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Abstract

We present a method which allows, at least in principle, the direct extraction of the gauge-

invariant and process-independent neutrino charge radius (NCR) from experiments. Under special

kinematic conditions, the judicious combination of neutrino and anti-neutrino forward differential

cross-sections allows the exclusion of all target-dependent contributions, such as gauge-independent

box-graphs, not related to the NCR. We show that the remaining contributions contain universal,

renormalization group invariant combinations, such as the electroweak effective charge and the

running mixing angle, which must be also separated out. By considering the appropriate number

of independent experiments we show that one may systematically eliminate these universal terms,

and finally express the NCR entirely in terms of physical cross-sections. Even though the kinematic

conditions and the required precision may render the proposed experiments unfeasible, at the

conceptual level the analysis presented here allows for the promotion of the NCR into a genuine

physical observable.

PACS numbers: 11.10 Gh, 11.15Ex, 12.15.Lk, 14.80.Bn
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I. INTRODUCTION

The diagrammatic definition of off-shell electromagnetic form-factors in the context of

non-Abelian gauge theories is known to be different from the scalar or QED cases, in the

sense that the “single-photon” approximation gives rise to gauge-dependent, and therefore

unphysical results [1, 2]. The neutrino electromagnetic form-factor has been a celebrated

example of this general fact [3]. Within the Standard Model the effective photon-neutrino

interaction generated through one-loop radiative corrections is expected to give rise to a non-

zero neutrino charge radius (NCR) [4, 5, 6, 7, 8], which, heuristically speaking, has been

traditionally associated with the electromagnetic “size” of the neutrino [9]. The extraction

of this quantity from an off-shell one-loop photon-neutrino vertex Γµ
Aνiν̄i

has been carried out

in various gauge-fixing schemes, leading to the general conclusion that, in the absence of a

definite guiding principle, important physical requirements such as gauge-invariance, finite-

ness, and target-independence [10, 11, 12, 13, 14, 15, 16, 17], could not be simultaneously

satisfied. The non-trivial task in this context is to identify the correct subset of Feynman

graphs, which would give rise to a gauge-invariant and finite result for the NCR, while, at

the same time, retaining the process-independence of the definition. In particular, the most

obvious manifestly gauge-invariant alternative of computing the entire process, and then

forcing the answer to assume the form of a “single-photon” interaction is (by definition)

process-dependent, because in the computation of the entire amplitude enter non-“single-

photon” contributions. Therefore, adopting such a procedure precludes the conceptually

appealing possibility of interpreting the resulting form-factor as an intrinsic property of the

particle in question.

A definite solution to this problem has recently been presented in [18]. In that

work the necessary guiding principle is provided by the pinch technique (PT) formalism

[19, 20, 21, 22], which implements the separation of a physical amplitude into electroweak

gauge-invariant effective self-energy, vertex and box sub-amplitudes. The conceptual require-

ment that the effective electromagnetic vertex of a particle has to be process-independent,

i. e., independent of the target used to probe the properties of the particle, is automatically

implemented in this construction. In particular, the NCR is extracted from an effective one-

loop proper vertex Γ̂µ
Aνiν̄i

, which is independent of the gauge-fixing parameter, and satisfies

a QED-like Ward identity. As has been demonstrated by means of detailed calculations

2



in [18], the PT construction of the vertex Γ̂µ
Aνiν̄i

amounts to computing directly the corre-

sponding proper vertex in the Feynman gauge of the Background Field Method [23], using

the Feynman rules derived in [24]; this fact is in accordance with the generally known corre-

spondence between the PT and the Background Field Method, at one [24, 25, 26] and two

loops [27, 28, 29].

The next important question in this context is whether the NCR so defined constitutes

a genuine physical observable, and in particular how it can be extracted, even in principle,

from experiment. The general strategy of how to accomplish this from ν−e and ν−ν cross-

sections has been addressed in a recent brief communication [30]. In this paper we present a

detailed proof of the observable character of the NCR by its explicit separation from other

renormalization group invariant (RGI) combinations in the physical cross-sections.

As has been explained in [30], the main difficulty one needs to overcome in this context is

the following: The PT rearrangement of the S-matrix makes possible the definition of dis-

tinct sub-amplitudes, which are individually endowed with desirable theoretical properties;

one of these sub-amplitudes, Γ̂µ
Aνiν̄i

, is directly related to the NCR. However, the remaining

sub-amplitudes, even though they do no enter into the definition of the NCR, still contribute

numerically to the entire S-matrix. Thus, in order to extract the NCR, one must conceive

of an experiment, or combination of experiments, such that all contributions not related to

the NCR will be eliminated.

In this paper we study in detail a set of such experiments involving neutrinos and anti-

neutrinos. In particular, we elaborate on the “neutrino–anti-neutrino method”, which allows

for the elimination of the box contributions. The general idea is to study appropriate

combinations involving the one-loop cross-sections of (elastic) processes of the type eν → eν

and eν̄ → eν̄, and exploit the fact that the box diagrams behave differently than vertex or

self-energy diagrams under the exchange ν ↔ ν̄, or equivalently, under charge conjugation

[31]. It turns out that the sum of the total cross-sections of the two processes mentioned

above is free of box contributions. This, together with the fact that the vertex corrections

not related to the NCR, together with the Bremsstrahlung contributions vanish in the special

kinematic limit of zero momentum transfer, where the NCR is actually defined, allows for the

isolation of three distinct parts: the desired NCR, which depends explicitly on the flavour

of the neutrino one is considering, together with two universal parts, i.e. contributions that

are completely flavour- and target-independent, one consisting of the tree-level and one-loop
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Z-boson propagator, and the other of the one-loop mixing between A and Z. There is an

important theoretical difference however between the flavour-dependent NCR and the two

universal pieces: The NCR is ultraviolet finite, whereas the universal parts are ultraviolet

divergent, and they must therefore be renormalized. This fact raises an important issue

which we will address in detail in this paper.

Specifically, in order to assign an observable character to individual sub-amplitudes, one

needs in addition an explicit separation into RGI quantities. Otherwise the separation will

depend on the way the renormalization subtraction is carried out, i.e. it would be scheme-

dependent. In this paper we will employ the concepts of the electroweak effective charge,

and of the effective (running) electroweak mixing angle, in order to cast the aforementioned

universal contributions into manifestly RGI combinations [32, 33, 34]. An important conse-

quence of this analysis is in fact related to the very definition of the NCR. Specifically, the

universal PT one-loop AZ self-energy is gauge-independent and couples electromagnetically

to the target fermions. Therefore, it could be considered as a flavour-independent contri-

bution to the NCR, to be added to the flavor-dependent one stemming from the proper

vertex; in fact this point of view has been often advocated in the literature. However, the

AZ self-energy is a scheme-dependent and therefore unphysical contribution, which, as such

cannot form part of the NCR definition. Instead, it must be appropriately combined with the

tree-level contribution mediated by the Z-boson (which is certainly not part of the NCR),

in order to form the universal RGI quantity known as the effective (running) electroweak

mixing angle. Once the decomposition of the result into RGI quantities has been accom-

plished, one may proceed unambiguously into their experimental separation, by considering

the appropriate number of different processes. Thus, the Standard Model prediction for the

NCR, together with the two universal RGIs, can be finally expressed individually in terms

of specific combinations of physical cross-sections.

The paper is organized as follows: In section II we review the PT rearrangement of the

elastic scattering amplitude, focusing on the relevant kinematic limit of vanishing momen-

tum transfer, where the NCR is defined. To simplify the analysis we choose the charged

target fermions to be right-handedly polarized electrons, and we show that both the ver-

tex corrections not related to the NCR as well as the Bremsstrahlung corrections vanish

in the aforementioned kinematic limit. In section III we present the neutrino–anti-neutrino

method in detail, using as target fermions both right-handedly polarized as well as unpo-
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larized fermions. In section IV we review the renormalization properties of the relevant

one-loop PT self-energies appearing in the neutral sector of the Standard Model, and we

show how the resulting amplitudes may be written in terms of the ultraviolet finite NCR

and two manifestly RGI building blocks. In section V we present two methods which allow

for the individual extraction from an appropriate set of experiments of the NCR and the two

RGI quantities introduced in the previous section. In addition, we present the theoretical

Standard Model predictions for these three quantities. Finally, in section VI we present our

conclusions.

II. THE PT REORGANIZED FORWARD AMPLITUDE

In this section we will first review briefly some of the main results presented in [18] in an

attempt to fix the notation and stress the relevant conceptual points. Then, we will show

that in the special kinematic limit of zero momentum transfer, in which the NCR is in fact

defined, the vertex corrections not related to the NCR, together with the Bremsstrahlung

contributions, vanish.

For concreteness we will focus on the process e(k1)νµ(p1) → e(k2)νµ(p2), shown in Fig.1

The above process is chosen to be elastic with the Mandelstam variables defined as s =

(k1 + p1)
2 = (k2 + p2)

2, t = q2 = (p1 − p2)
2 = (k1 − k2)

2, u = (k1 − p2)
2 = (k2 − p1)

2,

and s + t + u = 0. The reason for considering νµ instead of νe is because in this way one

eliminates the charged channel mediated by a W -boson (Fig.1j).

The two relevant tree-level photon (A) and Z-boson vertices Γµ

Aff̄
and Γµ

Zff̄
are given by

Γµ

Aff̄
= −ieQfγ

µ = −ieQfγµ(PL + PR)

Γµ

Zff̄
= −i

(gw

cw

)
γµ [(s2

wQf − T f
z )PL + s2

wQfPR]

= −i
(gw

cw

)
γµ [af + bfγ5] (2.1)

with af = s2
wQf − 1

2
T f

z and bf = 1
2
T f

z . In the above formulas Qf is the electric charge of

the fermion f , T f
z its z-component of the weak iso-spin, and PR(L) = [1 + (−)γ5]/2 is the

chirality projection operator, cw =
√

1 − s2
w = MW /MZ, and the electric charge e is related

to the SU(2)L gauge coupling gw by e = gwsw.

The one-loop contributions to the amplitude are shown in Fig.1b – Fig.1i . We will assume

throughout that the PT rearrangement of the amplitudes has been carried out, exactly as
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We �

e �
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FIG. 1: The various classes of diagrams contributing to the one-loop amplitude (a–i). The charged

channel (j) vanishes for neutrino flavours other than νe.

described in [18]. In particular, after a series of crucial gauge-cancellations enforced by

the elementary Ward identities of the theory [19, 20, 21], the amplitude has been split into

individually gauge-invariant sub-amplitudes which correspond kinematically to self-energies,

vertices, and boxes. As has been explained in detail in the literature [24, 25, 26], these

latter PT quantities coincide with the corresponding Green’s functions computed in the

framework of the Background Field Method, at the special value of the (quantum) gauge
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fixing parameter ξQ = 1. Notice that the gauge-invariant “pure” box contributions coincide

with the conventional box contributions computed in the renormalizable Feynman gauge

(Rξ gauges, with ξ = 1).

It is well-known [35] that the PT rearrangement of the amplitude may be carried out

regardless of the kinematical details, as for example the specific values of the Mandelstam

variables, or the masses of the external particles. In what follows we will consider the above

amplitude in the zero transfer limit, t = q2 → 0, s = −u, where the NCR is actually defined.

In addition, we will assume that all external (on-shell) fermions are massless. As a result of

this special kinematic situation we have the following relations:

p2
1 = p2

2 = k2
1 = k2

2 = p1 · p2 = k1 · k2 = 0

p1 · k1 = p1 · k2 = p2 · k1 = p2 · k2 = s/2. (2.2)

As we will see in a moment, in the aforementioned limit of q2 → 0, the one-loop PT vertex

corrections to the Zff̄ and Zνν̄ vertices vanish, and so do the Bremsstrahlung contributions.

Moreover, the special kinematic relations given in Eq.(2.2) are crucial for the validity of the

neutrino–anti-neutrino method which we will present in the next section.

In the center-of-mass system we have that t = −2EνE
′
ν(1− x) ≤ 0, where Eν and E ′

ν are

the energies of the neutrino before and after the scattering, respectively, and x ≡ cos θcm,

where θcm is the scattering angle. Clearly, the condition t = 0 corresponds to the exactly

forward amplitude, with θcm = 0, x = 1. Equivalently, in the laboratory frame, where the

(massive) target fermions are at rest, the condition of t = 0 corresponds to the kinematically

extreme case where the target fermion remains at rest after the scattering.

The relevant quantities which will appear in our calculations are the ZZ and AZ self-

energies, to be denoted by Σ̂µν
ZZ(q2) and Σ̂µν

AZ(q2), respectively, and three one-loop vertices

Aνiν̄i, Zνiν̄i, and Zff̄ , to be denoted by Γ̂µ
Aνiν̄i

, Γ̂µ
Zνiν̄i

, and Γ̂µ

Zff̄
, respectively. In the PT

framework Σ̂µν
AZ(q2) is transverse, for both the fermionic and the bosonic contributions, i.e.

it may be written in terms of the dimension-less scalar function Π̂AZ(q2) as

Σ̂µν
AZ

(q2) =

(
q2 gµν − qµqν

)
Π̂AZ(q2) . (2.3)

On the other hand, Σ̂µν
ZZ(q2) is of course not transverse. In what follows we will discard all

longitudinal pieces, since they vanish between the conserved currents of the massless external

fermions, and will keep only the part proportional to gµν; its dimension-full cofactor will be
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Z;AW We (�) � (e) e (�)�F
(a)

W;Z;A
Z;A

e (�) e (�)
(b)

W;Z;A
Z;A

e (�) e (�)
()

FIG. 2: The relevant vertex graphs, (a)–(b), and the fermion wave-function correction, (c).

denoted by Σ̂ZZ(q2), i.e.

Σ̂µν
ZZ

(q2) = Σ̂ZZ(q2)gµν (2.4)

The closed one-loop expressions for Σ̂µν
ZZ(q2) and Σ̂µν

AZ(q2) can be found in various places in

the literature [22, 32, 36].

It is relatively easy to convince oneself that, if one were to relax the masslessness condition

for external (target) fermions, all additional contributions due to their non-vanishing masses

m always appear proportional to positive powers of (m/M) and/or (m/
√

s), where M stands

for the mass of the W or Z bosons. Clearly, the terms (m/M) are naturally suppressed

because of the heaviness of the gauge bosons. On the other hand, the terms (m/
√

s) can

be made arbitrarily small, by letting the variable s, which in principle can be controlled by

adjusting the energies of the incoming particles, reach sufficiently high values.

Turning to the vertex corrections, the NCR, to be denoted by 〈r2
νi
〉, will be defined from

the vertex Γ̂µ
Aνiν̄i

, which is given by the two graphs of Fig.2a and Fig.2b (with a photon A

and neutrinos ν entering into the vertex). As has been explained in detail in the literature,

the construction of the gauge independent and gauge invariant one-loop vertex by means of

the PT finally amounts to using the Feynman gauge for the all gauge-boson propagators,

and replacing the usual three-boson vertex

Γαµν(q, k,−k − q) = (q − k)νgαµ + (2k + q)αgµν − (2q + k)µgαν (2.5)

by the tree-level vertex

ΓF

αµν = (2k + q)αgµν + 2qνgαµ − 2qµgαν . (2.6)
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The vertex ΓF

αµν satisfies the elementary Ward identity

qαΓF

αµν = (k + q)2gµν − k2gµν , (2.7)

Equivalently, one may use directly the Feynman rules of the Background Field Method [24],

choosing for the gauge-fixing parameter ξQ of the (quantum) bosons the value ξQ = 1.

It is straightforward to evaluate the two aforementioned vertex graphs; their sum gives

a ultra-violet finite result, from which one can extract the dimension-less electromagnetic

form-factor F̂ A
1 (q2). In particular, since F̂ A

1 (q2) is proportional to q2, we may define the

dimension-full form-factor F̂νi
(q2) as

Γ̂µ
Aνiν̄i

= F̂ A
1 (q2)

[
ieγµ(1 − γ5)

]
= q2F̂νi

(q2)
[
ieγµ(1 − γ5)

]
(2.8)

F̂νi
(q2) depends on the mass mi of the charged iso-doublet partner of the neutrino, which

appears in the two relevant Feynman diagrams. In the limit of both q2, m2
i → 0, F̂νi

(q2) is

infrared divergent, whereas it is infrared finite in the limit q2 → 0, m2
i 6= 0. After canceling

the q2 against the photon propagator, we can take the limit q2 → 0, keeping m2
i non-zero.

Defining as usual F̂νi
(0) = 1

6
〈r2

νi
〉, we finally arrive at [18]

〈r2
νi
〉 =

GF

4
√

2 π2

[
3 − 2 log

(
m2

i

M2
W

)]
, i = e, µ, τ (2.9)

where GF = g2
w

√
2/8M2

W
is the Fermi constant. Notice that the logarithmic term in the

above expression originates entirely from the Abelian-like diagram of Fig.2b.

A. Vanishing of the Zee and Zνν vertex corrections

We will show that the sum of the one-loop vertex and wave-function corrections, which are

collectively depicted in Fig.1h and Fig.1i vanishes in the limit q2 → 0. Since these diagrams

are multiplied by a massive tree-level Z propagator DZ(q), which is regular (non-divergent)

in this limit, they do not contribute to the scattering amplitude we consider. This is to be

contrasted with the Γ̂µ
Aνiν̄i

, which is accompanied by a (1/q2) photon-propagator, thus giving

rise to a contact interaction between the target-fermion and the neutrino, described by the

NCR.

It is known [21] that the one-loop PT vertex Γ̂α
Zff

(q, p1, p2) with f = e or f = ν, shown in

Fig.2a and Fig.2b, satisfies a QED-like Ward identity, relating it to the PT inverse fermion
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propagators Σ̂f , shown in Fig.2c , i.e

qαΓ̂α
Zff

(q, p1, p2) = Σ̂f (p1) − Σ̂f (p2) (2.10)

Eq.(2.10) is a straightforward consequence of the tree-level Ward identity of Eq.(2.7). By

virtue of Eq.(2.10), when the proper vertex graphs are combined with the renormalization

of the external fermions, the net result is ultraviolet finite (because, as in QED, Z1 = Z2).

Below we give the results of the individual graphs contributing to vertex Γ̂α
Zff̄

, corresponding

to the vertex graphs of Fig.2, with a Z-boson entering into the vertex. These graphs are

calculated in the limit where t = q2 → 0, the fermions appearing in the loop are considered

strictly massless, and terms proportional to qα vanish, because they are contracted with a

conserved current, since the external fermions are considered massless as well. The graph in

Fig.2b containing the virtual photon is infrared divergent, even if the fermions are massive.

We will regulate this divergence by introducing a fictitious photon mass mA, a procedure

which is compatible with gauge-invariance. Equivalently one may use dimensional regu-

larization to regularize both ultraviolet and infrared divergences [37, 38]. In any case, all

contributions will cancel algebraically, before the infrared cutoff is removed. The two quan-

tities which naturally appear when calculating the diagrams using standard techniques, such

as Feynman parametrization and dimensional integration, are the following:

I1(M
2) =

1

2
(−2 + ǫ)2

∫ 1

0

dx (1 − x)
[ 2

ǫ
− ln(xM2)

]

I2(M
2) = (−2 + ǫ)

∫ 1

0

dx x
[ 2

ǫ
− ln(xM2)

]
(2.11)

where d = 4−ǫ. It is elementary to verify that I1(M
2)+I2(M

2) = 0; notice that this relation

holds not only for the divergent parts, but also for the parts that are finite and non-vanishing

as ǫ → 0. In terms of I1 and I2 we have (we suppress a common factor g3
w/16π2c3

w):

[2b](e)
A

= s2
wc2

wI1(m
2
A
) γα(ae + be γ5) ,

[2c](e)
A

= s2
wc2

wI2(m
2
A
) γα(ae + be γ5) , (2.12)

[2b](e)
Z

= I1(M
2
Z
) γα

[
ae(a

2
e + 3b2

e) + be(b
2
e + 3a2

e)γ5

]
,

[2c](e)
Z

= I2(M
2
Z
) γα

[
ae(a

2
e + 3b2

e) + be(b
2
e + 3a2

e)γ5

]
, (2.13)

[2b](ν)
Z

= I1(M
2
Z
) γαPL ,

[2c](ν)
Z

= I2(M
2
Z
) γαPL , (2.14)
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[2a](e)
WW

= −c4
w

2
I2(M

2
W

)γαPL ,

[2b](e)
W

=
c2
w

4
I1(M

2
W

) γαPL ,

[2c](e)
W

= −c2
w

2
(ae − be) I2(M

2
W

) γαPL , (2.15)

[2a](ν)
WW

=
c4
w

2
I2(M

2
W

) γαPL ,

[2b](ν)
W

=
c2
w

2
(ae − be) I1(M

2
W

) γαPL ,

[2c](ν)
W

= −c2
w

4
I2(M

2
W

) γαPL . (2.16)

where the subscripts on the left hand-side denote the virtual gauge boson(s) appearing

inside the corresponding graphs, and the superscripts specify the type of incoming fermion.

It is straightforward to see that [2b](e)
A

+ [2c](e)
A

= [2b](e)
Z

+ [2c](e)
Z

= [2b](ν)
Z

+ [2c](ν)
Z

=

[2a](e)
WW

+ [2b](e)
W

+ [2c](e)
W

= [2a](ν)
WW

+ [2b](ν)
W

+ [2c](ν)
W

= 0. To prove the cancellations we

have also used that ae − be = −1
2

+ c2
w.

B. Vanishing of the Bremsstrahlung

In this subsection we will show that the differential cross-section corresponding to

the Bremsstrahlung diagrams vanishes in the kinematic limit of zero momentum trans-

fer [39]. The two diagrams contributing to the Bremsstrahlung process e(k1) νe(p1) →
e(k2) νe(p2) A(k3) and e(k1) νe(p1) A(k3) → e(k2) νe(p2) are shown in Fig.3. The conservation

of four-momentum assumes the form k1+p1 = k2+p2+k3, and t = (p1−p2)
2 = (k1−k2−k3)

2.

A direct consequence of this special kinematic choice t → 0 are the relations

k1 · k2 + k1 · k3 − k2 · k3 = 0 , pi · (k2 + k3 − k1) = 0 , i = 1, 2 (2.17)

The S-matrix element MB

µ consists of the two parts, MB

a µ and MB

b µ, corresponding to

the diagram (a) and diagram (b) of Fig.3, respectively, i.e.

MB

µ = MB

aµ + MB

b µ (2.18)

with

MB

a µ = [ū(k2)γρ(ae + beγ5)Se(k1 − k3)γµu(k1)][ū(p2)γ
ρPLu(p1)]

MB

b µ = [ū(k2)γµSe(k2 + k3)γρ(ae + beγ5)u(k1)][ū(p2)γ
ρPLu(p1)] (2.19)
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Z(q)�(p1) �(p2)
e(k1) e(k2)Se(k1 � k3)A(k3)

(a)
+ Z(q)�(p1)

e(k1) e(k2)
�(p2)

Se(k2 + k3) A(k3)

(b)
FIG. 3: The Bremsstrahlung diagrams

where we have suppressed a common multiplicative factor originating from the coupling

constants. The Bremsstrahlung differential cross-section, κB, is proportional to the square

of the amplitude:

κB = MB ∗MB†

= (MB

a + MB

b ) ∗ (MB

a + MB

b )†

= MB

a ∗MB†
a + MB

b ∗MB†
b + 2ℜe(MB

a ∗MB†
b )

≡ κB

aa + κB

bb + 2κB

ab (2.20)

The sum over polarizations for the photon introduces the usual polarization tensor P µν(k3) =

gµν−(nµkν
3 +nνkµ

3 )/n·k3, with nµ an arbitrary four-vector. Of course, U(1) gauge invariance

furnishes the tree-level Ward identity kµ
3MB

µ = 0, so that effectively only the gµν piece of

P µν(k3) contributes.

Now for the electron propagators inside the above diagrams we use that

Se(k1 − k3) = − 6k1− 6k3

2k1 · k3
, Se(k2 + k3) =

6k2+ 6k3

2k2 · k3
(2.21)

and so

κB

aa =
Taa

(2 k1 · k3)2

κB

bb =
Tbb

(2 k2 · k3)2

κB

ab = − Tab

(2 k1 · k3)(2 k2 · k3)
(2.22)
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with

Taa = Tr
(
γµ ( 6k1− 6k3) γρ (ae + beγ5) 6k2 γσ (ae + beγ5) ( 6k1− 6k3) γµ 6k1

)
Tr

(
γρ PL 6p2 γσ PL 6p1

)

Tbb = Tr
(
γρ (ae + beγ5) ( 6k2+ 6k3) γµ 6k2 γµ ( 6k2+ 6k3) γσ (ae + beγ5) 6k1

)
Tr

(
γρ PL 6p2 γσ PL 6p1

)

Tab = Tr
(
γρ (ae + beγ5) ( 6k2+ 6k3) γµ 6k2 γσ (ae + beγ5) ( 6k1− 6k3) γµ 6k1

)
Tr

(
γρ PL 6p2 γσ PL 6p1

)

(2.23)

One can then show, employing the standard properties of the trace of γ matrices together

with the special kinematic relations given above, that

Taa = −32 (2k1 · k3)X1

Tbb = −32 (2k2 · k3)X2

Tab = −16
[
(2k1 · k3)X2 + (2k2 · k3)X1

]
(2.24)

X1 = (ae − be)
2(p2 · k2)(p1 · k3) + (ae + be)

2(p2 · k3)(p1 · k2)

X2 = (ae + be)
2(p2 · k1)(p1 · k3) + (ae − be)

2(p2 · k3)(p1 · k1) (2.25)

Thus,

κB

aa = − 16X1

k1 · k3

κB

bb = − 16X2

k2 · k3

κB

ab =
8X1

k1 · k3
+

8X2

k2 · k3
(2.26)

From these relations and Eq.(2.20) follows immediately that κB = 0, as announced; evidently,

in the kinematic limit considered, a completely destructive interference takes place, which

forces the cross-section to vanish. Notice that in arriving at the above result nowhere have we

actually assumed that the emitted photon is soft; in fact, the vanishing of the cross-section

has been shown simply by evaluating the traces, without need to enter into the specifics of

the (implicit) three-body phase-space integration.

III. THE NEUTRINO – ANTI-NEUTRINO METHOD

In this section we will present the neutrino – anti-neutrino method in detail. As we

will see, this method isolates the process-dependent box contributions, at the expense of

doubling the number of experiments needed.
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A. Right-handed electrons

We begin our analysis by choosing the target electrons to be right-handedly polarized.

This choice eliminates the one-loop WW box of Fig.1g, and makes the introduction to the

neutrino–anti-neutrino method calculationally easier [40]. In addition, it will be used in

section V as one of the processes that need be considered for the experimental extraction

of the NCR. We emphasize that this particular choice of target-fermions constitutes no loss

of generality; in fact, as we will see later in detail, all results derived using this particular

process will be generalized after minor calculational adjustments, to the case of left-handed

or unpolarized target fermions.

For the special case of right-handed fermions the two vertices of Eq.(2.1) assume the form

Γµ

AfRf̄R
= −ie QfγµPR

Γµ

ZfRf̄R
= −ie Qf

(sw

cw

)
γµ PR (3.1)

The differential cross-section in the center-of-mass system is given by

dσ

dΩcm

=
1

64π2s
|M|2 (3.2)

where dΩcm = dx dφcm and M is the amplitude.

For the tree-level amplitude M(0)
νµeR (Fig.1a), mediated only by an off-shell Z, we have

M(0)
νµeR

= c(a)A(a)CL (3.3)

with

CL = [ūR(k2)γµuR(k1)][ū(p2)γ
µPLu(p1)] , (3.4)

where uR = PRu, is the right-handed electron spinor, and

c(a) =
ie2

2c2
w

, A(a) = − 1

M2
Z

= DZ(0), (3.5)

where DZ(q2) = (q2 − M2
Z
)−1 is the scalar cofactor of the tree-level Z propagator Dµν

Z (q) =

−iDZ(q2)gµν .

At one-loop,

M(1)
νµeR

=
( ∑

n

cnAn

)
CL + BZZ (3.6)
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with n = (b), (c), (d), namely the corresponding diagrams relevant for the process, shown in

Fig.1 . The coefficients are given by

c(b) =
ie2

2c2
w

, c(c) =
iegw

2cw
, c(d) = 2ie2, (3.7)

and

A(b) =
−iΣ̂ZZ(0)

M4
Z

,

A(c) =
iΠ̂AZ(0)

M2
Z

,

A(d) = F̂νi
(0) . (3.8)

Notice that the factor of 2 appearing in c(d) is due to the fact that the usual definition of

F̂ A
1 (q2), given in Eq.(2.8), involves (1−γ5) instead of the PL which appears in CL of Eq.(3.4)

Finally, BZZ denotes the contribution of the box graphs shown in Fig.1e and Fig.1f,

BZZ = −KZZ[ūR(k2)γρSe(ℓ − k1)γσuR(k1)][ū(p2)γ
ρPLSνµ(ℓ + p1)γ

σPLu(p1)]

+KZZ [ūR(k2)γρSe(ℓ + k2)γσuR(k1)][ū(p2)γ
σPLSνµ(ℓ + p1)γ

ρPLu(p1)] (3.9)

with

KZZ ≡ e4

4 c4
w

∫
d4ℓ

(2π)4
DZ(ℓ)DZ(ℓ + p1 − p2) (3.10)

where ℓ is the virtual four-momentum, and S(p) = i/p/ is the massless tree-level fermion

propagator. The relative minus sign in the contribution of the direct and crossed boxes

originates from the fact that in the former graph the direction of the fermion propagator is

opposite to the flow of the four-momentum (see Fig.1e and Fig.1f).

Let us next consider the process eR(k1)ν̄µ(p1) → eR(k2)ν̄µ(p2), i.e. the same process as

before with νµ → ν̄µ, and identical kinematics. For the tree-level contribution M(0)
ν̄µeR

we

have

M(0)
ν̄µeR

= A(a)C̄L (3.11)

with

C̄L = [ūR(k2)γµuR(k1)][v̄(p1)γµPL v(p2)] (3.12)

Similarly, since the one-loop analysis can be repeated unaltered, we have for the one-loop

amplitude M(1)
ν̄µeR

M(1)
ν̄µeR

=
( ∑

n

cnAn

)
C̄L + B̄ZZ (3.13)
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with

B̄ZZ = +KZZ [ūR(k2)γρSe(ℓ − k1)γσuR(k1)][v̄(p1)γρPLSν̄µ(ℓ + p1)γσPLv(p2)]

−KZZ[ūR(k2)γρSe(ℓ + k2)γσuR(k1)][v̄(p1)γσPLSν̄µ(ℓ + p1)γρPLv(p2)] (3.14)

Having set up the two amplitudes, we next turn to the specifics of the neutrino – anti-

neutrino method. The basic observation is that the tree-level amplitudes M(0)
νµeR as well as the

part of the one-loop amplitude M(1)
νµeR consisting of the propagator and vertex corrections,

i.e. the first term in Eq.(3.13), which too is proportional to the tree-level amplitude, has

different transformation properties under the replacement νµ → ν̄µ than the part of the

amplitude originating from the box. In particular, the coupling of the Z boson to a pair

of on-shell anti-neutrinos may be written in terms of on-shell neutrinos provided that one

changes the chirality projector from PL to PR and supplying a relative minus sign [31].

Specifically, when sandwiched between external states the ΓZνν is given by

ū(p2) ΓZνν u(p1) = i
( gw

2cw

)
ū(p2)γµPLu(p1) (3.15)

whereas

v̄(p1) ΓZν̄ν̄ v(p2) = i
( gw

2cw

)
v̄(p1)γµPL v(p2)

= − i
( gw

2cw

)
ū(p2)γµPR u(p1) (3.16)

Notice the crucial relative minus sign between Eq.(3.15) and Eq.(3.16). Under the same

operation the box contributions B̄ZZ of Eq.(3.14) assume the form

B̄′
ZZ

= −KZZ[ūR(k2)γρSe(ℓ − k1)γσuR(k1)][ū(p2)γ
σPRSνµ(ℓ + p1)γ

ρPRu(p1)]

+KZZ [ūR(k2)γρSe(ℓ + k2)γσuR(k1)][ū(p2)γ
ρPRSνµ(ℓ + p1)γ

σPRu(p1)] (3.17)

To obtain the above results, we simply use the fact that since the quantities considered are

scalars in the spinor space their values coincides with that of their transposed, and employ

subsequently

γT
µ = −CγµC

−1, γT
5 = Cγ5C

−1, vT (p)C = ū(p), C−1v̄T (p) = u(p). (3.18)

where C is the charge conjugation operator. Thus, we can rewrite M(0)
ν̄µeR

and M(1)
ν̄µeR

as

follows:

M(0)
ν̄µeR

= −c(a)A(a)CR

M(1)
ν̄µeR

= −
( ∑

n

cnAn

)
CR + B̄′

ZZ
, (3.19)
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with

CR = [ūR(k2)γµuR(k1)][ū(p2)γ
µPRu(p1)] (3.20)

The above relations allow for the isolation of the box contributions when judicious com-

binations of the forward differential cross-sections (dσνe eR
/dx)x=1 and (dσν̄e eR

/dx)x=1 are

formed. These quantities, up to one-loop order, are given by

(dσνµ eR

dx

)

x=1
= f

[
M(0)

νµeR
∗M(0)†

νµeR
+ 2ℜe

(
M(0)

νeeR
∗M(1)†

νµeR

)]

x=1(dσν̄µ eR

dx

)

x=1
= f

[
M(0)

ν̄µeR
∗M(0)†

ν̄µeR
+ 2ℜe

(
M(0)

ν̄µeR
∗M(1)†

ν̄µeR

)]

x=1

(3.21)

The ∗ in the above formulas denotes that the trace over initial and final fermions must be

taken, and f ≡ (32πs)−1 Notice that the only source of imaginary parts are the two boxes;

since the fermions are considered to be massless there will be always an imaginary part

for s > 0. All other contributions are real, since they all originate from t-channel graphs

(vertices and self-energies). Thus (c̄i denotes the complex conjugate of ci)

(dσνµ eR

dx

)

x=1
= f

[
c(a)A(a)

(
c̄(a)A(a) + 2

∑

n

c̄nAn

)
T1 + 2ℜe

(
c̄(a)A(a) KZZ(T2 + T3)

)]

x=1

(dσν̄µ eR

dx

)

x=1
= f

[
c(a)A(a)

(
c̄(a)A(a) + 2

∑

n

c̄nAn

)
T̄1 − 2ℜe

(
c̄(a)A(a) KZZ

(T̄2 + T̄3)
)]

x=1

(3.22)

with

Ti =
1

2

(
Ii + I5

i

)

x=1
, i = 1, 2, 3

T̄i =
1

2

(
Īi + Ī5

i

)

x=1
, i = 1, 2, 3 (3.23)

where

I1 = Tr
(
γα 6k2 γβ 6k1

)
Tr

(
γα PL 6p2 γβ PL 6p1

)

Ī1 = Tr
(
γα 6k2 γβ 6k1

)
Tr

(
γα PR 6p2 γβ PR 6p1

)

I2 = −Tr
(
γα 6k2 γρ Se(ℓ − k1) γσ 6k1

)
Tr

(
γα PL 6p2 γρ PL Sνµ(ℓ + p1) γσ PL 6p1

)

Ī2 = −Tr
(
γα 6k2 γρ Se(ℓ − k1) γσ 6k1

)
Tr

(
γα PR 6p2 γσ PR Sνµ(ℓ + p1) γρ PR 6p1

)

I3 = Tr
(
γα 6k2 γρ Se(ℓ + k2) γσ 6k1

)
Tr

(
γα PL 6p2 γσ PL Sνµ(ℓ + p1) γρ PL 6p1

)

Ī3 = Tr
(
γα 6k2 γρ Se(ℓ + k2) γσ 6k1

)
Tr

(
γα PR 6p2 γρ PR Sνµ(ℓ + p1) γσ PR 6p1

)
(3.24)
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and the I5
i and Ī5

i are obtained from Ii and Īi, respectively, by multiplying the string of

γ matrices appearing in the first trace on the right-hand sides of Eq.(3.24) by a matrix

γ5. Keeping in mind that all traces are to be evaluated at x = 1, it is straightforward to

establish that

Ii = Īi , i = 1, 2, 3

I5
i = Ī5

i , i = 1, 2, 3 (3.25)

(in fact, I5
1 = Ī5

1 = 0), and therefore,

Ti = T̄i , i = 1, 2, 3. (3.26)

In proving Eq.(3.25) we resort to the usual properties of the Dirac γ matrices; in particular,

the following identity may be useful:

γργαγσ = gραγσ + gασγρ − gρσγα + iǫµρασγµγ5 (3.27)

We emphasize that the validity of the above equalities depends crucially on the particular

kinematic relations of Eq.(2.2), which are themselves a direct consequence of the special

forward limit of t = 0 we consider.

Thus, one arrives at

σ(−)
νµ eR

≡
(dσνµ eR

dx

)

x=1
−

(dσν̄µ eR

dx

)

x=1
= 4 f ℜe

(
c̄(a)A(a) KZZ(T2 + T3)

)

x=1

σ(+)
νµ eR

≡
(dσνµ eR

dx

)

x=1
+

(dσν̄µ eR

dx

)

x=1
= 2 f c(a)A(a)

(
c̄(a)A(a) + 2

∑

n

c̄nAn

)
T1|x=1

(3.28)

Evidently σ
(−)
νµ eR isolates the box contributions, whereas σ

(+)
νµ eR contains only self-energy cor-

rections and the NCR. In particular, using that T1|x=1 = 4s2, we obtain

σ(+)
νµ eR

=
( s

4π

)
c(a)A(a)

(
c̄(a)A(a) + 2

∑

n

c̄nAn

)
, n = (b), (c), (d) (3.29)

B. Unpolarized electrons

In the neutrino – anti-neutrino method described above we have used right-handedly

polarized electrons, in order to eliminate the box graph of Fig.1g containing two W -bosons.

It turns out that, with minor modifications, this method may also be applied to the case of
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unpolarized target fermions. Consider for concreteness the forward differential cross-sections

(dσeνµ/dx)x=1 and (dσeν̄µ/dx)x=1 corresponding to the unpolarized processes eνµ → eνµ and

eν̄µ → eν̄µ, respectively. Now the WW box graph of Fig.1g, and the one obtained from it

by letting νµ → ν̄µ, are present; we will denote them by BW W and B̄W W , respectively. As

we will see in a moment the presence of these graphs does not pose any problem to the

generalization of the neutrino–anti-neutrino method.

To begin with, it is straightforward to verify that all the conclusions which were reached

in the previous sub-section regarding the behavior of the Feynman graphs appearing in the

polarized case persist in the presence of unpolarized electrons. Indeed, the WW box aside,

the only modification is produced by the fact that now the elementary vertex describing

the coupling between the electrons and the Z, shown in Eq.(2.1), contains also an axial

part. This fact is however of no consequence for the applicability of the method, since the

only modification that the axial part will produce is that now the traces corresponding to

Eq.(3.23) will be a different linear combination of the form

Ti = c1 Ii + c2 I5
i , i = 1, 2, 3

T̄i = c1 Īi + c2 Ī5
i , i = 1, 2, 3 (3.30)

The precise values of the coefficients c1 and c2 may be easily worked out, but are immaterial

for our arguments, due to the validity of Eq.(3.25).

Turning to the WW box, we have for the neutrino case

BW W −KW W [ū(k2)γρPLSνe(ℓ − k1)γσPLu(k1)][ū(p2)γρPLSµ(ℓ + p1)γσPLu(p1)] (3.31)

whereas for the anti-neutrino

B̄WW = +KWW [ū(k2)γρPLSνe(ℓ − k1)γσPLu(k1)][v̄(p1)γρPLSµ(ℓ + p1)γσPLv(p2)] (3.32)

with

KWW ≡ g4
w

4

∫
d4ℓ

(2π)4
DW (ℓ)DW (ℓ + p1 − p2) (3.33)

and DW (k) = (k2 −M2
W

)−1 . Then, under the aforementioned transformation B̄WW becomes

B̄′
W W

= −KW W [ū(k2)γρPLSνe(ℓ − k1)γσPLu(k1)][ū(p2)γσPRSµ(ℓ + p1)γρPRu(p1)] . (3.34)

Therefore, the WW boxes may be isolated into σ
(+)
νµe ≡ (dσνµe/dx)x=1−(dσν̄µe/dx)x=1 exactly

as happened with the ZZ boxes, provided that the relevant traces

T4 = Tr
(
γα (ae + beγ5) 6k2 γρ PL Sνe(ℓ − k1) γσ PL 6k1

)
Tr

(
γα PL 6p2 γρ PL Sµ(ℓ + p1) γσ PL 6p1

)
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T̄4 = Tr
(
γα (ae + beγ5) 6k2 γρ PL Sνe(ℓ − k1) γσ PL 6k1

)
Tr

(
γα PR 6p2 γσ PR Sµ(ℓ + p1) γρ PR 6p1

)

appearing in the two cross-sections are equal; this is indeed so, as an immediate consequence

of Eq.(3.25). Thus, we can arrive at the analogue of the second relation in Eq.(3.28), which

now will be given by

σ(+)
νµe ≡

(dσνµe

dx

)

x=1
+

(dσν̄µe

dx

)

x=1

= 2 f Ce
(a)A(a)

[(
C̄e

(a)A(a) + 2C̄e
(b)A(b)

)
TA + 2

(
C̄e

(c)A(c) + C̄e
(d)A(d)

)
TB

]

x=1

(3.35)

with Ce
(a) = Ce

(b) = ig2
w/2c2

w, Ce
(c) = − ie(gw/2cw), Ce

(d) = − 2ie2 and

TA|x=1 =

[
Tr

(
γα (ae + beγ5) 6k2 γβ (ae + beγ5) 6k1

)
Tr

(
γα PL 6p2 γβ PL 6p1

)]

x=1

= 8(a2
e + b2

e)s
2

TB|x=1 =

[
Tr

(
γα (ae + beγ5) 6k2 γβ 6k1

)
Tr

(
γα PL 6p2 γβ PL 6p1

)]

x=1

= 8 ae s2 (3.36)

Thus, from Eq.(3.35) we finally obtain for σ
(+)
νµe

σ(+)
νµe =

( s

2π

)
Ce

(a)A(a)

[(
C̄e

(a)A(a) + 2C̄e
(b)A(b)

)
(a2

e + b2
e) + 2ae

(
C̄e

(c)A(c) + C̄e
(d)A(d)

)]
(3.37)

The actual values of ae and be are obtained from Eq.(2.1) by setting Qe = −1 and T e
z = −1

2
,

i.e. ae = 1
4
− s2

w and be = −1
4
.

C. Neutrino scattering

It is easy to see that the same method used to arrive at Eq.(3.35) may be employed in

order to isolate directly the universal, Z-mediated contribution from experiments involv-

ing only neutrinos and anti-neutrinos (see also section V) In particular we will apply the

neutrino – anti-neutrino method to the two processes νeνµ → νeνµ and νeν̄µ → νeν̄µ. The

corresponding graphs can be obtained from those of Fig.1 (except (1c) and (1d)), by replac-

ing in the first case the external electrons by neutrinos, and in the second case by replacing

the external electrons by neutrinos and the external neutrinos by anti-neutrinos. Regarding

these processes, the following points are important: First, the vertex corrections vanish as

before in the kinematic limit of t = 0. Second, the only universal combinations is precisely

that mediated by the Z. Third, one can eliminate all box contributions if one considers the
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quantity σ
(+)
νµνe ≡ (dσνµνe/dx)x=1 + (dσν̄µνe/dx)x=1 ; this happens exactly as before, resorting

only to results presented in Section II, such as Eq.(3.26). Thus, one can show that

σ(+)
νµνe

=
( s

16π

)(g4
w

c4
w

)
A(a)

[
A(a) + 2A(b)

]
(3.38)

D. General case

It is now straightforward to generalize the above analysis for the general case of a neutrino

νi scattering off a target fermion f , which may be a charged lepton other than the iso-doublet

partner of νi, a quark, or a neutrino, all of which may have any polarization. The general

formula reads

σ
(+)
νif

=
( s

2π

)
Cf

(a)A(a)

[(
C̄f

(a)A(a) + 2C̄f
(b)A(b)

)
(a2

f + b2
f ) + 2af

(
C̄f

(c)A(c) + C̄f
(d)A(d)

)]
(3.39)

with Cf
(a) = Cf

(b) = ig2
w/2c2

w, Cf
(c) = ieQf (gw/2cw), Cf

(d) = 2ie2Qf .

Evidently, σ
(+)
νν of Eq.(3.38) may be obtained from Eq.(3.39) by setting Qf = 0, i.e. by

setting Cν
(c) = Cν

(d) = 0, and aν = −1
2
, bν = 1

2
. Similarly, σ

(+)
νµe of Eq.(3.37) is obtained

by setting Qf = Qe = −1. Finally, to recover the right-handedly polarized case σ
(+)
νµ eR of

Eq.(3.29), we must use in Eq.(3.39) the effective aeR
and beR

obtained when casting the

expression for Γµ

ZfRf̄R
of Eq.(3.1) into that given in the last line of Eq.(2.1); in particular,

afR
= bfR

= Qf(s
2
w/2) and aeR

= beR
= −s2

w/2.

Summarizing the results of this section until this point, we have demonstrated that the

appropriate combination of neutrino and anti-neutrino amplitudes has allowed us to discard

the remaining process-dependent contributions related to the boxes. We conclude this sec-

tion by providing a direct way of measuring the difference between the NCR of two neutrinos

of different flavor.

E. Measuring the difference 〈r2
νi
〉 - 〈r2

νj
〉.

Using the results of this section one can extract the values of the observables rij defined

as the difference of the NCR of different neutrino flavours, i.e.:

rij = 〈r2
νi
〉 − 〈r2

νj
〉 , i, j = e, µ, τ, i 6= j. (3.40)
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Clearly, rij = −rji. Notice that there are only two such independent observables, since one

can write any of the three rij as a linear combination of the other two, e.g. rτµ = rτe − rµe.

To see that in detail, we turn to Eq.(3.39), and let us consider the difference between

the σ
(+)
νµ e σ

(+)
ντ e; clearly, the only difference between the two is the replacement of F̂νµ(0) by

F̂ντ (0), and correspondingly 〈r2
νµ
〉 by 〈r2

νµ
〉, in the A(d) of Eq.(3.8), whereas all remaining

terms are the same. Thus, when forming the difference the (ultraviolet divergent) universal

parts cancel, and we are left with

σ(+)
νµ e − σ(+)

ντ e = λ (1 − 4s2
w) rµτ (3.41)

where λ ≡ (2
√

2/3) s αGF , and α = e2/4π is the fine-structure constant. Clearly, to obtain

the quantity reτ one must use muons as target fermions, and in order to obtain reµ one must

use taus.

We note that, a priori, the difference in the forward amplitudes Mνµe − Mντe would

contribute to a difference for the neutrino index of refraction [41] in electron matter; this

difference vanishes, however, for ordinary matter due to its neutrality.

IV. RENORMALIZATION-GROUP ANALYSIS

In the previous sections we have demonstrated that, in the kinematic limit of inter-

est, the appropriate combination of physical cross-section, σ
(+)
νif

, can be finally expressed in

terms of the gauge-invariant and universal one-loop PT self-energies Π̂AZ and Σ̂ZZ, and the

flavour-dependent 〈r2
νµ
〉. Contrary to the NCR which is ultra-violet finite, the self-energies

contributing to Eq.(3.39) must undergo renormalization. In this section we will show how

the aforementioned self-energies organize themselves into renormalization-group invariant

(RGI) quantities. An immediate by-product of the analysis presented in this section is

that the renormalized Π̂AZ(0) cannot form part of the NCR, because it fails to form a RGI

quantity on its own. The general framework presented in this section has been established

in [24, 33, 34]; here we will adopt the notation and philosophy developed in [34], focusing

mainly on the aspects relevant for the problem at hand.

The quantity that serves as the field-theoretic prototype for the construction presented in

this section is the effective charge of QED, which is a RGI and, at the same time, universal,

i.e. process-independent, quantity. Its construction, which constitutes text-book material
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[42], proceeds as follows: One begins by considering the unrenormalized photon self-energy is

Π0
µν(q) = (q2gµν −qµqν)Π

0(q2), where Π0(q2) is a gauge-independent function to all orders in

perturbation theory. After performing the standard Dyson summation, we obtain the dressed

photon propagator between conserved external currents ∆0
µν(q) = (gµν/q

2)[1 + Π0(q2)]−1 .

The above quantity is universal, in the sense that is process independent. The renormaliza-

tion procedure introduces the standard relations between renormalized and unrenormalized

parameters: e = Z−1
e e0 = ZfZ

1/2
A Z−1

1 e0 and 1 + Π(q2) = ZA[1 + Π0(q2)], where ZA and

Zf are the wave-function renormalization constants of the photon and fermion, respec-

tively, and Z1 the vertex renormalization, and Ze is the charge renormalization constant

The Abelian gauge symmetry of the theory gives rise to the fundamental Ward identity

qµΓ0
µ(p, p + q) = S−1

0 (p + q) − S−1
0 (p), where Γ0

µ and S0(k) are the unrenormalized one-loop

photon-electron vertex and electron propagator, respectively. The requirement that the

renormalized vertex Γµ = Z1Γ
0
µ and the renormalized self-energy S = Z−1

f S0 satisfy the same

identity imposes the equality Z1 = Zf , from which immediately follows that Ze = Z
−1/2
A .

Given these relations between the renormalization constants, we can now form the following

RGI combination:

R̄µν(q
2) =

(e0)2

4π
∆0

µν(q) =
e2

4π
∆µν(q) . (4.1)

From R̄µν(q
2), after pulling out a the trivial kinematic factor (1/q2), one may define the

usual QED effective charge ᾱ(q2). This effective charge has a non-trivial dependence on

the masses mi of the particles appearing in the vacuum polarization loop, which allows its

reconstruction from physical amplitudes, by resorting to the optical theorem and analyticity,

i.e. dispersion relations. For q2 ≫ m2
i , ᾱ(q2) coincides with the one-loop running coupling

of the theory, i.e. the solution of the standard renormalization-group equation.

In non-Abelian gauge theories the crucial equality Z1 = Zf does not hold in general,

because the Ward identities are replaced by the more complicated Slavnov-Taylor identities

[43, 44], involving ghost Green’s functions. Furthermore, in contrast to the photon case, the

vacuum polarization of the gauge bosons depends on the gauge-fixing parameter, already

at one-loop order. These facts make the non-Abelian generalization of the QED concept of

the effective charge more complicated [19, 33, 34, 45]. The PT rearrangement of physical

amplitudes gives rise to a gauge-independent effective self-energy, and restores at the same

time QED-like Ward identities. To see this in detail for the case at hand, we start by listing

the relations between the bare and renormalized parameters for the electroweak sector of
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the SM. We indicate all (bare) unrenormalized quantities with the superscript ‘0’. For the

masses we have

(M0
W )2 = M2

W + δM2
W , (M0

Z)2 = M2
Z + δM2

Z , (4.2)

The wave-function renormalizations for the neutral sector are defined as


 Z0

A0



 =



 ẐZZ ẐZA

ẐAZ ẐAA







 Z

A



 =



 1 + 1
2
δẐZZ

1
2
δẐZA

1
2
δẐAZ 1 + 1

2
δẐAA







 Z

A



 (4.3)

In addition, the coupling renormalization constants are defined by

e0 = Ẑe e = (1 + δẐe) e , g0
w = Ẑgw gw = (1 + δẐgw) gw , c0

w = Ẑcwcw , (4.4)

with

Ẑcw =
(

1 +
δM2

W

M2
W

)1/2(
1 +

δM2
Z

M2
Z

)−1/2

. (4.5)

If we expand Ẑcw perturbatively, we have that Ẑcw = 1 + 1
2
(δc2

w/c2
w) + . . . , with

δc2
w

c2
w

=
δM2

W

M2
W

− δM2
Z

M2
Z

, (4.6)

which is the usual one-loop result.

Imposing the requirement that the PT Green’s functions should respect the same WI’s

before and after renormalization we arrive at the following relations:

ẐAA = Ẑ−2
e , ẐZZ = Ẑ−2

gw
Ẑ2

cw
, (4.7)

or, equivalently, at the level of the counter-terms

δẐAA = −2δẐe ,

δẐZZ = −2δẐe −
c2
w − s2

w

s2
w

(δc2
w

c2
w

)
,

δẐAZ = 2
cw

sw

(δc2
w

c2
w

)
,

δẐZA = 0 . (4.8)

The corresponding propagators relevant for the neutral sector may be obtained by invert-

ing the matrix L̂, whose entries are the PT self-energies, i.e

L̂ =



 q2 + Σ̂AA Σ̂AZ

Σ̂AZ q2 − M2
Z + Σ̂ZZ



 . (4.9)
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Casting the inverse in the form

L̂−1 =



 ∆̂AA(q2) ∆̂AZ(q2)

∆̂AZ(q2) ∆̂ZZ(q2)



 . (4.10)

one finds that

∆̂AA(q2) =
−[q2 − M2

Z + Σ̂ZZ(q2)]

Σ̂2
AZ

(q2) − [q2 − M2
Z + Σ̂ZZ(q2)][q2 + Σ̂AA(q2)]

,

∆̂ZZ(q2) =
−[q2 + Σ̂AA(q2)]

Σ̂2
AZ

(q2) − [q2 − M2
Z + Σ̂ZZ(q2)][q2 + Σ̂AA(q2)]

,

∆̂AZ(q2) =
Σ̂AZ(q2)

Σ̂2
AZ

(q2) − [q2 − M2
Z + Σ̂ZZ(q2)][q2 + Σ̂AA(q2)]

, (4.11)

The above expressions at one-loop reduce to

∆̂AA(q2) =
1

q2 + Σ̂AA(q2)
,

∆̂ZZ(q2) =
1

q2 − M2
Z + Σ̂ZZ(q2)

,

∆̂AZ(q2) =
−Σ̂AZ(q2)

q2(q2 − M2
Z)

, (4.12)

The standard re-diagonalization procedure of the neutral sector [46, 47, 48] may then be

followed, for the PT self-energies; it will finally amount to introducing the effective (running)

weak mixing angle. In particular, after the PT rearrangement, the propagator-like part D̂ff ′

of the neutral current amplitude for the interaction between fermions with charges Q, Q′

and isospins T f
z , T f ′

z , is given in terms of the inverse of the matrix L̂ by the expression

D̂ff ′ =

(
eQf ,

gw

cw

(s2
wQf − T f

z PL)

)
L̂−1




eQf ′

gw

cw
(s2

wQf ′ − T f ′

z PL)





=

(
eQf ,

gw

cw

[
s̄2

w(q2)Qf − T f
z PL

] )
L̂−1

D




eQf ′

gw

cw

[
s̄2

w(q2)Qf ′ − T f ′

z PL

]



 (4.13)

where

L̂−1
D

=




∆̂AA(q2) 0

0 ∆̂ZZ(q2)



 (4.14)

The r.h.s. of this equation, where the neutral current interaction between the fermions has

been written in diagonal (i.e. Born–like) form, defines the diagonal propagator functions
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∆̂AA and ∆̂ZZ and the effective weak mixing angle s̄2
w(q2)

s̄2
w(q2) = (s0

w)2

(
1 +

c0
w

s0
w

Σ̂0
AZ

(q2)

q2 + Σ̂0
AA

(q2)

)
= s2

w

(
1 +

cw

sw

Σ̂AZ(q2)

q2 + Σ̂AA(q2)

)
. (4.15)

By virtue of the special relations of Eq.(4.7), s̄2
w(q2) constitutes a RGI quantity, i.e. it retains

the same form whether written in terms of bare or renormalized quantities.

At one-loop level, and after using Eq.(2.3), s̄2
w(q2) reduces to

s̄2
w(q2) = s2

w

(
1 − cw

sw
Π̂AZ(q2)

)
. (4.16)

Notice that in the case where the fermion f ′ is a neutrino (f ′ = ν, Qf ′ = 0 and T f ′

z = 1/2),

Eq.(4.13) assumes the form

D̂fν =

(
eQf ,

gw

cw

[
s̄2

w(q2)Qf − T f
z PL

] )
L̂−1

D




0

− gw

2cw

PL



 (4.17)

Evidently, s̄2
w(q2) constitutes a universal modification to the effective charged-fermion vertex.

At this point it must be clear that if Π̂AZ(0) were to be considered as the “universal” part

of the NCR, to be added to the ultraviolet-finite and flavour-dependent contribution coming

from the proper vertex, then the resulting NCR would depend on the subtraction point and

scheme chosen to renormalize it, and would therefore be unphysical. Instead, Π̂AZ(0) must

be combined with the appropriate Z-mediated tree-level contributions (which evidently do

not enter into the definition of the NCR) in order to form with them the RGI combination

of Eq.(4.16), whereas the ultraviolet-finite NCR will be determined from the proper vertex

only.

The analogue of Eq.(4.1) may be defined for the Z-boson propagator. In particular, the

bare and renormalized PT resummed Z-boson propagators, ∆̂µν
ZZ,0(q) and ∆̂µν

ZZ(q) respec-

tively, satisfy the following relation

∆̂0, µν
ZZ

(q) = ẐZZ ∆̂µν
ZZ

(q). (4.18)

In what follows we only consider the cofactors of gµν , i.e. ∆̂0, µν
ZZ (q) = ∆̂0

ZZ
(q) gµν and

∆̂µν
ZZ(q) = ∆̂ZZ(q) gµν, since the longitudinal parts vanish when contracted with the conserved

external currents of massless fermions. The standard renormalization procedure is to define

the wave function renormalization, ẐZZ, by means of the transverse part of the resummed

Z-boson propagator:

ẐZZ [ q2 − (M0
Z)2 + Σ̂0

ZZ
(q2) ] = q2 − M2

Z + Σ̂ZZ(q2) . (4.19)
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It is then straightforward to verify that the universal RGI quantity for the Z boson, which

constitutes a common part of all neutral current processes, is given by ( we omit a factor

gµν):

R̄0
Z
(q2) =

1

4π

(g0
w

c0
w

)2

∆̂0
ZZ

(q2) =
1

4π

(gw

cw

)2

∆̂ZZ(q2) = R̄Z(q2) . (4.20)

Notice that, if one retains only the real parts in the above equation, one may define from

R̄Z(q2) a dimension-less quantity , corresponding to the effective charge ᾱZ(q2) [32], by

casting Σ̂ZZ(q2) in the form Σ̂ZZ(q2) = Σ̂ZZ(M2
Z) + (q2 − M2

Z)Π̂ZZ(q2), and then pulling out

a common factor (q2 − M2
Z); in that case, R̄0

Z
(q2) = (q2 − M2

Z)−1ᾱZ(q2), with ᾱZ(q2) =

αZ[1 + Π̂ZZ(q2)]−1, and αZ ≡ g2
w/4πc2

w. However, as has been explained in detail in [34],

whereas Eq.(4.20) remains valid in the presence of imaginary parts, i.e. when Σ̂ZZ(q2)

develops physical thresholds [49], the above separation into a dimension-full and a dimension-

less part is ambiguous and should be avoided. In the rest of this paper, even though we

will only retain real parts, we will refrain from carrying out such a separation, expressing

instead all results in terms of the more fundamental quantity R̄Z(q2).

Armed with the above results, we will proceed in the next section to separate the NCR

from the rest of the tree-level and one-loop contributions, in a meaningful, manifestly RGI

manner.

V. EXPERIMENTAL EXTRACTION OF THE NEUTRINO CHARGE RADIUS

In order to isolate the three basic quantities defined in the previous section we will consider

three different processes containing them. In particular, we will study the differential cross-

sections σ
(+)
νµ eR, σ

(+)
νµ eL, and σ

(+)
νµ νe , which are expressed in Eq.(3.29), Eq.(3.35), and Eq.(3.38),

respectively, in terms of products of Feynman diagrams. We will now use the analysis

presented in the previous section in order to rewrite them in terms of the universal RGI

quantities R̄(0) and s̄2
w(0), defined in Eq.(4.20) and Eq.(4.16), respectively, together with

the process-dependent and ultraviolet finite 〈r2
νµ
〉. Then we obtain, up to terms of order

O(g6
w) :

σ(+)
νµ eR

= sπR̄2(0) s̄4
w(0) + CeR

〈r2
νµ
〉 (5.1)

σ(+)
νµ eL

= sπR̄2(0)
(1

2
− s̄2

w(0)
)2

+ CeL
〈r2

νµ
〉 (5.2)

σ(+)
νµ νe

= sπR̄2(0) (5.3)
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with the coefficients CeR
and CeL

given by

CeR
= −2λs2

w , CeL
= λ(1 − 2s2

w) , (5.4)

The above system is linear in the unknown quantities R̄2(0) and 〈r2
νµ
〉, and quadratic in

s̄2
w(0). From Eq.(5.3) we see that R̄2(0) is already expressed in terms of the physical cross-

section σ
(+)
νµ ν . This cross-section is physically important because it constitutes a fundamental

ingredient for neutrino propagation in a neutrino medium [50], and is relevant for astrophys-

ical and cosmological scenarios. Thus, we are left with the system of Eq.(5.1) and Eq.(5.2)

to determine s̄2
w(0) and 〈r2

νµ
〉. Before proceeding to its solution notice that, as a consistency

check, from Eq.(5.1) and Eq.(5.2), by changing νµ → ντ , we may form the difference rµ τ ,

which, after using that σ
(+)
νi eR + σ

(+)
νi eL = σ

(+)
νi e , coincides with the expressions obtained in

Eq.(3.41), as it should.

The corresponding solutions of the system are given by

s̄2
w(0) = s2

w ±
√

Ωνµ (5.5)

〈r2
νµ
〉 = λ−1

[(
s2

w − 1

4
±

√
Ωνµ

)
σ(+)

νµ νe
+ σ(+)

νµ eL
− σ(+)

νµ eR

]
(5.6)

where the discriminant Ωνµ is given by

Ωνµ = (1 − 2s2
w)

(σ
(+)
νµ eR

σ
(+)
νµ ν

− 1

2
s2

w

)
+ 2s2

w

σ
(+)
νµ eL

σ
(+)
νµ ν

(5.7)

We can again check the self-consistency of these solutions by forming the difference rµ τ using

the expressions for 〈r2
νµ
〉 and 〈r2

ντ
〉 given in Eq.(5.6), making the appropriate replacements

(e.g. Ωνµ → Ωντ ); it is straightforward to verify that one arrives at a trivial identity (as

one should), provided that σ
(+)
νµ νe = σ

(+)
ντ νe, which is automatically true, by virtue of Eq.(5.3).

Finally, the actual sign in front of Ωνµ may be chosen by requiring that it correctly accounts

for the sign of the shift of s̄2
w(0) with respect to s2

w predicted by the theory [32].

To extract the experimental values of the quantities R̄2(0), s̄2
w(0), and 〈r2

νµ
〉, one must

substitute in Eq.(5.3), as well as in Eq.(5.5) – Eq.(5.7) the experimentally measured values

for the differential cross-sections σ
(+)
νµ eR, σ

(+)
νµ eL, and σ

(+)
νµ ν . Evidently, in order to solve this

system one would have to carry out three different pairs of experiments.

Another possibility, is to consider up- and down-quarks as target fermions and combine

appropriately the corresponding cross-sections σ
(+)
νµ u and σ

(+)
νµ d with the unpolarized electron
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cross-section σ
(+)
νµ e. We omit QCD effects related to the external (target) quarks throughout;

as has been explained in [22], the current algebra formulation of the PT guarantees that

the electroweak constructions used in this paper go through even in the presence of strong

interaction effects.

In particular we have

σ(+)
νµ u = sπR̄2(0)

(1

4
− 2

3
s̄2

w(0) +
8

9
s̄4

w(0)
)

+ Cu〈r2
νµ
〉

σ
(+)
νµ d = sπR̄2(0)

(1

4
− 1

3
s̄2

w(0) +
2

9
s̄4

w(0)
)

+ Cd〈r2
νµ
〉

σ(+)
νµ e = sπR̄2(0)

(1

4
− s̄2

w(0) + 2 s̄4
w(0)

)
+ Ce〈r2

νµ
〉 (5.8)

with

Cu =
2

3

(
1 − 8

3
s2

w

)
λ , Cd =

1

3

(
1 − 4

3
s2

w

)
λ , Ce =

(
1 − 4s2

w

)
λ , (5.9)

Defining the following two auxiliary linear combinations of the relevant cross-sections,

w(+)
νµ

≡ 4

[
σ(+)

νµ e + 3
(
σ

(+)
νµ d − σ(+)

νµ u

)]
,

z(+)
νµ

≡ 1

2

(
9 σ

(+)
νµ d − σ(+)

νµ e

)
, (5.10)

the above system yields the following solutions for the three unknown quantities R̄2(0),

s̄2
w(0), and 〈r2

νµ
〉 :

R̄2(0) =
( 1

sπ

)
w(+)

νµ

s̄2
w(0) = s2

w ±
√

Ωνµ

〈r2
νµ
〉 = λ−1

[
z(+)

νµ
− c2

ww(+)
νµ

± w(+)
νµ

√
Ωνµ

]
(5.11)

where the discriminant Ωνµ is now given by

Ωνµ =
3

8
+ s2

w(s2
w − 2) +

1

2w
(+)
νµ

[
σ(+)

νµ e − (1 − 4s2
w)z(+)

νµ

]
(5.12)

Clearly we must have that w(+) > 0 and Ωνµ > 0 .

Finally, we report the numerical values of the theoretical predictions for the three basic

parameters, R̄(0), s̄2
w(0), and 〈r2

νe
〉

The numerical evaluation of Eq.(2.9) for the three different neutrino flavors yields [18]

〈r2
νe
〉 = 4.1 × 10−33 cm2

〈r2
νµ
〉 = 2.4 × 10−33 cm2

〈r2
ντ
〉 = 1.5 × 10−33 cm2 (5.13)
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These values are consistent with various bounds that have appeared in the literature [51,

52, 53, 54, 55, 56, 57].

The theoretical values for s̄2
w(0) and R̄2(0) are obtained from Eq.(4.16) and Eq.(4.19)–

Eq.(4.20). Since (by construction) these two quantities are renormalization-group invariant,

one may choose any renormalization scheme for computing their value. In the “on-shell”

(OS) scheme [58] the experimental values for the input parameters sw and α are s(OS)
w = 0.231

and α(OS) = 1/128.7. In the same scheme the renormalized Π̂AZ is given by

Π̂AZ(q2) = Π̂0
AZ

(q2) − ℜe Π̂0
AZ

(M2
Z
) (5.14)

where ℜe{...} denotes the real part. Similarly,

Σ̂ZZ(q2) = Σ̂0
ZZ

(q2) −ℜe Σ̂0
ZZ

(M2
Z) − (q2 − M2

Z)ℜe Σ̂0′

ZZ
(q2)|q2=M2

Z
, (5.15)

where the prime denotes differentiation with respect to q2. The closed expressions for Π̂0
AZ

(q2)

and Σ̂0
ZZ

(q2) are given in [32]. Substituting standard values for the quark and lepton masses,

and choosing for the Higgs boson a mass MH = 150 GeV, we obtain R̄2(0) = 1.86×10−3/M4
Z

and s̄2
w(0) = 0.239.

VI. CONCLUSIONS

In this paper we have addressed the observability of the NCR, and its direct extraction

from neutrino experiments. The present work constitutes the natural continuation of the

program initiated in [18], where it was shown how the NCR may be field-theoretically

defined in such a way as to satisfy the crucial requirements of gauge-invariance and process-

independence. This was accomplished by resorting to the PT separation of the physical

amplitude involving charged (target) fermions and neutrinos into sub-amplitudes which have

the same kinematic properties as conventional Green’s functions, but are endowed with

crucial physical properties. The neutrino electromagnetic form-factor and the corresponding

NCR are then defined through the sub-amplitude corresponding to an (effective) proper

vertex.

Our presentation has mainly focused on the following two important issues. First, in order

to assign an observable character to individual sub-amplitudes, in addition to the gauge-

invariance and process-independence they must be invariant under the renormalization-

group. This point was explained for the first time in [30], and in much more detail in
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the present paper. The requirement that the various sub-amplitudes be individually RGI

resolves a final theoretical point related to the definition of the NCR, namely the role and

fate of the universal (flavour-independent) corrections stemming from the one-loop photon-

Z mixing. In particular, the renormalization-group properties of these contributions make

clear that they cannot form part of the NCR; instead they are inextricably connected to

the flavour-independent RGI quantity known as the “effective” or “running” electroweak

mixing angle. Second, we have shown that the NCR is indeed a genuine observable, because

it may be extracted directly from experiment. This has been accomplished by resorting to

the neutrino–anti-neutrino method, which allows the systematic elimination of the flavour-

dependent box-contributions. Of course it is clear that the processes considered constitute

thought-experiments, unlikely to be realized in the foreseeable future. They do however serve

for clarifying an important conceptual issue, namely whether the NCR defined through the

PT can be elevated to the stature of a physical observable. This result constitutes the

culmination of efforts made by various studies presented in the literature within the last two

decades.

It is interesting to notice the absolute complementarity between the present work and that

of [18]. In particular, once the NCR has been expressed in terms of physical cross-sections,

as for example in Eq.(5.6) of the present paper, its actual calculation may be carried out

in any gauge-fixing scheme, with or without reference to the PT, and it will always yield

the unique answer of Eq.(2.9) . On the other hand , without the theoretical advancements

presented in [18], it would have been very difficult to guess what the correct combination of

observables should be.

Now that the observable character of the NCR has been established, it would be inter-

esting to undertake a similar task for the entire neutrino electromagnetic form-factor, i.e.

for arbitrary values of the momentum transfer q2. One possibility for accomplishing this

may be the detailed study of coherent neutrino-nuclear scattering [59]. We hope to report

progress in this direction in the near future.
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