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con él. Por suerte, o por desgracia (nunca lo sabremos), abandoné mi fantaśıa asimoviana
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que han fet, perquè és tant com haver-me fet a mi. Als meus pares, Pepe i Xelo, als meus

avis, Salvador i Cosuelo, i als meus oncles, ties i cosins. Gràcies.
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de laboratori adscrites a projectes de recerca dirigits per en Dr. Diego Rasskin-Gutman

(GV/2007/256 i BFU2008-00643) amb les quals he pogut subsistir (que no emancipar-me).
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Resum

D’ençà l’origen de l’anatomia comparada, les connexions entre les parts del cos han estat

emprades com una eina metodològica per estudiar la forma dels animals. Aix́ı, notables

naturalistes, com per exemple Pierre Belon o Johann Wolfang Goethe, empraren les conne-

xions per reconèixer similituds entre òrgans en animals diferents, tot seguint una tradició

que podŕıem remuntar a Aristòtil. Al segle XIX, Étienne Geoffroy St. Hilaire proposà el

principi de les connexions com un criteri operatiu per identificar la similitud morfològica

entre organismes, mitjançant les relacions estructurals (o topològiques) en lloc de la seva

funció o forma (en anglès, shape). El principi de les connexions de Geoffroy formalitzà la

noció intüıtiva de semblança orgànica pròpia del seu temps i donà peu a un nou programa

de recerca en morfologia pura a un nivell estructural.

Diversos marcs conceptuals s’han proposat amb posterioritat amb l’objectiu d’emprar

les relacions de connectivitat en sistemes anatòmics: la correspondència estructural de

Woodger, el principi bio-topològic de Rashevsky i el morfotipus diagramàtic de Riedl.

Malauradament, aquestes propostes oferien una metodologia massa obscura o abstracta,

la qual cosa va dificultar la seva aplicació sistemàtica a problemes morfològics de caire

quantitatiu. Recentment, Rasskin-Gutman proposà la Teoria de Grafs com un nou

marc metodològic mitjançant el qual estudiar les relacions de connectivitat en sistemes

anatòmics, en oferir per primer cop una anàlisi de xarxes morfològiques.

L’anàlisi de xarxes actual apareix a final dels anys 90 com una branca aplicada de

la Teoria de Grafs que permetia treballar amb sistemes complexos. Aquesta nova Teoria

de Xarxes esdevingué un marc conceptual i metodològic adient per analitzar les propi-

etats emergents dels sistemes complexos, que són degudes a l’organització dels patrons

de connectivitat entre les seves parts, per exemple, la robustesa, la auto-organització o la

modularitat. Ben aviat, l’anàlisi de xarxes es va aplicar per estudiar un ampli ventall de

sistemes biològics complexos, com les xarxes de regulació gènica, els sistemes neuronals

o els ecosistemes. No obstant, aquesta nova metodologia no fou aplicada a l’estudi de

sistemes anatòmics. L’esquelet dels vertebrats és un sistema anatòmic idoni per dur a
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terme una anàlisi d’aquest tipus, per presentar una elevada complexitat estructural, on-

togenètica i evolutiva. A més a més, la perdurabilitat del ossos permet també l’anàlisi

comparativa de materials fòssils, la qual cosa facilita resoldre qüestions macro-evolutives.

En aquesta tesi he aplicat l’anàlisi de xarxes a l’estudi de l’organització de les sutures

entre els ossos del crani dels tetràpodes; és a dir, els patrons de connectivitat que defineixen

l’organització de l’estructura del crani. La importància d’aquestes connexions per entendre

la morfologia del crani es deu a la seva funció com a zones de creixement i canvi de forma

dels ossos i, per extensió, del conjunt del crani. Com a part d’aquest estudi també he

desenvolupat un marc d’interpretació morfològica per als paràmetres analitzats amb què

discutir els resultats obtinguts en un context evolutiu i ontogenètic. Tot plegat m’ha

permès tractar les qüestions més punteres de la morfologia actual, com són la complexitat,

la integració i la modularitat, des d’una perspectiva estructural totalment innovadora.

Objectius

L’objectiu d’aquesta tesi és dur a terme una anàlisi comparativa dels patrons de connec-

tivitat en el crani dels tetràpodes. Dintre d’aquesta anàlisi s’avaluen qüestions relatives a

l’evolució i l’ontogènia de la complexitat, integració i modularitat de la morfologia cranial.

La hipòtesi general és que aquest tipus d’anàlisi pot (1) evidenciar propietats morfològiques

que no són accessibles mitjançant l’estudi de la forma i la mida (shape and size), aix́ı com

(2) enriquir la nostra comprensió de com l’organització de les sutures cranials influeix en

altres propietats del crani i dels ossos que el composen. Els resultats, emṕırics i teòrics,

d’aquesta anàlisi comparativa de xarxes cranials s’han emprat per establir la influència

dels patrons de connectivitat en la formació i evolució de la morfologia del crani.

Per complir aquest objectiu he dut a terme les següents tasques:

• Construcció del model de xarxa.

• Interpretació morfològica dels paràmetres emprats.

• Anàlisi de les xarxes cranials i identificació de mòduls de connectivitat.

• Anàlisi filogenètica de tendències evolutives en la complexitat morfològica del crani,

incloent-hi la programació i simulació de models computacionals que reprodueixen

l’evolució del crani mitjançant la pèrdua i fusió d’ossos.
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• Estudi comparatiu de la modularitat al crani dels tetràpodes per determinar

els patrons de formació dels mòduls de connectivitat, incloent-hi la realització

d’experiments teòrics de manipulació artificial dels models de xarxa.

• Construcció i anàlisi del morfoespai teòric del crani emprant models nuls com a

regles generatives per capturar distintes hipòtesis ontogenètiques.

• Estudi detallat de la integració morfològica i la modularitat del crani humà, per a

la qual cosa s’han inclòs també models de xarxes de cranis de nounats amb fusions

prematures d’ossos (craniosinostosi).

Metodologia

La metodologia emprada en aquesta tesi està fonamentada en la Teoria de Xarxes i

l’Anatomia Comparada dintre del marc conceptual de la Biologia Teòrica. Gran part

de la metodologia utilitzada ha estat desenvolupada per primer cop en aquesta tesi.

Els cranis estudiats s’han formalitzat matemàticament mitjançant models de xarxes,

en els quals els vèrtex i les arestes de la xarxa representen els ossos i les sutures del crani,

respectivament. D’aquesta manera, he constrüıt models de xarxes per al crani d’espècies

actuals i extintes, aix́ı com per a nounats amb diverses craniosinostosis. Un total de 51

cranis han estat modelitzats d’aquesta manera (27 actuals, 17 fòssils i 7 nounats); aquests

foren triats per a representar un ampli ventall de formes morfològiques, tot incloent-hi les

patològiques.

Els models del crani han estat analitzats mitjançant tècniques i models nuls propis

de la Teoria de Xarxes, amb l’objectiu de descobrir les propietats del crani derivades de

la seva organització: complexitat, integració i modularitat. Aquesta anàlisi s’ha dut a

terme utilitzant la plataforma de programació Matlab. Els models de xarxes i els scripts

programats s’han inclòs en un apèndix que es farà accessible on-line de forma gratüıta.

Per a l’estudi de tendències evolutives s’ha dut a terme un Contrast Filogenètic In-

dependent sobre una filogènia calibrada per a les espècies modelitzades, utilitzant el pro-

grama d’anàlisi filogenètic Mesquite. Aix́ı mateix, s’ha programat un model computacional

que reprodueix l’evolució d’un crani ancestral teòric a través de la pèrdua i fusió d’ossos,

amb l’objectiu d’avaluar la importància d’ambdós processos ontogenètics en la formació

de patrons evolutius direccionals.

La construcció del morfoespai teòric s’ha dut a terme també en Matlab. Quatre models

nuls s’han emprat com a regles generatives que simulaven diverses hipòtesis ontogenètiques,
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que emfatitzen diferents factors implicats en l’establiment dels patrons de connectivitat:

(1) a l’atzar (model de Erdös i Rényi), (2) amb preferència associada al nombre de con-

nexions (model de Barabási i Albert), (3) per proximitat geomètrica (model de Gabriel),

i (4) per proximitat geomètrica i simetria bilateral (model de Gabriel simètric). El dar-

rer model ha estat creat espećıficament en aquesta tesi per a reproduir regles més reals

biològicament.

Conclusions

Aquestes són les principals conclusions obtingudes en aquesta tesi:

Tendències Evolutives en la Complexitat Morfològica

1. La disminució del nombre d’ossos durant l’evolució del crani dels tetràpodes (Llei

de Williston), deguda a la pèrdua i fusió d’ossos, s’acompanya d’un increment de

la complexitat morfològica, en lloc d’una simplificació del crani com es pensava

anteriorment.

2. Les pèrdues i fusions d’ossos afecten la complexitat del crani de forma diferent segons

involucren ossos escollits a l’atzar o selectivament d’acord al seu nombre de conne-

xions. Açò implica que el nombre de connexions estableix una restricció estructural

a la pèrdua i fusió d’ossos. En estar les connexions entre ossos relacionades amb

co-dependències funcionals i de creixement, un major nombre de connexions imposa

restriccions més severes.

3. Un escenari evolutiu mixt pot explicar aquest increment de la complexitat mor-

fològica: la pèrdua aleatòria dels ossos menys connectats i la fusió selectiva dels

ossos més connectats.

4. En completar aquest escenari evolutiu, diverses restriccions estructurals han estat

també identificades: (1) la necessitat d’un espai f́ısic no restringit per cap eix corporal

a l’hora de desenvolupar el crani ancestral, (2) un petit nombre d’ossos imparells

inicials, i (3) una major freqüència de pèrdues que de fusions.
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Integració Morfològica i Modularitat

5. El crani dels tetràpodes posseeix una organització de connexions a mig camı́ entre

l’aleatorietat i la regularitat (“small-world”), que afavoreix la formació de mòduls

de connectivitat.

6. Hi ha tres tipus de mòduls de connectivitat al crani: (1) bilateral, que agrupa ossos

dels costats esquerre i dret alhora; (2) especular, que agrupa ossos d’un sol costat

del crani; i (3) especular asimètric, que agrupa ossos d’un sol costat, però incloent-hi

també un o més ossos imparells.

7. En general, la formació d’un mòdul bilateral depèn de la presencia d’ossos imparells

en una determinada regió del crani, els quals actuen com a integradors d’ambdós

costats del crani en un únic mòdul; quan aquesta integració no es dóna, es formen

dos mòduls especulars asimètrics; i quan no hi ha ossos imparells, es formen dos

mòduls especulars.

8. La formació dels mòduls de connectivitat tendeix a seguir un ordre jeràrquic a l’hora

d’agrupar els ossos; aquests s’agrupen junts tot seguint la seva posició relativa dintre

dels tres eixos corporals: dorsoventral, esquerra-dreta, i anteroposterior. Aquest

ordre d’agrupació es troba molt influenciat per la presència d’ossos imparells.

Morfologia Teòrica

9. L’anàlisi del morfoespais teòric del crani ens indica que la regla de creixement

que millor copsa la disparitat d’estructures cranials és la basada en la proximitat

geomètrica (regla de Gabriel), quan els ossos es col·loquen amb simetria bilateral i

hi ha ossos imparells (morfoespai Proximal Simètric).

10. L’extensió d’aquest morfoespai generatiu és asimètrica respecte al nombre de conne-

xions: és més amplia (major disparitat en nombre de connexions) per a xarxes més

grans, i més estreta per a xarxes més petites.

11. Els cranis dels primers tetràpodes ocupen la regió amplia del morfoespai durant els

Peŕıodes Devonià i Carbońıfer. A mesura que la regió amplia comença a buidar-se

durant el Mesozoic, els cranis més derivats ocupen regions més estretes del morfoe-

spai, fins aplegar al Cenozoic.
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12. Aquesta ocupació direccional del morfoespai està vinculada amb la Llei de Williston,

la qual cosa suggereix que el crani dels tetràpodes ha evolucionat cap a organitzacions

morfològiques més restringides, alhora que incrementava la seva complexitat com a

conseqüència de la disminució del nombre d’ossos.

El Crani Humà

13. L’anàlisi detallat de la integració morfològica i la modularitat en el crani humà

identificà dos mòduls de connectivitat ben definits: un facial organitzat entorn de

l’os ethmoidal, i un cranià organitzat entorn de l’os esfenöıdal.

14. El mòdul facial té una agrupació jeràrquica d’ossos en blocs i el mòdul cranià

té un patró regular de connectivitat. Aquesta distinta integració morfològica en

cada mòdul defineix una organització semi-jeràrquica al crani humà, que reflecteix

diferències fonamentals en els patrons ontogenètic de creixement i les restriccions

estructurals espećıfiques de cada regió.

15. Després de demostrar que els mòduls de connectivitat s’assemblen a unitats de creix-

ement al·lomètric, es pot concloure que, a causa del seu paper ontogenètic com a llocs

de creixement ossi, les relacions de connectivitat estableixen correlacions de forma i

mida. Aix́ı doncs, les connexions són una font fonamental d’integració morfològica

i modularitat.

16. Els cranis de nounats amb fusions prematures d’ossos (craniosinostosi) reprodueixen

a una escala ontogenètica els patrons evolutius trobats a la Llei de Williston: un

increment en la integració morfològica com a conseqüència de la disminució del

nombre d’ossos. Açò podria suggerir una relació entre la craniosinostosi i els patrons

macro-evolutius del crani.

17. Les craniosinostosis també afecten els patrons de connectivitat que determinen

l’organització modular del crani humà. Les fusions medials, a les sutures metòpica i

sagital, produeixen organitzacions modulars semblants a la del crani adult, mentre

que les fusions en un sol costat, a les sutures hemicoronal i lambdoidal, produeixen

mòduls asimètrics diferents als del crani adult.
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Noves Vies de Recerca

18. Les futures anàlisis de xarxes han d’orientar-se cap a l’especialització en els grups

d’estudi, amb l’objectiu de poder estudiar modificacions dels patrons de connexions

a una escala més petita. Per exemple, les tortugues i els mamı́fers, per tenir un patró

de connexions molt conservat, són més adients per a estudiar petites variacions com

la formació del vomer imparell; mentre que els arcosaures, lepidosaures i amfibis,

que ofereixen molta variació entre grups, poden ser emprats per estudiar transicions

evolutives com el pas d’un entorn aquàtic a un terrestre o l’origen del crani de les

aus.

19. Fer menester mètodes més sofisticats per a resoldre nous problemes morfològics, com

l’anàlisi de seqüències ontogenètiques o la correlació entre la connectivitat dels ossos

i la forma del crani.

20. Les eines desenvolupades en aquesta tesi per analitzar xarxes cranials són adients

també per estudiar altres estructures esquelètiques, no-esquelètiques, o fins i tot

estructures vegetals.
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Prologue

Formerly there was talk on analogy, without anyone knowing what in particular was analo-

gous. For want of anything better, there was endless talk about the consideration of forms,

but no one appeared to see that the form is fugitive from one animal to another. Thus I

will have provided the consideration of analogy with a basis it had previously lacked, when

I proposed to bring research uniquely to bear on the mutual, necessary, and consequently

invariable, dependence of the parts.

Étienne Geoffroy Saint-Hilaire, Anatomical Philosophy (1822)

Ever since classic anatomists like Étienne Geoffroy St. Hilaire, George Cuvier, or Richard

Owen laid down the fundamental principles of comparative anatomy in the 19th century,

connections among anatomical parts have been essential for the recognition of biological

homologies. Before Geoffroy’s proposal of the principe des connexions as a methodological

aid to study animal forms, other notable naturalists, such as Pierre Belon and Johann

Wolfgang Goethe, also made use of this principle as a way to recognize similarities, a

tradition that goes back to Aristotle. However, Geoffroy was the first author to establish

connections among anatomical parts as an operational criterion to identify morphological

similarity between organisms by means of structural (or topological) relations, rather than

by their shape and function. Geoffroy’s principle of connections formalized the intuitive

notion of similarity already present in those days and set a new research program in pure

morphology at the structural level.

Several conceptual frameworks afterwards have been proposed for the use of connec-

tivity relations in anatomical systems, such as Woodger’s structural correspondence, Ra-

shevsky’s bio-topological principle, and Riedl’s diagrammatic morphotype. Unfortunately,

these frameworks were either too methodologically obscure or too abstract to be applied

systematically to the practical study of morphological variation and its quantification.

More recently, Rasskin-Gutman proposed Graph Theory as a novel framework to address

xiii
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connectivity relations in anatomical systems, introducing for the first time a pioneer net-

work analysis of morphological structures.

Modern network analysis arose as an applied branch of Graph Theory for handling

complex systems in the late ‘90s from the works by Watts, Strogatz, Barabási, Albert,

and other physicists; thus, Network Theory became a novel conceptual and methodolog-

ical framework to deal with the relational properties that emerge due to connections

between parts in any organized complex system (e.g., robustness, self-organization, and

modularity). Network analysis was readily applied to a wide range of complex biological

systems, such as gene regulatory pathways, brain neuronal systems, or ecological commu-

nities. However, a seemingly natural arena to use this mathematical tool such as compar-

ative anatomy has never been systematically studied using current network analysis tools.

Among the anatomical systems that we can study using networks, the tetrapod skull is

the most interesting one due to its high structural, developmental, and evolutionary com-

plexity. Moreover, the skull perdurability allows also a large-scale comparative analysis

using fossils, which, in turn, permits to use network analysis to assess macro-evolutionary

questions about how the tetrapod skull has evolved.

In this thesis, I have applied modern network analysis to the study of the tetrapod skull.

Current hot topics in skull morphology, such as complexity, integration, and modularity,

have been assessed using skull network models, in which nodes and links represent bones

and suture contacts, respectively. To this end, I have also developed a complete framework

of anatomical interpretations for the most common parameters used in networks analysis,

discussing the results in an evolutionary and developmental context.

Aims

The aim of this thesis is to carry out a comparative analysis of connectivity patterns in

tetrapod skulls to assess problems on the evolution and ontogeny of morphological com-

plexity, integration, and modularity. The general hypothesis is that this kind of analysis

can reveal key morphological properties of the skull that most common studies, based

solely on shape and size, would keep unravel. By following this general hypothesis, it is

expected to generate new ways to assess the role of craniofacial suture organization in

skull evolution and development.

In order to fulfill this aim I have carried out the following tasks:

• Construction of network models of tetrapod skulls
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• Morphological interpretation of network parameters

• Network analysis of skulls and identification of connectivity modules

• Phylogenetic analysis of evolutionary trends in skull morphological complexity,

which included the programming and simulation of a computational model of skull

evolution by loss and fusion of bones

• Comparative analysis of the skull modularity in tetrapods to unveil patterns in the

formation of connectivity modules; for this task, I have also performed experiments

of artificial manipulation of connectivity patterns in network models

• Construction and analysis of theoretical morphospaces of the tetrapod skull, us-

ing null network models as generative rules that capture different developmental

hypothesis of skull growth

• Detailed study of morphological integration and modularity in the human skull,

which included the analysis of network models of newborn skulls with premature

fusion of bones (i.e., craniosynostosis)

Division of Chapters

Introduction

Chapter 1 (Skull Development & Evolution) reviews the development and evolution

of the tetrapod skull. The first section focuses on bone and suture formation. The second

section focuses on the skull evolution in tetrapods, with emphasis on the evolutionary

trend in bone number reduction known as Williston’s Law.

Chapter 2 (The Analysis of Organismal Form) introduces the conceptual framework

of form analysis followed in this thesis. The first section focuses on the different levels

of morphological information: proportions, connections, orientations, and articulations.

The second section reviews the historical background of connectivity information used in

morphology.

Chapter 3 (Morphological Organization in Connectivity Patterns) reviews the

problems related to morphological organization at a connectivity level.
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Materials & Methods

Chapter 4 (Tools for Networks Analysis) describes the mathematical algorithms

used in the analysis of skull networks and identification of connectivity modules.

Chapter 5 (The Skull Network Model) explains the abstraction process followed to

build skull network models and the morphological interpretation given to each network

parameter.

Chapter 6 (Null Models & Simulations) describes the null network models used in

this thesis for comparative analysis, construction of generative morphospaces, and the

computational model of skull evolution.

Chapter 7 (Sample & Phylogeny) introduces the sample of tetrapod skulls and the

calibrated phylogeny used as evolutionary context for comparative analysis.

Results & Discussion

Chapter 8 (Network Analysis Results) shows the raw results of the network analysis

for each tetrapod skull.

Chapter 9 (Evolutionary Trends in the Tetrapod Skull) discusses the analysis of

evolutionary trends in morphological complexity related to the reduction in the number of

skull bones by loss and fusion (Williston’s Law), including the results of the computational

model analysis.

Chapter 10 (Network Modularity in the Tetrapod Skull) discusses the formation

of connectivity modules in skull networks. The first section offers a comparative overview

of all groups. The second section explores the role of unpaired bones and body axes in

the formation of modules using artificial modification of connectivity patterns in network

models.

Chapter 11 (Theoretical Morphology and Morphospaces) examines the differential

temporal occupation of the morphospace and the fit of the skull sample to different null

network model-derived generative morphospaces.

Chapter 12 (The Human Skull Network) shows a detailed network and modularity

analysis of the human skull. The first section focuses on the adult skull and includes a

geometric morphometrics test of the correspondence of connectivity modules as units of

allometric growth. The second and third sections focus on the skull of human newborns

with different craniosynostosis conditions.
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Skull Development & Evolution

The tetrapod skull is a mosaic system made of bones with very different developmental

and evolutionary origins, as well as multiple biological functions, including brain pro-

tection, feeding, and hosting of sensory organs. The coupling of all these functions is a

consequence of the skull phenotypic integration at different scales: genetic, developmental,

and morphological. In addition, together with soft tissues, the skull largely determines

the shape of the head and the relative movement of its parts.

1.1 Developmental Biology of the Skull

Three germ layers form all the organs and tissues of vertebrates during embryogenesis: the

endoderm forms internal organs, such as the gastrointestinal track, the respiratory system,

and the endocrine glands; the mesoderm forms the musculoskeletal system, the gonads,

and the connective tissues; the ectoderm forms the nervous system, the epidermis, and

the boundaries with the exterior environment. In addition, the ectoderm forms also the

neural tube, the precursor of the central nervous system, from which some cells (so-called

neural crest cells) will migrate toward the cephalic region (Gilbert, 2006) (Fig. 1.1).

The tetrapod skull comprises cells from the mesoderm and the neural crest (Hall,

2005). Bones formed by each type of cells are indistinguishable in the adult, with some

bones having a dual origin in the adult skull. During the development of the head, neural

crest cells migrate from the neural tube to cephalic regions to form part of the skull

(Kardong, 2005). Epigenetic information before, during, and after migration, is critical

to understand the mechanisms acting on skull development (Franz-Odendaal, 2011). The

extracellular matrix through which these cells move determines the direction and speed

of the migration, and their final location in the future skull. Cell-cell contacts, secreted

chemical signals, and matrix-mediated factors of the basal lamina induce bone formation.

3
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Figure 1.1: Neural crest cells (green) contribution to the formation of skull bones. A)

Embryo of Salamandra salamandra showing the origin and migration of neural crest cells.

B) and C) Mesodermal and neural crest cells contribution to the development of the head

in Gallus gallus. D) Contribution in the human skull. From Kardong (2005).

After induction, cells begin a process of condensation that comprises a definite sequence

of steps: initiation, boundaries setting, cell proliferation, cell adhesion, cell growth, and

termination (reviewed in Franz-Odendaal, 2011). Prior to condensation, these cells have

surface molecules (e.g., peanut agglutinin and alkaline phosphatase) that distinguish them

from non-condensed neighbor cells (Hall and Miyake, 2000). The boundaries between

induced and non-induced cells will determine the final size and shape of the condensation

centers, and hence, also of many bones (Rice and Rice, 2008). The condensation of

cells continues until the aggregate reaches the adequate size for its differentiation, then,

condensation stops and differentiation begins. However, if the condensation center is too

small, differentiation does not begin and the bone does not form at all; if too big, the

condensation will form a larger bone (Willmore et al., 2007); still, development can buffer

these defects with more cell migration and mechanisms that regulate cell population size.



1.1. DEVELOPMENTAL BIOLOGY OF THE SKULL 5

During differentiation, cells within a center of ossification change their identity as ma-

trix deposition proceeds (osteoblasts become osteocytes and chondroblasts become chon-

drocytes) and the future bone grows in size. The process of differentiation is an essential

step in the development of skull bones that occurs due to up-regulation of tissue-specific

genes1 (Hall and Miyake, 2000).

1.1.1 Formation of Skull Bones

Mesenchyme condensations differentiate into skull bones either by intramembranous or

endochondral ossification. In general, condensations from neural crest cells differentiate

via intramembranous ossification, while condensations from mesodermal cells differentiate

via endochondral ossification (Hall, 2005). However, bones formed by both mechanisms

are indistinguishable in the adult; moreover, some individual bones comprise both kinds

of bony tissue without trace of their origination mechanism or cellular type Kardong

(2005); Gilbert (2006). Furthermore, condensations can also split, produce a boundary of

apoptotic cells between them, and form more than one bone (e.g., the paired frontals in

some species).

In intramembranous ossification, mesenchyme condensation centers differentiate di-

rectly to osteoblasts (Hall, 2005). After induction, osteoblasts secrete an extracellular

matrix (of collagen-proteoglycans) that is able to bind calcium; osteoblasts embedded in

the calcified matrix become osteocytes. First, the calcium deposition is amorphous, but

after the calcification of the initial condensation, this process continues forming spicules

that radiate out from the region where ossification began. Afterwards, mesenchyme cells

surrounding the ossified region form the periosteum (the membranous coating of the

bone). Cells on the inner surface of the periosteum also become osteoblasts that will

produce bone within the membrane. Once formed the periosteum, bones can grow in

thickness, but they do mainly in width by new bone deposition at their edges–changing

in shape. Other tissues and cavities encapsulated by bones (e.g., dura mater and oral

cavity) also stimulate bone growth, by means of transcription factors from the epidermis

and activate bone-specific proteins in the extracellular matrix (Gilbert, 2006). Bones

grow in size until they meet others and form a suture (Fig. 1.2).

1Up-regulation is the process by which a cell increases the quantity of a cellular component, such
as RNA or protein, in response to an external variable; Down-regulation is the decreasing of cellular
components.
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BoneBone Suture
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Periosteum
fibroblast-like cells

osteoblast precursors

Figure 1.2: Schema of the sagittal suture anatomy. Sutures form in the meeting line be-

tween two bones late in development, when bones are already formed. The space between

bones is occupied by fibroblast-like cells, which maintain suture patency. The balance be-

tween populations of different cell types (by proliferation and apoptosis) regulates suture

patency and new bone formation; in this regulation, intercellular signaling and transduc-

tion of tensional forces are equally important. Sutures between the bones that protect

the brain have an underlying dura mater, which supplies cell precursors to the growing

bones and the fibrous tissue between them; interaction with the dura mater also regulates

suture patency. However, most sutures lack of an underlying dura mater; in these, the

periosteum, or other tissues, would function in the same manner that the dura mater sup-

plying stem cells (see Rice, 2008, for a review of the factors affecting suture maintenance

and fusion, as well as associated malformations because of premature fusions in humans).

In endochondral ossification, bones form from cartilage templates (Hall, 2005). Con-

densed cells first differentiate into cartilage and then are replaced by bone. Endochondral

ossification has five steps: (1) determination of mesenchyme as future cartilage, (2) differ-

entiation into chondrocytes, (3) proliferation and formation of the cartilage template of the

bone, (4) matrix hypertrophy to enable mineralization, and (5) blood vessel invasion that

brings new osteoblasts and chondroclasts to replace death chondrocytes. In each step, spe-

cific transcription factors, membrane adhesion proteins, and secreted enzymes participate

in the induction-response signals between cells and prepare the template for ossification

(Gilbert, 2006). Endochondral bone growth occurs both inside and at the boundaries of

the cartilage template: inside, osteoblasts begin to form bone matrix and differentiate into
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bone cells (osteocytes and osteoclasts); in the boundaries, new bone is formed in the peri-

chondrium (equivalent to the periosteum) by replacement of chondrocytes as described

before. Additionally, secondary ossification centers appear at the end-margins of bones.

Cartilage growth plates appear between the primary and the secondary ossification cen-

ters (epiphyseal) forming new bone as in primary ossification centers. Thereby, bones can

grow while keeping functional articulations. Furthermore, cartilage growth plates form

also between bones (synchondrosis) forming new bone by replacing cartilage in a similar

way (e.g., between the sphenoid and the occipital in humans).

Both type of bones change in shape after their formation by remodeling their bound-

aries, in response to cellular signals, external forces coming from other bones and tissues,

and, exceptionally, also from the environment (e.g., sleep positions can cause deformities

in newborns). There are three remodeling processes depending on the coordination of

bone deposition and replacement at the suture sites: drift, displacement, and rotation (re-

viewed in Lieberman, 2011). In drift remodeling, new bone forms in one side by osteoblasts

(apposition), while osteoclasts remove bone in other sides (resorption); this occurs usu-

ally in opposed sides of the bone. If the rates of bone apposition and resorption are well

coordinated, then the bone drifts–as a tectonic plate–without a change in thickness. This

type of remodeling is common in bony walls (where bones form the boundaries of skull

cavities), for example, between the nasal floor and the palatal roof. (Enlow and Bang,

1956). Differences in the rates of apposition and resorption cause changes in thickness

and shape. An example of this is the displacement remodeling, in which bones grow at

one side but they are not removed in other sites; as a consequence, bones increase in size

and change in shape. Finally, the combination of drift and displacement can also cause

the rotation of bones; here, the regions of apposition and of resorption are not opposed

but adjacent, creating an axis of rotation.

In summary, intramembranous ossification forms most bones of the skull in a cartilage-

independent process, while some skull bones (e.g., those of the cranial base) are formed

by replacement of cartilage templates. Therefore, the initial shape of intramembranous

bones depends on the direction and speed of growth, whereas the initial shape of endo-

chondral bones depends on the cartilage template. In addition, changes in shape occur

also after formation by remodeling at the boundaries of bones (cranial base synchondrosis

and craniofacial sutures).
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1.1.2 Development of Craniofacial Sutures

Craniofacial sutures are fibrous joints that connect most bones of the tetrapod skull (Fig.

1.3). Sutures are formed when and where two bones meet; this is determined by factors

that regulate bone growth, as well as the position and number of ossification centers.

Once formed, sutures act as primary sites of bone growth (proliferation of osteoblasts, dif-

ferentiation, and bony matrix deposition) and as mechanical stress absorbers (Rice, 2008).
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Figure 1.3: Calvarial bones, sutures, and fontanelles in human and mouse. A and B)

Neonate human. C and D) Mature mouse. Labels: af, anterior fontanelle; alf, anterior

lateral fontanelle (sphenoidal); al, alisphenoid bone; cs, coronal suture; f, frontal bone; gs ,

greater wing of sphenoid bone; ifs, interfrontal suture; ip, interparietal bone; ls, lambdoidal

suture; ms, metopic suture (interfrontal); p, parietal bone; pf, posterior fontanelle; plf,

posterolateral fontanelle (mastoid); so, supraoccipital bone; sqo, squamous part of occipital

bone; sqs, squamosal suture; ss, sagittal suture; st, squamous part of temporal bone. From

Rice (2008).
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The proper functioning of sutures depends on their maintenance and their occlusion

(obliteration) at the right time. Sutures of the calvaria are more likely to fuse during

adulthood, whereas facial sutures keep their patency throughout life (the reason may lie

in their role as stress absorbers of forces generated during mastication). The fusion of two

bones prevents further growth at that location; the growth of bones in other locations of

their boundaries (compensatory growth) generates characteristic changes in the shape of

the skull (Fig. 1.4).

A B

C D

Figure 1.4: Skull malformations due to premature fusion of bones in humans. A) Scapho-

cephaly by premature fusion of the sagittal suture. B) Plagiocephaly by premature fusion

of the hemicoronal suture. C) Trigonocephaly by premature fusion of the metopic suture.

D) Turricephaly by premature fusion of the coronal and the lambdoid sutures. From

Lieberman (2011).

1.1.3 The Functional Matrix Hypothesis

Bones are the hardest and most perdurable components of the head, and yet they are

malleable enough to change in size and shape during development and evolution, varying

in morphology and coopting new functions. The coordinate variation of the components

of the head emphasizes its integration at genetic, developmental, and morphological lev-
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els. In this context, it is useful to briefly introduce one hypothesis that seeks to explain

the causes of morphological variation during head development, skull bone growth, and

suture patency: the functional matrix hypothesis (Moss and Young, 1960; Moss, 1962).

Its relevance for the study of the tetrapod skull morphology resides in two points: first,

it represents an epigenetic, externalist explanation against the previous idea stating that

genetic factors determine completely bones development and growth; second, its success

in explaining many craniofacial disorders by biomechanical induction, for example, mal-

formations of the brain, such as bigger size (hydrocephaly), smaller size (microcephaly),

and absence of brain (anencephaly), are related to the formation of skulls that fit these

modified brain cavities (Lieberman, 2011). This also explains the great acceptance of the

functional matrix hypothesis in the medical community.

The functional matrix hypothesis claims that functional units, which are groups of

different tissues and cavities interacting to perform a function, are the proximate causes

of the development and growth of skull bones, as well as the formation, maintenance,

and obliteration of sutures. Examples of functional matrices are the brain, the eyeballs,

the nasal cavity, the oral cavity, and the tooth roots. Here, the role of bones is just to

accommodate these matrices (i.e., other tissues and organs) with a proper shape and size

that permit to carry on the function at hand. By secondary compensatory growth, the

skull accommodates the demands of its neighboring non-skeletal tissues and functional

cavities. Thus, bones develop passively in response to requirements of the surrounding

tissues and organs; bones play no active part in their own development and evolutionary

change. In summary, form follows function. In its first proposal, the hypothesis stated

the exclusivity of epigenetic factors in morphogenesis of bones, but this strong claim has

been moderated after evidences of genetic regulatory mechanisms acting in skull ontogeny,

which were introduced to the central corpus of the hypothesis more recently (reviewed in

Mart́ınez-Abad́ıas, 2007).

On the other hand, the discovery of intrinsic genetic regulatory factors affecting loca-

tion and differentiation of bones and sutures challenged the claim that functional matrices

are the only actors in skull morphology (Lieberman, 2011). Moreover, analysis of shape

correlations pointed out strong interactions between bones that cross (participate in) mul-

tiple functional matrices; thus, challenging again the idea of discrete functional matrices

as cranial units of change, because they share many of their components that overlap.

In addition, some skull morphologies remain invariant even when functional matrices are

modified, for example, in the orbits of mammalian skulls, where the angle between the



1.2. THE EVOLUTION OF THE SKULL 11

long axis and the midline of the face is always 90o, independently of changes in the size

of brain, eyes, and oral cavity (Lieberman, 2011).

Taken in perspective, the FMH points out the relevance of epigenetics in skull devel-

opment, the role of mechanical and chemical inductions between tissues, and the develop-

mental integration of the skull because of epigenetic and genetic factors. Indeed, all these

aspects are essential to explain the evolvability and the evolution of the skull.

1.2 The Evolution of the Skull

The skull of tetrapods is a mosaic structure in many senses. Its bones have different

ossification mechanisms and different cellular origins, mixed in many individual bones (see

1.1); in addition, different regions of the skull have also different evolutionary origins and

phylogenetic histories. This section introduces the general evolution of the tetrapod skull

according to the principal reference textbooks (Hildebrand, 1988; Benton, 2005; Kardong,

2005).

Three regions are usually identified in the vertebrate skull: the chondrocranium, the

dermatocranium, and the splanchnocranium (see Kardong, 2005, Chapter 7). In modern

forms of terrestrial vertebrates, parts of chondrocranium and dermatocranium are inte-

grated in various structures and in some individual bones. The splanchnocranium, the

first structure in evolutionary origin, is a skeletal structure associated with gills and jaw

elements in gnathostomes. The chondrocranium, second in origin, is a cartilaginous struc-

ture that supports and protects the brain. Finally, the dermatocranium is a bony head

shield in early gnathostomes that derived into dermal bones in terrestrial vertebrates.

The position of the posterior elements of the chondrocranium, in direct contact with the

cervical vertebra, as well as their ossification mechanism and shape, suggested to the early

anatomists a vertebral origin of these elements and, by extension, of all the skull. Johann

Wolfgang von Goethe, Lorenz Oken, or Richard Owen among others, proposed that skull

bones are just modified vertebrae, a continuum in the serial homology of the vertebrate

body plan; this was rejected also by equally distinguished naturalists, such as Louis Agas-

siz, George Cuvier, or Thomas Henry Huxley. However, some recent studies suggested

that at least for some parts of occipital bones a vertebral origin is possible (reviewed in

Kuratani, 2005).

The first vertebrates that developed a skull-like structure were the ostracoderms, a

group of jawless fishes (Agnatha) that lived during the Ordovician-Devonic Period (488-

420 Ma ago). This structure consisted in a shield of dermal bones overlying the head,
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with a primitive lateral line system, or a similar sensory organ, furrowing these dermal

bones. Some of the first gnathostomes (Placodermi and Acanthodii) also had head shields

composed of dermal bone plates and well ossified braincases, with the jaw attached to

it; while others (Chondrichthyes), had no bones at all and lacked a dermatocranium. In-

stead, chondrichthyans have a highly developed chondrocranium that provides the scaffold

for ethmoidal and orbital structures. On the other hand, the skull of bony fishes (Oste-

ichthyes) posses a complete dermatocranium composed of small and medium size bones.

In successive radiations, bony fishes evolved toward more freedom in bone articulation,

which allowed their movement and functional diversification. For instance, teleost fishes

(Actinopterygii) perform suction feeding by multiple kineses between jawbones, maxilla,

and premaxilla. Most homologous bones in the skull of tetrapods appeared for the first

time in bony fishes. Thus, the skull of sarcopterygian fishes (Sarcopterygii) resembles in

topology and articulation to those found in actinopterygians. In addition, the ancestors

of tetrapods, lobe-finned fishes (Rhipidistia), possessed some novelties in the skull config-

uration; for example, the separation of two discrete units in the braincase, the ethmoidal

and the otioccipital, joined together by a flexible articulation.

Early tetrapods evolved from rhipidistian fishes during the Middle Devonian (400 Ma

ago). They inherit many skull features from their ancestors; however, early tetrapods have

also novel features in the skull, more suitable for a terrestrial environment, such as one pair

of nasal bones, stapes bones (related to hearing, but still too massive to do it), and lack of

opercular bones covering the lost gills. In addition, freedom of bone articulation (gained

in the evolution of bony fishes) decreases in early tetrapods; this reduction occurs because

of the tight association between the bones of the chondrocranium and dermatocranium.

Thus, the skull became more robust and compact, restricting movements between bones.

Nevertheless, early tetrapods still keep some skull features that reveal their aquatic past,

for example, the lateral line system in juveniles with aquatic development. Other features

not related to the skull are also linked with this aquatic ancestry, for example, reproduction

by laying eggs in water.

In modern amphibians (Lissamphibia), the skull has fewer and thinner bones than

in primitive tetrapods. For instance, in albanerpetontids (Albanerpetontidae), frontal

bones are fused and the prefrontal bones are lost; in salamanders (Caudata), the bones of

the braincase are fused with parietals; in frogs (Salientia), bones are thin, only partially

ossified, or they do not ossify at all; however, in caecilians (Gymnophiona), fusions and

losses of bones produced skulls highly ossified and compact.
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In primitive amniotes, the skull comprises an extensive cover of dermal bones and a

relatively small interior braincase. Temporal openings are the most relevant feature of

the skull in amniotes; each major group of amniotes has a different number of openings:

none in anapsids, two in diapsids, and one in synapsids (Fig. 1.5). Temporal openings

serve as attachment for muscles and reduce stress forces from jaw and neck movements;

in taxonomy, temporal openings define taxa within amniotes.
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Figure 1.5: Types of temporal openings in tetrapods. Modified from Kardong (2005).

The anapsid skull, like that of turtles (Testudines and extinct relatives), lacks of tem-

poral openings. Instead, modern terrestrial turtles (Polycryptodira) possess temporal

emarginations that function as temporal openings. Mainly because of the lack of tem-

poral openings, the phylogenetic position of turtles has been traditionally controversial.

The place of turtles within the amniotes varies depending on the nature of data used for

classification (molecular, developmental, or morphological) and the inclusion, or not, of

extinct species (reviewed in Laurin and Gauthier, 2012). Thus, morphological and fossil

studies usually place turtles as a basal group in Amniota; here, the temporal openings are

a plesiomorphy, the ancestral state found in basal tetrapods. Another popular hypothesis

based on morphological data places turtles as a sister group of Diapsida; developmen-

tal data support this hypothesis (Rieppel, 1995; Werneburg and Sánchez-Villagra, 2009).

On the other hand, molecular data tend to place turtles within Diapsids, either as a sis-
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ter group of living Lepidosaurs or living Archosaurs; here, the temporal openings are an

apomorphy, a character reversal of the diapsid condition found in their common ancestor.

The diapsid skull, characteristic of Diapsida (lepidosaurs, crocodiles, birds, and extinct

relatives), has two temporal openings: a lower one, formed by the jugal, the postorbital,

and the squamosal; and an upper one, formed by the parietal, the postorbital, and the

squamosal. Some modern forms lack the lower and/or upper temporal bars, which gen-

erates new configurations of the temporal opening that deviate from the original diapsid

pattern. In snakes, the loss of contact between the postorbital and the jugal merges the

lower temporal opening with the orbit; this modification permits the mobility of bones

anterior to the orbits (prokinesis). In lizards, the lower temporal bar is lost, so there is

only the upper opening; this modification permits the mobility between the neurocranium

and the outer dermatocranium (mesokinesis). In birds, the skull diverges greatly from the

basic plan because of the high amount of fusions and losses of bones and the encephal-

ization of the cranial vault; in addition, as much as in the post-cranial skeleton, these

bones are lighter and thinner than in their extinct relatives (which is advantageous for

flight). The three modified diapsid skulls have an extra cranial kinesis (streptostyly) by

which the quadrate can rotate in relation to the dorsal braincase (see Kardong, 2005, pg.

260-270 for an extensive description of skull kinesis and biomechanical mechanisms). A

fourth type of configuration appeared, independently, in different groups of marine rep-

tiles (Ichthyosaurs, Placodonts, and Plesiosaurs), the euryapsid skull, in which the lower

temporal opening is absent, due to the great development of the squamosal-jugal suture

sealing it.

The synapsid skull, characteristic of Synapsida (mammals and extinct relatives), has

only the lower temporal opening, formed by the jugal, the postorbital, the squamosal, and

the quadratojugal. In modern mammals, the postorbital bone is lost, so the temporal

opening merges with the orbit; the bar formed by the connection between the squamosal

and the jugal forms the zygomatic arch. In addition to the evolutionary change of the

temporal opening, synapsids develop a secondary palate. This structure is formed by the

growth of premaxillas, maxillas, and palatines toward the midline, forming a mouth roof

that separates the respiratory and the oral track. A secondary palate appears also in

some turtles and in crocodiles, in which also participates the pterygoid bones, this is a

homoplasic character. Like the postorbital, many other bones are lost in modern mammals

(e.g., prefrontal, supratemporal, and quadratojugal) as part of a much larger tendency in

bone number reduction in vertebrates, an evolutionary trend commonly known as the

Williston’s Law.
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1.2.1 The Williston’s Law

The tetrapod skull has suffered many and different morphological changes during its evo-

lution in diverse lineages, for example, enlargement and shortening of the rostrum in

porpoises and humans (Lieberman, 1998; Galatius et al., 2010), miniaturization in lizards

and anurans (Rieppel, 1984; Trueb and Alberch, 1985), and expansion of the cranial vault

in birds (Marugán-Lobón and Buscalioni, 2003; Bhullar et al., 2012). However, the reduc-

tion in number of skull bones has occurred in all lineages since the origin of the skull in

vertebrates. For instance, early tetrapods have fewer skull bones than fish ancestors, while

amniotes have fewer than early tetrapods (Benton, 1990). This trend was first described

by Samuel W. Williston (1914) as “a law in evolution [by which] the parts in an organism

tend toward reduction in number, with the fewer parts greatly specialized in function,”

during his studies on the skull of Permian reptiles. William K. Gregory further reported

this trend from basal fishes to modern tetrapods, proposing losses and fusions of bones as

its driving mechanisms (Gregory, 1927, 1929, 1933, 1934, 1935). To further explain this

trend, Gregory proposed the principle of anisomerism: the tendency of systems composed

of many similar parts (polysomerism) to reduce the number of parts by specialization of

the remaining ones. A similar idea, the instability of the homogeneous, was proposed by

Herbert Spencer (1889) as a law in evolution and of change in general: a system composed

of homogeneous parts transforming into a system with heterogeneous parts by integration

and differentiation. Furthermore, both Williston and Gregory rejected the possibility of

new bone formation, or in any case, they thought this to be a very rare event that does

not affect the general trend.

The Williston’s Law has been supported as a large-scale evolutionary pattern within

and between major groups (Table 1.1); from primitive to modern species, the number of

skull bones decreases affecting often the same bones, such as the postfrontal, prefrontal,

and supratemporal (Goodrich, 1958; Estes, 1961; Gaffney, 1979; Carroll, 1988; Benton,

1990; Rieppel, 1993; Laurin, 1996; Sereno, 1997; Sidor, 2001; Kardong, 2005). These par-

allels suggest that Williston’s Law is both an anagenetic and a cladogenetic evolutionary

trend. In an anagenetic (or phylogenetic) trend, evolutionary change occurs along a non-

branching lineage, in the successive transition of species. Stephen J. Gould criticized

the existence of anagenetic trends from the perspective of the Hypothesis of Punctuated

Equilibrium (Gould and Eldredge, 1977). Since lineages would not change in its lifetime,

morphological change only occurs during speciation events; thus, anagenetic trends are

nothing but illusions of accumulated cladogenetic processes (Alberch, 1980; Gould, 1990).
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In a cladogenetic trend, evolutionary changes occur in the branching (speciation) of lin-

eages, which change in the same direction on average (McKinney, 1990). In addition,

evolutionary trends are classified as passive or driven according to their pattern of change

(McShea, 1994). In passive trends, the initial state of the character (e.g., number of bones)

originates close to a lower or higher boundary; thus, an increase of variance alone can cause

a directional evolutionary pattern, emerging without a driving force (Gould, 1988). For

skull bone number, the evolutionary pattern would be characterized by a decrease in the

mean and the minimum number of bones at each time, but without extinctions of lineages

with a number of bones close to the maximum in origin. On the other hand, in driven

trends some mechanisms actively push the character change in one direction, such as di-

rectional changes of the environment shaping the topography of the adaptive landscape

in one direction (e.g., in Bergmann’s and Cope’s rules) and developmental canalization

(Rasskin-Gutman and Esteve-Altava, 2008; Esteve-Altava and Rasskin-Gutman, 2009).

This would generate an evolutionary pattern in which mean, maximum, and minimum

number of bones decreases at each time, as well as within lineages.

Traditionally, Williston’s Law has been interpreted as an evolutionary trend toward

simplification of the skull (Hildebrand, 1988; Sidor, 2001), a counter-evidence of the pro-

gressive increase in complexity during the history of life (Williams, 1966, pg. 43). However,

measuring morphological complexity is tricky (see 3.1); too often, the number of different

elements, or a derived metric, is the direct measure of complexity (Bonner, 1988; Valentine

et al., 1994; Sidor, 2001), a practice that has been used even though this approach has

been explicitly discouraged (McShea, 1991, 1993).

The evolutionary mechanisms that account for the reduction in number of bones in

the skull are the loss and the fusion of bones (Sidor, 2001). These two mechanisms occur

at different rates, target different bones, and involve different developmental processes.

Some authors agree that the broadly occurrence of this trend in the phylogeny of tetrapods

reflects a process of canalization (Benton, 1990). Thus, miniaturization of the skull would

provoke a reduction in the number of bones until a minimal functional number is reached

(Rieppel, 1984); throughout this process, Riepple argues, the skull loses first non-essential

bones to keep its structure.

Other internal causes can be argued as well to explain bone number reduction, such

as developmental shifts and constraints (see, e.g., Alberch and Gale, 1985). For instance,

heterochrony in craniofacial sutures maintenance or obliteration (Depew et al., 2008),

and retardation (until loss) of ossification centers (Benton, 1990). On the other hand,

it has been argued that the reduction in bone number would have a selective advantage
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by promoting more rigid skulls, because the concomitant loss of sutures would reduce

bone mobility (kinesis), buffering mastication stress forces (Sidor, 2001). All in all, the

net reduction in bone number is a developmentally biased process that assumes that the

emergence of new bones is highly improbable (if not impossible), because disruptions in the

development of ossification centers is easier than the formation of new ones (Sidor, 2001).

However, studies of comparative anatomy and development of the skull have neither found

the causes and mechanisms of this bias, nor what are the commonalities among all these

bones that are lost or fused (this questions have been addressed in Chapter 9).
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Table 1.1: Skull bones commonly absent in tetrapods according to different authors:
1Gaffney (1979); 2Hildebrand (1988); 3Benton (1990); 4Sidor (2001); 5Benton (2005); and
6Kardong (2005). From Esteve-Altava et al. (2013b).

Transitions Lost Bones* Fused Bones

Rhipidistians to Early

Tetrapods

Extrascapular, Extranasals, and

Opercular (6, p 258)

Early Tetrapods to Modern

Amphibians

Squamosal (3); Ectopterygoid, Ju-

gal, Postfrontal, Postparietal, Pre-

frontal, Quadratojugal, Stapes, and

Tabular (3; 6, p 258); Intertemporal,

Lacrimal, Nasal, and Postorbital
(6, p 258)

Frontals, Parietals, and Parietal-

Braincase bones (5, p 102)

Primitive Amniotes to De-

rived Turtles

Epipterygoid, Nasal, and Quadra-

tojugal (1)

Basisphenoid-Parasphenpid,

Epipterygoid-Parietal, Frontal-

Nasal, Frontals, and Premax-

illas (1); Vomers (1; 5, p 231);

Basioccipital-basisphenoid (5, p 114)

Primitive Amniotes to Ar-

chosaurs, including Birds

Vomer (5, p 267); Postfrontal, Pos-

torbital, Postparietal, Prefrontal,

Stapes, and Tabular (6, p 269)

Jugal-Postorbital (5, p 270), Nasals
(5, p 216); Parietal-Frontal (5, p 211),

Premaxillas (5, p 266, 270)

Primitive Amniotes to De-

rived Squamates

Epipterygoid (3); Jugal (3; 6, p 266);

Lacrimal (3; 5, p 243; 6, p 266);

Quadratojugal and Squamosal
(3; 5, p 233, 243; 6, p 266); Postfrontal

and Tabular (6, p 266)

Parietals (3; 5, p 233); Premaxillas
(5, p 233)

Primitive Amniotes to De-

rived Mammals

Parasphenoid (2, p 149), Quadrato-

jugal (2, p 149; 6, p 272); Ectoptery-

goid, Orbitosphenoid, Septomax-

illa, and Supratemporal (4); Jugal
(5, p 329); Postfrontal, Postorbital,

and Prefrontal (2, p 149; 4; 6, p 272);

Tabular (4; 6, p 272); Postparietal

and Stapes (6, p 272)

Ectopterygoid-Pterygoid (2, p 149);

Alisphenoid-Epipterygoid,

Basioccipital-Exoccipital-

Supraoccipital, Basioccipital-

Basisphenoid-Parasphenoid,

Exoccipital-Interparietal, Frontals,

Interparietals, Jugal-Maxilla,

Jugal-Squamosal, Nasals,

Opisthotic-Supratemporal,

Premaxilla-Maxilla, Premaxilla-

Septomaxilla, Premaxillas, Ptery-

goids, Quadrate-Quadratojugal,

and Vomers (4); Ophisthotic-

Prootic-Squamosal (4, 6, p 274);

Parietals (4; 5, p 290)

*Discriminating between genuinely lost bones and fused ones is a very hard task, especially in fos-

sil skulls. Thus, fused bones column includes only those bones explicitly indicated as such in the

literature used, while lost bones column includes all bones with an uncertain evolutionary fate.
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The Analysis of Organismal Form

Organismal form is the result of many processes acting at different levels of organization

during morphogenesis, from the genes that codify and regulate the expression of different

proteins involved in cell migration, division, and differentiation, to the geometric and

developmental constraints involved in the epigenetics that carry the embryo toward a

stable form often identified as the adult (Müller and Newman, 2003; Hallgrimsson and

Hall, 2011). Constructional approaches have also been used to study the causal elements

of organismal form (see Seilacher, 1991; De Renzi, 1997, 2009a,b). Form is a rich concept

that includes not only the shape of anatomical parts, but also their size, arrangement, and

relative orientation of these parts. In sum, these morphological features can be seen as

different levels of morphological information that, together, account for the actual form

of organisms. Thus, a separate analysis permits the identification of specific processes of

each level, which otherwise would be hidden to observation because of multiple layers of

simultaneous information (Rasskin-Gutman and Buscalioni, 2001).

2.1 Levels of Morphological Information

The levels of morphological information1 are four: proportions, articulations, orientations,

and connections (Rasskin-Gutman, 1995); each level has associated its own morphological

descriptors, formalization, and type of morphospace (Table 2.1). Since levels of mor-

phological information rely on different descriptors, each one needs a different formalism.

Moreover, each level gives insights about level-specific constraints and mechanisms that

generate form and affect its evolution (Rasskin-Gutman and Buscalioni, 2001). Thus,

they provide also different sources of morphological information for comparative analysis.

1These levels were originally termed as levels of morphological organization (Rasskin-Gutman, 1995;
Rasskin-Gutman and Buscalioni, 2001; Rasskin-Gutman, 2003). Instead, I have preferred to call them
levels of information, using the term organization only in a system context as in Chapter 3.
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However, current morphological studies focus mostly in the level of proportions (i.e., size

and shape), in part, because morphometrics provides a robust methodological framework

of analysis for proportions, such as in Geometric Morphometrics. In contrast, the lack

of specific quantitative tools has neglected the study of the other levels of morphological

information.

Table 2.1: Levels of morphological information according to Rasskin-Gutman (1995).

Level Descriptor Formalization Morphospace

Proportions Element Character Matrix Hyperspace

Connections Compound Boundary Patterns Connectospace

Orientations Compound Angles, Positions Dispospace

Articulations Mechanism Angles, Distances Conformationspace

2.1.1 The Level of Proportions

The level of proportions deals with the analysis of shape and size. Usually, the analysis of

shape focuses on a particular region that falls within a more complex anatomical system,

such as the nasal cavity (Bastir et al., 2007) or the cranial base of the skull (Bastir et al.,

2008). In others, the analysis focus on isolated bones (Lockwood et al., 2002; Harvati,

2003) or entire anatomical systems (Lieberman et al., 2007). In contrast, the analysis of

size focuses on entire organisms to look for allometric relationships (West et al., 1997),

ecogeographic correlations (Esteve-Altava and Rasskin-Gutman, 2009), and evolutionary

trends (Alroy, 1998). For methodological reasons, body mass often replaces body size in

these analyses.

In modern Geometric Morphometrics (Fig. 2.1), morphological descriptors of propor-

tions are coordinates of landmark points located within the shape of an anatomical part

and distances between them, which are formalized in matrices of characters. This informa-

tion is also useful to construct morphospaces (Pierce et al., 2008), to guide phylogenetic

analysis (Rohlf, 2002), and to study genotype-phenotype relations (Mart́ınez-Abad́ıas

et al., 2012), as well as to establish patterns of morphological integration and modular-

ity (Klingenberg, 2009). Since landmark points represent the ‘same’ points in related

structures, the analysis of proportions is only possible between close related forms. Thus,

beyond certain degree of dissimilarity, as in very distant species, landmark based methods

cannot be used.
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Prominent mastoid 
process

Entoglenoid process short, 
posteriorly directed Short postglenoid process

Deep tympanic element

Deep mandibular 
fossa

Distinct articular 
eminence

Figure 2.1: Analysis of form at the level of proportions. In this example, information of

proportions in the human temporal bone was gathered using a landmark-based approach,

in which shape and size were captured by the particular position of each landmark point,

and then formalized as a matrix of coordinates (i.e., characters). Modified from Lockwood

et al. (2002).

2.1.2 The Level of Connections

The level of connections captures the topological relations between anatomical parts, that

is, their arrangement in a morphological system. Anatomical elements are the components

of morphological systems of higher order; their contacts define their boundaries, which

usually have developmental and functional roles (Rasskin-Gutman and Buscalioni, 2001;

Rasskin-Gutman, 2003, 2005). In addition, topological arrangements between anatomical

parts are structural relations essential to recognize homologies and novelties. These con-

nectivity relations configure a framework of analysis of morphology at a structural level, in

which we can define the connectivity pattern of parts as the number and the distribution

of its connections to other parts. In this context, topological arrangements (connections)

are not only formal boundaries, but also capture biological interactions and dependences

between parts (Riedl, 1975).

The descriptors of form at the connectivity level are the discrete anatomical units that

compose the system and the relations between them (Fig. 2.2). Morphological connections
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are formalized in adjacency matrices, in which rows and columns represent elements and

the presence or absence of a common boundary between two elements is noted as 1 or

0 respectively. Formal models for this information, for example, Cellular Automata and

Graph Theory, have been classified as Parameter Free-Models because of their lack of gen-

erative parameters and geometric constraints (Dera et al., 2008). This feature makes the

connectivity level suitable for comparative studies at higher taxonomic levels, in contrast

with the level of proportions, which depends on the structural similarities to compare

landmark coordinates (see 2.1.1). Thus, morphological connectivity has been used to an-

alyze the evolution of structural patters and morphospaces occupation in skeletal systems

across very different taxa, such as pelvic girdles, limbs, and skulls (Rasskin-Gutman and

Buscalioni, 2001; Rasskin-Gutman, 2003), as well as echinoderm shells (Laffont et al.,

2011), because identifying discrete anatomical units and relations is a straightforward task.
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0   1   1   0   0   0
1   0   1   0   1   0   left
1   1   0   0   0   1
0   0   0   0   1   1
0   1   0   1   0   1 right
0   0   1   1   1   0

Figure 2.2: Analysis of form at the level of connections. The bones of the pelvic girdle

and their physical connections (left) are formalized in an adjacency matrix (right); bold

lines represent possible connections and dashed lines impossible (i.e., not observed). The

adjacency matrix codifies and captures the structural information between anatomical

discrete units. Modified from Rasskin-Gutman and Buscalioni (2001).

2.1.3 The Level of Orientations

Besides being connected, two elements can also show different orientations in space. The

model descriptors in this level are discrete anatomical elements, which are formalized as

angles between parts (Rasskin-Gutman and Buscalioni, 2001). Orientations have been

extensively studied for the cranial base flexion in primates (Fig. 2.3).
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Figure 2.3: Analysis of form at the level of orientation. In this example, the elements of

the study are different skull parts, for which relative orientations are formalized by their

angles. From Lieberman (2011).

2.1.4 The Level of Articulations

In contrast with the level of connections and orientations, which capture static relation-

ships between anatomical elements, the level of articulations captures dynamical relations

between parts that show mobility functions (Fig. 2.4). Although the descriptors are

dynamical mechanisms of articulation that define the range of possible positions, the for-

malization is similar to that of orientation, that is, angles and distances (Rasskin-Gutman

and Buscalioni, 2001). The level of articulations capture biomechanic and kinematic

systems in functional morphology; for example, those concerned with locomotion, masti-

catory system, and cranial kinesis (Weishampel, 1995).

Opening

Closing

Figure 2.4: Analysis of organismal form at the level of articulation. In this example of the

kinesis of a lizard skull, some joints between bones show mobility, endowing lizards with

a particular feeding mechanism that allows them to close both tooth rows on the prey.

Modified from Kardong (2005), after T. H. Frazzetta.
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2.1.5 Causal Relationships between Levels of Information

Levels of morphological information interact during development at each scale of orga-

nization (from cells to tissues, parts, and organs to the organism) determining the final

form of an organism (Fig. 2.5). For instance, in the formation of the tetrapod limbs

(Rasskin-Gutman, 2003):

“The initial state of a developing limb bud is a proliferation of mesenchymal cells. The shape and

size of the individual cells determine relations of connectivity among them, which are prominent at this

stage. The resulting mass of cells, packed together, forms a bud. Thus, the connectivity properties of the

individual cells generate a higher level of organization, the limb bud, which exhibits, on its own, properties

of proportion (size and shape) far removed from the proportions exhibited by the individual cells. In turn,

the proportions of the limb bud determine the number and position of cell condensations that appear in

the mesenchyme of pre-cartilage areas, forming the primordia of future bones of the limb, which start to

assume identities of their own. Later, each condensed pre-cartilage center shows a preferential orientation

as well as connectivity relations at a new organizational level; where the future bones are the new elements,

and the individual cells are no longer suitable to describe the system.”

Causal relationships are more explicit between connections of anatomical parts and

their proportions. Since parts tend to evolve and develop in coordination with other

connected parts, shape variations are not independent between them. More specifi-

cally, landmark positions, whose covariation is used to analyze shape changes, are not

independent as is commonly assumed; instead, landmark covariation is constrained by

the connections of the parts on which they are located (Chernoff and Magwene, 1999;

Magwene, 2001, 2008; Klingenberg, 2009). However, a more general causal relationship

between each level of morphological information has never been tested empirically. In this

context, the use of networks and connectivity considerations in shape analysis is just a

starting point to study the relationships between all levels. In fact, as the quoted example

points out, causal relationships appear at each level of morphological organization. Thus,

developmental constraints between connections, proportions, orientations, or articulations

have a direct effect on the morphology in the next higher scale of organization.
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ARTICULATIONS

MORPHOLOGICAL ORGANIZATION

Developmental
Constraints

MORPHOLOGICAL INFORMATION

Figure 2.5: Morphological organization and information. At each scale of organization, the

levels of morphological information interact with each other by means of developmental

constraints (two-way arrows). The nested succession of developmental constraints between

levels originates the morphological organization of the next scale, in which the levels of

information begin a new set of developmental relations. Modified from Rasskin-Gutman

(2003).

2.2 From the Principe des Connexions to Networks

Ever since classic anatomists like Johann Wolfgang von Goethe, George Cuvier, Étienne

Geoffroy Saint-Hilaire, or Richard Owen laid down the fundamental principles of compara-

tive anatomy and morphology in the 19th century, connections among anatomical elements

have been essential for the recognition of biological homologies between anatomical parts

in different species. After that, some key authors in theoretical biology and mathematical

biology have attempted to formalize the intuitive notion of similarity and morphological

organization by means of axiomatic and mathematical models. However, from a histori-

cal point of view, it is interesting that the main 20th century authors reviewed here did

not acknowledge the work of their predecessors at all, making their contributions to seem

disconnected from each other.
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2.2.1 Étienne Geoffroy Saint-Hilaire’s Principle of Connections

In the early 19th century, Étienne Geoffroy Saint-Hilaire proposed the use of the ‘principle

of connections’ as a methodological rule to study animal form. A body part in an animal is

recognized as the same part in other animals neither by its function nor by its shape, but

by its situation and contact with others (Geoffroy Saint-Hilaire, 1818). Thus, the principle

of connections formalized the intuitive notion of similarity of those days and set a new

research program in pure morphology at the structural level (Nuño de la Rosa, 2012).

Other notable naturalists before Geoffroy, such as Pierre Belon, and Johann Wolfgang

Goethe, also made use of this principle as a way to recognize similarities, a tradition that

goes back to Aristotle. For instance, Goethe used this principle implicitly to point out

the presence of an intermaxillary bone in the human mandible (reviewed in Nuño de la

Rosa, 2012). However, Geoffroy was the first to establish connections as an operational

criterion to identify morphological similarity among different parts and organisms; by

means of their structural relations to other parts (Fig. 2.6), rather than by their shape

and function. Thus, placing the criterion of structure before function and shape in the

recognition of homologies.

With this tool in their hands, Geoffroy and his followers attempted to discover ho-

mologies even when the form and function of body parts were different or intermediary

forms were unknown, that is, even between body plans and the four embranchements

proposed by Georges Cuvier (Appel, 1987). For instance, Geoffroy found homologies be-

tween the bones of the ear in mammals, reptiles, and birds and those of the operculum in

fishes. In Geoffroy’s own words “an organ is sooner altered, atrophied, or annihilated than

transposed” (Appel, 1987). Laurencet and Meyranx used the principle of connections in

an essay on the organization of mollusks, suggesting a unification between the vertebrate

and cephalopod embranchments; their presentation in the Académie des sciences was

the trigger that started the famous debate between Cuvier and Geoffroy (Appel, 1987;

Le Guyader, 2003). Since the debate, and notwithstanding interpretations of its results

(Rosen, 1916; Gould, 2002; Le Guyader, 2003), the principle of connections became a tool

to identify homology for prominent zoologists, such as Richard Owen, Milne Edwards,

and, more recently, Adolf Remane (Appel, 1987; Ochoa and Barahona, 2009). However,

the aim to build a formal framework was abandoned in the following decades, and con-

nections remained just as an heuristic, implicit tool until the mid 20th century.
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Figure 2.6: Connections between plastron bones. According to Geoffroy, the same invari-

able arrangement is found in the sternum of birds but fussed in the adult form. Lines

indicate connections. Modified from Russell (1916).

2.2.2 Joseph Henry Woodger’s Structural Correspondence

In 1945 Joseph H. Woodger proposed a formal framework to deal with phenotypic transfor-

mations during development based on correspondences between the parts of an organism

(Woodger, 1945). Woodger’s aims were to identify similarities between parts of an organ-

ism and study phenotypic transformations during development and evolution; to do so,

he used Group Theory to codify topological information. Thus, anatomical parts were

classified by three grouping rules: (1) being distal to, (2) being postaxial to, and (3) being

articulated to other parts. Thus, two parts are the ‘same’ in different organisms or devel-

opmental stages if they establish the same set of relations, that is, if they have ‘structural

correspondence’ (Fig. 2.7).

Just like the principle of connections, structural correspondence captures homology

in different organisms identifying ‘types’ or ‘Bauplanë’ (Rieppel, 2006). In this context,

Woodger introduced the concept of Bauplan to define the “homologous structural plan

underlying evolutionary transformations within a taxonomic group” (Raff, 1996). Bauplan

(plural: Baupläne) is the German word for building plan or blueprint in English, but it

is often used as a synonym of body plan or unity of type in a morphological context. Al-

though the concepts of Bauplan and type, as well as the very work of Woodger, received

much criticism from advocates of ‘population-thinking’ in the context of the Modern

Synthesis (Simpson, 1961; Mayr, 1982; Hull, 1988), current evolutionary theory can ac-

commodate completely his ideas (Rieppel, 2006; Nicholson and Gawne, 2013). Whatever

position we adopt about the ideas proposed by Woodger, his structural formalization of
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correspondence was an important step in the search of rational criteria to capture the

intuitive observation of similarities (i.e., homology identification) between organisms.

    1p 2p 3p 4p 5p
level 0   x
level 1   x   x
level 2   x   x   x
level 3   x   x
level 4   x   x   x   x   x
level 5   x   x   x   x   x
level 6   x   x   x   x   x
level 7   x   x   x   x

Figure 2.7: Structural correspondences in the tetrapod limb. Lines and dots represent

the bones of the limb, which establish different morphological relations with others. The

relation of being distal to divides the set of bones into nine exclusive sub-sets: from level

0 for those elements that are not distal to any other, to level 8 for those elements that

are distal to all others. Then, the second relation, being postaxial to, divides each level

into four p groups. Thus, each bone in the limb has an unambiguous characterization

according to the intersection of rows and columns in the matrix of relations. For instance,

the fourth metacarpal is the 4p of level 5 and the ulna is the 1p of level 1. Woodger needed

a third relation, articulating with, to capture different arrangements when comparing two

limbs. Modified from Woodger (1945, Fig. 2).

2.2.3 Nicolas Rashevsky’s Relational Biology

Nicolas Rashevsky is known as one of the founders of mathematical biology. His works on

relational biology revolved around the integration of organismal functions into a systemic

framework based on relations, which he formalized as networks (Rashevsky, 1954). To

analyze the changes in functional organization, Rashevsky used the transformations of

the networks; a notion inspired by, or at lest related to, the topological transformation

introduced by D’Arcy Thompson (Thompson, 1992). Thus, “the topological spaces or

complexes by which different organisms are represented are all obtained from one or at

most from a few primordial spaces or complexes by the same transformation, which con-

tains one or more parameters, to different values of which correspond different organisms”

(Rashevsky, 1954); he called this the ‘principle of bio-topological mapping’ (Fig. 2.8).
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Rashevsky was a pioneer in representing the complexity of biological organization by

means of Graph Theory, a step beyond the use of Group Theory that we find in Woodger.

However, the application of this framework of analysis to morphological systems was

only discussed briefly (Rashevsky, 1960). In such a framework, nodes would represent

anatomical structures and links functional relations. Although this proposal was very

interesting for morphology, it was not further developed neither by Rashevsky, nor by his

prominent disciple, Robert Rosen (Rosen, 1991, 2000), or any theoretical morphologists

afterwards.
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Figure 2.8: Bio-topological mapping between cells. A) Two populations of cells with the

same functional organization (i and k). Nodes represent biological functions of the cells

and links physiological relations between biological functions. During the development

of an organism, tissues differentiate in structure and function, thus “a biological function

which originally is possessed by all cells, is lost by some of them and retained by others”.

B) This is represented by the lost of fi in k cells and the lost of fk in i cells. Now

functionalities of both populations are coupled. More complicated transformations can

be added sequentially. Rashevsky interest was how to “derive the graph of this organism

from the graph of the original homogeneous colony”, that is, elucidate the logic of these

transformations. Modified from Rashevsky (1954).

2.2.4 Rupert Riedl’s Diagrammatic Morphotype

It was Riedl (1975) who firstly introduced graph diagrams as a representation of the

mammalian skull anatomy, using positional relationships (i.e. connectivity) to identify

homologies. To my knowledge, this is the first record of a skull represented as a network.
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In Order in Living Organisms, Riedl offers a deep reasoning on the origin and maintenance

of body plans and evolutionary trends by means of the concept of ‘burden’ in structures

and events. This concept explains the integration of organismal form and its patterns of

variation as a consequence of an increase in hierarchical nested developmental constraints

on traits during evolution, linking evolution and development (Wagner and Laubichler,

2004; Schoch, 2010).

In his defense on the necessity of concepts like morphotype and ground plan, Riedl

introduced the idea of a ‘diagrammatic morphotype’ (Fig. 2.9), in which only minimal

descriptors of form are used “as in a structural formula” (Riedl, 1978, pg. 249). Thus,

capturing the topological information that defines the morphotype of the tetrapod skull

in terms of homology and developmental dependencies.

Figure 2.9: The diagrammatic morphotype of the mammalian skull (left). From Riedl

(1978, pg. 250).

2.2.5 Modern Use of Networks in Morphology

In the last decade, Rasskin-Gutman renewed the interest in studying morphology at a con-

nectivity level within the frame of evolutionary developmental biology (Rasskin-Gutman,

1995; Rasskin-Gutman and Buscalioni, 2001; Rasskin-Gutman, 2003). To formalize the

topology or structural relation of parts in the pelvic girdle of archosaurs, Rasskin-Gutman

introduced models based on Graph Theory, in which each vertex represented a pelvic

bone, ilium, ischium, and pubis, and each edge represented their physical junctions

(Rasskin-Gutman, 1995; Rasskin-Gutman and Buscalioni, 2001). The analysis of the

theoretical morphospace of connections in the pelvic girdle revealed an evolutionary trend

toward the loss of connections, and hence, compactedness in the graph model (i.e., a

measure of morphological complexity described in 4.1.3 as Density of connections) during

the early evolution of birds. The use of graphs was then extended to the analysis of
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the skull (Rasskin-Gutman, 2003), in which vertices represented skull bones and edges

sutures. For 2D skull graphs (Fig. 2.10), a network analysis was carried out to quantify

the degree distribution (i.e., frequency of bones with a given number of connections)

and to identify building blocks (i.e., small regular motifs such as triangular loops). This

analysis, along with computational simulations, revealed the structural relation among the

bones that participate in the formation of skull openings. Furthermore, it demonstrated

that the analysis of connectivity patters is suitable to study macroevolutionary patterns

of structural changes.
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Figure 2.10: Analysis of skull networks by Rasskin-Gutman. (A) Diagram of the skull in

2D, graph representation, and blocks found. (B) Network analysis of degree distribution

and frequency of blocks. Modified from Rasskin-Gutman (2003).

Rasskin-Gutman also introduced the use of computational models to explore changes

in connectivity patterns in the skull of archosaurs and to explore the morphospace of con-

nections (Rasskin-Gutman, 2003). This computational model, based on cellular automata,

was programmed to generate skull-like networks according to empirical connectivity pat-
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terns found in the skull of archosaurs; using different initial growth rules, bones were

added or deleted until the maximum number of bones was reached. The results of this

model were used to infer macroevolutionary dynamics in skull connectivity patterns, such

as emergence of novelties, convergence, and stasis, as well as to offer a null hypothesis of

skull evolution at a connectivity level.

More recently (and in the context of this thesis), network analysis has been proposed

to tackle morphological complexity, integration, and modularity in the vertebrate skull

(Esteve-Altava et al., 2011), to study evolutionary trends and structural constraints in

the morphological complexity of the tetrapod skull (Esteve-Altava et al., 2013b,c), assess

the modular organization of the human skull (Esteve-Altava et al., 2013a), and explore

the theoretical morphospaces of the tetrapod skull (Esteve-Altava and Rasskin-Gutman,

2013).



3

Morphological Organization in Connectivity Patterns

The intuitive notion of biological organization evokes a group of units establishing in-

teractions in order to perform a function. Beyond its functional component, organization

entails the presence of a structure of relations between the parts of the system (Rashevsky,

1954, 1960). In this context, parts are entities that can be identified as isolated from oth-

ers by means of their boundaries (Weiss, 1971); bones are the parts of the skull, isolated

and identifiable of other bones and tissues by their boundaries (either sutures between

bones or periosteum between bones and other tissues). In the same manner, a system

is a group of parts interacting, which produces a particular behavior (e.g., shape varia-

tion) as a consequence of their coordination, not fully determined by the properties of

each part in isolation (Weiss, 1971); the skull is a system composed of bone parts with a

collective behavior in development, growth, function, and evolution. For instance, after a

craniosynostosis, the entire skull buffers shape changes, by growth in other parts of the

skull, instead of collapsing entirely (see 1.1.2). Henceforth, I use the above-mentioned

definitions of parts and systems. They are simple enough, and, at the same time, they

allow to identify individual skull bones as parts and the skull as the system of study in

this thesis. Furthermore, they are both suitable for the kind of abstraction I have used to

build network models (see 5.1).

At a connectivity level, morphological organization emerges from the relations among

anatomical parts. These relations are not established at random; rather, they form dis-

tinguishable connectivity patterns, which give the system its characteristic structure. The

order of this structure can range from randomness to regularity; connectivity patterns

in morphological systems are organized between these two extremes (i.e., they are never

totally random, nor totally regular). In the context of this thesis, connectivity patterns

are captured in the set of sutures that connect skull bones, which emerge during devel-

opment, by genetic and epigenetic factors, producing morphological order. The idea of

33
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morphological organization is often linked to the complexity, hierarchy, integration, and

modularity of morphological systems. In the next sections, I will discuss these features

of morphological organization in the context of connectivity patterns of morphological

systems in general, and of the skull in particular.

3.1 Morphological Complexity

Complexity is an attribute of any organized system; a stage of organization often said to

occur at the edge of chaos, meaning that complexity emerges in those systems between

order (regularity) and disorder (stochasticity). Sometimes it is defined as unpredictability

within a structured disorder (Lewin, 1992; Waldrop, 1992; Solé and Goodwin, 2000),

as the functional multi-tasking and structural stability of a system (Taylor, 2005), or

as the amount of information for a minimal description of the system (Wicken, 1979;

Hinegardner and Engelberg, 1983). There is agreement in that complexity is reached

somewhere in between regular and stochastic states of order (Solé and Goodwin, 2000, Fig.

2.2), but this is not enough when trying to quantify how much complexity a morphological

structure has. In addition, colloquial meanings of complexity have blurry operational

definitions in biology in general, and morphology in particular, which too often lead to

misunderstandings (reviewed in McShea and Brandon, 2010, pg. 48-50).

Morphological complexity is usually defined as the number of different parts; this

(colloquial) meaning of morphological complexity appears, more or less explicitly, in evo-

lutionary and anatomical studies (e.g., Gregory, 1927, 1929, 1933, 1935; Williams, 1966;

Hildebrand, 1988; Sidor, 2001; McShea and Hordijk, 2013). However, morphological com-

plexity arises not only with number of parts, but also with their relative arrangement

(McShea, 1991; Valentine, 2003). Quantifying morphological complexity only as the num-

ber of bones ignores non-linear bone relations that define structural organization, as well

as those that create developmental and functional dependences among them. To solve this,

Daniel W. McShea and Robert N. Brandon (2010) propose to focus on a straightforward

definition of organismal complexity based on variance (diversity): the number of different

types of parts (see also Bonner, 1988). However, in the case of the skull, to identify a bone

as being different from another bone it is necessary to know the connectivity patterns of

both bones. This makes connectivity patterns fundamental, although only implicit, in

this notion of morphological complexity.

On the other hand, morphological complexity can be quantified explicitly by analyz-

ing the connectivity patterns between skull bones (Rasskin-Gutman, 2003; Esteve-Altava
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et al., 2013c), using Network Theory as the operational framework to quantify these rela-

tions. This is precisely what I have done in this thesis. Thus, morphological complexity

at a connectivity level is defined here as richness of interactions, both as a net amount of

interactions and local patterns of connectivity.

The definition of morphological complexity proposed here resembles that of Herbert A.

Simon (1962): “a large number of parts that interact in a non-simple way”. The simplicity,

or complexity, of interactions is readily quantified by some network parameters, such as

density of connections, clustering coefficient, and shortest path length (see 5.2.3). The

origin of “non-simple” interactions is, according to Simon, in the near-decomposability of

the system; in other words, in its hierarchical arrangement of parts and in its modularity.

3.2 Hierarchy

Morphological systems are hierarchical in two sense (Mayr, 1982): in a multi-scale sense

(aggregative), in which each anatomical part is composed of tissues, cells, and so on

downwards in the hierarchy, while parts make up organs, bodies, and so on upwards in

the hierarchy (Rasskin-Gutman and Esteve-Altava, 2009); and also in the same mor-

phological scale (constitutive), in which parts interact with each other as blocks within

blocks due to a differential integration (Fig. 3.1). The hierarchical organization of the

skull morphology, development, and evolution promotes the phenotypic integration of

developmental units, as well as the formation of modules of shape that are correlated

(Bastir, 2008). As a consequence, morphological systems change in form, growth, and

function in a coordinate way (Weiss, 1971).

cervical sacral

skull limbs

Body

axial skeleton

face basicranium neurocranium thoracic lumbar forelimbs hindlimbs

Figure 3.1: Hierarchical organization of the body represented as a hierarchical system

made up of different modules within modules. From Bastir (2008), modified from Chernoff

and Magwene (1999).
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Hierarchy is a particular state of order easily recognized by analyzing patterns of

connectivity (Fig. 3.2). In general, it is described as parts establishing nested relations

at different scales (Ozekhan, 1971). In this thesis, I will use notions of hierarchy that

spring directly from patterns of connectivity, which in turn are related to integration and

modularity.

Regular Hierarchical Random

Figure 3.2: Types of organization in networks: regular, hierarchical, and random. Modi-

fied from Barabási and Oltvai (2002).

3.3 Morphological Integration

Morphological integration means association between morphological traits (Terentjev,

1931; Olson and Miller, 1958; Cheverud, 1982), which is generally defined as the co-

variation among morphological traits due to common developmental and/or functional

causes. Depending on the definition of trait and unit of variation, the interpretation of

integration varies in the context of genetics, development, morphology, and evolution

(e.g., Piagliucci and Preston, 2004). For instance, in Geometric Morphometrics, traits

are positions of landmarks and associations are correlations of phenotypic variance be-

tween morphological structures, that is, how much two traits change together (reviewed

in Klingenberg, 2008, 2010). Since morphological integration is the observation of a

pattern of covariation, the causal mechanisms need to be elucidated according to an a

priori causal hypothesis (Chernoff and Magwene, 1999; Magwene, 2001). Thus, current

research on morphological integration focuses on the conciliation of phenotypic covariance

with predictive models based on genetic, developmental, functional, and evolutionary

hypotheses (Marugán-Lobón and Buscalioni, 2003; Goswami, 2006; Hallgŕımsson and
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Lieberman, 2008; Lieberman et al., 2008; Finarelli and Goswami, 2009; Goswami et al.,

2009; Mitteroecker, 2009; Goswami and Polly, 2010; Sanger et al., 2011; Mitteroecker

et al., 2012).

Developmental modularity

ytiraludom lanoitcnuFytiraludom citeneG

Evolutionary modularity

Remodeling

Performance
selection

Evolution by
selection, drift, etc.

Developmental
modi�cation

Variation in
development

Selection
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population

Figure 3.3: Sources of morphological integration and the formation of modules. Colors

indicate processes between genetic, developmental, and functional scales in the origin of

evolutionary modules. Modified from Klingenberg (2008)

In a broader framework, Christian P. Klingenberg (2008) defines morphological integra-

tion using also network terms, like “interaction” of processes and “degrees of connectivity”

between parts, and sketches the different sources of morphological integration: genetics,

development, function, and evolution also as networks (Fig. 3.3). Thus, Klingenberg uses

network concepts to define processes and functions that cause morphological integration

and its counterpart modularity; however, he does not address the structural integration

of morphological systems itself. Although recognizing that the analysis of network inter-

actions permits the identification of integration in some contexts (e.g., genetic regulatory
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networks), Klingenberg is skeptical to study morphological integration using network con-

nectivity patterns: “studies of morphological data, however, do not have this information

on the network of interactions between the measured traits, but need to infer interactions

from the patterns of covariation among traits” (Klingenberg, 2008). The skepticism of

Klingenberg on the use of connectivity patterns to quantify morphological integration

comes from identifying the nodes of the morphological network as morphometric traits

(landmarks positions or distances between them). This was precisely the point of Paul M.

Magwene in his studies on the use of proximity graphs to establish correlation between

morphometric traits and to analyze morphological integration and modularity (Magwene,

2001, 2008).

In this thesis, I use morphological networks in an entirely different way. Here, the

nodes of the network represent solely the anatomical parts of the skull, that is, its bones.

In the same manner, links represent solely the physical connection of these bones, that

is, sutures. Skull bones are morphological parts able to vary at all morphological levels

of information (size, shape, orientation, and connection); most of this variation occurs

at the boundaries of bones where connections are established. Thus, it is expected that

two connected bones would be more related, or morphologically integrated (i.e., likely

to covary in size, shape, orientation, and connection), than two disconnected bones; just

because a connection sets a developmental and functional dependency between them (see

5.2.2). Thus, if connections between bones act as sites of morphological integration,

it is reasonable to quantify the integration among skull bones using their connectivity

patterns. An advantage of studying morphological integration at the connectivity level is

that network models offer a priori hypotheses about morphological integration–directly

from the patterns of organization of structures. Some of these hypotheses concern how

different parts (groups of bones) of the skull are integrated between them, in other words,

the modular organization of the skull.

3.4 Modularity

Morphological systems acquire a modular organization due to differences in the degree of

integration between groups of parts, that is, a heterogeneous integration of the system.

More precisely, a morphological module is (1) a delineated group of parts more integrated

internally than externally, (2) that persist in time according to its scale, and (3) that

is reusable, constructed as a block co-optable (in theory) under different needs (Bolker,

2000; Callebaut, 2005).
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We can identify morphological modules in the skull according to different definitions

of integration (first condition). Functional modules group bones that interact to perform

a specific function, such as protection of the brain, hosting sensory organs, and feed-

ing (Cheverud, 1982). Developmental modules group bones with the same genetic and

epigenetic regulatory factors; for example, skull bones have been classified as chordal or

pre-chordal according to mesodermal or neural crest origin (Santagati and Rijli, 2003);

also, different regions that develop within the same morphogenetic field (Weiss, 1939;

Waddington, 1956; Wolpert, 1977). Finally, evolutionary modules group bones that co-

evolve together in coordination; for example, at the level of proportions, these modules are

usually identified by measuring coordinated changes in shape and size (Cheverud et al.,

1983; Magwene, 2001; Bookstein et al., 2006; Adams et al., 2004; Bastir and Rosas, 2005;

Bastir et al., 2005; Goswami, 2006; Willmore et al., 2006; Mitteroecker and Bookstein,

2007; Klingenberg, 2008, 2010; Mitteroecker et al., 2012).

At a pure structural, a connectivity module is defined as a group of parts with more

connections between them than to other parts outside the group. This definition of mod-

ule is also valid for any other biological system because of its generality (Callebaut and

Rasskin-Gutman, 2005; Schlosser and Wagner, 2004). In order to identify modules, we

need a level-specific operative definition of module and adequate tools to quantify the in-

tegration of parts. Here, connectivity modules in the skull have been identified according

to the organization of connections between bones to form highly connected groups, by

means of a network analysis of their global connectivity patterns (see 4.2).
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Tools for Networks Analysis

The analysis of network models requires a specific set of tools: concepts, descriptions, and

algorithms; Network Theory is the branch of mathematics that supplies them. Here, I

describe the tools used in the present thesis to analyze skull networks. Other reviews and

books offer more complete lists of parameters and methods (Albert and Barabási, 2002;

Dorogovtsev and Mendes, 2003; Newman, 2003; Newman and Girvan, 2004; Newman

et al., 2006; Mason and Verwoerd, 2007).

Network parameters have been scripted in a MATLAB environment (MATLAB, 2010)

using the Brain Connectivity Toolbox (Rubinov and Sporns, 2010) and Ezyfit 2.41 Toolbox

(Moisy, 2010). See Appendix A for code descriptions.

4.1 Network Model

A network G(N,K) is the combination of two sets: a set of nodes (N ) and a set of links

(K ), in which each link has two endpoints that represent a connection between two nodes.

The most common representation of a network is a drawing of dots joined by lines; the

way used to represent a network is trivial as long as the same relations between nodes are

kept.

4.1.1 Model Descriptors

The number of nodes and links are the raw descriptors of network models: nodes represent

the elements of the system, bones; while links represent their relations, suture contacts.

Thus, a link connecting two nodes indicates the presence of a mutual relation. Non-

reciprocal relations are indicated by directed links; variation in the interaction strength

is indicated by weighted links. In this thesis, skulls have been modeled as undirected,

unweighted networks (see 5.1).
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The Adjacency Matrix

The adjacency matrix Ai,j is the mathematical structure that codifies the information on

nodes’ connection. For undirected, unweighted networks this is a symmetric binary matrix

of size N x N, where 1 indicates presence and 0 indicates absence of connection. The

adjacency matrix defines the connectivity pattern of the network: the number and the

particular distribution of connections between nodes. It also defines the neighborhood,

connectivity context, of each node as all the nodes to which it connects.

Ai,j =


a1,1 a1,2 a1,3 a1,j

a2,1 a2,2 a2,3 a2,j

a3,1 a3,2 a3,3 a3,j

ai,1 ai,2 ai,1 ai,j


4.1.2 Element Descriptors

The element descriptors are the connectivity parameters measured for individual nodes,

that is, the connectivity context that defines the role of each node in the network.

Node Connectivity

The node connectivity (Eq. 4.1) is the sum of connections a specific node has to other

nodes in the network:

ki =

j=n∑
i=1

Ai,j (4.1)

Clustering Coefficient

The node clustering coefficient (Eq. 4.2) measures the presence of connections between

the neighbors of a node: the amount of neighbors that are also connected between them.

Formally, the clustering coefficient is the ratio between the total number of links connecting

its nearest neighbors and the total number of all possible edges between all these nearest

neighbors, which is ki(ki − 1)/2:

Ci =

∑
(τi)∑

ki(ki − 1)
(4.2)

where τi is the number of connections between the neighbors of node i.
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Shortest Path Length

The shortest path length between two nodes (Eq. 4.3) is a pair-wise measure of their

shortest distance:

`i,j = d(ni, nj) (4.3)

where d(ni, nj) is the minimum distance in number of links to connect nodes i and j. By

default, links have length one; thus, the shortest path between two connected nodes is 1.

Non-connected nodes have higher shortest path length depending on how well connected

they are to others. Of course, many paths exist between any two nodes, being or not the

shortest ones. Imagine, for example, a group of islands connected by bridges. The only

way to travel from one to another is crossing these bridges; if there is no direct bridge,

we travel through different islands, across different bridges, to our destination. The same

occurs when we ‘walk’ within a network. Here, the path length refers to the number

of links we must ‘cross’ to go from one node to another; as if we were crossing bridges

between islands1.

Within-module Connectivity Coefficient

The within-module connectivity coefficient of a node (Eq. 4.4) is the normalized number

of connections this node has to other nodes in the same module:

Zi =
ki − k̂si
var(Ks)

(4.4)

where ksi is the number of connections of node i within its module and Ks are the

connections of all nodes within the module.

Participation Index

The node participation index (Eq. 4.5) is a measure of how uniform is the distribution of

connections to nodes that do not belong to the same module:

Pi = 1−
NM∑
s=1

(
ksi
ki

)2

(4.5)

If a node has all its connections within its module Pi is equal to 0; rather, if the

distribution of all node connections is uniform to all modules then Pi is equal to 1.

1This is not just a metaphor, a similar problem known as the Seven Bridges of Königsberg was solved
by Euler in 1741, in which it is the first work on Graph Theory.
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The Definition of Single Node Roles

The most straightforward way to define the role (functional importance) of a node in the

network is by the number of connections; a hub is a node with the highest connectivity

in the network, for example, one or two standard deviations more than the mean con-

nectivity. This definition of node roles, based solely on the number of connections, is not

useful when comparing different networks that have disparity of connectivities. A more

precise definition of hub uses the node within-module connectivity (Zi), instead of the raw

connectivity (Guimerà et al., 2007). This definition not always agrees with the definition

of hubs as nodes with a higher number of connections. Although defined as a single node

parameter, this makes sense only within a modular context (see 4.2).

Thus, in a modular context, a node can also act either as a connector, if it spreads

its connections among different modules (connecting modules) or as a local node if it

keeps most connections within its module. The role of each node within a given modular

structure is characterized by two complementary parameters: Zi and Pi. The ZP space

divides nodes in four categories: (1) local hubs, when Zi is high and Pi is low; (2) connector

hubs, when Zi and Pi are high; (3) connector non-hubs, when Zi is low and Pi is high;

and (4) local non-hubs, when Zi and Pi are low (Fig. 4.1).
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Figure 4.1: ZP space definition. A taxonomy of node roles according to two dichotomies,

local/connector and non-hub/hub, results in four roles: connector hubs, local hubs, con-

nector non-hubs, and local non-hubs (Guimerà and Nunes-Amaral, 2005).

In a biological network, disparity of roles among nodes reveals heterogeneity in the

network organization. This tells us that not all nodes have the same number of connections
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and that not all nodes participate equally in the inter-connectedness of the system. Also,

the distinction between connectors and local nodes tells us which are the nodes that

maintain the integration between modules.

4.1.3 System Descriptors

System descriptors are parameters that capture properties of the entire network and are

derived from the combination of node parameters. These descriptors are useful to compare

organization between different systems: (1) biological and non-biological systems, (2)

biological systems at different scales, and (3) different systems of the same kind.

Density of Connections

The density (Eq. 4.6) is the number of existing connections with respect to the maximum

possible, which is N(N − 1)/2:

Density =
2K

N(N − 1)
(4.6)

Density measures completeness: how many connections are realized of the total possi-

ble; a complete network has a density equal to 1.

Heterogeneity and Connectivity Distribution

The heterogeneity (Eq. 4.7) is the variance of connectivity of the nodes in the network:

H =

√
var(K)

mean(K)
(4.7)

A finer analysis of the network’s heterogeneity is possible by looking at the specific

frequency of nodes with a given number of connections in the network. The connectivity

distribution (Eq. 4.8) is the frequency of occurrence of nodes with k connections:

P (k) =
Nk

N
(4.8)

P (k) is the probability to find a node with a given number of connections in the net-

work. In the same manner, the cumulative connectivity distribution (Eq. 4.9) captures

the frequency of nodes with connectivity equal or greater than k ; it is a common method-

ological choice to avoid the statistical fluctuations of the P (k) in networks with a small

number of nodes (Dorogovtsev and Mendes, 2003, Appendix A):

Pcum(k) =
Nk′≥k
N

(4.9)
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Theoretical Connectivity Distributions

The functional form of the P (k) characterizes the heterogeneity of the network. Moreover,

the P (k) function informs about the possible nature of the mechanisms that formed the

network, for example, power-law distributions by preferential attachment, or binomial

distribution by random processes (Albert and Barabási, 2002). Regardless of the lack

of a one-to-one mapping between P (k) functions and mechanisms, the fit of the P (k)

to a specific theoretical distribution aids in finding out specific mechanisms of network

formation (see 5.2.3). Usually, it is convenient to analyze how the P (k) fits four theo-

retical distributions: binomial, linear, exponential, and power-law (see 4.1). All these

functions share a heterogeneous distribution of connections among nodes; the only theoret-

ical distribution for homogeneity is a point indicating that all nodes are equally connected.

Table 4.1: Theoretical models of connectivity distribution

Theoretical Model Function

Binomial P (k) = a+ b · k + c · k2

Linear P (k) = a+ b · k
Exponential P (k) = a · eb·k

Power-Law P (k) = a · k−γ

Mean Clustering Coefficient and Clustering Distribution

The mean clustering coefficient (C) is the arithmetic mean of the clustering coefficient of

all nodes in the network (Eq. 4.2). The C(k) is the distribution of the clustering coefficient

mean of all nodes with k connections; similarly to the P (k), this distribution describes the

structure of the network. For instance, a right-skewed distribution indicates the presence

of highly clustered groups of nodes or blocks (Mason and Verwoerd, 2007).

Mean Shortest Path Length and Diameter

The mean shortest path length (L) is the arithmetic mean of the shortest path length

between all pairs of nodes in the network (Eq. 4.3). Conversely, the diameter of a network

is the longest one of all these shortest path lengths. Together with the C, the L identifies

the presence of the small-world effect when compared with randomly generated networks.
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4.1.4 Organization Descriptors

Organizational descriptors capture the connectivity patterns that promote hierarchical

and modular structures. Often, their analysis requires the use of null models (see 6.1) and

grouping techniques (see 4.2.2).

The Small-World Effect

The small-world effect is an organization feature of networks characterized by highly clus-

tered nodes, like in a regular network, and a small mean shortest path length, like in a

random network (Watts and Strogatz, 1998). This is a pervasive feature of many real

networks; to identify the presence of the small-world effect in the network, the values of

C and L are compared with those of a random network with the same number of nodes

and connections (Watts and Strogatz, 1998). Small-world networks have higher values

of C than regular and random networks, and similar or lower values of L. However, a

common problem in the analysis of the small-world effect in networks with few nodes

(i.e., n < 100) is that the value of C cannot be sufficiently higher than for random net-

works; hence, the detection of the small-world is unreliable. To circumvent this problem,

the analysis can be corrected so that for any number of nodes, a network is small-world if

[(C/Crand)/(L/Lrand)] ≥ 0.012n1.11 (Humphries and Gurney, 2008). The heterogeneity of

the connectivity pattern in small-world networks is related with the emergence of modular

organizations.

Community Structure

Networks have community structure if nodes are grouped into densely connected sets. In

this context, the definition of module is simple: a group of nodes with more connections

among them than to other nodes outside the module; however, detecting modules is

very tricky. Indeed, this is an NP-complete problem (non-deterministic polynomial time

problem), which means that evaluationing all possible partitions to find the best solution

takes too much computational time. This is because the number of partitions on which we

look for an optimal one is extremely huge. The number of possible partitions of a set of n

elements is called the nth Bell number; for instance, the Bell number for a small network of

21 nodes, like the human skull, is aprox. 4.75·1014. The use of heuristic tools overcome this

problem, for example, traditional clustering techniques based on similarity/dissimilarity

matrices, oriented algorithms based on prior information, and spin-glass models (see Porter
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et al., 2009, for an extensive review). The method used here to detect modules in skull

networks is explained in section 4.2.

Hierarchy

A hierarchical organization occurs if network modules are, simultaneously, composed of

smaller modules (blocks or motifs). The number of nested layers of modules varies from

one network to another, which can be different even within modules in the same network.

Two system descriptors indicate presence of hierarchical organization in networks: connec-

tivity distribution, P (k), and clustering distribution, C(k). Right-skewed P (k) and C(k)

indicate that the neighborhoods of less connected nodes are highly clustered while those

of highly connected nodes (i.e., hubs) are sparsely connected, which would suggest that

hub nodes are acting as inter-connectors between blocks. Indirectly, modularity detection

methods that grouped together nodes hierarchically could reveal also the presence of a

hierarchy. Both approaches were used to identify the presence of hierarchy and building

blocks in skull networks.

4.2 Analysis of Modularity in Networks

A heuristic approach was used to identify connectivity modules in skull networks: an

agglomerative hierarchical clustering analysis on a similarity matrix, which was derived

from the connectivity pattern of all nodes in the network. The outcome is a dendrogram

of nested groups of nodes. The best of all partitions was then identified using an index

of quality. The following sections describe the steps taken in this thesis to carry out a

modularity analysis: (1) quantification of nodes similarities, (2) agglomerative grouping

of nodes, and (3) identification of the best partition.

4.2.1 Topological Overlap

The topological overlap (Eq. 4.10) is a normalized measure of similarity that estimates

the extent to which two nodes connect to the same other nodes:

TO(ni, nj) = TO(nj , ni) =
J(ni, nj)

min(ki, kj)
(4.10)

where J(ni, nj) is the total amount of neighbors in common between two nodes and

min(ki, kj) the lowest connectivity of both nodes. Two nodes that share all their con-

nections (with the same other nodes) have a TO of 1, whereas two nodes without any

neighbor in common have a TO of 0.
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The TO was the similarity matrix used in the agglomerative cluster analysis; This

has been extensively used to analyze modularity in different types of networks (Ravasz

et al., 2002; Solé et al., 2007), because it is expected that nodes in the same module

connect to the same nodes (nodes with the same neighbors belong to the same module).

This measure of similarity has been extensively used in social networks, where it is called

structural equivalence (Breiger et al., 1975).

4.2.2 Hierarchical Clustering Analysis

The hierarchical clustering analysis2 brings together nodes with a higher TO in single

branches until all nodes form one single group. After each match, the TO matrix is

recalculated; grouped nodes act as a new element in the grouping process. The final

outcome is a dendrogram that shows hierarchically nested partitions. We can use the

inconsistency coefficient to know which partitions are consistent enough (Jain and Dubes,

1988). However, inconsistency cannot identify the best cut-off point of the dendrogram;

to do this, I use a quality index based on connectivity, which is similar to an optimization

factor, described in the next section.

4.2.3 Newman-Girvan Q Value

The modularity Q-value (Eq. 4.11) compares the within-module connectivity with a ran-

dom distribution of connections, as an index of quality:

Q =
M∑
m=1

[
ks(m)

K
−
(
km
2K

)2
]

(4.11)

where M is the number of modules, ks(m) is the sum of connections from nodes to the

same module m, and km is the sum of all connections of nodes in module m (Newman

and Girvan, 2004). The Q-value is calculated for each bifurcation in the dendrogram; the

highest value indicates the best partition of the network (Fig. 4.2).

2This method should not be confused with the model descriptors: Ci, C, and C(k) described in 4.1.
In these parameters the term clustering refers to the presence of triangular motifs of connection, whereas
hierarchical clustering analysis refers to a method of aggrupation.
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Figure 4.2: Schema of the identification process of the best partition. The five possible

partitions are indicated with dashed lines; the modularity Q-value is measured in each

bifurcation. The highest value indicates the best partition according to connections within

and between modules.



5

The Skull Network Model

The use of network models in biology has also introduced many new concepts from more

specialized literature on Network Theory in order to describe and explain biological sys-

tems, such as small-world, scale-free, and hubs (reviewed in Proulx et al., 2005; Knight

and Pinney, 2009). However, since network analysis has not been applied extensively to

anatomical systems, most concepts in Network Theory lack any morphological interpre-

tation (but see Rasskin-Gutman, 2003; Esteve-Altava et al., 2011, 2013c,a). On the other

hand, we also lack a reference framework for network models construction in morphologi-

cal systems, which is important to interpret the outcomes of the network analysis. Here,

I explain the abstraction process followed to build skull network models and how network

parameters can be interpreted in the context of the development and evolution of the skull

morphology.

5.1 Building Skull Network Models

A network is a set of elements interacting; thus, the first step to build a network model

is to identify the type of element and interaction. Elements and interactions must have

unique definitions so that they can be unequivocally identified in all regions of the system

and, in a comparative framework, also in other related systems. Figure 5.1 summarizes

the abstraction process from morphological systems to network representations. Here,

skull network models have been built using descriptions of skull contacts from the special-

ized literature, which have been supported by the observation of drawings and digitized

images available on-line (Rowe, 2002; MCPA2, 2005). Information about bones and

presence/absence of sutures was codified in an adjacency matrix.

53
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Figure 5.1: Abstraction process to build morphological networks. The process begins with

A) the identification of elements and interactions, then B) abstracting any other type of

information but the structure, C) including physical position in the space, and finished

with D) the codification of structural information in an adjacency matrix of presence (1)

and absence (0) of contacts. From Esteve-Altava et al. (2011).

For simplicity, elements of the network have been defined as skull bones as they are

found in adult organisms, that is, a rigid body of ossified tissue. The structural relationship

modeled as a connection is the presence of a suture surface between them. These definitions

have been chosen in order to perform a broad comparative analysis between distantly

related species of tetrapods, including extant and extinct species. A definition of element

and connection with more information (e.g., weighted links according to the length of

the suture) would describe better the real structure of extant skulls, but hamper the

comparative analysis with extinct forms. In practice, bones may be only partially ossified,

and yet they are solid enough to be considered bones, for example, some cartilaginous

bones. When that happens, the decision whether to consider these bones as elements of

the network, and hence part of the network model, or not is somehow subjective. In these

cases, the decision has been taken according to expert descriptions in the literature and

personal judgment. Doubts about suture joints because of different degrees of obliteration

and cartilaginous bounds have been solved in the same manner.

As it occurs in the construction of any model, or use of any representation system,

the construction of skull networks is susceptible to some errors and simplifications that, if

they are not identified (and fixed or assumed), can lead to some misunderstanding. These

building errors/simplifications can be classified in three groups (excluding typing errors):

• Identification of elements and relations

• Typological simplifications

• Illusions of symmetry
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5.1.1 Identification of Elements and Relations

The first, and most important, step in network analysis is the construction of a proper

network model for the system of interest and the questions asked. To do this, the units

of description and the relations modeled must be selected carefully: model descriptors

must have precise definitions to enable their identification in all the objects of the study.

However, this is not always a straightforward task neither in theory nor in practice (Butts,

2009). Think, for example, in an ecological study that aims to capture trophic interactions

between species. Although identifying a predator-prey relation is pretty easy, a broader

definition of the trophic relation that includes symbiosis, parasitism, or scavenging may

introduce some doubts. In addition, the definition of taxonomic species is not always in

total accordance with ecological species, and species definition is subject to change. For

the same real ecosystem, different network models, created attending to different criteria,

can give different outcomes.

In skull networks the units of description are bones and physical junctions. However,

the bone unit may change widely, for example, during development. For instance, the

frontal bone in the human skull is a single unpaired bone in the adult, but two paired

bones at birth. A different approach could use the ossification centers as elements of the

skull network, but that would exclude fossil skulls from the analysis. The same applies to

the definition of physical junction as the structural relation between bones. To use suture

joints is an easy way to identify most of the contacts occurring in the skull, but excludes

from the network those bones that join the skull in a different way, such as the mandible.

Moreover, a dichotomous definition of relation between bones (i.e. presence or absence)

may obscure differences in the strength of junctions because of their length. On the other

hand, this binary definition can take into account all interactions even when the length of

the contact is unknown, which is common in fossils.

5.1.2 Typological Simplifications

The skull is one of the most variable parts in size and shape of the anatomy of tetrapods

(Goodrich, 1958; Hildebrand, 1988; Kardong, 2005), and yet its topological structure is

conserved to a great extent within taxa. However, there is also variation at the species

level, especially at the anatomical regions where several bones meet, or is likely that they

meet (Berry and Berry, 1967). For instance, in the pterion region of the human skull

where the temporal, parietal, sphenoid, and frontal bones meet (Fig. 5.2); moreover, left

and right sides of the skull can have also different pterion configurations (Saheb et al.,
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2011). Contrary to what may seem, this source of intraspecific variation is not only due

to developmental or environmental contingencies, but also heritable (Wang et al., 2006).

A B

C D

Figure 5.2: Variation in the connectivity pattern of the pterion region in the human skull.

A) Sphenoparietal, sphenoid and parietal bones contact; B) frontotemporal, frontal and

temporal bones contact; C) stellate, the four bones meet in a single point (i.e., counting

as no contact); and D) epipteric, a wormian bone appears in the intersection of the four

bones, contacting to all of them. From Esteve-Altava et al. (2011).

Given this amount of potential variation due to local connectivity configurations and

the presence of wormian bones (i.e., extra bones), it is arguable that taking into account

only the ‘type’ form would lead to some misrepresentation or, at least, oversimplification

of the structural organization of the skull; different individual skulls could have some

local variation in their connectivity pattern, and hence, could show a slight variation

in their network properties. However, type forms, as those described in the literature,

were preferred for the kind of questions addressed in this study: patterns of structural

organization, evolutionary trends, and construction rules in the tetrapod skull. In this

context, the skull network model represents a consensus (‘average’) form of the skull in

a species, which is also the most commonly found in real skulls. To include the kind of
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variation mentioned requires methodological shifts practically impossible in fossil forms:

the use of ‘averaged networks’ for adults, a temporal layered approach of the network

development, and in-depth empirical studies on variation of the suture patterns in each

species.

5.1.3 Illusions of Symmetry

A particular example of the typological error in the construction of skull network models

is the tendency to symmetrize suture patterns when the ‘type’ form is described from real

skulls. Figure 5.3 shows an example of this error in a turtle skull roof, where this is quite

common. Here, the pattern of connection between left and right side bones is asymmetric

(Fig. 5.3A) because the left prefrontal and the right frontal have a suture contact whereas

their contralateral pairs have not an equivalent contact. However, representations and

descriptions tend to omit, or minimize, this kind of variation by symmetrizing the con-

nectivity patterns (Fig. 5.3B).

BA

Figure 5.3: Example of the illusion of symmetry error in the skull roof of the turtle Emys

orbicularis. A) CT scan of the skull in dorsal view from Digimorph (Jamniczky and

Russell, 2007). B) Skull roof drawing (Gaffney, 1979).

This error is widespread, especially in fossil descriptions, in which connectivity pat-

terns may be obscured by the conservation of specimens and taphonomic processes (see,

e.g., De Renzi et al., 2002). For instance, differences in the description of Seymouria bay-

lorensis mainly arose due to the dorsoventral compression of the skull and the incomplete

conservation of some suture joints (White, 1939; Laurin, 1996). The origin of this error
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lays in the well-established idea that the vertebrate body plan is symmetric bilaterally

by default; a condition broken in some internal structures such as the heart (Rasskin-

Gutman and Izpisua-Belmonte, 2004; Ibañes and Izpisúa-Belmonte, 2009). Thus, small

disruptions of bilateral symmetry are thought to occur due to errors or fluctuations dur-

ing development because of alterations of the developmental program or environmental

stress (Valen, 1962; Hallgŕımsson, 1998; Willmore et al., 2005). However, in the context

of early development, it has been recognized that this kind of symmetric pattern, in

which four elements meet in a point, is physically unstable (Fig. 5.4A), and that other

accommodations (Fig. 5.4B-D) are more stable (Thompson, 1992).

A B C D

Figure 5.4: Example of patterns of intersection of four anatomical elements in one plane:

A) a single point shaping a cross meeting point, B) a H-shape, C) a K-shape, and D) a

rounded off shape with an empty space that stabilize the transitory single point stage. No-

tice that A and D would render the same connectivity pattern. Modified from Thompson

(1992, pg. 490).

Regarding the identification of symmetric patterns in the four-cells developmental

stage D’Arcy Thompson wrote, “considering the physical stability of the other arrange-

ment, the great preponderance of cases in which it is known to occur, the difficulty of

recognizing the polar furrow in cases where it is very small and unless it be specially looked

for, and the natural tendency of the draughtsman to make an all but symmetrical structure

appear wholly so, I was wont to attribute to error or imperfect observation all those cases

where the junction-lines of four cells are represented as a simple cross”. This example

comes from the observation of frog eggs during development at the four-cells stage, where

the cross arrangement is transitory and tends to change to other, more stable arrange-

ments, such as the H-shape and K-shape. This phenomenon is also observed in skulls,

where H-shapes and K-shapes are common, for example, in the pterion sphenoparietal and
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frontotemporal shapes, respectively. The single-point meeting of four bones (Fig. 5.4 A),

as for four cells, is just an illusion. At a small scale of detail the instability of the cross is

solved by an “empty space or by a little drop of extraneous fluid” (Fig. 5.4 D) that avoids

a fourfold contact (Thompson, 1992). This would explain the stability of the symmetric

pattern across the midline in skulls, but not exclude that the K-shape and the H-shape

are also present in nature, and as such they are also a source of variation.

The skull network models constructed for this study assume that the connectivity

patterns are symmetric across the midline; therefore, fourfold contact are impossible and

were computed as no contact when observed.

5.2 Morphological Interpretation of Network Models

The interpretation of network parameters in a morphological context is a starting require-

ment to analyze skull network models. In this thesis, interpretations have been co-opted

from earlier studies on morphological networks (Rasskin-Gutman and Buscalioni, 2001;

Rasskin-Gutman, 2003; Magwene, 2008), as well as re-interpreted from studies of other

types of biological networks (Guimerà et al., 2007; Dunne et al., 2008a; Horvath and

Dong, 2008; Xu et al., 2011) and non-biological networks (Dorogovtsev and Mendes, 2003;

Newman et al., 2006).

Although most of the concepts used to interpret network parameters have a deep

background in other type of studies of the organismal form, for example, at the level of

proportions, it is not the aim of this section to deal with the causal correlation between

connections and proportions. The morphological interpretations that are offered here

concern only the level of connections (Fig. 5.5).

5.2.1 Interpreting Model Descriptors

The model descriptors of the skull network, nodes and links, represent skull bones and

suture joints, respectively. As such, they are discrete anatomical units with their own

developmental features, structure, and functions. For instance, bones are hard parts with

characteristic shapes that protect soft parts of the head and provide insertion surfaces

for the muscles, whereas suture joints are fibrous attachments between bones that act

as primary sites of bone growth and stress forces diffusors (see 1.1). The structural and

functional roles of bones and sutures in the skull are useful to interpret the morphological

meaning of properties derived from the skull suture pattern, that is, the connectivity



60 CHAPTER 5. THE SKULL NETWORK MODEL

pattern captured in the adjacency matrix.

Abstraction Level

Model Descriptors

Element Descriptors

System Descriptors

Organization Descriptors

Network Theory

Node
Link

Adjacency Matrix
Connectivity

Clustering Coefficient
Shortest Path Length

Z score
Participation Index

Density
Heterogeneity

Connectivity Distribution
Clustering Coefficient Distribution

Mean Clustering Coefficient
Mean Shortest Path Length

Small-World Effect
Hierarchy

Community Structure

Morphology

Bone
Suture

Skull Suture Pattern
Burden Rank
Co-relation
Proximity

Compactedness
Cohesiveness
Complexity
Irregularity

Burden Architecture
Co-relation Architecture

Integration by Co-relation
Integration by Proximity

Order
Nestedness
Modularity

Figure 5.5: Morphological Interpretation of Network Descriptors.

5.2.2 Interpreting Element Descriptors

The descriptors of network elements capture morphological properties of bones that appear

as a consequence of the number and targets of their suture connections in the skull.

Moreover, the interpretation of element descriptors is important because they are the

basis for the computation of system descriptors.

Connectivity as Bone Burden-Rank

The boundaries of skull bones are of two types. One is the boundary of bones with other

tissues, such as connective, muscular, or membranes that cover the brain, neural system,

and sensory organs in general. The other type is the boundary with other skull bones
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in the suture joints. Without neglecting the importance of the bone boundaries with

other tissues (e.g., Moss’s Functional Matrix, see 1.1.3), the role of craniofacial sutures as

primary sites of bone growth determines the overall general morphology of the skull (Rice,

2008). Moreover, suture joints also participate in other functions, such as intracranial

movements of bones (Jaslow, 1990) and strain sinks (Rafferty et al., 2003). Thus, it is

expected that bones with more suture connections have central structural and functional

roles affecting the morphology of the entire skull.

In this context, the more connections a bone has, the more dependences it estab-

lishes during development with other bones. This can also be interpreted as the presence

of more developmental constraints or shape correlations among bones, because they are

growing, acquiring shape, and functioning in coordination. Riedl’s concept of burden

(1978), captures this association between the number of connections (relations or depen-

dences) between parts and the intensity of constraints, due to acquired developmental and

evolutionary compromises (Schoch, 2010). Thus, bones with higher connectivity would

have a higher burden rank than those with fewer connections, which would carry a rela-

tively minor role in the skull structure maintenance (Esteve-Altava et al., 2013a). These

roles, played during both development and evolution (Wagner and Laubichler, 2004), are

important to understand the evolutionary patterns of skull morphology in vertebrates

concerning bone losses and fusions (Esteve-Altava et al., 2013b,c).

Clustering Coefficient as Bone Correlation

The clustering coefficient of a bone (Ci) measures the presence of suture connections

between its neighbors. Following the morphological interpretation of connectivity as de-

velopmental dependence between bones, Ci captures a kind of co-dependence of second

order, or correlation (Dorogovtsev and Mendes, 2003). Groups of correlation can emerge

as the interdependence between bones increases due to this second order relation. This

clustering allows also for some flexibility to avoid developmental constraints thanks to

the redundancy in the connectivity pattern. Thus, Ci is interpreted morphologically as an

estimate of correlation of a bone with its neighbors; in other words, the level of integration

of a bone in the skull.

Shortest Path Length as Bones Effective Proximity

The shortest path length between two bones (`i,j) indicates the proximity of these bones in

a network context. Since distances in networks are measured as the number of connections



62 CHAPTER 5. THE SKULL NETWORK MODEL

that separate two elements, proximity has to be understood as the range of interdepen-

dence between two bones. Thus, two bones separated by two connections (i.e., with a

suture contact to the same bone but not between them) have less co-dependence than two

bones connected directly, and more than other two bones with a `i,j = 3. As a conse-

quence, correlation between bones would be higher if they are ‘near’ and lower if they are

‘far’ in the network; for example, in stress forces flow (Rafferty et al., 2003; Moazen et al.,

2009) or in shape co-variations (Woo, 1931; Pearson and Woo, 1935). In this context, `i,j

also captures integration between bones, but at a larger range than Ci.

Z Score as Bone Contribution to Module Compactedness

The within-module connectivity (Zi) measures the contribution in number of connections

of a bone to its module. As the contribution of the bone increases, all bones in the mod-

ule are more packed. Consequently, there is an increasing in correlations and proximity

between bones in the module. Thus, Zi captures the contribution of a bone to its module

compactedness. Rasskin-Gutman (2003) introduced the term compactedness as a syn-

onym of density in morphological networks. Here, the term is used in a more restrictive

way, as the contribution of one bone to its module density.

Participation Index as the Bone Contribution to Between-Modules

Cohesiveness

The participation index of a bone in a modular organization (Pi) captures the number of

suture connections to other bones outside the module; thus, generating cohesion between

the different modules of the skull and creating the physical boundary between them. Bones

with a higher Pi are responsible to maintain the cohesiveness and semi-independence

between skull modules. Thus, the Pi is interpreted as the contribution of bones to skull

cohesiveness. Horvath and Dong (2008) interpreted cohesiveness as interdependence due

to the Ci of nodes. Here, the term cohesiveness is reserved for the role that some bones

play in the integration of different modules, which illustrates better the meaning of the

word.

5.2.3 Interpreting System Descriptors

System descriptors refer directly to some of the most important structural properties of

the skull form.
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Density of Connections as Morphological Complexity

The network density is the number of existing connections in the network of the total

possible given the number of elements. In a network with density equal to 1 all elements

are connected, that is, they are interacting. The relative number of connections is an index

of the number of functional responses; thus, density has been interpreted as a measure

of complexity in many other biological networks (Sporns, 2002; Newman and Forgacs,

2005; Proulx et al., 2005; Dunne et al., 2008a). It is expected that systems with more

relationships would show more complex behaviors, and perform more functions. Thus,

density is interpreted here as an estimate of morphological complexity of the skull network

(Rasskin-Gutman, 2003; Esteve-Altava et al., 2013c).

Heterogeneity as Topological Irregularity

In a skull network, the primary difference between bones arises because of their number

of connections. The skull has a regular or homogeneous arrangement of bones if all bones

have the same connectivity. Conversely, if bones have a different number of connections,

homogeneity turns into heterogeneity. The heterogeneity statistic is thus interpreted as

the first descriptor of irregularity in skull networks.

It is an old claim in studies on evolutionary trends in skull morphology that a reduction

in the number of bones (i.e., Williston’s Law) is compensated by a differentiation of the

remaining bones (see 1.2.1). This pattern-process is known as anisomerism, in contrast to

polysomerism that accounts for patterns of less specialized, similar anatomical elements.

In this context, heterogeneity has been also interpreted as anisomerism (Esteve-Altava

et al., 2013c).

Connectivity and Clustering Distributions as the Skull ‘Architectural Plan’

The literature on complex networks refers to the connectivity and clustering coefficient

distributions of the network, P(k) and C(k), as the system architecture; an analogy that

illustrates the importance of these parameters to characterize structural patterns and

generative processes (Barabasi and Bonabeau, 2003; Wutchy et al., 2006; Sales-Pardo

et al., 2007; Horvath and Dong, 2008; Knight and Pinney, 2009). Notice that P(k) and C(k)

capture the frequency of bones with a given connectivity and their clustering coefficient,

respectively. With these two statistics one can build ‘identical’ skull networks, that is,

the family of all isomorphic network; different in the labels of each element, but equal

in structure (see 2.2.5). It is still a matter of discussion whether or not we can assume
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that sharing an architectural plan means also sharing analogous generative processes and

properties (Fox-Keller, 2005).

In morphology, the concept of architectural plan, body plan, or Bauplan has more

connotations that in network science. However, the interpretation of the P(k) and the

C(k) parameters as the morphological architectural plan makes sense at this structural,

topological level. A step further in this interpretation is to consider similarities in skull

network architectures as an evidence of the ‘unity of type’ or homology (see 2.2.4).

Clustering Coefficient and Path Length as Morphological Integration

The mean clustering coefficient (C) and the mean shortest path length (L) of the network

are both parameters related to information flow and correlation in the system. Thus, C

captures short-range information correlation due to redundancy among neighbor bones,

while L determines the speed of information transmission to distant bones in the skull

depending of their effective proximity.

In any morphological system there are three types of information flows, let’s call them

functional, developmental, and evolutionary. The functional information flow is related

to the daily activity of the skulls in performing its functions, for example, the diffusion

of stress forces acting on skull bones from injuries and feeding activity (Moazen et al.,

2009), a flow that is determined by the presence and nature of suture junctions. The

developmental information flow occurs between different skull bones during their coordi-

nated development and growth in the form of allometric growth patterns (Huxley, 1932;

Sardi et al., 2007; González et al., 2010). For instance, the premature closure of sutures

leads to different types of deformities due to the compensatory and coordinate growth in

other skull bones than are not directly involved in the suture closure (Hukki et al., 2008).

Finally, evolutionary information flow is that observed as correlated variation between

traits (or “structured associations between the evolutionary divergence”) because of the

functional, developmental, and genetic integration, which allows to define morphological

integration and modularity in morphological systems (Klingenberg, 2010). Therefore, C

and L are interpreted as components of the morphological integration of the skull network,

because of their central role in ‘short’ and ‘long’ correlation between bones determining

the skull morphology.
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5.2.4 Interpreting Organization Descriptors

The organization descriptors of the network are quantified by comparing the values of

parameters of empirical networks with those of theoretical models (described in 6.1).

These descriptors inform us on emergent patterns of organization in the skull, such as

modularity and hierarchy. For instance, a network is said to be more or less regular in

relation to a theoretical regular network, for which we know the expected values of some

parameters. Thus, organization descriptors are interpreted as the organizational principles

of skull networks.

The Small-World Effect as a State of Order

The identification of a network as a small-world network is made by comparing its C and L

with those of a random equivalent network. Small-world networks are more clustered that

random ones, sometimes more than regular networks too, and yet the proximity between

elements is as small as it is in random networks or even slightly smaller (Watts and

Strogatz, 1998). The presence of the small-world effect in a skull indicates that it exhibits

a particular order in the suture pattern, between regularity and randomness. Riedl (1978)

glimpsed this property of morphological order as “a region of unspecified probability, a

no-man’s-land between accident and necessity”. As a result of this mixed pattern of order

some regions of the skull show an orderly arrangement of bones, while other regions are

undistinguishable from randomness. The reason for this is the presence of some short-cut

connections between bones that otherwise would be ‘far away’. The bones that establish

these special sutures are usually the skull hubs, or those bones identified as contributors

to cohesiveness. As a consequence, modularity emerges in these skull networks.

Hierarchy as Nestedness of Building Blocks

A hierarchical structure in the skull network exists when groups of bones within modules

tend to group also in smaller sub-modules or blocks. These blocks tend to be particularly

highly clustered, so we can identify hierarchical organizations by looking at the archi-

tectural plan of the skull. The formation of small blocks occurs between less connected

bones that tend to cluster, while more connected ones hierarchically integrate the blocks.

Furthermore, hierarchical networks that represent any kind of systems are characterized

by right-skewed P(k) and C(k); ideally, both following power-law distribution functions

(Wutchy et al., 2006).
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Community Structure as Modularity

The presence of community structure in a network model of the skull is interpreted directly

as the presence of a modular organization in the skull. In this context, a skull connectivity

module is a set of bones more connected to bones within the module than to other bones

outside the module. Modularity, like integration, is a multi-layered concept in morphology

that arise at different levels of organization: developmental, genetic, functional, and evo-

lutionary, and converge in morphological modules (Callebaut and Rasskin-Gutman, 2005;

Klingenberg, 2008). Traditionally, morphological modules are inferred from data of co-

variation of morphological traits, usually sets of landmarks that tend to change together;

thus, they are also called variational modules (Wagner et al., 2007).

Connectivity modules differ from variational modules in that they are inferred from

the topological arrangement of anatomical units, and not the shapes of these units. The

morphological information for variational and connectivity modules comes from completely

different sources (Rasskin-Gutman, 2003). Since suture connections have precise roles in

the skull development and function, connectivity modules have also a developmental and

functional foundation, in addition to be originally structural or topological modules.
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Null Models & Simulations

The comparative analyses carried out in this study require the use of null models to ascer-

tain the presence of specific connectivity patterns. In addition, the study of evolutionary

trends in skull networks has been complemented with computational model simulations.

This chapter describes the special features of null models used here, as well as the com-

putational model constructued to simulate skull evolution.

Null models and computational models have been scripted in a MATLAB environ-

ment (MATLAB, 2010) and they can also run in GNU Octave (Eaton, 2002) with few

modifications. See Appendixs B and C for code descriptions.

6.1 Null Network Models

Null models are a special kind of models. They are not only idealized representations

of strategies and scenarios for a given phenomenon, but they also provide a comparative

baseline to analyze other models. For networks, it is most informative to analyze the

growth rules and constraints that might cause connectivity patterns. The properties

of empirical networks, when compared with those of the null models, reveal plausible

mechanisms of network formation, which are interpreted here as plausible developmental

and evolutionary processes. Even assuming that there is not a one-to-one mapping between

the construction rules of networks and their properties (Fox-Keller, 2005), null models are

useful heuristic tools.

Null models described in this section have been used for the following tasks:

• Providing null hypotheses of network organization in Chapter 4

• Setting initial premises of computational models of skull evolution in Chapter 9

• Constructing generative morphospaces in Chapter 11
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• Providing hypotheses of developmental mechanisms in Chapter 12

6.1.1 The Regular Network

A network is regular if all its nodes have the same number of connections (Fig. 6.1). In

addition, a network is strongly regular, SRN(N, ki, λ, µ), if there are integers values for

the common neighbors of every two adjacency nodes (λ) and every two non-adjacent

nodes (µ) (Godsil and Royle, 2004).

regular network strongly regular network

Figure 6.1: Example of a regular network with N = 10 and ki = 4 and a SRN(10, 3, 0, 1).

Single node properties are the same for all nodes because all of them are isomorphic.

Regular models represent highly ordered networks, in which all nodes are isomorphic

in connectivity. Thus, network properties are precisely determined by the network descrip-

tors: N, ki, λ, and µ. For instance, the P (k) function characteristic of regular networks

is just a point because all nodes have the same connectivity. The fit of an empirical

network to a regular model indicates that it has a homogeneous pattern of connections,

which suggests possible causal biological mechanisms. For instance, the scutes in a turtle

shell organized as a honeycomb. This regular pattern is formed by stationary accretion

of keratin, a mechanism of homogeneous growth in all directions, which forms the char-

acteristic growth rings of the scutes; in other words, a ‘regular’ mechanism related to a

regular pattern.

6.1.2 The Erdös & Rényi Random Network

The Erdös & Rényi null model, ER, consist in a set of N nodes connected at random

with a probability p (Erdös and Rényi, 1959); the choice whether or not to join two

nodes are made independently for all pairs of nodes. The ER model captures a type of

network where all connections are equally possible and there are no constraints. Some of
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the properties of these networks are size-dependent and, for example, as the number of

nodes increase the P (k) tends to a Poisson distribution, the L increases as the logarithm

of the number of nodes, and clusters tend to disappear (Dorogovtsev and Mendes, 2003).

The value of p affects the completedness of the network. The higher the value of p, the

higher the network density, mean clustering coefficient, and the lower the mean shortest

path length. Thus, a network with p = 0 is totally disconnected and one with p = 1 is

complete.

If the parameters of a network are significatively similar to those of a ER network, we

cannot reject a mechanism of formation without preference of linkage (i.e., at random). In

other words, the biological mechanisms that produce this organization are unbiased. On

the contrary, a significant deviation from this null model would suggest that the biological

mechanisms have linkage preferences, for example, constraints that prevent some links

while facilitating others. For instance, the cranial cavity that hosts the human brain has a

spherical shape that imposes a bias in the probability of connection between the occipital

bone and the nasal bones, which is physically impossible given their range of shape. This

is an example of a structural constraint on a connectivity pattern. Many processes can

bias a pure random pattern of connection; as a consequence, real networks deviate from

the ER null model. However, this null model is still valid as a comparative model to

establish the presence of some network features, for example, the small-world effect.

6.1.3 The Random Equivalent Network

A random equivalent network, REN, is a random null model that has the P (k) of another

network as a restriction. This null model is constructed by rewiring at random the con-

nections of another network while keeping its functional form (Luczak, 1990). Both, the

REN and ER are null models of randomness; but the REN model stresses the relation

between the P (k) and the randomness in other network properties: the presence of hubs,

the formation of clusters, and the reduction of path lengths. Again, a significant deviation

indicates that the mechanism of formation is biased.

6.1.4 The Watts & Strogatz Model

The model of Watts & Strogatz (1998) is a mechanism to create networks with a small-

world organization like those found in real systems, such as social networks, neural

systems, and power grids. The process starts with a regular network that is sequentially

rewired at random, with probability p (all nodes have an opportunity to change or keep
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their connection). By increasing the parameter p from 0 to 1, a network switches from

regular to random; the small-world organization is a transition state in this process

(Fig. 6.2). Two network parameters, C and L, show characteristic values for small-world

networks, which are not found in regular and random networks; small-world networks

have higher C than regular and random networks, and less or equal L. In contrast,

the P (k) functions in these networks is similar to that of random networks (Albert and

Barabási, 2002).

Regular RandomSmall-World
L = 0.57
C = 0.50

L = 0.45
C = 0.59

L = 0.45
C = 0.43

REGULARITY RANDOMNESS

Figure 6.2: The Watts & Strogatz model creates small-world networks by introducing

randomness in an initial regular network. Modified from Watts and Strogatz (1998).

6.1.5 The Barabási & Albert Model

The model of Barabási & Albert (1990) is a preferential attachment mechanism of net-

work growth that generates power-law P (k)s. Barabási and Albert called these networks

scale-free because of their topology, invariable at all scales. In this model, new nodes are

connected sequentially to old nodes (already present in the network) with a probability

that depends on the number of connections of the old nodes (Fig. 6.3); the nodes with

more connections will get more new connections (“the rich get richer”). As a consequence

of the topology generated by preferential attachment, scale-free networks show: a pres-

ence of hubs, a constant diameter, a C(k) independent of k, and a tolerance to random

losses of nodes (Barabási and Albert, 1990; Albert et al., 2000; Albert and Barabási, 2002).
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ki = 2 ki = 3 ki = 4 ki = 7* * * *

Figure 6.3: Example of a growth sequence by the Barabási & Albert model. The node

marked with an asterisk has the highest probability to capture a new link as the network

grows. Thus, the number of its connections increases progressively, until it becomes a

network hub.

6.1.6 The Gabriel Network

A Gabriel network is kind of proximity network (Gabriel and Sokal, 1969). In contrast

with all the previous networks, proximity networks are spatially constrained: two nodes

only connect if they satisfy a geometric requirement. In a Gabriel network, GN, two

nodes are connected if, and only if, the sphere whose diameter is the line between both

nodes does not have any other node within its volume (Fig. 6.4).

A

B

C

Figure 6.4: Geometric requirement in a 2D Gabriel network. Two nodes in a Gabriel

network are connected if there are no other nodes in the space between them. Since other

nodes are out of the circumference between A–B and B–C, connections between both

pairs are possible (black lines); but, nodes A and C are disconnected because within its

circumference there is a third node, B.
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The GN null model states that the connectivity pattern of a node in the network is

constrained by geometric distances, which prevent some connections and facilitate others.

A deviation from a GN null model indicates that nodes can overcome those constraints

that prevent their connection. When nodes have a regular distribution in space, the

properties of GN s are equal than those found in regular networks (Gabriel and Sokal,

1980); however, here I use this model to work with random distributions of nodes in a 3D

space. In this case, network properties largely depend on the number and exact position

of nodes. A numerical analysis helps to identify the range of possible network properties

in this scenario (Fig. 6.5).

P(k) function
C(k) function

100

90

70

60

40
50

30
20

10

80

O
cc

ur
re

nc
e 

(%
)

Binomial
Decay

Linear
Decay

Exponential
Decay

Power-law

Figure 6.5: Numerical analysis of Gabriel networks. Histogram showing the occurrence of

different P (k) and C(k) functions in 10,000 GN s of 21 nodes located at random. These

GN networks are mainly characterized by a linear P (k) and a binomial C(k).

Proximity network models in general, and in particular the GN null models, capture an

important developmental constraint in skulls: the impossibility of creating a suture contact

between distant bones. Not because of the physical distance between ossification centers,

but by the presence of insurmountable obstacles between them during development: cavi-

ties, openings, and other bones. Imagine each node in the network as an ossification center

of the skull that starts to grow, constantly in all directions, taking the shape of a perfect

sphere (in an idealized space). Two ossification centers would form a suture connection

where they meet, which will inhibit the formation of new contacts there. Thus, a connec-

tion established previously will prevent new connections. For instance, this occurs in the

pterion region of the human skull, where the parietal, the frontal, the temporal, and the
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sphenoid bones meet. If the sphenoid and the parietal connect first, a frontal-temporal

join is impossible; if the frontal and the temporal connect first, a sphenoid-parietal join

is impossible (see Fig. 5.2). Virtually, this is the same problem observed in the scutes

of turtle’s shells, but now nodes are randomly distributed instead of regularly. Following

the analogy of growth of ossification centers, a GN null model assumes two fundamental

premises: (1) node positioning is random, and (2) node growth is homogeneous in speed

and direction. The premise of homogeneous growth is the main null hypothesis of growth

that this model offers to skull networks.

6.1.7 The Symmetric Gabriel Network

Symmetric Gabriel Networks, SGN, has been developed here as a null model for the

analysis of skull networks, to account for fundamental properties of anatomical systems,

i.e., bilateral symmetry. Thus, the properties of this model offer a better fit to real skull

networks. SGN has been used here for the construction of computational models (see

9.2) and theoretical morphospaces in Chapter 11. Nodes in this model preserve bilateral

symmetry. Additionally, some nodes can be located in the midline of the two bilaterally

symmetric groups. The remaining spatial variables are random. SGN null models show

slightly different properties than GN (Fig. 6.6).
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Figure 6.6: Numerical analysis of symmetric Gabriel networks. Histogram showing the

occurrence of different P (k) and C(k) functions in 10,000 SGN s of 21 nodes: 14 located

symmetrically and 5 in the midline (like in the human skull). For this type of network

the P (k) and C(k) have a binomial distribution in most cases.
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6.2 Computational Model of Skull Evolution

This section describes the computational model used in Chapter 9 to simulate the evolution

of the skull by losses and fusions of bones (Fig. 6.7).

Random Bilateral Bone Positioning
within a Fixed Spatial Boundary

Establishing Connections by
Gabriel Rule

Ancestral Network

rand ≤ l:f

Select one Bone

1. Remove Bone
2. Remove Connections

Reconnect Locally
Using Gabriel Rule

Derived Network

Select one Neighbor
at Random

Select one Bone

1. Merge Bone
2. Merge Connections

FUSIONLOSS

rand > l:f

Bone
Number

Reduction

Stop
Check

bones ≤ 15

bones > 15

End

Figure 6.7: Computational model flowchart
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The model starts each simulation with the generation of a random position vector

that defines the coordinates of each initial bone in a fixed 3D Euclidean spatial boundary.

We add an anatomically sound constraint: bones must preserve bilateral symmetry unless

they are unpaired. Thus, paired bones are positioned with bilateral symmetry on both

sides of the left-right axis at random locations; while unpaired bones are positioned along

the midline in the left-right axis and randomly in the other axes. Once bones have been

positioned (Fig. 6.8A) the Gabriel rule determines their junctions (Fig. 6.8B), forming a

hypothetical ancestral skull network, in which each node represents a bone and each link

represents a bone junction (Fig. 6.8C).

Then, the number of bones is reduced iteratively, by deciding between fusion and loss.

The difference between these two mechanisms is that, for losses, the space left by the

removed bone is locally re-wired again using the Gabriel rule; for fusions, connections are

not lost, instead the ‘new’ bone inherits these connections. Reduction in the number of

bones continues while the simulated skull network has more than 15 bones, otherwise the

simulation stops. The reduction between the initial number of bones (60-67, see below)

to 15 bones is a reasonable range that covers the empirical sample from the skulls with

the highest number of bones, 56 (Ichtyostega and Seymouria) to the skull with the fewest,

18 (Anser). Figure 6.9 shows a 2D toy example of the bone number reduction process

starting with only 12 bones and ending with 5.
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Gabriel RuleBone Positioning Ancestral Network

Figure 6.8: Simplified 12-bone positioning and Gabriel rule connection establishment.

This network will be used as the hypothetical ancestral skull network in the example

of bone number reduction shown in Figure 6.9. A) Positioning bones at random but

preserving bilateral symmetry in a 2D boundary space. Note that bones f and g are

medially positioned unpaired bones. B) Establishing connections among bones by applying

the Gabriel rule: two bones connect if, and only if, the sphere whose diameter is the line

between both bones does not have any other bone within its volume. In this 2D example,

we show only the application of this rule to bone a. Circles have been drawn only for four

bones (a’, b, c, and f ). Following the Gabriel rule, only a-a’ and a-b will connect (solid

line), whereas a-c and a-f will not (dashed line). C) After applying the Gabriel rule to

all pairs of bones, a network among all bones is formed.
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Figure 6.9: Simplified 2D example starting with the 12-bone ancestral network from Figure

6.8. The simulation reduced the number of bones by applying two loss and two fusion

events (l:f was set to 0.5) to the initial network until a 5-bone derived network was reached.

Note that bilateral symmetry is always preserved.





7

Sample & Phylogeny

For the present study I have built three-dimensional unweighted network models for 44

adult skulls of different tetrapod species. Taxa were selected to show the diversity of

tetrapod skull morphologies, including extinct basal forms, depending on the available

literature for a proper network modeling. In addition, seven network models were made

for the human skull (Homo sapiens), one for each craniosynostosis condition analyzed in

Chapter 12.

Figure 7.1 shows the general phylogenetic context of Tetrapoda used in this thesis.

Stem Tetrapoda
Modern Amphibia
Anapsida
Diapsida
Synapsida

Figure 7.1: Basic phylogenetic context.
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7.1 The Sample

• Stem Tetrapoda

– †Ichthyostega sp. Säve-Söderbergh, 1932; from Kardong (2005)

– †Seymouria baylorensis Broili, 1904; from Laurin (1996)

• Modern Amphibia

– Epicrionops petersi Taylor, 1968; from Trueb (1993); Nussbaum (1977)

– Salamandra salamandra Linnaeus, 1758; from Trueb (1993)

– Gastrotheca walkeri Duellman, 1980; from Trueb (1993)

• Anapsida

– †Procolophon pricei Lavina, 1983; from Carroll and Lindsay (1985)

– †Proganochelys quenstedti Baur, 1887; from Gaffney (1990)

– Podocnemis unifilis Troschel, 1848; from Gaffney (1979)

– Chelodina longicollis Shaw, 1794; from Gaffney (1979)

– †Kayentachelys aprix Gafney et al. 1987; from Sterli and Joyce (2007)

– †Chisternon undatum Leidy, 1872; from Gaffney (1979)

– Chelydra serpentina Linnaeus, 1758; from Gaffney (1979)

– Carettochelys insculpta Ramsay, 1886; from Gaffney (1979)

– Gopherus polyphemus Daudin, 1802; from Gaffney (1979)

– Testudo graeca Linnaeus, 1758; from Gaffney (1979)

• Diapsida

– †Petrolacosaurus kansensis Lane, 1945; from Reisz (1981)

– †Youngina capensis Broom, 1914; from Carroll (1988); Gardner et al. (2010)

– †Rhamphorhynchus muensteri Meyer, 1846; from Padian (1984)

– Crocodylus moreletii Duméril & Duméril, 1851; from Goodrich (1958)

– †Stegosaurus armatus Marsh, 1877; from Gilmore (1914); Weishampel et al.

(1993)
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– †Corythosaurus casuarius Brown, 1914; from Ostrom (1961)

– †Plateosaurus engelhardti Meyer, 1837; from Weishampel et al. (1993)

– †Dromaeosaurus albertensis Matthew & Brown, 1922; from Carroll (1988)

– Anser anser Linnaeus, 1758; from Kardong (2005)

– Sphenodon punctatus Evans, 1980; from Goodrich (1958)

– Iguana iguana Linnaeus, 1758; from Estes et al. (1988)

– Python regius Shaw, 1802; from Estes et al. (1988); Kardong (2005)

– Hemitheconyx caudicinctus Duméril, 1851; from Estes et al. (1988); Payne et al.

(2011)

– Tupinambis teguixin Linnaeus, 1758; from Estes et al. (1988)

– Diplometopon zarudnyi Nikolskii, 1907; from Maisano et al. (2006)

– Stenocercus guentheri Boulenger, 1885; from Torres-Carvajal (2003)

– Varanus salvator Laurenti, 1768; from Estes et al. (1988); Rieppel (1993)

• Synapsida

– †Ennatosaurus tecton Efemov, 1956; from Maddin et al. (2008)

– †Dimetrodon gigas Cope, 1877; from Case (1904)

– †Jonkeria ingens Hoepen, 1916; from Boonstra (1936)

– †Thrinaxodon liorhinus Seeley, 1894; from Estes (1961)

– Ornithorhynchus anatinus Shaw, 1799; from Kardong (2005)

– Phascolarctos cinereus Goldfuss, 1817; from Louys et al. (2009)

– Didelphis virginiana Kerr, 1792; from Kardong (2005)

– Homo sapiens Linnaeus, 1758; from Gray (1918)

– Pteropus lylei Andersen, 1908; from Giannini et al. (2006)

– Mus musculus Linnaeus, 1758; from Goodrich (1958)

– Canis lupus Linnaeus, 1758; from Mead and Fordyce (2009)

– Tursiops truncatus Montagu, 1821; from Mead and Fordyce (2009)
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7.2 Phylogenetic Context

Comparative anatomy is the study of the body structures across a range of species, which is

accomplished by means of the comparative method within a phylogenetic context. Usually,

these studies are made by comparing two or more phenotypic variables, such as body size or

morphological measurements (Laurin, 2004; González-José et al., 2008; Laurin et al., 2009).

The statistical techniques to perform these comparisons are regression and correlation for

continuous variables, and contingency tables for discrete variables (Zar, 1999). However,

the evolutionary relationship between the species under comparison violates the underlying

assumption of independence between individuals that these methods assume (Felsenstein,

1985). In Chapter 9 this problem has been dealt with by using a phylogenetic independent

contrast FIC4 (Laurin, 2004) to assess correlations between skull network parameters

within a phylogenetic hypothesis.

7.2.1 Calibrated Phylogeny

The main prerequisite for a comparative analysis of morphological variables, like those

quantified in the skull’s network organization, is the use of a calibrated phylogeny, with

which to perform valid statistical comparisons (Fig. 7.2).

The phylogenetic framework of analysis for this thesis is a supertree assembled accord-

ing to consensus phylogenies for stem tetrapods (Laurin, 2004), amphibians (Cannatella,

2008), anapsids (Meylan, 2001; Hugall et al., 2007), diapsids (Okajima and Kumazawa,

2010; Hugall et al., 2007), and synapsids (Springer et al., 2003; Pace et al., 2008; Phillips

et al., 2009). The assembly of major clades (Amphibia, Anapsida, Diapsida, and Synap-

sida) follows consensus phylogenies discussed in The Tree of Life Web Project (Laurin,

2011; Laurin and Reisz, 2011; Laurin and Gauthier, 2012). The lengths of the branches

were calibrated by the minimal divergence time of the crown group, in million years of

evolution (Ma). For this, time data were collected from the Paleobiological Database

(available at http://paleodb.org), as well as phylogenies used to construct the supertree.

When two branching events apparently occur at the same time, branch lengths were set

to 3 as suggested in Laurin (2004). The supertree was constructed in Mesquite (Maddi-

son and Maddison, 2011). Calibration was made assisted by the Stratigraphic Tool for

Mesquite (Josse et al., 2011); recent geologic time scales were used (Gradstein et al., 1995;

Roscher and Schneider, 2006; Gibbard et al., 2010).
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Figure 7.2: Calibrated phylogeny for the sample of study.
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Results & Discussion
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Network Analysis Results

This chapter summarizes the results of the network analysis of the 44 tetrapod skulls in two

figures for each skull. The first set of figures show the values of network parameters, as well

as the goodness of fit of P (k) and C(k). The second set of figures show the connectivity

modules identified, the skull topological overlap matrix, the dendrogram generated in the

hierarchical clustering analysis, a diagram of the skull in three different views (dorsal,

ventral, and lateral), and the ZP space.
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Ichthyostega sp. (Stem Tetrapoda)

Pcum(k) = 1.16 – 0.09 k – 0.003 k 2

r = 0.98 (binomial)

r = 0.98 (linear)
r = 0.91 (exponential)
r = 0.76 (power-law)

Nodes
Links
Density
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r = 0.71 (binomial)
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Figure 8.1: Network analysis of the skull of Ichthyostega sp.
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Figure 8.2: Connectivity modules in the skull of Ichthyostega sp.
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Seymouria baylorensis (Stem Tetrapoda)

Pcum(k) = 1.14 – 0.06 k – 0.007 k 2

r = 0.97 (binomial)

r = 0.97 (linear)
r = 0.88 (exponential)
r = 0.73 (power-law)

Nodes
Links
Density
Clustering Coefficient
Shortest Path Length
Heterogeneity
Small-World
Modularity Q-value
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3.00
0.37
Yes
0.54

Best fit:

C (k) = – 0.07 + 0.22 k – 0.02 k 2

r = 0.74 (binomial)

r = 0.14 (power-law)
r = 0.07 (linear)
r = 0.05 (exponential)

Best fit:
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Figure 8.3: Network analysis of the skull of Seymouria baylorensis.
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Figure 8.4: Connectivity modules in the skull of Seymouria baylorensis.
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Epicrionops petersi (Amphibia: Gymnophina)

Pcum(k) = 2.2 e – 0.37 k

r = 0.98 (exponential)

r = 0.97 (binomial)
r = 0.95 (power-law)
r = 0.84 (linear)
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Best fit:

C (k) = 1.98 k – 0.96

r = 0.98 (power-law)

r = 0.96 (exponential)
r = 0.94 (binomial)
r = 0.84 (linear)

Best fit:
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Figure 8.5: Network analysis of the skull of Epicrionops petersi.
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Epicrionops petersi (Amphibia: Gymnophina)

00.20.40.60.8

R Frontal
R Nasal
R Septomaxilla
R Premaxilla
L Frontal
L Nasal
L Septomaxilla
L Premaxilla
R Parietal
L Parietal
L Vomer
L Stapes
L Quadrate
L Squamosal
L Pterygoid
L Maxillopalate
R Vomer
R Stapes
R Quadrate
R Squamosal
R Maxillopalate
Os Basale
R Pterygoid

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

Between−module Connectivity (Pi)

W
ith

in
−m

od
ul

e 
C

on
ne

ct
iv

ity
 (Z

i)

ventral view

lateral view

dorsal view

0 local hubs 0 connector hubs
5 local non-hubs 18 connector non-hubs

Figure 8.6: Connectivity modules in the skull of Epicrionops petersi.
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Salamandra salamandra (Amphibia: Caudata)

Pcum(k) = 1 + 0.09 k – 0.04 k 2

r = 0.99 (binomial)

r = 0.97 (linear)
r = 0.90 (exponential)
r = 0.83 (power-law)

Nodes
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Density
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Best fit:

C (k) = 1.98 – 0.58 k + 0.05 k 2

r = 0.99 (binomial)

r = 0.99 (power-law)
r = 0.99 (exponential)
r = 0.96 (linear)

Best fit:
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Figure 8.7: Network analysis of the skull of Salamandra salamandra.
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Salamandra salamandra (Amphibia: Caudata)
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Figure 8.8: Connectivity modules in the skull of Salamandra salamandra.
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Gastrotheca walkeri (Amphibia: Anura)

Pcum(k) = 1.87 – 0.46 k + 0.028 k 2

r = 0.98 (binomial)

r = 0.97 (exponential)
r = 0.92 (power-law)
r = 0.92 (linear)
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Best fit:

C (k) = – 0.15 + 0.21 k – 0.02 k 2

r = 0.63 (binomial)

r = 0.06 (power-law)
r = 0.19 (exponential)
r = 0.27 (linear)

Best fit:
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Figure 8.9: Network analysis of the skull of Gastrotheca walkeri.
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Gastrotheca walkeri (Amphibia: Anura)
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Figure 8.10: Connectivity modules in the skull of Gastrotheca walkeri.



98 CHAPTER 8. NETWORK ANALYSIS RESULTS

Procolophon pricei (Reptilia: Procolophonomorpha)

Pcum(k) = 1.26 – 0.14 k + 0.001 k 2

r = 0.98 (binomial)

r = 0.98 (linear)
r = 0.93 (exponential)
r = 0.78 (power-law)
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Best fit:

C (k) = 0.02 + 0.19 k – 0.02 k 2

r = 0.67 (binomial)

r = 0.17 (linear)
r = 0.13 (exponential)
r = 0.07 (power-law)

Best fit:
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Figure 8.11: Network analysis of the skull of Procolophon pricei.
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Procolophon pricei (Reptilia: Procolophonomorpha)
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Figure 8.12: Connectivity modules in the skull of Procolophon pricei.



100 CHAPTER 8. NETWORK ANALYSIS RESULTS

Proganochelys quenstedti (Reptilia: Testudines)

Pcum(k) = 1.3 – 0.14 k
r = 0.99 (linear)

r = 0.99 (binomial)
r = 0.96 (exponential)
r = 0.89 (power-law)

Nodes
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43
111
0.12
0.43
2.66
0.33
Yes
0.45

Best fit:

C (k) = 1.78 k – 1.03 k

r = 0.85 (power-law)

r = 0.75 (exponential)
r = 0.60 (linear)
r = 0.39 (binomial)

Best fit:
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Figure 8.13: Network analysis of the skull of Proganochelys quenstedti.
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Proganochelys quenstedti (Reptilia: Testudines)
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Figure 8.14: Connectivity modules in the skull of Proganochelys quenstedti.
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Podocnemis unifilis (Reptilia: Testudines)

Pcum(k) = 1.77 – 0.27 k + 0.009 k 2

r = 0.99 (binomial)

r = 0.99 (linear)
r = 0.97 (exponential)
r = 0.93 (power-law)

Nodes
Links
Density
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Heterogeneity
Small-World
Modularity Q-value
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Best fit:

C (k) = 0.34 + 0.003 k – 0.001 k 2

r = 0.32 (binomial)

r = 0.21 (linear)
r = 0.20 (exponential)
r = 0.14 (power-law)

Best fit:
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Figure 8.15: Network analysis of the skull of Podocnemis unifilis.
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Podocnemis unifilis (Reptilia: Testudines)
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Figure 8.16: Connectivity modules in the skull of Podocnemis unifilis.
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Chelodina longicollis (Reptilia: Testudines)

Pcum(k) = 1.3 – 0.16 k + 0.001 k 2

r = 0.99 (binomial)

r = 0.99 (linear)
r = 0.97 (exponential)
r = 0.91 (power-law)

Nodes
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Best fit:

C (k) = 0.34 + 0.11 k – 0.017 k 2

r = 0.85 (binomial)

r = 0.74 (linear)
r = 0.68 (exponential)
r = 0.57 (power-law)

Best fit:
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Figure 8.17: Network analysis of the skull of Chelodina longicollis.
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Chelodina longicollis (Reptilia: Testudines)
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Figure 8.18: Connectivity modules in the skull of Chelodina longicollis.
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Kayentachelys aprix (Reptilia: Testudines)

Pcum(k) = 1.42 – 0.18 k + 0.004 k 2

r = 0.99 (binomial)

r = 0.98 (linear)
r = 0.94 (exponential)
r = 0.86 (power-law)
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Density
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Best fit:

C (k) = 0.08 + 0.13 k – 0.011 k 2

r = 0.38 (binomial)

r = 0.10 (linear)
r = 0.08 (exponential)
r = 0.03 (power-law)

Best fit:
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Figure 8.19: Network analysis of the skull of Kayentachelys aprix.
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Kayentachelys aprix (Reptilia: Testudines)
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Figure 8.20: Connectivity modules in the skull of Kayentachelys aprix.
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Chisternon undatum (Reptilia: Testudines)

Pcum(k) = 1.9 – 0.35 k + 0.016 k 2

r = 0.99 (binomial)

r = 0.98 (exponential)
r = 0.95 (linear)
r = 0.94 (power-law)
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Best fit:

C (k) = 1.4 k – 0.72

r = 0.94 (power-law)

r = 0.92 (binomial)
r = 0.90 (exponential)
r = 0.84 (linear)

Best fit:
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Figure 8.21: Network analysis of the skull of Chisternon undatum.
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Chisternon undatum (Reptilia: Testudines)

00.20.40.60.8

R Frontal
R Prefrontal
R Nasal
L Frontal
L Prefrontal
L Nasal
L Quadrate
L Squamosal
L Postorbital
L Quadratojugal
R Quadrate
R Squamosal
R Postorbital
R Quadratojugal
Vomer
Premaxilla
Premaxilla
Pterygoid
Palatine
Maxilla
Jugal
Basisphenoid
Pterygoid
Palatine
Maxilla
Jugal
Prootic
Parietal
Prootic
Parietal
Opisthotic
Supraoccipital
Exoccipital
Opisthotic
Basioccipital
Exoccipital

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

Between−module Connectivity (Pi)

W
ith

in
−m

od
ul

e 
C

on
ne

ct
iv

ity
 (Z

i)

Supraoccipital

ventral view

lateral view

dorsal view

Supraoccipital

1 local hubs 0 connector hubs
13 local non-hubs 22 connector non-hubs

Figure 8.22: Connectivity modules in the skull of Chisternon undatum.
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Chelydra serpentina (Reptilia: Testudines)

Pcum(k) = 1.57 – 0.26 k + 0.01 k 2

r = 0.98 (binomial)

r = 0.97 (linear)
r = 0.95 (exponential)
r = 0.88 (power-law)
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Figure 8.23: Network analysis of the skull of Chelydra serpentina.
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Chelydra serpentina (Reptilia: Testudines)
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Figure 8.24: Connectivity modules in the skull of Chelydra serpentina.
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Carettochelys insculpta (Reptilia: Testudines)

Pcum(k) = 1.43 – 0.2 k + 0.007 k 2
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r = 0.97 (exponential)
r = 0.90 (power-law)
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Figure 8.25: Network analysis of the skull of Carettochelys insculpta.
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Carettochelys insculpta (Reptilia: Testudines)
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Figure 8.26: Connectivity modules in the skull of Carettochelys insculpta.
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Gopherus polyphemus (Reptilia: Testudines)

Pcum(k) = 1.58 – 0.27 k + 0.012 k 2

r = 0.99 (binomial)

r = 0.98 (exponential)
r = 0.96 (linear)
r = 0.91 (power-law)
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Figure 8.27: Network analysis of the skull of Gopherus polyphemus.
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Gopherus polyphemus (Reptilia: Testudines)

00.20.40.60.8

L Quadrate
L Squamosal
L Prootic
L Pterygoid
L Epipterygoid
L Parietal
L Postorbital
L Quadratojugal
L Jugal
L Frontal
R Palatine
Vomer
R Maxilla
R Premaxilla
R Prefrontal
L Premaxilla
L Palatine
L Maxilla
L Prefrontal
R Quadrate
R Squamosal
R Prootic
R Pterygoid
R Epipterygoid
R Parietal
R Postorbital
R Quadratojugal
R Jugal
R Frontal
Basisphenoid
L Opisthotic
L Exoccipital
Basioccipital
Supraoccipital
R Opisthotic
R Exoccipital

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

Between−module Connectivity (Pi)

W
ith

in
−m

od
ul

e 
C

on
ne

ct
iv

ity
 (Z

i)

L/R Parietals
Vomer

ventral view

lateral view

dorsal view

Parietals

Vomer
0 local hubs 3 connector hubs
17 local non-hubs 16 connector non-hubs

Figure 8.28: Connectivity modules in the skull of Gopherus polyphemus.
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Testudo graeca (Reptilia: Testudines)

Pcum(k) = 1.92 – 0.35 k – 0.02 k 2
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r = 0.99 (exponential)
r = 0.96 (power-law)
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Figure 8.29: Network analysis of the skull of Testudo graeca.
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Testudo graeca (Reptilia: Testudines)
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Figure 8.30: Connectivity modules in the skull of Testudo graeca.
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Petrolacosaurus kansensis (Reptilia: Araeoscelida)

Pcum(k) = 1.64 – 0.31 k + 0.014 k 2
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r = 0.97 (exponential)
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Figure 8.31: Network analysis of the skull of Petrolacosaurus kansensis.
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Petrolacosaurus kansensis (Reptilia: Araeoscelida)
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Figure 8.32: Connectivity modules in the skull of Petrolacosaurus kansensis.
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Youngina capensis (Reptilia: Diapsida)
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Figure 8.33: Network analysis of the skull of Youngina capensis.
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Youngina capensis (Reptilia: Diapsida)
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Figure 8.34: Connectivity modules in the skull of Youngina capensis.
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Rhamphorhynchus muensteri (Reptilia: Pterosauria)

Pcum(k) = 1.35 – 0.16 k – 0.001 k 2
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Figure 8.35: Network analysis of the skull of Rhamphorhynchus muensteri.
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Rhamphorhynchus muensteri (Reptilia: Pterosauria)
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Figure 8.36: Connectivity modules in the skull of Rhamphorhynchus muensteri.
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Crocodylus moreletii (Reptilia: Crocodylia)
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Figure 8.37: Network analysis of the skull of Crocodylus moreletii.
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Crocodylus moreletii (Reptilia: Crocodylia)
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Figure 8.38: Connectivity modules in the skull of Crocodylus moreletii.
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Stegosaurus armatus (Reptilia: Ornithischia)

Pcum(k) = 1.54 – 0.24 k + 0.007 k 2
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Figure 8.39: Network analysis of the skull of Stegosaurus armatus.
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Stegosaurus armatus (Reptilia: Ornithischia)
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Figure 8.40: Connectivity modules in the skull of Stegosaurus armatus.
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Corythosaurus casuarius (Reptilia: Ornithischia)
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Figure 8.41: Network analysis of the skull of Corythosaurus casuarius.
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Corythosaurus casuarius (Reptilia: Ornithischia)
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Figure 8.42: Connectivity modules in the skull of Corythosaurus casuarius.
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Plateosaurus engelhardti (Reptilia: Dinosauria)

Pcum(k) = 1.5 – 0.26 k + 0.01 k 2

r = 0.99 (binomial)

r = 0.99 (linear)
r = 0.98 (exponential)
r = 0.92 (power-law)

Nodes
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Density
Clustering Coefficient
Shortest Path Length
Heterogeneity
Small-World
Modularity Q-value
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0.42
Yes
0.51

Best fit:

C (k) = 0.46 – 0.03 k
r = 0.54 (linear)

r = 0.54 (binomial)
r = 0.52 (exponential)
r = 0.42 (power-law)

Best fit:
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Figure 8.43: Network analysis of the skull of Plateosaurus engelhardti.
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Plateosaurus engelhardti (Reptilia: Dinosauria)

00.20.40.60.8

R Frontal
R Lacrimal
R Prefrontal
R Nasal
R Palatine
R Ectopterygoid
R Quadratojugal
R Jugal
R Postorbital
R Vomer
R Maxilla
R Premaxilla
L Frontal
L Lacrimal
L Prefrontal
L Nasal
L Quadratojugal
L Palatine
L Ectopterygoid
L Jugal
L Postorbital
L Vomer
L Maxilla
L Premaxilla
Supraoccipital
R Tabular
L Tabular
R Exoccipital
R Opisthotic
L Exoccipital
L Opisthotic
R Prootic
R Squamosal
R Parietal
R Postfrontal
L Prootic
L Squamosal
L Parietal
L Postfrontal
Basisphenoid
Basioccipital
R Stapes
R Quadrate
L Stapes
L Quadrate
L Pterygoid
R Pterygoid
Parasphenoid
Basipterygoid

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

Between−module Connectivity (Pi)

W
ith

in
−m

od
ul

e 
C

on
ne

ct
iv

ity
 (Z

i)

Supraoccipital

ventral view

lateral view

dorsal view

Supraoccipital

1 local hubs 0 connector hubs
28 local non-hubs 20 connector non-hubs

Figure 8.44: Connectivity modules in the skull of Plateosaurus engelhardti.
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Dromaeosaurus albertensis (Reptilia: Dinosauria)

Pcum(k) = 1.1 + 0.03 k – 0.02 k 2

r = 0.99 (binomial)

r = 0.97 (linear)
r = 0.91 (exponential)
r = 0.83 (power-law)

Nodes
Links
Density
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Shortest Path Length
Heterogeneity
Small-World
Modularity Q-value
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0.28
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0.49

Best fit:

C (k) = –0.4 + 0.32 k – 0.03 k 2

r = 0.61 (linear)

r = 0.23 (power-law)
r = 0.19 (linear)
r = 0.15 (exponential)

Best fit:
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Figure 8.45: Network analysis of the skull of Dromaeosaurus albertensis.
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Dromaeosaurus albertensis (Reptilia: Dinosauria)
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Figure 8.46: Connectivity modules in the skull of Dromaeosaurus albertensis.
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Anser anser (Aves: Anseriformes), Adult

Pcum(k) = 1.44 – 0.4 k + 0.03 k 2

r = 0.98 (binomial)

r = 0.97 (exponential)
r = 0.91 (linear)
r = 0.90 (power-law)
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Best fit:

C (k) = – 0.1 + 0.26 k – 0.03 k 2

r = 0.73 (binomial)

r = 0.31 (linear)
r = 0.21 (exponential)
r = 0.04 (power-law)

Best fit:
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Figure 8.47: Network analysis of the skull of Anser anser.
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Anser anser (Aves: Anseriformes)
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Figure 8.48: Connectivity modules in the skull of Anser anser.
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Sphenodon punctatus (Reptilia: Rhynchocephalia)

Pcum(k) = 1.13 – 2.2 k – 0.01 k 2

r = 0.97 (binomial)

r = 0.96 (linear)
r = 0.88 (exponential)
r = 0.75 (power-law)
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Best fit:

C (k) = – 0.2 + 0.26 k – 0.03 k 2

r = 0.91 (binomial)

r = 0.25 (power-law)
r = 0.13 (linear)
r = 0.08 (exponential)

Best fit:
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Figure 8.49: Network analysis of the skull of Sphenodon punctatus.
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Sphenodon punctatus (Reptilia: Rhynchocephalia)
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Figure 8.50: Connectivity modules in the skull of Sphenodon punctatus.
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Iguana iguana (Reptilia: Squamata)

Pcum(k) = 1.38 – 0.19 k + 0.007 k 2

r = 0.96 (binomia)

r = 0.94 (exponential)
r = 0.89 (linear)
r = 0.86 (power-law)
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Modularity Q-value
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Best fit:

C (k) = 0.29 + 0.046 k – 0.003 k 2

r = 0.45 (binomial)

r = 0.31 (linear)
r = 0.25 (exponential)
r = 0.09 (power-law)

Best fit:
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Figure 8.51: Network analysis of the skull of Iguana iguana.
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Iguana iguana (Reptilia: Squamata)
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Figure 8.52: Connectivity modules in the skull of Iguana iguana.
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Python regius (Reptilia: Squamata)

Pcum(k) = 1.36 – 0.27 k + 0.01 k 2

r = 0.98 (binomial)

r = 0.96 (exponential)
r = 0.95 (linear)
r = 0.84 (power-law)
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Best fit:

C (k) = 0.24 + 0.09 k – 0.01 k 2

r = 0.50 (binomial)

r = 0.33 (linear)
r = 0.26 (exponential)
r = 0.07 (power-law)

Best fit:
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Figure 8.53: Network analysis of the skull of Python regius.
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Python regius (Reptilia: Squamata)
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Figure 8.54: Connectivity modules in the skull of Python regius.
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Hemitheconyx caudicinctus (Reptilia: Squamata)

Pcum(k) = 1.68 – 0.34 k + 0.002 k 2

r = 0.98 (binomial)

r = 0.96 (linear)
r = 0.96 (exponential)
r = 0.89 (power-law)
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Best fit:

C (k) = 0.42 – 0.05 k + 0.003 k 2

r = 0.38 (binomial)

r = 0.37 (power-law)
r = 0.36 (exponential)
r = 0.35 (linear)

Best fit:
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Figure 8.55: Network analysis of the skull of Hemitheconyx caudicinctus.
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Hemitheconyx caudicinctus (Reptilia: Squamata)
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Figure 8.56: Connectivity modules in the skull of Hemitheconyx caudicinctus.
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Tupinambis teguixin (Reptilia: Squamata)

Pcum(k) = 1.73 – 0.35 k + 0.018 k 2

r = 0.98 (binomial)

r = 0.96 (exponential)
r = 0.89 (power-law)
r = 0.88 (linear)
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Best fit:

C (k) = 2.05 k – 1.15

r = 0.94 (power-law)

r = 0.89 (exponential)
r = 0.84 (binomial)
r = 0.74 (linear)

Best fit:
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Figure 8.57: Network analysis of the skull of Tupinambis teguixin.
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Tupinambis teguixin (Reptilia: Squamata)

00.20.40.60.8

R Pterygoid
R Ectopterygoid
R Palatine
R Prefrontal
R Nasal
R Jugal
R Lacrimal
R Maxilla
Premaxilla
R Vomer
R Septomaxilla
L Pterygoid
L Ectopterygoid
L Palatine
L Prefrontal
L Nasal
L Jugal
L Lacrimal
L Maxilla
L Vomer
L Septomaxilla
R Opisthotic
R Supratemporal
R Quadrate
R Squamosal
L Opisthotic
L Supratemporal
L Quadrate
L Squamosal
Supraoccipital
Basioccipital
Basisphenoid
R Prootic
R Epipterygoid
L Prootic
L Epipterygoid
R Postorbital
L Postorbital
Frontal
L Postfrontal
Parietal
R Postfrontal

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

Between−module Connectivity (Pi)

W
ith

in
−m

od
ul

e 
C

on
ne

ct
iv

ity
 (Z

i) ParietalR maxilla
L Maxilla

ventral view

lateral view

dorsal view

Parietal

Maxillas

3 local hubs 0 connector hubs
21 local non-hubs 18 connector non-hubs

Figure 8.58: Connectivity modules in the skull of Tupinambis teguixin.
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Diplometopon zarudnyi (Reptilia: Squamata)

Pcum(k) = 1.71 – 0.36 k + 0.19 k 2

r = 0.99 (binomial)

r = 0.97 (exponential)
r = 0.94 (linear)
r = 0.92 (power-law)
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Best fit:

C (k) = 1.48 – 0.28 k + 0.016 k 2

r = 0.96 (binomial)

r = 0.95 (power-law)
r = 0.95 (exponential)
r = 0.88 (linear)

Best fit:
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Figure 8.59: Network analysis of the skull of Diplometopon zarudnyi.
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Diplometopon zarudnyi (Reptilia: Squamata)
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Figure 8.60: Connectivity modules in the skull of Diplometopon zarudnyi.
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Stenocercus guentheri (Reptilia: Squamata)

Pcum(k) = 1.66 – 0.33 k + 0.016 k 2

r = 0.98 (binomial)

r = 0.97 (exponential)
r = 0.91 (power-law)
r = 0.98 (linear)
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Best fit:

C (k) = 0.4 – 0.0005 k – 0.002 k 2

r = 0.71 (binomial)

r = 0.75 (linear)
r = 0.71 (exponential)
r = 0.60 (power-law)

Best fit:
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Figure 8.61: Network analysis of the skull of Stenocercus guentheri.
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Stenocercus guentheri (Reptilia: Squamata)
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Figure 8.62: Connectivity modules in the skull of Stenocercus guentheri.
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Varanus salvator (Reptilia: Squamata)

Pcum(k) = 1.36 – 0.25 k + 0.01 k 2

r = 0.97 (binomial)

r = 0.96 (linear)
r = 0.93 (exponential)
r = 0.81 (power-law)
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Best fit:

C (k) = – 0.22 + 0.2 k – 0.02 k 2

r = 0.84 (binomial)

r = 0.53 (power-law)
r = 0.52 (linear)
r = 0.39 (exponential)
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Figure 8.63: Network analysis of the skull of Varanus salvator.
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Varanus salvator (Reptilia: Squamata)
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Figure 8.64: Connectivity modules in the skull of Varanus salvator.
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Ennatosaurus tecton (Synapsida: Pelycosauria)

Pcum(k) = 1.44 – 0.24 k + 0.009 k 2

r = 0.98 (binomial)

r = 0.97 (exponential)
r = 0.92 (power-law)
r = 0.82 (linear)
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Figure 8.65: Network analysis of the skull of Ennatosaurus tecton.
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Ennatosaurus tecton (Synapsida: Pelycosauria)
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Figure 8.66: Connectivity modules in the skull of Ennatosaurus tecton.
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Dimetrodon gigas (Synapsida: Pelycosauria)

Pcum(k) = 1.63 – 0.29 k + 0.01 k 2

r = 0.99 (binomial)

r = 0.96 (exponential)
r = 0.94 (linear)
r = 0.89 (power-law)
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r = 0.73 (power-law)

Best fit:
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Figure 8.67: Network analysis of the skull of Dimetrodon gigas.
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Dimetrodon gigas (Synapsida: Pelycosauria)

00.20.40.60.8

L Prevomer
L Ectopterygoid
L Palatine
L Premaxilla
L Maxilla
L Prefrontal
L Nasal
L Lacrimal
L Jugal
R Prevomer
R Ectopterygoid
R Palatine
R Premaxilla
R Maxilla
R Prefrontal
R Nasal
R Lacrimal
R Jugal
Ethmoid
R Epipterygoid
L Epipterygoid
R Frontal
L Frontal
L Squamosal
L Quadratojugal
L Pterygoid
L Stapes
L Quadrate
L Tabular
L Supratemporal
L Postorbital
L Postfrontal
L Parietal
Interparietal
R Tabular
R Supratemporal
R Postorbital
R Postfrontal
R Parietal
R Pterygoid
Occipital
R Stapes
R Quadrate
R Squamosal
R Quadratojugal

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

Between−module Connectivity (Pi)

W
ith

in
−m

od
ul

e 
C

on
ne

ct
iv

ity
 (Z

i)

L/R Maxillas

ventral view

lateral view

dorsal view

Maxillas

2 local hubs 0 connector hubs
20 local non-hubs 23 connector non-hubs

Figure 8.68: Connectivity modules in the skull of Dimetrodon gigas.
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Jonkeria ingens (Synapsida: Therapsida)

Pcum(k) = 1.95 e – 0.29 k

r = 0.98 (exponential)

r = 0.92 (power-law)
r = 0.92 (linear)
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Figure 8.69: Network analysis of the skull of Jonkeria ingens.
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Jonkeria ingens (Synapsida: Therapsida)
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Figure 8.70: Connectivity modules in the skull of Jonkeria ingens.
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Thrinaxodon liorhinus (Synapsida: Therapsida)

Pcum(k) = 1.06 – 0.01 k – 0.02 k 2

r = 0.98 (binomial)

r = 0.97 (linear)
r = 0.89 (exponential)
r = 0.76 (power-law)
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Figure 8.71: Network analysis of the skull of Thrinaxodon liorhinus.
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Thrinaxodon liorhinus (Synapsida: Therapsida)
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Figure 8.72: Connectivity modules in the skull of Thrinaxodon liorhinus.
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Ornithorhynchus anatinus (Mammalia: Monotremata)

Pcum(k) = 1.46 – 0.23 k + 0.008 k 2

r = 0.99 (binomial)

r = 0.98 (linear)
r = 0.97 (exponential)
r = 0.90 (power-law)
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Figure 8.73: Network analysis of the skull of Ornithorhynchus anatinus.



161

Ornithorhynchus anatinus (Mammalia: Monotremata)
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Figure 8.74: Connectivity modules in the skull of Ornithorhynchus anatinus.
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Phascolarctos cinereus (Mammalia: Diprotodontia)

Pcum(k) = – 1.4 – 0.15 k
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r = 0.97 (exponential)
r = 0.92 (power-law)
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Figure 8.75: Network analysis of the skull of Phascolarctos cinereus.
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Phascolarctos cinereus (Mammalia: Diprotodontia)
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Figure 8.76: Connectivity modules in the skull of Phascolarctos cinereus.
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Didelphis virginiana (Mammalia: Didelphimorpha)

Pcum(k) = 1.96 – 0.38 k + 0.019 k 2

r = 0.99 (binomial)
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Figure 8.77: Network analysis of the skull of Didelphis virginiana.
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Didelphis virginiana (Mammalia: Didelphimorpha)
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Figure 8.78: Connectivity modules in the skull of Didelphis virginiana.
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Homo sapiens (Mammalia: Primates)
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Figure 8.79: Network analysis of the skull of Homo sapiens
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Figure 8.80: Connectivity modules in the skull of Homo sapiens.
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Pteropus lylei (Mammalia: Chiroptera)

Pcum(k) = 1.59 – 0.33 k + 0.02 k 2

r = 0.99 (binomial)

r = 0.99 (exponential)
r = 0.96 (power-law)
r = 0.93 (linear)
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Best fit:
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r = 0.74 (exponential)
r = 0.65 (power-law)

Best fit:
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Figure 8.81: Network analysis of the skull of Pteropus lylei.
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Pteropus lylei (Mammalia: Chiroptera)
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Figure 8.82: Connectivity modules in the skull of Pteropus lylei.
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Mus musculus (Mammalia: Rodentia)

Pcum(k) = 1.3 – 0.14 k + 0.001 k 2

r = 0.99 (binomial)

r = 0.99 (linear)
r = 0.97 (exponential)
r = 0.91 (power-law)
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r = 0.01 (power-law)

Best fit:

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Connectivity (k)

C
on

ne
ct

iv
ity

 D
is

tri
bu

tio
n

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Connectivity (k)

C
lu

st
er

in
g 

C
oe

ff
ic

ie
nt

 (C
)

Figure 8.83: Network analysis of the skull of Mus musculus.
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Mus musculus (Mammalia: Rodentia)
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Figure 8.84: Connectivity modules in the skull of Mus musculus.
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Canis lupus (Mammalia: Carnivora)
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Figure 8.85: Network analysis of the skull of Canis lupus.
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Canis lupus (Mammalia: Carnivora)
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Tursiops truncatus (Mammalia: Cetacea)
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Figure 8.87: Network analysis of the skull of Tursiops truncatus.
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Tursiops truncatus (Mammalia: Cetacea)
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9.1 Structural Constraints in the Evolution of the

Tetrapod Skull Complexity: Williston’s Law Revisited

Using Network Models

Abstract — Ever since the appearance of the first land vertebrates, the skull

has undergone a simplification by loss and fusion of bones in all major groups.

This well-documented evolutionary trend is known as “Williston’s Law”. Both

loss and fusion of bones are developmental events that generate, at large evo-

lutionary scales, a net reduction in the number of skull bones. We reassess this

evolutionary trend by analyzing the patterns of skull organization captured

in network models in which nodes represent bones and links represent suture

joints. We also evaluate the compensatory process of anisomerism (bone spe-

cialization) suggested to occur as a result of this reduction by quantifying the

heterogeneity and the ratio of unpaired bones in real skulls. Finally, we per-

form simulations to test the differential effect of bone losses in skull evolution.

We show that the reduction in bone number during evolution is accompanied

by a trend toward a more complex organization, rather than toward simplifica-

tion. Our results indicate that the processes by which bones are lost or fused

during development are central to explain the evolution of the morphology of

the skull. Our simulations suggest that the evolutionary trend of increasing

morphological complexity can be caused as a result of a structural constraint,

the systematic loss of less connected bones during development.

Introduction

One of the best-documented trends in vertebrate evolution is the reduction in number of

skull bones, also known as Williston’s law (Gregory, 1935, see also 1.2.1). For instance, the

mammalian skull lacks bones that are characteristically present in ancestral forms, such as

the pre- and post-frontals, postorbitals, and quadratojugals, and has also new bones that

have appeared from the fusions of others, such as the occipital and the sphenoid (Sidor,

2001). Similar patterns of bone loss have been reported in other lineages, including snakes,

lizards, birds, and turtles (Goodrich, 1958; Estes, 1961; Gaffney, 1979; Carroll, 1988;

Rieppel, 1993; Laurin, 1996; Sereno, 1997; Kardong, 2005).

This reduction of the number of skull bones in vertebrates has been interpreted as

an evolutionary trend toward simplification of skull architecture, associated to a decrease
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in complexity (Hildebrand, 1988, Chapter 8). Sidor (2001) argued that this reduction

is phylogenetically sound in synapsids, interpreting that simplified, compact skulls are

selectively advantageous. At the same time, developmental constraints that facilitate the

loss and fusion of bones, and others that prevent the formation of new ossification centers,

favor this trend. A constraint that can cause an evolutionary reduction in number of skull

bones is related to changes in the developmental timing of suture formation (Depew et al.,

2008); both losses and fusions are caused by either lack of formation of ossification centers

or premature closures of suture joints.

The difficulty of measuring and comparing morphological complexity in the skull across

lineages hampers the evolutionary study of complexity at large-scales. According to Gre-

gory (1934), a greater complexity of individual bones compensates for the reduction in

number. Gregory called this compensation “anisomerism”, a trade-off process that gen-

erates more specialized, different anatomical elements, as a result of this reduction in

number. The opposite process, “polysomerism”, accounts for a pattern of less specialized,

similar anatomical elements (Gregory, 1934).

A simple and operative way to study this general trend in major groups of vertebrates

is by defining skull complexity as a function of the number of bones (Sidor, 2001); however,

this approach is limited (for a thorough discussion see McShea, 1991, 1996, 1998). In order

to circumvent these limitations, we represent each vertebrate skull as a network of con-

nected bones using network analysis to detect changes in their structural arrangement (Fig.

9.1). This method provides an operative framework for the early comparative anatomy

ideas of Geoffroy Saint-Hilaire’s principle of connections (Riedl, 1978; Le Guyader, 2003).

Its output yields connectivity patterns among individual bones, within bone groups, as

well as statistical signals of morphological complexity.

Recent analyses of complexity trends in many biological systems using network theory

demonstrate that complexity can be quantified more accurately as a function of the

relational properties of the system’s components than as the number of elements (Sporns,

2002; Newman and Forgacs, 2005; Proulx et al., 2005; Newman et al., 2006; Mason

and Verwoerd, 2007; Dunne et al., 2008a; Knight and Pinney, 2009). These methods

can also be applied to the study of morphological complexity in anatomical systems

(Rasskin-Gutman, 2003; Esteve-Altava et al., 2011). Here, morphological complexity is

quantified as a function of the pattern of organization of the skull, in which bones and

suture joints are modeled as the nodes and links of a network. Using this framework, we

have reassessed Williston’s Law in the tetrapod skull.
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A B

maxilla

nasal

frontal

prefrontal

maxilla

nasal

frontal

Figure 9.1: Example of how connectivity relationships among bones can change between

evolutionary related species in a schematic skull representation of A) an extinct therapsid,

Thrinaxodon liorhinus, and B) a modern mammal, Canis lupus. The left frontal, maxilla,

nasal, and prefrontal have been highlighted with colors; blue, red, green, and yellow,

respectively, to show changes in the local connectivity pattern as a result of prefrontal

bone loss. A new connection appears between the frontal and the maxilla as a consequence

of the prefrontal loss.

Morphological complexity was quantified with three different well-established network

statistics: the density of connections, the characteristic path length (L), and the clus-

ter coefficient (C). These statics have been used before to approach complexity in other

biological systems, in different ways. For example, density has been used in ecological

network models to analyze complex functional responses (Dunne et al., 2008a,b) We used

density as a direct measure of complexity; the more connected a network, the more com-

plex its organization. L is often used to estimate the speed of information flow between

the nodes of a network associated to complex organizations (Xu et al., 2011). This flow

depends on the nature of each type of network; for instance, the Internet transmits data,

a food web transmits biomass, and the brain transmits electric impulses. For instance,

in skull networks this flow could be equated to the diffusion of stress forces acting on

skull bones (Moazen et al., 2009). Accordingly, we used L as an estimate of complex-

ity in terms of efficiency for spreading biomechanical forces as well as molecular signals

between skull bones. Finally, C measures the presence of loops of connections between
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elements (triangular motifs), which promotes functional and structural correlations be-

tween connected parts as a result of the formation of clusters (Dorogovtsev and Mendes,

2003). We interpret the presence of cluster coordinate responses in varying traits as an

indication of morphological integration and modularity (Olson and Miller, 1958; Chernoff

and Magwene, 1999; Magwene, 2008); using C as an estimate of complexity as it relates

to patterns of integration among skull bones. In summary, we have assessed changes in

structural patterns in the tetrapod skull with three complementary qualities of morpho-

logical complexity captured by well-established network statistics: structural organization

(density), functional efficiency (L), and integration (C).

The compensatory process of anisomerism proposed by Gregory (op. cit.) is far more

complicated to capture than skull complexity by means of network statistics because its

effects occur mainly at the level of bones, not across the entire skull. Gregory’s basic

definition of anisomerism refers to structural similarity among elements. In a network

context, an easy way to estimate this similarity among bones is to compare the number of

connections they have. Therefore, we quantified anisomerism as connectivity heterogeneity

(H) according to Horvath and Dong (2008). In addition, we also estimated the relative

number of unpaired bones (UBR) as a side-measure of anisomerism, for two reasons: (1)

they appear in evolution from the fusion of two or more pre-existing bones, which is one

of the proposed causes of Williston’s law, and (2) they are among the most modified,

specialized bones.

Here, we test whether the evolutionary trend toward reduction in number of skull

bones simplifies the skull structure or rather makes it more morphologically complex. To

do so, we first quantified skull complexity using network statistics. Then we tested if

there is a correlation between the number of skull bones, morphological complexity, and

anisomerism in a phylogenetic context. Finally, we analyzed different scenarios of bone

number reduction: selective loss of most connected bones, selective loss of less connected

bones, and random losses in order to check which scenario is more suitable to generate

trends in complexity during evolution.

Materials & Methods

The materials and methods used to build and analyze skull networks, as well as the

phylogenetic context, have been described in Chapters 4, 6, and 7. Here, I shall describe

only the specific analysis performed for this publication.
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Tests of Robustness

We studied the response of skull complexity to the loss of bones with a simulation that

iteratively removed network nodes, measuring complexity after each node removal. This

kind of simulation has been used to study network resilience to selective versus random

deletions (Albert et al., 2000).

We performed node removal under three different likely evolutionary scenarios: (1)

random loss of bones, (2) selective loss of highly connected bones, and (3) selective loss

of poorly connected bones. In a scenario of random losses all bones can be lost with

same probability. In selective loss scenarios there is a bias in favor of losing either highly

connected or poorly connected bones (ties were solved at random). We simulated 10,000

iterations of sequential losses for each skull and scenario.

Results

Complexity and Anisomerism

The morphological complexity in the tetrapod skull showed a significant correlation with

the number of bones: Negative in density and C, and positive in L (Table 9.1). This indi-

cates that the reduction in bone number correlates with an increase in complexity. Figure

9.2 shows scatter plots for density, L, and C along with the estimations of circular, ran-

dom, and Gabriel simulations. Considering the three statistics together, the organization

of skull networks clearly differs from the three theoretical models.

Whereas H did not show a significant correlation with bone number reduction, UBR

did it (Table 9.1). Thus, there is no evidence of increase in heterogeneity for all skull

bones; in this respect skull networks do not differ from Gabriel networks (Fig. 9.3A).

However, as predicted by the anisomerism hypothesis, if we consider only the relative

amount of unpaired bones, the reduction in the number of bones occurs simultaneously

with an increase in complexity and specialization of individual bones, (Fig. 9.3B). In

other words, bone number reduction is linked to skull specialization as a result of the

appearance of new unpaired bones, which occur from the fusion of ancestral paired ones.
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Figure 9.2: Correlation of bone
number reduction with morpho-
logical complexity measured with
different network statistics. Red
line indicates regression slope,
gray lines indicate the estima-
tions for theoretical models: solid,
Erdös, & Renýı random network;
dashed regular circular network;
dot-dashed Gabriel network. A)
The density of connections shows a
clear increasing trend as the bone
number diminishes. In contrast,
density does not vary with bone
number in the random model. The
circular and Gabriel model show
a similar behavior than skull net-
works, but underestimate density.
B) The characteristic path length
shows a decreasing trend with
bone number reduction. The ran-
dom model has a completely dif-
ferent behavior, while the Gabriel
model shows a similar decay but
mostly overestimate L. The cir-
cular model has L values out of
range and is not shown here. C)
The clustering coefficient shows a
slightly increasing with bone num-
ber reduction. Both the random
and the Gabriel models strongly
underestimate C when comparing
with real skull networks. The cir-
cular model has a constant C equal
to 0 and it is not shown. Leg-
end: Crosses for synapsids, squares
for anapsids, up-triangles for ar-
chosaurs, down-triangles for lepi-
dosaurs, and dots for amphibians.
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Figure 9.3: Relationship between bone number reduction and anisomerism. A) The het-

erogeneity of skull networks does not show correlation with bone number and behaves as
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bones decrease. In the circular model H is constant. C) The relative number of unpaired

bones is reduced as the number of bones increases. This suggests a relationship between

fusion events and bone number. Legend and symbols as in Fig. 9.2.

Table 9.1: Pearson Product-Moment Correlation Coefficient for the five network statistics.

Density L C H UBH

Pearson’s r -0.827 0.797 -0.302 -0.078 -0.558

p-value: 2-tailed 4.46–12 9.8−11 0.046 0.613 8.24−5

Skull Robustness to Bone Losses

The robustness test yielded different results depending on the way we removed bones (Fig.

9.4). A sequential removal of bones at random did not cause a net change in density, L,

and C. Only after removal of the 15% of bones there was a slight loss of complexity.

In contrast, a selective removal of the most connected bones generated a rapid loss of

complexity, while a selective removal of the less connected bones had the opposite effect;

a slow increase of network complexity. This indicates that skull networks are robust to

random losses, but fragile to selective losses of highly connected bones. Moreover, we

found that a selective loss of poorly connected bones promoted an increase of complexity;

density and C increase, and L decreases.



9.1. MORPHOLOGICAL COMPLEXITY 185

0.4

0.6

0.8

1

1.2

∆ 
D

en
si

ty

0.4

0.6

0.8

1

1.2

∆ 
C

lu
st

er
in

g

0 0.1 0.15 0.2 0.25

1

1.5

2

Bones Removed (%)

∆ 
Pa

th
 L

en
gt

h

0 0.1 0.15 0.2 0.25
Bones Removed (%)

0 0.1 0.15 0.2 0.25
Bones Removed (%)

B

C

A

Figure 9.4: Simulation of skull
network complexity response after
bone losses. Bones were removed
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ferent scenarios: random removal
of bones, squares; selection of more
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The three complexity parameters:
A) density of connections, B) char-
acteristic path length, and C) clus-
tering coefficient shows the same
behavior in each scenario. Skulls
show a high robustness to losses of
bones at random (complexity pa-
rameters barely change until more
than the 15% of bones are lost).
In contrast, skulls are very sensi-
tive to connectivity-selective losses.
The loss of a highly connected bone
weakens skull structure and makes
complexity measures drop. Accu-
mulation of such losses eventually
destroys the complexity of the net-
work. On the other hand, the loss of
a poorly connected bone increases
skull complexity. Of the three sce-
narios, selective loss of poorly con-
nected bones (along with fusions) is
the only scenario that explains the
observed evolutionary pattern.
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Discussion

Largely inspired by Williston’s work (1914), Gregory et al. (1935) showed that the ver-

tebrate skull has undergone a general process of bone number reduction along with a

functional specialization of each individual bone. This evolutionary trend was incorpo-

rated and accepted into general anatomical knowledge under the name of Williston’s law.

This law has been entrenched with the idea that the vertebrate skull has suffered an evo-

lutionary simplification (Williams, 1966; Sidor, 2001) according to the classical assessment

of morphological complexity as the number of distinct anatomical elements (Bonner, 1988;

McShea, 1991; Valentine et al., 1994).

Our results indicate that there is an increase of morphological complexity in the tetra-

pod skull associated with the reduction in number of skull bones during its evolution.

An evolutionary pattern of skull complexity increase is even clearer if we carry out pair-

wise comparison of basal and modern forms (see Supplementary Material), such as from

Seymouria and Ichthyostega to all living species, from Procolophon and Proganochelys to

modern turtles, from Petrolacosaurus and Younginia to archosaurs and lepidosaurs, or

from basal synapsids to modern mammals. In all, there is a reduction in the number of

bones that is correlated with a relative increase of the number of suture relations (density),

an increase in the structural proximity of bones (L), and proliferation of triangular motifs

of integration (C).

The behavior of complexity estimates might be a consequence of differential rates of

losses and fusions during skull evolution. For instance, an over-fusion of bones, especially

along the midline, generates redundant connectivity patterns. In basal synapsids the

palate is composed of three paired elements (vomers, palatines, and maxillae); each one

connects to its contralateral pair, as well as to the other bones of the same side, generating

rectangular motifs. After the fusion of vomers, rectangular motifs lead to triangular motifs;

hence, the new unpaired vomer connects to two bones already connected (paired palatines

and maxillae), and C increases in the skull network.

On the other hand, it is known that the loss of bones provokes the reoccupation by

other bones of the space left open (Girgis and Pritchard, 1958; Mabbutt and Kokich, 1979;

Hall, 2005); thus, new connections can form within this space by bones that, otherwise,

were not previously connected. Because of this mechanism, a reduction in the bone num-

ber increases the density of connections provoking that distant bones now get closer; in

contrast to fusions, this does not generate more triangulations. Therefore, the way in

which the connections of the skull are reorganized after losses and fusions is what causes
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the observed pattern of complexity; which is different from that expected in theoretical

models.

Morphological Complexity and Anisomerism

Originally proposed by Gregory (1934), anisomerism is the process that guides reduction

in number of skull bones by controlling developmental growth rates akin to heterochrony.

For Gregory, reduction in number and differentiation of parts was one and the same

evolutionary and developmental process. We find no support for a relationship between

the reduction of the number of bones and anisomerism (bone’s individual complexity).

This could be due to the difficulty of capturing anisomerism with a parameter (H) that

does not describe individual bones.

However, the relative amount of unpaired bones does increase with bone number reduc-

tion suggesting that, indeed, there is an emergence of more specialized and differentiated

bones after fusions, as predicted by the anisomerism hypothesis. This observation clearly

stresses the relationship between fusion events during development and the evolutionary

trend in skull bone number reduction (Aldridge et al., 2002; Richtsmeier et al., 2006).

Structural Constraints in Bone Loss and the Increase of Skull Complexity

The robustness simulation indicates that skull morphological complexity might vary after

bone losses, according to the number of connections of each of the lost bones. This is

a biased process; other things being equal, the loss of less connected bones will be more

likely than the loss of highly connected ones, and indeed it is (Benton, 1990, p. 297).

Moreover, losses of less connected bones cause a net increase of morphological complexity

in the skull (density and C increase, and L decreases).

This prompts two conclusions: (1) that connectivity, indeed, matters, as daringly

pointed out by Saint-Hilaire, and (2) that not all the bones are equally important in

maintaining skull structure. Thus, the structural stability of the skull against externally

driven (environmental) or inherited bone losses varies according to the connectivity of the

affected bones. Therefore, highly connected bones might have a primary role in shaping

the skull with a robust internal organization. The structure would tend to collapse if these

bones are lost.

Less connected, small bones often develop from single ossification centers (Rice, 2008);

and when these centers are lost, entire bones also disappear. These losses have minor

effects upon skull architecture, because the compensatory growth of other bones can fill
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the space of the lost bone (Hall, 2005). In contrast, more complex, specialized bones are

seldom lost because they originated from fusion of several (sometimes many) centers of

ossification (Koyabu et al., 2012), and would be hard to replace completely. The way most

skull bones develop, by iterative fusion of ossification centers, would prevent the loss of

complex, and more connected bones, whereas it would facilitate the loss of simple, less

connected bones.

The observation that the developmental losses of less connected bones are responsi-

ble for this evolutionary trend in skull complexity emphasizes the relationship between

connectivity of bones and their structural importance, or burden-rank (Riedl, 1978). The

concept of burden was originally proposed as an organismic developmental constraint as a

result of an increase in hierarchically nested constraints on traits during evolution (Schoch,

2010); more connections entail more developmental dependences with other bones. In this

context, the concept of burden explains the relationship between structural robustness

and connectivity and the evolutionary trend in skull morphological complexity.

Concluding Remarks

The reduction in the number of skull bones during vertebrate evolution has been inter-

preted as an evolutionary trend toward simplification as a consequence of selective advan-

tages for more simplified, compact skulls. However, our results show that the reduction

in bone number is not accompanied by a simplification of the skull; rather, there is an

increase in the complexity of the connectivity patterns that organize the skull architecture

as a consequence of how skull development buffer the harmful effects of bone losses and

fusions. Our network simulations strongly suggest that a possible cause behind Williston’s

Law is a structural constraint by which less connected bones are more likely to be lost,

shaping a general evolutionary trend toward higher skull complexity.

Supplementary Materials

We studied the evolution of the skull bone number and complexity estimates in our sam-

ple by a squared-change parsimony optimization (Maddison, 1991) on our calibrated phy-

logeny (see Fig. 9.2). Parsimony optimization renders estimation values for the root of

the tree. The confidence intervals 95% (CI) for the root node values were generated using

independent contrasts (Midford et al., 2003). To obtain the CI of internal nodes we re-

rooted the tree on each of the branches as described in Laurin (2004). This analysis was

performed in Mesquite.
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Figure 9.5: Parsimony optimization and CI 95% for the number of bones
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Figure 9.6: Parsimony optimization and CI 95% for the density.
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Figure 9.7: Parsimony optimization and CI 95% for the shortest path length.
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Figure 9.8: Parsimony optimization and CI 95% for the clustering coefficient.
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Figure 9.9: Parsimony optimization and CI 95% for the heterogeneity.
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Figure 9.10: Parsimony optimization and CI 95% for the unpaired bone ratio.
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9.2 Random Loss and Selective Fusion of Bones Originate

Morphological Complexity Trends in Tetrapod Skull

Networks

Abstract — The tetrapod skull has undergone a reduction in number of bones

in all major lineages since the origin of vertebrates, an evolutionary trend

known as Williston’s Law. Using connectivity relations between bones as a

proxy for morphological complexity we showed that this reduction in num-

ber of bones generated an evolutionary trend toward more complex skulls.

This would imply that connectivity patterns among bones impose structural

constraints on bone loss and fusion that increase bone burden due to the for-

mation of new functional and developmental dependencies; thus, the higher

the number of connections, the higher the burden. Here, we test this hypothe-

sis by exploring plausible evolutionary scenarios based on selective vs. random

processes of bone loss and fusion. To do this, we have built a computational

model that reduces iteratively the number of bones by loss and fusion, starting

from hypothetical ancestral skulls represented as Gabriel networks in which

bones are nodes and suture connections are links. Simulation results indi-

cate that losses and fusions of bones affect skull structure differently whether

they target bones at random or selectively depending on the number of bone

connections. Our findings support a mixed scenario for Williston’s Law: the

random loss of poorly connected bones and the selective fusion of the most

connected ones. This evolutionary scenario offers a new explanation for the

increase of morphological complexity in the tetrapod skull by reduction of

bones during development.

Introduction

In the early 19th century, Étienne Geoffroy Saint-Hilaire proposed the principe des conne-

xions as a methodological rule to study animal form (Geoffroy Saint-Hilaire, 1818). Other

notable naturalists before Geoffroy, such as Pierre Belon and Johann Wolfgang Goethe,

also made use of this principle as a way to recognize similarities, a tradition that goes back

to Aristotle. However, Geoffroy was the first to establish connections as an operational

criterion to identify morphological similarity among different anatomical parts by means

of their structural relations to other parts, rather than by their shape and function. Thus,
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Geoffroy’s principle of connections formalized the intuitive notion of similarity then in

vogue and opened up a new research program in pure morphology at the structural level

(Appel, 1987; Le Guyader, 2003; Ochoa and Barahona, 2009; Nuño de la Rosa, 2012).

Several conceptual frameworks were later proposed for the use of connectivity relations

in anatomical systems: Woodger’s structural correspondence, Rashevsky’s bio-topological

principle, and Riedl’s diagrammatic morphotype (see 2.2). However, they were too general

to be systematically applied to study practical morphological problems. Another, more

quantitative way to address connectivity relations in anatomical systems within a precise

operational framework, using Network Theory, was also laid out (Rasskin-Gutman and

Buscalioni, 2001; Rasskin-Gutman, 2003). We have argued elsewhere that patterns of bone

sutures in the skull can also be characterized as networks, in which nodes represent bones

and links represent suture connections. The analysis of these networks in tetrapod skulls

might revealed evolutionary patterns in morphological complexity, integration, modularity,

and phenotypic stability (Esteve-Altava et al., 2011).

The tetrapod skull has undergone many different lineage-specific morphological

changes during its evolution; for example, enlargement and shortening of the rostrum in

humans and porpoises (Lieberman, 1998; Galatius et al., 2010), miniaturization in lizards

and amphibians (Rieppel, 1984; Trueb and Alberch, 1985; Laurin, 2004), and expansion of

the cranial vault in birds (Marugán-Lobón and Buscalioni, 2003; Bhullar et al., 2012). In

addition to these specific trends, a general pattern has occurred in all major lineages since

the origin of the vertebrate skull: the reduction in number of skull bones (see Table 1.1).

Williston (1914) first described this trend in his studies on Permian reptile skulls; later,

Gregory (1935) generalized it to all tetrapods, suggesting that loss and fusion of bones

were the mechanisms underlying the establishment of this evolutionary pattern. Gregory

paid homage to Williston by naming this evolutionary trend Williston’s Law (see 1.2.1).

The reduction in the number of elements, as it occurs in Williston’s Law, has also been

proposed as a general mechanism to retain highly complex and functional biological sys-

tems throughout evolution, “complexity by subtraction” (McShea and Hordijk, 2013); this

notion of complexity uses a standard definition of morphological complexity as number of

part types (McShea, 1996). Using this metrics, Sidor (2001) concluded that Williston’s

Law is an evolutionary trend toward skull simplification in synapsids. Our view on mor-

phological complexity also includes number of bones (part types) as model parameters,

but the focus is on measuring complexity as connectivity relations between the bones using

a series of complementary network parameters: density of connections, characteristic path

length, clustering coefficient, and heterogeneity (see 5.2). These parameters capture not



9.2. COMPUTATIONAL MODEL ANALYSIS 197

only the number of part types in the skull, but also their local and overall organization

(i.e., their connectivity pattern).

Using this new morphological complexity metrics, we showed in 9.1 that this reduction

in bone number generates an evolutionary trend toward more complex skulls. In addi-

tion, we concurred with Gregory about the importance of losses and fusions of bones as

evolutionary mechanisms producing the diversity of extant and extinct skull forms. More-

over, the use of connectivity patterns to quantify morphological complexity suggested that

the selective loss of poorly connected bones, alongside new unpaired bone formation by

fusion, is responsible for this evolutionary trend. We concluded that the connectivity

pattern among skull bones is a source of structural constraints on the loss and fusion of

individual bones. Conversely, both mechanisms imposed new constraints on the modifica-

tion of the connectivity pattern of the entire skull, for example, by increasing the number

of connections of bones originated by fusions. The underlying developmental basis for this

structural constraint is due to the increase in functional and developmental dependencies,

which arises with the establishment of connections among bones (Esteve-Altava et al.,

2013a, see also 5.2.2), an evolutionary concept known as developmental burden (Riedl,

1978). Other authors have also suggested similar constraint relationships in more general

biological contexts, such as Wimsatt’s generative entrenchment (Wimsatt, 1986). Since

the number of connections of a given bone (i.e., dependencies) characterizes the amount

of burden carried by that bone, we suggested in the previous section that the higher the

burden the less likely the bone will be lost during evolution.

Here, we address this hypothesis by analyzing the effect of random and selective losses

and fusions of bones. To do so, we have built a computational model of skull evolution that

simulates Williston’s Law-like evolutionary patterns, from hypothetical ancestral skulls.

We have used Gabriel networks (Gabriel and Sokal, 1969, 1980) as a null model to analyze

growth rules and constraints that might be involved in producing connectivity patterns

during evolution. Then, we compared the complexity measures of the ancestral and derived

simulated networks with those of empirical skull networks from all major tetrapod groups

(see 6.2). Our aim is to explore selective vs. random processes of bone loss and fusion

mechanisms as plausible evolutionary scenarios. We evaluate three different processes by

which the computational model picks a specific bone to be lost or fused: (1) selection of the

least connected (L), (2) selection of the most connected (M), and (3) random selection (R).

The combination of these mechanisms produces nine different scenarios to be evaluated:

LL, LM, LR, ML, MM, MR, RL, RM, RR, in which the first letter is for loss mechanism

and the second for fusion mechanism. We also systematically evaluate a series of initial
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conditions that constrain the model: (1) spatial boundary of the including space, (2) loss

to fusion ratio, and (3) number of unpaired bones.

Materials & Methods

The computational model that simulates skull evolution has been described in 6.2.

A full parameter space exploration has been carried out after discretizing the three

initial conditions: spatial boundary of the including space, lost to fusion ratio (l:f ), and

number of unpaired bones (Fig. 9.11). Four different initial spatial boundaries (i.e., 3D

Euclidean space where bones are initially positioned) were used: cubic (1x1x1); and three

different rectangular prisms, long (1x1x2), flat (2x1x2), and flat and long (2x1x4). The l:f

ranges from 0 for only fusions to 1 for only losses, and it was sampled in intervals of 0.1.

The initial number of bones was 30 paired bones (60 total) plus 1 to 7 unpaired bones.

In total, 2,772 combinations of scenarios and initial conditions were evaluated by running

1,000 simulations for each combination.

1
only
loss

Initial Unpaired Bones

l:f

Initial Spatial Boundary

0
only

fusion

1
2

3
4

5
6

7

cubic

long rectangular

flat rectangular

long and flat rectangular

Figure 9.11: Parameter space definition for the three initial conditions: l:f, number of

unpaired bones, and initial spatial boundary. The number of unpaired bones defines the

total initial number of skull bones as 30 paired (60 total) plus 1 to 7 unpaired bones.

For each scenario, we ran 1,000 simulations for each possible combination (2,772) in this

parameter space.
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Comparing Simulated and Real Skull Networks

The evolutionary path of each hypothetical ancestral skull network was traced in the

simulation by quantifying four network parameters: density of connections, characteris-

tic path length, clustering coefficient, and heterogeneity. These network parameters are

complementary estimates of morphological complexity, in terms of how many connections

are actually formed and the complexity of their arrangement pattern in the skull. These

parameters are extensively explained in Chapter 4.

Each reduction step during a simulation run generates a new derived network with

fewer bones, for which the above explained network parameters are quantified. After

1,000 simulations, we computed the mean and STD for each network parameter. Results

are shown as error bar diagrams representing two STD from the mean value versus number

of bones. In order to evaluate the fit of each scenario to the empirical data, we counted the

number of real skull networks that fall within the error bars range for all four parameters

at the same time. Each skull network that meets this requirement is considered as a data

match. The number of data matches for the whole empirical sample (44 skull networks,

see Chapter 8) defines how well each combination of scenario and set of initial conditions

fits the data. Combinations with 36 or more data matches (more than 80% of fit) define

what we call ‘plausible scenarios’.

Results

After full exploration of the parameter space, results for each combination of scenario and

set of initial conditions range from 0 to 38 data matches. Table 9.2 shows the number

of plausible scenarios for all possible scenarios, itemized by the initial spatial boundary

condition.

Results indicate that all scenarios with selection of the least connected bones to be lost

or fused (LL, LM, LR, ML, and RL) have less than 80% of fit (i.e., fewer than 36 matches

out of 44), which indicates that if these processes are present no plausible scenarios are

generated. In contrast, when the mechanism for fusion of bones is the selection of the

most connected ones, MM and RM, the greatest number of plausible scenarios occurs, 11

and 17, respectively.
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Table 9.2: Number of plausible scenarios for all scenarios in each initial spatial boundary.

Loss Fusion Abbrv 1x1x1 1x1x2 2x1x2 2x1x4 Total

Least Least LL 0 0 0 0 0

Least Most LM 0 0 0 0 0

Least Random LR 0 0 0 0 0

Most Least ML 0 0 0 0 0

Most Most MM 7 0 4 0 11

Most Random MR 1 3 4 0 8

Random Least RL 0 0 0 0 0

Random Most RM 4 6 7 0 17

Random Random RR 0 0 5 0 5
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Figure 9.12: Number of matches (color bar) in the parameter space for scenarios cubic

MM and flat rectangular RM. (A) The MM scenario shows higher matches for lower values

of l:f, except for only fusions (l:f = 0), and higher number of unpaired bones. (B) The

RM scenario shows higher matches for higher values of l:f, except for only losses (l:f =

1), and lower number of unpaired bones. The two scenarios have opposite optimal initial

conditions due to differences in the process of picking bones to be lost (selection of most

connected vs. random selection) and the shape of the initial spatial boundary (cubic vs.

flat rectangular). Color bar and marker size indicate the number of matches.
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Selective Scenarios

For the MM scenarios the best initial spatial boundary is the cubic one, with 7 plausible

scenarios. Figure 9.12A shows how this highly selective scenario varies in number of

matches according to l:f and initial number of unpaired bones. Higher numbers of matches

occur between l:f = 0.4 (40% loss, 60% fusion) and l:f = 0.1 (10% loss, 90% fusion), and

an initial number of unpaired bones between 4 and 7.

Mixed Scenarios

For the RM scenarios the best initial spatial boundary is the flat rectangular one, with

7 plausible scenarios. Figure 9.12B shows how this mixed scenario varies in number of

matches according to the l:f and initial number of unpaired bones. Higher numbers of

matches occur between l:f = 0.5 (50% loss, 50% fusion) and l:f = 0.9 (90% loss, 10%

fusion), and an initial number of unpaired bones between 1 and 5.

Within the RM scenarios, the best overall plausible scenario occurs for the following

conditions: l:f = 0.7 (70% loss, 30% fusion), 2 initial unpaired bones, and a cubic spatial

boundary, which shows the highest number of matches, 38. Figure 9.13 plots all empir-

ical skull networks on the average values of each network parameter estimated for 1,000

simulations.

Discussion

We have shown that complexity in connectivity patterns among skull bones (i.e, number

of connections and their organization) increases in every evolutionary scenario of bone

number reduction by loss and fusion of bones. This increase in morphological complexity

varies in a wide range below and above the actual increase that we have measured

previously (see 9.1). Thus, how each scenario fits our empirical sample depends on which

processes have been involved, selective or random, as well as the fine-tuning of the initial

conditions of the model: spatial boundary of the including space, loss to fusion ratio,

and number of unpaired bones. The main finding in this study is that Williston’s Law

is a trend guided by a structural constraint: the random loss of poorly connected bones

and the selective fusion of the most connected ones. This evolutionary scenario highlights

the importance of bone reduction mechanisms to explain morphological complexity (see

McShea and Hordijk, 2013, for a general discussion of “complexity by subtraction”).
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Figure 9.13: Data matches (38; 86%) of the best overall plausible scenario for the four

network parameters used to evaluate the fit of the model: density of connections, charac-

teristic path length, clustering coefficient, and heterogeneity. Red line indicates average

values of 1,000 iterations and error bars represent 2 STD.

Our results further indicate that neither the selective loss nor the selective fusion of

the least connected bones can fully explain the evolution of morphological complexity in

Williston’s Law. In all these scenarios (LL, LM, LR, ML, and RL) new connections ap-

pear among bones, over-increasing the complexity of the simulated skull networks; thus, no

plausible generated scenarios can account for Williston’s Law under these circumstances.

In contrast, two scenarios involving the selective fusion of the most connected bones pro-

duce a higher number of plausible scenarios: one with selective loss of the most connected
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bones (MM) and one with random bone loss (RM). Hereafter, we refer to these two types

of plausible scenarios as ‘selective’ and ‘mixed’ scenarios, respectively.

In selective scenarios, loss and fusion of bones have opposite effects. The loss of the

most connected bones reduces complexity because, on average, more connections are lost

than re-wired among neighboring bones. On the other hand, fusion of the most connected

bones increases morphological complexity because the new fused bone ends up being

hyper-connected after inheriting the connections of all the bones involved in the fusion

event. In these scenarios, both mechanisms are balanced for low values of l:f, that is, loss

is less frequent than fusion (40% loss or less, 60% fusion or more). A higher frequency

of fusion events buffers the decrease of complexity due to losses, and also produces some

plausible scenarios with good fits to empirical data. However, the prevalence of this

selective scenario would suggest that fusions have been more frequent than losses during

the evolution of the skull, but mixed scenarios suggest a different story.

In mixed scenarios, loss of bones occurs at random. However, a random pick does

not mean that all bones are lost with equal probability whether they are highly or poorly

connected. This is because, as in empirical skull networks (see Chapter 8), simulated

Gabriel networks have right-skewed distributions of connections, such as binomial decay,

uniform decay, exponential decay, and power-law (see 6.1.7). This indicates that most

bones have fewer connections than the average, while a few bones have most of the network

connections. As a consequence, poorly connected bones are more easily picked than highly

connected ones, even when this is done at random. In mixed scenarios, loss of bones also

increases morphological complexity. Here, the range of l:f that produces the highest

number of data matches (shown in Fig. 9.12B) is biased toward more proportion of losses

than fusions (50% loss or more, 50% fusion or less). Furthermore, the best overall plausible

scenario simulated is a mixed scenario with l:f = 0.7 (70% loss, 30% fusion). As Table 1.1

shows, the number of lost bones compiled from mainstream literature is slightly higher

than the number of fused bones in tetrapods. However, to determine if a bone has been

lost rather than fused in the fossil record is very difficult. Nevertheless, the proportion

of bone loss and fusion in the literature seems to better support mixed scenarios than

selective ones (i.e., slightly more loss than fusion of bones). It is worth noting that for

both, selective and mixed scenarios, the most extreme ratios of loss to fusion events (i.e.,

only loss or only fusion) show a significant decrease in number of data matches; this

suggest that, whatever the scenario, both losses and fusions mechanisms are necessary to

evolve complex skull networks.
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The optimal initial spatial boundary is also different for selective and mixed scenarios.

A cubic boundary is preferred in selective scenarios, while a long rectangular boundary

is preferred in mixed scenarios. However, this result has much to do with the Gabriel

rule that we used to build theoretical ancestral skull networks. Gabriel networks capture

an important developmental constraint: the impossibility of creating a suture contact

between distant bones. This is not due to the physical distance between ossification

centers, but rather to the presence of obstacles between them: cavities, openings, organs,

as well as other bones. Thus, in spaces in which one or more axes are more prevalent, such

as in flat (2x1x2) and long and flat (2x1x4) prisms, the Gabriel rule imposes too strong

constraints on connectivity (Gabriel and Sokal, 1980). For instance, positioning bones

along a very long axis will prevent most of the connections between them, since many

bones will fall within the intersection sphere of others. As a consequence, those spaces

that are more uniform in the three body axes, such as the cubic (1x1x1) and the long

rectangular (1x1x2), are the least restrictive of all spatial boundaries; the latter being the

optimal in mixed scenarios. Furthermore, the flat rectangular boundary resembles more

the shape of the skull in basal tetrapods, such as Acanthostega, Ichthyostega or Seymouria.

The initial number of unpaired bones also shows different optimal values for each

scenario. In selective scenarios, this number ranges from 4 to 7, which is above the

estimated average values for the reconstructed last common ancestor using parsimony

optimization (see Fig. 9.10). In mixed scenarios, there is a preference for lower numbers

of unpaired bones, from 1 to 5, that is, below the average for the reconstructed last

common ancestor. Furthermore, the best overall plausible scenario simulated is a mixed

scenario with 2 initial unpaired bones, which is what is found in some basal tetrapods,

such as Seymouria baylorensis (Laurin, 1996) or in basal bony fishes (Claeson et al., 2007).

Thus, the preference for a low number of unpaired bones further reinforces the plausibility

of mixed scenarios.

In addition, the plausibility of mixed scenarios is further supported by a series of

arguments. The loss of poorly connected bones, rather than of the most connected ones,

has a sound biological explanation due to the many developmental and functional roles

of suture connections as sites of bone growth (Rice, 2008, see also 1.1.2), cranial bone

movements (Jaslow, 1990), and strain sinks (Rafferty et al., 2003). Thus, bones with a

high number of connections carry a higher developmental burden within the skull structure

than poorly connected ones do. As a consequence, highly connected bones tend to be

preserved during evolution, while the loss of poorly connected ones is less constrained,

as is predicted given their lower burden (Riedl, 1978; Schoch, 2010; Esteve-Altava et al.,
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2013c,a). Finally, the higher the number of suture connections, the higher the chance

of undergoing a fusion event of bones, explaining the preference for fusions of the most

connected ones.

Concluding Remarks

Computational models based on networks, like the one presented here, demonstrate their

usefulness in unveiling plausible mechanisms underlying evolutionary trends such as Willis-

ton’s Law. These models offer the opportunity to reproduce structural constraints and

processes that might have taken place during skull evolution. Here, we have used a com-

putational model to assess the likelihood of some bones, and not others, to be lost or fused

according to their number of connections, as well as the initial conditions that facilitated

these two mechanisms.

Our findings support a mixed scenario for Williston’s Law: the random loss of poorly

connected bones and the selective fusion of the most connected ones. Specifically, the

model suggests the following optimal evolutionary conditions: (1) an initial spatial bound-

ary unconstrained and uniform in the three body axes, (2) a low number of initial unpaired

bones, and (3), on average, bone losses should be slightly higher than bone fusions. These

conditions seem to be optimal to facilitate the evolution of the tetrapod skull in which

the reduction in number of bones promotes an increase in morphological complexity.
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10.1 Evolutionary Patterns in Skull Network Modularity

Abstract – The organization of connectivity patterns in tetrapod skulls is

small-world, a type of organization between randomness and regularity that

promotes the formation of connectivity modules. Here, modularity has been

analyzed at a pure structural level using network tools. Connectivity modules

have been defined as highly connected groups of bones and identified using an

agglomerative hierarchical method. This analysis reveals three types of mod-

ules: bilateral, specular, and asymmetric specular. Bilateral modules group

together bones from the left and right sides in the same module. Specular

modules group bones of only one side, left or right; for each specular mod-

ule there is a contralateral module that groups the same bones but from the

other side. Asymmetric specular modules group paired bones from only one

side (as in specular modules), but they also include one or more unpaired

bones; this makes these modules asymmetric in relation to their contralat-

eral specular modules. A series of generalizations can be inferred from the

comparative analysis of connectivity modules in tetrapod skulls. (1) Bilat-

eral modules occur more frequently around highly connected unpaired bones,

which is common in posterior and palatal regions of the skull. (2) Specular

modules occur when there are not unpaired bones in a region, or, if there

are, they do not have enough connections to integrate both sides; when this

happens, these unpaired bones are grouped with one of the specular mod-

ules and form an asymmetric specular module. (3) Left and right specular

modules tend to have symmetric organizations in their hierarchical grouping

of their bones. (4) Most bones (74%) divide their connections into different

modules; among them, the 60% act as connectors (50% of the total number of

bones). (5) The hierarchical formation of modules tend to follow an order in

the process of grouping bones, following the three body axes: antereoposte-

rior, left-right, and dorsoventral. No other common organization patterns of

connectivity modules have been found.

Introduction

Morphological modules arise by the combination of different morphogenetic processes such

as genetic regulatory networks, developmental constraints, and epigenetic factors (Santa-

gati and Rijli, 2003; Mart́ınez-Abad́ıas et al., 2009; Percival and Richtsmeier, 2011). As a
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consequence, a harmonious functioning structure is built at genetic, developmental, pheno-

typic, and evolutionary scales. Current morphological sciences are concerned with the role

that integration and modularity play in the organization and evolution of organismal forms

(Klingenberg, 2010). Since integration brings about the notion of correlation between

traits (Olson and Miller, 1958), morphometric tools and statistics have been considered to

be the most adequate tools with which to study skull morphological integration (Roth and

Mercer, 2000). Conceptually, integration and modularity are strongly linked concepts; so

much so that modules are defined as groups of elements more integrated between them

than to other groups (Schlosser and Wagner, 2004; Callebaut and Rasskin-Gutman, 2005;

Wagner et al., 2007). However, defining boundaries between morphological modules with

morphometric tools has remained a challenge because (1) in different studies morphome-

tric proxies are operationally different (i.e., different landmarks), (2) the targets of study

are different (i.e., different species or experimental models), and (3) the precise definition

of modules depends on very specific criteria (Klingenberg, 2008; Mart́ınez-Abad́ıas et al.,

2012).

Different criteria can identify different classes of modules in the skull: functional mod-

ules group bones that interact to perform a specific function; genetic modules group bones

controlled by the same genetic regulatory network; developmental modules group bones

under control of the same genetic and epigenetic factors in development and morphogen-

esis; variational modules group bones with coordinated changes in shape and size; and

finally, evolutionary modules group bones with evolutionary continuity following some of

the previous criteria. Furthermore, for some criteria bones are not the structural units

that compose modules; thus, for the same bone, some parts belong to one module, while

other parts belong to another module. For instance, the frontal bone in humans us-

ing a functional criterion is in part facial in part neurocranial (Mart́ınez-Abad́ıas et al.,

2012). These difficulties increase when one approaches modularity and integration from

an evolutionary perspective due to the lack of a unified operational framework suitable to

broader scales; i.e. comparing skulls from distant-related species, anatomies from different

biological kingdoms, or even systems up or down the morphological scale.

At a connectivity level, we use a structural criterion to identify morphological modules:

the organization of connections between bones (see 3.4). In this context, a connectivity

module is defined as a highly connected group of bones. In addition, this approach allows

to identify hierarchical organization when nodes within modules tend to group in highly

clustered sub-modules or blocks. In modular, hierarchical networks, the participation

of each bone in the organization of modules can be characterized as a function of their
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connectivity within and between modules, thus, defining structural-connectivity roles (see

5.2). Some bones are keystones that hold together all the bones in a module by having

their high number of connections within the module (local hubs), while some other bones

are also highly connected but their connections are shared between modules (connector

hubs). Finally, most bones are scarcely connected both within and between modules (local

and connector non-hubs). Here, I discuss the result of the modularity analysis for each

skull network. I paid special attention to the relationship between (1) unpaired bones,

(2) their role as hub and/or connector, and (3) their participation in the formation of

connectivity modules.

Material & Methods

The grouping method used to analyze modularity in skull networks has been described

in Chapter 4. This method is based on a definition of connectivity module as a group of

bones more connected to bones within the group than to other bones outside the group.

To identify such groups, an agglomerative hierarchical cluster analysis was carried out

using the topological overlap between bones as the measure of similarity between their

connectivity patterns (i.e., number and correspondence of neighbors). Finally, ZP spaces

have been analyzed for each skull network, for which the relative amount of local hubs,

connector hubs, local non-hubs, and connector non-hubs has been calculated (see 4.1.2

and 5.2.2).

Results & Discussion

The results reveal three types of connectivity modules: bilateral, specular, and asymmetric

specular. Bilateral modules group together bones from the left and right sides in the

same module. Specular modules group bones of only one side, left or right; for each

specular module there is a contralateral module that groups the same bones from the

other side. Asymmetric specular modules group paired bones from only one side (as

in specular modules), but they also include one or more unpaired bones; this make these

modules asymmetric in relation to their contralateral specular modules. Since the grouping

method used do not set any a priori preference on which bones are grouped, all three types

of module structures are possible. These categories differentiate skull regions with enough

connectivity integration to group both sides and the strength of unpaired bones to do so.



10.1. EVOLUTIONARY PATTERNS 211

Stem Tetrapoda

The skull of stem tetrapods (Figs. 8.2 and 8.4) has many paired bones and a few unpaired

bones. In general, unpaired bones are grouped only in bilateral modules, except the

internasal in Ichthyostega. In regions free of unpaired bones, paired bones are grouped in

specular modules; usually, paired bones in these specular modules can also act as local

hubs. While connector hubs are absent in both skulls, connector non-hubs represent the

48% of bones in Ichthyostega and the 34% in Seymouria.

Modern Amphibia

Modern amphibians (Figs. 8.6, 8.8, and 8.10) have only a few number of unpaired bones

(although some are massive in size), which originated by fusion of paired and unpaired

bones in the midline. Fusions are more common in the posterior palatal and vault re-

gions of the skull. However, these massive unpaired bones do not always have enough

connections to integrate bones of both sides in one bilateral module (e.g., the os basale

in Epicrionops or the parasphenoid in Salamandra and Gastrotheca); as a consequence,

bones are grouped in asymmetric specular modules. In addition, these modern amphib-

ians lack hub bones; thus, all their unpaired bones act as connector non-hubs, while most

paired bones act as connector non-hubs.

Anapsida

Anapsids (Figs. 8.12, 8.14, 8.16, 8.18, 8.20, 8.22, 8.24, 8.26, 8.28, and 8.30) have four

or five modules, which can be bilateral, specular or asymmetric specular. In general,

each specular module shows the same hierarchical structure of cluster formation within

the dendrogram; this similar internal structure between specular modules is only slightly

modified in some asymmetric specular modules with a few number of unpaired bones (e.g.,

in left and right posterior modules in Carettochelys). In basal anapsids (Procolophon and

Proganochelys), in which vomers are paired, rostral specular modules show two internal

blocks: one groups dorsal rostral bones and the other ventral palatal ones. In contrast,

in some bilateral modules, internal blocks group left and right bones separately. More-

over, the formation of bilateral modules is not exclusively related to the presence of un-

paired bones; thus, some bilateral modules are formed without any unpaired bone, such

as modules grouping roof bones in Podocnemis, Chisternon, and Carettochelys. In modern

anapsids, the fusion of the paired vomers is related to the formation of bilateral modules

grouping rostral or palatal bones. In general, all these modern forms show rostro-palatal
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modules well integrated by a local hub bone, being the most common the unpaired vomer.

In contrast, in basal forms, vomers are paired bones that never act as hubs. Both paired

and unpaired bones can act as local hubs in bilateral modules. However, unpaired bones

act often as connector or local non-hubs. They do so in bilateral modules, as well as,

sporadically, in asymmetric specular modules. In addition, one-side paired bones can act

also as hubs in some asymmetric specular modules. The relative number of connector

bones is less variable than in amphibians, ranging from 40% to 65%.

Basal Diapsida

Basal diapsids (Figs. 8.32 and 8.34) have a high number of modules; all types are present,

bilateral, specular, and asymmetric specular. Left and right specular modules have the

same hierarchical structure of cluster formation within the dendrogram. Usually, unpaired

bones are integrated in bilateral modules, but it can be otherwise, for example, the right

lateral-roof module in Petrolacosaurus (in orange). In addition, there are also bilateral

modules without unpaired bones: the anterior-roof module in Petrolacosaurus (in purple)

and the palatal module in Youngina (in green). Thus, unpaired bones can act as local

hubs, local non-hubs, and connector non-hubs.

Archosaurs

The skulls of Archosaurs (Figs. 8.36, 8.38, 8.40, 8.42, 8.44, 8.46, and 8.48) have the three

types of connectivity modules, as in basal diapsids; the presence of asymmetric specular

modules is quite common. Left and right specular modules have the same hierarchical

structure of cluster formation within the dendrogram. Even asymmetric specular mod-

ules show a high degree of symmetry in their hierarchical structure of clusters. In general,

the rostral region is free of unpaired bones and bones are grouped in specular modules;

however, the unusual presence of unpaired bones is related to the formation of bilateral

modules (e.g., Rhamphorhynchus and Anser). In addition, the presence of hub bones is

not generalized in archosaurian skulls; usually, paired bones grouped in specular modules

act as local hubs, such as maxillas in Crocodylus, parietals in Stegosaurus, and squamosals

in Dromaeosaurus. In general, unpaired bone act as local or connector non-hubs either in

bilateral (mostly) or in specular asymmetric modules. As in anapsids and basal diapsids,

unpaired bones acting as local non-hubs appear mostly in bilateral modules; as an excep-

tion, the basisphenoid and basioccipital in Rhamphorhynchus act as connector non-hubs.

In fact, connector non-hubs represent around 50% of all archosaurian skulls bones.
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Birds are a special case within archosaurs because of an over-fusion of bones that

produces massive unpaired bones, which affects the formation of connectivity modules.

Thus, some uncommon connectivity modules group one-side paired bone and a massive

unpaired one, namely: the left jugal-basisphenoid module (in yellow) and the right jugal-

mesethmoid module (in orange). In addition, the skull of Anser lacks hub bones; thus,

unpaired bones act either as local or connector non-hubs in bilateral or asymmetric spec-

ular modules.

Lepidosaurs

Lepidosaurian skulls (Figs. 8.50, 8.52, 8.54, 8.56, 8.58, 8.60, 8.62, and 8.64) show the three

types of connectivity modules (often in the same skull). In general, left and right specular

modules have the same hierarchical structure of cluster formation within the dendrogram.

Modules in one side are usually subdivided into roof and rostral blocks, such as in the

rostral (blue) module in Sphenodon. In asymmetric specular modules, unpaired bones

often do not break totally the internal symmetry between left and right modules; instead,

unpaired bones are grouped in semi-independent small blocks (e.g., in Tupinambis, the

unpaired premaxilla form a block with left septomaxilla and vomer). As it occurs in some

diapsids and amphibians, over-fusion of bones produce massive unpaired bones, which are

grouped within bilateral modules (e.g., in Diplometopon and Varanus). These massive

unpaired bones, such as occipital, frontal, or parietal rarely make hub bones (e.g., in

Diplometopon). In addition, the presence of hub bones varies from none to three; all hubs

are local hubs except the unpaired premaxilla in Iguana, which act as a connector hub in

a bilateral module. Maxillas in specular modules, as well as the unpaired premaxilla and

parietal in bilateral modules, are the most common local hubs.

Basal Synapsida

The skulls of basal synapsids (Figs. 8.66, 8.68, 8.70, and 8.72) have the three types of

connectivity modules. Specular modules show the same hierarchical structure of clusters

between left and right modules, even if unpaired bones are present and asymmetric spec-

ular modules are formed; as in diapsids, these rarely change blocks within the modules.

Internal hierarchical symmetry occurs also within bilateral modules, for example, in the

roof module in Jonkeria (in purple). Similarities in cluster formation between specular

modules, as well as within bilateral modules are clearer than in diapsids and anapsids. As

in basal turtles, the vomer is a paired bone; thus, the most anterior region of the skull is
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often free of unpaired bones unless the premaxilla is also an unpaired bone as in Jonkeria.

As a consequence, most anterior regions of the skull (face and palate) have specular mod-

ules, while most posterior regions (roof and vault) have asymmetric specular or bilateral

modules. For instance, the presence of an unpaired vomer in Thrinaxodon is related to

the formation of a bilateral module grouping palatal bones; in contrast, other unpaired

bones, such as the parietal in the roof, fail to group together left and right side bones. The

formation of a bilateral vault module is a common feature in all basal synapsids, while

Enannatosaurus, Jonkeria, and Thrinaxodon show also a similar palatal bilateral module.

In addition, all skulls have hubs; left and right maxillas act often as local hubs in both

contralateral specular modules. This role is taken by the nasals in Thrinaxodon. The

skull of Ennatosaurus is the only one with a connector hub, the supraoccipital, which in-

tegrate the vault bilateral module. In general, unpaired bones act as local non-hubs, while

between 41% and 67% of the total number of bones for the four skulls act as connector

non-hubs.

Modern Mammals

Modern mammals (Figs. 8.74, 8.76, 8.78, 8.80, 8.82, 8.84, 8.86, and 8.88) show the three

types of modules, although this is the only group in which some skulls have only bilateral

modules. In general, modules delimit well three skull regions: rostrum, vault, and palate.

Palatal bones can be grouped either in a module or in a block within a bigger bilateral

module.

The hierarchical clustering in mammalian skulls shows a clear pattern of grouping

according to the position of bones along the three main body axes. According to this

pattern, bones that are grouped first in the hierarchy are dorsal or ventral bones from the

same side, which form small blocks. Then, these ventral and dorsal blocks of the same side

group together, in turn, to form bigger blocks. Finally, left and right contralateral blocks

group into an anterior or posterior bilateral module. This extreme case, in which two-

module partition is the best one, only occurs in Homo and Tursiops; however, more relaxed

examples can be observed in the dendrogram of all tetrapod skull networks. When ante-

rior bones are grouped into two asymmetric specular modules (e.g., in Ornithorhynchus,

Phascolarctos, and Mus), they have a similar hierarchical structure of cluster formation

within the dendrogram. In all modules, unpaired bones are grouped in the dendrogram

after paired bones, which are grouped first; thus, the inclusion of unpaired bones do not

have consequences in the formation of bilateral or asymmetric specular modules. However,
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not all connectivity modules show this internal hierarchical organization; instead, some

modules group bones sequentially, for example, in the cranial module of Homo (in red).

The only case in which some bones have been left out of any connectivity module

occurs also in mammals. In Pteropus, the hierarchical clustering groups jugal bones as

the last elements of the dendrogram, just before the first branching point of the dendro-

gram (viewed from left to right). However, the optimal modularity Q-value is for the

five-modules partition: (1) cranial (in red), (2) palatal (in green), (3) rostral (in blue), (4)

right jugal, and (5) left jugal. The morphological reason is that both jugals are poorly

connected to the skull (two connections) as well as to any particular module (one connec-

tion to each one); as a consequence of this weak integration, jugals are grouped late in the

dendrogram. When integration between and within modules is evaluated in each branch-

ing point, having two modules (rostral plus jugals and palatal plus cranial) produces a

less integrated structure than letting jugals out of any module (because they take more

integration than they add). A clear counter-example is found in Tursiops. Here, jugal

bones are also grouped late in the clustering process; however, they add more integration

to the rostral module in Tursiops than they do in Pteropus, because they contact with

two connections instead of only one to this module. Since a two-module partition is the

optimal one, jugals are grouped within the rostral module.

The presence of hub bones is common in mammals. Most local hubs are also unpaired

bones such as the ethmoid and the occipital; the only connector hub is the right maxilla

in Ornithorhynchus. In general, most unpaired bones act as connector non-hubs, although

the relative number of connector non-hubs is similar to that of other groups (between 46%

and 72%) except for those skulls that show a clear two-module partition, one anterior and

one posterior, which have an unusual small number of connector bones (19% in Homo and

28% in Tursiops).

Concluding Remarks

Tetrapod skulls vary in the number of connectivity modules, from two to seven, as well

as the type of modules they have: bilateral, specular, or asymmetric specular. In general,

grouping bones in bilateral or specular modules depends on the presence and connectivity

patterns of unpaired bones. Bilateral modules without unpaired bones are very rare (e.g.,

in Podocnemis). Thus, unpaired bones and bilateral modules do not always go hand in

hand; the presence of unpaired bones that did not integrate together left and right side

bones is related to the formation of asymmetric specular modules. Since unpaired bones
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appear more frequently in posterior and palatal regions (e.g., basioccipital, basisphenoid,

parasphenoid, supraoccipital), bilateral modules are also more frequent there (i.e., cranial

vault and palatal modules). Thus, skull regions lacking unpaired bones often have left

and right specular modules. These specular modules have the same (or very similar)

hierarchical structure of cluster formation within the dendrogram; in other words, the

order in which bones are grouped hierarchically within left and right modules is the same.

The presence or absence of hub bones varies in each skull; some have several, others

have none. On average, 50% of skull bones act as connectors; particular values range

from 19% to 78% in different species. A high number of connectors can be related to the

formation of big modules with many boundary bones between them or, on the other hand,

many small modules whose bones are connected to several different modules at the same

time.

In general, the hierarchical formation of modules tend to follow an order in the process,

by which bones are grouped together according to the three body axes: dorsoventral,

left-right, and anteroposterior. The first branching events (i.e., reading the dendrogram

from left to right) separate anterior and posterior skull bones. Subsequent branching

events separate left and right groups of bones. The last branching events separate bones

from dorsal and ventral areas. This hierarchically idealized grouping pattern (Fig. 10.1) is

modified in each skull depending on its specific overall connectivity pattern as well as the

presence of unpaired bones. Moreover, this grouping pattern further suggests a relative

‘order of importance’ of each body axis in the formation of connections between neighbor

bones during skull ontogeny and suture growth. This last conclusion is further analyzed

in the next section using artificial manipulation of connectivity patterns in Kayentachelys

and Homo.



10.1. EVOLUTIONARY PATTERNS 217

Dorsal block

Ventral block
Left block

Right block

Anterior block

Posterior block

The Skull

Figure 10.1: Generalized rule of connectivity modules formation according to bone position

along the three body axes. The hierarchical grouping of skull bones in blocks within blocks

during the formation of connectivity modules follows a particular order according to the

three body axes. Dorsal and ventral neighbor bones are grouped together first in the

dendrogram. Then, dorsal and ventral blocks in each skull side are grouped into left and

right symmetric blocks. Finally, these left and right blocks are grouped into anterior and

posterior blocks. Dashed lines indicate equivalent block formation.
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10.2 Artificial Manipulation of Connectivity Patterns

Abstract – Two skull networks have been artificially manipulated disjoining

one or more unpaired bones and evaluating the effect in the modular orga-

nization of skulls due to changes in connectivity patterns. The result of this

theoretical experiment suggests that the presence of unpaired bones affects the

order of grouping of bones in nested blocks, modules, and bigger partitions.

First, bones form groups according to their position along the dorsoventral

axis; then, these groups form blocks that bring together left and right groups

of bones; finally, these blocks form modules that bring together anterior and

posterior blocks. Thus, the skull is often divided in anterior and posterior mod-

ules when unpaired bones are present. The lack of unpaired bones reverses

this order causing the formation of different connectivity modules; specular

modules separating right and left groups of bones are formed more frequently.

This order highlights the relative importance of each body axis in the for-

mation of connections between neighbor bones, suggesting the presence of

differential maturation patterns determining the connections between bones

(formation of sutures) along each of the three body axes.

Introduction

The comparative analysis of modularity has shown that the formation of any type of

connectivity module in one particular region of the skull depends entirely on the overall

connectivity pattern of the skull. Thus, connectivity modules (bilateral, specular, or

asymmetric specular) are emergent patterns of organization (see 10.1). The participation

of unpaired bones in the integration of left and right sides is ambiguous. Bones form a

bilateral module when the left and right sides are more integrated together than separately.

However, the formation of bilateral modules without unpaired bones (e.g., the module

that groups frontal bones in Podocnemis unifilis, Chisternon undatum, and Carettochelys

insculpta) confirms that their presence is not always needed. In this section, the formation

of connectivity modules is analyzed from an evolutionary perspective using two theoretical

experiments of artificial unpaired bones formation in skull networks.

The first experiment studies the formation of a bilateral module in turtles in the

anterior region of the face and palate (see Chapter 8, pages 101 to 119). In basal anapsids

and testudines, such as Procolophon and Proganochelys, the vomers are two paired bones;

these skulls show the formation of two specular connectivity modules in this anterior
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region. During the evolution of turtles, both in pleurodires and in cryptodires, the two

vomers fuse in the midline to form an unpaired bone. At the same time, a bilateral

module combining both specular modules is formed in those turtles with an unpaired

vomer. In this experiment, the skull network of a basal turtle, Kayentachelys aprix, has

been manipulated to reconstruct the ancestral condition of the vomer as a paired bone.

The connections of the vomer have been rearranged as it were two vomers: left and right.

The second experiment analyzes a more dramatic (unreal) scenario: the disjoint of

all unpaired bones in the skull of Homo sapiens. A network model of the human skull

has been built with all bones paired; connections have been rearranged for all bones

reconstructing this new situation. This example will serve to highlight the relationship

between modularity and body axes, together with unpaired bones, in the formation of

modules along the anteroposterior axis and specular modules along the left-right axis.

Materials & Methods

Two skulls were selected for these theoretical experiments: a fossil skull of a basal turtle

and the human skull (described in Chapter 8). The skull of Kayentachelys aprix represents

Early Jurassic turtles with a fused vomer. This skull, still resembles to a great extent that

of Proganochelys, a more basal turtle of the Late Triassic, in which the vomer is still

formed by a pair of bones. The skull of Homo sapiens was selected for the medical

relevance of their premature fusions in newborns (see Chapter 12). Two new hypothetical

skull networks were built: one for Kayentachelys with a paired vomer and one for Homo

with all bones paired. The same modularity analysis described in the previous section was

performed for these networks.

Results & Discussion

Kayentachelys

Disjoining the unpaired vomer in one left and one right vomer in the skull of Kayentachelys

produces a split in two specular modules of the anterior bilateral faciopalatal module

(Fig. 10.2). Only frontal bones change their assignment, being grouped now in more

posterior specular modules. The hierarchical structure of the other modules is the same

as in the original skull. However, the order in which bones are grouped in some regions

regarding the three body axes changes with and without the unpaired vomer. With an

unpaired vomer, bones are generally grouped first in dorsoventral blocks, then in left-right
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partitions, and finally in anteroposterior partitions; thus, a bilateral module is formed in

the anterior facial region of the skull. With paired vomers, the order in which bones are

grouped changes, first in dorsoventral blocks, then in anteroposterior modules, and finally

in left-right partitions; thus, two specular modules appear now in the anterior region of

the skull. This result points out the importance of the unpaired vomer in the formation

of this anterior bilateral module during the evolution of turtles skull modularity.

Homo

Disjoining all unpaired bones in two paired bones in the skull of Homo causes a totally

different modular organization. The original division in two bilateral modules along the

anteroposterior body axis has been replaced by a four-module division, in which bones are

first divided along the left-right axis and then the anteroposterior axis (Fig. 10.3). This

extreme example points out the importance of unpaired bones in the modular division of

skulls along the three main body axis. In absence of unpaired bones, bones tend to group

in left and right specular modules. The presence of originally unpaired bones, such as (in

part) the sphenoid and the occipital, or unpaired bones formed by midline fusions, such

as the frontal and the vomer, generates the formation of bilateral modules.
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Figure 10.2: Artificial disjoining of the vomer in Kayentachelys aprix. A) Empirical skull

network, the bones of the anterior region of the face and palate form a bilateral module

that includes the unpaired vomer (in blue). B) Skull network with an artificially disjointed

vomer, the same bones now form two specular modules, except frontals, which are instead

grouped in other, posterior specular modules. The formation of two anterior specular

modules is a feature observed in basal turtles, prior to the evolutionary fusion of the

vomer.
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Figure 10.3: Artificial disjoining of the skull in Homo sapiens. A) Original skull modularity

with one anterior and one posterior bilateral module. B) After disjoining unpaired bones,

modules are separated in two specular left and right modules, emphasizing the importance

of the anteroposterior body axis in bilateral module formation.
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Concluding Remarks

Unpaired bones have an important role in the formation of bilateral modules. The

presence or absence of unpaired bones determines the formation of bilateral or specu-

lar modules in particular regions of the skull. The artificial manipulation of unpaired

bones shows that they also affect the order in which bones are grouped in nested blocks,

modules, and bigger partitions regarding the three main body axes (Fig. 10.4). First,

bones form groups according to their position along the dorsoventral axis; then, these

groups form blocks that bring together left and right groups of bones; finally, these

blocks form modules that bring together anterior and posterior blocks. Thus, the skull

is often divided in anterior and posterior modules when unpaired bones are present. The

lack of unpaired bones reverses this order causing the formation of different connectivity

modules; specular modules separating right and left groups of bones are formed more

frequently. Furthermore, this order reveals a possible relative importance of each body

axis in the formation of connections between neighbor bones, suggesting the presence of

differential maturation patterns determining the connections between bones (formation of

sutures) along each of the three body axes. The formation of new unpaired bones during

the evolution of the skull in different lineages is responsible for changes in their modular

organization due to changes in overall connectivity patterns.

Dorsal block

Ventral block
Anterior block

Posterior block

Left block

Right block

Modified skull
after disjoining

unpaired bones

Figure 10.4: Modification of the generalized rule connectivity modules formation. The

hierarchical grouping order when unpaired bones are absent differs from that showed in

Fig. 10.1. The main shift in connectivity modules formation, due to disjoining unpaired

bones, is that anterior and posterior blocks of bones are formed before than left and right

side blocks, which, together with higher modularity Q values, promotes the formation of

only specular modules in modified skulls.
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11.1 Theoretical Morphology of Tetrapod Skull Networks

Abstract – Network models of the tetrapod skull in which nodes represent

bones and links represent sutures have recently offered new insights into the

structural constraints underlying the evolutionary reduction of bone number

in the tetrapod skull, known as Williston’s Law. Here, we have built null

network model-derived generative morphospaces of the tetrapod skull using

random, preferential attachment, and geometric proximity growth rules. Our

results indicate that geometric proximity is the best null model to explain the

disparity of skull structures under two structural constraints: bilateral sym-

metry and presence of unpaired bones. The analysis of the temporal occu-

pation of this morphospace, concomitant with Williston’s Law, indicates that

the tetrapod skull has followed an evolutionary path toward more constrained

morphological organizations.

Introduction

The evolution of the tetrapod skull has been extensively studied in comparative morphol-

ogy. In the early 20th century, a pivotal analysis of changes in the number and complexity

of skull bones in the evolution of Permian reptiles formed the basis for what is now known

as the Williston’s Law: an evolutionary trend in tetrapods toward reduction in the num-

ber of skull bones (see 1.2.1). Three complementary causal factors have been proposed

to explain the reduction in the number of bones and sutures during tetrapod skull evo-

lution (Sidor, 2001): (1) natural selection favoring more rigid, boxy skulls that improved

functional and biomechanical integration in terrestrial vertebrates; (2) developmental and

statistical constraints favoring the loss of bones rather than their new formation; and (3)

unlikeliness of new bone formation by either genetic or epigenetic mechanisms (see also

Rasskin-Gutman and Esteve-Altava, 2008, and references therein, for a review of external

and internal processes related to evolutionary trends). Although reversions of Williston’s

Law are theoretically possible, for example, due to paedomorphosis in the patterns of cra-

nial suture closure, this mechanism has not been reported at a broad scale as a sustained

evolutionary process (but see Wilson and Sánchez-Villagra, 2009; Koyabu et al., 2011, for

insights on heterochronic shifts in ossification and fusion sequences in mammals). Recent

studies on the evolution of the skull have focused on the analysis of morphological inte-

gration and modularity in different groups, such as: hominids (Bastir, 2008; Mitteroecker

and Bookstein, 2009; Mitteroecker et al., 2012), mammals (Couly et al., 2007; Goswami



11.1. THEORETICAL MORPHOLOGY 227

et al., 2009; Porto et al., 2009), and birds (Marugán-Lobón and Buscalioni, 2003, 2009;

Bhullar et al., 2012; Klingenberg and Marugán-Lobón, 2013). In addition, the importance

of cranial anatomy at all levels of organization has prompted the comparative and evolu-

tionary analysis of gene regulatory networks (Chase et al., 2002; Haberland et al., 2009)

and developmental origin of skull embryonary cells (Couly et al., 1993; Santagati and Rijli,

2003), as well as biomechanics and functional morphology (Rafferty et al., 2003; Moazen

et al., 2009). These studies show that although the organization of the skull is modular

at the genetic, developmental, functional, and morphological level, it still retains a tight

integration of parts. As a consequence, the bony elements of the skull, which derive from

multiple developmental and evolutionary origins, carry many coordinated functions (e.g.,

protection and hosting of sensory organs and the brain, feeding, or breathing). To which

extent this multi-functional, highly integrated, and modular anatomical structure has oc-

cupied the morphospace of all possible tetrapod forms is missing in this picture. Here, we

will try to answer this question duly by exploring theoretical morphospaces using network

theory; with these tools we can simulate millions of networks that represent possible skulls

at a broad macroevolutionary scale, using different null models of growth.

Theoretical Morphology and Networks

Theoretical morphology appeared in the 1960s beginning with the seminal work of David

Raup on the accretionary growth of coiling shells (Raup, 1961, 1962, 1966, 1967, 1968).

This methodological approach is based on the construction of a space of possible forms

by using a set of generative rules that are formal abstractions of growth patterns (for

recent extensive reviews of theoretical morphology and morphospaces see Dera et al.,

2008; McGhee, 1998, 2007). An empirical morphospace including both extinct and extant

forms is subsequently superimposed onto the theoretical morphospace; as a result of this

mapping, real forms can be analyzed against a background of possible and impossible

forms, obtaining a more general picture of how real forms are distributed in nature (Fig.

11.1).

The dimensions of a morphospace are timeless; this makes theoretical morphology

suitable to frame evolutionary patterns of morphological change (McGhee, 1998). A

theoretical morphospace describes (or puts into relation) organismal forms with one basic

assumption: the morphospace is not occupied uniformly (Rasskin-Gutman and De Renzi,

2007). If the models to generate these forms are carefully chosen, distances among forms

and trajectories of occupation within the theoretical morphospace will inform us about
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underlying causes in development and evolution (Mitteroecker and Huttegger, 2009).

αγ

trait 2
trait 1

G(α2,β2,γ2)

G(α1,β1,γ1)

† †

β

Figure 11.1: Analysis of form using theoretical morphospaces. The empirical morphospace

of morphological traits is mapped onto the broader framework provided by the theoret-

ical construction, in which possible and impossible forms can be generated. Below, a

hypothetical three-dimensional parameter space (α, β, γ) from which a generative rule,

G, explicitly build parameter-specific regions of theoretically possible forms in the plane

above. Above, the theoretical space is divided in possible regions (white) and theoretically

impossible regions (grey) given the assumptions of the model. Each set of parameters for

the generative rule can produce possible forms (circles), which, in the ideal case, match the

empirical ones, including those that exist (black dots), have existed in the past (crossed

dots), or are functionally unviable (empty dots). Modified after Rasskin-Gutman (2005).

In theoretical morphology, the distinction between possible and impossible forms de-

pends on which generative rule is chosen to build the theoretical morphospace. Given a set

of parameters, there always will be forms that are impossible either because the generative

rule cannot make them or because the combination of those parameters is meaningless.

For example, if we consider, by definition, that skull networks cannot be disconnected,

then any combination of parameters for each null model that would grow disconnected

networks has to be treated as impossible. Also note that we do not impose functional

constraints on the exploration of the skull network morphospace, this means that what

is biologically possible is a subset of the formally possible, which might be further con-

strained by functional requirements. Moreover, the set of rules based on morphogenetic
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processes converts a generative morphospace in a hypothesis of developmental constraint

(Rasskin-Gutman, 2003; Rasskin-Gutman and Izpisua-Belmonte, 2004). Indeed, this is

how we should look at the null models presented here (see also 6.1).

The articulation of skull bones was first analyzed in a theoretical morphology frame-

work in Rasskin-Gutman (2003). There, only 2D bone connectivity networks were studied

from data taken from skull diagrams in lateral view. The exploration of the possible con-

nections among skull bones was carried out using a computational model based on cellular

automata, an approach that uses stochastic rules to generate connectivity patterns. These

changed sequentially, following a constraint specified as a computational goal: a specific

connectivity distribution and a fixed number of bones. Here, we analyze full 3D connectiv-

ity information of all bone sutures for each skull in the sample. To explore the theoretical

morphospace we use null models of network growth. In general, null models are ideal-

ized representations of strategies and scenarios for a given phenomenon that also provide

a comparative baseline to analyze other models (Nitecki and Hoffman, 1987). Even as-

suming that there is not a one-to-one mapping between the network growth rule and its

properties (Fox-Keller, 2005), null network models are useful heuristic tools in biology

(Watts and Strogatz, 1998; Barabási and Albert, 1990). We show that the properties of

these null network models, when compared with empirical skull networks reveal plausible

mechanisms of network formation in evolution. Furthermore, the analysis of the growth

rules and constraints that form connectivity patterns in networks can be interpreted as

developmental mechanisms that impinge on skull evolutionary dynamics.

We built four null network model-derived generative morphospaces based on different

growth assumptions about how bone connections are established during skull formation:

at random, by preferential attachment, and using two different geometric proximity as-

sumptions (see 6.1). Each model of network growth proposes competing sets of structural

constraints that might have been in place during the evolution of the tetrapod skull. The

fit of skull networks to the random model would suggest absence of constraints on the for-

mation of connections among bones. This would mean that there would be a decoupling

between any evolutionary trend on skull connectivity and their underlying developmental

constraints. In other words, skull connectivity trends would be exclusively due to non-

developmental factors. On the other hand, the fit to the preferential attachment model

would suggest that the number of connections is the main constraint in establishing new

connections; thus, some bones would have a growth pattern allowing them to make contact

with more and more bones as they become ossified. As far as we know, no developmental

mechanism would favor this kind of preferential attachment growth. Finally, the fit to the
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geometric proximity models would indicate that the key factor constraining the formation

of skull suture connections is the relative spatial proximity of all ossification centers. This

would further suggest that changes in genetic regulatory networks that determine bone

position in the developing skull (i.e., migration, determination, and differentiation of bone

precursors), as well as their epigenetic regulation, could cause evolutionary changes on the

formation of connections among skull bones.

We have used these four null models to build generative morphospaces, analyzing their

occupation using an empirical sample of real tetrapod skull networks. The results of this

approach will be used to address the following questions: (1) how does the number of

connections vary in relation to the number of bones; (2) how is this variation distributed

across geological time; and, most importantly, (3) which growth rules are more likely to

have been involved in producing the disparity of skull structures found in nature?

Material & Methods

Skull network models are a morphological abstraction of the structure of the suture pat-

terns of the skull in which each bone is a node and each suture connection is a link of

the network. Methods to build skull network models have been extensively discussed in

Chapter 4. In the following sections, we will describe the process of construction of gen-

erative morphospaces using null network models and the empirical sample used here to

analyze the morphospace occupation.

Boundaries of the Morphospace Based on Network Models

We have built four generative morphospaces for two morphological traits: number of bones

(N ) and total number of suture connections between bones (K ). These traits correspond

to basic descriptors of network models: number of nodes and links. The ratio between the

actual number of connections and the maximum theoretical possible, K /N (N -1), defines

the density of the network.

We have set the space of possible networks by imposing the following restrictions (Fig.

11.2): (1) redundant connections between bones, loops, are not considered (region a in

Fig. 11.2), this generates an upper limit for possible theoretical networks given by a value

of density = 1 (boundary b in Fig. 11.2); (2) bones cannot be disconnected (region c in

Fig 11.2), and (3) K > N–1 in all instances, setting the minimum threshold of disconnec-

tivity (boundary d in Fig. 11.2). These restrictions define the boundaries that constraint
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the space of modeled skull networks for all generative morphospaces (region e in Fig. 11.2).
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Figure 11.2: Boundaries constraining the theoretical morphospace of skull networks. Pos-

sible skull networks occupy the white region between both boundaries, whereas the grey

regions contain only impossible networks. Based on measures of density, number of con-

nections (K ), and number of bones (N ), five regions a-e can be differentiated within the

morphospace: a, includes impossible regions with redundant connections (type 1); b, in-

cludes possible, totally connected networks (type 2); c, includes impossible, disconnected

networks (type 3); d, includes possible networks of minimal connectivity (type 4); and e,

includes most possible networks found in nature (type 6), but also some special impossible

networks (type 5).
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Building Generative Morphospaces

We built four generative morphospaces: random, preferential, proximal, and symmetric

proximal, using different null network models (Table 11.1). Each morphospace is based

on a growth rule that uses different sets of parameters. Different parameter values gen-

erate different regions for each morphospace, exhibiting different degrees of overlapping.

The regions generated for different values of the generative parameter delimit restricted

morphospace regions, while the sum of all restricted regions configures an extended mor-

phospace region. To set the upper and lower boundaries for each generative morphospace,

the maximum and minimum values of K were calculated by simulating 10,000 networks

for each value of N, ranging from 15 to 60.

Table 11.1: Properties of the four generative morphospaces.

Morphospace Growth Rule Parameters

Random Random Linkage p = {0.1, 0.2, 0.3}
Preferential Preferential Attachment m = {1, 2, 3, 4, 5, 6}
Proximal Proximity Constraint x, y, z = random

Symmetric

Proximal

y, z = random

Proximity Constraint x = bilateral symmetry

unpaired nodes = {0-7}

The Random morphospace is based on the classic model of Erdös and Rényi (1959),

in which connections between nodes are established by random linkage (see 6.1.2). In this

model, networks are built by taking a given number of nodes (N ) and connecting each

pair with probability p. The choice about whether or not to connect two nodes is made

independently for each pair of nodes. In random networks, all connections are equally

probable and there are no constraints to connectivity. Thus, the density of the generated

networks depends directly on the linkage probability: if p = 0 the random model will

generate a totally disconnected network; if p = 1, it will generate a complete network,

where all nodes are mutually connected; and, for a large N the average connectivity of

the network is p(N –1). In real skull networks p is calculated as the ratio between the

average number of connections, ki, for all nodes and the total number of bones, N. For

example, in the human skull network ki = 6.04 and N = 21, so p = 0.28. In the empirical



11.1. THEORETICAL MORPHOLOGY 233

sample, p ranges approximately from 0.1 to 0.3; thus, we have constructed the Random

morphospace for values of p equal to 0.1, 0.2, and 0.3.

The Preferential morphospace is based on the model proposed by Barabási and Albert

(1990) to generate scale-free networks by preferential attachment (see 6.1.5). Networks

are built starting from a small number of nodes (we used N = 10), to which new nodes are

iteratively added. New nodes introduce a fixed number of new connections (m), connecting

the new nodes to old nodes already present in the network. When choosing the old nodes

to which the new node connects, those with a higher number of connections are chosen

preferentially. Thus, nodes with more connections have a higher probability to attach new

connections (“the rich get richer”), in contrast with the random model, in which all nodes

have the same probability to connect. We have constructed the Preferential morphospace

for values of m between 1 and 6, which cover the range of average number of connections

per node in all empirical skull networks.

The Proximal morphospace is based on the model proposed by Gabriel and Sokal

(1969), which imposes spatial constraints to connectivity according to node geometric

proximity (see 6.1.6). Here, networks are built by positioning a given number of nodes

uniformly at random in a Euclidean space; each pair of nodes is connected if, and only if,

the sphere whose diameter is the line between both nodes does not have any other node

within its volume. In contrast with the previous null network models, proximity networks

are spatially constrained: two nodes only connect if they satisfy a geometric requirement.

We have built the Proximal morphospace by placing all nodes at random within a cubic

space of size 1.

In addition, we have modified the model of Gabriel and Sokal to build a Symmetric

Proximal morphospace, which introduces two additional constraints based on real skull

anatomy: (1) the symmetric positioning of bones along a left-right axis (bilateral sym-

metry) and (2) the presence of unpaired bones positioned in the midline of this axis (see

6.1.7). We built the Symmetric Proximal morphospace for 0 to 7 unpaired nodes, while

the remaining nodes were paired.

Empirical Sample of Skull Network Models

An empirical sample of 53 skull networks has been used to explore their occupation within

each generative morphospace. The sample includes 44 network models of adult tetrapod

skulls (see details in Chapters 7 and 8). Two basal amphibian skulls have been added

to this sample: Brachydectes sp. (40 bones, 81 connections, Carboniferous; from Mar-

janovic and Laurin, 2008) and Pantylus sp. (51 bones, 146 connections, Permian; from
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Romer, 1969). In addition, seven network models of human newborn skulls were built; the

normal human skull at birth and six nonsyndromic craniosynostosis conditions in which

premature fusion of the following sutures occur: metopic, sagittal, hemicoronal, bicoronal,

lambdoidal, and lambdoidal plus occipitomastoid (see 12.2). The inclusion of these six

pathological human skulls broadens the empirical sample with developmentally possible

forms, challenging the limits of each generative morphospace. All these skulls were se-

lected to show a wide diversity of tetrapod forms, including extinct basal forms. It is also

worth noting that the identification of bones and suture connections is a very hard task

in extinct species due to preservation problems in fossil skulls; in these cases, bones and

connections have been quantified according to expert descriptions in the literature and

personal judgment (see 5.1).

Temporal Occupation

Empirical skull networks have been mapped onto each generative morphospace in order to

analyze their occupation. Additionally, a temporal analysis of the morphospace occupation

has been carried out for the generative morphospace that shows the best fit to the empirical

sample. We have used seven time intervals: Devonian, Carboniferous, Permian, Triassic,

Jurassic, Cretaceous, and Cenozoic. Temporal occupation for each empirical skull network

was taken at the genus level using origin and extinction occurrence from the Paleobiological

Database (available at http://paleodb.org). Extant genera without known fossil record

were marked as originating in the Cenozoic.

Results

Coverage of the Theoretical Morphospace

Generative morphospaces cover the theoretical morphospace distinctively; in addition,

each type of morphospace behaves differently when varying their parameter values (Fig.

11.3). The Random and the Preferential morphospaces include all empirical networks, as

parameters p and m vary for 0.1 to 0.3 and from 1 to 6, respectively. However, within

these restricted regions some areas remain unoccupied by empirical data. In contrast,

Proximal morphospaces only generate networks in a limited constant region, which are

almost uniformly occupied by empirical data. In the Symmetric Proximal morphospace,

its form is prominently narrower for lower values of N and K than for higher values;

consequently, the occupation is more scattered as the values of N and K increase.
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Figure 11.3: Coverage of the theoretical morphospace by the four generative rules. In

grey, the region of impossible forms; in white, the region of possible forms, which each

model covers distinctively. Solid dots, adult empirical skull networks; empty dots, human

newborns. For each morphospace, the regions generated for different values of the gen-

erative parameter delimit restricted morphospace regions (grey line patterns), while the

sum of all restricted regions configures an extended morphospace region (black continuous

lines). A) The Random morphospace; forms can be generated in three restricted regions

according to the probability value, p. B) The Preferential morphospace; forms can be

generated in six restricted regions according to the number of new connections introduced

for new nodes as the network grows, m. C) The Proximal morphospace; forms can be

generated within a unique, uniform restricted region. D) The Symmetric Proximal mor-

phospace; here the restricted and extended regions are almost identical. In all models, the

distribution of K for each N is normal around the mean value.
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The occupation of the Random morphospace varies in each restricted region, according

to the probability value (Fig. 11.3A): p = 0.1 (58%); p = 0.2 (49%); and p = 0.3 (21%). In

the Preferential morphospace, occupation also varies in each restricted region, according

to the number of new connections introduced for new nodes as the network grows (Fig.

11.3B): m = 1 (2%); m = 2 (9%); m = 3 (68%); m = 4 (55%); m = 5 (26%); m = 6

(17%). In addition, for each set of parameters there are different areas of non-occupation;

for example, for values of p = 0.2 and 0.3 the Random Morphospace is occupied by forms

that are over-connected when compared with real skull networks; and for p = 0.1 the

smaller networks generated by this morphospace are under-connected. For the Preferential

morphospace, most areas generated for m = 1, 2, 5, and 6 are empty, while the empirical

sample occupies more uniformly the areas generated for m = 3 and 4. Finally, for m = 1

and 2, the generated networks are under-connected for their size, whereas for m = 5 and

6 the generated networks are over-connected for their size when they are compared with

real skull networks.

Morphospaces generated with spatial constraints are more uniformly occupied. The

Proximal morphospace includes 42 out of 53 skull networks (79%) inside its boundaries

(Fig. 11.3C); some skulls such as all human newborns and some modern mammals that

possess a relatively high density of connections (Homo sapiens, Mus musculus, Canis

lupus, and Tursiops truncatus) fall outside this morphospace. The Symmetric Proximal

morphospace includes all empirical skull networks in its extended region and all but one

(Canis lupus) in the overlap region of all its restricted regions (Fig. 11.3D).

Temporal Occupation of the Theoretical Morphospace

To analyze the temporal occupation of the empirical sample of skull networks within the

theoretical morphospace, we have used the extended Symmetric Proximal morphospace.

This generative model fits the empirical data well, including the human pathological

forms. Early tetrapod skulls occupy the wider region of the morphospace during the

Devonian and Carboniferous Periods. Temporal occupation changes toward the narrower

area of the morphospace as the wider area (i.e., higher values of N and K ) begins to

empty out during the Mesozoic, being completely unoccupied in the Cenozoic (Fig. 11.4).
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Figure 11.4: Temporal occupation of the theoretical morphospace. Black lines delimit the

area generated by the Symmetric Proximal morphospace. Skull networks of major groups

originate in the wider area of the morphospace (right; higher N and K ), in which the

disparity of networks is potentially greater; after the Devonian, all groups evolved toward

the narrower part of the morphospace (left; lower N and K ), in which the potential

disparity of skull networks is lower. By the Cenozoic, the area where skulls originated is

empty.
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Discussion

We have built four null network model-derived generative morphospaces using three

growth rules: randomness, preferential attachment, geometric proximity, and symmet-

ric geometric proximity. By mapping an empirical sample of skull networks onto these

morphospaces, we have assessed their plausibility as developmental processes involved in

the formation and evolution of the tetrapod skull. Our results indicate that geometric

proximity is the best model to explain the disparity of skull structures found in tetrapods.

This can only happen when bones are positioned in such a way that bilateral symmetry

is kept and only a few of them are unpaired, which is the case of the Symmetric Proximal

morphospace. Further analysis of the temporal occupation of this network morphospace

reveals that early skulls, for all major groups, originated in the wider area of the mor-

phospace, in which the variability is potentially greater. Subsequently, skull networks

have evolved toward the narrower area of the morphospace, in which the potential skull

variability is lower. This fits Williston’s Law because the wider area represents skulls with

higher number of bones and connections, whereas the narrower area represents skulls with

fewer bones and connections (but showing higher density or complexity).

Our results do not support random and preferential growth rules as plausible processes

of skull network formation. The analysis of the occupation of these morphospaces show

that: (1) different skulls need different values for basic generative parameters, which are

linked to their number of bones without any developmental or phylogenetic basis; and (2)

their extended regions cover the full range of possible forms, which clearly limits their

explanatory power. A common characteristic of both morphospaces is that none of their

restricted regions can include completely the empirical sample of skull networks; full sam-

ple inclusion occurs only when taking all extended regions. This result entails that if skull

structure (as modeled by networks) were produced by random or preferential mechanisms

for establishing connections between bones, then the basic generative parameters (p and

m, respectively) would have to vary in each case to produce different skulls. Furthermore,

these two models can cover the full range of possible network forms by using more values

for p and m; increasing these parameters increases the number of connections available

in relation with the number of bones. Since extended regions in the Random and the

Preferential morphospace cover all the space of possible forms, the bounded pattern of

occupation of the empirical skull networks would need additional explanation. As a con-

sequence, the biological predictions of these models cannot be supported. This suggests

that suture connection formation is constrained by specific developmental mechanisms in
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the tetrapod skull, coupling development with evolutionary trends (Rasskin-Gutman and

Esteve-Altava, 2008). In addition, the number of connections, solely, cannot guide the

establishment of new connections via specific growth patterns in the tetrapod skull.

In contrast, geometric proximity rules are well supported by our results. Even though,

in these models, the positioning of bones imposes physical constraints for establishing

bone connections during skull growth, they are able to generate highly bounded regions of

the theoretical morphospace, which fit the empirical data very well. Thus, the Proximal

morphospace includes most of the real skull networks, except several skulls that have a

higher number of connections (and consequently, more density) than expected for their

number of bones, namely, Homo sapiens, Mus musculus, Canis lupus, Tursiops truncatus,

and human newborn skulls with craniosynostosis. The addition of a bilateral symmetry

constraint to the model allows the coverage of the Symmetric Proximal morphospace to

include all skulls of the empirical sample.

The different occupation of the Proximal and the Symmetric Proximal morphospace

can be better understood if we interpret nodes in growing networks as analogous to ossifi-

cation centers in skulls. For these null models, this interpretation implies also an idealized

mechanism of homogeneous bone growth both in speed and direction. This is so because

by connecting nodes using the Gabriel & Sokal model we are assuming that each node

is a center of growth that extends spatially until it contacts another growth front. Since

some empirical skulls are not included in the Proximal morphospace, this indicates that

this model is unable to predict some connections between bones. These skulls deviate

from the growth assumptions of this null model because some of their bones might grow

in size, have more irregular shapes, or have different developmental timing (Schoch, 2006;

Wilson and Sánchez-Villagra, 2009; Wilson et al., 2010; Koyabu et al., 2011). However,

all real skull networks are included in the Symmetric Proximal morphospace, in which

bone position is more realistic: two sets of bones with bilateral symmetry and a few un-

paired bones in the middle. This suggests that those hypothetical bones able to overcome

geometric constraints in the Proximal morphospace might just be unpaired bones with a

privileged position that allows them to connect to many paired bones. As a consequence,

the best null model to predict the formation of the skull structure is based on a mecha-

nism by which bones establish suture connections according to their geometric distance;

furthermore, the skull bilateral symmetry as well as the presence of a few unpaired bones

is essential.

The generative region in the Symmetric Proximal morphospace is narrower for lower

values of N and K than for higher values. Thus, it shows a variation in the range of the
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number of connections for skulls with lower or higher number of bones. As a consequence,

there are more structural configurations of skull networks (i.e., disparity) available in the

wider area of the morphospace than in the narrower area; in contrast, in the narrow area,

the variability of theoretically possible skull networks is lower, that is, more constrained.

Moreover, early tetrapod skulls that originated during the Devonian and Carboniferous

Periods only occupy the region of the morphospace characterized by a high number of

bones. Throughout the Mesozoic, the occupation shifts toward narrower areas of the

morphospace; that is, skulls reduce their numbers of bones, following Williston’s Law. As

skull bone number decreases in early tetrapod evolution, the wider area of the morphospace

begins to empty out, while that narrower area begins to fill in with more derived skull

forms during the Cenozoic. Thus, the occupation of the theoretical morphospace suggests

that the tetrapod skull has evolved toward more constrained morphological organizations.

It is worth noting also that this directional pattern of occupation is convergent in all major

groups and all measures of structural complexity increase over time (see 9.1).

Generative morphospaces, as hypotheses of developmental constraints, have allowed

us to show a directional pattern of morphospace occupation in macroevolutionary time

scales, further suggesting that the tetrapod skull has evolved in most lineages under the

influence of structural constraints acting on the formation of new patterns of connectivity.

These structural constraints are also related with mechanisms that favor the random loss

of poorly connected bones and the selective fusion of the most connected ones, incidentally

increasing morphological complexity, and providing a mechanistic basis for Williston’s Law

(see Chapter 9). Taken together, these results suggest an evolutionary scenario in which

a structural constraint imposed by bilateral symmetry and geometric proximity between

skull bones has been operating, favoring bone loss and fusion, creating highly connected

unpaired bones in the midline.
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12.1 Grist for Riedl’s Mill: A Network Model Perspective

on the Integration and Modularity of the Human

Skull

Abstract – Riedl’s concept of burden neatly links development and evolution

by ascertaining that structures that show a high degree of developmental co-

dependencies with other structures are more constrained in evolution. The

human skull can be precisely modeled as an articulated complex system of

bones connected by sutures, forming a network of structural co-dependencies.

We present a quantitative analysis of the morphological integration, modu-

larity, and hierarchical organization of this human skull network model. Our

overall results show that the human skull is a small-world network, with two

well-delimited connectivity modules: one facial organized around the ethmoid

bone, and one cranial organized around the sphenoid bone. Geometric mor-

phometrics further support this two-module division, stressing the direct re-

lationship between the developmental information enclosed in connectivity

patterns and skull shape. Whereas the facial module shows a hierarchy of

clustered blocks of bones, the bones of the cranial modules show a regular

pattern of connections. We analyze the significance of these arrangements

by hypothesizing specific structural roles for the most important bones in-

volved in the formation of both modules, in the context of Riedl’s burden.

We conclude that it is the morphological integration of each group of bones

that defines the semi-hierarchical organization of the human skull, reflecting

fundamental differences in the ontogenetic patterns of growth and the struc-

tural constraints that generate each module. Our study also demonstrates the

adequacy of network analysis as an innovative tool to understand the morpho-

logical complexity of anatomical systems.

Introduction

The morphological integration and modularity of the adult human skull is the result of a

mosaic evolution of embryonary parts with diverse developmental mechanisms (Cheverud,

1982; Bastir and Rosas, 2005; Bastir et al., 2008; Klingenberg, 2008; Bastir and Rosas,

2009; Lieberman, 2011; Mart́ınez-Abad́ıas et al., 2012). Studies of the morphological in-

tegration and modularity of the human skull start by establishing a developmental or
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functional hypothesis; this is then tested by means of patterns of covariation and cor-

relation using different morphometric tools (Chernoff and Magwene, 1999; Bastir, 2008;

Mitteroecker and Bookstein, 2008). Even though this approach has proven very successful,

it uses morphological information only as datasets to test a priori biological hypotheses. In

contrast, few efforts have been devoted to articulate theoretical and mechanistic models to

quantify integration and describe modules at a morphological level without functional or

developmental assumptions (but see Eble, 2005; Rasskin-Gutman and Buscalioni, 2001;

Rasskin-Gutman, 2005). Such an approach can be carried out in the skull using net-

work models of bone connectivity patterns (Rasskin-Gutman, 2003, 2005; Esteve-Altava

et al., 2011). Within this framework, modules are recognized based exclusively on mor-

phological organization without a priori assumptions. However, the number and pattern

of connections for each bone can be seen also as developmental and functional dependen-

cies, providing a quantitative estimate of Riedl’s burden rank (Riedl, 1978; Schoch, 2010,

see also 5.2.2) and allowing, in turn, an a posteriori direct measure of integration and

modularity.

We build these network models formalizing each bone and suture of the skull as nodes

and links in an adjacency matrix. This type of analysis provides a new modeling frame-

work to understand evolutionary patterns, developmental constraints, and morphospace

occupation (Rasskin-Gutman, 2005; Dera et al., 2008). Following this approach, we have

previously studied Williston’s Law in a broad sample of tetrapod skulls, including all

major phylogenetic groups (see Chapter 9). Our results suggested that the loss of poorly

connected bones constitutes a mechanism that underlies a general trend toward an increase

in morphological complexity and variation in the degree of integration. In addition, the

human skull network showed the highest degree of morphological complexity in terms

of structural organization, integration, and biomechanical or functional efficiency. This

prompted us to further investigate the network structure of the human skull as a null

model to provide new insights on its integration and modularity in an evo-devo context.

Here we show that the human skull is a small-world network with two differently or-

ganized connectivity modules, cranial and facial. The facial module has a hierarchical

sub-modular structure in blocks, which we have named frontonasal, left maxillary, right

maxillary, and ethmoidal blocks. The cranial module lacks this kind of internal organiza-

tion; rather, its structure resembles that of a regular network. The significance of these

results is discussed together with the morphogenetic processes involved in skull devel-

opment and evolution within a general trend of bone loss and fusion in the evolution of

tetrapod skulls. In the following sections, we extend the conceptual framework introduced
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in Chapter 5 to analyze morphological networks, providing the necessary background to

put our results in context.

Integration and Biological Burden

Morphological integration is generally defined as the covariation among morphological

structures due to common developmental and functional causes (Olson and Miller, 1958).

Given the role of craniofacial sutures in bone growth (Opperman, 2000; Rice, 2008), in-

tracranial movements of bones (Jaslow, 1990), and strain sinks (Rafferty et al., 2003;

Moazen et al., 2009), it is reasonable to expect that bones with more suture connections

have central structural and functional roles affecting the morphology of the entire skull;

in other words, the higher the number of connections, the stronger the functional and

developmental dependencies (structural constraints). This association between the num-

ber of connections and the intensity of constraints, due to acquired developmental and

evolutionary compromises, immediately resonates with ‘biological burden’ (Riedl, 1978;

Wimsatt, 1986; Schoch, 2010). The concept of burden neatly links development and evo-

lution (Wagner and Laubichler, 2004) and underlies the evolutionary pattern of skull bone

reduction in Williston’s Law.

‘Small-Worldness’ in Morphological Networks

Network structures can be assessed in different ways. While the number of connections

for each bone defines its burden rank, there are other network parameters that quantify

morphological integration for the entire skull, such as the clustering coefficient and charac-

teristic path length (see 5.2.2). These parameters capture information about the degree of

integration of the entire skull, the former by quantifying short-range feedback loops, and

the latter by quantifying effective proximity. Together, by comparing them with random

networks, they can be used to detect the presence of a special kind of network configura-

tion that is known as small-world (Watts and Strogatz, 1998, see also 5.2.4). Small-world

networks are more clustered than random ones (sometimes even more than regular net-

works), and yet the effective proximity between elements is as small as it is in random

networks. One consequence of this order in small-world networks is the emergence of

modularity because of the heterogeneous pattern of connections (Pereira-Leal et al., 2006;

Gallos et al., 2012). Correcting for network size, small networks (as in a skull) can also

be tested for ‘small-worldness’ (see Methods). In addition, this type of organization in a

skull would indicate that bones connect to each other following a certain order, one that
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lies between regularity and randomness. Riedl already recognized that morphological sys-

tems have this dual organization and defined this as “a region of unspecified probability,

a no-man’s-land between accident and necessity.”

Skull Modularity

Morphological integration and modularity are strongly linked concepts; modularity

emerges as a consequence of the presence of heterogeneous patterns of integration. Indeed,

we are able to perceive parts in a system only because these parts are integrated differently

within the system (Klingenberg, 2008)–that is why regular systems lack sub-divisions. To

identify the parts of the system (modules) and the strengths of their interaction (integra-

tion) we need a precise and operative definition of module and modularity as it relates to

integration (for general reviews of the modularity concept see Schlosser and Wagner, 2004;

Callebaut and Rasskin-Gutman, 2005). In the context of network analysis, quantifying

connectivity patterns readily accomplishes this. In a skull network, a connectivity module

is a highly connected group of bones (see5.2.4) allowing a precise detection of modules

by using general network analysis tools. It is important to note that datasets to infer

connectivity modules are totally different from the ones used to infer other morphological

modules, such as variational ones (e.g., Mitteroecker and Bookstein, 2007; Wagner et al.,

2007; Klingenberg, 2010). In connectivity modules raw data is taken from connections

between morphological units, whereas in variational modules it is taken from the shapes

of these units.

Skull Bone Hierarchy

Various studies reported different shape and growth rates for different skull regions, sug-

gesting that the human skull is organized hierarchically (reviewed in Bastir, 2008). In

networks, there is a hierarchical organization when nodes within modules tend to group

in highly clustered sub-modules or blocks (Ravasz et al., 2002). In many biological net-

works, this type of analysis suggested that some network elements specialize in different

roles related to the maintenance of the network architecture and function (Guimerà and

Nunes-Amaral, 2005). For instance, in metabolic networks, nodes with few connections

tend to cluster into blocks, while highly connected nodes integrate those blocks into mod-

ules (Jeong et al., 2000); this is the case also in brain networks (Meunier et al., 2010).

Finding a hierarchical organization in the network model would suggest that along with



246 CHAPTER 12. THE HUMAN SKULL NETWORK

shape and growth, connectivity patterns are also involved in the hierarchy of the human

skull.

Skull Bone Connectivity Role

In modular structures that exhibit a hierarchical organization, each component has a con-

nectivity role, based on which level it occupies in the hierarchy. Network analysis tools

allow a quantitative definition of these roles (see 5.2.2 and 5.2.2). The relationship of in-

dividual bone connectivity pattern within and between modules gives each bone a specific

structural role. Bones that are above in the hierarchy are those that contribute greatly to

integration between blocks or modules. Some bones are keystones that hold together all

the bones in a module by having a high number of connections within the module (local

hubs); some bones are also highly connected but their connections are shared between

modules (connector hubs); and some are scarcely connected within or between modules

(local and connector non-hubs). As we will show, each role has different theoretical rel-

evance for integration and modularity in the development and evolution of the human

skull.

Material and Methods

Network Analysis

The materials and methods used to build and analyze the adult human skull network have

been described in Chapter 4.

Morphometric Analysis of Network Modules

We tested the correspondence between connectivity and variational modules, using a ge-

ometric morphometric analysis. We used growth allometries to characterize different de-

velopmental units; with this method, a module is taken as a developmental unit if it

shows a specific allometric growth pattern with the expectation that the best modularity

hypothesis is the one that, summing the variance of both modules, explains most of the

overall skull variance (Rosas and Bastir, 2004). We used a total of 51 landmarks and semi-

landmarks digitized on lateral radiographs from a full ontogenetic sample (n=225) of 28

individuals of the Denver Growth Study (see Bastir et al., 2006, for a detailed description

of the sample, technical information, and landmarks location). These landmarks capture

information from external and internal structures of the human skull projected on the
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sagittal plane. Although a full 3D dataset could bring more information, major portions

in human craniofacial growth occur antero-vertically (i.e., sagittally) in the skull (Enlow,

1990; Enlow and Hans, 1996); this has been demonstrated in both 2D and 3D growth

studies (Bastir and Rosas, 2004; Bastir et al., 2006, 2007). Hence, given the nature of

our sample, we are capturing most of the relevant variation needed to test the modularity

hypothesis.

We performed multivariate regressions of shape on size. We tested for overall skull

centroid size and partition-specific centroid size. Each shape consisted of combinations of

landmarks that represented different modules according to different modularity models:

one based on network modules (Model A) and three alternative ones (Models B, C, and

D) to further test the results of the connectivity hypothesis. We based the composition of

these four models on the results of the connectivity analysis, which yielded two distinct

modules, facial and cranial. Since two bones–the frontal and the zygomatics–were shown

to act as connectors between both modules, we further tested alternative modularity hy-

potheses to explore the validity of the connectivity hypothesis. Thus, Model A represents

the result of the network analysis; Model B considers the zygomatics as part of the face;

in Model C the frontal is in the cranial module; and in Model D the zygomatics are in the

facial and the frontal in the cranial module. We performed these multivariate regression

analyses in MorphoJ (Klingenberg, 2011).

Results

Network Parameters

We modeled the human skull as a network (Fig. 12.1A) and analyzed its structure. The

clustering coefficient is 0.634 and the characteristic path length is 1.741. These values

exceed by more than two times the SD of those observed in the random equivalent net-

works simulated (Crand = 0.444, SD = 0.036; Lrand = 1.678, SD = 0.019). Accordingly,

[(C/Crand)/(L/Lrand)] = 1.3762, which is also higher than that expected for a random

network of the same size as the human skull (0.35). This indicates with confidence that

the human skull network is small-world. In addition, both P (k) and C(k) distributions

fit a power-law function (Fig. 12.1B-C), which indicates a hierarchical organization of

connections. The ethmoid, the frontal, and the sphenoid bones show the highest burden-

rank estimated by their significant above-average number of connections (13, 12, and

12). Table 12.1 summarizes the values of all calculated parameters for the human skull
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network and each single bone.

Pcum(k) = 18.91 k -2.15

r = 0.949

Occipital

Parietal L

Parietal R

Temporal L

Temporal R
Sphenoid Zygomatic L

zygomatic R

Frontal

Ethmoid

Nasal L

Nasal R

Maxilla L

Maxilla R

Lacrimal L
Lacrimal RPalatine L

Palatine R
Nasal Concha L

Nasal concha R

Vomer

A

B C

C(k) = 1.79 k -0.62

r = 0.824

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Connectivity (k)

C
on

ne
ct

iv
ity

 D
is

tri
bu

tio
n

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Connectivity (k)

C
lu

st
er

in
g 

C
oe

ff
ic

ie
nt

 (C
)

Figure 12.1: Connectivity pattern of the human skull network model. (A) Circular graph.

(B) The cumulative connectivity distribution shows that the frequency of bones decays

with the number of connections as a power-law. (C) The clustering coefficient distribution

also follows a power-law function, showing an inverse relationship between the number of

connections and the clustering coefficient. The fit of both distributions to a power-law

function indicates a hierarchical organization of connections in the human skull network

(see 4.1.4).
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Table 12.1: Human skull whole network and single bone parameter values

ki Ci Li Pi Zi

Human Skull – 0.63 1.74 – –

Ethmoid 13 0.37 1.35 0.14 2.6

Frontal 12 0.30 1.40 0.49 0.54

Inf. Nasal Concha 4 0.83 2.1 0 -0.70

Lacrimal 4 0.83 1.95 0 -0.70

Maxilla 9 0.42 1.65 0.20 0.95

Nasal 4 0.83 1.95 0 -0.70

Occipital 5 0.7 2.15 0 0.62

Palatine 6 0.67 1.7 0.28 -0.28

Parietal 5 0.7 1.85 0.32 0

Sphenoid 12 0.30 1.4 0.49 1.87

Temporal 4 0.67 2.15 0 0

Vomer 6 0.73 1.7 0.28 -0.28

Zygomatic 4 0.5 1.85 0.5 -1.25

Modularity and Bone-Role

The analysis of modularity yields two modules (Fig. 12.2). The first module (facial)

groups together the frontal, ethmoid, inferior nasal conchas, vomer, maxillas, lacrimals,

nasals, and palatines. The second module (cranial) groups together the sphenoid, oc-

cipital, parietals, temporals, and zygomatics. The hierarchy test shown in the previous

section indicates that the human skull has a hierarchical structure. However, looking at

each module separately, we observe that only the facial module shows a clear hierarchical

structure further sub-divided into four blocks. In contrast, the cranial module shows

no hierarchical structure, as a consequence of a more regular pattern of connections.

We name each block in the facial module after the most connected bone present in it.

Accordingly, the four blocks are: (1) frontal, composed of frontal and nasal bones; (2)

left and (3) right maxillary, composed of the respective left and right maxilla, lacrimal,

and nasal concha bones; and (4) ethmoidal, composed of ethmoid, vomer, and palatine

bones. The length of the dendrogram branches for each block indicates that they are

highly consistent (see Jain and Dubes, 1988).
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Figure 12.2: Analysis of modularity in the human skull network. According to the topolog-

ical overlap matrix of similarity (A right), the cluster analysis shows two modules (A left)

based on the highest Q value (B). The dendrogram also shows that only the facial module

has a hierarchical internal sub-organization in four blocks of spatially related bones. (C)

Each module and block is shown in different views: the cranial module is colored in red

and the four blocks that compose the facial module are colored in different shades of blue.
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The values of parameters Zi and Pi within this modular organization classify each

bone into one specific structural role1 (Fig. 12.3): the ethmoid has its connections within

the facial module (local hub); the sphenoid spreads its many connections between the

facial and cranial modules (connector hub); the frontal and zygomatics are more involved

in connecting the facial and cranial modules than in participating in their internal integra-

tion (connector non-hubs); and the vomer, the occipital, maxillas, temporals, parietals,

lacrimals, nasals, nasal conchas, and palatines just contribute their few connections to

their own module (local non-hubs).
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Figure 12.3: The role of each bone in the modular organization of the human skull is

given by its position in the ZP space. (A) According to the number of connections within

and between modules, four categories of bones can be defined: local hubs, connector

hubs, local non-hubs, and connector non-hubs. (B) For the human skull the Pi value that

discriminates between local and connector role is 0.4, while the Zi value that discriminates

between hubs and non-hubs is 1. Notice that burden-rank alone, indicated by the colored

bar, cannot discriminate between hubs (ethmoid and sphenoid) and non-hubs (all other

bones) as classified in the ZP space.

1For this article the Zi threshold to discriminate between hubs and non-hubs was 1 insted of 2, which
was used for the broader comparative analysis in Chapter 10.
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Network Modules and Morphometrics

All regressions were highly statistically significant at p < 0.001 assessed from 1,000 ran-

domizations. The amount of explained variance varied slightly according to whether we

used the same overall skull size for both partitions or each partition-specific centroid size.

Figure 12.4 shows the sum of total variance explained by both modules (cranial in red and

facial in blue) for four alternative models. Model A explains most of the total variance,

and performs slightly better than Model B; both of them perform better than Model C and

Model D, thus supporting the result of the modularity hypothesis based on the network

analysis.
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Figure 12.4: Maximum allometric growth variation test of connectivity modules using

multivariate regression of shape on size. (A) Landmarks used in the analysis; mandibular

landmarks have been excluded (landmarks 43, 44, 45, 46, 47, 48, 49, 50, and 51 in the

figure correspond to landmarks 58, 59, 60, 61, 62, 63, 64, 65, and 66 in Bastir et al., 2006).

(B) Results indicating the sum of total variance explained for the four alternative models

of two partitions (blue, facial module; red, cranial module) for partition-specific centroid-

size adjustment. Model A represents modularity as defined by the network analysis. Facial

module: frontal, ethmoid, inferior nasal conchas, vomer, maxillas, lacrimals, nasals, and

palatines; cranial module: sphenoid, occipital, parietals, temporals, and zygomatics. In

Model B, the zygomatics have been shifted to the facial module. In Model C, the frontal

has been shifted to the cranial module. In Model D, the zygomatics have been shifted to

the facial module whereas the frontal has been shifted to the cranial module. Note that

Model A explains the maximum amount of total variance; hence it supports the network

modularity hypothesis.
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Discussion

We have shown that the pattern of connections between bones in the human skull is

neither regular nor random. Instead, it follows a small-world organization that promotes

the formation of highly integrated connectivity modules: (1) an anterior facial module,

related to face and palate; and (2) a posterior cranial module, related to the cranial vault

and base. The internal structure of each module is different: the facial module shows

a hierarchical pattern sub-divided in blocks (frontonasal, left maxillary, right maxillary,

and ethmoidal), whereas the cranial module exhibits a non-hierarchical, regular structure.

Within these modules each bone has a distinctive connectivity pattern that allowed us

to identify their structural role within the skull. In particular, three bones turn out to

have key roles: the ethmoid, the sphenoid, and the frontal. The ethmoid bridges the

blocks of the facial module; the sphenoid gives more cohesion to the regular structure of

the cranial module and, along with the frontal, connects both modules together (a task

shared with the zygomatics). It is worth noting that the connectivity modules resemble

the classical, intuitive division of the human skull in an anterior face and a posterior cranial

vault. However, our results support the adscription of the frontal and ethmoid bones to

the facial module (Hofer, 1965; Bastir et al., 2006). Furthermore, the ethmoidal block

resembles the nasal capsule, an embryological, morphological, and evolutionary unit with

a distinctive pattern of integration within the face (Bastir and Rosas, 2011). As noted, the

zygomatics also play a key structural role in the skull by connecting both modules together,

although their connectivity pattern make them part of the cranial module. However, this

integrative role influences both cranial vault and facial growth and shape (e.g., orbits

and zygomatic arch; reviewed in Lieberman, 2011), functionally redistributing tensile and

compressive forces between skull regions (Witzel et al., 2004). Along with the other

connector bones (frontal and sphenoid), the zygomatics provide inter-module integration,

which could partly explain why it is so difficult to identify variational modules in the

human skull (Mart́ınez-Abad́ıas et al., 2012).

Growth Correlates of Connectivity Modules

Traditionally, the human skull is divided in three modules–an anterior face, and posterior

neurocranium and basicranium–a division which has long been accepted based on ge-

netic, developmental, and phenotypic shape variation criteria (reviewed in Bastir, 2008).

However, a recent work by Mart́ınez-Abad́ıas et al. (2012) has challenged this general

modularity hypothesis showing that morphometric modules cannot be clearly delimited
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(i.e., they show a stronger co-variation within modules than between them), highlighting

the weakness of these criteria to delimit “true modules” in the human skull. In other

words, any a priori assumptions depend on genetically and environmentally determined

factors that overlap in such an intricate way as to make it impossible to discern modules

with certainty. These difficulties have been extensively reviewed under the concept of the

palimpsest model of covariation structure, which precisely argues that covariation factors

influence each other over time, making the reverse analysis of trying to decipher those

factors from phenotypic data a daunting task (Hallgŕımsson et al., 2009).

Our approach tackles the problem from a completely different perspective, using the

information encapsulated in connectivity patterns from which the modules are obtained.

This allowed us to make a morphological a priori hypothesis of modularity and then to test

it with morphometric tools based on independent landmark data. This test is based on

maximum allometric growth variation; thus, the results suggest that there are growth pat-

terns at play that determine connectivity patterns in the skull. Furthermore, the different

internal structure of each connectivity module–hierarchical for the facial and regular for

the cranial–also points in the same direction. As a consequence, our connectivity modules

resemble, to a great extent but not completely, the ethmomaxillary and neurobasicranial

complexes proposed as developmental units with different maturation timing (Enlow, 1990;

Enlow and Hans, 1996; Bastir et al., 2006). Why this should be the case is neither trivial

nor expected, since there is no need for one-to-one correlation between modular network

organization and modular allometric variation (Eble, 2005; Hallgŕımsson et al., 2009). We

think this correlation occurs in the human skull because the allometric mechanisms of

growth determine connectivity patterns, which, in turn, influence the individual shape of

each skull bone. If this is true, skull networks could be interpreted as shape correlation

maps (for a related approach, see Chernoff and Magwene, 1999; Magwene, 2001, 2008).

Bones within the same connectivity module share the same allometric growth pattern.

Therefore, the best modularity hypothesis has to be the one that explains most of the

total variance of the skull shape during ontogeny. We used the morphometric analysis to

compare Model A (based on our connectivity hypothesis of modularity) to three alternative

models, which were constructed by shifting connector bones (zygomatics and frontal) to

a different module. Results indicated that Models A and B explain better the allometric

patterns than Models C and D. Furthermore, Model A explains better the total variance

than Model B, in which zygomatic bones are part of the face. This result supports the

placement of the frontal bone as a facial element and of the zygomatic bones as cranial

elements, as the analysis of connectivity patterns revealed.
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Bone’s Burden-Rank

The integration of modules and blocks in the human skull relies on three main bones: the

ethmoid, the sphenoid, and the frontal; by themselves, they account for more than half of

all connections in the skull network. The three bones have developmental and evolutionary

origins that fit nicely within the concept of evolutionary burden: their formation during

development is the result of many fusions of different ossification centers (Opperman,

2000; Rice and Rice, 2008); and the evolution of each can be traced back at least to

the origin of early mammals as the fusion of several distinct bones (Sidor, 2001; Depew

et al., 2008). Both the sphenoid and the ethmoid bones are the evolutionary result of

the fusion of an original unpaired bone with several neighboring paired (e.g., pterygoids,

orbitosphenoids, and cribriform plates) and unpaired (e.g., basisphenoid, parasphenoid,

and presphenoid) bones (Goodrich, 1958; Romer and Parsons, 1977). The link between

development and evolution is paradigmatic for the frontal bone. The frontal bone develops

as two paired bones early in the ontogeny of the human skull; these paired frontals will

fuse totally during the first years of life, giving rise to the unpaired condition of the

adult frontal (Weinzweig et al., 2003). Evolutionarily, frontal paired bones are a primitive

condition in primates; the closure of the metopic suture (interfrontal) occurred several

times independently within this group and before the origin of anthropoids (Rosenberger

and Pagano, 2008). The morphogenetic process underlying this pattern relates to different

timing in the closure of skull bone sutures at an evolutionary scale (Morriss-Kay, 2001;

Richtsmeier et al., 2006), which can sometimes cause severe pathologies in the human

skull, known as craniosynostosis (Heuzé et al., 2011; Percival and Richtsmeier, 2011).

As a consequence of multiple fusions, these evolutionarily new unpaired bones have a

higher number of connections, increasing their functional and developmental dependencies

with other bones. A high number of dependencies (i.e., connections) and being above

in the hierarchy of the structure are two of the characteristics that identify anatomical

elements with high burden-rank (Riedl, 1978; Schoch, 2010). Given the multiple tasks

of sutures–sites of skull growth, intracranial movements, and strain sinks (Jaslow, 1990;

Opperman, 2000; Rafferty et al., 2003; Rice, 2008; Moazen et al., 2009)–it is reasonable

to expect that bones that participate in many sutures have central developmental and

functional roles as well, possibly affecting the entire skull morphology. This observation

carries with it a general evolutionary implication: some bones (those with higher burden-

rank: sphenoid, ethmoid, and frontal in the case of the human skull) will be more difficult

to be lost than those that are less connected (see Chapter 9). Indeed, it is known that
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bones that have few connections, such as the jugal, postfrontal, postorbital, prefrontal, and

supratemporal, have been repeatedly lost in many tetrapod lineages (see Table 1.1). This

has been additionally confirmed by computer simulations, within a thorough phylogenetic

analysis for all major groups in tetrapods, including mammals, and has been suggested as

the basis for the reduction in skull bone number as seen in Williston’s Law (Esteve-Altava

et al., 2013b,c).

How bones are connected to each other will directly affect their possibility for shape

change, as they form ontogenetic growth units during development; conversely, changes in

shape bone proportions will directly affect the overall skull connectivity pattern (Rasskin-

Gutman, 2003). To further explore this claim, a strong effort has to be made to study

pair-wise bone shape-covariation that can be related to skull connectivity patterns of

organization. To our knowledge, there is a lack of modern studies systematically analyzing

the relationship between shape and connectivity in the entire skull, which is the type

of information needed to test our claim that connection dependencies impose structural

constraints on shape bone proportions. However, Pearson and Woo (1935) carried out

a pioneering study analyzing craniometrical measures on single bones in human skulls,

concluding that adjacency (i.e., connectivity) was the second most important factor of

shape correlation after symmetry.

All in all, connectivity relations can be directly interpreted as correlations of changes in

size and shape due to their developmental role as sites of bone growth. In sum, connections

are a fundamental source of morphological integration and modularity in the human skull.

This cannot be otherwise, since the interplay between development and evolution has

determined the co-dependencies among the skull bones, burdening those with more sutural

connections while freeing the remaining ones to undergo independent variation. And that

is more grist in Rupert Riedl’s mill!
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12.2 Complexity and Integration in Skull Network Models

of Craniosynostosis

Abstract – Craniosynostosis is a pathological condition in which some su-

tures of a juvenile skull close too early in development. The premature

closure of skull bone sutures affect primates, including humans, as well as

other tetrapods. Because they can be in many instances phenotypically viable

for the individual, their phenomenology can be used as a model for macro-

evolutionary skull bone reduction in mammals. Network analysis was used

to model and compare changes in connectivity properties of bones in skulls

with craniosynostosis: metopic, sagittal, coronal, unilateral lambdoidal, and

bilateral lambdoidal. In particular, how changes in connectivity patterns due

to craniosynostosis affect the morphological integration and modular organiza-

tion of the human skull network. Results indicated that the relationship among

bones in the human skull is strongly dependent on connectivity distance. This

opens new ways to study the correlation of size and shape changes in skull

bones as a function of how bones are connected to each other, the presence of

hub bones, and the formation of bone clusters.

Introduction

The reduction in number of skull bones is a macro-evolutionary trend in all tetrapod

lineages (Esteve-Altava et al., 2013c). This reduction occurs mainly due to two develop-

mental processes: the loss and the fusion of bones (see Chapter 9). The skull of primitive

tetrapods is composed of approximately 60 bones, while derived forms have around 30

and even less. Reduction in the number of bones also occurs during ontogeny; for example

the adult human skull has typically 21 bones, while the newborn skull has 25 bones (Fig.

12.5). In the mammalian skull, losses are common for pre- and post-frontal, postorbital,

and quadratojugal bones (Hildebrand, 1988; Benton, 1990; Kardong, 2005, see also 1.2.1);

while fusions of bones generally involve the formation of unpaired bones in the sagittal

plane, such as the occipital, the sphenoid, and the frontal bones. In an evolutionary

context, bone fusion is a source of variation and novelty in the connectivity pattern of

the skull related to bone number reduction and skull shape changes (Richtsmeier et al.,

2006; Esteve-Altava et al., 2013c, see also 12.1). Moreover, a premature fusion of bone is

also an example of heterochrony (i.e., a change in timing of developmental events), which
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is common during skull evolution.
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Figure 12.5: Newborn skull network with a schematic dorsal view. Labels: Con, concha;

Fro, frontal; Lac, lacrimal; Lat, lateral; Max, maxilla; Nas, nasal; Occ, occipital; Pal,

palatal; Par, parietal; Tem, temporal; Zyg, zygomatic; L, left; R, right.

From a medical point of view, the premature fusion of bones is a pathological condition

in human newborns known as craniosynostosis (Fig. 12.6). This condition is often related

to congenital dysmorphologies of the skull because it prevents further bone growth in the

obliterated suture, which is compensated with growth in other parts of the skull, such

as the cranial vault, orbits, and face (Hukki et al., 2008; Heuzé et al., 2011). Severity

of skull malformations (shape modifications) depends on which sutures are affected, the

extension of the obliteration, and the number of sutures fused at the same time; thus,

effects range from totally asymptomatic forms to great abnormalities (including death).

Craniosynostosis can occur isolated or as part of a more severe syndrome, and as a

consequence of genetic, mechanical, or environmental factors (Percival and Richtsmeier,

2011). For instance, some genetic disorders, such as the Apert and Crouzon syndromes,

are associated with craniosynostosis in one or several sutures leading to severe malforma-

tions (Rice, 2008); however, in most newborns, craniosynostosis do not generate severe

malformations (Hukki et al., 2008). Usually, non-syndromic craniosynostosis involve

non-inherited premature fusion of only one suture.
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A B

C D

Figure 12.6: Example of skull shape changes caused by the premature fusion of cranial

skull bones in humans. A) Scaphocephaly by premature fusion of the sagittal suture. B)

Plagiocephaly by premature fusion of the coronal suture. C) Trigonocephaly by premature

fusion of the metopic suture. D) Turricephaly by premature fusion of the coronal and the

lambdoid sutures. From Lieberman (2011).

Here, we approach craniosynostosis as a developmental model of the evolution of the

organization of suture connections among bones in the skull. By means of a unified

mathematical framework, network theory, we explore if an isolated premature fusion can

cause shifts in connectivity patterns like those observed in large-scale evolution (Esteve-

Altava et al., 2013c). In addition, we quantify the effects of craniosynostosis in connectivity

properties of the remaining bones that might affect shape changes. To do so, we built and

analyze network models of juvenile human skulls, with and without craniosynostosis, and

quantify changes in connectivity patterns of skulls and bones.

Material & Methods

Network Models of Craniosynostosis

The skull network of a normal child at birth, with paired frontals and occipital bones

not fused, was compared to network models for each of the following craniosynostosis
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conditions (Fig. 12.7): (1) metopic, paired frontals fused at the metopic suture forming

an unpaired frontal bone; (2) sagittal, parietals fused at the sagittal suture forming an un-

paired parietal bone; (3) left hemicoronal, left parietal and left frontal fused at the coronal

suture forming a frontoparietal bone (Fp); (4) bicoronal, parietals and frontals fused at

the coronal suture forming two frontoparietal bones; (5) lambdoidal, occipital plate and

left parietal fused at the lambdoidal suture forming an unpaired occipitoparietal bone

(Op); and (6) ‘true’ lambdoidal, occipital plate, left parietal, and left temporal fused at

the lambdoidal and occipitomastoid sutures forming an unpaired occipitoparietotemporal

bone (Opt).

Frontal

Parietal

Fp left

Op left Opt left

A B

C D

E F

Fp left
Fp right

Figure 12.7: Skull networks with craniosynostosis in A) the metopic suture, B) the sagittal

suture, C) the left hemicoronal suture, D) the bicoronal suture, E) the lambdoidal suture,

and F) the lambdoidal plus occipitomastoid suture. Red dots indicate the new bone

formed by the fusion event.
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To estimate the complexity and structural organization of each network we measure

the following network parameters: density of connections, mean clustering coefficient (C),

mean shortest path length(L), heterogeneity(H), and unpaired bone ratio (UBR); see

Chapter 4 for description of each parameter. For individual bones, an additional parameter

has been quantified in order to detect more subtle changes between related networks: the

node betweenness centrality (Eq. 12.1), which is a variation of the shorest path length

that measures the central position of a node in the network:

BCi =
∑
p 6=q

SP (p, i, q)

SP (p, q)
, (12.1)

were SP(p,i,q) is the sum of all shortest paths from node p to node q that passes through

node i ; SP(p,q) is the sum of all shortest paths from p to q. For each bone, the BCi has

been evaluated, before and after craniosynostosis, to test whether effective proximity (i.e.,

L) of other bones to fused bones affects their connectivity.

Results & Discussion

System Descriptors in Newborns and Craniosynostosis

Newborn skull networks with and without craniosynostosis show slight differences in

complexity and integration parameters. Table 12.2 summarizes the network analysis on

each skull network.

Table 12.2: Analysis of skull networks with craniosynostosis.

Suture Fusion Density C L H UBR

None (Newborn) 0.2433 0.5067 1.9936 0.4960 0.2

Metopic 0.2536 0.5341 1.9653 0.5072 0.25

Sagittal 0.2536 0.5125 1.9792 0.4892 0.25

Coronal 0.2572 0.5233 1.9236 0.5147 0.2083

Bicoronal 0.2688 0.532 1.879 0.4915 0.2174

Lambdoidal 0.2536 0.5228 1.934 0.5147 0.2083

True Lambdoidal 0.2648 0.5194 1.913 0.5140 0.2174
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When comparing the values of the newborn skull with those of the abnormal ones, we

observe a slight increase in skull complexity (i.e., increase in De and C, decrease in L);

this pattern of change is similar to that observed in the evolution of tetrapods in general,

and synapsids in particular (Esteve-Altava et al., 2013c, see also Chapter 9). In the same

manner, anisomerism is not observed in the variation of H), but in the increase of the

UBR (otherwise normal, according to the phenomena studied). Thus, although there is

a net reduction of the number of bones in the skull networks after craniosynostosis, only

one connection is lost (by obliteration). This causes an increase of connections in bones

involved in the fusion and their neighbors, increasing the density, but also the clustering

coefficient; consequently, the shortest path lengths between bones decreases.

Effect of Effective Proximity in the Centrality of Bones

The BCi measures the importance of a node in the network, in terms of the number of

paths that crosses it. The more paths crossing a node, the more important this node is

for the network structure (Goh et al., 2001). Figure 12.8 shows the variation of BCi of

bones in skulls after craniosynostosis depending on their distance to the fusion.
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Figure 12.8: Betweenness centrality variation depending on the distance of each bone to

fused bones. The farther the distance to the fusion, the minor the changes in connectivity

of bones.
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After a fusion event, connectivity relations among bones change; these connectivity

changes not only affect those bones directly involved in the fusion, but also others. The

effects of changes in connectivity are transmitted to other parts of the skull network, with

more or less intensity, depending on the effective proximity between bones. Other node

parameters (ki, Ci, and `i,n) show no sign of variation after only one fusion event, so they

are not informative of the effect of the effective proximity in the skulls analyzed.

The influence of effective proximity in the spread of changes in connectivity suggests

how information is transmitted in the skull after craniosynostosis: according to connectiv-

ity distances between bones, rather than geometric distances. The key role of the sutures

as primary sites of bone growth are likely to be the main cause why this effect occurs.

Indeed, after a premature fusion, bone growth occurs in other directions to compensate

this blockade, especially in parallel with the lost suture (Sperber, 2001), but also at other

sutures without any known preference (Jane and Persing, 2001). In this respect, a network

approach sets the preference of transmission of such morphological changes towards the

bones closer in connectivity distance.

Concluding Remarks

The human skull exhibits a high level of plasticity: variation is the rule, not the exception.

Pathological variations, such as craniosynostosis, should always be put in a broader, evo-

lutionary context, which brings a new perspective to understand. Thus, craniosynostosis

reproduces at an ontogenetic scale the evolutionary patterns found in Williston’s Law

(see Chapter 9): an increase in morphological complexity but not in heterogeneity. This

result further reinforces the relation between bone fusion and the evolutionary increase of

morphological complexity in the skull (see Chapter 9), by offering a developmental basis

to this evolutionary pattern.
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12.3 Connectivity Modules in Skull Network Models of

Craniosynostosis

Abstract – Premature fusion of bones changes the connectivity patterns that

determine the modular organization of the skull. Modularity analysis were

performed for each of the above described craniosynostosis conditions. Three

theoretical factors affecting skull modularity were evaluated: the formation of

unpaired bones during development, the importance of asymmetry in connec-

tivity patterns, and the importance of the number of bones fused in forming

different modular organizations. Results suggest two general rules related to

bone fusion and the formation of connectivity modules: (1) not all bones fused

along the midline generate bilateral modules, only those with a specific con-

nectivity pattern that makes possible a left-right integration; and (2) fusion

of paired bones in contralateral sides do not generate, per se, significative

changes in connectivity patterns.

Introduction

The fusion of bones is a developmental process that can have important evolutionary

consequences, for example, in the morphological complexity of the skull (see Chapter 9);

however, when fusions occur prematurely, they cause different pathological disorders, as

has been shown in the previous section. Fusions also affect the formation of connectivity

modules, specially, when they produce new unpaired bones (see 10.2). Here, I analyze the

effect of craniosynostosis in the modular organization of the human skull by comparing the

modular organization of skull networks with craniosynostosis with the normal newborn

skull. The analysis has been separated in three complementary comparisons: first, the

effect of premature fusions along the midline, to further test the importance of unpaired

bones; second, the difference between a symmetric fusion (left and right frontal and parietal

along the coronal suture vs. an asymmetric fusion, only the left side); and third, the effect

of the fusion of more than two bones along the lambdoidal suture.

Material & Methods

Modularity has been analyzed in the normal newborn skull and each of the following

craniosynostosis conditions: (1) metopic, (2) sagittal, (3) left hemicoronal, (4) bicoronal,
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(5) lambdoidal, and (6) left lambdoidal plus occipitomastoid (see Fig. 12.7 and Methods

in the previous section).

The grouping method used to analyze modularity has been described in Chapter 4.

This method is based on a definition of connectivity module as a group of bones more

connected to bones within the group than to other bones outside the group. To iden-

tify such groups, an agglomerative hierarchical cluster analysis was carried out using the

topological overlap between bones as the measure of similarity between their connectivity

patterns (i.e., number and correspondence of neighbors).

Results & Discussion

The analysis of modularity in the skull network of the newborn humans shows three

modules: one for the posterior bones of the vault and two for the anterior bones of the

face (Fig. 12.9). The two facial modules are specular asymmetric, although, three out of

four blocks present in the adult skull are already present in the newborn: the ethmoidal

(vomer, ethmoid, and palatines), the left maxillary (maxilla, nasal concha, and lacrimal),

and the right maxillary (see Fig. 12.2). These modules will appear in all skulls with

craniosynostosis since none of these bones are directly involved in fusions; their indirect

involvement does not cause any change in their connectivity pattern regarding their

participation in blocks. Bones of the cranial module are the same that will make the

cranial module in the adult skull with two exceptions: the basilar bone, a central part

of the occipital, that has been left unassigned; and the zygomatics, already formed as in

the adult skull, that have changed their assignment from the cranial to the facial module.

It is worth noting that this shift is in tune with the structural role of zygomatics as

connector non-hubs, which makes them to have influence on both modules (see Model B

in Fig. 12.4). If one considers a two-module partition of the hierarchical cluster analysis,

the basilar part of the occipital falls within the posterior cranial module and both facial

modules are merged into only one module, like in the adult skull network. Furthermore,

an ethmoidal block comprising the ethmoid, vomer, and palatines is already present in the

newborn skull–and is conserved in all human skull networks as an invariant aggrupation

of bones. This block resembles the nasal capsule, an embryological, morphological, and

evolutionary unit with a distinctive pattern of integration within the face (Bastir and

Rosas, 2011).
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Figure 12.9: Modularity analysis of the human newborn skull: in red, posterior cranial

module; in light and dark blue, facial modules.

Craniosynostosis along the Midline

The skull network with craniosynostosis in the metopic suture (between frontal bones)

shows two bilateral modules that group the same bones in the adult skull (Fig. 12.10A).

The same four blocks appear in the facial module: the three already present in the new-

born skull plus the frontonasal block, which group the newly formed frontal bone and the

nasals. The cranial module is divided in two blocks: one anterodorsal with zygomatics,

parietals and sphenoid; and one posteroventral, with occipital bones and temporals. The

skull network with craniosynostosis in the sagittal suture (between parietal bones) shows

also two specular asymmetric modules: the left zygomatic groups with the facial module,

while the right zygomatic groups with the cranial module (Fig. 12.10B). Only three of

the four blocks of the face are present, the same than in the newborn. The premature

fusions of the metopic and sagittal sutures have different consequences in the modular

organization of the skull, although both occur in the midline between two paired bones.

While the fusion of the frontals generates two bilateral modules, like in the adult (Fig.

12.2), the fusion of the parietals generates asymmetric specular modules. Facial blocks

are kept except for the frontonasal that is dependent on the fusion of the frontals either

prematurely or in the adult. This result suggests that the formation of bilateral modules

is specific of the connectivity pattern of the bones fused, which must be capable of

integrating both sides. Thus, the unpaired frontal bone, perhaps due to its structural role
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as a connector hub (see Fig. 12.3), can integrate both sides, while the unpaired parietal

fails to do so.
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Figure 12.10: Modularity analysis of craniosynostosis along the midline. A) Craniosynos-

tosis of the metopic suture between the frontal bones. B) Craniosynostosis of the metopic

suture between the parietal bones.

Asymmetric and Symmetric Craniosynostosis

The skull network with craniosynostosis in the left hemicoronal suture (between the

frontal and the parietal bones) shows two specular asymmetric modules (Fig. 12.11A):

one cranial including the left frontoparietal, and one facial including the right frontal

bone. The skull network with bicoronal craniosynostosis (between both parietal and

frontal) shows two bilateral modules: one facial and one cranial that includes both fused

bones (Fig. 12.11B). These results suggest that differences between an asymmetric and

a symmetric craniosynostosis in humans is quite trivial since the bone that causes the

asymmetry is the bone that results from the fusion between one facial and one cranial bone.
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Figure 12.11: Modularity analysis of asymmetric and symmetric craniosynostosis. A)

Craniosynostosis of the left hemicoronal suture between the frontal and the parietal bones.

B) Craniosynostosis of the bicoronal suture.

Multiple Craniosynostosis

The skull network with craniosynostosis in the lambdoidal suture between the left parietal

and the left lateral occipital bones shows a triple asymmetry of modules (Fig. 12.12A).

The cranial module, which also includes the right zygomatic, resembles that of the normal

newborn skull, while there are also two specular facial modules. The skull network with

craniosynostosis in the lambdoidal and occipitomastoid sutures between the left parietal,

the left lateral occipital, and the left temporal shows one cranial bilateral module and

two facial specular asymmetric modules (Fig. 12.12B). Paradoxically, a skull network

with a more severe craniosynostosis (involving three bones) show a modular organization

with more symmetry; the reason is that the new bone generated after the fusion makes

two connections of the zygomatic bones to the cranial vault redundant, facilitating the

grouping of both zygomatic bones to the facial modules.
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Figure 12.12: Modularity analysis of multiple craniosynostosis. A) Craniosynostosis of

the left lambdoidal suture between the parietal and the lateral occipital. B) Craniosynos-

tosis of the left lambdoidal plus occipitomastoid suture between the parietal, the lateral

occipital, and the temporal.

Concluding Remarks

The comparison of modular organizations of skulls with craniosynostosis highlighted two

generalizations in the formation of connectivity modules in skulls. The first generalization

is related to the formation of bilateral modules and the presence of unpaired bones (as it

has been shown already in 10.2). However, observation of natural fusions during abnormal

development revealed that just the fusion of paired bones along the midline is not enough

to form a bilateral module: the new unpaired bone must have the adequate connectivity

pattern capable to integrate the left and right sides, for example, by being a connector

hub as the frontal bone.

The second generalization is related to the fusion of paired bones in one or both sides

at the same time, a phenomenon also reported in the evolution of the tetrapod skull.

When bones of different modules fuse at the boundary of two modules, the symmetry or

not of the craniosynostosis events has no effects on the symmetry of resulting modules,

besides the inclusion of fused unpaired bones to one module or the other.
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Conclusions

These are the main conclusions reached in this thesis:

Evolutionary Trends in Morphological Complexity

1. The reduction in bone number during the evolution of the tetrapod skull due to

bone loss and fusion is accompanied by a trend toward a more complex organization,

rather than toward simplification.

2. Losses and fusions of bones affect skull morphological complexity differently whether

they target bones at random or selectively depending on the number of bone con-

nections. This implies that bone connections impose structural constraints on bone

loss and fusion. Since connections between bones are related to functional and de-

velopmental co-dependences (bone burden), the higher the number of connections,

the higher the burden.

3. A mixed evolutionary scenario explains the increase in morphological complexity

due to bone number reduction: the random loss of poorly connected bones and the

selective fusion of the most connected ones.

4. Complementing this evolutionary scenario, several structural constraints have been

identified: (1) the absence of any bias due to body axis size in the formation of

connections in the ancestral skull, (2) the presence of a few unpaired bones in the

ancestral skull, and (3) a higher frequency of loss than fusion events during skull

evolution.

Morphological Integration and Modularity

5. The tetrapod skull shows a small-world organization of connectivity patterns, a type

of organization between randomness and regularity that promotes the formation of

connectivity modules.
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6. Connectivity modules in the skull are of three types: (1) bilateral modules, grouping

bones from the left and right side together; (2) specular modules, grouping bones

from only one side; and (3) asymmetric specular modules, grouping bones from only

one side, but including also one or more unpaired bones, which make these modules

asymmetric in relation to their contralateral specular modules.

7. In general, the formation of bilateral modules depends on the presence of unpaired

bones, which act integrating both sides of the skull in a single module; when this

integration fails, asymmetric specular modules are formed; and when unpaired bones

are absent, specular modules are formed.

8. Connectivity modules tend to follow a hierarchical order of formation, by which

bones are grouped together according to their position in the three body axes:

dorsoventral, left-right, and anteroposterior. This process is highly influenced by

the presence of unpaired bones.

Theoretical Morphology

9. The analysis of theoretical morphospaces indicates that the generative morphospace

that better captures the disparity of skull structures is the one built using a growth

rule based on geometric proximity (Gabriel rule), in which bones are positioned with

bilateral symmetry, and unpaired bones are present (i.e., the Symmetric Proximal

morphospace).

10. This Symmetric Proximal morphospace is asymmetric with respect to number of

connections: it is wider (higher disparity in the number of connections) for bigger

networks and narrower for smaller networks.

11. Early tetrapod skulls occupy the wider region of the morphospace during the Devo-

nian and Carboniferous Periods. As the wider area begins to empty out during the

Mesozoic, more derived skulls occupy the narrower area of the morphospace in the

Cenozoic.

12. This directional occupation of the morphospace is concomitant with Williston’s Law,

which suggests that the tetrapod skull has evolved toward more constrained mor-

phological organizations while it increased its morphological complexity due to bone

number reduction.
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The Human Skull

13. The detailed analysis of the morphological integration and modularity of the human

skull showed that it is composed of two well-delimited connectivity modules: one

facial organized around the ethmoid bone, and one cranial organized around the

sphenoid bone.

14. The facial module shows a hierarchy of clustered blocks of bones and the cranial

modules shows a regular pattern of connections. It is the morphological integration

of each group of bones that defines the semi-hierarchical organization of the human

skull, reflecting fundamental differences in the ontogenetic patterns of growth and

the structural constraints that generate each module.

15. Since connectivity modules resemble units of allometric growth, connectivity rela-

tions can be directly interpreted as correlation of changes in size and shape due to

their developmental role as sites of bone growth. Thus, connections are a fundamen-

tal source of morphological integration and modularity.

16. Newborn human skulls with premature fusion of bones (i.e., craniosynostosis) re-

produce ontogenetically the evolutionary patterns found in Williston’s Law due to

bone fusion: an increase of morphological complexity because of the reduction in

the number of bones, which stresses the relationship between craniosynostosis and

macro-evolutionary patterns.

17. Craniosynostosis affects also connectivity patterns that determine the modular or-

ganization of the human skull. Fusions along the midline (e.g., metopic and sagittal

suture) produce an adult-like modular organization, while fusions in only one side

(e.g., hemicoronal and lambdoidal) produce asymmetric connectivity modules that

deviate from the adult form.

New Lines of Research in Morphological Networks

18. Future network analyses have to be focused in the study of smaller groups in order

to study small changes in connectivity patterns. For instance, turtles and mammals,

due to their well-conserved connectivity patterns, are better suited to study small

variations, such as the formation of an unpaired vomer; while archosaurs, lepidosaurs
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and amphibians show a high intra-group variation and can be used to study evo-

lutionary transitions, such as the aquatic-terrestrial transition or the origin of the

avian skull.

19. More sophisticated methods are required to solve particular morphological problems,

such as ontogenetic sequences analysis or connectivity-shape correlations.

20. Network tools developed in this thesis can be applyied to other skeletal structures,

non-skeletal organs, or even structures of plants.
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actualidad. In Palmqvist, P. and Pérez-Claros, J. A., editors, XXV Jornadas de la
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Palmqvist, P. and Pérez-Claros, J. A., editors, Constructional Morphology and Evolu-

tion, pages 251–271. Springer-Verlag.

Sereno, P. C. (1997). The origin and evolution of dinosaur. Annu. Rev. Earth Pl. Sc.,

25:435–489.

Sidor, C. A. (2001). Simplification as a trend in synapsid cranial evolution. Evolution,

55:1419–1442.

Simon, H. A. (1962). The architecture of complexity. Proc. Amer. Phil. Soc., 106:467–482.

Simpson, G. G. (1961). Principles of Animal Taxonomy. Columbia University Press, New

York.

Solé, R. V. and Goodwin, B. C. (2000). Signs of Life. How Complexity Pervades Biology.

Basic Books, New York.
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Appendix A: AnNA Toolbox

1 % AnNA Protoco l

2

3 % Network and Node Parameters

4 [ network bas i c s , node bas i c s , c o r r e l a t i o n , sw]= anne bas i c s ( Graph ) ;

5

6 % D i s t r i b u t i o n s Fi t

7 k d i s t r i b u t i o n ( Graph ) ;

8 c d i s t r i b u t i o n ( Graph ) ;

9

10 % Modulari ty Ana lys i s

11 GTOM=computeGTOM(Graph , 1 ) ;

12 [ Z ,H,T,PERM, d i s tVec to r ]= h c l u s t e r (Graph ,GTOM) ;

13

14 % Robustness Test

15 robus tnes s (Graph , Del ) ;

16

17 % C i r c u l a r Representa t ion

18 p l o t c i r c u l a r ( Graph ) ;
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Own Functions in AnNA Toolbox

Node and Network Parameters

1 function [ n bas i c , N basic ,PC, S ig ] = anne bas i c s ( Graph )

2 % Returns the b a s i c parameters from a Graph

3 % 1. n b a s i c : degree , c l u s t e r i n g , path l e ng th , and betweenness

4 % 2. N bas ic : dens i ty , c l u s t e r i n g , path l e ng t h , and

h e t e r o g e n e i t y .

5 % 3. Pearson ’ s c o r r e l a t i o n c o e f f i c i e n t between node parameters .

6 % 4. Presence o f the smal l−workd e f f e c t by sigma c a l c u l a t i o n .

7 % I n c l u d e f u n c t i o n s from Brain C o n n e c t i v i t y Toolbox .

8 % by Borja Esteve−Altava 2012

9

10 N=s ize (Graph , 1 ) ; K=nnz( triu ( Graph ) ) ; D=d i s t a n c e b i n ( Graph ) ;

11 [ c lu s t e r ne twork , c l u s t e r n o d e ]= c l u s t e r c o e f f b u ( Graph ) ;

12 degree s=degrees und ( Graph ) ;

13 path node=sum(D, 2 ) . / (N−1) ;

14 BC = betweenness b in ( Graph ) ;

15 n b a s i c =[ degrees ’ c l u s t e r n o d e path node BC] ;

16

17 dens i ty=K/((Nˆ2−N) /2) ;

18 lambda=charpath ( d i s t a n c e b i n ( Graph ) ) ;

19 hetero=std ( degrees und ( Graph ) ) /mean( degrees und ( Graph ) ) ;

20 N bas ic =[ dens i ty c l u s t e r ne twor k lambda hetero ] ;

21

22 PC=cor r ( node bas i c s ) ;

23

24 alpha=sum(sum( Graph ( Graph˜=Inf ) ) ) / length ( nonzeros ( Graph˜=Inf ) ) ;

25 R=randomizer bin und (Graph , alpha ) ;

26 c lu s t e rR=c l u s t e r c o e f f b u (R) ;

27 Dr=d i s t a n c e b i n (R) ; lambdaR=charpath (Dr) ;

28 Sig=( c l u s t e r / c lu s t e rR ) /( lambda/lambdaR) ;

29 return
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Degree Distribution Fit

1 function [ Frequency Cumulative ] = k d i s t r i b u t i o n ( Graph )

2 % Cumulative degree d i s t r i b u t i o n goodness−of− f i t to :

3 % 1) power−law , 2) e x p o n e n t i a l , 3) l i n e a r , and 4) b inomia l

4 % I n c l u d e f u n c t i o n s from EzyFit Toolbox .

5 % by Borja Esteve−Altava 2012

6

7 Graph=double ( Graph˜=0) ; deg=sum( Graph ) ’ ;

8 K=[min( deg ) : 1 :max( deg ) ] ’ ; K( : , 2 )=zeros ;

9 for i =1: length ( deg )

10 for j =1: length (K)

11 i f deg ( i )==K( j , 1 )

12 K( j , 2 )=K( j , 2 ) +1;

13 end

14 end

15 end

16

17 Frequency=[K( : , 1 ) ,K( : , 2 ) / length ( deg ) ] ;

18 Cumulative=[K( : , 1 ) ,K( : , 2 ) . ∗ 0 ] ;

19 for h=1: length ( Cumulative )

20 Cumulative (h , 2 )=sum( Frequency (h : length (K) ,2 ) ) ;

21 end

22

23 POWER=e z f i t ( Cumulative ( : , 1 ) , Cumulative ( : , 2 ) , ’ power ; l i n ’ ) ;

24 EXP=e z f i t ( Cumulative ( : , 1 ) , Cumulative ( : , 2 ) , ’ exp ; l i n ’ ) ;

25 UNIFORM=e z f i t ( Cumulative ( : , 1 ) , Cumulative ( : , 2 ) , ’ a f f i n e ; l i n ’ ) ;

26 BINOMIAL=e z f i t ( Cumulative ( : , 1 ) , Cumulative ( : , 2 ) , ’ poly2 ; l i n ’ ) ;

27

28 cP=s t r u c t 2 c e l l (POWER) ; cPFit=ce l l 2mat (cP (6) ) ;

29 cE=s t r u c t 2 c e l l (EXP) ; cEFit=ce l l 2mat (cE (6) ) ;

30 cU=s t r u c t 2 c e l l (UNIFORM) ; cUFit=ce l l 2mat (cU(6) ) ;

31 cB=s t r u c t 2 c e l l (BINOMIAL) ; cBFit=ce l l 2mat (cB (6) ) ;

32

33 b e s t f i t =[ cPFit cEFit cUFit cBFit ] ;
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34

35 i f b e s t f i t ( 1 )==max( b e s t f i t ) ; ru t ina=’ power ’ ; end ;

36 i f b e s t f i t ( 2 )==max( b e s t f i t ) ; ru t ina=’ exp ’ ; end ;

37 i f b e s t f i t ( 3 )==max( b e s t f i t ) ; ru t ina=’ uniform ’ ; end ;

38 i f b e s t f i t ( 4 )==max( b e s t f i t ) ; ru t ina=’ binomial ’ ; end ;

39

40 c l f

41 plot ( Cumulative ( : , 1 ) , Cumulative ( : , 2 ) , ’ ∗k ’ ) ; hold on ;

42 axis ( [ 1 20 0 1 ] )

43 set (gca , ’ XTick ’ , 0 : 5 : 2 0 )

44 set (gca , ’ YTick ’ , 0 : 0 . 2 : 1 )

45 xlabel ’ Degree ( number o f connec t i ons ) ’ ;

46 ylabel ’ Cumulative Degree D i s t r i b u t i o n ’ ;

47

48 switch lower ( ru t ina )

49 case ’ power ’

50 showf i t (POWER, ’ f i t c o l o r ’ , ’ b lue ’ , ’ f i t l i n e w i d t h ’ , 1 . 5 ) ;

51 case ’ exp ’

52 showf i t (EXP, ’ f i t c o l o r ’ , ’ b lue ’ , ’ f i t l i n e w i d t h ’ , 1 . 5 ) ;

53 case ’ uniform ’

54 showf i t (UNIFORM, ’ f i t c o l o r ’ , ’ b lue ’ , ’ f i t l i n e w i d t h ’ , 1 . 5 ) ;

55 case ’ b inomial ’

56 showf i t (BINOMIAL, ’ f i t c o l o r ’ , ’ b lue ’ , ’ f i t l i n e w i t h ’ , 1 . 5 ) ;

57 otherwi se

58 disp ( ’An e r r o r has occurred in d i s t r i b u t i o n f i t ’ ) ;

59 end

60

61 ’ F i t s : POWER | EXP | LINE | BINOMIAL ’

62 b e s t f i t

63 return ;
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Clustering Coefficient Distribution Fit

1 function [ Cdist ] = c d i s t r i b u t i o n ( Graph )

2 % C l u s t e r i n g c o e f f i c i e n t d i s t r i b u t i o n goodness−of− f i t to :

3 % 1) power−law , 2) e x p o n e n t i a l , 3) l i n e a r , and 4) b inomia l

4 % I n c l u d e f u n c t i o n s from EzyFit Toolbox .

5 % by Borja Esteve−Altava 2012

6

7 C=c l u s t e r i n g c o e f b u ( Graph ) ; deg=sum( Graph ) ’ ;

8 K=count unique ( deg ) ;

9 for i =1: length (K)

10 Cm( i )=mean(C( find ( deg==K( i ) ) ) ) ;

11 end

12 Cdist =[K Cm’ ] ;

13

14 POWER=e z f i t ( Cdist ( : , 1 ) , Cdist ( : , 2 ) , ’ power ; l i n ’ ) ;

15 EXP=e z f i t ( Cdist ( : , 1 ) , Cdist ( : , 2 ) , ’ exp ; l i n ’ ) ;

16 UNIFORM=e z f i t ( Cdist ( : , 1 ) , Cdist ( : , 2 ) , ’ a f f i n e ; l i n ’ ) ;

17 BINOMIAL=e z f i t ( Cdist ( : , 1 ) , Cdist ( : , 2 ) , ’ poly2 ; l i n ’ ) ;

18

19 cP=s t r u c t 2 c e l l (POWER) ; cPFit=ce l l 2mat (cP (6) ) ;

20 cE=s t r u c t 2 c e l l (EXP) ; cEFit=ce l l 2mat (cE (6) ) ;

21 cU=s t r u c t 2 c e l l (UNIFORM) ; cUFit=ce l l 2mat (cU(6) ) ;

22 cB=s t r u c t 2 c e l l (BINOMIAL) ; cBFit=ce l l 2mat (cB (6) ) ;

23

24 b e s t f i t =[ cPFit cEFit cUFit cBFit ] ;

25

26 i f b e s t f i t ( 1 )==max( b e s t f i t ) ; ru t ina=’ power ’ ; end ;

27 i f b e s t f i t ( 2 )==max( b e s t f i t ) ; ru t ina=’ exp ’ ; end ;

28 i f b e s t f i t ( 3 )==max( b e s t f i t ) ; ru t ina=’ uniform ’ ; end ;

29 i f b e s t f i t ( 4 )==max( b e s t f i t ) ; ru t ina=’ binomial ’ ; end ;

30

31 c l f

32 plot ( Cdist ( : , 1 ) , Cdist ( : , 2 ) , ’ ∗k ’ ) ; hold on ;

33 axis ( [ 1 20 0 1 ] )
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34 set (gca , ’ XTick ’ , 0 : 5 : 2 0 )

35 set (gca , ’ YTick ’ , 0 : 0 . 2 : 1 )

36 xlabel ’ Connect iv i ty ( k i ) ’ ;

37 ylabel ’ C lu s t e r i ng C o e f f i c i e n t ( Ci ) ’ ;

38

39 switch lower ( ru t ina )

40 case ’ power ’

41 showf i t (POWER, ’ f i t c o l o r ’ , ’ b lue ’ , ’ f i t l i n e w i d t h ’ , 1 . 5 ) ;

42 case ’ exp ’

43 showf i t (EXP, ’ f i t c o l o r ’ , ’ b lue ’ , ’ f i t l i n e w i d t h ’ , 1 . 5 ) ;

44 case ’ uniform ’

45 showf i t (UNIFORM, ’ f i t c o l o r ’ , ’ b lue ’ , ’ f i t l i n e w i d t h ’ , 1 . 5 ) ;

46 case ’ b inomial ’

47 showf i t (BINOMIAL, ’ f i t c o l o r ’ , ’ b lue ’ , ’ f i t l i n e w i t h ’ , 1 . 5 ) ;

48 otherwi se

49 disp ( ’An e r r o r has occurred in d i s t r i b u t i o n f i t ’ ) ;

50 end

51

52 ’ F i t s : POWER | EXP | LINE | BINOMIAL ’

53 b e s t f i t

54 return ;
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Robustness Test

1 function robus tnes s (Graph , Del )

2 % Perform a r o b u s t n e s s t e s t f o r d e l e t i o n o f nodes .

3 % Preference o f d e l e t i o n : 1) most connected , 2) random , 3) l e s s

connected .

4 % Inputs : Graph , u n d i r e c t e d b inary matrix ; Del , number o f

d e l e t i o n s .

5 % Output : g r aph ic and network parameters .

6 % I n c l u d e f u n c t i o n s from Brain C o n n e c t i v i t y Toolbox .

7 % by Borja Esteve−Graphl tava 2012

8

9 % I n i t i a l S e t t i n g s

10 i f ( nargin < 2) ; Del = [ ] ; end ;

11 i f ( isempty ( Del ) ) ; Del=f loor ( 0 . 2∗ length ( Graph ) ) ; end ;

12 I n i t i a l D e n s i t y=dens i ty und ( Graph ) ;

13 I n i t i a l C l u s t e r=c l u s t e r c o e f f b u ( Graph ) ;

14 I n i t i a l P a t h=charpath ( d i s t a n c e b i n ( Graph ) ) ;

15

16 % D e l e t i o n o f Most Connected Nodes

17 for i t =1:100

18 Graphdel=Graph ;

19 for s tep =2: Del+1

20 % f i n d most connected

21 Degree=degrees und ( Graphdel ) ; t =1;

22 for i =1: length ( Degree )

23 i f Degree ( i )==max( Degree )

24 t o d e l e t e ( t )=i ; t=t +1;

25 end

26 end

27 % random s e l e c t i o n among most connected

28 hub=randi ( [ 1 , length ( t o d e l e t e ) ] ) ;

29 vde l=t o d e l e t e ( hub ) ;

30 % d e l e t i o n

31 Graphdel ( vdel , : ) = [ ] ; Graphdel ( : , vde l ) = [ ] ;
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32 % save parameters

33 hub N ( i t , s tep )= length ( find (sum( Graphdel )==0)) ;

34 hub Density ( i t , s t ep )=dens i ty und ( Graphdel ) ;

35 hub Cluster ( i t , s t ep )=c l u s t e r c o e f f b u ( Graphdel ) ;

36 hub Path ( i t , s t ep )=charpath ( d i s t a n c e b i n ( Graphdel ) ) ;

37 end

38 end

39

40 % D e l e t i o n o f Random Nodes

41 for i t =1:10000

42 Graphdel=Graph ;

43 for s tep =2: Del+1

44 % choose at random

45 R=randi ( [ 1 , length ( Graphdel ) ] ) ;

46 % d e l e t i o n

47 Graphdel (R, : ) = [ ] ; Graphdel ( : ,R) = [ ] ;

48 % save parameters

49 rand N ( i t , s tep )=length ( find (sum( Graphdel )==0)) ;

50 rand Dens ity ( i t , s t ep )=dens i ty und ( Graphdel ) ;

51 rand Clus te r ( i t , s t ep )=c l u s t e r c o e f f b u ( Graphdel ) ;

52 rand Path ( i t , s t ep )=charpath ( d i s t a n c e b i n ( Graphdel ) ) ;

53 end

54 end

55

56 % D e l e t i o n o f Less Connected Nodes

57 for i t =1:100

58 Graphdel=Graph ;

59 for s tep =2: Del+1

60 % f i n d l e s s connected

61 Degree=degrees und ( Graphdel ) ; t =1;

62 for i =1: length ( Degree )

63 i f Degree ( i )==min( Degree )

64 t o d e l e t e ( t )=i ; t=t +1;

65 end

66 end



313

67 % random s e l e c t i o n among l e s s connected

68 hub=randi ( [ 1 , length ( t o d e l e t e ) ] ) ;

69 vde l=t o d e l e t e ( hub ) ;

70 % d e l e t i o n

71 Graphdel ( vdel , : ) = [ ] ; Graphdel ( : , vde l ) = [ ] ;

72 % save parameters

73 anti hub N ( i t , s tep )=length ( find (sum( Graphdel )==0)) ;

74 ant i hub Dens i ty ( i t , s t ep )=dens i ty und ( Graphdel ) ;

75 ant i hub C lu s t e r ( i t , s t ep )=c l u s t e r c o e f f b u ( Graphdel ) ;

76 ant i hub Path ( i t , s t ep )=charpath ( d i s t a n c e b i n ( Graphdel ) ) ;

77 end

78 end

79

80 % Robustness Test P l o t s

81 f igure (1 )

82 set (1 , ’ Po s i t i on ’ , [ 0 0 600 1200 ] )

83

84 subplot ( 4 , 1 , 1 ) , errorbar (mean( hub N ) , std ( hub N ) , ’ or ’ ) ; hold on ;

85 errorbar (mean( rand N ) , std ( rand N ) , ’ sb ’ ) ; hold on ;

86 errorbar (mean( anti hub N ) , std ( anti hub N ) , ’ og ’ ) ;

87 ylabel ’ Disconnected Nodes (#N) ’ ;

88 set (gca , ’ YTick ’ , 0 : 0 . 5 :max( hub N ( : ) ) +1)

89 set (gca , ’ XTick ’ , 1 : 1 : Del+1)

90 set (gca , ’ XTickLabel ’ , [ 0 : 1 : Del +1])

91 axis ( [ 0 Del+2 0 max( hub N ( : ) ) +1])

92 grid on

93

94 subplot ( 4 , 1 , 2 ) , errorbar (mean( hub Density ) , std ( hub Density ) , ’ or ’ )

; hold on ;

95 errorbar (mean( rand Dens ity ) , std ( rand Dens ity ) , ’ sb ’ ) ; hold on ;

96 errorbar (mean( ant i hub Dens i ty ) , std ( ant i hub Dens i ty ) , ’ og ’ ) ;

97 ylabel ’ Density o f Connections ’ ;

98 set (gca , ’ YTick ’ , 0 : 0 . 2 : 1 )

99 set (gca , ’ XTick ’ , 1 : 1 : Del+1)

100 set (gca , ’ XTickLabel ’ , [ 0 : 1 : Del +1])
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101 axis ( [ 0 Del+2 0 1 ] )

102 grid on

103

104 subplot ( 4 , 1 , 3 ) , errorbar (mean( hub Cluster ) , std ( hub Cluster ) , ’ or ’ )

; hold on ;

105 errorbar (mean( rand Clus te r ) , std ( rand Clus te r ) , ’ sb ’ ) ; hold on ;

106 errorbar (mean( an t i hub C lu s t e r ) , std ( an t i hub C lu s t e r ) , ’ og ’ ) ;

107 ylabel ’ C lu s t e r i ng C o e f f i c i e n t ’ ;

108 set (gca , ’ YTick ’ , 0 : 0 . 2 : 1 )

109 set (gca , ’ XTick ’ , 1 : 1 : Del+1)

110 set (gca , ’ XTickLabel ’ , [ 0 : 1 : Del +1])

111 axis ( [ 0 Del+2 0 1 ] )

112 grid on

113

114 subplot ( 4 , 1 , 4 ) , errorbar (mean( hub Path ) , std ( hub Path ) , ’ or ’ ) ; hold

on ;

115 errorbar (mean( rand Path ) , std ( rand Path ) , ’ sb ’ ) ; hold on ;

116 errorbar (mean( ant i hub Path ) , std ( ant i hub Path ) , ’ og ’ ) ;

117 xlabel ’ Nodes Removed(#N) ’ ; ylabel ’ C h a r a c t e r i s t i c Path Length ’ ;

118 set (gca , ’ YTick ’ , 1 : 0 . 5 :max( hub Path ( : ) ) )

119 set (gca , ’ XTick ’ , 1 : 1 : Del+1)

120 set (gca , ’ XTickLabel ’ , [ 0 : 1 : Del +1])

121 axis ( [ 0 Del+2 1 max( hub Path ( : ) ) ] )

122 grid on

123 return ;
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Circular Network Plot

1 function p l o t c i r c u l a r ( Graph )

2 % P l o t s the network in a c i r c l e .

3 % by Borja Esteve−Altava 2012

4

5 nodes=length ( Graph ) +1;

6 theta=linspace (0 ,2∗pi , nodes ) ; theta=theta ( 1 : end−1) ;

7 [ x , y]=pol2cart ( theta , 1 ) ;

8 l i n k s=Graph ;

9 for i =1: length ( l i n k s )

10 for j =1: length ( l i n k s )

11 i f i>j

12 l i n k s ( i , j ) =0;

13 end

14 end

15 end

16 [ ind1 , ind2 ]= ind2sub ( s ize ( l i n k s ) , find ( l i n k s ( : ) ) ) ;

17

18 h=f igure (1 ) ; c l f (h) ;

19 plot (x , y , ’ . k ’ , ’ markers i ze ’ , 20) ; hold on

20 array fun (@(p , q ) l ine ( [ x (p) , x ( q ) ] , [ y (p) , y ( q ) ] ) , ind1 , ind2 ) ;

21 axis equal o f f

22 return
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Borrowed functions in the AnNE Toolbox

Borrowed functions in the AnNA Toolbox

Source Author Year Function

Brain

Connectivity

Toolbox

Power 2010 randomizer bin und

Rubinov 2010

betweenness bin

clustering coef bu

distance bin

module degree zscore

participation coef

Sporns 2008

charpath

degrees und

density und

EzyFit Toolbox Moisy 2010 ezyfit

MatLab

Repository

Helmick 2007 varycolor

Goñi,

Martincorena
2007

computeGTOM

hcluster



Appendix B: Computational Model

1 % Computational Model o f S k u l l Evo lu t ion

2 % Inputs :

3 % Number o f I t e r a t i o n s

4 % Minimal Network S i z e ( s top )

5 % Value o f the S e l e c t i o n Processes ( L o s s S e l e c t i o n ,

F u s e S e l e c t i o n )

6 % Value o f the Loss : Fusion (LFR)

7 % I n i t i a l Number o f Bones ( U bones , P bones )

8 % S p a t i a l Boundaries ( x , y , anz z f a c t o r s )

9 % Outcome :

10 % Number o f Matches o f the model ( counts )

11 % Densi ty o f Connections , C l u s t e r i n g C o e f f i c i e n t ,

S h o r t e s t Path Length , and H e t e r o g e n e i t y v e c t o r s

12 % by Borja Esteve−Altava 2013

13

14 % S e t t i n g s

15 Stop =15;

16 i t =100;

17

18 % I n i t i a l Model Condi t ions

19

20 % S e l e c t i o n Process

21 L o s s S e l e c t i o n=’ 1 ’ ; % 1) l e a s t , 2) most , and 3) random

22 F u s e S e l e c t i o n=’ 2 ’ ; % 1) l e a s t , 2) most , and 3) random

23

24 % Loss : Fusion Ratio

25 LFR=0.5; % 1=only Fusion ; 0=only Loss

26

27 % Number o f Bones

28 U bones =1;

29 P bones =30;

30 Bones=U bones+2∗P bones ;

317
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31

32 % S p a t i a l Boundary

33 x f a c t o r =1;

34 y f a c t o r =1;

35 z f a c t o r =1;

36 midl ine=x f a c t o r /2 ;

37

38 % Recording Vectors

39 dens i ty=zeros ( i t , Bones ) ;

40 c l u s t e r=zeros ( i t , Bones ) ;

41 path=zeros ( i t , Bones ) ;

42 hete r=zeros ( i t , Bones ) ;

43

44 % S t a r t Simulat ion

45 for i t e r a t i o n =1: i t

46

47 % Creation o f the P o s i t i o n Vector

48 Pos i t i on=zeros ( Bones , 6 ) ;

49 for i =1:2 : P bones ∗2
50 Pos i t i on ( i , : ) =[rand∗midl ine rand∗ y f a c t o r rand∗ z f a c t o r

i 0 0 ] ;

51 Pos i t i on ( i +1 , : ) =[( x f a c t o r−Pos i t i on ( i , 1 ) ) Pos i t i on ( i , 2 )

Pos i t i on ( i , 3 ) i 0 0 ] ;

52 end

53 for i=1+P bones ∗2 : Bones

54 Pos i t i on ( i , : ) =[ mid l ine rand∗ y f a c t o r rand∗ z f a c t o r i 0

1 ] ;

55 end

56

57 % Creation o f the Ances t ra l S k u l l

58 Graph=Gabr ie l ( Po s i t i on ( : , [ 1 : 3 ] ) ) ;

59

60 % S e q u e n t i a l Reduction o f the Number o f Bones

61 while length ( Graph )>Stop

62
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63 % Measure Parameters

64 dens i ty ( i t e r a t i o n , length ( Graph ) )=dens i ty und ( Graph ) ;

65 c l u s t e r ( i t e r a t i o n , length ( Graph ) )=c l u s t e r c o e f f w a t t s (

Graph ) ;

66 path ( i t e r a t i o n , length ( Graph ) )=charpath ( d i s t a n c e b i n (

Graph ) ) ;

67 hete r ( i t e r a t i o n , length ( Graph ) )=(std ( degrees und ( Graph ) ) )

/(mean( degrees und ( Graph ) ) ) ;

68

69 % Decide between Fusion or Loss

70 i f rand>LFR

71 % S e l e c t a Bone f o r Loss ( here we o b t a i n i t s ID)

72 switch ( L o s s S e l e c t i o n )

73 case ’ 1 ’ % l e a s t connected

74 % L i s t a l l l e a s t connected and chose one

75 deg=degrees und ( Graph ) ;

76 mindeg=find ( deg==min( deg ) ) ;

77 IDtoLOSS=Pos i t i on ( mindeg ( randi ( [ 1 , length (

mindeg ) ] ) ) , 4 ) ;

78 case ’ 2 ’ % most connected

79 % L i s t a l l most connected and chose one

80 deg=degrees und ( Graph ) ;

81 maxdeg=find ( deg==max( deg ) ) ;

82 IDtoLOSS=Pos i t i on ( maxdeg ( randi ( [ 1 , length (

maxdeg ) ] ) ) , 4 ) ;

83 case ’ 3 ’ % random

84 % choose one at random

85 IDtoLOSS=Pos i t i on ( randi ( [ 1 , length ( Pos i t i on )

] ) , 4 ) ;

86 otherwi s e

87 disp ( ’ e r r o r s e l e c t i n g f o r LOSS ’ )

88 end

89 % Assign Routines f o r l o s s

90 i f Pos i t i on ( find ( Pos i t i on ( : , 4 )==IDtoLOSS , 1 ) ,1 )==

mid l ine
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91 r ou t ine=’ l o s s u n p a i r ’ ;

92 else

93 r ou t ine=’ l o s s p a i r ’ ;

94 end

95 else

96 % S e l e c t a Bone f o r Fusion ( here we o b t a i n i t s ID)

97 switch ( F u s e S e l e c t i o n )

98 case ’ 1 ’ % l e a s t connected

99 % L i s t a l l l e a s t connected and chose one

100 deg=degrees und ( Graph ) ;

101 deg ( deg==0)=200; % avoid d i sco nne c ted to

be f u s e d

102 mindeg=find ( deg==min( deg ) ) ;

103 IDtoFUSE=Pos i t i on ( mindeg ( randi ( [ 1 , length (

mindeg ) ] ) ) , 4 ) ;

104 % Chose one o f i t s n e i g h b o r s f o r f u s i o n at

random

105 ne ighbors=find ( Graph ( find ( Pos i t i on ( : , 4 )==

IDtoFUSE , 1 ) , : ) ==1) ;

106 IDtoFUSEwith=Pos i t i on ( ne ighbors ( randi ( [ 1 ,

length ( ne ighbors ) ] ) ) , 4 ) ;

107 case ’ 2 ’ % most connected

108 % L i s t a l l most connected and chose one

109 deg=degrees und ( Graph ) ;

110 maxdeg=find ( deg==max( deg ) ) ;

111 IDtoFUSE=Pos i t i on ( maxdeg ( randi ( [ 1 , length (

maxdeg ) ] ) ) , 4 ) ;

112 % Chose one o f i t s n e i g h b o r s f o r f u s i o n at

random

113 ne ighbors=find ( Graph ( find ( Pos i t i on ( : , 4 )==

IDtoFUSE , 1 ) , : ) ==1) ;

114 IDtoFUSEwith=Pos i t i on ( ne ighbors ( randi ( [ 1 ,

length ( ne ighbors ) ] ) ) , 4 ) ;

115 case ’ 3 ’ % random

116 % Choose one at random a v o i d i n g d i sco nnec ted
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117 c h e c k d i s c =0;

118 while c h e c k d i s c==0

119 IDtoFUSE=Pos i t i on ( randi ( [ 1 , length (

Pos i t i on ) ] ) , 4 ) ;

120 i f sum( Graph ( find ( Pos i t i on ( : , 4 )==

IDtoFUSE , 1 ) , : ) )==0

121

122 else

123 ne ighbors=find ( Graph ( find ( Pos i t i on

( : , 4 )==IDtoFUSE , 1 ) , : ) ==1) ;

124 IDtoFUSEwith=Pos i t i on ( ne ighbors (

randi ( [ 1 , length ( ne ighbors ) ] ) ) , 4 ) ;

125 c h e c k d i s c =1;

126 end

127 end

128 otherwi se

129 disp ( ’ e r r o r s e l e c t i n g f o r FUSION ’ )

130 end

131 % Assign Routines f o r f u s i o n

132 i f Pos i t i on ( find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) ,4 )˜=

Pos i t i on ( find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 ) ,4 ) %

bones have d i f f e r e n t ID

133 i f ( Pos i t i on ( find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) ,6 )

==0)&&(Pos i t i on ( find ( Pos i t i on ( : , 4 )==

IDtoFUSEwith , 1 ) ,6 )==0) % both bones are p a i r

134 r ou t ine=’ f u s i o n p a r p a r ’ ;

135 e l s e i f ( Pos i t i on ( find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 )

,6 )==1)&&(Pos i t i on ( find ( Pos i t i on ( : , 4 )==

IDtoFUSEwith , 1 ) ,6 )==1) % both bones are

unpaired

136 r ou t ine=’ fus ion unparunpar ’ ;

137 else % only one i s unpaired

138 r ou t ine=’ fus ion parunpar ’ ;

139 end

140 else % bones have same ID ( c o n t r a l a t e r a l bones )
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141 r ou t ine=’ f u s i o n m e d i a l ’ ;

142 end

143 end % end S e l e c t i o n o f ID and Routines

144

145 % Apply r o u t i n e

146 switch ( rou t ine )

147 case ’ l o s s p a i r ’

148 % Locate a l l n e i g h b o r s

149 ne ighbors1=find ( Graph ( find ( Pos i t i on ( : , 4 )==

IDtoLOSS , 1 ) , : ) ==1) ;

150 ne ighbors2=find ( Graph ( find ( Pos i t i on ( : , 4 )==

IDtoLOSS , 1 ) +1 , : )==1) ;

151 % Decide i f they add new connect ions

152 i f length ( ne ighbors1 )>2

153 subGraph=Gabr ie l ( Po s i t i on ( neighbors1 , [ 1 : 3 ] ) )

;

154 for i =1: length ( subGraph )

155 for j =1: length ( subGraph )

156 i f subGraph ( i , j )==1

157 Graph ( ne ighbors1 ( i ) , ne ighbors1 ( j

) ) =1;

158 end

159 end

160 end

161 e l s e i f length ( ne ighbors1 )==2

162 Graph ( ne ighbors1 (1 ) , ne ighbors1 (2 ) ) =1;

163 Graph ( ne ighbors1 (2 ) , ne ighbors1 (1 ) ) =1;

164 end

165 i f length ( ne ighbors2 )>2

166 subGraph=Gabr ie l ( Po s i t i on ( neighbors2 , [ 1 : 3 ] ) )

;

167 for i =1: length ( subGraph )

168 for j =1: length ( subGraph )

169 i f subGraph ( i , j )==1
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170 Graph ( ne ighbors2 ( i ) , ne ighbors2 ( j

) ) =1;

171 end

172 end

173 end

174 e l s e i f length ( ne ighbors2 )==2

175 Graph ( ne ighbors2 (1 ) , ne ighbors2 (2 ) ) =1;

176 Graph ( ne ighbors2 (2 ) , ne ighbors2 (1 ) ) =1;

177 end

178 % Clear Graph

179 Graph ( find ( Pos i t i on ( : , 4 )==IDtoLOSS , 1 ) +1 , : ) = [ ] ;

180 Graph ( : , find ( Pos i t i on ( : , 4 )==IDtoLOSS , 1 ) +1) = [ ] ;

181 Graph ( find ( Pos i t i on ( : , 4 )==IDtoLOSS , 1 ) , : ) = [ ] ;

182 Graph ( : , find ( Pos i t i on ( : , 4 )==IDtoLOSS , 1 ) ) = [ ] ;

183 % Clear P o s i t i o n Vector

184 Pos i t i on ( Pos i t i on ( : , 4 )==IDtoLOSS , : ) = [ ] ;

185 case ’ l o s s u n p a i r ’

186 % Locate a l l n e i g h b o r s

187 ne ighbors1=find ( Graph ( find ( Pos i t i on ( : , 4 )==

IDtoLOSS , 1 ) , : ) ==1) ;

188 % Decide i f they add new connect ions

189 i f length ( ne ighbors1 )>2

190 subGraph=Gabr ie l ( Po s i t i on ( neighbors1 , [ 1 : 3 ] ) )

;

191 for i =1: length ( subGraph )

192 for j =1: length ( subGraph )

193 i f subGraph ( i , j )==1

194 Graph ( ne ighbors1 ( i ) , ne ighbors1 ( j

) ) =1;

195 end

196 end

197 end

198 e l s e i f length ( ne ighbors1 )==2

199 Graph ( ne ighbors1 (1 ) , ne ighbors1 (2 ) ) =1;

200 Graph ( ne ighbors1 (2 ) , ne ighbors1 (1 ) ) =1;
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201 end

202 % Clear Graph

203 Graph ( find ( Pos i t i on ( : , 4 )==IDtoLOSS , 1 ) , : ) = [ ] ;

204 Graph ( : , find ( Pos i t i on ( : , 4 )==IDtoLOSS , 1 ) ) = [ ] ;

205 % Clear P o s i t i o n Vector

206 Pos i t i on ( Pos i t i on ( : , 4 )==IDtoLOSS , : ) = [ ] ;

207 case ’ f u s i o n p a r p a r ’

208 % Add connect ions to IDtoFUSE in both s i d e s

209 Graph ( find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) , : )=Graph (

find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) , : ) |Graph ( find

( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 ) , : ) ;

210 Graph ( : , find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) )=Graph

( : , find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) ) |Graph ( : ,

find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 ) ) ;

211 Graph ( find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) +1 , : )=Graph

( find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) +1 , : ) |Graph (

find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 ) +1 , : ) ;

212 Graph ( : , find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) +1)=Graph

( : , find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) +1) |Graph

( : , find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 ) +1) ;

213 Graph ( 1 : length ( Graph ) +1: length ( Graph ) ∗ length (

Graph ) ) =0; % s e t d i a g o n a l to 0

214 % Set new P o s i t i o n and Fuse s t a t e (1)

215 Pos i t i on ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 : 3 ) =( Pos i t i on (

Pos i t i on ( : , 4 )==IDtoFUSE , 1 : 3 )+Pos i t i on (

Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 : 3 ) ) . / 2 ;

216 Pos i t i on ( Pos i t i on ( : , 4 )==IDtoFUSE , 5 ) =1;

217 % Dele te IDtoFUSEwith+1 and IDtoFUSEwith

218 Graph ( find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 ) +1 , : )

= [ ] ;

219 Graph ( : , find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 ) +1)

= [ ] ;

220 Graph ( find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 ) , : ) = [ ] ;

221 Graph ( : , find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 ) ) = [ ] ;
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222 Pos i t i on ( Pos i t i on ( : , 4 )==IDtoFUSEwith , : ) = [ ] ; %

d e l e t e a l l rows wi th ID

223 case ’ fus ion unparunpar ’

224 % Add connect ions to IDtoFUSE

225 Graph ( find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) , : )=Graph (

find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) , : ) |Graph ( find

( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 ) , : ) ;

226 Graph ( : , find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) )=Graph

( : , find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) ) |Graph ( : ,

find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 ) ) ;

227 Graph ( 1 : length ( Graph ) +1: length ( Graph ) ∗ length (

Graph ) ) =0; % s e t d i a g o n a l to 0

228 % Set new P o s i t i o n and Fused s t a t e (1)

229 Pos i t i on ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 : 3 ) =( Pos i t i on (

Pos i t i on ( : , 4 )==IDtoFUSE , 1 : 3 )+Pos i t i on (

Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 : 3 ) ) . / 2 ;

230 Pos i t i on ( Pos i t i on ( : , 4 )==IDtoFUSE , 5 ) =1;

231 % Dele te IDtoFUSEwith

232 Graph ( find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 ) , : ) = [ ] ;

233 Graph ( : , find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 ) ) = [ ] ;

234 Pos i t i on ( Pos i t i on ( : , 4 )==IDtoFUSEwith , : ) = [ ] ; %

d e l e t e a l l rows wi th ID

235 case ’ fu s i on parunpar ’

236 i f Pos i t i on ( find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) ,6 )

==1 % i f IDtoFUSE i s the unpaired bone

237 % Add connect ions to IDtoFUSE

238 Graph ( find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) , : )=

Graph ( find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) , : ) |
Graph ( find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 )

, : ) |Graph ( ( find ( Pos i t i on ( : , 4 )==

IDtoFUSEwith , 1 ) +1) , : ) ;

239 Graph ( : , find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) )=

Graph ( : , find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) ) |
Graph ( : , find ( Pos i t i on ( : , 4 )==IDtoFUSEwith
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, 1 ) ) |Graph ( : , ( find ( Pos i t i on ( : , 4 )==

IDtoFUSEwith , 1 ) )+1) ;

240 Graph ( 1 : length ( Graph ) +1: length ( Graph ) ∗ length

( Graph ) ) =0; % s e t d i a g o n a l to 0

241 % Set new P o s i t i o n and Fuse s t a t e (1)

242 Pos i t i on ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 : 3 ) =(

Pos i t i on ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 : 3 ) +

Pos i t i on ( find ( Pos i t i on ( : , 4 )==IDtoFUSEwith

, 1 ) , 1 : 3 ) + Pos i t i on ( ( find ( Pos i t i on ( : , 4 )==

IDtoFUSEwith , 1 ) ) +1 ,1:3) ) . / 3 ;

243 Pos i t i on ( Pos i t i on ( : , 4 )==IDtoFUSE , 5 ) =1;

244 % DeleteIDtoFUSEwith

245 Graph ( find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 )

+1 , : ) = [ ] ;

246 Graph ( : , find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 )

+1) = [ ] ;

247 Graph ( find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 ) , : )

= [ ] ;

248 Graph ( : , find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 ) )

= [ ] ;

249 Pos i t i on ( Pos i t i on ( : , 4 )==IDtoFUSEwith , : ) = [ ] ;

% d e l e t e a l l rows wi th ID

250 else % i f IDtoFUSEwith i s the unpaired bone

251 % Add connect ions to IDtoFUSE

252 Graph ( find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 ) , : )

=Graph ( find ( Pos i t i on ( : , 4 )==IDtoFUSEwith

, 1 ) , : ) |Graph ( find ( Pos i t i on ( : , 4 )==IDtoFUSE

, 1 ) , : ) |Graph ( find ( Pos i t i on ( : , 4 )==IDtoFUSE

, 1 ) +1 , : ) ;

253 Graph ( : , find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 ) )

=Graph ( : , find ( Pos i t i on ( : , 4 )==IDtoFUSEwith

, 1 ) ) |Graph ( : , find ( Pos i t i on ( : , 4 )==IDtoFUSE

, 1 ) ) |Graph ( : , find ( Pos i t i on ( : , 4 )==IDtoFUSE

, 1 ) +1) ;
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254 Graph ( 1 : length ( Graph ) +1: length ( Graph ) ∗ length

( Graph ) ) =0; % s e t d i a g o n a l to 0

255 % Set new P o s i t i o n and Fuse s t a t e (1)

256 Pos i t i on ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 : 3 ) =(

Pos i t i on ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 : 3 )

+ Pos i t i on ( find ( Pos i t i on ( : , 4 )==IDtoFUSE

, 1 ) , 1 : 3 ) + Pos i t i on ( ( find ( Pos i t i on ( : , 4 )==

IDtoFUSE , 1 ) ) +1 ,1:3) ) . / 3 ;

257 Pos i t i on ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 5 ) =1;

258 % DeleteIDtoFUSEwith

259 Graph ( find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) +1 , : )

= [ ] ;

260 Graph ( : , find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) +1)

= [ ] ;

261 Graph ( find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) , : ) = [ ] ;

262 Graph ( : , find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) ) = [ ] ;

263 Pos i t i on ( Pos i t i on ( : , 4 )==IDtoFUSE , : ) = [ ] ; %

d e l e t e a l l rows wi th ID

264 end

265 case ’ f u s i o n m e d i a l ’

266 % Add connect ions to IDtoFUSE

267 Graph ( find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) , : )=Graph (

find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) , : ) |Graph ( (

find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 ) ) +1 , : ) ;

268 Graph ( : , find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) )=Graph

( : , find ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 ) ) |Graph ( : , (

find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 ) ) +1) ;

269 Graph ( 1 : length ( Graph ) +1: length ( Graph ) ∗ length (

Graph ) ) =0; % s e t d i a g o n a l to 0

270 % Set new Posi t ion , Fused s t a t e (1) , and

Unpaired s t a t e (1)

271 Pos i t i on ( Pos i t i on ( : , 4 )==IDtoFUSE , 1 )=mid l ine ;

272 Pos i t i on ( Pos i t i on ( : , 4 )==IDtoFUSE , 5 ) =1; %f u s e

273 Pos i t i on ( Pos i t i on ( : , 4 )==IDtoFUSE , 6 ) =1; %unpaired

274 % Dele te IDtoFUSEwith+1
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275 Graph ( ( find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 ) ) +1 , : )

= [ ] ;

276 Graph ( : , ( find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 ) ) +1)

= [ ] ;

277 Pos i t i on ( find ( Pos i t i on ( : , 4 )==IDtoFUSEwith , 1 )

+1 , : ) = [ ] ; % d e l e t e a l l rows wi th ID

278 otherwi se

279 disp ( ’ e r r o r apply ing ROUTINE ’ )

280 end

281 end % end Reduction

282 end % end Simulat ion

283

284 % Find Number o f Matches

285 dens i ty ( dens i ty==0)=NaN;

286 c l u s t e r ( c l u s t e r ==0)=NaN;

287 path (path==0)=NaN;

288 hete r ( he te r==0)=NaN;

289 DcM=nanmean( dens i ty ) ’ ;

290 DcV=nanstd ( dens i ty ) ’ ;

291 CcM=nanmean( c l u s t e r ) ’ ;

292 CcV=nanstd ( c l u s t e r ) ’ ;

293 LcM=nanmean(path ) ’ ;

294 LcV=nanstd (path ) ’ ;

295 HcM=nanmean( hete r ) ’ ;

296 HcV=nanstd ( hete r ) ’ ;

297 load SkullsDCL % Matrix o f e m p i r i c a l s k u l l networks data

298 count =0;

299 for x=1:44

300 i f SkullsDCL (x , 2 )>=(DcM( SkullsDCL (x , 1 ) )−2∗DcV( SkullsDCL (x , 1 ) )

)&&SkullsDCL (x , 2 )<=(DcM( SkullsDCL (x , 1 ) )+2∗DcV( SkullsDCL (x

, 1 ) ) )

301 i f SkullsDCL (x , 3 )>=(CcM( SkullsDCL (x , 1 ) )−2∗CcV( SkullsDCL (x

, 1 ) ) )&&SkullsDCL (x , 3 )<=(CcM( SkullsDCL (x , 1 ) )+2∗CcV(

SkullsDCL (x , 1 ) ) )
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302 i f SkullsDCL (x , 4 )>=(LcM( SkullsDCL (x , 1 ) )−2∗LcV(

SkullsDCL (x , 1 ) ) )&&SkullsDCL (x , 4 )<=(LcM( SkullsDCL (x

, 1 ) )+2∗LcV( SkullsDCL (x , 1 ) ) )

303 i f SkullsDCL (x , 5 )>=(HcM( SkullsDCL (x , 1 ) )−2∗HcV(

SkullsDCL (x , 1 ) ) )&&SkullsDCL (x , 5 )<=(HcM(

SkullsDCL (x , 1 ) )+2∗HcV( SkullsDCL (x , 1 ) ) )

304 count=count +1;

305 end

306 end

307 end

308 end

309 end

310

311 count % number o f matches o f the s i m u l a t i o n





Appendix C: Generative Morphospaces

The Random Morphospace

1 % Generat ive Morphospace o f the Erdos and Renyi Model

2 % Input : p = l i n k a g e p r o b a b i l i t y ( p = 2∗K/Nˆ2)

3 % Outcome : Random Generat ive Morphospace

4 % by Borja Esteve−Altava 2012

5

6 % I n i t i a l S e t t i n g s

7 p=0.1; a=0;

8

9 % Generation

10 for bones =15:60 % range o f bones

11 a=a+1;

12 for i t e =1:10000 % i t e r a t i o n

13 % network g e n e r a t i o n

14 ProbNet=zeros ( bones , bones ) ;

15 for i =1: length ( ProbNet )

16 for j =1: length ( ProbNet )

17 i f j<i

18 ProbNet ( i , j )=rand ;

19 ProbNet ( j , i )=ProbNet ( i , j ) ;

20 end

21 end

22 end

23 ProbNet ( ProbNet>p) =0;

24 ProbNet ( ProbNet˜=0)=1;

25 % save t r a t i s

26 nodes ( i t e , a )=bones ;

27 l i n k s ( i t e , a )=sum(sum( ProbNet ) ) /2 ;

28 end

29 end
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The Preferential Morphospace

1 % Generat ive Morphospace o f the Barabasi and A l b e r t Model

2 % Input : m = number o f connec t ions in t roduced by new bones

3 % Outcome : Random Generat ive Morphospace

4 % by Borja Esteve−Altava 2012

5

6 % I n i t i a l S e t t i n g s

7 m=1; % number o f new connect ion

8

9 % Generation

10 for i t e =1:10000

11 % s t a r t wi th a f i x number o f bones randomly connected

12 Ni=5;

13 Graph=zeros ( Ni , Ni ) ;

14 a=1;

15 p=0.2;

16 for i =1:Ni

17 for j =1:Ni

18 i f j<i

19 Graph ( i , j )=rand ;

20 Graph ( j , i )=Graph ( i , j ) ;

21 end

22 end

23 end

24 Graph (Graph<1−p) =0;

25 Graph (Graph>=1−p) =1;

26 % s t a r t network growth by p r e f e r e n t i a l at tachment

27 for n=6:60

28 a=a+1;

29 % s e t p r e f e r e n t i a l attachment

30 deg=degrees und ( Graph ) ’ ;

31 PA=deg . / (sum( deg )−deg ) ;

32 % add bone

33 Graph (n , : )=zeros ; Graph ( : , n )=zeros ;



333

34 % Add connect ions

35 new m=0;

36 while new m<m

37 for i =1: length (PA)

38 i f PA( i )>rand

39 Graph (n , i ) =1; Graph ( i , n ) =1;

40 new m=new m+1;

41 i f new m==m

42 PA( : ) =0;

43 end

44 end

45 end

46 end

47 %save t r a i t s

48 nodes ( i t e , a )=n ;

49 l i n k s ( i t e , a )=sum(sum( Graph ) ) /2 ;

50 end

51 end



334 APPENDIX C

The Proximal Morphospace

1 % Generat ive Morphospace o f the Gabr ie l Model

2 % Input : a s e t o f bones randomly l o c a t e d

3 % Outcome : Proximate Generat ive Morphospace

4 % by Borja Esteve−Altava 2012

5

6 % I n i t i a l S e t t i n g s

7 a=0;

8

9 % Generation

10 for bones =10:60 % range o f bones

11 a=a+1;

12 for i t e =1:10000 % i t e r a t i o n

13 % bones l o c a t i o n

14 x=rand ( bones , 1 ) ∗2 ;

15 y=rand ( bones , 1 ) ∗1 ;

16 z=rand ( bones , 1 ) ∗4 ;

17 coord =[x y z ] ;

18 % g e n e r a t i o n o f a Gabr ie l network

19 Graph=Gabr ie l ( coord ) ;

20 % save t r a i t s

21 nodes ( i t e , a )=bones ;

22 l i n k s ( i t e , a )=sum(sum( Graph ) ) /2 ;

23 end

24 end
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The Symmetric Proximal Morphospace

1 % Generat ive Morphospace o f the Symmetric Gabr ie l Model

2 % Input : bones l o c a t e d symm etr i ca l l y and unpaired bones

3 % Outcome : Symmetric Proximate Generat ive Morphospace

4 % by Borja Esteve−Altava 2012

5

6 % I n i t i a l S e t t i n g s

7 impar=1; a=0;

8

9 % Generation

10 for par =2:30 % growing number o f pa i red bones

11 a=a+1;

12 bones=impar+(par ∗2) ; % range o f bones

13 for i t e =1:10000 % i t e r a t i o n

14 % bones l o c a t i o n

15 coord=zeros ( bones , 3 ) ;

16 for i =1:2 : par ∗2
17 coord ( i , : ) =[rand∗1 rand∗1 rand ∗ 4 ] ;

18 coord ( i +1 , : )=[1+(1−coord ( i , 1 ) ) coord ( i , 2 ) coord ( i , 3 )

] ;

19 end

20 for j=i +1: bones

21 coord ( j , : ) =[1 rand∗1 rand ∗ 4 ] ;

22 end

23 % Create Gabr ie l Graph

24 Graph=Gabr ie l ( coord ) ;

25 % Parameters

26 nodes ( i t e , a )=bones ;

27 l i n k s ( i t e , a )=sum(sum( Graph ) ) /2 ;

28 end

29 end


