounds on N,_, m,_ and m, arising from the two
different analyses performed here on cosmological data sets. The marginalized limits have
been computed setting a lower limit of 0 in all the three neutrino parameters here explored.
The bounds obtained on the parameters associated to the dark matter candidates considered
here are consistent with those obtained in Ref. [71] after taking into account the differences in
the thermal abundances of sterile neutrinos and QCD thermal axions. When we marginalize
over all the cosmological parameters, see Tab. 3.2, the 95% CL upper bound for N, is 4.1
(3.2) using “runl” (“run2”) data sets. Therefore, current cosmological data does not exclude



3.2. Current constraints 63

YIT107] YZ[108] VI + D[109] Y2+ D [109]

N, <23 < 1.7 < 1.7 <14
m, [eV] < 0.17 < 0.15 < 0.15 < 0.15
m,, V] < 0.62 < 0.67 < 0.69 < 0.68

Table 3.3: 1D marginalized 95% CL bounds on N,_, m,, and m, after combining the results
of “run 2” with those coming from different measurements of BBN light element abundances.

at the 95% CL the existence of ~ 2 sterile neutrino species with sub-eV masses plus three
sub-eV active massive neutrinos. It would be interesting to further explore if a model with
sterile neutrinos is preferred over the model with only three active neutrinos. The results
here are also in very good agreement with those of Ref. [101] even if in the former analysis
the two species, i.e. the active and sterile neutrino states, were not considered to be massive
at the same time.

Table 3.3 shows the 95% 1D marginalized bounds on N, , m,, and m, arising when
different combinations of BBN light element abundances measurements are combined with
“run 2” results. Note that when measurements of the *He abundance are added to CMB,
galaxy clustering and SNla data, the 95% CL upper limit on N, is 2.3 (1.7) if Yp1 =
0.2561 £ 0.0108 (Y,? = 0.2565 + 0.0010 % 0.0050) is assumed. Since the number of sterile
species after adding BBN constraints is smaller than before, the sterile (active) neutrino
masses can get slightly larger (smaller) values, since BBN data is insensitive to the dark
matter density in the form of massive neutrinos at late times. The combination of Helium
and Deuterium abundance measurements compromises the viability of (3+2) models, leading
to N,, < 1.7 — 1.4 at the 95% CL. However, the two sterile states might not have thermal
properties at decoupling and evade BBN constraints. A complete analysis [112] including
sterile neutrino mixing parameters and recent reactor neutrino oscillation results [113] is
mandatory.

Figure 3.1, top panel to the left, depicts the 68% and 95% CL allowed contours in the
m,—N,, plane. The blue (red) contours denote the allowed regions by “runl” (“run2”) data
sets. Notice that there exists a degeneracy between these two quantities. This degeneracy
is similar to the one found by the authors of Ref. [101]. When the mass energy density
in the form of massive neutrinos is increased, the number of extra relativistic species must
also be increased to compensate the effect. This will be the case for massless sterile species.
In our analysis, the degeneracy is milder since sterile neutrinos are massive and therefore
they behave as an additional dark matter component at late times. The degeneracy will
show up when the active neutrinos have relatively large masses, since, in that case, a tiny
amount of sterile neutrino masses will be allowed. The sterile states will then behave as
relativistic particles at the decoupling era and will compensate the effect of a large active
neutrino mass.

Figure 3.1, bottom panel, depicts the 68% and 95% CL allowed contours in the m,—m,,
plane. There exists a very strong anticorrelation between these two quantities, since both
contribute to the dark matter energy density at late times and therefore if the mass of the
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sterile neutrino states grows, the mass of the active ones must decrease. The situation is
analogous to that of QCD thermal axions and massive (active) neutrinos, see Ref. [71].

The top panel to the right of Fig. 3.1 depicts the 68% and 95% CL allowed contours in
the N, ,—m,, plane. In this case, the larger the sterile neutrino mass is, the lower its thermal
abundance must be, as expected.

Figure 3.1: The top and bottom panels show the 68% and 95% CL constraints on the plane
my,-N,,, m,-m,, and m,, -N,,_, respectively. The blue (red) contours denote the allowed regions
by “runl” (“run2”) data sets, see text for details. The masses of the sterile and active neutrinos
are both in eV units.

3.3 Future constraints

We present here the constraints on the neutrino sector parameters explored in this work from
future CMB and galaxy survey measurements, making use of the Fisher matrix formalism,
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see also Ref. [114] for a recent analysis. We also compute the potential shifts in the different
cosmological parameters when the sterile neutrino parameters are neglected in the analysis.

3.3.1 Methodology

The Fisher matrix is defined as the expectation value of the second derivative of the likeli-
hood surface about the maximum. As long as the posterior distribution for the param-

eters is well approximated by a multivariate Gaussian function, its elements are given
by [115, 116, 117]

Fag = %TI‘ [C_lC,aC_lCﬂ} s (32)

where C' = S + N is the total covariance which consists of signal S and noise N terms.
The commas in Eq. (3.2) denote derivatives with respect to the cosmological parameters
within the assumed fiducial cosmology. Our fiducial model is a ACDM cosmology with
five parameters: the physical baryon and CDM densities, w, = Qh? and w, = Q.h?, the
scalar spectral index, ng, h (being the Hubble constant Hy = 100 h km Mpc~'s™!) and the
dimensionless amplitude of the primordial curvature perturbations, A, (see Tab. 3.4 for their
values). Furthermore, we add to the ACDM fiducial cosmology three additional parameters
for the neutrino sector: the mass of active neutrinos m,,, the mass of sterile neutrinos m,,
and the number of sterile neutrino species NV,,. Notice that, for simplicity, we have kept
fixed the reionization optical depth 7 since it has no impact on large scale structure data and
we do not expect a strong degeneracy between 7 and the neutrino parameters, see Ref. [118|.
We assume that both active and sterile neutrinos have a degenerate spectrum and that the
sterile species are fully thermalized. The fiducial values of the neutrino parameters are listed
as well in Tab. 3.4, and they are based on the constraints from current data presented in
the previous section, from which we conclude that m, = 0.1 eV, m,, < 0.5 and N,, = 1,2
are within the allowed regions for these parameters.

Oph? O.h? g h A, my, [eV] | m,, [eV] | N,
0.02267 | 0.1131 | 0.96 | 0.705 | 2.64 - 10~° 0.1 0.1-05 | 1-2

Table 3.4: Values of the parameters in the fiducial models explored in this study.

We compute the CMB Fisher matrix to obtain forecasts for the Planck satellite [119].
We follow here the method of Ref. [120], considering the likelihood function for a realistic
experiment with partial sky coverage, and noisy data

CBB CITCPF — (ClF)?
- B BB i TT {EE ('’ £
2InL = ;(2€+ 1){fsky In <C£33> * mln <CgTTCfE - (CzTE)2>

17 55CL CPP+ CITCPP —2C7PClP  ppCPP TT (EE
+ fsky sky 2 f

TT(VEE __ TE\2 sky BB skyJ sky
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_ 55} 7 (3:3)
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and compute its second derivatives to obtain the corresponding Fisher matrix

0L
FOMB — ([ _ . A4
af < apaap6> |p—p (3 )

In Eq. (3.3) CXY =CXY + N with CXY the temperature and polarization power spectra
(X,Y = {T,E,B}) and N, the noise bias. Finally, f is the fraction of observed sky
which can be different for the T-, F-, and B-modes.

For the galaxy redshift survey Fisher matrix, we follow the prescription of Ref. [121].
Assuming the likelihood function for the band powers of a galaxy redshift survey to be
Gaussian, the Fisher matrix can be approximated as:

P . o -
max ) ln Py (k) 01n Py, (k) - dk
FLSS _ / g8 gg ‘/e k 3.5
B P Opa g il )2(27r)3 (3:5)
_ /1 /‘kmax 8lnng(k,u)8lnpgg(/{?,/,b)%ﬂ<kju)
1 Sk Ipa Ipgs
2rk2dkdp
2(2m)3 7
where Vg is the effective volume of the survey:
nP(k,p) 1°
‘/eff<k7:u> [nP(k,,u) n 1:| ‘/surveyu (36)

1 being the cosine of the angle between the vector along the line of sight and k and n being
the galaxy number density, which is assumed to be constant throughout the survey. The
linear redshift-space galaxy power spectrum F,, is related to the real-space linear power
dark matter spectrum Py, as

Py (k) = Pam(k)(b + f1i?)? (3.7)

where b is the bias relating galaxy to dark matter overdensities in real space and f is the
linear growth factor. Both the bias and the growth factor are assumed to vary in each
redshift bin and are considered as additional parameters in the Fisher analysis of galaxy
survey data.

We consider here two redshift surveys: the BOSS (Baryon Oscillation Spectroscopic
Survey) [35] and the Euclid [122, 123] experiments. For the BOSS survey we assume a
sky area of 10000 deg?, a redshift range of 0.15 < z < 0.65 and a mean galaxy density of
2.66 x 10~%. For Euclid we consider an area of 20000 deg?, a redshift range of 0.15 < z < 1.95
and a mean galaxy density of 1.56 x 1073, We divide the surveys in redshift bins of width
Az = 0.1 (a value that is much larger than standard redshift spectroscopic errors), set kpyax
to be 0.1h/Mpc and ky, to be greater than 27T/AV1/3, where AV is the volume of the
redshift shell.

Combining the Planck and redshift survey Fisher matrices (Fog = F15° + FS3'P) we get
the joint constraints for Q,h?, Q.h?%, n,, Hy, As, m,, m,, and N,_, after marginalizing over
the bias b and the growth factor f. The 1-¢ error on parameter p, marginalized over the
other parameters is 0(ps) = /(F~1)aa, F~! being the inverse of the Fisher matrix.
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3.3.2 Results

Tables 3.5 and 3.6 contain the 1-0 marginalized forecasted errors on the cosmological pa-
rameters for a fiducial cosmology with m, = 0.1 eV, m,, = 0.3 ¢V and N,, = 1 and 2,
respectively. We illustrate the results of our Fisher analysis for both BOSS and Euclid
galaxy redshift survey data combined with Planck CMB measurements. Note that the er-
rors on the pure ACDM model parameters, i.e Qyh2, Q.h2, ng, h and A, are always around or
below the 1% level. The error on the active neutrino mass is around 60% for BOSS and half
for Euclid. The error on the number of sterile neutrino species is always smaller than 25%.
Regarding the error on the sterile neutrino mass, it can reach 100% relative errors for BOSS
plus Planck data. Naively, one would expect that the BOSS and Euclid errors are related
by a factor of \/Vgoss/Veuaia (being V' the volume of the survey) when the shot noise is
subdominant. However, in practice, the forecasted errors on the pure ACDM parameters are
sometimes similar for the BOSS and Euclid cases, which implies that those parameters are
mainly determined by CMB measurements. Of course this is not the case for the active and
sterile neutrino masses, whose errors are mainly driven by galaxy clustering data and differ
by a factor of ~ 2 — 3 for BOSS and Euclid cases, as naively expected. A word of caution is
needed here: while computing the errors on the active and sterile neutrino masses and on
the sterile neutrino abundances, a ACDM scenario has been chosen as fiducial cosmology.
These errors can change if the equation of state of the dark energy component is allowed to
vary [124] and/or interactions between the dark matter and dark energy sectors are stwiched
on [125, 126].

We also present here the joint constraints in a two-parameter subspace (marginalized
over all other cosmological parameters) to study the covariance between the sterile neutrino
masses and /or abundances and the other cosmological parameters considered in this work.
We have explored several possible scenarios with different sterile neutrino masses and ther-
mal abundances (see Tab. 3.4). However, for the sake of simplicity, we illustrate here only
the case N,, =1, m,, = 0.3 ¢V and m,, = 0.1 eV.

Figure 3.2, left panel, shows the correlation between the number of sterile species NV,
and the active neutrino mass m,. The expected error on the number of sterile species is
very similar for BOSS and Euclid data, which indicates that the constraints on N, arise
mostly from Planck CMB measurements. Since the total energy density in the form of
massive neutrinos is the sum of the active plus sterile contributions, a higher neutrino mass
is compensated with a lower abundance of massive sterile species. The 1-o marginalized
error on N, from Planck plus BOSS (Euclid) data is 0.26 (0.1), see Tab. 3.5. The right
panel of Fig. 3.2 shows the correlation between the masses of sterile and active neutrinos. As
expected from the results presented in Fig. 3.1 (middle panel) and as previously explained,
higher active neutrino masses are allowed for very low values of the sterile neutrino masses.
The 1-0 marginalized errors on the massive species m,, and m, from Planck plus BOSS
(Euclid) data are 0.25 (0.08) eV and 0.06 (0.03) eV respectively. If nature has chosen
an active neutrino with mass ~ 0.1 eV, BOSS (Euclid) data, combined with CMB Planck
measurements, could provide a 1.5-¢ (3-0) detection, even in the presence of massive sterile
species.
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cosmological data

Parameter BOSS+PLANCK EUCLID+PLANCK

Qph? 0.7% 0.3%
Q.h? 2.9% 1.3%

In (101°4,) 0.7% 0.4%
h [km/s/Mpc] 1.4% 0.7%
N 0.6% 0.3%

m, [eV] 63.1% 28.0%
my, [eV] 83.2% 26.2%
N, 25.9% 10.6%

Table 3.5: 1o marginalized relative errors for a fiducial cosmology with N, =1, m,=0.1 eV and
m,,—0.3 eV.

Parameter BOSS+PLANCK EUCLID+PLANCK

Qph? 0.7% 0.3%
Q.h? 1.5% 1.7%

In (101°4,) 0.4% 0.4%
h [km/s/Mpc] 1.4% 0.8%
N 0.5% 0.4%

m, [eV] 64.9% 35.9%
my, [eV] 41.9% 16.4%
N, 10.2% 7.5%

Table 3.6: 1-¢ marginalized relative errors for all parameters for a N, ,=2, m,=0.1 eV and
m,,,=0.3 eV fiducial cosmology.
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Figure 3.3, left panel, shows the correlation between the active neutrino mass m,, and the
cold dark matter energy density €2.h2. Notice that the extraction of the cold dark matter
component arise mostly from Planck CMB measurements. At late times, neutrinos con-
tribute as an additional ingredient to the dark matter fluid and therefore a higher neutrino
mass is compensated by a lower cold dark matter energy density. The right panel of Fig. 3.3
shows the correlation between cold dark matter and the sterile neutrino abundance. These
two parameters are mostly extracted from CMB Planck data ®. The sterile neutrinos consid-
ered here with 0.3 eV masses are relativistic at decoupling. A higher number of relativistic
species will shift to a later period the matter radiation equality era and also enhance the
first CMB acoustic peak. These effects can be compensated with a higher cold dark matter
energy density, as shown by the positive correlation among the two parameters.
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Figure 3.2: The empty (filled) contours denote the 68%, 95% and 99.73% CL regions for
Planck plus BOSS (Euclid) data. The neutrino parameters in the fiducial model are N, = 1,
m,, = 0.3 eV and m, = 0.1 eV.

3.3.3 Cosmological parameter shifts

In order to test the capabilities of future experiments to discriminate between different
theoretical models, regardless of their parameters, we follow here the method of Ref. [127].

The idea is the following: if the data is fitted assuming a model M’ with n’ parameters,
but the true underlying cosmology is a model M characterized by n parameters (with n > n/
and the parameter space of M including the model M’ as a subset), the inferred values of
the n' parameters will be shifted from their true values to compensate for the fact that the
model used to fit the data is wrong. In the case illustrated here, M will be the model with

3However, the addition of galaxy clustering measurements help in breaking degeneracies



Chapter 3. Constraints on massive sterile neutrino species from current and future
70 cosmological data

T S S 01250
0120} ~_ 4 0120}

0.115 - 0.115+

Qch?
Qch?

0.110 0.110+

0.105]- . i 0105}

R S T A A 0100p, , , , | P P P
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.0 0.5 10 15 20

m, (eV) Nys

Figure 3.3: The empty (filled) contours denote the 68%, 95% and and 99.73% CL regions for
Planck plus BOSS (Euclid) data. The neutrino parameters in the fiducial model are N, = 1,
m,, = 0.3 eV and m, = 0.1 eV.

massive sterile neutrinos and M’ the one without massive sterile neutrinos. While the first
n' parameters are the same for both models, the remaining n — n’ = p parameters in the
enlarged model M are accounting for the presence of massive sterile neutrinos, i.e. m,_ and
N,.. Assuming a gaussian likelihood, the shifts of the remaining n’ parameters is given by
[127]:

80, = —(F'™1) 0pG et a,f=1...n"(=n"+1...n, (3.8)

where I represents the Fisher sub-matrix for the model M’ without massive steriles and G
denotes the Fisher matrix for the model M with m,, , N,, > 0.

We have computed the shifts induced in the cosmological parameters in several true
cosmologies with a number of sterile neutrinos N,, = 1,2 of masses m,, = 0.1,0.3 and
0.5 eV. The mass of the active neutrino has been kept to 0.1 eV. These cosmologies are
then wrongly fitted to a cosmology without sterile massive neutrino species. While certain
parameters are exclusively measured by CMB probes or by the combination of CMB and
other cosmological data sets (like Q.h%, Qph% n, and A,), there are other parameters such
as the Hubble constant H, or the active neutrino mass m, which can be determined by
other experiments. Then it is possible to verify the cosmological model assumptions by
comparing the values of Hy and m, extracted from CMB and LSS cosmological data to the
values of these parameters obtained by other experiments, as missions devoted to measure
the Hubble constant and tritium beta decay experiments *. The former experiments measure

“Neutrinoless double beta decay provides also a bound on the so-called effective neutrino mass (m) =
| >, UZm;|. However, these bounds apply only in the case that neutrinos have a Majorana nature. There-
fore, we focus on tritium beta decay constraints which apply regardless of the Dirac vs Majorana nature of
the neutrino.
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the electron neutrino mass m,,_, which, in practice, when considering three active massive
neutrinos, reads:

my, =) |UZIm? (3.9)

i=1,3

being U,; the first-row elements of the Pontecorvo-Maki-Nakagawa-Sakata leptonic mixing
matrix. In the case of additional N,, massive sterile neutrino species, m,, would be given

by

my, = Y, |UZlm7, (3.10)

i=1,3+N,,

Given the current best-fit values of the sterile-electron neutrino mixing terms |Ug| <
1071 [99] and the sub-eV sterile neutrino masses considered here, we neglect the contribution
of the sterile neutrino species to m,,_ . In the following, we apply the usual constraints on
m,, in our cosmological scenarios even if they contain massive sterile neutrino species. We
therefore neglect the capability of beta decay experiments of measuring the individual neu-
trino masses and mixings. For a recent study of the KATRIN potential for sterile neutrino
detection, see Ref. [128].

For sterile neutrino masses m,, ~ 0.5 ¢V and N, = 1,2, the shifts induced in H, are
very large, for both BOSS and Euclid experiments combined with CMB Planck data. The
reconstructed value of Hy is within the range ~ 20—50 km/s/Mpc, values which are in strong
disagreement with current measurements of the Hubble parameter from HST [106, 129]. The
reconstructed value of the active neutrino mass is also in some cases m, ~ 2 ¢V which is
the current 95% CL limit from tritium (-decay experiments [130]. Consequently, after
combining near future BOSS and Planck data one would conclude that the cosmological
model assumed with m,, ~ 0.5 eV and N,, = 1,2 is wrong. The same situation will arise
when m,, ~ 0.3 eV and two sterile massive species, N, = 2.

Parameter Fiducial Reconstructed —Shift (%)
Ho [km/s/Mpc] | 705 50.5 28%
m, [eV] 0.30 0.98 230%

Table 3.7: Shifted values and relative changes for the parameters Hy and m, when the true
cosmology has N,, =1, m,, = 0.3 eV and m, = 0.1 eV but BOSS plus Planck data are fitted
to a cosmology with no sterile massive neutrino species.

For m,, ~ 0.3 eV and N,, = 1, the shifts using both BOSS and Euclid data are reported
in Tabs. 3.7 and 3.8. While the shift induced in the Hubble constant is very large for the
BOSS case, for Euclid that shift is still consistent with current estimates of Hy. A number
of experiments (HST, Spitzer, GAIA and JWST [131]) are expected to measure Hy with 2%
uncertainty in the next decade and an inconsistency between the inferred Hy values from
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Parameter Fiducial Reconstructed —Shift (%)
Hy [km/s/Mpc] 70.5 65.0 8%
m, [eV] 0.30 0.48 60%

Table 3.8: Shifted values and relative changes for the parameters Hy and m, when the true
cosmology has N,, =1, m,, = 0.3 eV and m, = 0.1 eV but Euclid plus Planck data are fitted
to a cosmology with no sterile massive neutrino species.

these experiments and those from the cosmological probes considered here could point to the
existence of additional sterile neutrino species. On the other hand, the aim of the tritium
beta decay experiment KATRIN [132] is a sensitivity of m,, < 0.2 eV at 90% CL in case
of a null result or a 50 discovery potential for m,, > 0.35 eV. Therefore, the reconstructed
values of m, = 0.48 eV (Euclid plus Planck) and 0.98 eV (BOSS plus Planck) could be
easily testable by the KATRIN experiment. Similar results are obtained for smaller sterile
neutrino masses m,, ~ 0.1 eV with a higher number of sterile species N, = 2.

For smaller sterile neutrino masses m,, ~ 0.1 eV and N,, = 1, the shift induced in Hj is
larger than 2% for both BOSS and Euclid data (combined with Planck). Therefore it would
still be possible to check the fiducial cosmology with future measurements of Hy. The shift
induced on the active neutrino mass using Euclid data is negligible and this means that it
would be possible to recover the true value of the active neutrino mass even if the data is
fitted to the wrong cosmology. Thus, the combination of Planck and Euclid data would not
lead to an inconsistency between active neutrino mass estimates from Planck and Euclid on
the one hand, and beta decay experiments on the other hand. Regarding BOSS plus Planck
data however, the shift induced in the active neutrino mass m,, is of the order of 100% and
the comparison with an independent measurement of m, as that performed by KATRIN
could test the validity of the cosmological model assumptions.

We have shown above that if the true N,, = 1,2, wrongfully assuming N,, = 0 would
lead to discrepancies between the cosmological probes considered here (large scale structure
and CMB) and independent measurements of Hy and m,,. Of course, another clear indicator
that the assumed model is incorrect is simply that the IV, = 0 would likely provide a bad fit
to the large scale structure and CMB data themselves. However, the induced bias discussed
above would provide a useful extra check when independent measurements of Hy and/or m,,
are available. In addition, the bias calculation shows that even if one is not interested in the
sterile neutrinos per se, not taking them into account could lead to very wrong conclusions
about the other cosmological parameters.

3.4 Summary
Neutrino oscillation experiments have brought to light the first departure from the Standard

Model of particle physics, indicating that neutrinos have non zero masses and opening the
possibility for a number of extra sterile neutrinos. LSND and MiniBooNE antineutrino
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data require these extra sterile species to be massive. Much effort has been devoted in the
literature to constrain the so called (3+1) (three active plus one sterile) and (3+2) (three
active plus two sterile) models.

Cosmology can set bounds on both the active and sterile neutrino masses as well as on
the number of sterile neutrino species. We have explored here the current constraints on
these parameters in the most natural scenario which corresponds to the case in which both
the active and sterile neutrinos are massive particles. We find that models with two massive
sub-eV sterile neutrinos plus three sub-e¢V active states are perfectly allowed at the 95% CL
by current Cosmic Microwave Background, galaxy clustering and Supernovae la data. The
bounds derived here were obtained in the context of a ACDM cosmology and other scenarios
with a dark energy component could allow for larger neutrino masses and/or abundances.
We have also shown that Big Bang Nucleosynthesis Helium-4 and deuterium abundances
exclude (3+2) models at the 95% CL. However, the extra sterile states do not necessarily
need to feature thermal abundances at decoupling. Their precise abundances are related to
their mixings with the active neutrinos in the early universe.

We have also forecasted the errors on the active and sterile neutrino parameters from
Planck and galaxy survey data. Future cosmological data are expected to measure sub-eV
active and sterile neutrino masses and sterile abundances with 10 — 30% precision, for sub-
eV (0.5 eV> m,_ > 0.1 V) sterile neutrino masses. We have also shown that the presence
of massive sterile neutrinos in the universe could be inferred from inconsistencies among
the values of Hy obtained from cosmic microwave and galaxy clustering probes and those
arising from independent measurements of the Hubble constant over the next decade. The
validity of the cosmological assumptions could also be tested by comparing cosmological
measurements of the active neutrino mass with those obtained from tritium beta decay
experiments.
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Chapter 4

New Neutrino Mass Bounds from Sloan
Digital Sky Survey III Data Release 8
Photometric Luminous Galaxies

In this Chapter we derive neutrino mass bounds from the angular power spectra from the
Sloan Digital Sky Survey III Data Release Eight (SDSS DR8) sample of photometric galaxies
with CMASS selection criteria. This Chapter is a copy of the paper:

New Neutrino Mass Bounds from Sloan Digital Sky Survey III Data Release 8 Photomet-
ric Luminous Galazies, Roland de Putter, Olga Mena, Elena Giusarma, Shirley Ho, Antonio
Cuesta, Hee-Jong Seo, Ashley J. Ross & Martin White et al., Astrophys. J. 761, 12 (2012).

4.1 Introduction

During the last several years, experiments involving solar, atmospheric, reactor and acceler-
ator neutrinos have adduced robust evidence for flavor change, implying non-zero neutrino
mass, see Ref. [89] and references therein. The most economical description of the neutrino
oscillation phenomena requires at least two massive neutrino mass eigenstates to explain the
two mass differences’;, Am?, = 7.59 - 107° eV? and Am3; = 2.5- 1073 eV? |56, 133|, which
drive the solar and atmospheric transitions. Despite the remarkable success of past and
present oscillation experiments, and the promising prospects for future searches, the indi-
vidual neutrino masses and the Dirac versus Majorana neutrino character are key questions
that continue to be unanswered by oscillation experiments.

Direct information on the absolute scale of neutrino masses can be extracted from kine-
matical studies of weak decays producing neutrinos. The present upper bound on the
electron-neutrino mass from tritium beta-decay experiments is 2 eV (95% confidence level
(CL)) |58, 134], and in the future the KATRIN experiment is expected to be sensitive to
electron-neutrino masses approaching 0.2 ¢V (90% CL) [130]. Searches for the Majorana

I'Neutrino oscillations are described by mass squared differences and not by the absolute values of the
mass eigenstates

)



Chapter 4. New Neutrino Mass Bounds from Sloan Digital Sky Survey III Data Release 8
76 Photometric Luminous Galaxies

neutrino nature involve neutrinoless double beta decay 33(0v), a rare and as yet unobserved
transition between two nuclei. Observational upper limits on 33(0v) rates provide an upper
bound on the so-called effective Majorana mass of the electron neutrino, (meg) < 0.3—1.0 €V,
bound which would only apply if neutrinos are Majorana particles [61]. Forthcoming 53(0v)
experiments aim for sensitivity approaching (meg) < 0.05 eV [61].

Cosmology provides one of the means to tackle the absolute scale of neutrino masses.
Some of the earliest cosmological bounds on neutrino masses followed from the requirement
that massive relic neutrinos, present today in the expected numbers, do not saturate the
critical density of the Universe, i.e., that the neutrino mass energy density given by

> my

U = G 1rtev (1)
satisfies €2, < 1. The Universe therefore offers a new laboratory for testing neutrino masses
and neutrino physics. Accurate measurements of the Cosmic Microwave Background (CMB)
temperature and polarization anisotropy from satellite, balloon-borne and ground-based ex-
periments have fully confirmed the predictions of the standard cosmological model and
allow us to weigh neutrinos [84]. Indeed, neutrinos can play a relevant role in large-scale
structure formation and leave key signatures in several cosmological data sets. More specif-
ically, the amount of primordial relativistic neutrinos changes the epoch of matter-radiation
equality, leaving an imprint on CMB anisotropies. After becoming non-relativistic, their
free-streaming nature damps power on small scales, suppressing the growth of matter den-
sity fluctuations and thus affecting both the CMB and galaxy clustering observables in the
low-redshift universe [84]. Measurements of all of these observations have been used to place
new bounds on neutrino physics from cosmology [135, 136, 137, 138, 139, 140, 141, 142, 143,
144, 124, 145, 146, 147, 148, 149, 105, 91, 150, 90, 151, 152, 153|, with a current limit on
the sum of neutrino masses ¥m,, < 0.6 ¢V at 95% CL (e.g. [105]), depending on the precise
combination of data sets and on the underlying cosmological model.

We present here neutrino mass bounds from the final imaging data set of the Sloan Digital
Sky Survey (SDSS-III) [32], using the photometric redshift catalog of Ross et al. [36]. We
consider the CMASS sample [37] of luminous galaxies of SDSS DRS8 [40], the eighth data
release of SDSS and the first data release of the Baryon Oscillation Spectroscopic Survey
(BOSS) [35], with photometric redshifts z = 0.45 — 0.65. This sample covers an area of
approximately 10,000 square degrees and consists of 900,000 galaxies. It is thus the largest
sample of luminous galaxies so far and promises strong constraints on the neutrino properties
(see [150] for an analysis of a slightly smaller SDSS photometric sample).

We derive neutrino constraints from the angular power spectra of the galaxy density at
different redshifts, in combination with priors from the CMB and from measurements of the
Hubble parameter, supernovae distances and the BAO scale. The spectra and the analysis
of a minimal ACDM cosmology are described in detail in [154] and the measurement of the
BAO scale from the spectra is presented in [155]. We will often refer to these works for
details and focus here on the neutrino bound.

The structure of the paper is as follows. In section 6.3, we describe the data set and the
derived angular spectra. We then discuss our theoretical model for the spectra and their
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cosmology dependence in section 4.3. In section 4.4 we explain the specific signature of
neutrino mass on galaxy clustering data. We test our model for the angular power spectra
against mock data in section 4.5 and present the constraints on the sum of the neutrino
masses and other parameters for several data combinations in section 6.4. Finally, we discuss
these results and conclude in section 4.7.

4.2 Data

The data and the method for obtaining angular spectra have been described in detail in
Ref. [36] and in [154|. Here we provide a brief description of the main properties and refer
the reader to those papers for details. Our galaxy sample is obtained from imaging data
from DRS8 [40] of SDSS-IIT [32|. This survey mapped about 15,000 square degrees of the
sky in five pass bands (u,g,r,7 and z) [156] using a wide field CCD camera [157] on the
2.5 meter Sloan telescope at Apache Point Observatory [158] (the subsequent astrometric
calibration of these imaging data is described in [159]). A sample of 112, 778 galaxy spectra
from BOSS [35] were used as a training sample for the photometric redshift catalog, as

described in [36].
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Figure 4.1: Normalized true redshift distribution of CMASS galaxies in four photometric red-
shift bins. The number of galaxies in each bin is 214971, 258736, 248895 and 150319 (from low
to high redshift).
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Figure 4.2: Observed power spectra (black points) with error bars and theoretical power spectra
(solid curves). We show the theoretical power spectra for different models: the default, HaloF'it
(HF) based model used in our analysis (black; see text for details), the same model, but using
the linear matter power spectrum as input (red), the default model, but using the Limber
approximation (blue) and the default model without redshift space distortions (green). We
restrict ourselves to the range ¢ = 30 — 200 in our analysis. For the theoretical spectra, we
assume the WMAP7-+HST best-fit cosmology and use the bias b; that best fits the data. We

do not here include the shot noise parameters a;.
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We focus on the approximately stellar mass-limited CMASS sample of luminous galaxies,
detailed in [37], which are divided into four photometric redshift bins, zpheto = 0.45 —
0.5 —0.55 — 0.6 — 0.65. The photometric redshift error lies in the range o.(z) = 0.04 —
0.06, increasing from low to high redshift. Figure 4.1 shows the estimated true redshift
distribution of each bin, determined using the methods described in section 5.3 of [36].

The calculation of the angular power spectrum for each bin is described in detail in [154]
and uses the optimal quadratic estimator (OQE) method outlined in [160, 161, 162, 163].
The four power spectra are binned in ¢ space with a typical wave band width of A/ = 10.
The expectation value of the power spectrum in a wave band is a convolution of the true
power spectrum with a window function of width roughly equal to the typical wave band
width. Examples of these window functions are shown in Fig. 3 of [155]. When fitting the
data to the underlying theoretical model, we always apply these window functions to the
theoretical power spectra before calculating the likelihood relative to the data.

The four power spectra are plotted with their error bars in Fig. 4.2. The solid curves
represent theoretical power spectra based on several assumptions. These power spectra
will be discussed in detail in section 4.3. Since the low ¢ wave bands are more prone to
systematics [36], we are conservative and do not consider bands with ¢ < 30 in our analysis.
We shall apply cuts at ¢, = 150 and 200 in order to suppress uncertainties from non-
linear corrections to the modeled power spectra, as discussed in the following sections. The
median redshift (z ~ 0.55) contributions to these maximum angular modes arise from three-
dimensional modes with wave vectors k ~ 0.10hMpc~! and k ~ 0.14hMpc~?, respectively.
We thus use 17 (12) data points per redshift slice for ¢,., = 200 (150).

4.3 Modeling the angular power spectra

The galaxy overdensity in the i-th redshift bin can be expanded in terms of spherical har-
monics,

0 () =" a) Yom() (4.2)

/m

so that the angular power (and cross) spectra are defined as

<a(2€)ma’gr):/> = Cé”) 52/ 5VI)§m/7

(4.3)

where 55 is the Kronecker delta function. As mentioned in the previous section, we do not
estimate our spectra by directly transforming the observed density field to harmonics space,
but use instead the optimal quadratic estimator technique. To constrain the sum of the
neutrino masses and other cosmological parameters, the observed spectra are compared to
a cosmology dependent model, which we now describe.

The galaxy overdensity on the sky is a line-of-sight projection of the three-dimensional
redshift space galaxy overdensity d,(d(z)f, z),

39 () = / dz gi(2) (8,(d(2) 1, 2) — (H(2))™ - V(- v(d(2)f,2))), (4.4)
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where

gz‘(Z') = fddilzi/dZ(Z) /

2/ dn;/dz(Z")

is the normalized redshift distribution of galaxies in bin i (with dn;/dz(z) the number

of galaxies per steradian per unit redshift), d(z) is the comoving distance to redshift z

(assuming a flat universe) and v is the galaxy velocity field. The velocity term arises because

gradients of the peculiar velocity contribution to the distance in redshift space change the
volume, and consequently, the number density?.

We assume a linear, scale-independent bias for the galaxy density,

dg(x, 2) = by(2) 6 (x, 2) , (4.6)

(4.5)

with 9, the matter overdensity. For the peculiar velocity field, we use the continuity equation
in the linear regime, which gives for a Fourier mode with wave vector k,

) k
v = B2, (s | (4.7
where (3(2) = f(2)/by(2) is the redshift distortion parameter and
_ dInD(z)
flz) = ——— (4.8)

is the growth factor (with D(z) the linear growth function). In the presence of neutrinos, the
growth function is no longer scale independent at late time as the neutrinos suppress growth
on scales below the free streaming length [164, 165|, but not on larger scales (with a broad
transition regime in between). We shall ignore the scale dependent growth in 3(z) since it
is a small (< 10%) correction to the already small effect (on the scales of interest here)
of redshift space distortions (RSD, see Fig. 4.2). However, this scale-dependent growth is
included in the real space power spectrum, as this is the main signature of massive neutrinos.

We simplify our treatment of the galaxy bias adding four free parameters b; to describe
the bias in each bin. The results from our simulations barely change when considering a
bias b,(z) that varies within redshift bins, showing that this is a safe approximation®. It
then follows from the above (see [166, 167, 163|) that

i 2 i i 2
i = p? —/dek Po(k,z=0) (Ag)(k:) + AP )(k)> : (4.9)
T
where P, (k,z = 0) is the matter power spectrum at redshift zero and

AP = [ da:) T2 gk d(2) (4.10)

Instead of writing the projected galaxy overdensity as an integral over the observed redshift (including
peculiar velocity contributions) as in Eq. (4.4), one could equivalently do the integral over “true” cosmic
redshift, see Ref. [163], in which case only the true three-dimensional galaxy overdensity appears explicitly
and the redshift space distortions come in through a modification of the distribution g;(z).

3 A similar approach is considered to model 3(z), appearing in the redshift space distortion contribution.
For each bin we calculate an effective growth rate f; = (QDl\/I(zi))O'56 where z; is the mean redshift of the
i-th bin, ignoring the scale dependence of the RSD growth.
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Here, j, is the spherical Bessel function and T'(k, z) the matter transfer function relative to
redshift zero*. The contribution due to redshift space distortions is

AEPOw) = 6 [ dzg (T [ ST kala)
(-1
“@i—pa ek
l+10)(l+2) .
gk (a.11)
To compute the matter power spectrum at a given redshift P, (k,z) = P,(k,z =

0)T?(k, z), we first make use of the CAMB code [82], which provides the linear power
spectrum by integrating the Boltzmann equations of all species including massive neutrinos.
We then apply the HaloFit prescription® [168] to the linear power spectrum to account for
non-linear effects on the matter power spectrum.

While in the linear regime the galaxy spectrum is easy to model, calculations on non-
linear scales inevitably have large uncertainties. This effect is aggravated by the presence
of massive neutrinos since for the massive neutrino case the non-linear regime has been
explored less extensively in the literature than for a vanilla ACDM model. In the non-
linear regime, the matter power spectrum receives corrections due to gravitational collapse,
the galaxy bias becomes scale-dependent, and redshift space distortions receive important
contributions from velocity dispersion in collapsed objects. We take into account non-linear
corrections to the matter spectrum using HaloFit. The effect of non-linearities on redshift
space distortions at the relevant scales here is small as it is largely washed out by line-of-
sight projection. However, we do expect significant corrections to our model on small scales
due to non-linear galaxy bias, which we address below.

For angular scales where non-linear effects cannot be ignored, the contribution to a given
angular mode ¢ from a redshift z comes exclusively from three-dimensional modes with
wave vector k ~ ¢/d(z). Clearly, to avoid large non-linear corrections, the analysis must be
restricted to low ¢. On the other hand, the density of modes per unit ¢ increases with ¢
so we want to use as many modes as possible without biasing the results. Figure 4.3 (left
panel) depicts (as a function of redshift z) the value of ¢ above which non-linear corrections
to the three-dimensional power spectrum contributions to the angular spectrum become
important (i.e. n;, = kni(2) d(2)), considering various assumptions for the non-linear scale
kxi(z). Given that most of our signal is produced in the range z = 0.45—0.65, and assuming
that our model becomes inadequate at k& > 0.15hMpc—t, we conclude that a conservative
choice would be £,,, somewhere between 150 and 200.

Alternatively, we can obtain an indication of the importance of non-linear galaxy bias
by considering the effect of non-linear corrections to the matter power spectrum® (which we

4The transfer function is defined as 6,,(k, z) = T'(k, z) 6, (k, 2 = 0).

®Recently, [169] developed an extension to HaloFit that incorporates the effect of massive neutrinos. We
do not use this prescription as the correction to standard HaloFit is negligible on the scales of our interest.

SHowever, one must keep in mind that this may underestimate the effect of non-linear galaxy bias, as
galaxies are more strongly clustered than matter and are thus prone to larger non-linear corrections.
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do include in our model). The right panel in Figure 4.3 therefore shows the signal to noise
ratio squared in the difference between our default model and the same model, but using
the linear matter power spectrum instead of the non-linear (HaloFit) one. The signal to
noise reaches one somewhere between /,,,, = 150 and 200, corresponding to contributions of
modes kmax ~ 0.10hMpc—t and k. ~ 0.14hMpc~! at the median redshift z = 0.55. Finally,
a more concrete indication of the importance of non-linear galaxy bias to the range of scales
of our choice is given by Fig. 13 (left panel) of [170], which shows the halo bias as a function
of three-dimensional mode k. Since for our sample of galaxies the bias b ~ 2, the plot
confirms that there is only a mild bias variation in the relevant range of three-dimensional
scales relevant to the multipole range we have chosen.
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Figure 4.3: Left panel: Minimum multipole at which 3-D power spectrum contribution to the
angular power spectrum receives important non-linear corrections, as a function of redshift,
InL = ki d(z). We consider several choices of the non-linear scale knp,. The dashed curves
are for k = 0.15hMpc~! (top) and 0.1hMpc~! (bottom). The solid curve is for a simple model
of a redshift dependent knp(2) = Rni(z = 0)/RnL(z) x 0.1hMpc~!, where Ryp(2) is such
that the matter overdensity variance averaged over spheres with this radius equals one (using
the linear power spectrum). Right panel: The x? difference as a function of £, between our
default template, which uses Halofit, and a template using the linear matter power spectrum,
given the covariance matrix for the CMASS spectra. We assume the WMAP7 plus HST best
fit cosmology and fix the bias parameters b; = 2 (a; = 0). Both plots suggest that non-linear
effects start to become (mildly) relevant at £y, between 150 and 200.

Based on the above discussion, we choose a default value /.., = 200, but we will also
present results for the more conservative choice /., = 150. While it is possible to model
the galaxy spectrum in a more sophisticated manner (see e.g. [171, 172, 151| for an approach
based on perturbation theory and the local bias model [173], and [174] for a cross-comparison
of a number of methods), we consider it appropriate, given the multipole range we include,
to use the simple model described in Eq. (4.9), characterized by bias parameters b;. In
addition to this model, we also consider an alternative model with more freedom, by adding
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shot noise-like parameters a;,
) 9 . ‘ 2
s

The parameters a; serve to mimic effects of scale-dependent galaxy bias and to model the
effect of potential insufficient shot noise subtraction. This model is a version of what is
sometimes referred to as the “P-model” (e.g. [175, 174]) and is independently motivated by
the halo model [176, 177, 178, 179] and the local bias ansatz [180, 181, 172|. We further
discuss the validity of the parameterizations with and without a; in section 4.5.

Figure 4.2 shows the theoretical galaxy spectra as described in this section. The error
bars follow from the optimal quadratic estimator method used to construct the power spectra
(see [154] for details). Comparing the spectra with (black) and without (green) redshift space
distortions shows that this effect is negligible for ¢ > 50 and is probably not relevant for
the range of scales we use in our data analysis, i.e. £ > 30. Although we never employ it,
we also show the effect of using the Limber approximation [182] and find that for £ > 30 it
works excellently.

4.4 Cosmological Signature of Neutrinos

In the analysis presented in this paper we assume that there are three species of massive
neutrinos with equal masses m,,. Massive neutrinos affect galaxy formation at scales below
the Hubble horizon when they become non relativistic,

m

ey = 0.0145 (1 v> v/ Qont IMpe (4.13)
e

with Qpy the present total dark matter energy density, i.e. cold dark matter plus massive

neutrinos, relative to the critical density. The non-relativistic neutrino overdensities cluster

at a given redshift z only at scales where the wavenumber of perturbations is below the

neutrino free streaming scale

0677 m, 1
1< T () e s

due to the pressure gradient, which prevents gravitational clustering. On spatial scales larger
than the free streaming scale k < ky,, neutrinos cluster and behave as cold dark matter (and
baryons). Perturbations with comoving wavenumber larger than the free streaming scale
can not grow due to the large neutrino velocity dispersion. As a consequence, the growth
rate of density perturbations decreases and the matter power spectrum is suppressed at
k > k¢s. Since the free streaming scale depends on the individual neutrino masses and not
on their sum, a measurement of ky, could, in principle, provide the ordering of the neutrino
mass spectrum. In practice, such a task appears extremely challenging, see [183].

Figure 4.4 illustrates the effect of massive neutrinos on the angular power spectra. The
solid curves depict the results for the four redshift bins exploited here in the case of a
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ACDM model assuming no massive neutrino species and best fit parameters to WMAP7
year data [104, 90| and HST-H, data [2|. The dashed curves denote the angular power
spectra results assuming three massive neutrinos with Y m, = 0.3 €V and keeping the
cold dark matter mass energy density constant. In the presence of massive neutrinos the
angular power spectra are suppressed at each redshift at an angular scale that is related
to the free streaming scale by ¢ ~ d(z)kyss(z). Therefore, the larger the neutrino mass
(or the redshift), the larger the lowest angular wavenumber at which the power spectrum
is maximally suppressed. In the redshift range of interest here and for > m, = 0.3 €V,
the suppression angular scale appears in the range ¢ = 20 — 50 (however, there is some
suppression even at lower ¢). Note as well that there will exist a strong degeneracy between
the neutrino masses and the amount of cold dark matter, since, in principle, one could
partially compensate the growth suppression induced by massive neutrinos at scales k > ki
by increasing the cold dark matter mass-energy density. Combination with CMB and H,
data will help to break this degeneracy.

Neutrino masses affect the angular power spectra Cy, see Eq. (4.9), in two different ways:
suppressing galaxy clustering and the growth of structure via P, (k) as well as modifying the
background expansion rate via the comoving distance which appears in the argument of the
Bessel function j,. Among these two effects (i.e. growth versus background) we find that
the growth suppression effects in the matter power spectrum due to the presence of massive
neutrinos will dominate over background effects. Therefore, the neutrino mass constraints
presented in the following analysis arise mostly from the suppression of clustering rather
than from purely geometrical effects.

4.5 Mocks

We first consider angular spectra based on mock galaxy catalogs to test that neither our
method of estimating the spectra nor our modeling of the spectra introduces a bias in the
reconstructed cosmological parameters. We use twenty independent CMASS mock catalogs
based on N-body simulations and a Halo Occupation Distribution (HOD) model described
in [37] (see also [154, 155] for details). The input cosmology for the simulations is Qpy =
0.274,h = 0.7, = 0.046, ns, = 0.95, 0g = 0.8 in a spatially flat universe, with ng and og the
scalar spectral index and the linear rms density fluctuations in spheres of radius 8 h~'Mpc
at z = 0, respectively. Neutrinos are massless in the input cosmology. The catalogs cover
a cubic volume with side 1.5A~! Gpc. To construct an “observed” catalog, we put the
observer in one corner of the box and consider the subsample of galaxies in the shell octant
between the observer’s z = 0.5 — 0.55. For simplicity, we do not apply photometric redshift
errors nor do we introduce redshift shifts due to peculiar velocities. This latter effect would
only be significant on very large scales anyway (see Figure 4.2). Each mock covers 7/2
rad? and consists of about 125,000 galaxies. Since both area and galaxy number are thus
roughly half the values for the z = 0.5 — 0.55 redshift bin of the true data, the number
density is comparable to that of the true photometric sample. We apply this procedure for
eight different corners to get eight different lines of sight per simulation. Note, however, that
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Figure 4.4: Effect of neutrinos on the angular power spectra. The solid and dashed curves
depict the massless and ¥m, = 0.3 eV cases, respectively.

these lines of sight are not completely independent as they are based on the same simulation
volume. Finally, for each line of sight, we average the spectra over all twenty independent
realizations in order to increase the signal to noise ratio. The covariance matrix for the
mock angular power spectrum is rescaled accordingly to reflect the decrease in covariance
due to taking the average.

As described in section 4.3, we consider a model characterized by the cosmological pa-
rameters and a galaxy bias by (giving our mock bin the label 0), and a more conservative
model with bias by and nuisance parameter ag, so that the spectrum is given by

) . 2
Cl0 —p2 = / k2dk Py, (k, 2 = 0) (Ag”(k)) +a - (4.15)
™

In the galaxy bias-only version, ag is simply set to zero.

As a direct test of this model, we fit it to the averaged mock spectrum. In this first
approach, we keep the cosmology fixed to the mock’s input cosmology and restrict the fit
to the range ¢ = 30 — 200. The only free parameters are thus either by or (bg, ag). We use a
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Figure 4.5: Example of an averaged mock spectrum (green points with error bars) and theoret-
ical spectra (solid lines). Fixing the cosmology to the mock input cosmology (see text), we fit
the averaged mock spectrum in the range ¢ = 30 — 200 to our model described in the text. The
black curve is the resulting best-fit spectrum if we only fit a (scale-independent) galaxy bias
by (best-fit value by = 2.02), while the red curve is the best fit in a model that also includes
the nuisance parameter ag (best fit values by = 2.00, ag = 1.05 - 1076). To provide a hint of
the importance of non-linear effects in this multipole range, we plot the spectrum based on a
linear three dimensional matter power spectrum in blue (by = 2.02, a9 = 0)

modification of the publicly available COSMOMC package [103]| to sample this parameter
space using Monte Carlo Markov Chains (MCMC). We show the resulting best-fit spectra
together with the mock average in Fig. 4.5. Considering first the default, galaxy bias-
only model (black curve), we find that the best fit to the mock result has a linear bias
by = 2.02 (with uncertainty o(by) < 0.01) and has x* = 11.3. This should be compared
to an expectation value of (x?) = 16 based on 17 data bins and one free parameter. The
galaxy bias model thus provides a good fit to the simulated spectrum (the probability of
getting a x? lower than 11.3 for an expectation value of 16 is approximately 20%).

Next, including the shot noise-like parameter ay to take into account potential resid-
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ual shot noise and/or non-linear effects not captured by our simple Halofit plus scale-
independent galaxy bias model, we find a best fit model with ag = 1.1-107% and b, = 2.00.
However, the uncertainty in ag is o(ag) = 1.0 - 107 so the preference for a non-zero value
cannot be considered significant. In this model, we find x? = 10.1, to be compared to the
expected (x?) = 15. This is only a marginal (Ayx? =~ 1.2) improvement.

Restricting the fitting range to £ = 30 — 150, we find Ax? = 1.1 between the two best-fit
models, and ap = (1.8 +1.9) x 1075.
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Figure 4.6: Left panel: Recovered values of Qpyh? from averaged mock spectrum together
with CMB prior. We consider spectra from eight different lines of sight. The points with error
bars show the posterior mean values and 1o error bars after the Monte Carlo analysis for two
scenarios: varying Ym, with (red) and without (blue) ap marginalized. The vertical magenta
lines indicate the input value Qpyh? = 0.11166 (solid) and the input + one and two o, where
o = 0.0032 is the parameter uncertainty based on the data set WMAP7-+HST+angular spectra
(a; = 0 fixed). There is a bias of about 1o without the nuisance parameter, which disappears
when a; is marginalized over. Right panel: The posterior neutrino mass distributions for the
two cases discussed above. The mock constraints are consistent with the input cosmology of
¥m, = 0. Other parameters are all reconstructed to close to their input values and are not
strongly affected by the angular spectra.

The comparison above suggests that for the range ¢ = 30 — 200, the galaxy bias model
without an extra nuisance parameter may be sufficient. We now undertake a more complete
check of our model and the entire cosmology analysis by using MCMC to fit the full space
of cosmological parameters as well as the galaxy bias (and shot noise parameter) to the
averaged mock spectrum. The differences between the resulting best-fit parameter values
and the “true”; i.e. input, values give an indication of the parameter bias introduced by our
method. To break parameter degeneracies, while not letting the prior bias us away from the
input cosmology, we include a “mock” CMB prior’, which will provide a likelihood similar

" The “mock” CMB prior is defined by x3apr = (Pi — Piinput) COV;j1 (pj — Pinput), Where p; are the
parameters at each point of the chain, p;input the input parameters, COVy; is the WMAPT covariance
matrix and 7, j are summed over.
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to the true WMAPT one, except shifted to be centered around the mock input parameters.

We want any deviation between the input cosmology and the recovered cosmology to be
small compared to the uncertainty level of the actual data. We therefore take information
from our final results and use the uncertainties for the WMAP+HST+CMASS ({05 = 200)
real data case for comparison. If the biases on parameter estimation are small compared to
these numbers, it provides strong motivation for considering our approach sound, as most
uncertainties in the next section will be larger than in the WMAP-+HST+CMASS case.
Therefore, parameter uncertainties o referred to in the remainder of this section are these
data-based uncertainties.

Starting with the parameter space® {Q,h?, Qph?, 0, As, ng, 7, bo }, we find that all cosmo-
logical parameters are reproduced to within 1o of the input values (although the parameter
most affected by the mock CMASS data, Qpyh?, is higher than the input by close to 10).

Unfortunately, we do not have mocks based on a cosmology with non-zero >m,,. One
check we can do, however, is to fit a model with parameters {Q,h%, Qpyih?, 0, Ay, ng, 7, 5m,, by
to our ¥m, = 0 mock spectra. The parameters affected by far the most by the angular
spectra are (again) Qpyh? and Ym,. We show the posteriors of this calculation in Fig. 4.6.
In the left panel, the vertical lines indicate the Qpyh? input value, and the lo and 20
bounds based on the uncertainty ¢ from the actual data. The blue points with error bars
are the posterior mean values and 1o recovered errors after fitting to the averaged mock
spectrum. Note that the recovered error bars (from the averaged mock power spectrum)
are typically similar to the data-based error bars. While the different lines of sight are not
entirely independent, Fig. 4.6 points towards a bias of about 1 — 1.5¢ in Qpyh?. For the
neutrino mass, the right panel shows the posterior probability distributions in blue. The
posteriors are always consistent with the input value ¥m, = 0 and can be interpreted as
providing upper bounds. We have made the same plot as in the left panel for the other
parameters and they were biased significantly less (as their reconstruction is dominated by
the mock CMB prior).

Adding the nuisance parameter ag, we obtain the red points and curves in Fig. 4.6. The
effect of marginalizing over ag is to diminish the parameter bias so that Qpyh? is typically
reconstructed to well within 1o. We attribute this change to ag accounting for a possible
scale-dependence in galaxy bias on quasilinear scales. The neutrino constraints are also still
consistent with the input, although the mock upper limits do become significantly weaker.
We have also studied mock cosmology constraints using f,,x = 150, and found that the
main effect is to widen the posterior distributions slightly, while the change in parameter
bias relative to £, = 200 is small.

We conclude that our galaxy bias-only model and the fitting method used here properly
reproduce the input cosmology for our choices of /.., except that there is a bias of about
1 — 1.50 in Qpyh?. The model with nuisance parameter ag removes this parameter bias at
the cost of larger error bars. While the bias in Qpyh? is not extreme, being only slightly
above the 1o level, it is sufficiently worrying that we will quote results for the galaxy bias-

8The parameters 6, A, and 7 represent the ratio between the sound horizon and the angular diameter
distance at decoupling, the scalar amplitude of primordial fluctuations and the reionization optical depth,
respectively.
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only model and for the more conservative model with shot noise-like parameters. Changing
lmax between 150 and 200 does not have a large effect on how well the models compare to
mocks, suggesting that both are reasonable choices. We will quote results for both ranges.

4.6 Results

While the CMASS angular galaxy power spectra carry useful information about the sum of
neutrino masses Xm,,, the effect of ¥m,, is degenerate with certain other parameters which
are not well constrained from the angular spectra alone. There are many combinations
of external data sets that our angular spectra can be combined with to fix this problem.
One approach would be to optimize the neutrino bound by combining as many data sets as
possible. However, we choose instead to focus as much as possible on the effect of the CMASS
photometric data and therefore consider mostly simple priors. Our two main prior choices
are WMAP7 CMB data [104] and the combination of WMAP7 with the HST measurement
of the Hubble parameter [2]. At the end of this section, we will briefly consider the effect
of adding the Union 2 supernova compilation [15] and the measurement of the BAO scale
based on SDSS Data Release 7 [184] spectroscopic data from Ref. [185].

We again use a modification of the publicly available COSMOMC package [103] to sample
the parameter space using MCMC. Our parameter space consists of the six usual ACDM
parameters, (0%, Qpumh?, 0,1In(101° A,), n,, 7), the neutrino mass fraction f,, defined as
Q,/Qpy (where Qpyp includes cold dark matter and massive neutrinos), in addition to Agy,
describing the amplitude relative to a template of the Sunyaev-Zel’dovich contribution to the
CMB [186], the four galaxy bias parameters b; and (optionally) the four nuisance parameters
a;, leaving us with a maximum total number of parameters of sixteen parameters. We put
uniform priors on these parameters and derive ¥m, using Eq. (4.1).

95% CL > my[eV] ‘ prior only  prior+CMASS,lax = 150  prior+CMASS,fax = 200

WDMAP?Y prior 1.1 0.74 (0.92) 0.56 (0.90)
WMAP7 + HST prior | 0.44 0.31 (0.40) 0.26 (0.36)

Table 4.1: The 95% confidence level upper limits on the sum of the neutrino masses Xm,,.
The top row investigates the effect of adding the CMASS galaxy power spectra to a WMAP
prior while the bottom row uses WMAP and the Hj constraint from HST as a prior. In
parentheses we show results for the more conservative model marginalizing over the shot noise-
like parameters a;.

We first consider the WMAPT prior and show how the neutrino bound improves as
CMASS data are added. The resulting 95% CL upper limits are shown in the top row of
Table 4.1, with the results with a; marginalized in parentheses. The bound improves from
1.1 eV for CMB only to 0.56 eV for CMB with CMASS data ({,,x = 200). This constraint
is comparable to the limit Ym, < 0.62 €V derived by [105] from the DR7 spectroscopic
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Figure 4.7: Cosmological constraints with a WMAP7 CMB prior. We show the probability
distribution functions for CMB only (black), CMB with CMASS spectra in the range ¢ =
30 — 150 (blue dashed) and CMB with CMASS spectra in the range ¢ = 30 — 200 (blue solid).
The red curves represent the constraints in the conservative model where we marginalize over
a set of nuisance parameters a;.

sample. It thus appears that the advantage of spectroscopic redshifts (providing informa-
tion on clustering along the line of sight) in that sample is offset by the advantage of the
current sample having a larger volume, although there are other differences between the
samples and analyses as well. Note, however, that the constraint deteriorates significantly
when marginalizing over the nuisance parameters a;. In this case, the mass bound is not
significantly better than with CMB alone. We show the posterior probability distributions
for ¥m,, and the other cosmological parameters in Fig. 4.7.

We next consider the constraints using WMAP7 with HST H, prior. The CMB alone
provides a strong measurement of one combination of late-universe parameters through its
sensitivity to the distance to the last scattering surface. However, this distance measurement
leaves a degeneracy between €2, and ¥m,, so that the CMB-only limit on the neutrino mass
arises mainly from the effect of neutrinos on the primary anisotropies and not from this
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Figure 4.8: Cosmological constraints with a WMAP7 CMB and Hubble parameter prior. We
show the probability distribution functions for CMB + Hj only (black), CMB + Hjy with
CMASS spectra in the range ¢ = 30 — 150 (blue dashed) and CMB + H, with CMASS
spectra in the range ¢ = 30 — 200 (blue solid). The red curves represent the constraints in
the conservative model where we marginalize over a set of nuisance parameters a;. While this
marginalization degrades the neutrino bound, simulations have shown it removes the bias in

Qpmh? (see section 4.5).

distance measurement. Measuring Hy constrains a different combination of late universe
parameters and thus breaks the CMB degeneracy. This is why the WMAPT7+HST bound
is so much stronger than the WMAP7-only one, i.e. ¥m, < 0.44 ¢V as opposed to ¥m, <
1.1 eV. Adding the CMASS angular spectra tightens the bound significantly so that an
impressive upper bound of ¥m, < 0.26 €V is reached for /., = 200 (in the bias-only
model), as is shown in the second row of Table 4.1. The effect of marginalization over a; is

again to bring the constraint back to closer to the CMB+HST bound.

The posteriors for all cosmological parameters are shown in Fig. 4.8. In addition to the
full likelihoods for Ym,,, summarized in Table 4.1, the Qpyh? posteriors are worth noting.
The effect of the angular spectra is to strongly shift the average value of this parameter
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(blue curve), while including the nuisance parameters (red curve) weakens the shift. The
last two parameters in Fig. 4.8 (and 4.7), Q, and Hj, are not independent and can be
expressed in terms of the preceding parameters. The shift thus is really only significant for
one independent parameter, Qpyh?, in our basis. The results in section 4.5 suggest that the
shift in the bias-only case might partially be a bias due to our model and that the results
with a; marginalized are unbiased.

We do not explicitly show the correlations between parameters, but have verified that,
in the CMB-+CMASS case, the neutrino mass has its strongest degeneracies with Qpyh?,
the bias parameters b; and og. While, in agreement with our discussion in section 4.4, the
inclusion of the Hubble prior removes the ¥m, — Qpyh? degeneracy, the strong correlations
with b, and og remain.

We have also added supernova and BAO data to the CMB+HST+CMASS data set,
and considered the neutrino mass bound in the bias-only model, but we found negligible
improvement (from 0.26 eV to 0.25 ¢V) relative to the case without these additional data
sets. These additional data sets do carry significant information, but this information is
degenerate with the information already present in the three default data sets.

For the multipole range ¢ = 30 — 150, we show the results using dashed lines in Figures
4.7 and 4.8. The 95% CL upper limit for CMB-+HST+CMASS in this case is 0.31(0.40) eV
and for CMB+CMASS it is 0.74 (0.92) eV fixing (varying) a; = 0. A significant amount of
information is thus contained in the large ¢ range of multipoles, which makes sense as the
number of modes is large.

Finally, we consider the question of where most of the neutrino mass information comes
from. In principle, massive neutrinos affect the angular power spectra both by their small-
scale suppression of the three-dimensional power spectrum, and by changing the projection
of physical scales onto angular scales through their effect on the background expansion. As
discussed in section 4.4, we expect the former effect to carry more constraining power than
the latter effect. We test this by running Monte Carlo chains where the effect of massive
neutrinos on the three-dimensional power spectrum is artificially taken out, while the effect
on the background expansion is left intact. Specifically, we replace the usual linear CAMB
power spectrum by the spectrum given by the Eisenstein and Hu (EH) fitting formula [187],
which does not include the effect of massive neutrinos. We find that in this setup, including
the CMASS galaxy power spectra does mot improve the neutrino mass bound relative to
the case with CMB, or with CMB-+HST, only. In other words, the projection effect alone
carries little information on neutrino mass (at least after marginalizing over the effects
of other parameters) and the bounds quoted in this manuscript can be attributed to the
small-scale suppression of the three-dimensional power spectrum.

4.7 Conclusions

We have exploited angular power spectra from the SDSS-III DR8 sample of photometric
galaxies with CMASS selection criteria to put interesting constraints on the sum of neutrino
masses. We have used mock galaxy catalogs based on N-body simulations and HOD mod-
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eling to test two models for the angular galaxy spectra. Based on these tests, we decided
to compare the data to theoretical spectra based on the non-linear matter power spectrum
augmented by a linear galaxy bias factor. However, since this model does result in a bias in
Qpmh? of ~ 1 — 1.50, we have also fitted the data to a more conservative model, with an
additional set of shot noise-like fitting parameters, in which this bias is virtually absent. The
tests also motivated us to use the multipole range ¢ = 30 — 200, but we quoted results for
the more conservative choice ¢ = 30— 150 as well. The added advantage is that this analysis
provides insight into the range of scales that yields the galaxy clustering information.

Combining the CMASS data with a CMB prior from the WMAP7 survey, we find an
upper bound ¥m, < 0.56 ¢V (0.90 ¢V) at 95% confidence level for ¢,,., = 200 in the model
with free parameters b; (b; and a;). Adding the HST measurement of the Hubble parameter,
the probability distribution tightens and we find ¥m, < 0.26 eV (0.36 eV). We have also
considered the effect of adding supernova and a (lower redshift) BAO measurement, but
when the HST prior is included already, these additions lower the upper limit to 0.25 ¢V (in
the bias-only model). Considering the dependence on the multipole range, characterized by
a maximum multipole /..., we find that a significant amount of information resides in the
largest multipoles ¢ = 150 — 200, but that even for /., = 150, the galaxy spectra place a
strong bound on neutrino mass. Our main results are summarized in Table 4.1.

It is interesting to compare these results to the outcome of an analysis of a similar
(but smaller) high redshift SDSS photometric catalog, the MegaZ sample [188]. In [150],
the strongest bound quoted is a 95% CL upper limit of 0.28 ¢V, including SN and BAO
data in addition to CMB, HST and MegaZ. However, this particular bound is based on
a multipole range with /., = 300 and no nuisance parameters a;. As we have discussed
extensively, we believe ;. = 200 (or even slightly lower) is a better choice if one wants
to avoid significant, unknown non-linear corrections to the galaxy bias. For this choice, the
MegaZ sample yields an upper bound of 0.34 eV. Assuming the aggressive, bias-only model
(as in the MegaZ analysis). the value we find for the CMASS sample is 0.25 eV, which is
thus a significant improvement. However, it must be kept in mind that this model causes a
small parameter bias and that the more conservative model yields a weaker bound of 0.36
eV.

The bounds presented here rule out the quasi-degenerate neutrino mass hierarchy. For
example, for Ym,, = 0.25 €V, it follows from |[Am2,;| = 2.5-1072 eV? that the mass difference
|mg — ma| =~ 0.015 €V, so that the largest mass difference is |ms — mo|/(Xm,/3) ~ 20% of
the average neutrino mass. We are thus entering the regime where the mass splittings are
significant. Looking forward, the prospects are exciting. As the sensitivity of cosmological
neutrino mass measurements improves, the sum of the masses will either be measured, i.e. a
value that can be distinguished from zero will be found, or the upper limit will be sharpened.
However, even in the latter case, interesting things can be learned. If the sum of the masses
is found to be less than ~ 0.1eV, this rules out the inverted hierarchy, leaving the normal
hierarchy as the only option. Moreover, even in the normal hierarchy, >¥m,, is not allowed
to be lower than ~ 0.05eV so that sooner or later a measurement, rather than an upper
bound, can be expected.

Finally, we note that BOSS is currently taking spectra for a sample of galaxies with the
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same selection criteria as the galaxies considered in this paper and will reach a sample of
approximately 1,500,000 galaxies when finished in 2014. The results presented here are
thus only the tip of the iceberg of what can be done with BOSS. The spectroscopic data will
allow a measurement of the three-dimensional power spectrum for an even larger volume
than considered here (if the low redshifts sample is included) so that also clustering in
the line-of-sight direction can be resolved, thus promising significantly stronger cosmology
constraints than from the photometric data.



Chapter 5

Neutrino and Dark Radiation properties
in light of CMB observations

In this Chapter we set new bounds on the dark radiation and neutrino properties in different
cosmological scenarios combining the ACT and SPT data with the nine-year data release
of the Wilkinson Microwave Anisotropy Probe (WMAP-9), Baryon Acoustic Oscillation
data, Hubble Telescope measurements of the Hubble constant and Supernovae Ia luminosity
distance data. This Chapter is a copy of the paper:

Neutrino and Dark Radiation properties in light of latest CMB observations, Maria
Archidiacono, Elena Giusarma, Alessandro Melchiorri & Olga Mena, 2013, published in
Physical Review D 87, 103519 (2013),

5.1 Introduction

Solar, atmospheric, reactor, and accelerator neutrinos have provided compelling evidence for
the existence of neutrino oscillations. Barring exotic explanations, oscillation data imply
non-zero neutrino masses. However, oscillation experiments only provide bounds on the
neutrino mass squared differences, and therefore the measurement of the absolute scale
of the neutrino mass must come from different observations. In the Standard Model of
elementary particles, there are three active neutrinos. However, additional sterile neutrino
species, or extra relativistic degrees of freedom could also arise in a number of extensions
to the standard model of particle physics, as for instance, in axion models [70, 71], in
decaying of non-relativistic matter models [72], in scenarios with gravity waves [73|, extra
dimensions [74, 75, 76|, early dark energy [77] or in asymmetric dark matter models [78].
Cosmological data provide a tool to test the neutrino properties, since the neutrino masses
and abundances affect both the Cosmic Microwave Background (CMB) physics as well as
the galaxy clustering properties, see Refs [93, 94, 100, 99, 91, 92, 101, 189, 87, 94, 190,
191, 192, 193, 194, 195, 196, 197| for constraints on the neutrino masses and/or abundances
with a variety of cosmological data sets and different assumptions regarding the fiducial
cosmology.
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On the other hand, cosmological measurements also allow to test the clustering proper-
ties of the extra relativistic degrees of freedom, parameterized via N.g, being Nog = 3.04
in the standard model scenario. The clustering pattern of the dark radiation component
is represented by its rest frame speed of sound ¢?; and its viscosity parameter ¢Z,. The
former parameter controls the relationship between velocity and anisotropic stress, being
these parameters ¢?; = c%, = 1/3 if the dark radiation background is composed by neutri-
nos. Several analyses have set bounds on these parameters [198, 199, 200] under different
assumptions regarding the underlying cosmological model.

Recently new CMB data have become available. The Wilkinson Microwave Anisotropy
Probe (WMAP) collaboration has presented the cosmological implications of their final
nine—year data release [18], finding > m, < 0.44 eV at the 95% CL and Nz = 3.84 +0.40
(being Neg the number of thermalised massless neutrino species) when they combine their
data with CMB small scale measurements (as those from previous data releases from both
the Atacama Cosmology Telescope ACT [201] and the South Pole Telescope SPT [19]),
Baryon Acoustic Oscillations (BAO) and Hubble Space Telescope (HST) measurements.

The SPT collaboration has also recently presented their observations of 2540 deg? of
sky, providing the CMB temperature anisotropy power over the multipole range 650 < ¢ <
3000 [20, 21], corresponding to the region from the third to the ninth acoustic peak. The
SPT measurements have found evidence for a decreasing power at high multipoles relative
to the predictions within a ACDM scenario, which suggest, potentially, that extensions to
the minimal ACDM scenario might be needed. In the case in which massive neutrinos are
added in the cosmological data analyses, the SPT collaboration finds that the combination
of SPT data with WMAP (7 year data), together with Baryon Acoustic Oscillation (BAO)
and Hubble Space Telescope (HST) measurements shows a 20 preference for these models
(when compared to the ACDM scenario). In the case of three active massive neutrinos,
they find Y m, = 0.32 £ 0.11 after considering CMB, BAO, HST and SPT cluster mea-
surements. However, if the BAO measurements are removed and only CMB and HST data
are considered, the evidence for neutrino masses disappears at the 95% CL. The authors
of Ref. [20] also find that when a curvature component or a running in the spectral index
of the primordial perturbation spectrum are added as free parameters together with > m,,
the preference for nonzero neutrino masses is significantly reduced. When N.g massless neu-
trinos are considered, the bounds are Ng = 3.71 4+ 0.35 for the combination of CMB, BAO
and HST data sets. Finally, when allowing for N.g massive neutrino species the bounds are
> m, = 0.51 +£0.15 €V and Nz = 3.86 £ 0.37, implying a ~ 3o preference for > m, > 0
and a 2.20 preference for Neg > 3.046.

These findings, if confirmed by future CMB observations, as those by the ongoing Planck
mission [9], have an enormous impact for Majorana neutrino searches. The mean value for
>~ m,, found by the SPT collaboration implies a quasi-degenerate neutrino spectrum and
therefore the discovery of the neutrino character becomes at reach at near future neutrinoless
double beta decay experiments [202].

However, and also recently, the ACT collaboration has released new measurements of the
CMB damping tail [22], finding a much lower value for Nog = 2.79 £ 0.56 when combining
with WMAP 7 year data. When considering also BAO and HST measurements, the value
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is higher, Neg = 3.50 4= 0.42.

The two data sets, SPT and ACT, seem also to disagree in the value of the lensing
amplitude parameter A; at more than 95% CL [203]. On the other hand, ACT data do
not seem to see evidence for neutrino masses, placing an upper limit of » " m, < 0.39 eV at
95% CL when ACT data are combined with WMAP 7 year data together with BAO and
HST measurements.

We explore here the cosmological constraints in several neutrino and dark radiation
scenarios including the new WMAP 9 year data as well as the new SPT and ACT mea-
surements at high multipoles ¢. We also consider the impact of other cosmological data
sets, as BAO, HST and Supernova la luminosity distance measurements. We start with
the massive neutrino case within a ACDM scenario, setting bounds first on ) m,, assuming
three massive neutrinos and then moving to the case in which there are N.g massive species
with a total mass given by > m,,. We then enlarge the minimal ACDM scenario allowing for
more general models with a constant dark energy equation of state or with a running of the
scalar spectral index. We continue by studying the dark radiation properties, focusing first
on the thermal abundances N.g and adding after the dark radiation clustering properties
cZ. and % as free parameters in the analysis.

The structure of the paper is as follows. In Sec. 6.3 we describe the data sets used in
the numerical analyses as well as the cosmological parameters used in each of the neutrino
and dark radiation models examined in Sec. 5.3. We draw our conclusions in Sec. 5.4.

5.2 Data and Cosmological parameters

The standard, three massive neutrino scenario we explore here is described by the following
set of parameters:

{wp, We, O, 7, 1, log[10M 4], Z my} (5.1)

being wy, = Qh? and w, = Q.h? the physical baryon and cold dark matter energy densities,
O, the ratio between the sound horizon and the angular diameter distance at decoupling,
7 is the reionization optical depth, n, the scalar spectral index, A, the amplitude of the
primordial spectrum and > m, the sum of the masses of the three active neutrinos in eV.
We assume a degenerate neutrino mass spectrum in the following. The former scenario is
enlarged with N, massive neutrinos in the case of extended models

{Wb,wc, @877_7 nsalog[loloASLNeH? ZmV} ) (52)

or with a constant dark energy equation of state w (or with a running of the scalar spectral
index n,,,) when considering more general cosmological models:

{wy, We, Oy, 7, 1, log[10" A, w(Myun ), Z my} . (5.3)

We also study dark radiation models, described by ANyg relativistic (i.e..massless) degrees
of freedom together with three massive neutrinos with > m, = 0.3 eV. This first dark
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radiation scheme is described by

{wp, We, O, T, N, log[lOlOAs], ANeg} . (5.4)

2

vis

Then we also consider extended parameter scenarios, with ¢%; and ¢
ters:

also as free parame-

{wba We, 687 T, Ng, log[1010A8]7 AN@H? 0\27137 Cgff} ) (55)

as well as the more general case in which the sum of the three neutrino masses is also fitted
to the data:

{wy, We, O, T, ng, log[10° A,], ANgr, 2o, 2, Z my} . (5.6)

For our numerical analyses, we have used the Boltzmann CAMB code [82] and extracted
cosmological parameters from current data using a Monte Carlo Markov Chain (MCMC)
analysis based on the publicly available MCMC package cosmomc [103]. Table 5.1 specifies
the priors considered on the different cosmological parameters. Our neutrino mass prior is
cast in the form of a (uniform) prior on the neutrino density fraction f, = €2,/Qpy, where
), is the ratio of the neutrino energy density over the critical density at redshift zero, and
Qpy is the same ratio, but for the total dark matter density, which includes cold dark matter
and neutrinos.

Parameter Prior
Quh? 0.005 — 0.1
O.h? 0.01 — 0.99

O, 0.5 — 10
T 0.01 — 0.8
Tg 05—1.5
In (101°A4,) 2.7 — 4
fu 0—0.2
Neog 1.047 — 10
(0 — 10)
w —2—=0
Trun —0.07 — 0.02

Table 5.1: Uniform priors for the cosmological parameters considered here.

Our baseline data set is the nine-year WMAP data [18| (temperature and polarization)
with the routine for computing the likelihood supplied by the WMAP team. We then also
add CMB data from the SPT experiment [20, 21|. In order to address for foreground con-
tributions, the SZ amplitude Agz, the amplitude of the clustered point source contribution,
Ac, and the amplitude of the Poisson distributed point source contribution, Ap, are added
as nuisance parameters in the CMB data analyses. Separately, we also consider data from
the ACT CMB experiment [22[, in order to check the constraints on neutrino and dark
radiation properties with the combination of both WMAP plus SPT data sets and WMAP
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plus ACT data sets. To the CMB basic data sets we add the latest constraint on the Hubble
constant Hy from the Hubble Space Telescope (HST) [2], or supernova data from the 3 year
Supernova Legacy Survey (SNLS3), see Ref. [12]. We do not consider the combination of
HST and SNLS3 measurements because these two data sets are not totally independent. In
the case of SNLS3 data, we add in the MCMC analysis two extra nuisance parameters related
to the light curve fitting procedure used to analyse the supernova (SN) data. These param-
eters characterise the dependence of the intrinsic supernova magnitude on stretch (which
measures the shape of the SN light curve) and color [12]. Galaxy clustering measurements
are considered in our analyses via BAO signals. We use here the BAO signal from DR9 [46]
of the Baryon Acoustic Spectroscopic Survey (BOSS) [204, 205], with a median redshift of
z = 0.57. Together with the CMASS DR9 data, we also include the recent measurement
of the BAO scale based on a re-analysis (using reconstruction [206]) of the LRG sample
from Data Release 7 with a median redshift of z = 0.35 [43], the measurement of the BAO
signal at a lower redshift z = 0.106 from the 6dF Galaxy Survey 6dFGS [45] and the BAO
measurements from the WiggleZ Survey at z = 0.44, 2 = 0.6 and z = 0.73 [44]. The data
combinations for which we will show results in the next section are the following: WMAP
and SPT/ACT; WMAP, SPT/ACT and HST; WMAP, SPT/ACT and SNLS3; WMAP,
SPT/ACT and BAO; WMAP, SPT/ACT, HST and BAO; and finally WMAP, SPT/ACT,
SNLS3 and BAO.

5.3 Results

Here we present the constraints from current cosmological data sets on the neutrino thermal
abundance N.g and on the sum of their masses ) m, in different scenarios, considering
separately SPT and ACT CMB data sets.

5.3.1 Standard Cosmology plus massive neutrinos

Through this section we shall assume a ACDM cosmology with either three or N.g light
massive neutrinos. The left panels of Figs. 5.1 and 5.2, depict our results for the three
and N.g massive neutrino assumptions, respectively, in the case of considering SPT CMB
data, combined with the other data sets exploited here. Tables 5.2 and 5.3 present the mean
values and errors (or 95% CL bounds) in the three and Neg massive neutrino scenarios in the
case of considering SPT for the different data combinations detailed in the previous section.
Our results agree with those presented in Ref. [20] by the SPT collaboration. Notice that
BAO data are crucial for the preference for massive neutrinos in the three massive neutrino
case, in which » m, =0.33 £0.17 (>_m, = 0.40 £ 0.18 ¢V) for CMB plus BAO plus HST
(SNLS3) data. In the Neg massive neutrino scenario, the bounds are » S m, = 0.56 +0.23 eV
and Neg = 4.21+0.46 (> m, = 0.50 £ 0.21 eV and Nog = 3.87 £ 0.68) for CMB plus BAO
plus HST (SNLS3) data.

If BAO data are removed, the preference for massive neutrinos disappears in the three
massive neutrino case, with a 95% CL upper limit on the sum of the three active neutrinos
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W9+SPT W9+SPT W9+SPT W9+SPT  W9+SPT W9+SPT
+ HST +BAO  +SNLS3 +BAO+HST +BAO-+SNLS3

> m, (V) 1.144+0.41 <0.50 0.46+0.18 < 0.80 0.33£0.17 0.40 £ 0.18

Table 5.2: Mean values and errors (or 95% CL upper bounds) on > m, (in €V) in a standard
cosmology with three massive neutrinos for the different combinations of data sets in the case
of considering SPT high multipole data.

of > m, < 0.50 eV in the case of considering WMAP, SPT and HST measurements. For
the same combination of data sets, in the Neg massive neutrino case explored here, Y m, =
0.48 +0.33 ¢V and Ng = 4.08 £ 0.54.

We then consider separately new ACT data and perform identical analyses to the ones
done with SPT data, see Tabs. 5.4, 5.5. Figures 5.1 and 5.2 (right panels) depict our results
for the three and N.g massive neutrino assumptions, respectively, in the case of considering
ACT CMB data combined with the other data sets described in the previous section. Notice
that there is no evidence for neutrino masses in any of the data combinations explored here.
A 95% CL upper limit on the sum of the neutrino masses of > m, < 0.44 eV (< 0.54 eV)
is found when considering CMB, BAO and HST (SNLS3) data, which agrees with the
results presented in Ref. [22]. In the Nog massive neutrino case, we find Y m, < 0.50 eV
(>-m, < 0.53 eV) at 95% CL and Neg = 3.44 £ 0.37 (Neg = 2.77 £ 0.46) when considering
CMB, BAO and HST (SNLS3) data. Only when adding HST measurements the allowed
values of Ngg are larger than 3, see Tab. 5.5, bringing the mean value of N closer to the
one found in the SPT data analyses. When removing BAO data, we get > m, < 0.34 eV
(95% CL) for the combination of CMB and HST measurements in the three massive neutrino
case and »_ m, < 0.39 eV (95% CL), Neg < 3.20 & 0.38 in the N.g massive neutrino case.

Therefore, we conclude that, within a standard cosmology with three massive neutrinos,
ACT and SPT CMB measurements are compatible if BAO data are not considered in the
analyses and if a prior on H, from the HST experiment is also considered. However, the
predictions in the N.g massive neutrino case arising from ACT and SPT data are not

consistent even if BAO data are removed and a prior on Hy from the HST experiment is
also added.

5.3.2 Massive neutrinos and extended cosmologies

In this section we compute the bounds on the sum of the three active neutrino masses
considering extended cosmologies with a dark energy equation of state or with a running of
the scalar spectral index.

Concerning the dark energy equation of state w, there is a strong and very well known
degeneracy among the sum of neutrino masses and the dark energy equation of state w,
see Ref. [124]. The bounds from cosmology on the sum of the neutrino masses will be
much weaker if the dark energy fluid is not interpreted as a cosmological contant, in which
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Figure 5.1: Left panel (Three massive neutrino case): the red contours show the 68% and
95% CL allowed regions from the combination of WMAP and SPT measurements in the (> m,
(eV), Qqmh?) plane, while the magenta (blue) ones show the impact of the addition of SNLS3
(HST) data sets. The green contours depict the results from the combination of CMB and BAO
data, while the cyan and yellow ones show the impact of the SNLS3 (HST) data combined with
CMB and BAO measurements. Right panel: as in the left panel but considering ACT data
instead of SPT.
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Figure 5.2: Left panel (Neg massive neutrino case): the red contours show the 68% and 95% CL
allowed regions from the combination of WMAP and ACT measurements in the (> m, (eV),
Neg) plane, while the magenta (blue) ones show the impact of the addition of SNLS3 (HST)
data sets. The green contours depict the results from the combination of CMB and BAO data,
while the cyan and yellow ones show the impact of the SNLS3 (HST) data combined with CMB
and BAO measurements. Right panel: as in the left panel but considering ACT data instead
of SPT.
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W9+SPT  W9+SPT W9+SPT W9+SPT  W9+SPT W9+SPT
+ HST +BAO +SNLS3  +BAO-+HST +BAO+SNLS3

Neg 3.66 £0.61 4.08£0.54 3.76 £0.67 4.04 £ 0.68 4.21£0.46 3.87£0.68

> m, (V) 1.35 £0.55 0.48+£0.33 0.56 +0.22 < 0.91 0.56 = 0.23 0.50 £0.21

Table 5.3: Mean values and errors(or 95% CL bounds) on Neg and Y m,, (in €V) in a standard
cosmology with Neg massive neutrinos for the different combinations of data sets in the case
of considering SPT high multipole data.

WI9+ACT W9+ACT WI9+ACT WI+ACT WI+ACT W9+ACT
+ HST +BAO  +SNLS3 +BAO+HST +BAO+SNLS3

> om, (eV) < 0.89 <0.34 < 0.53 < 0.49 < 0.44 < 0.54

Table 5.4: 95% CL upper bounds on > m,, (in €V) in a standard cosmology with three massive
neutrinos for the different combinations of data sets in the case of considering ACT high
multipole data.

W9+ACT WI9+ACT WI+ACT WOI+ACT WOIO+ACT W9+ACT
+ HST +BAO +SNLS3  +BAO-+HST +BAO-+SNLS3

Neg 2.64+0.51 3.20£0.38 2.63 £0.48 2.75+£0.44 3.44 +£ 037 2.78 £ 0.46

Sim, (V) < 0.95 <0.39 <055 <0.44 < 0.50 <053

Table 5.5: Mean values and errors on Neg and 95% CL upper bounds on > m, (in €V) in a
standard cosmology with N.g massive neutrinos for the different combinations of data sets in
the case of considering ACT high multipole data.
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case, the dark energy equation of state will be an extra free parameter. If w is allowed to
vary, (qm can be much higher and consequently the neutrino mass also increases to leave
unchanged the matter power spectrum and the growth of matter perturbations. The SPT
collaboration [20] has also considered the impact of a constant dark energy equation of state
w, and they find > m, = 0.27 £ 0.11 eV for the combination of their CMB and clusters
data with WMAP 7 year, HST and BAO data sets. Figure 5.3, left panel, shows our results
for SPT data within the different combinations of data sets addressed here. Notice that, in
general, the evidence for neutrino masses in much milder than in the cosmological constant
case, and the bounds on ) m, are much larger than those shown in Tab. 5.2 due to the
degeneracy between Y m, and w. Supernovae measurements are, for this particular case,
more useful than the H, prior from the HST experiment. Figure 5.3, right panel, shows
the constraints in the (> m, (eV), w) plane in the case of considering ACT data. Notice
that the bounds on ) m, are tighter than those found for the case of analysing SPT data.
Indeed, the bounds on the sum of the three massive neutrino masses computed for the case
of a dark energy equation of state w # —1 are not very different from those obtained for a
ACDM universe, see Tab. 5.4. SNLS3 measurements have a much larger constraining power
than the HST prior also in the ACT data analyses performed in this section, especially for
measuring the dark energy equation of state w.

We also explore the case in which a running in the spectral index of primordial pertur-
bations is added to the minimal ACDM cosmology. In general, the spectrum of the scalar
perturbations is not exactly a power law but it varies with scale. Therefore one must con-
sider the scale dependent running of the spectral index n,,, = dngs/dInk. Following [207],
the power spectrum for the scalar perturbations reads

J

o \ 7 +In(k/ko) (dn/dIn k) + -
P(k) = Ak"® o (—)
ko

being ko = 0.002 Mpc~! the pivot scale. Figure 5.4, left panel, shows our results for SPT
data within the different combinations of data sets addressed here. The evidence for neutrino
masses found for the SPT data in the cosmological constant case disappears in all the data
combinations explored here. We find, for the case of the SPT data analyses, a 20 preference
for a negative running, in agreement with the results presented in Ref. [20].

Figure 5.4, right panel, shows our results for ACT data in the case of considering a
running in the scalar spectral index. The bounds on the sum of the three massive neutrinos
are now very similar to those found for the SPT experiment and also very similar to those
found for ACT in the case of the minimal ACDM scenario. However, the preferred region
for n.., is perfectly consistent with no running of the scalar spectral index, in agreement
with the results presented by the ACT team [22].

5.3.3 Standard cosmology plus dark radiation

In this section we explore the bounds on the N.g parameter, neglecting light neutrino masses
and therefore assuming that there exist in nature N.s massless neutrino species. The left
(right) panel of Fig. 5.5 shows the constraints in the (Qqumh?, Neg) plane arising from the
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Figure 5.3: Left panel (Three massive neutrino case plus dark energy): the red contours show
the 68% and 95% CL allowed regions from the combination of WMAP and SPT measurements
in the (3_m, (eV), w) plane, while the magenta (blue) ones show the impact of the addition of
SNLS3 (HST) data sets. The green contours depict the results from the combination of CMB
and BAO data, while the cyan and yellow ones show the impact of the SNLS3 (HST) data
combined with CMB and BAO measurements. Right panel: as in the left panel but for the
case of ACT data.
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Figure 5.4: Left panel (Three massive neutrino case plus n,yy,): the red contours show the 68%
and 95% CL allowed regions from the combination of WMAP and SPT measurements in the
(>>my (eV), npun) plane, while the magenta (blue) ones show the impact of the addition of
SNLS3 (HST) data sets. The green contours depict the results from the combination of CMB
and BAO data, while the cyan and yellow ones show the impact of the SNLS3 (HST) data
combined with CMB and BAO measurements. Right panel: as in the left panel but for the
case of ACT data.
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Figure 5.5: Left panel (Massless neutrino case): the red contours show the 68% and 95% CL
allowed regions from the combination of WMAP and SPT measurements in the (Qqmh?, Neg)
plane, while the magenta (blue) ones show the impact of the addition of SNLS3 (HST) data
sets. The green contours depict the results from the combination of CMB and BAO data, while
the cyan and yellow ones show the impact of the SNLS3 (HST) data combined with CMB and
BAO measurements. Right panel: as in the left panel but considering ACT data instead of
SPT CMB data.

combination of WMAP plus SPT (ACT) as well as the other data combinations shown in
the previous sections. Notice that the mean value of N.g is, in general, much higher in
the case of the SPT data analyses. When considering CMB data only, Neg = 3.93 4 0.68
for the case of WMAP plus SPT data, while Nog = 2.74 4 0.47 if analysing WMAP and
ACT data. The tension among these two N.g mean values gets diluted if BAO data and
a prior on Hy from the HST experiment are added in the analyses. In that case, N.g =
3.834+0.41 (N = 3.43£0.36) for WMAP plus SPT (ACT), being these two measurements
perfectly consistent and indicating both N.g > 3 at 1-2 standard deviations. The addition
of SNLS3 data will not help much in improving the agreement between these two data sets,
see Tabs. 5.6 and 5.7, where we summarise the mean values and errors found for N.g for
the different data combinations considered here. Therefore, as in the three massive neutrino
case, the consistency between ACT and SPT CMB results is greatly improved if BAO and
HST data are considered as well.

5.3.4 Massive neutrinos and dark radiation

In this section we consider extended dark radiation cosmologies, parameterised via the dark
radiation abundance Nz and its clustering properties, represented by % and c?,, see also
Refs. [198, 199, 200] for bounds on these parameters within different cosmological models.
Here three possible scenarios are examined. In the first scenario there are three massive
neutrinos with > m, = 0.3 €V, which roughly corresponds to the mean value obtained in

Ref. [20], and ANz massless neutrino species with ¢ = ¢?; = 1/3. In the second scenario

vis
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W9+SPT  W9+SPT W9+SPT W9+SPT  W9+SPT W9+SPT
+ HST +BAO +SNLS3  +BAO-+HST +BAO-+SNLS3

Neg 3.93 £0.68 3.59+0.39 3.50£0.59 3.96 £0.69 3.83+0.41 3.55 £ 0.63

Table 5.6: Mean values and errors on Nyg in a standard cosmology with N.g massless neutrinos
for the different combinations of data sets in the case of considering high multipole data from

SPT.

WI9+ACT WO+ACT WI9+ACT WI9+ACT WI+ACT W9+ACT
+ HST +BAO +SNLS3  +BAO-+HST +BAO+SNLS3

Neg 2.74+047 3.12+£0.38 2.77+0.49 2.79+£0.47 3.43+0.36 2.83+£0.47

Table 5.7: Mean values and errors on N.g in a standard cosmology with N.g massless neutrinos
for the different combinations of data sets in the case of considering high multipole data from

ACT.

the clustering parameters of the dark radiation component are allowed to vary, as well as in
the third scenario, in which also the sum pf the masses of the three massive neutrinos > m,,
varies. Our findings are summarised in Figs. 5.7 and 5.6, where we illustrate the constraints
from SPT and ACT probes.

In the first scenario, in which both ¢% and 2, are fixed to their standard values and
assuming three massive neutrinos with » m, = 0.3 €V, we find that ANy = 0.89 £ 0.56
(ANgg = 0.42 + 0.34) when considering WMAP plus SPT (ACT) measurements. When
HST data are added in the analyses, the mean values of AN for these two probes are
similar: ANeg = 0.95 + 0.42 (ANyg = 0.71 £ 0.40) for WMAP, SPT and HST (WMAP,
ACT and HST) measurements. The addition of BAO data does not improve the agreement
between SPT and ACT.

In the second scenario, only > m, = 0.3 ¢V remains as a fixed parameter. In this
case, the discrepancy between SPT and ACT data sets is larger, being the mean values for
ANy = 1.31+0.60 and ANz = 0.38 +0.32 respectively. The addition of HST brings these
two mean values closer, being ANqg = 0.92+£0.39 (AN = 0.6240.41) for the combinations
of WMAP, SPT and HST (WMAP, ACT and HST) data sets. Concerning the values of
the dark radiation clustering parameters %z and 2, we find that SPT data exclude the
standard value of ¢Z, = 1/3 at the 20 CL. The mean value is ¢, = 0.15 4 0.07 (2, < 0.28
at 95% CL) when combining SPT, WMAP, BAO and HST data sets. The results for the
effective speed of sound seem to be consistent with standard expectations, finding, for the

same combination of data sets, that ¢%; = 0.32 4 0.012. Similar results are obtained when
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SPT data is combined with the other data sets considered here. However, the results of the
analyses of ACT data provide values for the clustering parameters which perfectly agree
with standard expectations, being ¢ = 0.35 4+ 0.02 and ¢, = 0.25 + 0.13 (2, < 0.61 at
95% CL) for the analysis of ACT, WMAP, BAO and HST data sets.

In the third scenario, all four parameters ANyg, c2, c2¢ and Y m,, are allowed to freely
vary, and we depict the constraints arising from our analyses in Figs. 5.6. The evidence for
neutrino masses when analysing SPT data gets diluted for all the data combinations except
when BAO data is also added in the analyses. We find ANgg = 1.34 £+ 0.67, (AN =
1.15 4+ 0.64) and > m, < 1.3 eV (D_m, < 1.75 ¢V) at 95% CL when considering CMB
(CMB plus HST) measurements. For the combination of WMAP, SPT and BAO (WMAP,
SPT, BAO and HST) data sets, the cosmological evidence for neutrino masses still remains,
finding that ANy = 1.30+£0.77 (ANug = 1.354+0.50) and 3> m, = 0.68+0.31 eV (3 m, =
0.67 + 0.29 e¢V). When analysing ACT data (see right panel of Fig. 5.6) the bounds on
both AN and > m, are tighter than those found for SPT data. For the combination
of WMAP, ACT, HST and BAO data sets, AN.g = 0.74 + 0.40 and >_m, < 0.46 eV at
95% CL. Regarding the values of ¢Z; and 2, we find very similar results to those shown
previously. In this third scenario in which the sum of the three massive neutrinos is also a free
parameter, we find that SPT data again exclude the standard value of ¢, = 1/3 at the 20
CL, while the value of ¢%; agrees with its standard prediction. The analysis of SPT, WMAP,
BAO and HST gives ¢, = 0.134+0.07 (%, < 0.26 at 95% CL) and ¢Z; = 0.32+0.01. In the
case of ACT data, the values for both clustering parameters perfectly agree with standard
expectations, being % = 0.35 4+ 0.02 and %, = 0.25 + 0.11 (%, < 0.47 at 95% CL) for the
analysis of ACT, WMAP, BAO and HST data sets.

Figure 5.7, left (right) panel, shows the constraints on the dark radiation abundance
versus the effective speed of sound (viscosity parameter) for the combination of SPT or
ACT with WMAP, BAO and HST measurements. Note that SPT and ACT data seem to

be again in disagreement, this time concerning the dark radiation clustering parameter c?

vis*

5.4 Conclusions

New Cosmic Microwave Background measurements have become recently available, moti-
vating us to explore the improvements in the measurements of the properties of the cosmic
neutrino and dark radiation backgrounds. Interestingly, the new measurements of the CMB
damping tail from the South Pole Telescope, SPT, and from the Atacama Cosmology Tele-
scope, ACT, seem to give different results concerning neutrino masses and abundances.
While the SPT collaboration finds ~ 3¢ evidence for neutrino masses and Nqg > 3 at ~ 20,
the ACT collaboration does not find evidence for neutrino masses and their value for N.g
is much lower, agreeing perfectly with the standard model prediction of N.g = 3. The
success of future Majorana neutrino searches relies on the absolute scale of neutrino masses;
therefore a detailed analysis of both data sets separately combined with other cosmological
measurements is mandatory. We have considered the most recent Baryon Acoustic Oscilla-
tion data, measurements of the Hubble constant from the Hubble Space Telescope, as well
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Figure 5.6: Left panel (ANeg dark radiation species plus three massive neutrinos): the red
contours show the 68% and 95% CL allowed regions from the combination of WMAP and
SPT measurements in the (> m, (eV), ANg) plane, while the magenta (blue) ones show the
impact of the addition of SNLS3 (HST) data sets. The green contours depict the results from
the combination of CMB and BAO data, while the cyan and yellow ones show the impact of
the SNLS3 (HST) data combined with CMB and BAO measurements. Right panel: as in the
left panel but considering ACT measurements instead of SPT data.
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Figure 5.7: Left panel (AN.g massless neutrinos and three massive with > m, = 0.3 eV):
the red (blue) contours show the 68% and 95% CL allowed regions from the combination of
WMAP, SPT (ACT), BAO and HST measurements in the (c%;, ANeg) plane. Right panel: as
in the left panel but in the (¢, ANyg) plane.

vis?
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as Supernovae la luminosity distance measurements. In the standard ACDM scenario with
either three massive neutrino species or N.g massless species, the results from the two high
CMB multiple probes are consistent if Baryon Acoustic Oscillation data is removed from
the analyses and a prior on H, from HST is also considered. In the case of N massive
neutrino species, SPT and ACT data analyses give very different results for Y m,: while
the evidence for > m, ~ 0.5 eV found for SPT data persists independently of the data sets
combined, the ACT data provide a 95% CL upper bound of ~ 0.4 €V on > m,. We then
explore extended cosmologies models, finding that, in general, the SPT data evidence for
neutrino masses found in the minimal ACDM scenario gets diluted except for the case of a
dark radiation background of unknown clustering properties with BAO data included. In
the former case, SPT data exclude the standard value for the viscosity parameter of the dark
radiation fluid ¢%, = 1/3 at the 20 CL, regardless of the data sets considered in the analysis.
Upcoming, high precision CMB data from the Planck satellite will help in disentangling the
high tail CMB neutrino-dark radiation puzzle.
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Chapter 6

Dark Radiation and interacting scenarios

In this Chapter we derive the cosmological constraints on the dark radiation abundance, on
its effective velocity and on its viscosity parameter from current data in dark radiation-dark
matter coupled models. This Chapter is a copy of the paper:

Dark Radiation and interacting scenarios, Roberta Diamanti, Elena Giusarma, Olga
Mena, Maria Archidiacono & Alessandro Melchiorri, 2013, Physical Review D 87, 063509.

6.1 Introduction

From observations of the Cosmic Microwave Background (CMB) and large scale structure
(LSS) we can probe the fundamental properties of the constituents of the cosmic dark
radiation background. The energy density of the total radiation component reads

7 4 4/3
1+ g (ﬁ) Neff] P s (61)

where p, is the current energy density of the CMB and Neg is a free parameter, defined as the
effective number of relativistic degrees of freedom in the cosmic dark radiation background.
In the standard scenario, the expected value is Nog = 3.046, corresponding to the three
active neutrino contribution and considering effects related to non-instantaneous neutrino
decoupling and QED finite temperature corrections to the plasma. The most recent CMB
data analyses gives Nog = 3.89 +0.67 (68% CL) [18], see also Refs. [196, 93, 94, 91, 90, 208,
92, 87, 19, 209, 210, 200, 190, 191, 211, 199, 212|. The simplest scenario to explain the extra
dark radiation AN.g = Neg — 3.046 arising from cosmological data analyses assumes the
existence of extra sterile neutrino species. However, there are other possibilities which are
as well closely related to minimal extensions to the standard model of elementary particles,
as axions, extra dimensions or asymmetric dark matter models.

Dark radiation, apart from being parametrized by its effective number of relativistic
degrees of freedom, N, is also characterized by its clustering properties, i.e, its rest-frame
speed of sound, ¢, and its viscosity parameter, ¢, which controls the relationship between

velocity /metric shear and anisotropic stress in the dark radiation background [79]. A value

Prad =

111
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of ¢, different from zero, as expected in the standard scenario, sustains the existence

of dark radiation anisotropies [213]. The standard value of ¢%, = 1/3 implies that the
anisotropies in the dark radiation background are present and they are identical to the
neutrino viscosity. On the other hand, the case ¢%, = 0 cuts the Boltzmann hierarchy
of the dark radiation perturbations at the quadrupole, representing a perfect fluid with
density and velocity (pressure) perturbations exclusively. A value of ¢ different from
the canonical ¢%; = 1/3 leads to a non-adiabatic dark radiation pressure perturbation, i.e.
(6p — 0p/3)/p = (%5 — 1/3)d7%t, where 07" is the density perturbation in the rest frame,
where the dark radiation velocity perturbation is zero.

Interacting dark radiation arises naturally in the so-called asymmetric dark matter mod-
els (see e.g. [80] and references therein), in which the dark matter production mechanism
is similar and related to the one in the baryonic sector. In these models, there exists a
particle-antiparticle asymmetry at high temperatures in the dark matter sector. The ther-
mally symmetric dark matter component will annihilate and decay into dark radiation de-
grees of freedom. Since the dark radiation and the dark matter fluids are interacting, there
was an epoch in the early Universe in which these two dark fluids were strongly coupled.
This results in a tightly coupled fluid with a pressure producing oscillations in the matter
power spectrum analogous to the acoustic oscillations in the baryon-photon fluid before
the recombination era. Due to the presence of a dark radiation-dark matter interaction, the
clustering properties of the dark radiation component can be modified [209]. In other words,
if dark radiation is made of interacting particles, the values of the clustering parameters %,
and 2, may differ from the canonical ¢Z; = 2, = 1/3.

The cosmological implications of interacting dark radiation with canonical clustering
properties have been carefully explored in Refs. [81, 214, 78|, see also the recent work of
Ref. [212]. Here we generalize the analysis and leave the three dark radiation parameters
ANy, %3 and 2, to vary freely within a ACDM scenario with a dark radiation-dark
matter interaction. We will see that the bounds from current cosmological data on the dark
radiation properties derived in non interacting schemes in Refs. [200, 209, 199| will be, in
general, relaxed, when an interaction between the dark radiation and the dark matter fluids
is switched on. While the bounds on the number of extra dark radiation species will not be
largely modified in coupled schemes, the errors on the dark radiation effective velocity and
viscosity parameters will be drastically increased in interacting scenarios. We also show here
how future CMB measurements, as those from the Planck [215] and COrE [216] experiments,
can lead to large biases on the dark radiation clustering parameters if the dark radiation
and dark matter fluids interact in nature but the data is analyzed in the absence of such a
coupling.

The paper is organized as follows. Section 6.2 presents the parametrization used for
dark radiation, describing the dark radiation-dark matter interactions explored here and
their impact on the cosmological observables used in the analysis, as the CMB temperature
anisotropies and the matter power spectrum. In Sec. 6.3 we describe the data sets used
in the Monte Carlo analyses presented in Sec. 6.4, which summarizes the constraints on
interacting dark radiation properties from current cosmological data. Future CMB dark
radiation measurements are presented in Sec. 6.5. We draw our conclusions in Sec. 6.6.
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6.2 Dark radiation-dark matter interaction model

The evolution of the dark radiation linear perturbations reads [79|

' a 2 a@dr 4 2. .
57‘ - E(l _3Ceff) (5d7-+4 kQ) +§9dr+§h20 5 (62)
- 2 9 1 a@dr 2
Gd, — 3k Coff Zédr /{Z2 + Gdr + k Tdr = 0 (63)
) 3 8 0,

rt —kFys — —cho | = =0; 6.4
T +5 dr,3 5C“S(k: +U) (6.4)
20+ 1 .

k Fpg —1Ep i+ 0+ DFpp =0 1>3, (6.5)

where the dots refer to derivatives with respect to conformal time, a is the scale factor, k
is the wavenumber, ¢%; is the effective sound speed, ¢, is the viscosity parameter, d4. and
04 are the dark radiation energy density perturbation and velocity divergence, respectively,
and Fy.; are the higher order moments of the dark radiation distribution function. In
the set of equations above, 7y, is the anisotropic stress perturbation, and o is the metric
shear, defined as o = (h + 617)/(2k), with h and 75 the scalar metric perturbations in the
synchronous gauge. The anisotropic stress would affect the density perturbations, as in
the case of a real fluid, in which the stress represents the viscosity, damping the density
perturbations. The relationship between the metric shear and the anisotropic stress can be
parametrized through a “viscosity parameter”, ¢, [79]:

VlS

= —3 T+4ck (0 +0), (6.6)

where 6 is the divergence of the fluid Veloaty. Although the perturbed Einstein and energy-
momentum conservation equations are enough to describe the evolution of the cosmological
perturbations of non-relativistic particles, it is convenient to introduce the full distribution
function in phase space to follow the perturbation evolution of relativistic particles, that
is, to consider their Boltzmann equation. In order to determine the evolution equation of
dark radiation, the Boltzmann equation is transformed into an infinite hierarchy of moment
equations, that must be truncated at some maximum multipole order ¢,,,,. Then, the
higher order moments of the distribution function are truncated with appropriate boundary
conditions, following Ref. [82].

In the presence of a dark radiation-dark matter interaction, the Euler equations for these
two dark fluids read

. 4 ,
edm - T edm P
a 3/) dm

- 1
edr = Zkz (5dr - 27Tdr> + andmadmfdrogdm - edr) (68)

- angmOdm— dr(edr edm) ) (67)
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where the momentum transfer to the dark radiation component is given by ang, 0 am—dar (Oam —
04:). Indeed, the former quantity is the differential opacity, which gives the scattering rate
of dark radiation by dark matter [81, 214]. The complete Euler equation for dark radiation,
including the interaction term with the dark matter fluid, reads

. 1 af a 1
N 22 dr 2
er = 3]{5 Ceff (Zédr + aﬁ) — aedr — 5[(? Tdr
+  angmOdm—dr (‘gdm - edr) . (69)

Following Refs. [81, 214| we parameterize the coupling between massless neutrinos and dark
matter through a cross section given by

(Tam—ar|v]) ~ Qo Mam (6.10)
if it is constant, or
Q
(Tam—ar|v]) ~ a_j Mdm (6.11)

if it is proportional to T2, where the parameters @y and @, are constants in cm? MeV !
units. It has been shown in Ref. [78] that the cosmological implications of both constant
and T-dependent interacting cross sections are very similar. Therefore, in the following, we
focus on the constant cross section case, parameterized via ()q.

Figure 6.1, upper panel, shows the CMB temperature anisotropies for Qy, = 1073
cm? MeV~! and one dark radiation interacting species, i.e. ANy = 1, as well as for the
non interacting case for the best fit parameter values from WMAP seven year data analy-
sis [90, 104] together with WMAP and South Pole Telescope (SPT) data [19]. We illustrate
the behavior of the temperature anisotropies for different assumptions of the dark radiation
clustering parameters. Notice that the presence of a dark radiation-dark matter interaction
enhances the height of the CMB peaks due to both the presence of an extra radiation com-
ponent (ANyg) and the fact that dark matter is no longer pressureless (due to a non zero
Qo). Therefore ANgg and Qg will be negatively correlated. The location of the peaks also
changes, mostly due to the presence of extra radiation AN.g. The peaks will be shifted to
higher multipoles ¢ due to changes in the acoustic scale, given by

g, = Deloree) (6.12)

Ty (Zrec)

where 7g(zpec) and rs(z...) are the comoving angular diameter distance to the last scattering
surface and the sound horizon at the recombination epoch z,.., respectively. Although
T9(2rec) almost remains the same for different values of ANeg, 75(zrec) becomes smaller
when A N.g is increased. Therefore, the positions of the acoustic peaks are shifted to higher
multipoles (smaller angular scales) if the value of ANy is increased. Notice, however,
that this effect can be compensated by changing the cold dark matter density, in such a
way that z,.. remains fixed, see Ref. [87]. Changing c%, modifies the ability of the dark

radiation to free-stream out of the potential wells [217, 218, 219|. Notice from Fig. 6.1
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(upper panel), that lowering c?, to the value ¢, = 0, the TT power spectrum is enhanced

with respect to the standard case without the dark radiation and the dark matter species
interacting. This situation can be explained, roughly, as the dark radiation component
becoming a perfect fluid. That is, we are dealing with a single fluid characterized by an
effective viscosity. Disregarding the fluid nature and the physical origin of the viscosity, the
general consideration holds: for a given perturbation induced in the fluid, the amplitude
of the oscillations that the viscosity produces (see, e.g. [209]) increases as the viscosity is
reduced. Therefore, lowering ¢?,, diminishes the amount of damping induced by the dark
radiation viscosity, and, consequently, in this case, the amplitude of the CMB oscillations
will increase, increasing in turn the amplitude of the angular power spectrum. Therefore,
we expect the interaction strength size Qg and the % parameter to be positively correlated.

On the other hand, a change of ¢; implies a decrease of pressure perturbations for the
dark radiation component in its rest frame. As shown in Fig. 6.1 (upper panel), a decrease
in ¢ from its canonical 1/3 to the value ¢Z; = 0 leads to a damping of the CMB peaks,
since dark radiation is behaving as a pressureless fluid from the perturbation perspective.
In the case of %, we expect this parameter to be negatively correlated with Q.

Figure 6.1 (lower panel) depicts the matter power spectrum in the presence of a dark
radiation-dark matter interaction for different values of the dark radiation clustering param-
eters (including the standard case with ¢%; = %, = 1/3) for one dark radiation interacting
species, i.e. ANgg = 1. We illustrate as well the case of a pure ACDM universe. Notice
that, since the dark matter fluid is interacting with the dark radiation component, the dark
matter component is no longer presureless, showing damped oscillations. The smaller wave
mode at which the interaction between the dark fluids will leave a signature on the matter
power spectrum is roughly k; ~ ayH (ay), which corresponds to the size of the universe at
the time that the dark radiation-dark matter interaction becomes ineffective (81, 214, 78|,
i.e. when H(ay) =I'(ay) (being H the Hubble parameter and I' the effective dark radiation-
dark matter scattering rate %ndm@dm_dr |v])). For the case of constant dark radiation-dark

matter interacting cross section, the typical scale k; reads, for ANys = 1:

10732 em? MeV—1\ "/?
an e ) hMpe ™ (6.13)

kr ~ 0.7
! ( Qo
2

Notice however from Fig. 6.1 (lower panel) that, while varying cZ,, the matter power
spectrum barely changes, a change in ¢Z; changes dramatically the matter power spectrum,
washing out any interacting signature. For instance, if ¢%; = 0, dark radiation is a presure-
less fluid which behaves as dark matter, inducing an enhancement of the matter fluctuations,
and, consequently, the presence of a dark radiation-dark matter interaction will not modify
the matter power spectrum, see the lower panel of Fig. 6.1. Therefore, one might expect
a degeneracy between the dark radiation-dark matter coupling and the dark radiation %
parameter: the larger the interaction is, the smaller ¢Z; should be to compensate the sup-
pression of power at scales k ~ ky.
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Figure 6.1: Upper panel: The magenta lines depict the CMB temperature power spectra CET
for the best fit parameters for a ACDM model from the WMAP seven year data set. The dotted
curve shows the scenario with a constant interacting Cross section with Qo = 10732cm? MeV !
for ANyg = 1 and assuming canonical values for ¢%; = CVIS = 1/3. The dashed (dot dashed)
curve illustrates the same interacting scenario but with ¢Z; = 0 and %, = 1/3 (%3 = 1/3
and CVlS = 0). We depict as well the data from the WMAP and SPT experiments, see text for
details. Lower panel: matter power spectrum for the different models described in the upper

panel.

SDSS II DR7 [105].

The data correspond to the clustering measurements of luminous red galaxies from
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6.3 Data

In order to constrain the dark radiation parameters ANy, % and c2, as well as the size

of the dark radiation-dark matter interaction, we have modified the Boltzmann CAMB
code [82] including the dark radiation-dark matter interaction scenario. Then, we perform
a Monte Carlo Markov Chain (MCMC) analysis based on the publicly available MCMC
package cosmomc [103]. We consider a ACDM cosmology with AN dark radiation species
interacting with the dark matter and three massless active neutrinos. This scenario is
described by the following set of parameters:

{Wb, We, @Sa T, Ng, log[1010A8]7 A]V'eﬂ% C?/isv 051{7 Q0}7

where w, = Qh? and w. = Q.h? are the physical baryon and cold dark matter energy
densities, Oy is the ratio between the sound horizon and the angular diameter distance at
decoupling, 7 is the optical depth, n, is the scalar spectral index, A, is the amplitude of
the primordial spectrum, AN.g is the extra dark radiation component, ¢ is the viscosity
parameter, ¢ is the effective sound speed and Qy, in units of cm? MeV !, encodes the dark
radiation-dark matter interaction. The flat priors considered on the different cosmological
parameters are specified in Tab. 6.1.

Parameter Prior
Oph? 0.005 — 0.1
Q.h? 0.01 — 0.99

O, 0.5 — 10
T 0.01 — 0.8
N 05— 1.5
In (10" A,) 2.7 — 4
A Neg 0—10
Clis 0—1
2y 0—1
logyy (Qo/10~*cm®MeV ") —4—-0

Table 6.1: Uniform priors for the cosmological parameters considered here.

For CMB data, we use the seven year WMAP data [90, 104] (temperature and polariza-
tion) by means of the likelihood supplied by the WMAP collaboration. We consider as well
CMB temperature anisotropies from the SPT experiment [19]|, which provides highly accu-
rate measurements on scales < 10 arcmin. We account as well for foreground contributions,
adding the SZ amplitude Agz, the amplitude of the clustered point source contribution, A¢,
and the amplitude of the Poisson distributed point source contribution, Ap, as nuisance pa-
rameters in the CMB data analysis.

Furthermore, we include the latest constraint from the Hubble Space Telescope (HST) [2]
on the Hubble parameter H,. Separately, we also add Supernovae la luminosity distance
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data from the 3 year Supernova Legacy Survey (SNLS3) [12], adding in the MCMC analysis
two extra nuisance parameters, which are related to the intrinsic supernova magnitude
dependence on stretch (which measures the shape of the SN light curve) and color, see
Ref. [12] for details. We do not consider here the addition of HST and SNLS3 measurements
simultaneously because these two data sets are not independent.

Galaxy clustering measurements are also added in our analysis via BAO data from
the CMASS sample in Data Release 9 [34] of the Baryon Oscillation Spectroscopic Survey
(BOSS) [204, 205|, with a median redshift of z = 0.57 [46], as well as from the LRG sample
from Data Release 7 with a median redshift of z = 0.35 [43], and from the 6dF Galaxy
Survey 6dFGS at a lower redshift z = 0.106 [45].

Therefore, we illustrate two cases, namely, the results from the combination of WMAP,
SPT, SNLS3 and BAO data as well as the results arising from the combination of WMAP,
SPT, HST and BAO data.

6.4 Current constraints

Table 6.2 shows the 68% and 95% CL errors on the dark radiation parameters and on
the size of the dark radiation-dark matter interaction strength arising from the two possible
combinations of data sets considered here for both interacting and non interacting scenarios.
Notice, first, that the 1—20 preference found in the literature for extra dark radiation species
is still present in both interacting and non interacting scenarios in which the dark radiation
clustering properties are not standard. Overall, the bounds on A Ng are not largely modified
when allowing for a dark radiation-dark matter coupling, see also the results presented in
Ref. [212]. However, the bounds on the dark radiation clustering properties c%; and %, in
the ACDM scenario and in minimal extensions of this scheme presented in Refs. [200, 199|
are drastically changed when considering the possibility of an interaction between the dark
radiation and the dark matter fluids. For instance, in Ref. [200], in the context of a ACDM
scenario, it is found that %z = 0.2475%% at 95% CL. Similar results were found in Ref. [199],
where the ACDM scenario was extended to consider other cosmological models with a dark
energy equation of state or with a running spectral index. Indeed, within non interacting
scenarios, we find 2 = 0.327003 and 2, = 0.277033 at 95% CL from the combination of
WMAP, SPT, HST and BAO data sets. These bounds are much weaker when allowing
for an interacting dark radiation component: the errors on ¢%; are degraded by an order
of magnitude, while the errors on ¢? increase by a factor of two. We find, for the same
combination of data sets than the one quoted above, cZ; = 0.28709% and 0.457532 both at
95% CL.

Figure 6.2 (left panel) depicts the 68% and 95% CL allowed regions in the (¢, ANeg)
plane arising from the MCMC analysis of the cosmological data sets described in the previous
section. We illustrate here the four cases shown in Tab. 6.2. The green (yellow) contours
refer to the case of WMAP, SPT, BAO and SNLS3 data sets with (without) interaction
between the dark radiation and dark matter fluids. The magenta (red) contours refer to
the case of WMAP, SPT, BAO and HST data sets with (without) interaction. Notice that
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WMAP+SPT+ WMAP+SPT+  WMAP+SPT+ WMAP-+SPT-+
BAO-+HST int. BAO+HST no int. BAO-+SNLS3 int. BAO--SNLS3 no int.

0.104-0.44 0.024-0.04 0.124-0.50 0.024-0.04
cgff 0'281_0.121_0.28 0'321—0.021—0.03 O'301_0.151_0.30 0'321—0.021—0.04
0.344-0.52 0.134-0.34 0.364-0.51 0.134-0.42
0\2/'15 O'451_0.311_0.45 0'271—0.131—0.22 O'461_0.321_0.46 0'271—0.141—0.23
AN 68%CL < 0.81 0.6215:36+0-80 < 0.76 0.77+5:59+1-29
95%CL < 1.30 <147
Qo 68%CL <08 — <038 —
(107952 ) 05%CL < 4.9 - <54 -

Table 6.2: 1D marginalized bounds on the dark radiation parameters and on the size of the
dark radiation dark matter interaction Qo using WMAP, SPT, BAO data and HST/SNLS3
measurements, see text for details. We show the constraints for both interacting and non
interacting models, presenting the mean as well as the 68% and 95% CL errors of the posterior
distribution.

the errors on the ¢%; parameter are largely increased when the interaction term is switched
on, while the errors on AN are mildly affected by the presence of such an interaction.
Notice that HST data is more powerful than SNLS3 data in constraining AN.g, agreeing
with previous results in the literature, see Ref. [196]. The reason is because AN.g is highly
degenerate with Hy, and HST data provide a strong prior on the former parameter.

The right panel of Fig. 6.2 depicts the 68% and 95% CL allowed regions in the (%,
AN.g) plane, being the color code identical to the one used in the left panel. While the
impact of the coupling is not as large as in the effective velocity case, the errors on the
viscosity parameter c2_ are enlarged by a factor of two in interacting dark radiation models.

vis

6.5 Forecasts from future cosmological data

We evaluate here the constraints on the dark radiation parameters, ANy, %, %, by
means of an analysis of future mock CMB data for the ongoing Planck experiment and the
future COrE mission. These CMB mock data sets are then fitted using a MCMC analysis
to a non interacting cosmological scenario but allowing the dark radiation parameters to
have non standard values. The CMB mock data sets are generated accordingly to noise
properties consistent with the Planck and COrE CMB missions. The fiducial €, model
we use is a ACDM scenario (i.e. a flat universe with a cosmological constant and three
massless active neutrino species) adding an interaction between the dark radiation and dark
matter sectors with Qo = 10732cm? MeV !, assuming one dark radiation interacting species

AN.s=1 and standard clustering and viscosity parameters for the dark radiation, i.e. %, =

vis
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Figure 6.2: Left panel: 68% and 95% CL contours in the (c?;, ANeg) plane arising from the
MCMC analysis of WMAP, SPT, BAO and HST/SNLS3 data. The green (yellow) contours
refer to the case of WMAP, SPT, BAO and SNLS3 data sets with (without) interaction between
the dark radiation and dark matter fluids. The magenta (red) contours refer to the case of
WMAP, SPT, BAO and HST data sets with (without) interaction between the dark radiation
and dark matter sectors. Right panel: as in the left panel but in the (c2 , AN.g) plane.

vis?

c?: = 1/3. For each frequency channel we consider a detector noise given by w™! = (90)2,
being 6 the FWHM of the gaussian beam and ¢ = AT/T the temperature sensitivity (the
polarization sensitivity is AE/E = v/2AT/T). Consequently the C, fiducial spectra get a
noise contribution which reads N, = w™!exp (/(¢ + 1)/¢3), where ¢, = v/8In2/6.

Figure 6.3 (left panel) depicts the 68% and 95% CL contours in the (%, AN.g) plane
arising from the MCMC analysis of Planck and COrE mock data. Notice that the recon-
structed value for ¢ is larger than the simulated value ¢ = 1/3. The reason for that is
due to the degeneracy between the dark radiation-dark matter interaction @y and c?;, see
Fig. 6.1, from which one would expect a negative correlation between the interaction cross
section and the effective velocity. If such an interaction occurs in nature but future CMB
data is analysed assuming a non interacting model, the reconstructed value of c; will be
higher than the standard expectation of 1/3, see Tab. 6.3. From what regards to ¢?,, see
Fig. 6.3 (right panel), the effect is the opposite since these two parameters are positively
correlated and therefore the reconstructed value of ¢2 is lower than the canonical 1/3, see
Tab. 6.3. Therefore, if the dark radiation and dark matter sectors interact, a large bias on
the dark radiation clustering parameters could be induced if future CMB data are analysed
neglecting such coupling. On the other hand, the bias induced in AN.g is not very signif-
icant, being the reconstructed value consistent with the AN, = 1 simulated one within

lo.
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Figure 6.3: Left panel: 68% and 95% CL contours in the (c%;, ANeg) arising from the MCMC
analysis of Planck (red contours) and COrE (blue contours) CMB mock data. The mock data
are generated adding an interaction between the dark radiation and dark matter sectors with
Qo = 10~%?cm? MeV !, assuming one dark radiation interacting species AN.g—1 and standard
clustering and viscosity parameters for the dark radiation. The CMB mock data is then fitted
to a non interacting cosmology but allowing the dark radiation parameters cgﬁ and C\ins to have

non standard values. Right panel: as in the left panel but in the (c2,_, AN.g) plane.

vis?

Planck COrE
G O3RN 0sungro
s 0.300:0060:006  0-2970:00170:001
AN 12670557051 L17E05E05

Table 6.3: Constraints on the dark radiation clustering parameters from the Plank and COrE
mock data sets described in the text. We present the mean as well as the 68% and 95% CL
errors of the posterior distribution. We have set Qo = 10732cm? MeV 1, cgff = c%is =1/3in
the mock data sets. Then, we have fitted these data to non interacting models in which both

2 2
cog and ¢, are free parameters.

6.6 Conclusions

Standard dark radiation is made of three light active neutrinos. However, many extensions
of the standard model of elementary particles predict an extra dark radiation component
in the form of sterile neutrinos, axions or other very light degrees of freedom which may
interact with the dark matter sector. In fact, once that one assumes the existence of extra
dark radiation species as well as the existence of a dark matter sector there is a priori no
fundamental symmetry which forbids couplings between these two dark fluids. If one allows
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for such a possibility, the clustering properties of these extra dark radiation particles might
not be identical to those of the standard model neutrinos, since the extra dark radiation
particles are coupled to the dark matter. In this paper we have analyzed the constraints
from recent cosmological data on the dark radiation abundances, effective velocities and
viscosity parameters. While the bounds on AN are very close to those of uncoupled
models, the errors on the clustering dark radiation properties are largely increased, mostly
due to the existing degeneracies among the dark radiation-dark matter coupling and c%;;,
c%.. The cosmological bounds on the dark radiation effective velocity % found in non-
interacting schemes are degraded by an order of magnitude when a dark radiation-dark
matter interaction is switched on. In the case of the viscosity parameter c?, the errors
on this parameter are a factor of two larger when considering interacting scenarios. We
have also explored the perspectives from future Cosmic Microwave Background data. If
dark radiation and dark matter interact in nature, but the data are analysed assuming the
standard, non interacting picture, the reconstructed values for the effective velocity and
for the viscosity parameter will be shifted from their standard 1/3 expectation, namely

e = 0.3470008 and %, = 0.2970007 at 95% CL for the future COrE CMB mission.

vis
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Chapter 7

Summary and Conclusions

Neutrinos are one of the most mysterious particles in nature. Nowadays we know from
experimental results on neutrino oscillations that neutrinos are massive. Unfortunately,
oscillation experiments are not sensitive to the overall neutrino mass scale.

Cosmology provides one of the means to test the absolute scale of neutrino masses and
plays an important role to constrain neutrino properties. Neutrinos affect both the Cosmic
Microwave Background (CMB) physics as well as the galaxy clustering, leaving a significant
imprint either in the full shape clustering signal (exploited by matter power spectrum mea-
surements) or in the geometrical signal (exploited via Baryon Acoustic Oscillation (BAO)
measurements).

In this thesis we have derived bounds on the neutrino masses and on the neutrino abun-
dances from the recent cosmological data, considering a ACDM scenario as well as other
extended cosmological scenarios.

Chapter I contains a brief description of the current cosmological model and the mea-
surements which support it. A detailed description of the different signatures in cosmology
arising from the neutrino properties, as its mass and its abundance, can be found in Chapter

IT.

In Chapter IIT [189] we have studied a flat ACDM scenario with Neg active plus ster-
ile massive neutrino species, in order to test the so-called (342) models with cosmological
data. We have found that this model is allowed at the 95 % CL by current cosmological
data (which include CMB, galaxy clustering and Supernovae la). We have also considered
the Big Bang Nucleosynthesis Helium-4 and Deuterium abundances and we have found
that these measurements compromise the viability of (3+2) models. Moreover, we have
presented a forecast to compute the errors on the active and sterile neutrino parameters
from the ongoing Planck CMB mission data and from the BOSS and Euclid galaxy survey
data. Future cosmological data could determine sub-eV active and sterile neutrino masses
and sterile neutrino abundances with 10—30% precision, for sub-eV (0.5 eV> m,_ > 0.1 V)
sterile neutrino masses. We have also shown that the presence of massive sterile neutrinos
in the universe could be inferred from inconsistencies among the values of the Hubble con-

125
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stant H, obtained from CMB and galaxy clustering data and those arising from independent
measurements of the Hubble constant over the next decade.

In Chapter IV [193] we have derived the neutrino mass bounds from the angular power
spectra from the BOSS experiment, part of the Sloan Digital Sky Survey III, Data Release
Eight (BOSS DRS) photometric sample of CMASS galaxies, dividing this sample into four
photometric redshift bins, from z = 0.45 to z = 0.65, and considering a free constant bias
parameter for each of these bins. To mimic the effects of a scale dependent galaxy bias,
we have also fitted the data with an additional set of shot noise-like parameters. We have
calculated the power spectra in two multipole ranges, 30 < ¢ < 150 and 30 < ¢ < 200,
in order to minimize non-linear effects and we have considered a flat ACDM model plus
three active massive neutrino species. Combining the BOSS DRS data with CMB WMAP
7 year data, we have found an upper bound on the sum of the three active neutrino masses
of Y m, < 0.56 eV at 95% CL for £,,,, = 200 (in the model with free bias parameters)
and an upper bound > m, < 0.26 eV at 95% CL if a prior on the Hubble constant from
the Hubble Space Telescope (HST) data is also included. Considering a conservative galaxy
bias model containing shot noise-like parameters, we have found ) m, < 0.90 eV at 95%
CL using CMB and BOSS DRS8 data and ) m, < 0.36 eV at 95% CL using CMB, HST
and BOSS DRS data sets. We have also shown that the addition of Supernova and/or BAO
data does not significantly improve the neutrino mass bound once the HST prior is included.

New measurements of the CMB damping tail released in late 2012 and early 2013 from
the South Pole Telescope, SPT, and from the Atacama Cosmology Telescope, ACT, seem to
give different results concerning neutrino masses and abundances. Motivated by the discrep-
ancies between SPT and ACT findings, we have explored in Chapter V [221] the cosmological
constraints in several neutrino and dark radiation scenarios using CMB WMAP 9 year data,
the new SPT and ACT measurements at high multipoles ¢, BAO data, HST measurements
of the Hubble constant and Supernovae Ia luminosity distance data. In the standard ACDM
scenario with either three massive neutrino species or N.g massless species, the two high ¢
CMB probes give similar results if BAO data are removed from the analyses and a prior on
Hy from HST is also considered. In the case of N.g massive neutrino species, SPT and ACT
data analyses give very different results for > m,: while the evidence for Y m, ~ 0.5 eV
found for SPT data persists independently of the data sets combined in the analysis, the
ACT data provide a 95% CL upper bound of ~ 0.4 €V on »_ m,. We then have explored
extended cosmological scenarios with a dark energy equation of state and with a running of
the scalar spectral index and we have proved that the evidence for neutrino masses found by
the South Pole Telescope in the three neutrino scenario disappears for all the data combina-
tions. Again, the agreement between the two high multipole CMB measurements considered
is highly improved when adding HST data. Finally, we have considered the case of a dark
radiation background of unknown clustering properties, finding that SPT data exclude the
standard value for the viscosity parameter of the dark radiation fluid %, = 1/3 at the 20 CL.

vis

In Chapter VI [198] we have studied a dark radiation-dark matter interacting model
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deriving the constraints from recent cosmological data on the dark radiation abundances,
effective velocities and viscosity parameters. If one assumes the existence of extra dark radi-
ation species interacting with the dark matter sector, the clustering properties of these extra
dark radiation particles might not be identical to those of the Standard Model neutrinos
(for which 23 = ¢, = 1/3), since the extra dark radiation particles are coupled to the dark
matter fluid. We have found that the cosmological bounds on the number of extra dark
radiation species do not change significantly when considering interacting schemes, while
the errors on the clustering dark radiation properties are largely increased, mostly due to
the existing degeneracies among the dark radiation-dark matter coupling and %, ¢%,. The
cosmological bounds on the dark radiation effective velocity ¢ found in non-interacting
schemes are degraded by an order of magnitude when a dark radiation-dark matter interac-
tion is switched on. In the case of the viscosity parameter %, the errors on this parameter
are a factor of two larger when considering interacting scenarios. We have also explored the
perspectives from future CMB measurements. If dark radiation and dark matter interact
in nature, but the data are analysed assuming the standard, non interacting picture, the
reconstructed values for the effective velocity and for the viscosity parameter will be shifted
from their standard 1/3 expectation, namely c¢Z; = 0.3470055 and ¢, = 0.2970007 at 95% CL
for the future COrE CMB mission.

Latest measurements of the CMB temperature anisotropies released by the Planck satel-
lite provide the tightest constraints on cosmological parameters [9] but they do not provide
a strong bound on the sum of neutrino masses if they are not combined with external data
sets. The upper limit from Planck, considering lensing, combined with low-¢ polarization
measurements from WMAP-9 year data is > m, < 1.1 eV at 95% CL. The addition of the
HST prior on the Hubble constant improves the constraints to > m, < 0.21 eV at 95% CL.
Planck mesurements alone find no evidence for additional relativistic particles beyond the
three families of neutrinos in the Standard Model, while the constraint obtained combining
CMB Planck data with the HST Hubble constant measurement is N.g = 3.62 4= 0.25, due
to the strong degeneracy between Hy and Neg.

The future planned Euclid galaxy survey could provide the ideal tool to test neutrino
properties with cosmology. Combining Euclid measurements of the custering of galaxies, of
weak lensing shear and of clusters with CMB data, the sum of neutrino masses could be
measured with a 1 ¢ precision of 0.01 eV assuming a fiducial model with > m, = 0.056 €V,
even in the case that the dark energy equation of state varies with time [220]. The same
data combination could reach a lo sensitivity to Neg of 0.02, implying that the small
departure of 0.046 from the standard expectation of 3 (arising from non instantaneous
neutrino decoupling, neutrino mixing and finite temperature corrections) could be tested
with 20 precision [220].



128 Chapter 7. Summary and Conclusions




Part 1V

Bibliography

129






Bibliography

[1] S. Dodelson, “Modern cosmology,” Amsterdam, Netherlands: Academic Pr. (2003) 440
p.

[2] A. G. Riess, L. Macri, S. Casertano, H. Lampeitl, H. C. Ferguson, A. V. Filippenko,
S. W. Jha and W. Li et al., Astrophys. J. 730, 119 (2011) |[Erratum-ibid. 732, 129
(2011)] [arXiv:1103.2976 [astro-ph.CO]].

[3] P. Coles and F. Lucchin, “Cosmology: The Origin and evolution of cosmic structure,”
Chichester, UK: Wiley (2002) 492 p.

[4] Einstein A., Sitzungsber. Preuss. Akad. Wiss. phys.-math. Klasse VI, 142 (1917).
[5] A. S. Eddington, Mon. Not. Roy. Astron. Soc. 90, 668 (1930).

[6] Friedmann A., 1922, ZPhy, 10, 377.

[7] Friedmann A., 1924, ZPhy, 21, 326 .

[8] C.-P. Ma and E. Bertschinger, Astrophys. J. 455, 7 (1995) [astro-ph/9506072].
[9] P. A. R. Ade et al. | Planck Collaboration|, arXiv:1303.5076 [astro-ph.CO)|.

[10] S. Perlmutter et al. [Supernova Cosmology Project Collaboration|, Astrophys. J. 517,
565 (1999) |astro-ph/9812133].

[11] A. G. Riess et al. [Supernova Search Team Collaboration|, Astron. J. 116, 1009 (1998)
[astro-ph/9805201].

[12] A. Conley, J. Guy, M. Sullivan, N. Regnault, P. Astier, C. Balland, S. Basa and
R. G. Carlberg et al., Astrophys. J. Suppl. 192 (2011) 1 [arXiv:1104.1443 |astro-
ph.CO].

[13] E. S. Walker, I. M. Hook, M. Sullivan, D. A. Howell, P. Astier, C. Balland, S. Basa and
T. J. Bronder et al., arXiv:1008.2308 [astro-ph.CO].

[14] M. Sullivan, J. Guy, A. Conley, N. Regnault, P. Astier, C. Balland, S. Basa and
R. G. Carlberg et al., Astrophys. J. 737, 102 (2011) [arXiv:1104.1444 |astro-ph.CO]].

131



132 Bibliography

[15] R. Amanullah, C. Lidman, D. Rubin, G. Aldering, P. Astier, K. Barbary, M. S. Burns
and A. Conley et al., Astrophys. J. 716, 712 (2010) [arXiv:1004.1711 [astro-ph.CO]].

[16] E. L. Wright, S. S. Meyer, C. L. Bennett, N. W. Boggess, E. S. Cheng, M. G. Hauser,
A. Kogut and C. Lineweaver et al., Astrophys. J. 396, L13 (1992).

[17] J. Lesgourgues, G. Mangano, G. Miele and S. Pastor “Neutrino Cosmology,” Cambridge,
UK: Cambridge University Press (2013) 378 p.

[18] G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, J. Dunkley,
M. R. Nolta and M. Halpern et al., arXiv:1212.5226 |astro-ph.CO)].

[19] R. Keisler, C. L. Reichardt, K. A. Aird, B. A. Benson, L. E. Bleem, J. E. Carlstrom,
C. L. Chang and H. M. Cho et al., Astrophys. J. 743, 28 (2011) [arXiv:1105.3182
[astro-ph.CO]].

[20] Z. Hou, C. L. Reichardt, K. T. Story, B. Follin, R. Keisler, K. A. Aird, B. A. Benson
and L. E. Bleem et al., arXiv:1212.6267 [astro-ph.CO|.

[21] K. T. Story, C. L. Reichardt, Z. Hou, R. Keisler, K. A. Aird, B. A. Benson, L. E. Bleem
and J. E. Carlstrom et al., arXiv:1210.7231 |astro-ph.CO].

[22] J. L. Sievers, R. A. Hlozek, M. R. Nolta, V. Acquaviva, G. E. Addison, P. A. R. Ade,
P. Aguirre and M. Amiri et al., arXiv:1301.0824 [astro-ph.CO|.

[23] S. Das, T. Louis, M. R. Nolta, G. E. Addison, E. S. Battistelli, J R. Bond, E. Calabrese
and D. C. M. J. Devlin et al., arXiv:1301.1037 [astro-ph.CO|.

[24] J. Silk, Astrophys. J. 151, 459 (1968).
[25] P. A. R. Ade et al. | Planck Collaboration|, arXiv:1303.5062 [astro-ph.CO)|.
[26] M. Tegmark, astro-ph/9511148.

[27] W. Hu and S. Dodelson, Ann. Rev. Astron. Astrophys. 40, 171 (2002) [astro-
ph/0110414].

[28] A. J. S. Hamilton, Lect. Notes Phys. 665, 415 (2008) [astro-ph/0503603)].

[29] A. J. S. Hamilton, Lect. Notes Phys. 665, 433 (2008) |astro-ph/0503604]. Hamilton
A. J. S., 2005, astro, arXiv:astro-ph/0503604

[30] Martinez V. J., 2009, LNP, 665, 269

[31] D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, C. Hirata, A. G. Riess and E. Rozo,
arXiv:1201.2434 |astro-ph.CO].

[32] D. G. York et al. [SDSS Collaboration|, Astron. J. 120, 1579 (2000) [astro-ph/0006396].



Bibliography 133

[33] J. A. Frieman, B. Bassett, A. Becker, C. Choi, D. Cinabro, D. F. DeJongh, D. L. Depoy
and M. Doi et al., Astron. J. 135, 338 (2008) [arXiv:0708.2749 [astro-ph]|.

[34] C. P. Ahn et al. [SDSS Collaboration|, Astrophys. J. Suppl. 203, 21 (2012)
[arXiv:1207.7137 [astro-ph.IM]]|.

[35] D. J. Eisenstein et al. [SDSS Collaboration|, Astron. J. 142, 72 (2011) [arXiv:1101.1529
[astro-ph.IM]].

[36] A. Ross, S. Ho, A. J. Cuesta, R. Tojeiro, W. J. Percival, D. Wake, K. L. Masters and
R. C. Nichol et al., Mon. Not. Roy. Astron. Soc. 417, 1350 (2011) [arXiv:1105.2320
[astro-ph.CO]].

[37] M. White, M. Blanton, A. Bolton, D. Schlegel, J. Tinker, A. Berlind, L. da Costa and
E. Kazin et al., Astrophys. J. 728, 126 (2011) [arXiv:1010.4915 [astro-ph.CO|].

[38] M. Tegmark et al. [SDSS Collaboration|, Astrophys. J. 571, 191 (2002) [astro-
ph/0107418).

[39] D. Huterer, L. Knox, R. C. Nichol and , Astrophys. J. 555, 547 (2001) |astro-
ph/0011069).

[40] H. Aihara et al. [SDSS Collaboration|, Astrophys. J. Suppl. 193, 29 (2011) [Erratum-
ibid. 195, 26 (2011)] [arXiv:1101.1559 [astro-ph.IM]].

[41] A. J. S. Hamilton, astro-ph/9708102.

[42] N. Benitez, E. Gaztanaga, R. Miquel, F. Castander, M. Moles; M. Crocce,
A. Fernandez-Soto and P. Fosalba et al., Astrophys. J. 691, 241 (2009) [arXiv:0807.0535
[astro-ph]].

[43] N. Padmanabhan, X. Xu, D. J. Eisenstein, R. Scalzo, A. J. Cuesta, K. T. Mehta and
E. Kazin, arXiv:1202.0090 |astro-ph.CO].

[44] C. Blake, E. Kazin, F. Beutler, T. Davis, D. Parkinson, S. Brough, M. Colless and
C. Contreras et al., Mon. Not. Roy. Astron. Soc. 418, 1707 (2011) [arXiv:1108.2635
[astro-ph.CO]].

[45] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker
and W. Saunders et al., Mon. Not. Roy. Astron. Soc. 416, 3017 (2011) [arXiv:1106.3366
[astro-ph.CO]].

[46] L. Anderson, E. Aubourg, S. Bailey, D. Bizyaev, M. Blanton, A. S. Bolton,
J. Brinkmann and J. R. Brownstein et al., Mon. Not. Roy. Astron. Soc. 428, 1036
(2013) [arXiv:1203.6594 [astro-ph.CO]].

[47] L. Anderson, E. Aubourg, S. Bailey, F. Beutler, A. S. Bolton, J. Brinkmann,
J. R. Brownstein and C. -H. Chuang et al., arXiv:1303.4666 [astro-ph.CO|.



134 Bibliography

[48] S. Hannestad and J. Madsen, Phys. Rev. D 52, 1764 (1995) |astro-ph/9506015].

[49] A. D. Dolgov, S. H. Hansen and D. V. Semikoz, Nucl. Phys. B 543, 269 (1999) |hep-
ph/9805467).

[50] G. Mangano, G. Miele, S. Pastor and M. Peloso, Phys. Lett. B 534, 8 (2002) [astro-
ph/0111408).

[51] G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti and P. D. Serpico, Nucl. Phys.
B 729, 221 (2005) |hep-ph/0506164].

[52] Cowan C. L., Jr., Reines F., Harrison F. B., Kruse H. W., McGuire A. D., 1956, Sci,
124, 103

[53] B. Pontecorvo, Sov. Phys. JETP 7, 172 (1958) |Zh. Eksp. Teor. Fiz. 34, 247 (1957)].
[54] Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).

[55] M. C. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, JHEP 1212, 123 (2012)
[arXiv:1209.3023 [hep-ph]].

[56] D. V. Forero, M. Tortola and J. W. F. Valle, Phys. Rev. D 86, 073012 (2012)
[arXiv:1205.4018 |[hep-ph]].

[57] G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo and A. M. Rotunno, Phys.
Rev. D 86, 013012 (2012) [arXiv:1205.5254 [hep-ph]|.

[58] V. M. Lobashev, Nucl. Phys. A 719, 153 (2003).

[59] C. .Kraus, B. Bornschein, L. Bornschein, J. Bonn, B. Flatt, A. Kovalik, B. Ostrick and
E. W. Otten et al., Eur. Phys. J. C 40 (2005) 447 [hep-ex/0412056].

[60] A. Osipowicz et al. [KATRIN Collaboration], hep-ex/0109033.

[61] J. J. Gomez-Cadenas, J. Martin-Albo, M. Mezzetto, F. Monrabal and M. Sorel, Riv.
Nuovo Cim. 35, 29 (2012) [arXiv:1109.5515 [hep-ex]|.

[62] O. Mena and S. J. Parke, Phys. Rev. D 69, 117301 (2004) |hep-ph/0312131].

[63] K. N. Abazajian, M. A. Acero, S. K. Agarwalla, A. A. Aguilar-Arevalo, C. H. Albright,
S. Antusch, C. A. Arguelles and A. B. Balantekin et al., arXiv:1204.5379 [hep-ph].

[64] A. Aguilar-Arevalo et al. [LSND Collaboration|, Phys. Rev. D 64, 112007 (2001) [hep-
ex,/0104049].

[65] A. A. Aguilar-Arevalo et al. [MiniBooNE Collaboration|, Phys. Rev. Lett. 98, 231801
(2007) [arXiv:0704.1500 [hep-ex]].

[66] A. A. Aguilar-Arevalo et al. [MiniBooNE Collaboration|, arXiv:1303.2588 [hep-ex].



Bibliography 135

[67] M. Sorel, J. M. Conrad and M. Shaevitz, Phys. Rev. D 70, 073004 (2004) [hep-
ph/0305255).

[68] G. Karagiorgi, A. Aguilar-Arevalo, J. M. Conrad, M. H. Shaevitz, K. Whisnant,
M. Sorel and V. Barger, Phys. Rev. D 75, 013011 (2007) |Erratum-ibid. D 80, 099902
(2009)] [hep-ph/0609177].

[69] J. M. Conrad, C. M. Ignarra, G. Karagiorgi, M. H. Shaevitz and J. Spitz, Adv. High
Energy Phys. 2013, 163897 (2013) [arXiv:1207.4765 [hep-ex]|.

[70] S. Hannestad, A. Mirizzi, G. G. Raffelt and Y. Y. Y. Wong, JCAP 1008, 001 (2010)
[arXiv:1004.0695 [astro-ph.CO]].

[71] A. Melchiorri, O. Mena and A. Slosar, Phys. Rev. D 76, 041303 (2007) [arXiv:0705.2695
[astro-ph]].

[72] W. Fischler and J. Meyers, Phys. Rev. D 83, 063520 (2011) [arXiv:1011.3501 [astro-
ph.CO]].

[73] T. L. Smith, E. Pierpaoli and M. Kamionkowski, Phys. Rev. Lett. 97, 021301 (2006)
[astro-ph/0603144].

[74] P. Binetruy, C. Deffayet, U. Ellwanger and D. Langlois, Phys. Lett. B 477, 285 (2000)
[hep-th/9910219).

[75] T. Shiromizu, K. -i. Maeda and M. Sasaki, Phys. Rev. D 62, 024012 (2000) |gr-
4¢,/9910076].

[76] V. V. Flambaum and E. V. Shuryak, Europhys. Lett. 74, 813 (2006) [hep-th/0512038].

[77] E. Calabrese, D. Huterer, E. V. Linder, A. Melchiorri and L. Pagano, Phys. Rev. D 83,
123504 (2011) [arXiv:1103.4132 [astro-ph.CO]].

[78] M. Blennow, E. Fernandez-Martinez, O. Mena, J. Redondo and P. Serra, JCAP 1207,
022 (2012) [arXiv:1203.5803 [hep-ph]|.

[79] W. Hu, Astrophys. J. 506, 485 (1998) [astro-ph/9801234].

[80] M. Blennow, B. Dasgupta, E. Fernandez-Martinez and N. Rius, JHEP 1103, 014 (2011)
[arXiv:1009.3159 |[hep-ph]].

[81] G. Mangano, A. Melchiorri, P. Serra, A. Cooray and M. Kamionkowski, Phys. Rev. D
74, 043517 (2006) |astro-ph/0606190].

[82] A. Lewis, A. Challinor and A. Lasenby, Astrophys. J. 538, 473 (2000) |arXiv:astro-
ph/9911177).

[83] M. Takada, E. Komatsu and T. Futamase, Phys. Rev. D 73, 083520 (2006) [astro-
ph/0512374].



136 Bibliography

[84] J. Lesgourgues and S. Pastor, Phys. Rept. 429, 307 (2006) [astro-ph/0603494].

[85] W. Hu, D. J. Eisenstein and M. Tegmark, Phys. Rev. Lett. 80, 5255 (1998) [astro-
ph/9712057).

[86] K. Ichikawa, T. Sekiguchi and T. Takahashi, Phys. Rev. D 78, 083526 (2008)
[arXiv:0803.0889 |astro-ph]]|.

[87] Z. Hou, R. Keisler, L. Knox, M. Millea and C. Reichardt, arXiv:1104.2333 [astro-
ph.CO|.

[88] M. Gerbino, E. Di Valentino and N. Said, arXiv:1304.7400 [astro-ph.CO)].

[89] M. C. Gonzalez-Garcia and M. Maltoni, Phys. Rept. 460, 1 (2008) [arXiv:0704.1800
[hep-ph]].

[90] E. Komatsu et al. [WMAP Collaboration|, Astrophys. J. Suppl. 192, 18 (2011)
[arXiv:1001.4538 [astro-ph.CO]].

[91] B. A. Reid, L. Verde, R. Jimenez and O. Mena, JCAP 1001, 003 (2010)
[arXiv:0910.0008 [astro-ph.CO]].

[92] J. Hamann, S. Hannestad, J. Lesgourgues, C. Rampf and Y. Y. Y. Wong, JCAP 1007,
022 (2010) [arXiv:1003.3999 [astro-ph.CO]].

[93] G. Mangano, A. Melchiorri, O. Mena, G. Miele and A. Slosar, JCAP 0703, 006 (2007)
[arXiv:astro-ph/0612150].

[94] J. Hamann, S. Hannestad, G. G. Raffelt and Y. Y. Y. Wong, JCAP 0708, 021 (2007)
[arXiv:0705.0440 |astro-ph]]|.

[95] G. Mangano, G. Miele, S. Pastor, O. Pisanti and S. Sarikas, JCAP 1103 (2011) 035
[arXiv:1011.0916 |astro-ph.CO]].

[96] A. A. Aguilar-Arevalo et al. [MiniBooNE Collaboration|, Phys. Rev. Lett. 103, 111801
(2009) [arXiv:0904.1958 |[hep-ex]]|.

[97] G. Karagiorgi, Z. Djurcic, J. M. Conrad, M. H. Shaevitz and M. Sorel, Phys. Rev. D
80, 073001 (2009) [Erratum-ibid. D 81, 039902 (2010)] [arXiv:0906.1997 [hep-ph].

[98] E. Akhmedov and T. Schwetz, JHEP 1010 (2010) 115 [arXiv:1007.4171 [hep-ph]].

[99] A. Melchiorri, O. Mena, S. Palomares-Ruiz, S. Pascoli, A. Slosar and M. Sorel, JCAP
0901, 036 (2009) [arXiv:0810.5133 [hep-ph]]|.

[100] M. A. Acero and J. Lesgourgues, Phys. Rev. D 79 (2009) 045026 [arXiv:0812.2249
[astro-ph]].



Bibliography 137

[101] J. Hamann, S. Hannestad, G. G. Raffelt, I. Tamborra and Y. Y. Y. Wong, Phys. Rev.
Lett. 105, 181301 (2010) [arXiv:1006.5276 [hep-ph]].

[102] S. Dodelson, A. Melchiorri and A. Slosar, Phys. Rev. Lett. 97, 04301 (2006)
[arXiv:astro-ph/0511500].

[103] A. Lewis and S. Bridle, Phys. Rev. D 66, 103511 (2002) [arXiv:astro-ph/0205436].
[104] D. Larson et al., Astrophys. J. Suppl. 192, 16 (2011) [arXiv:1001.4635 |astro-ph.CO]].

[105] B. A. Reid, W. J. Percival, D. J. Eisenstein, L. Verde, D. N. Spergel, R. A. Skibba,
N. A. Bahcall and T. Budavari et al., Mon. Not. Roy. Astron. Soc. 404, 60 (2010)
[arXiv:0907.1659 [astro-ph.CO]].

[106] A. G. Riess et al., Astrophys. J. 699, 539 (2009) [arXiv:0905.0695 [astro-ph.CO]].

[107] E. Aver, K. A. Olive and E. D. Skillman, JCAP 1005, 003 (2010) [arXiv:1001.5218
[astro-ph.CO]].

[108] Y. I. Izotov and T. X. Thuan, Astrophys. J. 710, L67 (2010) [arXiv:1001.4440 |astro-
ph.CO]].

[109] M. Pettini, B. J. Zych, M. T. Murphy, A. Lewis and C. C. Steidel, arXiv:0805.0594
[astro-ph].

[110] O. Pisanti, A. Cirillo, S. Esposito, F. Iocco, G. Mangano, G. Miele and P. D. Serpico,
Comput. Phys. Commun. 178, 956 (2008) [arXiv:0705.0290 [astro-ph]|.

[111] J. Hamann, J. Lesgourgues, G. Mangano, JCAP 0803 (2008) 004. [arXiv:0712.2826
[astro-ph]].

[112] M. Blennow et al., in preparation.

[113] G. Mention, M. Fechner, T. Lasserre, T. A. Mueller, D. Lhuillier, M. Cribier and
A. Letourneau, arXiv:1101.2755 [hep-ex].

[114] C. Carbone, L. Verde, Y. Wang and A. Cimatti, JCAP 1103, 030 (2011)
[arXiv:1012.2868 |astro-ph.CO]].

[115] M. Tegmark, A. Taylor and A. Heavens, Astrophys. J. 480, 22 (1997) |arXiv:astro-
ph/9603021].

[116] G. Jungman, M. Kamionkowski, A. Kosowsky and D. N. Spergel, Phys. Rev. D 54,
1332 (1996) |arXiv:astro-ph/9512139].

[117] R. A. Fisher, Annals Eugen. 6 (1935) 391.

[118] L. Perotto, J. Lesgourgues, S. Hannestad, H. Tu and Y. Y. Y. Wong, JCAP 0610
(2006) 013 [arXiv:astro-ph/0606227].



138 Bibliography

[119] [Planck Collaboration|, [arXiv:astro-ph/0604069]

[120] L. Verde, H. Peiris and R. Jimenez, JCAP 0601, 019 (2006) [arXiv:astro-ph/0506036].
[121] H. J. Seo and D. J. Eisenstein, Astrophys. J. 598, 720 (2003) [arXiv:astro-ph/0307460].
[122] A. Refregier et al., arXiv:astro-ph/0610062.

[123] A. Refregier, A. Amara, T. D. Kitching, A. Rassat, R. Scaramella, J. Weller and
f. t. E. Consortium, arXiv:1001.0061 [astro-ph.IM].

[124] S. Hannestad, Phys. Rev. Lett. 95 (2005) 221301 [arXiv:astro-ph/0505551].

[125] G. La Vacca, S. A. Bonometto and L. P. L. Colombo, New Astron. 14, 435 (2009)
[arXiv:0810.0127 [astro-ph]].

[126] M. B. Gavela, D. Hernandez, L. L. Honorez, O. Mena and S. Rigolin, JCAP 0907,
034 (2009) |Erratum-ibid. 1005, E01 (2010)] [arXiv:0901.1611 [astro-ph]].

[127] A. F. Heavens, T. D. Kitching and L. Verde, Mon. Not. Roy. Astron. Soc. 380, 1029
(2007) [arXiv:astro-ph/0703191].

[128] A. S. Riis and S. Hannestad, arXiv:1008.1495 |astro-ph.CO|.

[129] W. L. Freedman et al. [HST Collaboration|, Astrophys. J. 553, 47 (2001) [arXiv:astro-
ph/0012376).

[130] E. W. Otten and C. Weinheimer, Rept. Prog. Phys. 71, 086201 (2008)
arXiv:0909.2104 [hep-ex]].

[131] W. L. Freedman and B. F. Madore, arXiv:1004.1856 [astro-ph.CO].
[132] G. Drexlin [KATRIN Collaboration|, Nucl. Phys. Proc. Suppl. 145 (2005) 263.

[133] G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. M. Rotunno, Phys. Rev. D 84,
053007 (2011) [arXiv:1106.6028 [hep-ph].

[134] K. Eitel, Nucl. Phys. Proc. Suppl. 143 (2005) 197.

[135] O. Elgaroy, O. Lahav, W. J. Percival, J. A. Peacock, D. S. Madgwick, S. L. Bri-
dle, C. M. Baugh and I. K. Baldry et al., Phys. Rev. Lett. 89, 061301 (2002) |astro-
ph/0204152).

[136] D. N. Spergel et al. [WMAP Collaboration|, Astrophys. J. Suppl. 148, 175 (2003)
[astro-ph/0302209].

[137] S. Hannestad, JCAP 0305, 004 (2003) [astro-ph/0303076].

[138] S. W. Allen, R. W. Schmidt and S. L. Bridle, Mon. Not. Roy. Astron. Soc. 346, 593
(2003) [astro-ph/0306386].



Bibliography 139

[139] M. Tegmark et al. [SDSS Collaboration|, Phys. Rev. D 69 (2004) 103501 [astro-
ph/0310723).

[140] V. Barger, D. Marfatia and A. Tregre, Phys. Lett. B 595, 55 (2004) [hep-ph/0312065].
[141] S. Hannestad and G. Raffelt, JCAP 0404, 008 (2004) [hep-ph/0312154].

[142] P. Crotty, J. Lesgourgues and S. Pastor, Phys. Rev. D 69, 123007 (2004) [hep-
ph/0402049).

[143] U. Seljak et al. [SDSS Collaboration|, Phys. Rev. D 71, 103515 (2005) [astro-
ph/0407372)].

[144] O. Elgaroy and O. Lahav, New J. Phys. 7, 61 (2005) [hep-ph/0412075].

[145] A. Goobar, S. Hannestad, E. Mortsell and H. Tu, JCAP 0606, 019 (2006) |astro-
ph/0602153].

[146] D. N. Spergel et al. [WMAP Collaboration|, Astrophys. J. Suppl. 170, 377 (2007)
[astro-ph/0603449].

[147] U. Seljak, A. Slosar and P. McDonald, JCAP 0610, 014 (2006) |astro-ph/0604335].

[148] G. L. Fogli, E. Lisi, A. Marrone, A. Melchiorri, A. Palazzo, A. M. Rotunno, P. Serra
and J. Silk et al., Phys. Rev. D 78, 033010 (2008) [arXiv:0805.2517 [hep-ph]].

[149] E. Komatsu et al. [WMAP Collaboration|, Astrophys. J. Suppl. 180, 330 (2009)
[arXiv:0803.0547 |astro-ph]]|.

[150] S. A. Thomas, F. B. Abdalla and O. Lahav, Phys. Rev. Lett. 105, 031301 (2010)
[arXiv:0911.5291 [astro-ph.CO]].

[151] S. Saito, M. Takada and A. Taruya, Phys. Rev. D 83, 043529 (2011) [arXiv:1006.4845
[astro-ph.CO]].

[152] S. Riemer-Sorensen, C. Blake, D. Parkinson, T. M. Davis, S. Brough, M. Colless,
C. Contreras and W. Couch et al., Phys. Rev. D 85, 081101 (2012) [arXiv:1112.4940
[astro-ph.CO]].

[153] B. A. Benson, T. de Haan, J. P. Dudley, C. L. Reichardt, K. A. Aird, K. Andersson,
R. Armstrong and M. Bautz et al., Apj, 763, 147 (2013) [arXiv:1112.5435 [astro-
ph.CO]].

[154] Ho, S., Cuesta, A., & Seo, H.-J. et al. 2012, submitted to ApJ

[155] H. -J. Seo, S. Ho, M. White, A. Cuesta, A. Ross, S. Saito, B. Reid and N. Padman-
abhan et al., Astrophys. J. 761, 13 (2012) [arXiv:1201.2172 |astro-ph.CO]].



140 Bibliography

[156] M. Fukugita, T. Ichikawa, J. E. Gunn, M. Doi, K. Shimasaku and D. P. Schneider,
Astron. J. 111, 1748 (1996).

[157] J. E. Gunn et al. [SDSS Collaboration|, Astron. J. 116, 3040 (1998) [astro-
ph,/9809085].

[158] J. E. Gunn et al. [SDSS Collaboration|, Astron. J. 131, 2332 (2006) [astro-
ph/0602326].

[159] J. R. Pier, J. A. Munn, R. B. Hindsley, G. S. Hennessy, S. M. Kent, R. H. Lupton
and Z. Ivezic, Astron. J. 125, 1559 (2003) [astro-ph/0211375].

[160] Seljak, U. 1998, ApJ, 506, 64

[161] M. Tegmark, A. J. S. Hamilton, M. A. Strauss, M. S. Vogeley and A. S. Szalay,
Astrophys. J. 499, 555 (1998) [astro-ph/9708020].

[162] N. Padmanabhan, U. Seljak and U. L. Pen, New Astron. 8, 581 (2003) [astro-
ph/0210478].

[163] N. Padmanabhan et al. [SDSS Collaboration|, Mon. Not. Roy. Astron. Soc. 378, 852
(2007) [astro-ph/0605302].

[164] W. Hu and D. J. Eisenstein, Astrophys. J. 498, 497 (1998) [astro-ph/9710216].
[165] D. J. Eisenstein and W. Hu, Astrophys. J. 511, 5 (1997) [astro-ph/9710252].

[166] K. B. Fisher, C. A. Scharf and O. Lahav, Mon. Not. Roy. Astron. Soc. 266, 219 (1994)
[astro-ph/9309027].

[167] A. F. Heavens and A. N. Taylor, Mon. Not. Roy. Astron. Soc. 275, 483 (1995) |astro-
ph/9409027].

[168] R. E. Smith et al. [Virgo Consortium Collaboration|, Mon. Not. Roy. Astron. Soc.
341, 1311 (2003) |astro-ph/0207664].

[169] S. Bird, M. Viel and M. G. Haehnelt, Mon. Not. Roy. Astron. Soc. 420, 2551 (2012)
[arXiv:1109.4416 [astro-ph.CO]].

[170] N. Hamaus, U. Seljak, V. Desjacques, R. E. Smith and T. Baldauf, Phys. Rev. D 82,
043515 (2010) [arXiv:1004.5377 [astro-ph.CO|].

[171] S. Saito, M. Takada and A. Taruya, Phys. Rev. Lett. 100, 191301 (2008)
[arXiv:0801.0607 |astro-ph]]|.

[172] S. Saito, M. Takada and A. Taruya, Phys. Rev. D 80, 083528 (2009) [arXiv:0907.2922
[astro-ph.CO]].



Bibliography 141

[173] P. McDonald, Phys. Rev. D 74, 103512 (2006) [Erratum-ibid. D 74, 129901 (2006)]
[astro-ph/0609413].

[174] M. E. C. Swanson, W. J. Percival and O. Lahav, Mon. Not. Roy. Astron. Soc. 409,
1100 (2010) [arXiv:1006.2825 |astro-ph.CO]].

[175] J. Hamann, S. Hannestad, A. Melchiorri and Y. Y. Y. Wong, JCAP 0807, 017 (2008)
[arXiv:0804.1789 [astro-ph]].

[176] U. Seljak, Mon. Not. Roy. Astron. Soc. 325, 1359 (2001) [astro-ph/0009016].
[177] —. 2001, MNRAS, 325, 1359
[178] A. E. Schulz and M. J. White, 1, Astropart. Phys. 25, 172 (2006) |astro-ph/0510100].

[179] J. Guzik and G. Bernstein, Mon. Not. Roy. Astron. Soc. 375, 1329 (2007) [astro-
ph/0605594].

[180] R. J. Scherrer and D. H. Weinberg, Astrophys. J. 504, 607 (1998) [astro-ph/9712192.
[181] P. Coles, A. Melott and D. Munshi, astro-ph/9904253.
[182] D. N. Limber, Astrophys. J. 119, 655 (1954).

[183] R. Jimenez, T. Kitching, C. Pena-Garay and L. Verde, JCAP 1005, 035 (2010)
[arXiv:1003.5918 [astro-ph.CO]].

[184] K. N. Abazajian et al. [SDSS Collaboration|, Astrophys. J. Suppl. 182, 543 (2009)
[arXiv:0812.0649 [astro-ph]].

[185] W. J. Percival et al. [SDSS Collaboration|, Mon. Not. Roy. Astron. Soc. 401, 2148
(2010) [arXiv:0907.1660 [astro-ph.CO]].

[186] E. Komatsu and U. Seljak, Mon. Not. Roy. Astron. Soc. 336, 1256 (2002) |astro-
ph/0205468).

[187] D. J. Eisenstein and W. Hu, Astrophys. J. 496, 605 (1998) [astro-ph/9709112].

[188] A. Collister, O. Lahav, C. Blake, R. Cannon, S. Croom, M. Drinkwater, A. Edge and
D. Eisenstein et al., Mon. Not. Roy. Astron. Soc. 375, 68 (2007) [astro-ph/0607630)].

[189] E. Giusarma, M. Corsi, M. Archidiacono, R. de Putter, A. Melchiorri, O. Mena,
S. Pandolfi, Phys. Rev. D83, 115023 (2011). [arXiv:1102.4774 [astro-ph.CO]].

[190] J. Hamann, JCAP 1203, 021 (2012) [arXiv:1110.4271 [astro-ph.CO]].
[191] K. M. Nollett and G. P. Holder, arXiv:1112.2683 |astro-ph.CO)].

[192| E. Giusarma, M. Archidiacono, R. de Putter, A. Melchiorri and O. Mena, Phys. Rev.
D 85, 083522 (2012) [arXiv:1112.4661 [astro-ph.CO]].



142 Bibliography

[193] R. de Putter, O. Mena, E. Giusarma, S. Ho, A. Cuesta, H. -J. Seo, A. Ross and
M. White et al., arXiv:1201.1909 |astro-ph.COl|.

[194] S. Joudaki, K. N. Abazajian and M. Kaplinghat, arXiv:1208.4354 |astro-ph.CO)].

[195] S. Riemer-Sorensen, D. Parkinson, T. Davis and C. Blake, arXiv:1210.2131 [astro-
ph.CO|.

[196] E. Giusarma, R. de Putter and O. Mena, arXiv:1211.2154 [astro-ph.CO|.

[197] M. Archidiacono, N. Fornengo, C. Giunti, S. Hannestad and A. Melchiorri,
arXiv:1302.6720 [astro-ph.CO.

[198] R. Diamanti, E. Giusarma, O. Mena, M. Archidiacono and A. Melchiorri,
arXiv:1212.6007 |astro-ph.CO].

[199] M. Archidiacono, E. Giusarma, A. Melchiorri and O. Mena, Phys. Rev. D 86 (2012)
043509 [arXiv:1206.0109 |astro-ph.CO]].

[200] M. Archidiacono, E. Calabrese and A. Melchiorri, Phys. Rev. D 84 (2011) 123008
[arXiv:1109.2767 |astro-ph.CO]].

[201] S. Das, B. D. Sherwin, P. Aguirre, J. W. Appel, J. R. Bond, C. S. Carvalho, M. J. De-
vlin and J. Dunkley et al., Phys. Rev. Lett. 107, 021301 (2011) [arXiv:1103.2124 |astro-
ph.CO]].

[202] J. J. Gomez-Cadenas, J. Martin-Albo, J. M. Vidal and C. Pena-Garay,
arXiv:1301.2901 [hep-ph].

[203] E. Di Valentino, S. Galli, M. Lattanzi, A. Melchiorri, P. Natoli, L. Pagano and N. Said,
arXiv:1301.7343 [astro-ph.CO].

[204] D. Schlegel et al. [with input from the SDSS-IIT Collaboration]|, arXiv:0902.4680 [astro-
ph.CO|.

[205] K. S. Dawson et al, arXiv:1208.0022 [astro-ph.CO|.
[206] D. J. Eisenstein et al., Astrophys. J. 664, 675 (2007) |arXiv:astro-ph/0604362.
[207] A. Kosowsky and M. S. Turner, Phys. Rev. D 52, 1739 (1995) [astro-ph/9504071].

[208] Y. I. Izotov and T. X. Thuan, Astrophys. J. 710, L67 (2010) [arXiv:1001.4440 |astro-
ph.CO]].

[209] T. L. Smith, S. Das and O. Zahn, Phys. Rev. D 85, 023001 (2012) [arXiv:1105.3246
[astro-ph.CO]].

[210] J. Dunkley, R. Hlozek, J. Sievers, V. Acquaviva, P. A. R. Ade, P. Aguirre, M. Amiri
and J. W. Appel et al., Astrophys. J. 739, 52 (2011) [arXiv:1009.0866 |astro-ph.CO]].



Bibliography 143

[211] A. Smith, M. Archidiacono, A. Cooray, F. De Bernardis, A. Melchiorri and J. Smidt,
Phys. Rev. D 85, 123521 (2012) [arXiv:1112.3006 [astro-ph.CO]].

[212] M. C. Gonzalez-Garcia, V. Niro and J. Salvado, arXiv:1212.1472 [hep-ph].

[213] W. Hu, D. J. Eisenstein, M. Tegmark and M. J. White, Phys. Rev. D 59, 023512
(1999) [astro-ph/9806362].

[214] P. Serra, F. Zalamea, A. Cooray, G. Mangano and A. Melchiorri, Phys. Rev. D 81,
043507 (2010) [arXiv:0911.4411 [astro-ph.CO]].

[215] P. A. R. Ade et al. [Planck Collaboration|, Astron. Astrophys. 536, 16464 (2011)
[arXiv:1101.2022 |astro-ph.IM]||; [Planck Collaboration]|, astro-ph/0604069.

[216] F. R. Bouchet et al. [COrE Collaboration|, arXiv:1102.2181 |astro-ph.CO].

[217] W. Hu, D. Scott, N. Sugiyama and M. J. White, 1, Phys. Rev. D 52, 5498 (1995)
[astro-ph /9505043].

[218] W. Hu and N. Sugiyama, Astrophys. J. 471, 542 (1996) [astro-ph/9510117].

[219] R. Bowen, S. H. Hansen, A. Melchiorri, J. Silk and R. Trotta, Mon. Not. Roy. Astron.
Soc. 334, 760 (2002) [astro-ph/0110636].

[220] T. Basse, O. E. Bjaelde, J. Hamann, S. Hannestad and Y. Y. Y. Wong, arXiv:1304.2321
[astro-ph.CO.

[221] M. Archidiacono, E. Giusarma, A. Melchiorri and O. Mena, arXiv:1303.0143 [astro-
ph.CO|.



	Acknowledgments-Ringraziamenti-Agradecimientos
	Resumen de la tesis
	Introduction
	Publications
	I Cosmology Overview
	The standard cosmological model
	Friedmann-Robertson-Walker metric
	Hubble Law and Redshift
	Cosmological distances
	Einstein equations
	Friedmann equations
	Cosmological perturbation theory
	Gauge transformations
	Growth factor

	Cosmological measurements
	Supernovae
	Cosmic Microwave Background
	Big Bang Nucleosynthesis
	Large Scale Structure
	Baryon Acoustic Oscillations


	Massive neutrinos and Dark Radiation in Cosmology
	Relic neutrinos
	Massive neutrinos
	Neutrino oscillations

	Neutrino cosmological perturbations
	The Boltzmann equation
	Massless Neutrinos
	Massive Neutrinos

	Dark radiation models
	Interacting dark matter dark radiation scenarios

	Neutrino properties and cosmological observations
	Standard cosmology plus three massive neutrinos
	Dark radiation



	II Scientific Research
	Constraints on massive sterile neutrino species from current and future cosmological data
	Introduction
	Current constraints
	Future constraints
	Methodology
	Results
	Cosmological parameter shifts

	Summary

	New Neutrino Mass Bounds from Sloan Digital Sky Survey III Data Release 8 Photometric Luminous Galaxies
	Introduction
	Data
	Modeling the angular power spectra
	Cosmological Signature of Neutrinos
	Mocks
	Results
	Conclusions

	Neutrino and Dark Radiation properties in light of CMB observations
	Introduction
	Data and Cosmological parameters 
	Results
	Standard Cosmology plus massive neutrinos
	Massive neutrinos and extended cosmologies
	Standard cosmology plus dark radiation
	Massive neutrinos and dark radiation

	Conclusions

	Dark Radiation and interacting scenarios
	Introduction
	Dark radiation-dark matter interaction model
	Data
	Current constraints
	Forecasts from future cosmological data
	Conclusions


	III Summary and Conclusions
	Summary and Conclusions

	IV Bibliography

