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Introduction

“If one way be better than another, that you may be sure is nature’s way.’
-Aristotle.






Brief introduction.

1. From Molecular Magnetism to Molecular Spintronics

Molecular magnetism is a rapidly expanding field of research whose central theme
is the design and study of magnetic molecules and materials with tunable properties.
The development of this discipline started in the 1980s, with a main interest first in
understanding and tuning the exchange interactions in molecules and low dimensional
materials, and second in obtaining molecule-based magnetic solids that would order at
high temperatures. This property was initially shown by two kinds of materials: The first
one based on tetracyanoethylene (TCNE)' metal polymers and the second one based
on bimetallic cyanides.” As a curiosity, the Prussian Blue, Fe [Fe(CN),],-14H,0, which
was the first coordination compound and the first molecule-based magnetic solid, was
discovered almost 300 years ago. It is remarkable that three centuries later, the scientific
community is now realizing the potential of such coordination molecular materials.

Current trends in molecular magnetism revolve around two main classes of materials:
multifunctional magnetic materials and molecular nanomagnets. Another important
objective in the field is the organization of these magnetic molecules on surfaces.
This is the first step to the fabrication of dispositives for the application of molecular
nanomagnets in spintronics, quantum computing and medicine.

Multifunctional magnetic materials are those that combine magnetism with at
least another property in a single molecule-based material. These solids hold promise
for the realization of technologically important properties previously thought to be
possible only with atom-based inorganic solids (e.g., magnetic ordering combined
with conductivity, superconductivity, or ferroelectricity). One class of this type of
compounds are switching magnetic materials. The magnetic properties of these materials
are tuned by the application of external stimuli such as pressure, temperature or light.

1 (a) Miller, J. S.; Epstein, A. J.; Reiff, W. M.; Zhang J. H. Mol. Cryst. Liq. Cryst. 1985, 120, 27-34. (b) Miller,
J. S.; Calabrese, J. C.; Epstein, A. J.; Bigelow, R. W,; Zhang, J. H.; Reiff, W. M. J. Chem. Soc., Chem. Commun. 1986,
1026-1028. (c) Miller, J. S.; Calabrese, J. C.; Rommelmann, H.; Chittipeddi, S. R.; Zhang, J. H; Reiff, W. M.; Epstein,
A.].J. Am. Chem. Soc. 1987, 109, 769-781. (d) Chittipeddi, S.; Cromack, K. R.; Miller, J. S.; Epstein, A. J. Phys. Rev.
Lett. 1987, 58, 2695-2698. (e) Yee, G. T.; Miller, J. S. In Magnetism-Molecules to Materials; Miller, J. S., Drillon, M.,
Eds.; Wiley-VCH: Weinheim, Germany, 2004; Vol. 5, p 223. (f) Gama, V.; Duarte, M. T. In Magnetism-Molecules to
Materials; Miller, J. S., Drillon, M., Eds.; Wiley-VCH: Weinheim, Germany, 2004; Vol. 5.

2 (a) Babel, D. Comments Inorg. Chem. 1986, 5, 285-320. (b) Dunbar, K. R.; Heintz, R. A. Prog. Inorg. Chem.
1997, 45, 283-391. (c) Verdaguer, M.; Bleuzen, A.; Marvaud, A. V,; Vaissermann, J.; Seuleiman, M.; Desplanches,
C,; Scuiller, A,; Train, C.; Garde, R; Gelly, G.; Lomenech, C.; Rosenman, L; Veillet, P; Cartier, C.; Villain, E Coord.
Chem. Rev. 1999, 192, 1023-1047. (d) Verdaguer, M.; Girolami, G. S. Magn.: Mol. Mater. V 2005, 283-346. (e) Rebilly,
J. N.; Mallah, T. Struct. Bonding (Berlin) 2006, 122, 103-131. (f) Shatruk, M.; Avendaiio, C.; Dunbar, K. R. Prog. Inorg.
Chem. 2009, 56, 155-334.
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Brief introduction.

Archetypes of switching magnetic materials are molecular spin-crossover compounds®
and tridimensional magnets based on Prussian Blue analogues.*

Chirality is also other important property that can be combined with magnetic systems
to form optomagnetic materials. The interplay of chirality and ferromagnetism can result
in the observation of novel physical properties such as magnetochiral dichroism.®> Thus,
many groups did a large effort in the synthesis and study of chiral magnets.

One final example of important multifunctional materials are those termed dual-
function materials. These materials are formed by two structurally independent
molecular networks which exhibit two different properties. A remarkable example of
such a system is one in which molecular magnetism is combined with conductivity.®
These materials are usually composed of a cationic conducting network (typically based
on tetrathiafulvalene (TTF)-type organic molecules) and anionic metal complexes
that serve as the magnetic components. Notable achievements in this area are the
discovery of paramagnetic molecular metals and superconductors in the 1990s and
the discovery of ferromagnetic molecular metals in 2000.” Importantly, the interplay
between conductivity and magnetism has given rise to novel properties, for example, the
observation of field-induced superconductivity.® One of the last frontiers that has been
overcomed was the obtention of materials with the coexistence of either superconductivity
and ferromagnetism or superconductivity with molecular nanomagnetism.’

Another class of materials, that has been revealed as of paramount importance in
the field are the so called molecular nanomagnets." these systems, usually called Single-
molecule magnets (SMMs) are a class of molecules which show superparamagnetic
behavior at the molecular scale. Indeed, in a certain temperature range the molecular
solids based on these SMMs exhibit magnetic hysteresis of purely molecular origin, with

3 (a) Gaspar, A. B.; Ksenofontov, V.; Seredyuk, M.; Giitlich, P. Coord Chem. Rev. 2005, 249, 2661-2676. (b) Real,
J. A.; Gaspar, A. B.; Niel, V.; Mufioz, M. C. Coord. Chem. Rev. 2003, 236, 121-141.

4 (a) Sato, O; Iyoda, T.; Fujishima, A.; Hashimoto, K. Science 1996, 272, 704-705. (b) Coronado, E; Gimenez-
Lopez, M. C,; Korzeniak, T.; Levchenko, G.; Romero, E M.; Segura, A.; Garcia-Baonza, V;; Cezar, J. C.; de Groot, F
M.; Milner, A.; Paz- Pasternak, M. J. Am. Chem. Soc. 2008, 130, 15519-15532.

5 (a) Rikken, G. L. J. A.; Raupach, E. Nature (London) 1997, 390, 493-494. (b) Rikken, G. L. J. A; Raupach,
E. Phys. Rev. E 1998, 58, 5081-5084. (c) Imai, H.; Inoue, K.; Kikuchi, K.; Yoshida, Y.; Ito, M.; Sunahara, T.; Onaka,
S. Angew. Chem., Int. Ed. 2004, 43, 5618-5621. (d) Coronado, E.; Gémez-Garcia, C. J.; Nuez, A.; Romero, E M.;
Waerenborgh, J. C. Chem. Mater. 2006, 18, 2670-2681. (e) Train, C.; Gheorghe, R.; Krstic, V.; Chamoreau, L. M;
Ovanesyan, N. S;; Rikken, G. L. J. A; Grusselle, M.; Verdaguer, M. Nat. Mater. 2008, 7, 729-734.

6 Coronado, E.; Day, P. Chem. Rev. 2004, 104, 5419-5448.

7 Coronado, E.; Galdn-Mascards, J. R.; Gdmez-Garcia, C. J.; Lauhkin, V. L. Nature (London) 2000, 408, 447-449.
8 Uji, S.; Shinagawa, H.; Terashima, T; Yakabe, Y.; Terai, Y.; Tokumoto, M.; Kobayashi, A.; Tanaka, H.; Kobayashi,
H. Nature (London) 2001, 410, 908-910.

9 (a) Coronado, E.; Marti-Gastaldo, C; Navarro-Moratalla, E.; Ribera, A.; Blundell, S. J.; Baker, P. J. Nat. Chem.
2010, 2, 1031-1036. (b) Coronado, E.; Marti-Gastaldo, C.; Navarro-Moratalla, E.; Burzuri, E.; Camén, A.; Luis, F.
Adv. Mater. 2011, 23, 5021-5026.

10 Gatteschi, D.; Sessoli, R.; Villain, ]. Molecular Nanomagnets; Oxford University Press: Oxford, UK., 2006.
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prominent quantum effects."’ Contrary to conventional bulk magnets and molecule-
based magnets, collective long-range magnetic ordering of magnetic moments is not
necessary to achieve memory effects.

Many examples of SMMs based on transition metal clusters are known.
Nevertheless, the most quoted example is still the first one that was characterized as
such: [Mn ,0,,(0,CMe) (H,0),] (Mnl2ac)"” a molecule that combines a high axial
anisotropy and a high spin ground state."”® This molecule has been subjected to a high

Figure 1. Stuctural representation of the Mnl2ac. Some ligand atoms have
been removed for clarity. Yellow: Mn?*, Pink: Mn** Red: Oxygen.

number of magnetic and structural studies. The cluster has eight ferromagnetically
coupled Mn** jons (external ring, see Figure 1) and four Mn** ions in the central cube
which are also ferromagnetically coupled. The coupling between these two moieties is
antiferromagnetic, resulting in an S=10 total spin.

Owing to the uniaxial anisotropy of Mn12ac, characterized by a negative D value
of D=-0.46 cm’!, the ground spin multiplet splits into its Ms components in such a way
that the Ms doublet = £10 is stabilized and becomes the ground spin state of the cluster,
while the rest of spin sublevels are at progressively higher energies as |[Ms| decreases (see
Figure 2). These level splitting explains the experimentally observed thermal barrier U
to overcome the reversal of the magnetic moment (U= 43 cm™).

11 (a) Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Nature (London) 1993, 365, 141-143. (b) Castro, S. L.;
Sun, Z. M.; Grant, C. M; Bollinger, J. C.; Hendrickson, D. N.; Christou, G. J. Am. Chem. Soc. 1998, 120, 2365-2375.
(c) Barra, A. L.; Caneschi, A.; Cornia, A.; de Biani, F. E; Gatteschi, D.; Sangregorio, C.; Sessoli, R.; Sorace, L. J. Am.
Chem. Soc. 1999, 121, 5302-5310. (d) Yoo, J.; Brechin, E. K.; Yamaguchi, A.; Nakano, M.; Huffman, J. C.; Maniero,
A. L, Brunel, L. C.; Awaga, K.; Ishimoto, H.; Christou, G.; Hendrickson, D. N. Inorg. Chem. 2000, 39, 3615-3623. (e)
Berlinguette, C. P; Vaughn, D.; Canada-Vilalta, C.; Galan-Mascaros, J. R.; Dunbar, K. R. Angew. Chem., Int. Ed. 2003,
42,1523-1526.

12 Sessoli, R; Tsai, H. L; Schake, A. R;; Wang, S.; Vincent, J. B; Folting, K.; Gatteschi, D.; Christou, G.;
Hendrickson, D. N.; J. Am. Chem. Soc. 1993, 115, 1804-1816.

13 Gatteschi, D; Sessoli, R. Angew. Chem., Int. Ed. 2003, 42, 268-297.

14 (a) Friedman, J.; Sarachik, M.; Tejada, J.; Ziolo, R. Phys. Rev. Lett. 1996, 76, 3830-3833. (b)Thomas, L.; Lionti,
F; Ballou, R.; Gatteschi, D.; Sessoli, R.; Barbara, B.; Nature, 1996, 383, 145-147. (c) Wernsdorfer, W.; Ohm, T.;
Sangregorio, C.; Sessoli, R.; Mailly, D.; Paulsen, C.; Phys. Rev. Lett., 1999, 82, 3903-3906.
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Ms =0

+10 -10

Figure 2. Well representation of the total spin states in Mnl2ac. Centre and

Right represent the effect of a magnetic external field (Zeeman effect)..

The studies about this manganese cluster set a roadmap based on two requirements
for having molecules with low temperature magnetization blocking. The first was having
ahigh spin ground state (S). The approach to achieve this was to couple as many magnetic
ions as possible in the same cluster. The second requirement was a significant negative
zero-field splitting (D) that stabilizes the highest M sublevel producing a total energy
barrier (U=DS?) for the reversal of the magnetization.

Shortly after the magnetic characterization of Mnl2ac, SMM properties were
found on an octanuclear iron complex ([Fe,O,(OH),,(tacn) ]** with tacn representing
1,4,7-triazacyclononane).”” This system has arguably been studied even in greater
depth than Mnl2ac, specially by the physics community to better understand the
quantum tunneling effects in these systems.'® Later, a rising number of lower nuclearity
systems were reported to behave as SMMs, as for example, the tetranuclear complex
[Mn,(O,CMe),(pdmH),](CIO,).."” In this context, many examples of magnetic clusters
with larger and larger nuclearities were reported in an attempt to increase the spin state
of the cluster and hence, the superparamagnetic barrier.'"® However, the success of this
approach has been very limited as demonstrated by the fact that Mn12 is still among one
of the transition-metal systems exhibiting the highest effective barrier (ca. 45-50 cm-1).
In fact, the abovementioned roadmap has been questioned as there are indications that a
large magnetic anisotropy is not favoured by a high spin of the ground state."

15 (a) Delfs, C.; Gatteschi, D.; Pardi, L.; Sessoli, R.; Wieghardt, K.; Hanke, D. Inorg. Chem 1993, 32, 3099-3103.
(b) Barra, A. L.; Debrunner, P; Gatteschi, D.; Schulz, C. E.; Sessoli, R.; Europhys. Lett.; 1996, 35, 133-138.

16 (a) Wernsdorfer, W,; Caneschi, A.; Sessoli, R.; Gatteschi, D.; Cornia, A.; Villar, V.; Paulsen, C.; Phys. Rev. Lett.
2000, 84, 2965-2968. (b) Wernsdorfer, W,; Caneschi, A.; Sessoli, R.; Gatteschi, D.; Cornia, A.; Europhys. Lett. 2000, 50,
552-558. (c) Takahashi, S.; Tupitsyn, I. S.; Van Tol, J.; Beedle, C. C.; Hendrickson, D. N.; Stamp, P. C. E. Nature 2011,
476, 76-79.

17 Yoo, J.; Brechin, E. K.; Yamaguchi, A.; Nakano, M.; Huffman, J. C.; Maniero, A. L.; Brunel, L. C.; Awaga, K.;
Ishimoto, H.; Christou, G.; Hendrickson, D. N.; Inorg. Chem. 2000, 39, 3615-3623.

18 (a)Aubin, S. M. J; Wemple, M.W.; Adams, D.M. ; Tsai, H.-L.; Christou, G.; Hendrickson, D.N. J. Am. Chem.
Soc. 1996, 118, 7746-7754. King, P; Wernsdorfer, W.; Abboud, K.A.; Christou, G. Inorg. Chem. 2004, 43, 7315-7323.
Tasiopoulos, A.; Vinslava, A.; Wernsdorfer, W.; Abboud, K.A.; Christou, G. Angew. Chem., Int. Ed. 2004, 43, 2117-
2121. Murugesu, M.; Takahashi, S.; Wilson, A.; Abboud, K.A.; Wernsdorfer, W,; Hill, S.; Christou, G. Inorg. Chem.
2008, 47, 9459-9470.

19 Ruiz, E.; Cirera, J.; Cano, J.; Alvarez, S.; Loose, C.; Kortus, . Chem. Comm. 2008, 52-54.
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Fortunately, an entirely different paradigm for molecular nanomagnets was unearthed
with the discovery of single-ion lanthanide SMM complexes.?® This innovation
represented a crucial step in the miniaturization of nanomagnets, namely the fact that
a single anisotropic magnetic ion in an axial crystal-field environment is a sufficient
condition for the establishment of a thermal barrier which slows down the reversing of
the magnetization and allow observing quantum tunnelling effects.

Applications of the molecular nanomagnets under consideration include magnetic
cooling due to the large magnetic entropy variations related to the high-spin value of the
SMMs.?! In biomedicine, magnetic nanoparticles, mostly in the form of metal oxides,
have been shown to be useful as contrast agents in magnetic resonance imaging and in
the hyperthermic treatment of tumors, to mention only two major achievements.?* In
this vein, magnetic nanoparticles based on molecules, particularly cyanide compounds,
are gaining considerable ground. The prospect of being able to fine-tune the properties
is a major driving force behind this line of research.

The increasing ability to design and obtain magnetic molecules and to control their
properties by an external stimulus such as an electric field is a promising ingredient for
molecular spintronics. Molecular Spintronics is a research area aimed at exploring the
interaction between the spin of a magnetic molecule with an external electric current.
One of the main objectives of this field is that of achieving a molecular spin-device.

Molecular electronics emerged a few decadesago asanewapproach for complementing
and even supplanting conventional inorganic electronics when technology reaches the
nanoscale. In this context, a natural evolution of molecular electronics is the use of
magnetic molecules as well as molecule-based magnetic materials as components for
new spintronic devices.”® There exist two major objectives in this new area, one is the
design of molecular bulk spintronic structures while the other is that of single-molecule
spintronics. For the former aspect, molecular magnetic conductors may prove to be
useful, and, in fact, several materials have already been shown to exhibit interesting
spintronic properties, for example, giant negative magnetoresistance.?* There are two
challenging goals in this area, namely, to raise the operating temperatures at which these
phenomena occur and to prepare the materials as organized thin films and multilayers.

20 (a) Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.; Kaizu, Y. J. Am. Chem. Soc. 2003, 125, 8694-8695. (b)
Ishikawa, N.; Sugita, M.; Wernsdorfer, W. J. Am. Chem. Soc. 2005, 127, 3650-3651. (c) AlDamen, M. A.; Clemente-
Juan, J. M.; Coronado, E.; Marti-Gastaldo, C.; Gaita- Arifo, A. J. Am. Chem. Soc. 2008, 130, 8874-8875. (d) AlDamen,
M.; Cardona-Serra, S.; Clemente Juan, J. M.; Coronado, E.; Gaita-Arifio, A.; Marti-Gastaldo, C.; Luis, F.; Montero, O.
Inorg. Chem 2009, 48, 3467-3479.

21 (a) Manoli, M; Johnstone, R. D. L,; Parsons, S.; Murrie, M.; Affronte, M.; Evangelisti, M.; Brechin, E. K. Angew.
Chem., Int. Ed. 2007, 46, 4456-4460. (b) Evangelisti, M.; Luis, F; de Jongh, L. ].; Affronte, M. J. Mater. Chem 2006, 16,
2534-2549, and references cited therein.

22 Cheon, J.; Lee, J. H. Acc. Chem. Res. 2008, 41, 1630-1640.

23 Camarero, J.; Coronado, E. . Mater. Chem 2009, 19, 1678-1684.

24  Matsushita, M. M.; Kawakami, H.; Sugawara, T.; Ogata, M. Phys. Rev. B 2008, 77, 195208.
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For the second aspect, single molecule spintronics, most of the work developed
until now remains theoretical with a few experimental examples of charge transport
through SMMs and other magnetic molecules.”® These measurements are at the very
early stage, and many problems, which are intrinsic to the molecules (such as their
chemical stabilities when they are deposited on a metallic surface) need to be solved to
obtain reliable results. A second concern is that of controlling, as much as possible, the
positioning of the magnetic molecules on surfaces.” Efforts are underway that employ
both the “bottom-up” and “top-down” approaches as well as combinations of the two
in order to control the position and the orientation of the molecule with nanoscale
accuracy for applications such as information storage or quantum computing.”’

The evolution of molecular magnetism from simple molecular species to complex
architectures with remarkable new properties in nanomagnetism and to more intricate
multifunctional materials with applications in molecular spintronics, medicine, and other
related areas reflects the extraordinarily multidisciplinary nature of the field. Indeed,
the collaborations between chemists and physicists that were absolutely essential for
the development of magnetochemistry in general have expanded to include research in
surface and materials science and engineering, medicine, biochemistry, and biophysics.

25  Bogani, L.; Wernsdorfer, W. Nat. Mater. 2008, 7, 179-186.

26 (a) Cavallini, M.; GOmez-Segura, ].; Ruiz-Molina, D.; Massi, M.; Albonetti, C.; Rovira, C.; Veciana, J.; Biscarini,
E Angew. Chem., Int. Ed. 2005, 44, 888-892. (b) Mannini, M.; Bonacchi, D.; Zobbi, L.; Piras, E M.; Speets, E. A.;
Caneschi, A.; Cornia, A.; Magnani, A.; Ravoo, B. ].; Reinhoudt, D. N.; Sessoli, R.; Gatteschi, D. Nano Lett. 2005, 5,
1435-1438. (c) Martinez, V.; Garcia, F; Garcia, R.; Coronado, E.; Forment- Aliaga, A.; Romero, E M.; Tatay, S. Adv.
Mater. 2007, 19, 291-295.

27 (a) Lehmann, J.; Gaita-Arifio, A.; Coronado, E.; Loss, D. Nat. Nanotechnol. 2007, 2, 312-317. (b) Affronte,
M.; Casson, I; Evangelisti, M.; Candini, A.; Carretta, S.; Muryn, C. A; Teat, S. J; Timco, G. A.; Wernsdorfer, W,;
Winpenny, R. E. P. Angew. Chem., Int. Ed. 2005, 44, 6496-6500. (c) Affronte, M.; Troiani, F; Ghirri, A.; Carretta, S.;
Santini, P;; Corradini, V.; Schuecker, R.; Muryn, C,; Timco, G.; Winpenny, R. E. P. Dalton Trans. 2006, 2810-2817.
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2. Motivation

The project described in this thesis is motivated by a particular interest in Molecular
Magnetism from a theoretical point of view. Molecular Magnetism, is still a thriving
research field where some problems remain unexplored:

o A large amount of molecular systems are still theoretically unmanageable due
to their huge computational requirements, while the standard software package
cannot profit from the power of multiprocessor supercomputers.

o The scientific community would require a computational code to calculate the
magnetic properties of mixed-valence clusters.

o A new magnetic POM, which needs only one magnetic ion to behave as SMMs,
has appeared. A rationalization of its behaviour and an extense study of other
candidates is imperative.

o Considering molecular spintronics, the effect of an external electric field over
magnetic molecules should be studied.

This thesis is divided in three main chapters. On each one, the author will describe
the state-of-the-art before the start of this PhD, the most relevant results obtained and a
detailed explanation about his specific contributions.

Thefirst chapter, “Computational approaches for Molecular Magnetism”, introduces
the author’s contribution to two tools developed for the theoretical understanding of
magnetic clusters: The “Parallel implementation of the MAGPACK package for the analysis
of high-nuclearity spin clusters” and “M VPACK: A Package to Calculate Energy Levels and
Magnetic Properties of High Nuclearity Mixed Valence Clusters”. For the first work the
author coordinated a collaboration with the DSIC centre in the Polytechnic University
of Valencia. The second code was being written when the author started his PhD, and
his contribution was focused in programming the effect of the electric field over mixed-
valence systems.

The second chapter “Lanthanide Polyoxometalates as Single Ion Magnets” deals
with this family of SIMs, which was the second one after Ishikawa’s molecules and the
one that effectively opened the field to the current variety of ligand types and structures.
The author presents in this chapter three relevant contributions. The first publication
is “Mononuclear Lanthanide Single Molecule Magnets Based on the Polyoxometalates
[Ln(W,0,,),]* and [Ln(B-SiW,0,).]"* (Ln"™ = Tb, Dy, Ho, Er, Tm and Yb)” where
the initial two series of compounds are synthesized, characterized and theoretically
studied. The next is “Lanthanoid Single-Ion Magnets Based on Polyoxometalates with a
5-fold Symmetry: The Series [LnP.W_ O, ]** (Ln" = Tb, Dy, Ho, Er, Tm and Yb)” where
a lanthanoid complex with a exotic fivefold coordination was completely studied. This
is relevant because originally it was thought that only square antiprismatic structures
with 4-fold symmetry D, could be SIMs, and in fact it constituted the motivation for the
last paper in this chapter “Rational Design of Single-Ion Magnets and Spin Qubits Based
on Mononuclear Lanthanoid Complexes”. There, a theoretical approach based on a point
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charge model is developed, and suggestions are given for the rational design of both
SIMs and spin qubits.

The third chapter, “Electric field effects over mixed-valence molecules” presents the
application of MVPack to explore the possibilities of an electric control of the magnetic
ground state of these molecules. Here, the full contribution “Electrically switchable
magnetic molecules: Inducing a magnetic coupling by means of an external electric field in
a polyoxovanadate cluster” is introduced.

10
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-Albert Einstein.






Computational approaches for Molecular Magnetism

1. State of the Art. Previous Work.
1.1. Magnetic clusters. MAGPACK.

Magnetic molecular clusters are polynuclear metal complexes which from the point
of view of molecular magnetism can be described as a finite number of exchange coupled
magnetic moments. They have received much attention in several areas of research such
as coordination chemistry, magnetism, and biochemistry.! The exploration of this area
between a mononuclear complex and the bulk state required the development of new
theoretical concepts and techniques for investigation of their peculiar properties.

For a long time, the study of this problem was restricted to treat comparatively
simple clusters comprising a reduced number of exchange-coupled centers and special
spin topologies, for which solutions can be analytically obtained. However, most
interesting systems are of high nuclearity; often, they are also anisotropic and exhibit
low symmetries. As the spin nuclearity of the cluster increases and, with the additional
complication of considering the anisotropy of the cluster, the problem rapidly becomes
unsolvable by analitical methods. Moreover, it is time-consuming to derive and obtain
the solution numerically for each new problem. In that framework the development
of the generalized spin Hamiltonian to treat those systems was worked out in Valencia
some years ago.” This Hamiltonian takes into account direct Heisenberg-Dirac-Van
Vleck (HDVYV), biquadratic and anisotropic exchange as well as axial and rhombic
single ion anisotropic terms.

H=-2Y7,58-j,55)-23 Je8%%+
if if if «
DONAHOEPWACHORNG)

This research resulted in the development of the original MAGPACK package which
implements this generalized spin Hamiltonian methodology to treat arbitrary topologies
and nuclearities (up to a limit, see below) in a way that is transparent to the user.* This
powerful and efficient computational code can be used to solve the exchange problem
in high nuclearity spin clusters with all kinds of exchange interactions (isotropic,
anisotropic, bicuadratic or antisymmetric), including the single-ion anisotropic effects.
This package includes two main versions, one optimized for isotropic systems and
another for anisotropic ions. Both codes work within an approach based on the use
of the irreducible tensor operators (ITO) technique.’ These codes have been freely

1 Blondin, G.; Girerd, J. J. Chem. Rev. 1989, 90, 1359.

2 Clemente, J. M.; Palii, A. V;; Tsukerblat, B. S.; Georges, R. Molecular Magnetism: From Molecular Assemblies to
the Devices; NATO ASI E321; Kluwer Academic Publishers: Dordrecht, 1996.

3 Borras-Almenar, J. J.; Clemente-Juan, J. M.; Coronado, E.; Tsukerblat, B. S. Inorg Chem 1999, 38, 6081-6088.
4 Borras-Almenar, J. J.; Clemente Juan, J. M.; Coronado, E.; Tsukerblat, B. J. Comput. Chem. 2001, 22, 985-991.
5 (a) Tsukerblat, B. S.; Belinskii, M. 1. Magnetochemistry and Spectroscopy of Exchange Clusters; Shtiintsa:
Kishinev, 1983. (b) Tsukerblat, B. S.; Belinskii, M. L; Fainzilberg, V. E. Magnetochemistry and Spectroscopy of Transition
Metal Exchange Cluster; Horwood Academic Pub.: Amsterdam, 1987, vol. 9. (c) Varsalovich, D. A.; Moskalev, A.
N.; Khersonskii, V. K. Quantum Theory of Angular Momentum; World Scientific: Singapor, 1988. (d) Silver, B. L.
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distributed since their publication in 2001 and have been extensively used by the
molecular magnetism community. As of July 2013, the original publication had been
cited 482 times in topics such as single molecule magnets, interactions between 3d-4f
ions and anisotropic 1D-chains.

While very efficient and productive, the original MAGPACK code has an important
bottleneck, which is the diagonalization of the energy matrix. This obstacle has two
aspects. The first is the RAM memory occupation which is a physical limit to the cluster
size, the second is the diagonalization time, which can be a problem if the calculation
has a time restriction. The diagonalization bottleneck sets a limit beyond which the
system is not manageable by MAGPACK. For a standard computer specifications (1
microprocessor + 2Gb RAM), the code is able to calculate systems with traces of about
30000 elements. That means about 14 S='/, for anisotropic calculations ° or 19 §='/, in
the isotropic case.

To increase the system size, one can propose to increase the RAM memory, but
that has proved not to be a real solution as, in this case, the limiting factor is the speed
of the microprocessor. In this aspect, a supercomputer may not prove to be superior
to a desktop workstation. Note that the diagonalization process is computed using
the DSPEV/ZHPEV subroutines from the LAPACK package in a sequential way, that
is: only one microprocessor takes the whole job. This means that the full power of a
supercomputer with hundreds of cores is not accesible to the program.

This is to say, the original code lacked of an important computational feature
which is crucial for increasing the maximum manageable size of a problem, namely
Parallel Computation. Parallel Computation distributes the weight of a computational
problem between two or more nodes. This is accomplished by breaking the problem into
independent parts so that each processing element can execute its part of the algorithm
simultaneously with the others. This lowers both calculation time and memory
requirements.

For an eflicient mathematical diagonalization that can profit from the computational
power of multi-core (super)computers, a subroutine which can parallel process this
problem should be used. These libraries do exist and indeed most of the commercial
packages that are available in the market do use parallel processing subroutines.
Coincidentally, the Department of Computer Systems and Computation of the
Polytechnics University of Valencia (DSIC-UPV) hosts some of the cutting-edge
researchers in parallel computation from Spain. In fact, they have programmed a
code called SLEPc (Scalable Library for Eigenvalue Problem Computations) that is
specifically designed for parallel diagonalization of large matrices.” This subroutine has
been succesfully implemented in various scientific codes which needed to improve their
calculation rates.® This code is based in the widely used PETSc (Portable, Extensible

Irreducible Tensor Methods; An Introduction for Chemists; Academic Press: London, 1988.

6 Ideal spin doublets are isotropic but anisotropy can appear e.g. due to dipolar interaction, or if a more complex
system is effectively truncated to S='/,

7 Hernandez, V.; Roman, J. E.; Vidal, V,; Trans. Math. Software 2005, 31, 351-362.

8 (a) Medvedev, D. M.; Gray, S. K.; Wagner, A. F; Minkoff, M.; Shepard, R. Journal of Physics: Conference Series
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Toolkit for Scientific Computation) a parallel framework for mathematical operations.
SLEPc uses projection eigensolvers to obtain a discrete number of eigenvalues from the
partial diagonalization of sparse matrices. This means that the total energy matrix is not
diagonalized and that the user can only obtain the highest or lowest eigenvalues.

1.2. Mixed-Valence Clusters.

One particular case of spin clusters are those called mixed-valence (MV) magnetic
clusters.’ These complexes contain ions of the same transition metal in different oxidation
states. There exists a large variety of mixed valence systems including clusters of biological
relevance,'’ and rare earth manganates exhibiting giant magnetorresistance."'

Under some conditions, the extra electrons in these clusters can be delocalized over
the metal structure. This delocalization was historically studied in a MV dimer called
Creutz-Taube complex [(NH,).Ru"(pyrazine)Ru"(NH,),]."* In this case, one electron is
delocalized over two diamagnetic metal sites. The simplicity of such a system allowed
also to take into account, at the molecular level, the coupling of electronic and nuclear
movements (vibronic interactions). The vibronic theory of MV dimers was formulated
by Piepho, Krausz and Schatz and is referred to as PKS model."” Vibronic interactions
are inherent for MV systems due to the strong deformation of the coordination sphere
induced by the presence of an extra electron.' Usually it is too complex to treat explicitly,
so it is taken into account effectively.

In magnetic systems, electronic delocalization strongly affects the magnetic coupling
for example it gives rise to the so-called double-exchange, which couples the localized
moments of each ion through extra electrons that can move between them. In Fig. 1 we
show this mechanism in the case of a mixed valence d*-d* dimer.

-
P S

Figure 1. Model representation depicting the effect of double exchange
in a d*>-d*> MV system.

2005, 16, 247-251. (b) Huang, T.-M.; Chang, W.-].; Huang, Y.-L.; Lin, W.-W,; Wang, W.-C.; Wang, W. J. Comput. Phys.
2010, 229, 8684-8703.

9 (a) Demadis, K. D.; Hartshorn, C. M.; Meyer, T. ]. Chem. Rev. 2001, 101, 2655-2685. (b) Launay, J.-P. Chem.
Soc. Rev. 2001, 30, 386-397.

10 (a) Christou, G. Acc. Chem. Res. 1989, 22, 328-335.(b)Blondin, G.; Girerd, J.J.; Chem. Rev. 1990, 90, 1359-1376.
11 Rao, C.N.R.; Chem. Eur. ]. 1996, 2, 1499-1504.

12 (a) Creutz, C.; Taube, H. J. Am. Chem. Soc. 1969, 91, 3988. (b) Creutz, C.; Taube, H. . Am. Chem. Soc. 1973,
95, 1086.

13 Piepho, S.; Krausz, E.; Schatz, P. J. Am. Chem. Soc. 1978, 100, 2996-3005.

14 Prassides, K. Mixed Valency Systems: Applications in Chemistry, Physics and Biology. NATO ASI Series C.
Vol. 343 Kluwer Acad. Publ.
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As the delocalized electron is known to mantain the orientation of the spin while
being transfered, one would naively expect that double exchange usually results in a
strong stabilization of the ferromagnetic state, but this is not necessarily true for
arbitrary nuclearities or topologies. The first calculations of the energy pattern formed
by the consideration of both double-exchange and Heisenberg exchange showed that
even in the simplest cases (dimers, trimers or tetramers), the electron delocalization has
different effects. As a consequence, it is important to note that the conclusions obtained
for the relatively simple clusters cannot be extended to MV systems of higher nuclearity
which involve localized and delocalized spins in complicated magnetic structures. In
this context it was necessary to develop a new theory which took into account all the
magnetic interactions (as for spin clusters) but also including the electron transfer.

With this aim, a theoretical approach to calculate the effect of electron delocalization
in high-nuclearity MV clusters was published in 1996."° This theory was also based in the
ITO technique mentioned in the previous section. There, the authors were able to derive
closed form analytical expressions for the matrix elements of the full Hamiltonian which
include four terms namely, orbital energy, transfer interaction, exchange interaction and
Coulomb repulsion.

H = zgi-ni +2tij2(ci1cjd +cj.ccio)—22jlj§i-§j +2Vij-ninj
i ijy o (i.Jj) (i.Jj)

where, S, is the local spin operator on site i, ¢, " (respectively c, ) are the usual creation
(respectively annihilation) operators of an electron of spin projection o on site i, 7, is the
number operator on site i, ¢, is the energy of orbital i, ¢, is the electron transfer integral
of a magnetic electron between sites i and j, J, is the exchange integral between sites i
and j, and V, is the (intersite) electrostatic repulsion between two magnetic electrons on
sites i and j.

In 2009, the possibility of including independent delocalization domains was
reconsidered in the approach.'® This modification resulted into two improvements that
allowed the treatment of new systems: Firstly, making domains prevents the electrons
to delocalize between them reducing the number of distributions and allowing the
calculation of bigger systems, e. g. permitted the calculation of extended mixed valence
systems such as dimeric phthalocianine chains where the electron delocalization is
restricted to each dimer. The second improvement is that having domains permits to
assign different spin cores for the centres on each domain. The feature allows us to
calculate heteronuclear mixed-valence systems which where unaffordable before.

This approach was implemented as an efficient computational procedure that
allowed us to calculate the bulk thermodynamic properties (magnetic susceptibility,
magnetization, and specific heat) of high-nuclearity MV clusters but it was not completely
adapted for its public distribution as was done for MAGPACK.

15  Borras-Almenar, J. J; Clemente, ]. M.; Coronado, E.; Palii, A. V;; Tsukerblat, B. S.; Georges, R. J. Chem. Phys.
1996, 105, 6892-6909.

16 Clemente-Juan, J. M.; Borras-Almenar, J. J.; Coronado, E.; Palii, A. V;; Tsukerblat, B. S.; Inorg. Chem. 2009, 48,
4557-4568.
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The code has been widely used even before it was definitively published. In
fact, this theory allowed the calculation of high-nuclearity MV clusters with many
delocalized electrons, which were unapproachable before, i.e. the two electron reduced
polyoxometalates [XW O, " (Keggin)"” and [W, O, ]*."* (Figure 2)

Figure 2. Molecular structure of the POM [XW O, ™ (left) and
[W,,0,,1% (right)

In the first case, the Keggin anion is reduced by two electrons. The diamagnetism
of this Keggin heteropolyblue was originally attributed to a multiroute superexchange
mechanism. Later on it was demonstrated that the large spin-triplet gap could originate
from the interplay between Coulombic repulsion and electron transfer, provided the
transfer routes have a certain relation in sign and magnitude. Indeed, while the electrons
are far away from each other at all times in the ground state, the possible electron transfer
routes are different for singlets and triplets, and the result is a strong stabilization of the
singlet.

The same behaviour was found for the second compound, the decawolframate
structure. This POM is a dirreduced compound in which one can expect both electrons
to be localized as far as possible from each other to minimize the Coulomb repulsion.
This assumption can be questioned as the system behaves as a diamagnet. The calculation
showed that the extra electrons are delocalized over the eight equatorial wolfram sites
interacting antiferromagnetically. This delocalization is preferred in front of having the
electrons slightly far from each other.

Compared with polywolframates, and due their lower LUMO’s polyoxovanadates
represent a remarkable class of high-nuclearity MV clusters providing good examples
to study the chemical control of electron population. These compounds are therefore
ideal systems for studying the influence of the number of delocalized electrons in the
magnetic properties.

The [V O, ]" cluster forms a family of compounds from 18 electrons, fully localized
member for n=12, to mixed-valence member with 10 delocalized electrons for n=4."°
This series of polyoxovanadates presents an unexpected magnetic behaviour: as the

17 Suaud, N.; Gaita-Arifio, A.; Clemente Juan, J. M.; Sanchez-Marin, J.; Coronado, E. J. Am. Chem. Soc. 2002, 124,
15134-15140.

18 Clemente Juan, J. M.; Coronado, E.; Gaita-Arifo, A.; Suaud, N. J. Phys. Chem. 2007, 111, 9969-9977.

19 Miller, A; Sessoli, R.; Krickemeyer, E.; Bogge, H.; Meyer, ].; Gatteschi, D.; Pardi, L.; Westphal, ].; Hovemeier,
K.; Rohlfing, R.; Déring, J.; Hellweg, E; Beugholt, C.; Schmidtmann, M. Inorg. Chem. 1997, 36, 5239-5250.
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electronic population is decreased, meaning a growing distance between unpaired
electrons, an increasing antiferromagnetic coupling is measured. At first sight this was
the opposite of what was expected. To understand it a complete study of the influence
of the exchange and transfer parameters on the low-lying spin levels was performed.
In this case, the previously explained combination of ab initio calculations with model
t-J] Hamiltonian was used to analyse the properties of this family. Unfortunately, the
complete model for 10 electrons delocalized over the 18 vanadium atoms was very
complex and time expensive to calculate. Then, the authors decided to use a simplified
10 centres 6 electrons model, which successfully explained the trend showed by the real
complete system.

The main conclusion extracted was that the electron-transfer integral, calculated from
ab initio calculations, plays the key role in the macroscopic AF properties of these MV
polyoxovanadates. This was completely in agreement with previous studies. Additionally,
both the structural effect of removing electrons from the initial spin-localized cluster on
the amplitude of the magnetic coupling and on the number of counterions, and the effect
of alleviating the spin frustration, only play a minor role.

2. Summary of the most relevant results.

2.1. Parallel implementation of the MAGPACK package. (PAPER 1:
Parallel implementation of the MAGPACK package for the analysis of high-
nuclearity spin clusters).

General Considerations

The sequential package MAGPACK was partially rewritten and his workflow was
parallelized to be optimally used on shared-memory computers with a message-passing
paradigm (with the standard MPI). This was done by enriching the original FORTRAN77
code with some C++ preprocessing directives for including all the declarations required
by the SLEPc library.

Henceforth, the parallelization strategy and the conclusions obtained are summarized:

Matrix generation, preallocation and storage

The first task of the parallelization strategy was to increase the size of the calculated
system. Focusing on this, a main improvement would be to store the matrix elements in
the most efficient way. The original package stores the energy matrix in a dense structure,
that is, it keeps in memory the value of each matrix position, including the vast majority
of zero values. This has been proved to be very inneficient both in memory consumption
and in calculation time.

Thus, the sparse storage sbaij, which mainly consists in storing only the non-zero
values, recording their positions in an optimized symmetric format, was selected to

20 Calzado, C.J.; Clemente-Juan, J. M.; Coronado, E.; Gaita-Arifio, A.; Suaud, N. Inorg. Chem. 2008, 47, 5889-
5901.
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replace the original dense scheme. Other schemes, as the aijfull (compute all elements
without matrix symmetry considerations) or aijhalf (compute each element once, but
storing them in two symmetrical positions) were considered but they proved to be less
efficient than the former.

As the size of the problem increases, the generation of the energy matrix becomes
very time consuming. Fortunately, such a process can be also parallelized by distributing
blocks of rows between the available processing units. In this case, the total matrix size
was initially calculated and each processor is assigned to calculate the percentage of non-
zero elements that its local memory should store. This process is called Preallocation and
accounts for the efficiency of the parallel distribution of work load. The preallocation
is preferable as PETSc uses a dynamic memory scheme for flexible storage of matrices.
Usually, for a correct preallocation it is enough to estimate roughly the number of
non-zero elements. In this case, each value is explicitly calculated, thus, preallocation
represents a considerable overhead but it pays off with respect to underestimating the
real nonzero pattern.

Parallel distribution of the matrix solver

The SLEPc library provides a collection of parallel eigensolvers, most of which are
based in mathematical projection methods. Thus, the Lanczos method as well as its
more general variant for nonsymmetric problems called the Krylov-Schur method are
implemented on it. Those approaches have been previosly optimized by the parallelization
of three main operations:

« Matrix-vector product, which is specially optimized for a low number of
nonzero elements. As in this case, this value is too large, it is not possible to expect
perfect scalability.

o Vector operations which require global communications, such as inner
product, orthogonalization, and norm. These operations should be avoided if possible as
global communications play against efficiency.

o Other vector operations.

In addition to the solver details, there is a difference between the isotropic and the
anisotropic case.

In the isotropic case, the total energy matrix can be divided into smaller submatrices,
each one with a common total spin S. As there is no parameter which admixes Ms
functions, each matrix can be separately diagonalized and its eigenvalues obtained
independently. Note that in this case, not all the blocks are being calculated at the same
time, but sequentially. Thus, a future improvement can be to redistribute the smaller
matrices over a few processors while the others start the diagonalization of the larger ones.
In the anisotropic case, the calculation is much more complicated as the Hamiltonian
includes mixing terms and only one but huge diagonalization is needed.

As aresult of this difference, it is always possible to calculate larger isotropic systems
that those which include anisotropy.

Summary of Computational Improvements.
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In general, the parallelization performance was sucessful, the new code allows to
calculate much larger systems than before with a drastic reduction in the calculation
time. In particular, with a parallel computer of 256 nodes and 2Gb per node, we have
reach to calculate matrices of about 1,500,000 (the number of matrix elements considered
has multiplied by 2,500). This means, approximately 20 S='/, for the anisotropic case
and 25 S='/, for the isotropic. The test calculations demonstrate efficiencies near the unit
(0.8 for 256 nodes) with quasi-linear speed-ups, which showed that the comunication
processes are a minor problem and proved the validity of the parallelization.

The new matrix storage format has permitted to improve the memory consumption
as the amount of RAM memory used for the partial diagonalization has been reduced.
In addition, the preallocation task allows a fast-writing/reading process in the hard disk,
which also reduces the calculation time.

The developed code has been evaluated with two moderate-sized test cases (with
traces of about 60,000 elements), thus providing feedback about the correctness of the
new program, giving an idea of scalability to large number of processors. The main
conclusions are the following:

« The parallelization of the program has allowed to reduce drastically response time of
the calculation compared to the original sequential code. This is a great advantage, e.g.,
in the solution of moderate-size problems with few processors. But more importantly,
parallelization will make possible to solve much larger problems, those with real scientific
interest, problems that would otherwise be impossible to address due to memory
limitations or lack of computational power.

o The use of partial iterative eigensolvers available in SLEPc, which are intended for
large-scale sparse matrices, is a major improvement over the original code. These methods
allow for the computation of only the interesting part of the eigenvalues spectrum, thus
saving a lot of computational effort. That ends in the possibility of addressing bigger
problem sizes. In this particular application, the SLEPc solvers have proved to be very
robust and efficient, with a very fast convergence.

«Computing only part of the spectrum can be a problem while calculating the
thermodinamic properties because, if the energy levels are continuous, it is not trivial
to determine where to truncate the eigenvalues. This can be solved by just calculating
the low temperature part of the susceptibility considering anisotropy while the rest of
the spectrum is calculated without it. In addition, when the optical properties such as
Ineslastic Neutron Scattering are calculated, the huge size of the eigenvectors and the
task of calculating the interaction between all the elements is an additional bottleneck
with an enormous time consumption.

o The parallel performance has proved to be reasonably good in the analyzed test
cases, especially in the anisotropic ones. This confirmed the accuracy of the method
and proved that they are ready to cope with really big problems, provided that enough
computational resources are available.

« Different matrix storage schemes and several strategies for handling matrices of
the form A +y B have been evaluated. The main conclusion is that symmetric storage
combined with an implicit representation of such matrices is very effective, both
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sequentially and in parallel. The evaluation has also provided very valuable information
concerning memory requirements, that will allow the users to make accurate estimations
of memory consumption when solving huge problems.

As the viability of the approach has been demonstrated, the parallel code is now
ready for production mode, that is, to address challenging problems with real scientific
interest. Some preliminary results with large molecular clusters are very encouraging
and it may be possible to achieve some significant breakthroughs in this area in a short
term.

2.2. MVPACK, results (PAPER 2: MVPACK: A package to calculate energy
levels and magnetic properties of high nuclearity mixed valence clusters).

The resulting program accounts for the consideration of electron delocalization,
isotropic exchange, orbital energies, Coulombic repulsion and Zeeman interactions.
On the other hand this approach does not consider anisotropic interactions such as
anisymmetric exchange, zero-field-splitting, or the anisotropy of the g factor. This is so
because for efficiency reasons, the original theory did not consider the spin projection.

In relation to the electric field effect the properties of a two electron reduced
polyoxovanadate have been calculated (see chapter 3). This molecule can act as a
molecular switch undergoing a magnetic transition between a paramagnetic and a
strongly antiferromagnetic ground state when an electric field is applied along its main
molecular axis. Due to the importance of this result, a complete explanation of the
calculations and the theoretical rationalizacion is presented in Chapter 3 “Electrically
Switchable Magnetic Molecules”. The main conclusions are summarized here for clearance.
The studied molecule, K Na [GeV,,O, | has two “extra” electrons that are locatd in the
to extreme vanadium ions along the z axis. Due to the high orbital energy of the central
vanadium square, the electrons should overcome a barrier to magnetically interact with
each other. An electric field can give the system enough energy to pass that barrier and
permit the antiferromagnetic interaction, thus modifying the magnetic properties.

Additionally, other bicapped POM [Ni(Phen),(H,0)],[PMo ,0, ] has been studied
using the MVPACK code. This POM structure is related to the one previosly studied
[PMo,,0,,(VO),]. In this case, the molybden core is reduced by one electron, which
is assumed to be, in principle, completely delocalized over the full structure. When the
temperature decreases or when an electric field is applied in the main molecular axis
such electron localizes in the molybden directly coupled with the nickel. Such interaction
opens the possibility of achieving an electrical control of the spin interaction between
itinerant and localized electrons. Unfortunately, these results stay in a preliminary stage
and will not be presented in this thesis.
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3. Author’s contribution to the publications.

3.1. Contributions related to MAGPACK.

In this publication, the author has stablished an interdisciplinar collaboration
between the scientific communities in the ICMol and the DSIC. Both groups had never
met before and a intense collaboration has started since then with meetings taking place
at least once a month.

The author improved his knowledge about parallel computation working with the
original developers of SLEPc. During this collaboration, the author completely dissected
the original MAGPACK and each part was improved by the means of computational
efficiency and parallelization. The author learnt the most appropriated way to compute
key mathematical operations such as the matrix-vector product and the optimal matrix
distribution and storage.

Another task developed by the author was to implement the C++ commands on the
original FORTRAN77 code to manage the options of the parallel solver and even to
store the matrix energy efficiently. This was a complicated task which took up the first
year of the collaboration and needed to be done very carefully because errors in the
communication between the two programming languages are difficult to identify.

In addition the author has managed a project to obtain an account for computing in
the “Supercomputing Spanish Network” Thanks to this project he performed dozens of
test calculations during 2 years in “Tirant Supercomputer” in Valencia (Project: Magnetic
properties of high nuclearity spin clusters and mixed-valence clusters, tirant_vlc52),
while the DSIC researchers have focused on “Marenostrum” in Barcelona and “Caesar
Augusta” in Zaragoza. For all the calculations, the author has choosen two Ni** and Mn**
rings as examples for the anisotropic and isotropic codes respectively. These ring models
have been widely used to simulate infinite chain systems.

3.2. Contributions related to MVPACK

In this publication, the author contributed adding the electric field simulation to the
most actual version of the package. He did this by adding a subroutine which accounts
of introducing the coordinates of the magnetic centres as well as any number of electric
fields contributions with their direction and intensity. There the orbital energies of the
metal centres are modified depending on their position along the direction of the field.
In fact, an orbital is stabilized compared to another one when it is in a higher electric
potential.

This was an interesting addition to the original code with the aim to stabilize or
destabilize some electronic distributions with an external stimulus. This basic feature
will provide useful information about the control of the spin states with the application
of an external electric potential, which is an easy-to-manipulate stimulus.

As previously stated, in this last version, it is possible to apply independent electric
fields simulating the effect of a gate potential with atomic resolution. This permits to
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study the classical model of a cellular automaton but using as the grid cell one or more
MV molecules.

In addition the author has managed the calculation of two mixed-valence POMs
K )Na [GeV O, ]and [Ni(Phen),(H,0)],[PMo,,0, |. The former study is completed and
will be presented in Chapter 3, while the latter stills in a preliminary development and

will not be shown here.
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ARTICLE INFO ABSTRACT

Arricl_e history: Molecular clusters are formed by a finite number of exchange-coupled paramagnetic centers and they
RGCE§VEd 1 Febfuary 2010 are model systems between molecules and extended solids. In order to simulate their properties and
Received in revised form 18 june 2010 extrapolate to solids, the size of the systems to be treated should be as large as possible. In this context,

Accepted 15 September 2010 the use of efficient parallel codes is essential. We present the parallel programs PARANI and PArIso, for

anisotropic and isotropic models, that enable the calculation of large energy matrices in parallel and

ﬁgl‘:z?; magnetism the subsequent computation of the relevant spectral information. The evaluation of the matrix elements

Magnetic anisotropy is based on the serial package MAGPAcK that uses the irreducible tensor operators technique and takes

Magnetic isotropy into account all kinds of anisotropic and isotropic magnetic interactions. To obtain the eigenvalues, the

High spin clusters energy matrix is partially diagonalized by means of the SLEPc library. The calculation of eigenvalues

MAGPACK and eigenvectors of these spin clusters enables us to evaluate the bulk magnetic properties (magnetic

ls-il_;gPE-sca]e eigenvalue problem susceptibility and magnetization) as well as the spectroscopic properties (inelastic neutron scattering
C

. o spectra). The results are encouraging in terms of parallel efficiency and open the way to address very
Message-passing parallelization .
challenging problems.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction depth understanding of the magnetic exchange interactions, pro-

viding, at the same time, a testing ground for theories.

For a long time, this problem has been mostly restricted to the
treatment of comparatively simple clusters comprising a reduced
number of exchange-coupled centers and special spin topologies,
for which solutions can be obtained either analytically or numer-
ically. However, upon increasing the nuclearity of the cluster, the
problem rapidly becomes unapproachable due to the lack of trans-
lational symmetry within the cluster. An additional complication is
the spin anisotropy of the cluster.

A very powerful and efficient computational approach for
solving the exchange problem in high nuclearity spin clusters
with anisotropic exchange interactions, including the single ion
anisotropic effects, was proposed by some of the authors [2]. The
clusters are formed by an arbitrary number of exchange-coupled
centers which combine different spin values and arbitrary topol-
ogy. This approach is based on the use of the irreducible tensor
operators (ITO) technique. It permits the evaluation of both eigen-
values and eigenvectors of the system, and then, to interpret the
magnetic susceptibility, magnetization and also the inelastic neu-
tron scattering spectra.

S However, the viability of this approach depends on the efficient
Corresponding author. . . . .
E-mail addresses: ramos@dsic.upv.es (E. Ramos), jroman@dsic.upv.es SOll'ltlo'l‘l of the associated alggbralc pl‘OblElTl'S, namdy the dlag9-

(J.E. Roman), salvador.cardona@uv.es (S. Cardona-Serra), juan.m.clemente@uv.es nalization of the relevant matrices, whose dimension has a rapid

(J.M. Clemente-Juan). growth with the size of the molecular cluster. Therefore, it is nec-

Molecular magnetism is a comparatively new research area
aimed at the design and study of molecule-based magnetic ma-
terials which are interesting both from the point of view of their
unusual physical properties and their importance for applications,
including high-density information storage and quantum comput-
ing [1]. These compounds provide ideal opportunities to study
basic concepts of magnetism and explore the new physical phe-
nomena, such as quantum tunneling of magnetization, etc. Mag-
netic clusters, i.e., molecular assemblies formed by a finite number
of exchange-coupled paramagnetic centers, are currently receiving
much attention in several active areas of research such as molecu-
lar chemistry, magnetism or biochemistry.

As they are in between the small molecular systems and the
bulk state, the limited number of interacting centers often allows
us to model their properties with quantum mechanical approaches,
avoiding the further approximations required to treat extended
solids. From this point of view, they serve as model systems for in-

0010-4655/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2010.09.007
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essary to have recourse to advanced numerical methods as well as
to exploit the computational power of large supercomputers.

In this paper we present an implementation of this computa-
tional approach that exploits the advantage of parallelization and
makes use of efficient mathematical libraries to diagonalize the
energy matrices. In particular, our code is based on SLEPc, the Scal-
able Library for Eigenvalue Problem Computations [3]. The combi-
nation of the ITO technique and the parallelization approach for
both the evaluation of the matrix elements and the subsequent
diagonalization results in one of the most powerful tools for the
analysis of the magnetic properties in high nuclearity spin systems.

The rest of the paper is organized as follows. Section 2 gives
some theoretical background describing the equations and the goal
of the simulations. In Section 3 we provide details about the or-
ganization of the codes, in order to identify the main building
blocks. Section 4 deals with the mathematical background related
to sparse eigensolvers, and includes a brief description of the SLEPc
library. In Section 5 we discuss the main issues related to paral-
lelization of the codes, and in Section 6 we show results concern-
ing the performance of the developed programs. We wrap up with
some concluding remarks.

2. Theoretical background

The developed programs can consider spin clusters formed by
an arbitrary number of magnetic sites, N, with local spins. The spin
cluster basis functions are obtained by coupling the local spins in
a successive way,

[S152(52)53(53)...

Once the basis set is created we apply the Hamiltonian in order
to evaluate the eigenmatrix. This is achieved by the use of the ITO
techniques, which allow us to fully take into account all kinds of
magnetic exchange interactions between the metal ions comprised
in clusters of arbitrary size.

It is possible to express all kinds of contributions to the spin
Hamiltonian expressed in terms of the conventional spin oper-
ators, within function of this generalized Hamiltonian expressed
in terms of ITO’s. Next, we present the most common terms in
the spin Hamiltonian: isotropic exchange (Ho), biquadratic (I:ng),
anisotropic (Han) and zero-field splitting (Hzs) interactions, re-
spectively.
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In the above equations, f'ék)(k;kflif) and fék](kili) are a simple
notation of the complex ITO that contains all the information nec-
essary to be evaluated [4].

Finally, using the Wigner-Eckart theorem and the successive
decoupling procedure we can express the energy matrix elements
as a function of single-spin matrix and several tabulated symbols
as 9j-symbols.
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The diagonalization of this matrix gives us the eigenvalues and
eigenvectors of the spin cluster.

In order to evaluate the different thermodynamic properties
such as magnetic susceptibility and magnetization, we need to
include in the Hamiltonian the term that takes into account the
interaction between the external magnetic field and the spin func-
tions. This interaction is the Zeeman term and can also be ex-
pressed in terms of ITO's, as

Azee =Y gf87H” + g (SYH* + 5/ HY)
i

When the eigenvalues of the system at different magnetic fields
or temperatures are available, it is possible to evaluate the parti-
tion function Z and the different thermodynamic properties of the
system, as

21001 + g2 /vV2(F N alpy - TP al)HY ] (7)

M= NITaan (8)
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() 0
oH H—0

On the ground of the theoretical basis presented above and
based on the sequential simulation codes developed in [2], we
have implemented two parallel programs called PARANI and PARISO
for calculating anisotropic and isotropic systems, respectively.

The isotropic systems are a special case where only the
isotropic and biquadratic exchange terms are present in the spin
Hamiltonian. These terms have the feature of not mixing functions
with different quantum number S and not breaking the degener-
acy of levels with the same S and different M. This decouples the
energy matrix into several submatrices, one per each different S
quantum number. Taking into account the ITO technique it is pos-
sible to eliminate this M quantum number and reduce the size of
each S submatrix by a factor of 25 + 1.

3. Organization of the programs

PARANI and PARIso are programs based on the ANI and Iso
subroutines form the MacPack package [2]. Both programs gen-
erate the spin functions of the system, calculate the energy matrix
and diagonalize it in a parallel way to obtain the eigenvalues and
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eigenvectors. The last part of the computation uses these data to
evaluate the derived thermodynamic (specific heat, bulk suscep-
tibility and magnetization) and spectroscopic properties (inelastic
neutron scattering).

All the parameters describing the spin system and its proper-
ties (nuclearity, topology, exchange parameters, etc.) are provided
by the user as input data. After execution, the program generates
different output files containing all the information concerning the
initialization, evaluation and simulation processes.

The programs are entirely written in FORTRAN77, enriched with
some preprocessing directives for including all the declarations re-
quired by the SLEPc library, which will be described in Section 4.

3.1. Structure of PARANI

The PARANI program deals with the general anisotropic case.
The main steps of the computation are the following:

(1) Setup of data containing the information of the cluster.

(2) Generation of starting spin functions.

(3) Evaluation of energy matrix, A. All nonzero elements are com-
puted according to Eq. (6) and assembled into the matrix.

(4) First partial diagonalization. Given the eigenvalue relation
Ax = )x, a subset of the spectrum is computed, correspond-
ing to the leftmost eigenvalues.

(5) Evaluation of Zeeman matrices. All nonzero elements are com-
puted according to Eq. (7) and assembled into the matrices.
To reduce the computational effort, only two matrices are
computed, corresponding to parallel and perpendicular direc-
tions, By and B .

(6) Calculation of thermodynamic properties. This is done by com-
puting a partial diagonalization of matrices C; = A+ y Bj and
C, = A+ yB, for three different values of the scalar y. In
total, six partial eigendecompositions are computed.

(7) Generation of final results, by combining all the previous re-
sults with a small computation.

All matrices mentioned above are symmetric. This fact can be
exploited in the program, both in terms of storage requirements
and computational effort, as will be discussed in Section 5. An-
other important aspect to be considered is that the matrices are
sparse, i.e., the percentage of nonzero elements is rather small
(around 1%). It is important to note that the sparsity pattern (i.e.,
the location of nonzero elements) is different in matrices A, B)
and B, .

3.2. Structure of PARISO

In the case of isotropic systems, the energy matrix can be writ-
ten as a block diagonal matrix,

Aq
A3
A= . X (10)

Ap

where each of the b blocks is a symmetric sparse matrix of differ-
ent dimension. Finding the leftmost eigenvalues of A amounts to
computing the leftmost eigenvalues of each of the blocks, A;. Thus,
the structure of the program PARIso is geared to this block struc-
ture, where one partial diagonalization is carried out per block (no
Zeeman terms are present in this case).

(1) Setup of data containing the information of the cluster.
(2) For each diagonal block, i=1,...,b, do:
(2.1) Generation of starting spin functions.

(2.2) Evaluation of energy submatrix, A;. All nonzero elements
are computed according to Eq. (6) and assembled into
the matrix.

(2.3) Partial diagonalization of A;.

(3) Generation of final results.

4. Projection methods for sparse eigenvalue problems

In this section, we discuss projection methods for solving the
real symmetric standard eigenvalue problem,

Ax = AX, (11)

where A € R™", ) € R (eigenvalue) and x € R" (eigenvector). Pro-
jection methods are appropriate when the matrix A is very large
but its application to a vector is relatively cheap (e.g., it is sparse)
and only part of the spectrum is required. If we number the eigen-
values consecutively from left to right, then we might want to
compute the first k eigenpairs, (A;,x;), i =1,...,k, usually with
k < n. The basic principle of projection methods is to find the best
approximations to the eigenvectors in a given subspace of small
dimension. Let V be an n x m matrix, with k < m «n, whose
columns v; constitute an orthonormal basis of a given subspace V,
ie, VTV = Im and span{vy, vy, ..., v} = V. Then the eigenvalues
of the so-called Rayleigh quotient matrix T = VT AV approximate
eigenvalues of the original matrix. More precisely, if Ty; = 6;y;
then the eigenpair approximations are i; = #6; and %; = Vy;. These
approximate eigenvectors belong to subspace V and are the best
possible approximations in that subspace. For background material
on projection methods, the reader is referred to [5,6].

4.1. Restarted Krylov methods

The quality of the eigenpair approximations (i;,X;) depends
on how the subspace V is built. A popular choice is to use the
Krylov subspace associated with matrix A and a given initial
vector vi, Km(A, vi) = span{vq, Avy, A2vq, ..., A" 1y }. Without
loss of generality, in the sequel we will assume that v; has unit
length.

In the case of a symmetric matrix, we can use the Lanczos algo-
rithm to compute an orthogonal basis of the Krylov subspace. This
method also provides the projected matrix T, which is a symmet-
ric tridiagonal matrix in this case. This computation is efficient and
numerically stable, provided that an appropriate methodology is
employed to guarantee a good quality of orthogonality among the
basis vectors. In brief, the full-orthogonalization Lanczos method
computes the basis vectors v; in sequence, starting from v;. Each
vector v; is the result of orthogonalizing Av; 1 with respect to
the previous j — 1 vectors, and then normalizing with respect to
the Euclidean norm.

After m steps of the Lanczos algorithm, the computed quantities
satisfy the relation

AV =VT + fmirel, (12)

where fp4+1 would yield the next basis vector (after normalization)
if the process were to be continued, and ey, is the mth coordi-
nate vector. As the number of columns in V grows, eigenvalues of
T will tend to converge to eigenvalues of A. The rate of conver-
gence will be fast provided that the initial vector vy is rich in the
direction of the wanted eigenvectors. However, in practice this is
usually not the case and consequently many iterations are likely
to be required. This is a serious problem because increasing the
number of iterations (m) implies a growth in storage requirements
and, more importantly, a growth of computational cost per iter-
ation (mainly because orthogonalization is increasingly expensive
and also because the cost of computing eigenpairs of T becomes
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non-negligible). A workaround for this is to restart the algorithm,
that is, stop after m iterations and rerun the method with a new
vi computed from the recently obtained spectral approximations.
One possible approach is to explicitly compute v; as a linear com-
bination of a subset of the current approximate eigenvectors. This
is called explicit restart. The main difficulty with explicit restart is
how to choose the parameters for building the new starting vector.

A better approach is to do some form of implicit restart, that
avoids the need to explicitly compute a new starting vector vi.
In the context of Lanczos, one such technique is the so-called
thick-restart Lanczos method [7]. In brief, this technique keeps ¢
approximate eigenvectors (those corresponding to eigenvalues in
the wanted part of the spectrum) and discards the rest, then com-
pletes the basis with m — ¢ new Lanczos vectors (a typical choice
is £ =m/2). Apart from enhancing convergence between restarts,
this technique allows the iteration to focus on a certain part of the
spectrum, such as the leftmost eigenvalues.

The restart is also a good moment to keep track of already
converged eigenvalues, so that they can be deflated. Deflating con-
verged eigenvalues means modifying the iteration so that they do
not reappear in the spectrum of T. This can be done in different
ways, but the most effective one is called locking and consists in
extracting the converged eigenvector from the active basis V but
still consider it in the orthogonalization step. A schematic descrip-
tion of Lanczos with thick-restart and locking is shown below.

(1) Set X = ¢ (already converged eigenvectors).
(2) Run m steps of Lanczos.
(3) Restart loop (until k eigenpairs have converged):
(3.1) Compute eigenpairs of T and check for newly converged
eigenpairs.
(3.2) Add newly converged eigenvectors to X.
(3.3) Keep ¢ approximate eigenvectors in the basis.
(3.4) Run m — ¢ steps of Lanczos.

Note that the number of columns of X can grow as required.
In this way, the iterative eigensolver can be used to compute more
than m eigenpairs. For instance, if one wants to compute k = 8000
eigenpairs of a matrix of order n = 50000, then setting for instance
m = 10000 would be too much computational effort for extract-
ing eigenpairs of T, whereas with the above scheme it is possible
to work with m =300, say, and iterate until all wanted eigenpairs
have been retrieved.

4.2. The SLEPc library

SLEPc, the Scalable Library for Eigenvalue Problem Computa-
tions [3], is a software package for the solution of large-scale
eigenvalue problems on parallel computers. Apart from the stan-
dard eigenvalue problem of Eq. (11), it also addresses other types
of problems such as the generalized eigenvalue problem or the
singular value decomposition. SLEPc can work with either real or
complex arithmetic, in single or double precision, and it is not re-
stricted to symmetric (Hermitian) problems. It can be used from
code written in C, C++, FORTRAN, and Python. SLEPc has been
employed successfully in many different application areas such as
nuclear engineering [8] or plasma physics [9].

SLEPc provides a collection of eigensolvers, most of which are
based on the subspace projection paradigm described in the previ-
ous paragraphs. In particular, it includes a robust and efficient par-
allel implementation of the thick-restart Lanczos method, as well
as its more general variant for nonsymmetric problems called the
Krylov-Schur method [10]. The Lanczos solver includes the possi-
bility to set the m parameter described in the previous subsection,
thus allowing the computation of a large number of eigenpairs.
This feature is missing in other software such as ARPACK [11]. In

addition to Krylov solvers, other methods such as Davidson-type or
conjugate-gradient solvers are under development.

SLEPc is built on top of PETSc (Portable, Extensible Toolkit for
Scientific Computation [12]), a parallel framework for the numer-
ical solution of partial differential equations, whose approach is
to encapsulate mathematical algorithms using object-oriented pro-
gramming techniques in order to be able to manage the complexity
of efficient numerical message-passing codes. All the PETSc soft-
ware is freely available and used around the world in many appli-
cation areas. PETSc is object-oriented in the sense that all the code
is built around a set of data structures and algorithmic objects. The
application programmer works directly with these objects rather
than concentrating on the underlying data structures. The three
basic abstract data objects are index sets, vectors and matrices.
Built on top of this foundation are various classes of solver ob-
jects, including linear, nonlinear and time-stepping solvers. SLEPc
inherits all the good properties of PETSc, including portability to a
wide range of parallel platforms, scalability to a large number of
processors, and run-time flexibility giving full control over the so-
lution process (one can for instance specify the solver at run time,
or change relevant parameters such as the tolerance or the size of
the subspace basis).

The solvers in PETSc and SLEPc have a data-structure neutral
implementation. This means that the computation can be done
with different matrix storage formats, and also even with a ma-
trix that is not stored explicitly (this requires some user-defined
operations such as the matrix-vector product). By default, a ma-
trix in PETSc is stored in a parallel compressed-row sparse format
(called aij), where each processor stores a subset of rows. Other
formats include the symmetric variant (sbaij), where only the
upper triangular part is stored, as well as the dense storage (both
sequential and parallel).

5. Parallelization strategy

In this section, we provide some details about the implemen-
tation of the codes, by making use of the parallel capabilities of
the SLEPc and PETSc frameworks. We put especial emphasis on
optimization issues, such as efficient memory management and re-
duction of memory requirements.

5.1. How SLEPc eigensolvers are parallelized

We start by describing the parallelization strategy used by
SLEPc eigensolvers. Both PETSc and SLEPc are oriented to large-
scale computation on distributed memory parallel computers with
a message-passing paradigm (with the MPI standard). As men-
tioned before, matrices in PETSc are generally stored by blocks of
rows. Vectors also follow the same data distribution, so every pro-
cessor owns a contiguous chunk of the vector elements. According
to the description of the Lanczos algorithm in Section 4, we can
discuss the parallelization of the main operations:

e Matrix-vector product, Av;_1. In PETSc, this operation is im-
plemented with mesh-based computations in mind, so that it
is particularly efficient in finite-element applications, for ex-
ample. In our particular application, the matrices do not arise
from a computational mesh and the number of nonzero el-
ements is relatively large, so one should not expect perfect
scalability.

Vector operations that require global communication, such
as orthogonalization, inner product and norm. Global com-
munication should be avoided whenever possible, and SLEPc
implementations are carefully developed with this issue in
mind [13].

o Trivially parallelizable vector operations, such as addition.
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e Operations on the small projected matrix, T. These operations
are carried out sequentially, in a replicated way (all processors
perform the same computation). This is usually positive for to
parallel performance, provided that the size of the projected
problem is not large. This is one of the reasons why using a
small value of m compared to k can be beneficial. The other
reason is memory requirement as described next.

In order to determine the memory requirements of the eigen-
solver, we have to focus on Eq. (12). We assume that matrix A is
of dimension n. Apart from the matrix A (whose storage will be
discussed later) and minor workspace, the memory requirements
can be summarized as follows:

o Storage of basis vectors V and eigenvectors X: the number of
columns of V grow up to the maximum, m (mpd in SLEPC’s
terminology), and there is also need to store the eigenvec-
tors as they converge, up to the requested number, k (nev
in SLEPC’s terminology). So we need to store at least m +k
vectors, that is njeca(m + k) floating-point numbers per pro-
cessor (assuming the local dimension is njeca =n/p, and p is
the number of processors).

Storage of the projected matrix: for this we need two square
arrays, one for T and the other for its eigenvectors, both of
dimension m x m. This memory is replicated in all processors,
not distributed. This amount of memory is negligible except in
the case that m is too large.

As an example, suppose we have a problem of order n =
80000 and we want to solve it with p =8 processors, computing
k=1000 eigenvalues with m =500. The local part of the vectors
would be njgca; = 10000. The memory in each processor would be:

e Basis vectors and eigenvectors: njoca(m + k) = 15000 000.

e Projected problem: 2m? = 500 000.

e Total: 15500000 floating-point numbers, that is roughly
120 Mbytes (in double precision).

As quoted above all the code is prepared to work correctly in sin-
gle precision arithmetic. In the following, we use double precision
throughout.

5.2. Matrix generation

Apart from the partial diagonalization, the most computation-
ally expensive part is the generation of matrix A (step 3 in the
algorithm of Section 3.1). This matrix is real, symmetric, sparse,
and very large, so for best efficiency all these properties have to
be considered when generating and storing it.

The percentage of nonzero elements is considerably larger than
in other classes of applications. Still, sparse storage (that is, storing
only nonzero elements) represents a huge advantage compared to
a dense storage, both in terms of memory savings and reduction of
computational cost. We consider that a matrix entry a;; is nonzero
if |ajj| > 10712, With this threshold, the percentage of nonzero el-
ements is typically about 1% or less.

Together with the sparse storage, distributing the matrix across
several processes makes it possible to increase the size of the
molecular cluster under study, which is crucial for analyzing prob-
lems of real scientific interest. In our application, matrix generation
is trivially parallelizable, meaning that each process can compute
its assigned rows without intervention of the other processes (as-
suming that all processes compute the starting spin functions re-
dundantly, in step 2 in the algorithm of Section 3.1). However, it
is possible to enhance the properties related to parallelization by
using an appropriate ordering, as will be discussed below. Before

that, we treat two important issues: memory preallocation and ex-
ploitation of symmetry.

Matrix preallocation is necessary because PETSc uses a dynamic
memory scheme for flexible storage of matrices (the used mem-
ory grows as new nonzero elements are added). Since allocation
of memory is time-consuming, this scheme is very inefficient es-
pecially for very large matrices with many nonzero elements. The
solution is to preallocate, that is, to do an a priori estimation of
the number of nonzero elements and reserve a sufficiently large
chunk of memory for them. Sometimes, it is sufficient to estimate
nonzero elements very roughly for preallocation. In our case, we
have opted for performing a very accurate estimation: each pro-
cessor counts nonzero elements in each row by computing the po-
tentially nonzero values. This represents a considerable overhead,
but it pays off with respect to underestimating the real nonzero
pattern.

Regarding the symmetry of the matrix, we have three options:

e aijfull: Compute all matrix elements, without taking sym-
metry into account.

aijhalf: Compute half of the elements only (e.g. the up-
per triangular part), but store each element twice (both in the
original position and the symmetric one). The drawback of this
option is that it requires explicit interprocessor communica-
tion during matrix assembly.

sbaij: Compute half of the elements only and use a special
symmetric storage format.

The first two schemes differ only when generating the matrix but
are equivalent in the rest of the code.

For a matrix with n,, nonzero elements, the total storage re-
quirement is about np, floating point numbers and n + ny;, inte-
gers. In the case of the special sbaij format, the memory usage
is reduced roughly by half. By default, we use the symmetric stor-
age format, because it saves a lot of memory and it is the best one
in terms of matrix generation time (we will also see in Section 6
that the parallel performance of the matrix-vector product does
not degrade with respect to the other options).

Although the number of matrix rows assigned to each pro-
cess is roughly the same, the different number and position of
nonzero elements in each row can lead to load imbalance and
excessive communication overhead in the matrix-vector product.
For best performance, it may be necessary to perform an appro-
priate reordering of the unknowns, and permute the matrix ac-
cordingly. As it is well known, in this context a good ordering
can be computed by partitioning the adjacency graph associated
to the nonzero structure of the matrix, where the goal is to obtain
p partitions of almost equal size while minimizing the edge-cut
between partitions. For this aim, we have used ParMETIS [14].
Fig. 1 shows the resulting nonzero pattern after permutation for
the case of 2 and 16 partitions. The diagonal blocks represent the
binding of unknowns within a partition, whereas the off-diagonal
blocks represent edges connecting one partition to another (since
some nonzero elements have been dropped, it is possible to ob-
tain totally disconnected partitions when the number of partitions
is small).

5.3. Computation of magnetic susceptibility

In case of anisotropic systems, for the calculation of the
magnetic susceptibility, several consecutive diagonalizations are
needed at different fields, both its intrinsic magnitude and its ori-
entation with regard to the axis of anisotropy is changed. The
values obtained in each of these diagonalizations are translated
later to obtain only one file of results and using them as the
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Fig. 1. Pattern of nonzero elements of matrix A for the case of 2 and 16 partitions.

molecule energy levels allows us to calculate the magnetic sus-
ceptibility of the compound under study.

Using the notation of Section 3.1, a partial diagonalization is re-
quired for matrices Cy = A+ yBj and C. = A + yB_ for three
different values of the scalar y. Next, we discuss the implementa-
tion details associated to these matrices.

In PETSc, the operation C = A + y B (usually referred to as ma-
trix axpy) is very efficient provided that A and B have the same
sparsity pattern (or alternatively one pattern is a subset of the
other). Otherwise, the overhead of this operation can be extremely
high, mainly due to memory management reasons discussed pre-
viously. In our case, neither By nor B, have a sparsity pattern
similar to that of A. As a consequence, the matrix axpy should be
avoided whenever possible in order to get reasonable efficiency.
We address this issue with two different strategies: (1) do accu-
mulative matrix axpys, and (2) avoid them completely by making
use of implicit (shell) matrices.

For the accumulative matrix axpys, we have reorganized the
computation in such a way that the three C; matrices are pro-
cessed before, then the three C; matrices. Also, their computa-
tion has been rearranged so that the second and third ones can
be obtained additively from the previous one. In matrix notation,
Ci=A+y1B, then C; =C; + 2B and C3 = C; + y3B. In this way,
only the first matrix axpy will be inefficient, because in the other
two we can assure that the sparsity pattern of B is a subset of C;
and C,. Overall, we are avoiding 4 inefficient axpys.

The other strategy makes use of implicit matrices, which are
called shell matrices in PETSc. These are matrices that do not store
matrix elements explicitly. Instead, they interoperate with the rest
of the code components by providing some user-defined operations
consisting on a subroutine that operates with user-defined data.
In our case, we define a shell matrix that contains A, B, and y
as data, and implements the matrix-vector product operation as
y =Cx=(A+ yB)x = Ax+ y Bx. No other matrix operations are
required because Lanczos eigensolvers are based on matrix-vector
products exclusively. With this approach, we eliminate the need of
matrix axpys completely, but as a consequence we are increasing
the cost of the eigensolver since we now perform two matrix-
vector products whenever the solver needs to do a matrix-vector
product with C.

5.4. Optimizations for the isotropic case

The parallelization of the calculation in the isotropic case is
very similar, except for avoiding the complication associated to

the Zeeman matrices that are not present in this case. The matri-
ces have the block structure described in Section 3.2. If we con-
sider matrix A as a whole, its percentage of nonzero elements
is just 0.1%, but all the individual submatrices have 1-2% ele-
ments or more. The generation of the matrix is very similar to the
anisotropic case, with the difference that the individual blocks are
stored separately. Not all blocks need to be in memory simulta-
neously, since after generating one block it is possible to compute
its partial diagonalization and then the matrix is no longer needed
and can be destroyed. For all these reasons, we are able to calcu-
late much larger systems than in the anisotropic case.

It would be possible to carry out further optimizations in order
to improve the parallel efficiency in PARIso. For example, since typ-
ically one or two of the blocks have a very small dimension (50 or
less), these blocks could be fully diagonalized with a dense eigen-
solver in each processor in a replicated way. This would avoid the
parallel overhead associated to distributing such a small computa-
tion among all the available processors.

6. Code evaluation

We have carried out a number of numerical experiments in or-
der to validate the correctness of the parallel codes, as well as to
assess their parallel efficiency.

The computer system used for the computational experiments
is Caesar Augusta, an IBM cluster consisting of 256 ]JS20 blade
computing nodes, each of them with two 64-bit PowerPC 970FX
processors running at 2.2 GHz, interconnected with a low latency
Myrinet network. In all tests, we have used two processors per
node, up to 64 nodes. When discussing the parallel performance,
we will evaluate speedup and efficiency with respect to nodes, not
processors. For instance, the speedup for two nodes, S5, is defined
as the ratio between the execution time with one node (two pro-
cessors) and two nodes (four processors). The ideal speedup in this
case is 2, so the efficiency for two nodes is defined as E; = S»/2.
These quantities are defined analogously for larger number of
nodes.

6.1. Test cases and validation of numerical results

For the PARANI code, the experiments we report in this paper
are related to the simulation of a ring of 10 centers of nickel(Il)
ions, where the associated problem dimension is N =59049. The
objective is to calculate the magnetic properties of infinite chains
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bl b3 y s
e LA ot eathe,
P F¥S i eve o FYS L eve ¢
& O & 8 w e e
Bl S A AL S S P .
i b .:: . *.::‘ ..::
e ’
o e
w [
n‘\
2 & \o
o

Fig. 3. Scheme of the eight manganese ring model.

of Ni atoms with antiferromagnetic interaction between them. In
order to simulate the fact that the chains are infinite and to avoid
the lack of interaction in the edges, the calculation has been done
using closed rings. Fig. 2 illustrates the chain of atoms of nickel
and its model through a ring of 8 members.

The model used in PARIsO is an eight manganese ring with anti-
ferromagnetic coupling. As in the other example, calculating rings
is a correct approximation for simulating infinite chains. In Fig. 3
we can see this model.

In order to validate the correctness of the computations, we
compare the results from the parallel versions with the results
from the original sequential MAGPACK codes. This comparison is
feasible for rings of small nuclearity, with matrix size less than
20000 for which the serial code is still viable. For the antifer-
romagnetic rings the reduced susceptibility curve (susceptibility
divided by the number of centers) with 2N centers tends to a con-
stant value as N goes to infinity. The way of verifying the results
for high nuclearity rings calculated by the parallel version is to see
that they are the upper limit of the low nuclearity curves calcu-
lated accurately by MAGPACK. As N gets larger, the difference with
respect to the curve corresponding to N — 1 is reduced. To calcu-
late the susceptibility, it is necessary to have a large number of
computed levels, so this comparison is made for low temperatures
where a smaller number of levels is required.

6.2. Performance of the matrix generation

We now proceed to analyze the matrix generation in terms of
parallel performance. In Table 1 we show the times spent in the

Table 1
Comparison of the matrix generation time (in seconds) for the nickel ring with the
three considered methods.

Nodes aijfull aijhalf sbaij
1 36121 29279 22549
2 18736 15001 12849
4 9393 7850 6590
8 4820 4034 3356

16 2419 2041 1783

32 1229 1050 890

64 620 531 454

parallel generation of the energy matrix (step 3 in the algorithm
of Section 3.1) for the anisotropic case in the nickel ring for dif-
ferent number of nodes. Fig. 4 depicts the speedup and efficiency
with respect to nodes. From these results, we see that sbaij is
sequentially almost twice as fast as the aijfull case, whereas
the aijhalf alternative is somewhere midway. In parallel, the
performance of sbaij is the worst, and the reason is that it is
the case where load imbalance is more marked. The performance
of aijhalf is worse than aijfull, as expected by the required
communication. We can conclude that the matrix generation stage
is quite scalable, because even the worst case achieves more than
75% efficiency with 64 nodes.

6.3. Tuning of eigensolver parameters

In this section, we analyze the impact of SLEPc’s mpd parameter
on the performance of the eigensolver in this particular applica-
tion. The maximum projected dimension (mpd) is what was re-
ferred to as m in the description of Section 4. The smaller the value
of this parameter is, the less memory will be required. However,
setting a too low value may hinder convergence thus increasing
overall computing time. Therefore, it is important to make a rea-
sonably good a priori estimation of the optimal value.

For this, we carry out a study varying the mpd parameter when
computing 100, 200, 1000 and 2000 eigenvalues of the nickel ring
with 8 nodes (16 processors). We tried values of mpd ranging from
25 to 1200 (although practical experience shows that values larger
than 2 - nev are usually wasteful).

Table 2 shows the execution time required in each case. These
times are plotted graphically in Fig. 5, together with the number of
iterations required by the eigensolver. The plots have a logarithmic
scale in order to emphasize the differences.
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eigenvalues of the nickel ring with 8 nodes.

Table 2

Execution time (in seconds) with varying values of the mpd parameter when com-

puting 100, 200, 1000 and 2000 eigenvalues of the nickel ring with 8 nodes.

mpd nev =100 nev =200 nev = 1000 nev = 2000
25 8083 12480 65604 209494
50 7297 9980 42302 119194

100 6871 8753 30372 79676
200 6943 8397 22584 55108
300 7032 8539 21003 46705
400 7173 8682 20382 45535
500 7244 9231 20010 43959
600 7523 9136 20395 41772
700 7504 9163 20146 42139
1000 8360 10639 22156 42265
1200 8530 10525 24112 42155

Results show that the number of iterations always decrease for
larger values of mpd. However, these iterations become more and
more expensive, and as a result it comes a point when the over-
all time stagnates or even starts to increase. We are interested in
using a value close to this optimal mpd. For small nev, it seems
that setting mpd = nev is a reasonable choice, whereas for larger
values of nev, we can conclude that mpd =300 is a good compro-
mise between memory consumption and run time. From now on,
we will use this value for all the tests.

We have repeated the analysis for the isotropic case, and the
conclusions are very similar. Fig. 6 shows the corresponding times.
Maybe in this case the optimal value of mpd is slightly smaller,
because the dimension of the matrix blocks is smaller than the size
of the whole anisotropic matrix. Anyway, a value of mpd = 300 is
still reasonable.
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Table 3
Breakdown of execution time (in seconds) for the whole computation (algorithm of
Section 3.1) for the nickel ring with 8 nodes and sbaij storage.

Step Time Percentage
(1)-(2) Setup & spin functions 0 0%
(3) Generation of energy matrix 3356 27%
(4) First diagonalization 828 7%
(5) Generation of Zeeman matrices 2078 17%
(6) Thermodynamic properties 5942 49%
Total 12204 100%

6.4. Parallel performance - anisotropic case

We now turn our attention to the parallel performance analysis
of the overall computation in the anisotropic code. In view of the
algorithm sketched in Section 3.1, we notice that apart from the
matrix generation of step 3, the main computations are the diag-
onalization of step 4, the evaluation of Zeeman matrices in step 5,
and the calculation of thermodynamic properties in step 6. In or-
der to have a clearer idea of the individual cost of each stage, we
show in Table 3 the breakdown of the execution time for a fixed
number of processes.

The parallel performance of the evaluation of Zeeman matrices
will be very similar to the case of the energy matrix, already dis-
cussed in Section 6.2. Also, the performance of the diagonalizations
required in step 6 will be analogue to that of step 4. Thus, we fo-
cus our analysis on the first diagonalization, on one hand, and the
total computation, on the other. The latter possibly includes the
matrix axpy operations discussed in Section 5.

We will use the terms aijfull, aijhalf, and sbaij to re-
fer to the cases where explicit matrix axpy operations are used for
creating Cy and C_, with the three matrix storage strategies con-
sidered in Section 6.2. Apart from these, we will also consider the
case in which these matrices are handled implicitly via PETSc shell
matrices, as discussed in Section 5. We call this the sbaijshell
case. Note that in this case we have chosen a symmetric storage
format for matrices A, B and B, . Finally, we have considered an
additional strategy also based on shell matrices, that differs from
sbaijshell in that computations are reordered in such a way
that it is possible to reuse the storage space of By for B, since
only one of them is required at a time. We call this last option

Table 4

Breakdown of execution time (in seconds) for the steps 4 and 6 combined (all di-
agonalizations plus the required matrix axpy operations), for the nickel ring with
8 nodes and sbaij storage.

Operation Time Percentage

Matrix-vector product 4516 67%

Orthogonalization and restart 1837 27%

Matrix axpys 417 6%

Total 6770 100%
Table 5

Execution time (in seconds) corresponding to the first partial diagonalization of the
nickel ring with mpd = 300 and nev = 600 with increasing number of nodes.

Nodes aijhalf aij-parmetis sbaij sbaijshell
1 5525 4948 5922 6030
2 2743 2353 3117 3063
4 1353 1293 1478 1491
8 746 689 828 803
16 388 376 423 428
32 237 210 274 254
64 117 117 149 157

sbaijreuse, which is the most memory efficient one but in-
volves some added computational overhead due to not creating B
and B, at the same time.

When analyzing the parallel performance of the diagonalization
operation, it is important to know which percentage of the com-
putation is devoted to the matrix-vector multiplication, compared
to the rest of the operations discussed in Section 4. Table 4 further
decomposes the time of steps 4 and 6, combined, into the main
building blocks of the thick-restart Lanczos method (plus the ma-
trix axpys required only in explicit storage schemes). We can see
that most of the time is spent in the matrix-vector multiplication.
Thus, it is important to optimize this operation and it may be ben-
eficial to apply the permutation technique discussed in Section 5.

Table 5 shows execution times corresponding to the first partial
diagonalization (computing 600 eigenvalues) with four considered
strategies: aijhalf (aijfull is equivalent to this in this analy-
sis), aij-parmetis, sbaij and sbaijshell (sbaijreuse is
equivalent to this in this analysis). The second one corresponds to
the matrix stored in nonsymmetric format after permutation with
ParMETIS. Fig. 7 represents speedups and efficiencies obtained in
this test. The first comment is that parallel efficiency is reason-
ably good, although a bit worse than in the generation of the
matrix. We can attribute this behavior to the fact that the prob-
lem dimension (n = 59049) is too small for such a large number of
processors. Preliminary results with much larger problems indicate
that the eigensolver scales well to 256 processors or more. From
the results, we see that sbaij is slower than the nonsymmet-
ric counterparts, as expected since the symmetric storage format
has the same floating-point operations with a different memory
access pattern. On the other hand, although the shell matrix ap-
proach requires more floating-point operations than the rest (two
matrix-vector products instead of one), its performance is compa-
rable to that of sbaij. Finally, comparing the permuted variant
(aij-parmetis) with the one with default ordering (aijhalf),
we can see that for many processors speedup decays instead of im-
proving. We conclude that for this particular application it is not
worth reordering the matrix, so we have not considered permuta-
tions in the symmetric storage cases.

Total execution times are listed in Table 6. These times cover
all the computation, including the generation of all matrices, all
the required partial diagonalizations, and matrix axpys if necessary.
The corresponding speedup and efficiency are depicted in Fig. 8.

From the results, we see that in general the parallel perfor-
mance is better in the total computation, with respect to the di-
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Table 6 trix axpy operations is due to the overhead associated to memory
Execution time (in seconds) corresponding to the whole computation of the nickel management, but this becomes more benign as the number of pro-
ring with mpd = 300 and nev = 600 with increasing number of nodes. . . .
cessors increase, since the amount of data stored in each processor
Nodes aijhalf sbaij sbaijshell sbaijreuse is smaller. In any case, the parallel efficiency for 64 nodes is always
1 117341 92183 80538 88974 above 68%.
2 50846 46151 42057 45829 . ‘.
4 26623 23187 21323 23180 In Ferms of aFtual response time, we can' observe that aij-
8 13293 12204 11186 12133 half is slower in absolute terms, although it scales better than
16 7308 6539 6034 6618 the symmetric variants (for large problems, it could eventually
32 4052 3550 3265 3536 become faster but it is limited by memory requirements). The
64 2351 1989 1850 1987 . o
sbaijshell approach is significantly faster than the rest, both

sequentially and in parallel. This can be attributed to avoiding all
agonalization. One reason for this is that matrix generation has matrix axpys. The sbaijreuse strategy is slower but the most
very good efficiency, and it represents a considerable percentage memory efficient approach, since it is based on symmetric storage
of the computation. Another reason is that the inefficiency of ma- and allows for the suppression of one of the matrices. For these



E. Ramos et al. / Computer Physics Communications 181 (2010) 1929-1940 1939

1
\ Parlso ===~
\
\
\
\
0.8 | \\ -
Y
Y
N
N
~
~
- \\ .
> 0.6 \\\
5 s
S S~ao
i S~ao
0.4 | S~oo
02 | f
0 Il Il Il Il
4 8 16 32 64
Nodes

Fig. 9. Speedup (left) and parallel efficiency (right) of the whole computation for the manganese ring with the isotropic code.

64 T
Ideal
Parlso ===~
o
>
8
3 32} -
Q
%)
16 L /,____ |
/”
/”
8 I e -
Ny g
Il Il Il Il
4 8 16 32 64
Nodes
Table 7

Execution time (in seconds), speedup and efficiency corresponding to the whole
computation of the manganese ring with mpd = 300 and nev = 1000.

to PARANI for problems where the blocks are comparable in size to
the nickel test case considered in the anisotropic runs.

and future work

Nodes Time Speedup Efficiency 7. Concl
1 13013 1.00 1.00
2 7011 1.86 0.93
4 3755 3.47 0.87
8 2055 6.33 0.79
16 1222 10.65 0.67
32 793 16.41 0.51
64 601 21.65 0.34

reasons, we have opted for setting sbaijreuse as the default for
production runs.

6.5. Parallel performance - isotropic case

As commented before, PArRIso enables the solution of larger
problems. In the selected test case, the problem size is n = 135954,
but since the computation in PARIso is block-oriented, the size of
the blocks will be much smaller. In particular, in this test case we
have 21 blocks, the largest one being of order 16576 whereas the
smallest blocks have dimensions 84, 28, 7, and 1. Therefore, the
large blocks are very small compared to the dimension of the test
case used in the evaluation of PARANI. Furthermore, as mentioned
in Section 5, we have no special provision for the efficient handling
of tiny blocks. For all these reasons, the parallel efficiency in this
subsection should be expected to be worse than in the previous
analyses.

We analyze a run in which we have requested nev = 1000
eigenvalues in each block (of course, in the blocks of order
n < 1000 we compute only n eigenvalues). In Table 7 we can ob-
serve the obtained execution times. These times correspond to the
totality of the computation: generation of the matrices and diag-
onalizations. The speedups and efficiencies for up to 64 nodes are
depicted in Fig. 9.

From the results, we can conclude that, as expected, the par-
allel performance is not as good as in the previous analyses. The
problem size is too small to justify the use of 64 or even 32 nodes.
However, in PARIso we could expect a parallel performance similar

In this paper we have presented the parallelization of the MAG-
PACK package, that includes codes for anisotropic and isotropic
simulation of molecular clusters with the ITO computational tech-
nique. The critical part of the computation, namely the partial
diagonalization of large-scale sparse matrices, is carried out by
means of the SLEPc library. We have evaluated the developed codes
with two moderate-sized test cases, that provide us with feedback
about the correctness of the new programs, and give us an idea
of scalability to large number of processors. The main conclusions
that we can draw are the following:

e The parallelization of the programs allows the drastic reduc-
tion of the response time of the calculation, compared to the
original sequential programs. This is a great advantage, e.g., in
the solution of moderate-size problems with few processors.
More importantly, parallelization will make it possible to solve
much larger problems, those with real scientific interest, that
would otherwise be impossible to address due to memory lim-
itations or lack of computational power.

The use of state-of-the-art iterative eigensolvers available in
SLEPc, which are intended for large-scale sparse matrices, is
a major improvement over the original codes. These methods
allow for the computation of just the part of the spectrum
of interest, thus saving a lot of computational effort, and can
address huge problem sizes. In this particular application, the
SLEPc solvers have proved to be very robust and efficient, with
a very fast convergence.

The parallel performance is reasonably good in the analyzed
test cases, especially in the anisotropic ones. This makes us
confident that the codes will be able to cope with really big
problems, provided that enough computational resources are
available.

We have evaluated different matrix storage schemes and sev-
eral strategies for handling matrices of the form A+ yB. We
have found that symmetric storage combined with an implicit
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representation of such matrices is very effective, both sequen-
tially and in parallel. The evaluation has also provided us with
very valuable information concerning memory requirements,
that will allow us to make accurate estimates of memory con-
sumption when solving huge problems.

Once we have demonstrated the viability of our approach, the
next step is to use the PARISO and PARANI programs in production
mode, that is, to address challenging problems with real scientific
interest. Some preliminary results with large molecular clusters
are very encouraging and we foresee to achieve some significant
breakthroughs in this area in a short term.

We also plan to continue enhancing the programs. In the next
months, we will evaluate some new eigensolvers that are under
development in SLEPc, in particular the Davidson-type methods.

A more broad view of the future work is to apply the same
methodology to other codes and applications in related areas. The
use of the SLEPc library opens the possibility of parallelizing vari-
ous programs in computational chemistry whose scientific advan-
tages are very relevant. This paradigm shift is going to allow us to
solve problems that until now were impossible to address, since
sequential computation is inviable due to the amount of time and
memory required.
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Introduction

Molecular magnetism is a comparatively new research area
aimed at the design and the study of molecule-based magnetic
materials which are interesting both from the point of view of
their unusual physical properties and their importance for appli-
cations including high-density information storage and quantum
computing (see ref. 1 and references therein). These compounds
provide ideal opportunities to study basic concepts of magnetism
and explore the new physical phenomena, such as quantum
tunneling of magnetization, etc. The magnetic clusters containing
the delocalized electrons [mixed-valence (MV) systems”] are of
particular interest in this area. As compared with the magnetic
clusters in which all spins are localized, the MV systems are
much less studied because of their complexity and the lack of
the adequate theoretical models for their description. These sys-
tems are composed of ions of the same transition metal in differ-
ent oxidation states. Under some conditions the extra electrons
can be delocalized over the network of metal sites giving rise to
the so-called double exchange®™ that couples the localized mag-
netic moments through the itinerant electrons.

Until recently the calculation of the energy pattern of MV
compounds exhibiting electron delocalization has been restricted
to comparatively simple systems comprising one or two itinerant
electrons/holes delocalized over a small number (two, three, or
four) of exchange-coupled metal sites (see ref. 2 and references
therein). At the same time at least two classes of higher nuclear-
ity MV systems are of current interest in molecular magnetism,
namely, large MV clusters and MV chains. Important representa-
tives of the first class are the polynuclear iron—sulfur clusters®
which form active metal sites of iron-sulfur proteins. The other
representatives of this class are the so-called polyoxometa-
lates.>”~"* These metal oxide molecular clusters have the ability
to accept various specific numbers of electrons, which can be
delocalized over a large number of metal sites, as well as the

*The package is available from the authors upon request by e-mail:
juan.m.clemente@uv.es
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Figure 1. Scheme of the MV systems under consideration.

possibility to accommodate into these structures paramagnetic
metal ions with localized magnetic moments. As a result these
compounds can be viewed as model systems to study the inter-
play between electron transfer and exchange interactions.'"!*~1°
The second class contains the MV chain compounds® in which
we also face the problem of the interaction between localized
and delocalized electrons.

In this article we present a powerful and efficient computa-
tional approach to solve the double exchange problem for high-
nuclearity MV clusters containing arbitrary number of localized
spins and itinerant electrons. The isotropic magnetic exchange
between the localized spins is also included in the computation
procedure that is aimed at the evaluation of the eigenvalues and
thermodynamic properties of complex MV systems. This
approach is based on the use of the theory of the angular
momenta and irreducible tensor operator technique.

The program package we present here is a new contribution
to solve the problem of systems with spin delocalization. It is a
further development of our previous package (MAGPACK)*!
which only allows the evaluation of properties of large exchange
coupled clusters comprising localized spins. These two comple-
mentary packages are assumed to provide an efficient computa-
tional tool for the modeling of the majority of systems of inter-
est in molecular magnetism.

In the following sections we will present both the theoretical
background in a concise manner and the FORTRAN program
called MVPACK. In the last section some examples are worked
out in order to demonstrate the abilities of the program.

Theoretical Background

A general approach to the problem of double exchange in high
nuclearity clusters containing a large number of localized spins
and itinerant electrons has been worked out in a previous arti-
cle.”? Here we present a brief survey of these results adapted to
the general case of magnetic MV compounds. The system under
the study consists of N metal sites and arbitrary number P of
delocalized electrons as schematically shown in Figure 1. For
the sake of simplicity we will consider the case of a strong one-
site. Coulomb repulsion, so that the configurations with two (or
more) electrons on the same site are excluded. In this sense we
imply the restriction P < N that can be removed in the framework
of the developed procedure provided that a more sophisticated
consideration is required. We assume also that under certain
reasonable physical conditions the whole system can be divided
into K mixed-valence domains each one containing N, (r = 1,
2, ... K) metal sites (Nj + N, + ---+ Ng = N). Each domain
contains arbitrary number P, of delocalized electrons
(Py + Py + --- 4+ Pg = P), so that the domains are represented by
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the MV clusters of the type of P,d"*! + (N, — P,)d" containing
P, ions in d" ! configuration and [N, — P,] ions in the d" config-
uration. The electron transfer processes without excitation of the
system are assumed to be possible only within each delocalized
domain. On the contrary, the interdomain electron hopping is
assumed to lead to a strong enhance in the energy (second-order
effect). Such second-order electron transfer gives rise to the
kinetic exchange coupling between the ions belonging to different
domains.

An interesting and physically important situation occurs
when one or several P, vanish. If P, = 0 we are dealing with a
domain possessing ions with the definite numbers of the elec-
trons in the unfilled shells (fixed valences). These domains are
not involved in the electron transfer processes so we will refer
them to as localized domains. In general, the localized domains
can be heteronuclear, that is, they can contain different ions
(spins). The systems containing both localized and delocalized
domains can be termed as mixed valence systems with partial
electron delocalization (examples of such kinds of systems are
the polyoxovanadates clusters'+').

This general scheme of MV system and the meaning of the
notations can be illustrated by considering the particular case
shown in Figure 2 for an instant distribution of the extra elec-
trons over the metal sites. This systems comprises twelve sites
(N = 12) and four itinerant electrons (P = 4). We assume that
the structure of this cluster is such that it can be divided into
three (K = 3) domains. The three sites (N; = 3) with the num-
bers 1, 2, and 3 (domain 1) are occupied by the localized spins
so that the number of the delocalized electrons for this domain
is zero (P; = 0). The domain 2 contains one extra electron
(P, = 1) delocalized over four sites (N, = 4). Finally, in do-
main 3 three electrons (P3 = 3) are delocalized over five (N3 =
5) sites.

For the sake of definiteness we describe the case when n, +
1 < 5, that is, all metal sites (with and without extra electrons)
possess less than half-filled d-shells. An active orbital space of
each metal (let say, for that with the number f) contains n, + 1
orbitals, with n, of these orbitals being singly occupied forming
the high-spin Hund state with s{; = n, /2. Conventionally, these
d"™ ions will be referred to as spin cores. The remaining (highest
in energy) orbital is singly occupied when the site f contains the

Domain 2

0 060 5
O 0 0
QO © @ @

Domain 3

Domain 1

. d"ion
O d"*ion

Figure 2. Illustrative example of complex MV system comprising
of three domains.
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d"*! ion, or empty if the position f is occupied by the d" ion.
The d"*! ions are also assumed to be the high-spin ones, so the
spins of the constituent ions in the r-th delocalized domain will
be either s; = s;, for dj" ion or sy = s, + 1/2 for dj"" ! jon. Both
kinds of ions (@ and d"*') are supposed to possess orbitally
nondegenerate ground terms that means that the low-symmetry
crystal field completely removes the orbital degeneracy in both
d" and d"*' ions and the energy gaps between the ground and
excited states are much bigger when compared with the values
of the electron transfer integrals. We consider a common case
assuming that the domains can be physically different (different
ions, local crystal fields, etc.). In our notations the number 7 of the
core’s electrons are allowed to depend on the symbol r and hence
the core’s spin can be different for different domains. There are N,!/
[P,!(N, — P,)!] possibilities to distribute P, extra electrons among
N, sites in the r-th domain. Then the total number of the electronic
distributions in the whole cluster is calculated as follows:

K

| J AL Sl )

r=1

It is convenient to number the extra electrons in the whole sys-
tem from 1 to P and then to indicate the sites, which can be occu-
pied by the electron with a given number. For example, each elec-
tron with the number 1 < v < P; can occupy the positions 1, 2, ...
N, (first delocalized domains), meanwhile the remaining positions
for such electron are forbidden. Of course, such assignment has a
formal character and introduced here in order to facilitate the pro-
cess of generating the allowed electronic distributions in the sys-
tem. It is convenient to firstly generate all N!/[P! (N — P)!] elec-
tronic distributions and then to exclude the forbidden distributions
with the aid of the above introduced correspondence between the
electron’s number and the allowed sites for this number. In this
way we arrive at the number of the electronic distributions given

by eq. (1).
Each electronic distribution D defines the set of the spins of
the constituent metal ions (sy,$,..., sy). We use the

{D(S)SMj}-representation for the wave-functions in which the
spins of the individual ions (for a given D) are coupled in a suc-
cessive way to give the total spin S of the cluster;
(S) = {S2,83,...,Sy_1} are the possible sets of the intermediate
spins (§2 = §12, §3 = 5123, etc.), finally Mg is the total spin pro-
jection. Note that the intermediate spins and total spin depend
not only on the local spins within the delocalized domains but
also on the set of local spins belonging to the localized domain.

The electron hopping from the site 7 to the site k is described
by the following double exchange Hamiltonian:

Hy(i = k) = tx Y clycin, 2

where the operator c;rg(c,-(,) creates (annihilates) an electron on
the site k(i) with the spin projection ¢, and 7 is the transfer in-
tegral. Such Hamiltonian connects the states belonging to differ-
ent electronic distributions. Provided that the sites i and k belong
to the r-th delocalized domain, the matrix element of the opera-
tor H,, (i — k) is calculated as follows:
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where Z;_,[-+] is the function of local spins s;, sz, and s s; for
the initial and final electronic distributions, the corresponding

sets of intermediate spins (S) and (S'), and total spin S. Provid-
ing i < k the function Z;_,[--] is given by:

2005y = 5 B 1,051,575, 5)5)(S)s]
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Expressions, eqgs. (3) and (4), represent the generalization of
the results obtained in ref. 22 to a more common case of sys-
tems exhibiting partial delocalization and containing several
delocalized domains. In contrast to the early theories of the dou-
ble exchange these formulas contain the products of 6j-symbols
only and does not include higher order nj-symbols and also
Clebsch-Gordan coefficients (from a general symmetry concept
the latter should not appear in the physical values in a properly
designed theory that involves isotropic interactions only). This
advantage reduces essentially the time required for the
evaluation and therefore allows to efficiently treat high nuclear-
ity systems. The values 5:0.,56, fl,g’l,fN andb:}\, in egs. (3) and
(4) require additional definitions. More detailed considerations
show that one should wuse the following rules:
So=8y=0, Sy =51, 5, =5, Sy =5, Sy =5 Besides, in the
particular case when k = i + 1 the product in eq. (4) should be
substituted by 1.

Although eq. (3) relates to the case of less than half-filled
d-shells, it can be also used for the case of more than half-filled
d-shells because the matrices of the double exchange for
the “complementary” systems P,d’~"" + (N, — P,)d'*™ and
P,d"*' + (N, — P,)d" differ only in its sign.22

Along with the double exchange, one should take into
account the Heisenberg—Dirac—Van Vleck (HDVV) exchange
interaction. This interaction can couple both the spins located in
the same domain and those belonging to different domains. As a
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Figure 3. Electronic distributions for a square planar 2d"*'—2d"
cluster.

matter of fact, the HDVV exchange acts within each localization
(electronic distribution) and therefore does not connect the states
belonging to different distributions. For this reason the exchange
Hamiltonian, i.e., local spins and exchange parameters, should
be defined for each electronic distribution. For a certain elec-
tonic distribution D the Hamiltonian is given by:

N-1 N

He(D) = =23 Y Jy(D)sis;, ©)

=1 j=itl

where J;; (D) are the exchange integrals, which are dependent
on the electronic distribution. The dependence of the exchange
parameters on the distribution D can be illustrated by consider-
ing a square planar 2d""' — 24" cluster (two itinerant electrons
per four sites) for which six electronic distributions are possible
as shown in Figure 3 from which one can see also the values of
the local spins. One can see that depending on the electronic dis-
tribution the exchange integral /|, can take three different values
related to the following three physically different kinds of inter-
action: d""'—g""" (distribution D;), d"—d" (distribution Ds),
and d""'—d" (distributions D,, D, Ds, D). The remaining
exchange integrals can be classified similarly.

The matrix element of H, (D) can be calculated with the aid
of irreducible tensor operator technique.”*>* Using the same ba-
sis as in eq. (3) we obtain:

((s)(S")S"M{|Hex (D)) (55) (S) M)
= oo 25+ 177 37 (sns o)

kika.ky
X 3" Glkka(ka)ks (k3) - o1 (k-1 )kw]
Jaks ok
N-1 — — -
[T/ @Er +1) (25 + DS, +1)
i=1
ki kivr kist
X 1 Sit+1 S;-l <Sl||fk, 51>~ (6)
i Sitl g:-l

where the set (s) of the local spins corresponds to the
electronic distribution D. The values k,k3,... obey the same
addition rules as the spin quantum numbers, that is,
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ki — ko| < ky < ki +kay ko —ks| < ks <ho ke kot — Kyl
<k <ky_1+ky. Only the following coefficients G[---] are
nonvanishing:

Gl =k = 1(i #)),kr =0 (f #i,/),k =0] =2V3J.  (7)

The condition k& = 0 has appeared in eq. (7) because only
isotropic exchange interaction is considered. In eq. (6) the rules
S, :5’1 =5, Sy :S‘}\, =S,k =k and ky = k are assumed to
be fulfilled. Only the one-center reduced matrix elements with k,
= 0, 1 are present in eq. (6), they are given by:

<.\yHA€H5,> =/2s5r+1, <sstfl Hs,> =/8r(sp +1)(25r4+1). (8)

Equations (3), (4), and (6)—(8) form a set of equations pro-
viding a theoretical background for the design of the computer
program that is able to calculate the energy pattern of complex
MV systems.

Along with the HDVV exchange and the electron transfer the
Coulomb intercenter repulsion should also be included in the
Hamiltonian. This contribution, that is in general strong, arises
from the fact that different electronic distributions possess, in
general, different intercenter interelectronic Coulomb repulsion
energies. Thus turning back to the case of square planar system
shown in Figure 3 one can see that the Coulomb repulsion
between the extra electrons located at the nearest sites (edge of
the square) is stronger than that in the case when they are
located on the remote sites (diagonal of the square).
Therefore, there are two different Coulomb energies U(D,) =
U(Dy) = U(D3) = U(Dy) = U, and U(Ds) = U(Dg) = U, with
U, > Uy,

Finally, an additional contribution into the Hamiltonian
appears if the metal sites belonging to the delocalized domains
are nonequivalent, for example, because of difference in the
local crystal fields. Then the sum of the orbital energies of the
extra electrons becomes dependent on the electronic distribution
D. The full orbital energy of the system corresponding to a cer-

D,S  D,S
H_ (D)
ext=1" |\ gD, D
+UD,) {Dy.0;)
H_(D.)
H(D,,Dy) +Z)(((D5

Figure 4. Scheme of the structure of the matrix of the Hamiltonian
H,. + Hex (D and D, are different in the position of one electron).
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tain distribution D can be simply added to the intercenter Cou-
lomb energy for this distribution to get an effective parameter
U(D), which includes both contributions.

The structure of the matrix of the Hamiltonian that includes
the electron transfer, HDVV exchange and an effective Coulomb
repulsion is schematically shown in Figure 4. The exchange
interaction and Coulomb terms form the diagonal blocks with
respect to the basis functions belonging to the definite electronic
distributions, meanwhile the electron transfer gives rise to the
off-diagonal blocks connecting the electronic distributions,
which are different in the position of one extra electron. As far
as the full Hamiltonian is isotropic it is also diagonal with
respect to the value of the total spin S that allows to additionally
reduce the sizes of the matrices to be diagonalized as shown in
Figure 4.

Once we have the energy levels, we can evaluate different
thermodynamic properties of the system as magnetization, mag-
netic susceptibility, and magnetic specific heat. Because aniso-
tropic interactions are not included, the magnetic properties of
the MV system do not depend on the direction of the magnetic
field. For this reason one can consider the magnetic field
directed along arbitrary axis Z of the molecular coordinate frame
that is chosen as a spin quantization axis. In this case the ener-
gies of the system will be E,(S) + g, f Ms Hz, where E,(S) are
the eigenvalues of the Hamiltonian containing magnetic
exchange and double exchange contributions (index u runs over
the energy levels with given total spin §). Then the partition
function in the presence of the external magnetic field is
given by:

2(H) = Y exp [*(E]#)S)] e [—g(%ﬁ] o

sp s

Using this expression one can evaluate the magnetic suscepti-
bility, magnetization, and specific heat with the aid of the stand-
ard thermodynamical definitions.

Organization of the Program

The MVPACK, a package to calculate energy levels and mag-
netic properties of high nuclearity mixed valence clusters, is
based on the theory so far presented. This program generates all
possible distributions of P extra electrons over N, spin cores
with the subsequent exclusion of the forbidden distributions as
described in Section 2. Then, for each allowed distribution D all
intermediate spins and the total spin are calculated with the aid
of the successive spin-coupling scheme. The generated basis is
used for the evaluation of the matrix of the full Hamiltonian
including the one-electron transfer (double exchange) and iso-
tropic exchange interactions, and to diagonalize this matrix. In
the final step the energy levels are used to evaluate the thermo-
dynamic properties of the polynuclear MV clusters.

In order to give to the program the parameters involved in
the model of spin system (nuclearity, division into subsystems,
transfer and exchange parameters, etc.) and in the evaluation of
the properties the program uses two FORTRAN INCLUDE files.
After execution, the program generates different output files con-
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MAIN

I

LECTURA«

}

DISTRI

mv.par
mv.dat

mv.sus
mv.mag

END

Figure 5. General organization of the MVPACK package showing
the different programs.

taining all the information concerning the initialization, evalua-
tion, and simulation processes.

The program is entirely written in Standard portable
FORTRANT77. Figure 5 shows a schematic chart for the whole
program. Here, the main program first call the subroutines to
evaluate the electronic distributions and spin functions, and then
evaluate energy matrices and diagonalize them and finally the
subroutines to calculate properties.

The LECTURA subroutine reads the INCLUDE files and
verifies their information; it reorganizes this information and ini-
tialize a large common block areas containing the data handed
to run a calculation. An output file is created (MV.OUT) con-
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taining all the information obtained from INCLUDE files con-
cerning definition of the system, the errors, and warnings gener-
ated at the different steps of the initialization process.

After this initialization process, the program enters in DIS-
TRI and SPIN, where it first calculates the electronic distribu-
tions and second finds the spin functions for each distribution.
The energy matrix elements are calculated by a successive addi-
tion of the different interaction contributions. Each contribution
is associated to an independent subroutine: TRANS is for the
electron transfer interactions, EXCHA is for the isotropic
exchange interactions, and REPUL is for Coulomb repulsion or
to introduce the difference in the one-site energies that appears
because the different symmetry of each metal center. The
TRANS subroutine uses the general expression, eq. (4), to evalu-
ate the energy matrix elements, and for the case of EXCHA sub-
routine the eq. (6). To evaluate the mathematical functions
involved in this expression (Clebsch-Gordan coefficients, 6/ and
9j symbols, etc.), different EXTERNAL FUNCTIONs have been
defined. Finally, to obtain the eigenvalues, the energy matrix is
diagonalized by a standard subroutine DSPEV of the LAPACK
Mathematical Library.?®

To evaluate the properties of the spin cluster, the different sub-
routines associated to these properties are called from SPIN. These
subroutines are SUS and MAG. They calculate magnetic suscepti-
bility and heat capacity, and magnetization, respectively. The pro-
gram returns from SUS and MAG different output files (MV.SUS
and MV.MAG) containing the evaluated properties in a column
text type format that allows an easy plot for graphic package.

Application of the Program

Example 1. Hexanuclear Octahedral MV Clusters
[P]d—[6—P]d’ (P = 1,2,3,4,5)

The structure of these clusters is shown in Figure 6. Neglecting
the interactions between the remote centers (diagonal of octahe-
dron) one can describe the double exchange in these clusters by
a single transfer integral 7. We also assume that the magnetic
exchange can be described by a single parameter J, neglecting
thus the differences between d*—d*, d°—d°, and d*—d° interac-
tions. In this case the exchange between any two metal ions
occupying positions i and j is described by the Hamiltonian H,,
= —2J s; 5;, where the spins s; and s; are dependent on D. For
the simplest case of the d°—5d* cluster the network of the
exchange and transfer parameters are shown in Figure 6 in
which one possible localization of the extra electron (on the site
1) is presented.

Figure 7 shows the energy patterns of the double exchange
splittings calculated for [P]d°—[6—P]d* clusters providing J =
0 and U = 0. One can see that all energy patterns are dependent
on the sign of the transfer parameter, and on the number of itin-
erant electrons. For example, the ground state of cluster with
one delocalized electron (P = 1) is highly degenerate with
respect to S and comprises all S values from 1/2 to 25/2 provid-
ing t > 0, meanwhile for # < 0 it is ferromagnetic (S, = 25/2).
On the contrary in cluster with P = 2 the ground state is ferro-
magnetic for r > 0 and quasidegenerate (with weak antiferro-
magnetic splitting) for + < 0. The energy pattern of the cluster
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Figure 6. The network of the exchange and transfer integrals for
the &°—5d* cluster.

with P = 3 is quasisymmetric with respect to the change of the
sign of the transfer parameter. In this case irrespectively of the
sign of ¢ the double exchange produces weak ferromagnetic
effect. Finally, the energy patterns of the clusters with P = 4
and P = 5 calculated with # > 0 (+ < 0) prove to be similar to
those obtained for clusters with P = 2 and P = 1 providing # <
0 (t+ > 0). One can see that these clusters are quite different
from the MV dimmers in which the double exchange always sta-
bilizes the ferromagnetic ground state.* On the other hand these
systems are similar to triangular MV trimmers,”’ >’ tetrahedral
MV lelra\mers,m’32 and hexanuclear octahedral d>—5d" clus-
ters® exhibiting transfer frustration that seems to be a common
feature of all MV clusters with symmetric triangular faces (for a
more detailed discussion see ref. 2). It is to be noted that the
energy patterns of the Pds—(G—P)d(’ clusters for t > 0 (r < 0)
are exactly the same as the energy patterns of the Pd°—(6—P)d*
clusters providing r < 0 (r > 0). This means that the obtained
results can be applied to the discussion of the magnetic behavior
of the series of iron—sulfur superclusters [FeqSe]"*. 7

The effect of the magnetic exchange for the octahedral
d°—5d"* cluster is illustrated by Figure 8, where the temperature
dependences of the magnetic susceptibilities (in the form 7" vs.
T) calculated with different sets of ¢+ and J are shown. One can
see (Fig. 8a) that in the case of # < 0 and J > 0 the ground state
is ferromagnetic independently of the magnitude of J. For this
reason for two upper curves in Figure 8a the low temperature
limit y7/7_o = 84.375 emu.K/mol that corresponds to S, = 25/
2. On the contrary providing + < 0 and J < 0O the interplay
between antiferromagnetic exchange and double exchange can
stabilize different spin states. For example the state with Sy, =
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Figure 7. Energy patterns of the double exchange splittings for the octahedral Pd°—(6—P)d"* clusters.

17/2 proves to be the ground state (y7/r_o = 40.375 emu-K/ ferromagnetic exchange is much stronger than the double
mol) for / = —0.01 I (Fig. 8a, lower curve). The larger is /I exchange the ground state proves to be antiferromagnetic. Quite
the lower is the spin of the ground state. Finally, when the anti- different situation occurs if # > 0. In this case the ground state
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Figure 8. Effect of HDVV exchange on the 47 vs. T curves for the octahedral @°—5d" cluster: (a) t <
0, (b) 1 > 0.
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Figure 9. The low-temperature (I” = 0.1 K) magnetization for the
octahedral d°—5d" cluster calculated for the case of strong positive
double exchange (1 >>|/|).

at / = 0 represents the paramagnetic mixture of different spin
states. Providing ¢+ > 0 and J # 0 the ground state can be either
ferro- or antiferromagnetic depending of the sign of the
exchange parameter. Thus, yT7_o = 84.375 emu-K/mol for J
> 0 (Sgr = 25/2), and yT7_,o ~ 0.37 emu-K/mol for J < 0 (S,

= 1/2). No ground state with intermediate value of S is possible
in this case.

The effect of weak exchange interaction for the octahedral
d®—5d" cluster in the case of positive ¢ is also evidenced by the
curves showing the dependence of the magnetization on the
applied magnetic field H (see Fig. 9). At low temperature the
magnetization versus field curve for antiferromagnetic exchange
(J < 0) shows several steps, which correspond to the change of
the quantum number My of the ground state when H is increas-
ing. Providing ferromagnetic exchange (/ > 0) the magnetiza-
tion is described by a Brillouin function and reach a saturation
value of about 25 pp that corresponds to the ground state with
the maximum spin value § = 25/2.

The combined effect of positive double exchange (+ > 0) and
interelectronic Coulomb repulsion on the energy pattern of the
2d°—4d* cluster containing two itinerant electrons is shown in
Figure 10. In this case the two kinds of dispositions of the elec-
tronic pair corresponding to the two distances in the octahedron
are different in the Coulomb repulsion energy U (Fig. 10a). This
gives rise to the electron trapping effect. In fact two electrons
tend to be as separated as possible in order to minimize the
Coulomb repulsion energy, meanwhile the electron transfer leads
to the increase of this energy. As a result the ferromagnetic
effect caused by the double exchange is strongly suppressed
(compare Fig. 7 for P = 2 and Fig. 10b).

Another possibility of the program is to calculate the mag-
netic specific heat. Figure 11 shows the magnetic heat capacity
curves calculated for a series of Pdsf(6fP)d4 clusters provid-
ingt>0andJ = U = 0. For P = 1, 2, 5 the C,, vs. kT/t curve
presents a single round maximum, which is shifted to the higher

T T T T
13 17 21 25
25+1

Figure 10. Effect of Coulomb repulsion on the energy pattern of the octahedral 2d°—4d" cluster: (a)
two kinds of dispositions of the electronic pair in a O), cluster with two moving electrons; (b) Energy
pattern of the square-planar 2d°—4d* cluster calculated with U = 2¢ > 0.
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Figure 11. Magnetic specific heat for the octahedral Pd’—(6-P)d*
clusters calculated with t > 0,J = 0, and U = 0.

temperature region with the increase of 7. For P = 4 the curve
possesses the sharp low-temperature maximum, which appears
because of the proximity of the ground level with § = 0 and
first excited level with § = 1. Finally, for P = 3 the curve
presents a round maximum at k7" ~ 0.058¢ and sharp maximum
at kT ~ 0.0071.

Example 2. Reduced Polyoxoanions with Keggin Structure

The Keggin anion can be described by the formula
[XM504]"", where M = Mo or W, and X = B™, si'V, pY,

Figure 12. Schematic structure of a Keggin anion.

Journal of Computational Chemistry

Co“, Co”, Fe”, Cu“, etc.® For the o-isomer, its structure
consists of four edge-sharing triads of MOg octahedra arranged
around the heteroatom X, by sharing corners in such a
way that the resulting cluster has a tetrahedral symmetry (see
Fig. 12).

An important property of the anion with the Keggin structure
is that it can be reversibly reduced by addition of various spe-
cific numbers of electrons, which are delocalized over the 12
metal sites. Experimentally, it has been found that when a heter-
opoly complex contains a pair of delocalized electrons, their
spins are always completely paired, even at room temperature.
This result was initially attributed to a very strong antiferromag-
netic coupling via a multiroute superexchange mechanism,* but
more recently it was suggested'’™"” that the electron delocaliza-
tion can stabilize the diamagnetic ground state and it was
provedlg'lg"m'41 (see also reviewz) that a combination of Cou-
lomb repulsion between the electrons and electron delocalization
is an efficient mechanism of a spin pairing in the ground state.
The cited works'®!?4*4! dealt with the case of 2e-reduced poly-
oxoanion containing delocalized electronic pair. Here we present
the calculations of the energy patterns for a series of polyoxoan-
ions with Keggin structure containing different even numbers P
= 2,4, 6,8, 10, 12 of itinerant electrons. In these calculations
we use the set of parameters obtained from the ab initio study
of the double reduced polyoxoanion with delocalized electronic
pair.***! The set of parameters includes the three one-electron
transfer integrals t = —530 meV, / = —522 meV, = —154
meV, two exchange integrals / = —75 meV, J' = —95 meV
and five intercenter Coulomb repulsion integrals U = 2535
meV, U = 2600 meV, U? = 1745 meV, V = 300 meV, and V'
= 65 meV. These parameters are associated with the different
metal-metal distances within the Keggin structure as schema-
tized in Figure 13, in which only the Coulomb repulsion param-
eters are shown.

Figure 13. Nonvanishing Coulomb repulsion parameters for the
Keggin structure.
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Figure 14. Energy schemes for the reduced Keggin polyoxoanions with different even numbers of

delocalized electrons.

The energy patterns calculated with MVPACK are shown in
Figure 14. One can see that for all even numbers P except P =
4 the ground state proves to be diamagnetic. This is a well
known result for the 2e reduced polyoxoanion.'®'?#**! Present
calculation shows that the spin pairing resulting in the diamag-
netic ground state is rather common phenomenon in polyoxo-
anion species with different numbers of delocalized electrons.
The case of four delocalized electrons represents an exception
from this general trend because in this case the spin triplet
state proves to be the ground one. At the same time the energy
gaps between the ground spin-triplet and excited spin-singlet
states is not too large so the conclusion about the ground spin-
triplet state for the 4e-reduced polyoxoanion is probably the
result of the usage of the set of parameters obtained from the
ab initio study of 2e-reduced polyoxoanion. To date no experi-
mental data are available for the 4e-reduced polyoxoanion so
the question about the spin of the ground state of this system
remains open.

Journal of Computational Chemistry

Concluding Remarks

In this article we have presented a package that allows to calcu-
late the energy levels and the magnetic properties of MV sys-
tems of high nuclearity. The model employed in the program
includes electron transfer processes and isotropic magnetic
exchange and Zeeman interactions. Within this model we have
used closed form expressions for the matrix elements of the full
Hamiltonian containing only products of 6j-symbols (double
exchange part) and 9j-symbols (exchange part) that are gener-
ated in the program. It is important that these expressions con-
tain neither high-order recoupling coefficients nor 3j-symbols.
The elaborated representative examples illustrate the efficiency
of the program. Although the model of a MV system is rather
general we have not taken into account anisotropic interactions,
like antisymmetric exchange and zero-field splitting, as well as
the anisotropy of g-tensors. The theoretical background so far
used and the program already designed provide possibility of
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extension with due account of these factors that could be impor-
tant for applications.

This program can be used not only for MV systems formed
by transition metal ions but also for MV organic compounds as
graphenes, fullerenes or conjugated polymers which provide also
magnetic spin systems because of the electron hopping.

For the future extension of the package, we are working to
make tractable other properties of interest for MV clusters such
as inelastic neutron scattering, electron paramagnetic resonance
and Mossbauer spectra. Other important point to implement is
the elaboration of a more powerful subroutine to deal with elec-
tron and spin density distributions in order to extract information
about electronic correlation.

It should be also noted that the problem of mixed valency is
inherently related to the vibronic pseudo Jahn-Teller interaction
(see, for instance refs. 42-47). In general, the vibronic problem
includes two steps, namely the evaluation of the wave-functions
and eigenvalues relating to a high symmetry fixed nuclear con-
figuration and then evaluation of the vibronic matrix with the
subsequent diagonalization of the full vibronic Hamiltonian.***’
The MVPACK provides a solution of the first step of the
vibronic problem that is it gives the electronic wave-functions
(basis set) and the electronic energy pattern that can be further
used for the evaluation of the adiabatic potentials and vibronic
energy levels. Such kind of calculations will be considered in
the future versions of MVPACK. Finally, in the proposed
approach only the spin-symmetry has been employed, whereas
the point symmetry of the cluster is not exploited. One can
expect that the use of point symmetry for high-symmetric clus-
ters could simplify considerably the procedure of diagonalization
of large matrices of the double exchange. Efficiency of the com-
bined spin and point symmetries has been recently demonstrated
in the evaluation of the localized systems.”® Such kind of the
group-theoretical consideration of MV systems will be also
included in the future versions of MVPACK.
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Single Ion Magnets
based on Polyoxometalates

“Nature knows no pause in progress and development, and attaches her curse
on all inaction.”
-Johann Wolfgang von Goethe.






Single Ion Magnets based on Polyoxometalates

1. State of the Art. Previous Work.
1.1. Early studies in Lanthanoid SIMs.

For many years since the discovery of the first SMM the strategy followed by
chemists with the aim of increasing the blocking temperature of these nanomagnets
has combined two requirements. The increase in the total spin S, and the increase in
the axial anisotropy D. Eventually, it was suggested that these requirements could not
be optimized simultaneously.' But even before this was formally pro