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Optical vibration modes of InP nanowires in the wurtzite phase were investigated by Raman

scattering spectroscopy. The wires were grown along the [0001] axis by the vapor-liquid-solid

method. The A1(TO), E2h, and E1(TO) phonon modes of the wurtzite symmetry were identified by

using light linearly polarized along different directions in backscattering configuration.

Additionally, forbidden longitudinal optical modes have also been observed. Furthermore, by

applying an extended 11-parameter rigid-ion model, the complete dispersion relations of InP in the

wurtzite phase have been calculated, showing a good agreement with the Raman experimental

data. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4798324]

Semiconductor nanostructures based on III-V com-

pounds have been extensively investigated in the last deca-

des due to the high quality of these materials and their

outstanding optical and electronic properties. As a conse-

quence, they have been employed in optical device applica-

tions, as well as for fundamental physics investigation.1–6

In general, bulk III-V compounds can crystallize in both hex-

agonal and cubic crystal structures, depending on the specific

elements involved. In particular, phosphide and arsenide

III-V compounds typically grow in the cubic phase, which

for these materials is the most stable at ambient pressure. As

a consequence, they have been largely investigated in the

last few decades. More recently, the advent of semiconductor

nanowires (NWs) has allowed the growth of III-V com-

pounds in crystal phases that are different from the bulk,

such as the hexagonal wurtzite (WZ) phase7–10 for both

phosphides and arsenides.

In contrast to the optical properties of III-V WZ phase

that are relatively well-known,4–7 its vibration properties are

not deeply known. In nanostructured devices, the thermal

dissipation is a crucial point for device application. For

instance, the thermal conductivity is generally dominated by

the phonon modes for undoped large and middle band gap

semiconductors.11 Furthermore, due to the scarcely available

experimental and theoretical data of III-V compounds WZ

phase, as well as their phonon dispersion, so far few works

have investigated their thermal properties.

Among the III-V compound NWs, InP is one of the

best known materials, because of the interest raised by their

relatively efficient optical emission due to the low carrier

capture velocity by surface states in In-based compounds,12

which is one order of magnitude smaller than that for GaAs.

InP NWs also present ZB or WZ phase depending on the

growth conditions and, in some cases, both phases coexist

when the wire axis is oriented along the [0001] direction of

WZ or the [111] of ZB phase. The coexistence of two

phases significantly affects the optical properties due to the

existence of a band offset between ZB and WZ band struc-

tures. Concerning the vibration modes of WZ InP, extra

phonon modes appear at the center of the Brillouin zone as

compared to those for ZB phase. These additional phonon

modes can be represented as a fold of C-L path of the

Brillouin zone for ZB phase along [111]-direction to C-A

dispersion for WZ phase along [0001]-axis, as shown in

Figure 1.

The WZ phonon modes for III-V compounds have been

recently investigated in InN, GaN, InAs, GaAs, and InP by

Raman scattering.13–17 However, as for InP, a detailed inves-

tigation of the Raman modes in WZ InP NWs has not been

reported so far. Surprisingly, the results reported by Refs. 18

and 19 present different attribution for the Raman peaks

observed in WZ InP. Therefore, in this paper, we performed

detailed theoretical and experimental investigation on the

vibration properties of WZ InP NWs.

FIG. 1. (a) Diagram of phonon folding from the ZB (along [111]) to the WZ

(along [0001]) phase; (b) Brillouin zones for ZB and WZ crystal phases;

(c) atomic displacement for the WZ vibration modes.
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The selection rules for the Raman scattering of a WZ

crystal are well known.20 The Raman intensity is obtained

from the well known expression21

I / jês:Rk:êij2; (1)

where êi and ês are polarization vectors of incident and scat-

tered light, respectively, and Rk is the Raman tensor corres-

ponding to the k phonon mode. In Table I, we present the

allowed phonon modes in backscattering configuration used

in this work. The light propagation direction in our case is

along the x-axis of the crystal, and light polarizations along y
or z-axis. The allowed optical modes for different polariza-

tion configurations using Porto’s notation22 are also shown

in Table I. In our experimental configuration, the allowed

Raman modes are only transversal-optical (TO) modes,

while all longitudinal-optical (LO) modes are forbidden.

In order to calculate the phonon dispersion for WZ InP,

we used the rigid ion model with 11 parameters (RIM11),23

which nicely reproduce the experimental data of the phonon

dispersion of most of the III-V compounds that typically

present ZB phase. This model can be easily extended to

account for the WZ symmetry.24 The model will be “exact”

for a compact hexagonal structure since it considers only

first- and second-neighbors’ interactions. The difference

between the crystal structures starts in the third neighbors.

The advantage of this approach is that, although in most of

the cases the phonon dispersion in the WZ phase is not

experimentally known, the dispersion in the ZB phase can be

calculated by fitting the available experimental data. Then,

using the same set of parameters fitted to the ZB structure,

the dispersion in the WZ phase can be predicted. In the pres-

ent case, we have fitted the ZB InP dispersion in order to

reproduce the dispersion relation measured in Refs. 25 and

26. The bond-bending and bond-stretching parameters used

in the fitting are: A¼�0.0.369, B¼�0.297, C1¼�0.030,

D1¼�0.0480, E1¼ 0.01, F1¼ 0.085, C2¼�0.016,

D2¼�0.0151, E2¼ 0.01, and F2¼�0.033 in units of

105 dyn/cm, and the effective charge Z*¼ 0.82 in units of the

electron charge, e. Using this set of data, we have obtained

the dispersion relations of InP in the WZ structure, as shown

in Fig. 2. The frequencies of the optical phonons at the

C-point are presented in Table I.

InP nanowires were grown by the vapor-liquid-solid

(VLS) method in a Chemical Beam Epitaxy (CBE) system

using �25 nm size Au nanoparticles as catalyst. The NWs in

the as-grown substrate are transferred to a GaAs wafer,

which contains a 5-lm-thick Al film, by simple mechanical

contact. The NWs are, in this case, randomly distributed on

the GaAs substrate, sitting parallel to the substrate surface,

as shown in Fig. 3. The Al layer is used to avoid the spurious

optical signal from the GaAs, to increase the optical contrast

between NWs and substrate, which is helpful for micro-

Raman measurements and to help in the power dissipation.

We investigated stacking fault free pure WZ phase InP nano-

wires, which were grown at 420 �C using a Trimethyl-

indium (TMIn) flux of 0.15 standard cubic centimeters per

minute. In a previous work, the transmission electron micro-

scope results for the same sample show only pure WZ phase.

All NWs are grown along the [0001] axis, with 5–10 lm

length and 50–100 nm diameter.6

For Raman measurements, we used the 488 nm line of

an Arþ laser as excitation, a T64000 Jobin-Yvon spectrome-

ter, coupled to an open electrode liquid N2 cooled Si-CCD,

and an Olympus optical microscope. We used 100� optical

objective (numerical aperture 0.95) to both focus the laser

beam and collect the scattered light. The sample holder sys-

tem contains motorized XYZ positioner. In order to follow

the Raman selection rule discussed above, we used a k/2-

plate, in order to rotate the incident linear polarization of the

laser beam, and a linear analyzer for the scattered light

placed before the monochromator entrance in order to keep

the light polarization along the largest response of the

TABLE I. Optical phonon modes and polarization configurations in back-

scattering geometry for WZ InP.

Phonon modes

Polarization

configurations Exp. x (cm�1) Calc. x (cm�1)

A1(TO) xðzzÞ�x; xðyyÞ�x (302.1 6 0.8) 305.3

E1(TO) xðzyÞ�x; xðyzÞ�x (302.4 6 0.8) 306.3

E2h xðyyÞ�x (306.4 6 0.7) 313.0

A1(LO) Forbidden (341.9 6 0.8) 346.4

E1(LO) Forbidden Not observed 347.3

FIG. 2. Calculated phonon dispersion relations of InP in the WZ phase.

FIG. 3. Schematic diagram of the polarization configurations used for

Raman scattering, where X, Y, and Z are the laboratory coordinates and x,

y, and z are the sample coordinates.
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monochromator diffraction grating. All experiments shown

in this work were performed at room temperature.

Figure 3 shows a schematic diagram of the sample ge-

ometry used in our experimental setup. The X, Y, and Z are

the laboratory coordinates. The NW-axis is along [0001],

parallel to Z-axis in Fig. 3, the laser beam is along X-axis,

and scattered light direction is in the opposite direction

(backscattering configuration). The NWs are thus perpendic-

ular to the direction of the incident and scattered light. The

incident light polarization can be rotated in the YZ-plane.

The NWs measured here are in directions along Y or Z axis.

In order to compare the Raman selection rules with our

experimental setup, we have to transform the laboratory

coordinates to the usual sample crystallographic ones (x, y,

and z). The unique crystallographic axis that we have

obtained is [0001], which is along the wire direction. For a

given crystal plane, the incident and scattered light directions

and their polarizations define the Raman scattering selection

rules. The crystal plane of the lateral side of the NWs, in our

case, is unknown. Fortunately, our experimental condition is

that the selection rule does not change if we rotate the NW

in the z-axis by an angle h. The Raman intensity given by

Eq. (1) follows the same selection rules shown in Table I for

any angle h between the x-axis, perpendicular to the wire,

and X-axis of the laboratory, considering z parallel to the

Z-axis.

We used four different polarization configurations:

xðyyÞ�x, xðyzÞ�x, xðzyÞ�x, and xðzzÞ�x, the same configurations

shown in Table I. Figure 4 depicts typical Raman spectra

measured in a single WZ-InP NW for four distinct polariza-

tion configurations. We analyzed approximately eight single

NWs and in all of them the Raman spectra are very similar

to those shown in Fig. 4. The spectra are corrected by the op-

tical response of all optical components. All spectra are well

fitted using Lorentzian functions. Different positions along

the thick region of the NW were also investigated and we

have not observed any substantial difference in the Raman

spectra.

The Raman spectra in Fig. 4 show the main Raman lines

in the 300–310 cm�1 range in all polarization configurations,

around the TO phonon modes. We observe remarkably

stronger Raman lines in parallel configurations, xðyyÞ�x and

xðzzÞ�x, than in crossed polarizations, xðyzÞ�x and xðzyÞ�x. In

Table I, xðzzÞ�x polarization selects the A1(TO) mode, while

xðzzÞ�x selects both the A1(TO) and E2h modes. Therefore,

the strongest peak at 302.1 cm�1 in the spectrum for xðzzÞ�x
polarization is attributed to the A1(TO) vibration mode. The

Raman spectrum for xðyyÞ�x polarization also shows two

peaks, a strong one at 306.4 cm�1 and a weak shoulder at

302.1 cm�1. The latter presents practically the same position

of the peak observed in xðzzÞ�x configuration, attributed to the

A1(TO) mode, and the former, by exclusion, is attributed to

the E2h mode.

The slight lower Raman intensity for xðyyÞ�x polarization

as compared to that of xðzzÞ�x is attributed to the dielectric

contrast effect.27,28 This effect occurs for cylindrical shaped

NWs when the diameter is smaller than the wavelength of

the light and if the dielectric constant of the NW is very dif-

ferent from that of the environment (air or vacuum).6,7 The

intensity of the transmitted light into the wire, which is

polarized perpendicular to the wire, is reduced, while the

light polarized along the wire remains unchanged.

The Raman spectra for cross polarization configuration,

xðyzÞ�x and xðzyÞ�x, are relatively similar to each other as

expected, and present a peak at 302.4 cm�1 and 307.1 cm�1.

Based on the selection rules shown in Table I, only the

E1(TO) mode is allowed. This mode is usually close to the

A1(TO) mode, as observed in our theoretical results (see

Table I and Fig. 2); therefore, the peak at 302.4 cm�1 can be

attributed to the E1(TO). The other peak at 307.1 cm�1 can

be assigned as the E2h mode, because it is close to the value

obtained for this mode in parallel configurations and it is

observed in all polarization configurations. Note that the fre-

quency difference between the observed A1(TO) and E1(TO)

modes is, within the experimental error, in agreement with

the calculated values.

In a previous work, Lohn et al. report18 on the Raman

scattering results in an ensemble of InP NWs, containing

both ZB and WZ phases. The observed Raman spectra pres-

ent peak positions very similar to ours. Since the WZ peaks

are overlapped with that of the ZB in their spectrum, the

broad peak at the TO-mode range is attributed to the super-

position of E1(TO), A1(TO), E2h, and F2 (ZB mode) phonon

modes. Furthermore, they could not use the different polar-

ization configuration, since the NWs were randomly ori-

ented. On a different work, Chashnikova et al.,19 using only

crossed polarization configurations, identified the E1(TO)

mode at a similar frequency of that obtained in our work at

the E1(TO) position (see Figure 4), and the E2h, in contrast to

our theoretical and experimental results, at a lower frequency

range.

The Raman spectra in Fig. 4 show an additional weak

peak at 341.9 cm�1, which is in the spectral range of the for-

bidden LO-phonon modes, E1(LO) and A1(LO). For back-

scattering configuration only A1(LO) mode is allowed, but

when the incident light is along the [0001] axis, while

E1(LO) mode is always forbidden in backscattering configu-

ration. The presence of this mode could be related to a reso-

nance effect, since the laser line used here (488 nm–2.54 eV)

can be close to the E1 electronic transition in ZB crystals.

This transition is around 3.0 eV at 80 K for InP;29 however,

FIG. 4. Raman spectra from single WZ-InP NW at four different polariza-

tion configurations.
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the exact value of the equivalent transition is unknown for

the WZ phase. In addition, the LO-mode has also been

observed in other III-V compounds NWs, such as GaAs

(Ref. 13) and InAs (Ref. 14) NWs, in Raman scattering using

similar experimental condition and have been attributed to a

quasi-resonance effect. In summary, the calculated TO and

LO-modes for WZ phase are in good agreement with our ex-

perimental data shown in Table I.

In this work, we present Raman scattering results of the

optical vibration modes of InP NWs in the wurtzite phase.

These results are supported by theoretical calculations per-

formed by means of an 11-parameters rigid ion model. Using

different polarization configurations, we have identified three

optical phonon modes, A1(TO), E2h, and E1(TO). We also

observed the selection-rule-forbidden LO-phonon mode. The

calculated vibration modes are in good agreement with the

experimental results. These results can be helpful for investi-

gating the thermal properties and also the electron-phonon

interaction in WZ phase InP.
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