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Yeast HAT1 and HAT2 deletions have different life-span
and transcriptome phenotypes
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Abstract HAT-B is a yeast histone acetyltransferase composed
of Hat1, Hat2 and Hif1 proteins. We demonstrate that a hat2
mutant or a hat1hat2 double mutant, but not a hat1 mutant, have
an extended life-span. Transcriptome analysis shows that the sin-
gle hat mutants are not very different from wild type. However,
the comparison of the hat1 and hat2 transcriptomes shows that
they are different. The hat1hat2 double mutant shows a tran-
scriptional phenotype similar to that of the hat1 mutant but
strongly enhanced. These results indicate that Hat2p could have
additional functions in the cell to those of Hat1p.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Acetylation of lysine residues in nucleosome core histones is

a reversible process that occurs in all eukaryotic organisms

studied and which depends on two different sets of enzymatic

activities, histone acetyltransferases (HAT) and histone deacet-

ylases (HD). This post-translational modification is involved in

processes such as activation or repression of gene transcrip-

tion, nucleosome assembly during replication, DNA repair

and recombination or cell cycle and growth control (reviewed

in [1–3]). These and other processes may be activated or re-

pressed depending on the specific acetylation pattern of the

chromatin. Thus, acetylation is thought to act as a signalling

system [4–7], actively participating in the interaction of regula-

tory proteins. One of the most interesting processes to which

acetylation has been related is that of senescence. In yeast, rep-

licative senescence refers to the budding capacity as a function

of cell generations. This concept is based on the fact that indi-

vidual yeast cells undergo a finite number of cell divisions [8].

The link between histone acetylation and replicative senes-

cence comes from the observation that deletion of SIR2, a gene

encoding an HD [9,10], produces a shorter life-span [11,12].

Moreover, HD activity of Sir2p is necessary to maintain the
Abbreviations: HAT, histone acetyltransferase; HD, histone deacetyl-
ase; GO, gene ontology
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wild type life-span [10]. Deletion of other yeast HDs differen-

tially affects life-span phenotypes: rpd3 mutant has extended

life-spans whereas hda1 mutant has a normal life-span [11].

There are no life-span studies on mutants in HAT genes. Aging

and histone acetylation have also been related to telomeric

silencing. Thus, silencing of telomeric regions declines with in-

creased replicative age in yeast (reviewed in [13]). Whereas

Sir2p [14], and its HD activity [10], are required for silencing

at telomeres, Rpd3p, and its subunits Sin3p and Sap30p, func-

tion to counteract telomeric andHM silencing [15]. Other HDs

have also been implicated in silencing [16]. Among the HAT

enzymes, deletion of SAS3, SAS2 or GCN5 genes have differ-

ent consequences on silencing [15,17–20]. Hence, taken to-

gether, these observations strongly support the hypothesis

that there is a relationship, although quite complex, between

life-span, silencing and histone acetylation.

The yeast HAT1 was the first HAT gene described [21].

This gene encodes the catalytic subunit of the HAT-B

complex [22]. This enzyme specifically modifies Lys 12 of

free histone H4 and has been implicated in the acetylation

of cytoplasmic histone molecules required for post-

replicative nucleosome assembly. However, it has been re-

cently demonstrated that yeast HAT-B complex is mainly

localized in the nucleus and that is composed of three

proteins, Hat1, Hat2 and Hif1 [23,24]. Deletion of

HAT1, in combination with specific histone H3 amino ter-

minal tail mutations, results in a significant defect in telo-

meric silencing [25]. Hat2p acts as a bridge between Hat1

and Hif1 proteins [23] and is required for high affinity

binding of Hat1p to histone H4 [22]. It seems to be essen-

tial for all the functions carried out by Hat1p because

deletion of HAT2 always produces similar defects to those

of HAT1 [22,25,26]. Deletion of HIF1 displays similar de-

fects in telomeric silencing [23,24] and DNA double-strand

break repair to those of HAT1 [24]. At present, no unique

phenotype has been specifically and directly associated to a

particular HAT-B subunit.

In this study, we analyse the effect of HAT1 and/or HAT2

gene deletions on the life-span and the transcriptome of the

yeast cells. Surprisingly, using these two independent ap-

proaches, we have observed that hat1 and hat2 mutants dis-

play different phenotypes. We show here that deletion of

HAT2 but not of HAT1 provokes extended life-span in yeast

cells. This is the first unique phenotype described for a HAT

gene. Furthermore, transcriptomes of hat1 and hat2 mutants

behave inversely. All these results indicate that the functions

of Hat2p and Hat1p are not completely overlapping in the

cell.
blished by Elsevier B.V. All rights reserved.
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2. Materials and Methods

2.1. Yeast strains
For life-span and transcriptome studies we used the Saccharomyces

cerevisiae wild type (S288c background) yeast strain YPH250 (MATa,
ura3-52, lys2-801, ade2-101, trp1-D1, his3-D200, leu2-D1) [22] and its
derived deletion strains, BQS1200 (hat1::KanMX4), BQS1205 (hat2::
KanMX4), BQS1341 (BQS1205 hat1::NatMX4), BQS1431 (sir2::
NatMX4) and BQS1433 (BQS1205 sir2::NatMX4). Deletion mutants
were constructed by integrative disruption following the protocols de-
scribed in [27,28].
Yeast strains derivatives from W303-1a (MATa, ade2-1 his3-11,15

leu2-3,112 trp1-1 ura3, can1-100), with appropriate deletions or six-
hemagglutinin HA epitope tags were used for chromatin immunopre-
cipitation assays. BQS1154 (HAT1-HA6-TRP1 in a W303-1a genetic
background) was used as parental strain for generating BQS1172
(hat2::KanMX4) and BQS1184 (hif1::NatMX4). BQS1164 (SIR2-
HA6-TRP1) was parental strain for BQS1173 (hat1::KanMX4) and
BQS1439 (hat2::KanMX4). JRY4470 (sir2::LEU2) [29], and BQS298
(JRY4470 hat1::KanMX4), have been used as well. Homologue recom-
bination [30] was used for integrating the HA epitope tags at their ac-
tual chromosomal loci.

2.2. Life-span determination
Life-span of yeast strains was determined as described by Kennedy

et al. [31] and Kim et al. [11]. Briefly, cells were grown at 28 �C in solid
YPD plates (1% yeast extract, 2% peptone, 2% glucose, and 1.5%
agar). Individual virgin cells were selected microscopically and aligned
in row in different areas with a micromanipulator. Life-spans were
determined by scoring the total number of daughter cells produced
and removed. At least 60 cells were counted for each strain and at least
two independent experiments were done for each strain. Survival
curves were considered to be significantly different when they were po-
sitive using the Wilconxon (Gehan) test, as implemented in SPSS for
Windows release 9.0 (SPSS 1999).
2.3. Chromatin immunoprecipitation assays
Chromatin immunoprecipitation PCR assays were performed as de-

scribed [32], with modifications [33]. For cross-linking, yeast cells were
treated with 1% formaldehyde for 20 min at room temperature. Primer
mixes were empirically adjusted for balanced signals. The exact primer
sequences are available on request.
2.4. Total RNA extraction, radioactive sample labelling and macroarray

hybridisation
Cells were grown overnight at 30 �C in 50 mL of YPD medium (2%

glucose, 2% peptone, 1% yeast extract) up to exponential growth phase
(OD600 = 0.5). RNA extraction cDNA labelling and hybridisation on
homemade nylon membrane macroarrays were done as described [34].

2.5. Quantification of hybridisation signals and normalisation procedures
Image acquisition was performed in a Fuji Film FLA3000 Phos-

phorimager and quantified by using ArrayVision 7.0 software (Imag-
ing Research, Inc.) taking the sARM density (with the
corresponding subtracted background) as a signal. Transcript levels
1.45 times over background were considered as valid data and
normalised.
The normalisation process and the measure of the significance level

for each ORF were done by using ArrayStat software (Imaging Re-
search, Inc.). cDNA hybridisations were subjected to double normali-
sation, between two conditions (mutant vs. wild type) and between
replicates. Experiments were done in triplicate. Reproducibility of
the replicates was tested considering the data as independent and
allowing the program to take a minimum number of valid replicates
of two in order to calculate the mean values for every gene. Data were
normalised between different strains by iterative median and corrected
by the False Discovery Rate test to estimate the statistical errors
associated to each gene.
Gene Ontology (GO) search was done in the Saccharomyces Gen-

ome Database (SGD) web interface (http://db.yeastgenome.org/cgi-
bin/GO/goTermFinder). We considered significant categories when P
values were below 10�4.
2.6. Accession numbers
GEO accession number for the series of 15 individual macroarray

hybridisations is GSE2434.
3. Results and discussion

3.1. The hat2 mutant displays longer life-span

There are multiple observations that relate the acetylation

profile of the core histones in heterochromatin with yeast

life-span. Kim et al. [11] have shown that deletion of several

HDs has a profound influence on the life-span of yeast cells,

although the effects of particular mutations are very vari-

able. The conclusion is that no simple relationship exists be-

tween the acetylation state of histones and the life

expectancy. A study of the effects on life-span of HAT gene

deletions would help to understand this process. However,

no study has been reported to date with those genes. We se-

lected HAT-B for our study because of its relationship with

telomeric silencing [25]. We disrupted the HAT1 and HAT2

genes in an S288c background and measured the life-span of

the resulting strains. The average life-span of the hat2 mu-

tant was extended by 30%, as compared to the wild type

control, from 13 to 17 generations, whereas the hat1 muta-

tion had no significant effect on life-span (Fig. 1A). Next, we

examined the life-span of the double mutant hat1hat2. The

average life-span of this strain was extended by four gener-

ations, a behaviour similar to that of single hat2 mutant

(Fig. 1B). To discard that a difference in the growth of these

strains was affecting the life-span, we performed several

studies on the growth rate of hat1, hat2 and hat1hat2 mu-

tants in different conditions and we could not find any sig-

nificant difference between them (data not shown). The

presence of both Hat1p and Hat2p in the cell is necessary

for the normal level of K12 acetylated H4 in free histones

(A. Poveda and R. Sendra, personal communication). Con-

sistent with the observation that Hat2p, but not Hat1p,

extends life-span, we could not find any difference in the life-

span of yeast cells bearing K12R mutation – a non-acetylat-

able form of histone H4 – compared to the wild type strain

(not shown). Taken together, these results suggest that the

function of Hat2p is not limited to enhancing the HAT

activity of Hat1p. Deletion of HIF1 gene, the third compo-

nent of the complex, does not show any increment of life-

span (A. Poveda and R. Sendra, personal communication).

This is the first time that a unique phenotype has been ob-

served for a subunit of the HAT-B complex, except for the

obvious lack of the HAT activity.

On the other hand, HD activity of Sir2p is required for

the redistribution of Sir proteins from telomeres to the

rDNA that occurs in old cells to prevent premature aging

[35]. Therefore, sir2 mutants show reduced replicative life

expectancies [11,12]. In spite of the fact that a sir2 mutation

and a hat2 mutation (when combined with certain histone

H3 mutations) have similar defects in telomere silencing,

their aging-related phenotypes are opposite. We wondered

if the opposite effects of Hat2p and Sir2p on life-span were

somehow related. To test this we made a double sir2hat2

mutant and its life-span was analysed and compared to a

single sir2 mutant. As seen in Fig. 1C, sir2hat2 behaved like

the single sir2 mutant, indicating that SIR2 has a dominant

epistatic effect over HAT2.

http://db.yeastgenome.org/cgi-bin/GO/goTermFinder
http://db.yeastgenome.org/cgi-bin/GO/goTermFinder
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Fig. 1. Effect of HAT genes deletion on yeast life-span. Life-span of
single hat1 and hat2 mutants (A) hat1hat2 (B) and sir2hat2 double
mutants (C) strains were analysed and compared to the parental
(YPH250) or the sir2 strains. The total number of daughter cells
produced by 60 cells was scored. The percentage of living cells is
plotted as a function of age in generations. There was no significant
difference between the life-spans of strains YPH250 and its hat1D
derivative or between sir2 and sir2hat2. The life-span differences
between YPH250 and the hat2 and hat1hat2 deletions are significant
(P < 0.001).

Fig. 2. Chromatin immunoprecipitations. (A) and (B) Chromatin
immunoprecipitation assays were done in different yeast strains using
an antibody against Lys 12 acetylated histone H4. Yeast Ty5
retrotransposon is on the left subtelomere of chromosome III. FUS1
and CLB2 are controls of non-silenced regions. As a control, PCR was
done using extracts without antibody (-ab) and prior to immunopre-
cipitation (whole-cell extract, WCE). (C) Mutant strains hat2 and hat1
containing an HA epitope-tagged SIR2 were immunoprecipitated with
an anti-HA antibody. As a control, PCR was done using extracts from
a strain without tagged SIR2 (no-tag) and prior to immunoprecipita-
tion (WCE).
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3.2. Sir2p is not retained at telomeres by HAT-B complex

proteins

Sir2p has been described as a limiting factor that promotes

silencing at subtelomeric regions and rDNA and to be required

to prevent premature aging in yeast (reviewed in [36,37]). In

this model, the amount of Sir2p available in the nucleolus

for silencing would be controlled by the sequestration of Sir2p

at telomeres [38]. While the general state of telomeric hetero-

chromatin is hypoacetylated [39], this does not exclude the

possibility that HAT-B proteins may play a role in Sir2p telo-

meric retention. Sir2p has been described as an NAD-depen-

dent HD that deacetylates Lys 9 and 14 of histone H3 and

Lys 16 of histone H4 [10]. However, other authors have shown

that Sir2p can deacetylate histones previously acetylated by

Hat1p or Esa1p [9]. In any case, deacetylation of Lys 16 of

H4 is necessary for telomeric silencing and, interestingly,

it seems to be a pre-requisite for the ability of HAT-B to
acetylate Lys 12 and 5 of histone H4 [40]. In order to know

if the targets of HAT-B and Sir2p are related we performed

chromatin immunoprecipitation experiments using antibodies

raised against specific acetylation sites in histones. In particu-

lar, we comparatively analysed the acetylation state of Lys 14

of H3, the major target of Sir2p HD activity, and Lys 12 of

H4, the major substrate of HAT-B activity, in different mutant

strains. The Ty5 retrotransposon, which is integrated in a subt-

elomeric location, was used as heterochromatic probe and the

promoters of several non-silenced genes as non-heterochro-

matic controls. As expected, deletion of SIR2 gene produced

an increment of histone H3 Lys 14 acetylation at telomeres

whereas deletion of HAT1 gene had no effect on acetylation

at this position (results not shown). The results obtained using

antibodies against acetylated Lys 12 of histone H4 were sur-

prising. As can be seen in Fig. 2A, deletion of the SIR2 gene

notably increases the acetylation state of this position, which

had not been described to date as a target of this enzyme.

Hence, Sir2p participates in the active maintenance of the in

vivo hypoacetylation of histone H4 Lys 12. Deletion of genes

of known components of HAT-B complex, HAT1, HAT2 or

HIF1, had no effect on the acetylation state of Lys 12 of H4

at subtelomeric locations. We also analysed the hat1sir2 dou-

ble mutant and the results were identical to the sir2 single mu-

tant (Fig. 2B), demonstrating that a HAT activity other than

HAT-B is responsible for this acetylation.
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Finally, we investigated whether HAT-B could retain Sir2p

at telomeric loci through a mechanism independent of its

HAT activity. To study this, we analysed the subtelomeric po-

sition of Sir2p in strains bearing mutations in the components

of HAT-B complex. Fig. 2C shows that deletion of the HAT1

or HAT2 gene does not modify the typical subtelomeric posi-

tion of Sir2p. We have obtained similar results when deleting

HIF1 (results not shown). Taken together, these results suggest

that the increased life-span observed in hat2 mutants is not due

to a telomeric retention of Sir2p.

3.3. Transcriptional profile of the hat mutants

If Hat2p has additional roles to those of Hat1p, then it

seems likely that this fact would be reflected in the transcrip-

tional phenotype. With the aim of casting some light on this,

we analysed the transcriptome of hat1, hat2 and hat1hat2 mu-

tants. The experiments were done in triplicate by using three

different exponentially growing YPD cultures for each mutant.

We also checked that independent deletion mutants generated

the same results (not shown).

Although single hat1 or hat2 mutants transcriptomes are not

very different from the wild type (Fig. 3A and B), we noticed a

difference between both mutant strains when we plotted hat2

vs. hat1 (Fig. 3C). It becomes clear that both mutants are more

distinct between them than each one with respect to the wild

type. This result is highlighted when analysing the number of

genes up- or downregulated (Fig. 3). There are many more

genes differentially represented between hat1 and hat2mutants.

In order to find out the significance of this difference between

hat1 and hat2 transcriptomes, we performed a GO search.

Many genes differentially represented in hat1 and hat2 mutants

corresponded to specific GO classes (Table 1). A detailed
Fig. 3. Comparison of transcriptomes for different hat mutants. The transcr
and compared to the wild type transcriptome. hat1 and hat2 transcriptomes ar
expression data of two yeast strains. Graphs are in logarithmic scale and the P
considered as differentially expressed between the two strains. The numbers
cloud) or downregulated (above the cloud) in the strain plotted on abscises
inspection of the comparisons of the mutants with regard to

wild type revealed that many of these genes behaved similarly

in the single mutants when compared with wild type (see http://

scsie.uv.es/chipsdna). However, because the fold changes were

lower, and less genes of a particular GO were considered differ-

entially expressed, the GO finder software did not detect many

statistically-enriched GO categories in the hat1 mutant and no

enriched categories were detected in the hat2 mutant (Table 1).

In summary, despite the fact that both are subunits of the same

HAT-B complex, hat1 and hat2 mutants display different tran-

scriptome phenotypes when exponentially growing in a glu-

cose- rich medium.

The analysis of the double mutant showed large differences

with regard to the wild type (Fig. 3D). In this case 30% of the

genes were considered differentially expressed after statistical

analysis. The study of the GO categories revealed that the tran-

scriptomeof thehat1hat2mutant ismore similar to thatobserved

in the hat1 mutant, but that the number of genes and the fold

changes observed are higher in the double mutant. It seems that

the hat2 deletion not only does not compensate but also even en-

hances the transcriptional phenotype of a hat1mutant.

3.4. Does Hat2p have functions in addition to those of the

HAT-B complex?

Although Hat2p has been considered to date just a non-

catalytic subunit of Hat1p-dependent HAT complexes, the di-

rect conclusion from life-span analyses is that Hat1p and

Hat2p do not perform a single and identical function inside

the cell. Thus, Hat2p would have additional functions to those

of Hat1p. The fact that HAT2 but not HAT1 deletion extends

life-span indicates that these other functions are not related to

the HAT activity of HAT-B complex. Another possibility is
iptomes of hat1 (A), hat2 (B), and hat1hat2 (D) mutants were analysed
e compared in (C). Each panel represents the plot of all significant gene
earson correlation of linear regression is shown. Genes in red are those
on both sides of the cloud represent the genes upregulated (below the
regarding the strain plotted on ordinates.

http://scsie.uv.es/chipsdna
http://scsie.uv.es/chipsdna


Table 1
Summary of comparative transcriptomic profiles

Genes upregulated Genes downregulated

GO category P-value #Genes GO category P-value #Genes

hat1/YPH250
Protein folding 9.46 · 10�6 6 Ribosome biogenesis 6.39 · 10�15 27
Polyamine transport 7.18 · 10�5 3

hat1hat2/YPH250
Amino acid metabolism 2.93 · 10�10 64 Ribosome biogenesis 1.37 · 10�20 80
Alcohol metabolism 5.27 · 10�7 35 Cell growth 9.61 · 10�9 300
Glycolysis 1.12 · 10�6 14
Transport 2.79 · 10�6 179

hat2/hat1
Ribosome biogenesis 2.92 · 10�49 93 Protein folding 2.1 · 10�8 15
Cell growth 3.25 · 10�8 181 Energy pathways 7.1 · 10�8 31

Only GO significant categories (P-value <10�4) and the number of genes for each category are shown. The comparison of hat2 vs. wt (YPH250) did
not show any statistically significant categories.

Other
functions?

Other
functions

Hat1p Hat2p

?

HAT B 

Fig. 4. Proposed model for the functional relationships between Hat1p
and Hat2p. Hat1, Hat2 and Hif1 proteins interact physically and
functionally, forming the HAT-B complex. The fact that Hat2p, but
not Hat1p, modulates yeast life-span does suggest that Hat2p would
have additional functions in the cell. However, the transcriptome
analyses of the hatmutants also suggest a negative modulating effect of
Hat2p on Hat1p.
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that the increased life-span observed in a hat2mutant is related

to heterochromatin silencing. However, deletion of HAT2 or

HAT1 genes, combined with mutations of specific lysine resi-

dues of the N-terminal tail of histone H3, provokes an identi-

cal severe silencing defect [25], suggesting that Hat2p and

Hat1p act in the same way. We have also discarded a relation-

ship between the increased life-span of hat2 mutant and a

redistribution of Sir2p between telomeres and rDNA. More-

over, the fact that transcriptomic effects are not related with

the subtelomeric location of genes (our unpublished results)

suggests that the postulated new roles for Hat2p are not di-

rectly related to chromatin silencing. Nevertheless, the epistatic

effect of SIR2 on HAT2 suggests that Hat2p affects life-span

upstream Sir2p within the same pathway.

It has been reported that the transcriptome of a sir2 mutant

is the opposite to a caloric restriction (CR) phenotype [13].

Although the molecular mechanism is controversial

[10,13,41], it seems that CR causes changes in Sir2p activity

which, in turn, affects life-span. However, the hat2 transcrip-

tome has no similarity to a CR phenotype, which would be ex-

pected if hat2 were just the reverse of a sir2 mutant. Thus, our

results indicate that Hat2p would act on Sir2p through a path-

way other than CR. Perhaps hat2 deletion causes a mild

endogenous stress that is sensed by Sir2p.

The existence of additional roles for Hat2p is also supported

by the study of hat mutant transcriptomes. If Hat2p were only

a co-activator of Hat1p in the HAT complexes, its absence

would not modify the transcriptome of a hat1 mutant. How-

ever, the double hat1hat2 mutant has a distinct transcriptome

implying that Hat2p has additional functions in the cell. More-

over, the differences observed between hat2 and the double

hat1hat2 mutant transcriptomes not only support the addi-

tional functions of Hat2p, but also point to a negative modu-

lating role of Hat2p on Hat1p activity (Fig. 4). The

comparison of transcriptomes observed in hat1 and hat2 mu-

tants would support this last hypothesis.

To summarize, the proteins Hat1 and Hat2 undoubtedly

participate in common processes, such as Lys12 acetylation

of free H4 histone. However, our data suggest that they also

have other roles in cell physiology. It is not clear what those

roles could be. Nevertheless, this is not the first case of a

HAT complex composed of subunits that participate in differ-

ent functions. In fact, this is a general feature of HATs. For
instance, the yeast HAT complex NuA3 has, in addition to

Sas3p (the catalytic subunit), other components such as Anc1p

(TAF14) (reviewed in [1]). This protein is present in five addi-

tional complexes: two chromatin-remodelling complexes

(INO80 and SWI/SNF), the mediator and two basal transcrip-

tion factors (TFIID and TFIIF). With the results presented

here, HAT-B becomes, as other HATs, a complex composed

by subunits implicated in more than one function.
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