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Abstract

We show that the precise determination of the Tau magnetic properties is possible
in the next generation accelerators, specially at B/Flavour factories. We define spin
correlation observables suitable to extract the real part of the magnetic form factor
that, for the first time, will allow to test the standard model-QED predictions. In
particular, the predicted QED-dependence with both the momentum transfer and
the lepton mass can be precisely measured. Until now, the most stringent bounds
on the τ magnetic moment aτ come from LEP data with strong assumptions on the
physics involved on the observed process. In this paper, we find three different com-
binations of spin correlations of the outgoing Taus that disentangle the magnetic
moment form factor of the Tau lepton in the electromagnetic vertex. These combi-
nations of asymmetries also get rid off the contributions coming from Z-mediating
amplitudes to the defined correlations. Using unpolarized electron beams and an
integrated luminosity of 15 × 1018b−1, the sensitivity to the τ magnetic moment
form factor is of the order 10−6. This sensitivity is two orders of magnitude better
than the present existing high- or low-energy bounds on the magnetic moment and
would allow its actual measurement with the precision of a few per cent.

1 Introduction

The fact that the τ magnetic properties cannot be investigated in the way as
done for a long lived particle, where the interaction with an external magnetic
field can be directly measured, makes more subtle and difficult its determina-
tion. As stated in the PDG, the experimental determination of the τ magnetic
moment, by the DELPHI Collaboration [1], was done using LEP2 data for
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the e+e− → e+e−τ+τ− total cross-section, assuming that any deviation from
the tree level SM prediction was exclusively due to the magnetic anomaly [2],
aτ = (g− 2)/2. This indirect measurement bounds the τ magnetic moment to
the values [3]:

− 0.052 < aτ < 0.013 (95 % C.L.) (1)

In fact, with such assumptions, in some of the quoted experiments the bound
that is effectively set is the contribution of new physics to the magnetic mo-
ment. This is the point of view adopted in [4], where the most stringent model-
independent limit for the magnetic properties is obtained:

− 0.007 < aNewPhys.
τ < 0.005 ( 95 % C.L.) (2)

The bound given in Eq.(1) is well above the SM prediction [5]

aSM
τ = 1177.21(5) × 10−6, (3)

where higher-order QED, hadronic and weak corrections are included and
contribute only to the last figures of this value. In fact, present experimental
bounds on the τ lepton magnetic moment anomaly are still more than one
order of magnitude bigger than the result obtained by Schwinger [6] at one-
loop in QED:

ae = aτ =
α

2π
≃ 0.00116 . (4)

Super B/Flavour factories will produce in the future about 1012 Tau pairs
[7], so that high precision measurements of the poorly know properties of the
Tau lepton will be possible. In this paper we present a set of new observables
appropriate to measure the magnetic moment form factor of the τ by analyz-
ing the angular distribution of their decay products in e+ e− collisions. For
unpolarized electron beams, the imaginary part of the magnetic moment can
be observed by measuring the normal polarization of a single Tau [8], whereas
we show here that only spin correlations of the outgoing Taus are sensible
to the real part of the magnetic moment. For polarized electron beams, we
have shown in Ref. [8] that the real part of the magnetic moment can be ob-
served by measuring the transverse and longitudinal polarization of a single
Tau. We find that a sensitivity of the order of 10−6 can be achieved using
high statistics facilities for Tau pair production on the top of the Υ resonance.
Comparable sensitivities were found in Ref. [8] by using polarized electron
beams and observables built on the polarization analysis of a single Tau.

2



2 Magnetic moment form factor

The most general Lorentz invariant structure describing the interaction of a
vector boson V with two on-shell fermions f f̄ can be written in terms of the
conserved current Jµ as:

〈f(p−)f̄(p+)| Jµ(0) |0〉 =

e ū(p−)

[

γµ F1 +
(i F2 + F3γ5)

2mf
σµνqν +

(

q2γµ − qµ 6q
)

γ5FA

]

v(p+) (5)

where F1 is the Dirac form factor (F1(0) = 1), FA is the anapole moment,
whereas F2 and F3 parametrize the magnetic and electric dipole moments,
respectively.

The determination of the CP - violating electric dipole moment, in Super
B/Flavour factories, has been studied in detail in [9,10] with similar techniques
to the ones presented here. The P -odd, T -even anapole moment differs from
zero due to weak virtual corrections so that its contribution will be suppressed
by factors of q2/M2

Z compared to the leading QED corrections considered in
this paper. The induced magnetic moment form factor F2 is a chirality flip
observable in the vector current and its determination is the subject of this
paper.

Strictly speaking, the magnetic moment anomaly

af ≡ F2(q
2 = 0) (6)

is defined with all three fields entering into the interaction vertex on their
mass-shell. In Super B factories the squared center-of-mass energy s = q2 is of
the order (10 GeV )2 and, therefore, F2(q

2) is no longer the magnetic anomaly.
Note that if the evolution scale is well above q2, as it is the case for new physics,
then F2(q

2) ≃ F2(q
2 = 0) (see Ref. [4]) but in the case of interest, for QED, the

evolution scale of the form factor is m2
τ < q2 and the actual value of the form

factor for B-Factories is quite different from the magnetic moment anomaly.
The direct computation of the magnetic part of the standard one-loop QED
vertex yields

F2(s) =
(

α

2π

)

2m2
τ

s

1

β

(

log
1 + β

1 − β
− i π

)

, for q2 = s > 4m2
τ , (7)

where α is the fine structure constant and β = (1 − 4m2
τ/s)

1/2
is the velocity

of the τ .
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The F2(s) form factor is gauge invariant, despite being an off-shell amplitude.
This is so due to the specific gauge-cancellation mechanism that operates
only in an abelian theory such as QED: the direct box cancels against the
crossed one, the vector proper vertex against self-energy fermions graphs so
the magnetic moment form factor, proportional to σµνq

ν , must be separately
gauge-independent.

In our case, for q2 ∼ M2
Υ ∼ (10 GeV)2,

F2(M
2
Υ) = (2.65 − 2.45 i) × 10−4. (8)

This equation shows that, at this energy, the real and imaginary parts are of
the same order and, due to the scale and flavour dependence, about 1/4 of
the on-shell magnetic moment. This fact gives us the opportunity to see the
behaviour of the form factor with the momentum q2, for a pure abelian theory
as QED, together with its strong dependence on the flavour (mass) of the
fermion. Note that for other lighter fermions (as the electron) the magnetic
moment form factor is vanishing small at the MΥ-energy.

For the extraction of F2, in order to eliminate contamination from the box
diagrams to the measured amplitude, we perform our analysis on top of the
Upsilon resonance, so that kinematics makes the non-resonant box contribu-
tions negligible.

3 e+e− −→ τ+τ− at Super B Factories.

e+

+

e+

e−

γ

F2

γ

e−

τ+

τ−

τ+

τ−

(a)
(b)

F1

Fig. 1. Diagrams: (a) direct γ exchange, (b) F2 in γ exchange.

In this section we first consider the τ -pair production in e+e− collisions through
direct γ exchange (diagrams (a) and (b) in Fig. 1). Next, we will show that
the basic results of this section still hold for resonant Υ production.

The differential cross section for τ pair production, with spin ~s+, ~s−, is:

dσ(~s+, ~s−)

dΩτ−

=
dσ0(~s+, ~s−)

dΩτ−

+
dσS(~s+, ~s−)

dΩτ−

+
dσSS(~s+, ~s−)

dΩτ−

(9)
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The first term of Eq.(9) represents the τ spin-independent differential cross
section

dσ0(~s+, ~s−)

d cos θτ−

=
πα2

8s
β
[

(2 − β2 sin2 θτ−)|F1(s)|2 + 4Re {F1(s)F2(s)
∗}
]

(10)

where α is the fine structure constant, the squared center of mass energy
s = q2 is also the square of the 4-momentum carried by the photon, and γ =√

s/(2mτ ), β =
√

1 − 1/γ2, are the dilation factor and τ velocity, respectively.
Note that, at one loop, we have the identity

Re {F1(s)F2(s)
∗} = Re {F2(s)} . (11)

The θτ− angle is determined in the center-of-mass (CM) frame by the outgoing
τ− and the incoming e− momenta. In B/Flavour factories, a precise measure-
ment of the θτ− angle requires that the τ production plane and direction of
flight are fully reconstructed. In Ref. [11] it is shown that this can be achieved
if both τ ’s decay semileptonically.

The second term
dσS

dΩτ−

involves linear terms in the spin of the taus,

dσS(~s+, ~s−)

d cosτ−

=
πα2

4 s
β (s− + s+)y Y+ (12)

where Y+, up to the considered order, is given by

Y+ = γ β2 (cos θτ− sin θτ−) Im {F2(s)} , (13)

Eq.(13) shows that the contribution of the chirality flipping F2 to the normal
polarization is enhanced by a factor of γ with respect to other possible non-
chirality flipping contributions. This observable is a P -even, T -odd quantity,
as corresponds to the interference Im {F1(s) F2(s)

∗}.

We work in the center of mass (CM) frame of reference, and the orientation
of the coordinate system is the same as in Ref. [9]. The s± vectors are the τ±

spin vectors in the τ± rest system, s± = (0, sx
±, sy

±, sz
±). Polarizations along

the directions x, y, z correspond to what is called transverse, normal, and
longitudinal polarizations, respectively.

As shown in Eq.(13), the normal polarization of the outgoing Tau has sensi-
tivity to the imaginary part of the magnetic moment form factor. In absence
of P -violation, the other components of a single τ polarization cannot appear.
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The polarization of the final fermion (τ±) can be studied by looking at the
angular distribution of its decay products [8].

The last term of Eq.(10) is proportional to the product of the spins of both
τ ’s:

dσSS(~s+, ~s−)

d cos θτ−

=
πα2

8s
β
(

sx
+sx

−Cxx + sy
+sy

−Cyy + sz
+sz

−Czz

+(sx
+sz

− + sz
+sx

−)C+
xz

)

(14)

where

Cxx =
(

(2 − β2) |F1|2 + 4Re {F2}
)

sin2 θτ− (15)

Cyy =−|F1|2 β2 sin2 θτ− (16)

Czz = |F1|2(2 cos2 θτ− + β2 sin2 θτ−) + 4Re {F2} cos2 θτ− (17)

C+
xz =

(

|F1|2 + γ2(2 − β2)Re {F2}
) 1

γ
sin(2θτ−) (18)

Equation (14) shows that, as expected in absence of any source of P -violation,
only P -even correlations can contribute to the spin-spin differential cross sec-
tion. All the terms are also T -even, so only Re {F2} appears. The Cxy and Cyz

correlation terms, being P -odd, cannot appear in the given cross section.

The Cxz term is the only chirality flipping correlation of the process and then
it has the F2 contribution enhanced by the dilation factor γ, whereas the |F1|2
form factor, which is chirality conserving, is suppressed by the Tau mass (1/γ
factor).

Following Ref. [12], the differential cross-section for the process

e+e− → h+ν̄τ h−ντ

can now be obtained by convoluting the previous dσ
(

e+e−
γ→ τ+(~s+) τ−(~s−)

)

,
differential cross section, with the Tau decay branching ratios, to get

dσ
(

e+e−
τ+τ−

→ h+ν̄τ h−ντ

)

=4 dσ(~n∗
+, ~n∗

−)
dΩh+

4π

dΩh−

4π
×Br(τ− → h−ντ ) Br(τ+ → h+ν̄τ ) (19)

where the spins ~s± in the differential cross-section (9) have been substituted
by

−→n ∗
± = ∓α±

−→q ∗
±

|−→q ∗
±|

= ∓α±(sin θ∗± cos φ±, sin θ∗± sin φ±, cos θ∗±) . (20)
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which are proportional to the momenta of the hadrons (h±) with moduli fixed
to the polarization analyzer

αh ≡ m2
τ − 2m2

h

m2
τ + m2

h

. (21)

The φ± and θ∗± angles are the azimuthal and polar angles of the produced
hadrons h± (q̂∗±) in the τ± rest frame (the * means that the quantity is given
in the τ rest frame). From Eq.(19), integrating over Ω± and φτ− angles, the
spin-independent cross-section is

d σ

d (cos θτ−)

(

e+e−
τ+τ−

→ h+ν̄τ h−ντ

)

=
π α2

2s
β
[

(2 − β2 sin2 θτ−) |F1(s)|2

+4 Re {F2(s)}] Br(τ− → h−ντ ) Br(τ+ → h+ν̄τ ). (22)

By integrating over θτ− , Eq.(22) will provide, to leading order in α (that
means taking F1 = 1, and F2 = 0), the normalization for all the asymmetries
considered in this paper.

This equation shows that, a priori, the real part of F2 could be measured
from the cross section. However, this determination would be directly affected
by the precision in the reconstruction of the Tau direction, so that problems
with dilution, kinematic reconstruction and/or efficiency over cos θτ− , make
difficult the extraction of F2 from the cross-section.

The imaginary part of F2 is a T -odd, C- and P -even quantity; therefore, a
suitable observable to look for its determination will be the normal (to the
scattering plane) polarization of the outgoing τ , as discussed after Eq.(13).
The polarization analyzer has been studied in detail in Ref. [8] and the results
are shown in Table 1.

In absence of electron polarization, only spin-spin correlations of the Tau decay
products allow the determination of the real part of the F2 magnetic moment
form factor. This will be the object of the following sections.

4 Tau spin-spin correlations

In this section we study several spin correlation observables proportional to
the magnetic form factor F2 that could be measured at B-Factories. We will
sum the events for all angles as possible in the angular distribution in such a
way as to maintain the information on the magnetic form factor. In subsection
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4.1 we first consider the case for direct Tau pair production, in subsection 4.2
we study the resonant Tau pair production observables and in subsection 4.3
we compute the contributions from Z − γ interference.

4.1 Direct production

From Eq.(14), it is straightforward to see that the real part of the F2 form
factor can only be measured by appropriate linear combinations of the dif-
ferent spin correlation terms shown there, i.e, Transverse-Transverse (TT ≡
xx), Normal-Normal (NN ≡ yy), Longitudinal-Longitudinal (LL ≡ zz) and
Longitudinal-Transverse (LT ≡ zx) to the scattering plane.

4.1.1 With Tau-direction symmetric integration

Integrating out cos θτ− in Eq.(14) one gets that the information carried by the
LT correlation is erased, so that only TT , NN and ZZ correlations survive

d4σSS =
2πα2β

3 s

[

(sx
+sx

−) XX + (sy
+sy

−) YY + (sz
+sz

−) ZZ
]

× dΩh+

4π

dΩh−

4π
Br+ Br− (23)

being Br± the decay branching ratios of Taus to charged hadrons plus neutri-
nos, Br− = Br(τ− → h−ντ ), Br+ = Br(τ+ → h+ν̄τ ), and

XX = (2 − β2) |F1|2 + 4Re {F2} (24)

YY =−|F1|2 β2 (25)

ZZ = (1 + β2) |F1|2 + 2Re {F2} (26)

For disentangling the relevant F2 form factor from the spin-spin correlations
one may now integrate appropriately the angular variables (Ω±) of the final
hadrons. For each correlation, we show the way how this integration has to
be done: the TT and NN terms lead to azimuthal asymmetries of the decay
products, whereas the LL term leads to a polar asymmetry.

• For the TT correlation, we integrate in Eq.(23) the polar θ∗± angles to get

d2σTT =
πα2β

96 s
[−(α−α+)] (XX ) (cos φ− cos φ+) dφ+ dφ− Br+ Br− (27)

and then perform an asymmetric integration over the azimuthal angles φ±.
In this way we define the TT -asymmetry:

8



ATT ≡ −(α−α+)

σ







π/2
∫

−π/2

dφ− −
3π/2
∫

π/2

dφ−













π/2
∫

−π/2

dφ+ −
3π/2
∫

π/2

dφ+





 d2σTT

=−πα2β

6 s

α−α+

σ

[

(2 − β2) |F1|2 + 4Re {F2}
]

Br+ Br− (28)

with σ (total cross section) given by the integration of Eq.(22).
• For the NN term, we follow a similar procedure, integrating out the θ∗±

polar angles to get

d2σNN =
πα2β

96 s
[−(α−α+)] (YY) (sin φ− sin φ+) dφ+ dφ−

× Br+ Br− (29)

and then we integrate asymmetrically the azimuthal φ± angles, in order to
define to obtain the NN -asymmetry:

ANN ≡−α−α+

σ





π
∫

0

dφ− −
2π
∫

π

dφ−









π
∫

0

dφ+ −
2π
∫

π

dφ+



 d2σNN

=
πα2β

6 s

(α−α+)

σ
β2 |F1|2 Br+ Br− (30)

• Finally, for the LL correlation we must first integrate the azimuthal φ±

angles to get

d2σLL =
πα2β

6 s
[−(α−α+)] (ZZ)

(

cos θ∗− cos θ∗+
)

d(cos θ∗+) d(cos θ∗−)

× Br+ Br− (31)

and then integrate the polar angles θ∗± asymmetrically, to finally define the
NN -asymmetry as:

ALL ≡−α−α+

σ

×




0
∫

−1

d(cos θ∗−) −
1
∫

0

d(cos θ∗−)









0
∫

−1

d(cos θ∗+) −
1
∫

0

d(cos θ∗+)



 d2σLL

=−πα2β

6 s

(α−α+)

σ

[

(1 + β2) |F1|2 + 2Re {F2}
]

Br+ Br− (32)

4.1.2 With Tau-direction asymmetric integration

In order to keep the information on F2 from the LT correlation as given
by Eq.(18) one must, contrary to the previous cases, integrate first in an
asymmetric form the θτ− angle of the outgoing Tau

9



d4σSS(FB) ≡




0
∫

−1

d(cos θτ−) −
1
∫

0

d(cos θτ−)





dσSS(~n∗
+, ~n∗

−)

d(cos θτ−)

× dΩh+

4π

dΩh−

4π
Br+ Br−

=
2πα2β

3 s

[

(n∗
+)x(n∗

−)z + (n∗
+)z(n∗

−)x
]

(ZX )
dΩh+

4π

dΩh−

4π
Br+ Br− (33)

with

ZX =
1

γ
|F1|2 + γ (2 − β2) Re {F2} (34)

and

(n∗
+)x(n∗

−)z + (n∗
+)z(n∗

−)x = −α+α−

(

sin θ∗− cos φ− cos θ∗+

+(φ− ↔ φ+, θ∗− ↔ θ∗+)
)

(35)

Then, integrating out θ∗− and φ+, and performing an asymmetric integration
over φ−, one can define a forward-backward LT -asymmetry as:

dσLT ≡−(α−α+)

×







π/2
∫

−π/2

dφ− −
3π/2
∫

π/2

dφ−











2π
∫

0

dφ+









1
∫

−1

d(cos θ∗−)



 d4σSS(FB)

=−πα2β

3 s
(α−α+) (ZX ) cos θ∗+ d(cos θ∗+) Br+ Br− (36)

Integrating now asymmetrically the θ∗+ angle, one gets the LT -Asymmetry

ALT ≡




0
∫

−1

d(cos θ∗+) −
1
∫

0

d(cos θ∗+)



 dσLT

=
πα2β

6 s

(α−α+)

σ

[

1

γ
|F1|2 + γ (2 − β2) Re {F2}

]

Br+ Br− (37)

A similar procedure can be done by interchanging the angular variables of
h+ by those of h− in each of the previous steps. The result defines the TL-
Asymmetry, which is numerically equal to the LT -Asymmetry

ATL ≡ ALT (+ ↔ −) = ALT (38)
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4.2 On top of the Υ resonances.

As explained in the Introduction, our aim is to measure the observables on the
top of the Υ peak where the τ pair-production is mediated by the resonance.
This has the advantage that resonant diagrams dominate the process so no
contribution from box diagrams has to be considered. For Super B/Flavour
factories, Υ(1S), Υ(2S) and Υ(3S) can be included since their decay rates
into τ pairs have been measured and are sizeable.

The asymmetries obtained before are not modified when running on the top
of a resonance. The differential cross section is only modified by a global
|H(M2

Υ)|2 factor, where the resonant amplitude is given by

H(M2
Υ) =

4παQ2
b

M2
Υ

|FΥ (M2
Υ)|2

iΓΥMΥ
= −i

3

α
Br

(

Υ → e+e−
)

. (39)

where e − τ universality has been assumed.

4.3 Contributions to the observables coming from the Z − γ interference.

On top of the Υ resonance, these contributions must, in principle, also be
considered. This Z-mediated amplitude modifies the defined asymmetries as
given by:

AZ
TT = −πα2β

6 M2
Υ

(α+α−)

σ
(2 − β2) NZ , AZ

NN =
πα2β

6 M2
Υ

(α+α−)

σ
β2 NZ , (40)

AZ
LL = −πα2β

6 M2
Υ

(α+α−)

σ
(1 + β2) NZ , AZ

LT =
πα2β

6 M2
Υ

(α+α−)

σ

1

γ
NZ (41)

with

NZ =
v vb

sw2 cw2

Qe

Qb

M2
Υ(M2

Υ − M2
z )

(M2
Υ − M2

z )2 + Γ2
z M2

z

|H(M2
Υ)|2 (42)

and

a = −1

2
, v = −1

2
+ 2s2

w vb = −1

2
+

2

3
s2

w, Qb =
−1

3
, Qe = −1, (43)

Considering that the common numerical factor NZ is (−1.567)×10−3, these Z-
contributions to the asymmetries are not negligible and, in principle, have to be
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taken into account when considering the correlation observables. Fortunately,
as can be seen from Eqs.(40,41), because the γ −Υ−Z interference proceeds
through the vector neutral current coupling to leptons, the relevant amplitudes
contributing to the asymmetries have equal structure than the ones obtained
for the charge form factor |F1|2. As we will see in the following, the same
combination of asymmetries which cancels the F1 contribution will also cancel
the contribution of the Z interference, so that it is possible to separate out
Re {F2} from other contributions without any ambiguities.

5 Precision on the measurement of Re {F2}

The asymmetries TT , NN , LL and LT (Eqs.(28), (30), (32) and (37), respec-
tively) can be combined appropriately in order to eliminate the |F1|2 depen-
dence. Then, the real part of the magnetic moment form factor can be obtained
from the following three independent combinations of the four asymmetries:















Re {F2}















=
(3 − β2)

(α+α−)β2
×





















4

γ2β2
0 0

4(2 − β2)

γβ2

0
4

(3 − β2)γ2
0

4(1 + β2)

(3 − β2)γ

0 0 − 4

(2 − β2)γ2

4β2

(2 − β2)γ





















×





















ATT

ALL

ANN

ATL





















(44)

Using these three independent combinations we can now estimate the precision
that can be achieved on the determination of Re {F2}.

For our numerical analysis we assume the following set of integrated lumi-
nosities: Babar + Belle at 2ab−1, and a high statistics B/Flavour factory at
15ab−1 (1 year running) and at 75ab−1 (5 years running). The results are given
in Table 1, where only the results for the π± (i.e. h± = π± ) decay channel,
for the traced τ±, are quoted. Results for the ρ± (h± = ρ±) and ρ± − π∓

(h± = ρ±, h∓ = π∓) channels are 4 and 2 times looser, respectively, than
those for the π± ones. They poorly contribute to increase the precision mea-
surement of Re {F2} but we have taken them into account, for completeness,
in the global result given in Table 1. This global result has been obtained by
considering all correlation channels of Eq.(44), for all possible combination of
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the Tau decays to π’s and ρ’s. For all the results presented here only statis-
tical errors are considered. The comparison with the results given in Ref. [8]
shows that observables obtained with polarized electrons are better by a fac-
tor 3 than those given for unpolarized electron-beams. In addition, one must
be aware that experimental uncertainties may be bigger for the detection in
coincidence of two Taus, in order to get correlations, than for single Tau po-
larization, so that bounds from correlations may be looser that those for single
Tau observables.

Table 1
Sensitivity of the F2(q

2) form factor measurement at the Υ energy

E X P E R I M E N T (ab = attobarn = 10−18b)

Super B/Flavour Factory

Babar+Belle (1 yr. running) (5 yrs. running)

Correlations 2ab−1 15ab−1 75ab−1

TT −−LT 7.6 × 10−5 2.8 × 10−5 1.2 × 10−5

Re {F2} LL −−LT 5.2 × 10−5 1.9 × 10−5 8.5 × 10−6

NN −−LT 5.1 × 10−5 1.8 × 10−5 8.3 × 10−6

Global 2.9 × 10−5 1.1 × 10−5 4.7 × 10−6

Im {F2}
(from

Ref.[8])

Normal

single-τ

Asymm.

2.1 × 10−5 7.8 × 10−6 3.5 × 10−6

6 Conclusions

We have estimated the precision that can be achieved in the determination
of the QED scale and flavour effects in the measurement of the F2 magnetic
moment form factor, at Υ energies, for unpolarized e+ e− collisions. In Ref. [8]
we already showed that the imaginary part of F2 can be determined from the
Normal Asymmetry of the decay products for a normal polarization of a single
Tau. In this paper, we have shown that, for unpolarized electron beams, the
real part of the form factor needs the measurement of correlations on the Tau
decay products of both polarized Taus. We have defined correlations sensitive
to the F2 form factor and found three independent combinations of them
to get its value without any ambiguities, eliminating the contribution of the
charge form factor F1 and the Z − γ interference. Combining all channels, the
sensitivity that can be achieved is of the order of 10−5−10−6, which allows the
measurement of the magnetic moment form factor F2(M

2
Υ), given in Eq.(8),
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up to a precision of a few per cent. This result shows that Super B/Flavour
factories can bring, for the first time, important information on the rather
poorly known magnetic properties of the Tau.
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