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We show that transverse and normal single-tau polarization of tau pairs produced at e
+

e
− unpolarized col-

lisions, at the Z peak, are sensitive to weak (magnetic and electric) dipole moments of the tau. We also show
how these components of the τ polarization are accessible by measuring appropriate azimuthal asymmetries in
the angular distribution of its decay products. Sensitivities of the order of 10−18

e · cm, for the weak-electric
dipole moment, and 10−4 (10−3), for the real (imaginary) part of the weak-magnetic dipole moment of τ , may be
achieved. Compatible bounds are also presented from spin-spin correlated asymmetries.

1. INTRODUCTION

Electron and muon dipole moments provide
very precise tests of quantum field theories. The
agreement between the predicted (first obtained
by Schwinger [1] in first order) and the measured
electron anomalous magnetic moment is one of
the most spectacular achievements of quantum
field theory. Electric and weak-electric dipole mo-
ments have been exhaustively investigated to look
for signals of CP -violation in both the quark and
the leptonic sector[2]. Low energy, LEP1 and
SLC, experiments result in an enormous variety
of measurements that lead, up to now, to the con-
firmation of the quantum corrections given by the
Standard Model (SM).

The theoretical and experimental situation for
the electro-magnetic (i.e. the ones related to
the γ–coupling) dipole moments of light fermions
is firmly established[3]: experiments are sensi-
tive to an impressive number of decimal places
and theoretical predictions of higher orders have
been computed. For heavy fermions (τ, b, t), the
magnetic DM are much poorly measured, and
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96-1718, and by Programa de Cooperación Cient́ıfica con
Iberoamérica (AECI), and by CSIC-Uruguay.

also their theoretical significance is more involved.
The anomalous weak magnetic dipole moments
have been calculated for heavy fermions [4,5] in
the Standard Model. For τ ’s, weak dipole mo-
ments have been tested at LEP1 and SLC in re-
cent years [6] by means of the angular distribution
of the τ decay products acting as spin analyzers.

In this contribution we first show how, for
e+ e− −→ τ+τ− unpolarized scattering at the Z-
peak, the transverse (within the collision plane)
and normal (to the collision plane) single τ polar-
izations are very sensitive to the anomalous weak-
magnetic (aw

τ (M2
Z)) and weak-electric (dw

τ (M2
Z))

dipole form factors. We construct azimuthal
asymmetries, for single tau decay products, sen-
sitive to each effective coupling in order to sep-
arate this signal in the search for new physics.
Finally we present how some azimuthal asymme-
tries coming from spin-spin correlations can help
in the search for signals of the weak dipole mo-
ments.

2. DIPOLE MOMENTS

The most general Lorentz invariant structure
describing the interaction of a vector boson V
with two fermions f f̄ can be written in terms
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of ten form factors:

< f(p−)f̄(p+)|Jµ(0)|0 >= (1)

e ū(p−) [γµ(f1 − f2γ5) + (i f3 − f4γ5)σ
µνqν

+(f5 + i f6γ5)(q−)µ + σνµ(q−)ν(f7 + i f8γ5)

+(i f9 + f10γ5)q
µ ] v(p+)

with q = p+ + p− and q− = p+ − p−. For all
particles on-shell, these ten form factors may be
reduced to the first four: f1 and f2 parameter-
ize the vector and vector-axial sector of the cur-
rent; f3 and f4 are proportional to the anomalous
magnetic (aV

f ) and electric (dV
f ) dipole moment,

respectively:

f3(q
2) =

aV
f (q2)

2mf
, f4(q

2) =
dV

f (q2)

e
(2)

Dipole moment couplings can be also seen as the
coefficients of the corresponding vector boson-
fermion-fermion (V ψψ) interaction terms of an
U(1)-invariant effective lagrangean

L = LSM −
i

2
dV

f ψ̄σµνγ5ψ Fµν

+
1

2

eaV
f

2mf
ψ̄σµνψFµν (3)

where LSM is the tree-level Standard Model la-
grangean and

Fµν = ∂µVν − ∂νVµ, V = γ, Z (4)

For on-shell photons (V = γ), we find the usual
definition for the anomalous magnetic dipole mo-
ment (AMDM) aγ

f (q2 = 0) and electric dipole mo-

ment (EDM) dγ
f (q2 = 0). For on-shell Z-bosons

(V = Z) we define, by analogy, the anoma-
lous weak magnetic and weak electric dipole mo-
ments (AWMDM and WEDM) of the fermion f
as the corresponding factors aw

f (q2 = M2
Z) and

dw
f (q2 = M2

Z) in Eq.(3).

2.1. C, P and T transformation properties
As can be seen from Eq.(3), the dipole moment

form factors are related with chirality-flipping op-
erators of the theory. Under discrete C, P , and
T symmetries the term with aV

f is C(+), P (+)

and T (+); the one with dV
f transforms as C(+),

P (−) and T (−). For the V = Z case, the dipole
moments may get an imaginary (absorptive) part
which, contrary to the real part, is T (−) for the
A(W)MDM (af ), and T (+) for the (W)EDM
(df ).

2.2. Theoretical predictions
From the theoretical point of view, as it is al-

ready well known, only the on-shell definition of
the AWMDM is electroweak gauge invariant and
free of uncertainties. The AWMDM may receive
contributions from both new physics and elec-
troweak radiative correction to the SM.
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Figure 1. Contributing Feynman diagrams to aw
τ

that are also present for the AMDM (photon ver-
tex).

The leading Standard Model contribution to aw
τ

has been computed [4] in the t’Hooft-Feynman
gauge, where no ambiguities in the finite parts are
present [7]. There are 14 diagrams to consider, 6
of which are not present in the photon vertex case.
The eight diagrams that have a photon analogue
are shown in figure 1, and the new ones are shown
in figure 2. One-loop contributions are formally
of order α, but the magnitude of each diagram is
in fact also governed by the weak-boson or Higgs
mass-factors like m2

τ/M
2
Z or m2

τ/M
2
Φ, so that the

Higgs contribution only modifies the real part of
the result in less than a 1%. The main contri-
butions come from the diagram with νWW and
Wνν in the loop. The final result is [4]:

aw
τ (M2

Z) = − (2.10 + 0.61 i)× 10−6 (5)
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Notice the presence of an absorptive part of the
same order as the dispersive part due to the fact
that particles in the loop can be on-shell.
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Figure 2. Contributing Feynman diagrams to aw
τ

that are not present for the AMDM (photon ver-
tex).

On the other hand, from a very general argu-
ment, it was established [8] that for a fermion
of mass mf , contributions from new physics to
the AWMDM at Λ-scale, must enter with a fac-
tor ≡ m2

f/Λ
2, then it is clear that precise experi-

ments in the measurement of the AWMDM may
provide bounds for compositeness and also for the
scale of new physics [9–11].

For the (W)EDM, dτ , the theoretical predic-
tions are much less precise. In the SM the
Kobayashi-Maskawa phase is the only source of
CP -violation and it is not possible to generate
a non vanishing (W)EDM at one-loop level; one
has to go up to three-loops [12] to get a non van-
ishing contribution. In extended models the sit-
uation changes and one can get a contribution to
the WEDM moment already at one-loop [13–15],
so that a CP -violating signal coming from an ap-
preciable (weak) electric dipole moment will un-
ambiguously lead to new physics.

3. SINGLE TAU POLARIZATION AT
LEP1

Using the lagrangean (3), the tree level cross
section for the process e+ e− → τ+τ− unpolar-

ized scattering, at the Z-peak, can be written as:

dσ

dΩτ−

=
dσ0

dΩτ−

+
dσS

dΩτ−

+
dσSS

dΩτ−

(6)

where the first term collects the spin independent
terms,

dσ0

dΩτ−

=
α2β

(4swcw)4
1

Γ2
Z

×
[

A0 +A1 cos2 θτ− +A2 cos θτ−

]

(7)

with

A0 = (v2 + a2)
2v2 + β2(a2 − v2)

2swcw
(8)

A1 = (v2 + a2)2β2 1

2swcw
(9)

A2 = 4a2v2β
1

swcw
(10)

The second one takes into account the linear
terms in the spin [4,16],

dσS

dΩτ−

=
α2β

128s3wc
3
w

1

Γ2
Z

[ (s− + s+)xX+

+ (s− + s+)yY+ + (s− + s+)zZ+

+ (s− − s+)yY−] (11)

with

X+ = a sin θτ−

{

−v
[

2v2 + (v2 + a2)β cos θτ−

]

γswcw

+2γ
[

2v2(2 − β2)

+(v2 + a2)β cos θτ−

]

Re(aw
τ )

}

(12)

Y+ = −2vγβ sin θτ− [2a2

+(v2 + a2)β cos θτ− ] Im(aw
τ ) (13)

Y− = 2aγβ sin θτ−

[

2v2

+(v2 + a2)β cos θτ−

]

(2mτd
w
τ /e) (14)

Z+ = −
va

swcw

[

(v2 + a2)β(1 + cos2 θτ−)

+2(v2 + β2a2) cos θτ−

]

+ 2a
[

4v2 cos θτ−

+(v2 + a2)β(1 + cos2 θτ−)
]

Re(aw
τ ) (15)
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where α is the fine structure constant, ΓZ is the
Z-width and γ = MZ/(2mτ), β = (1 − 1/γ2)1/2

are the dilation factor and τ velocity, respec-
tively. s± are the polarization vectors of τ± in
the proper reference frame and v = −1/2 + 2s2w
and a = −1/2 are the SM vector and axial vec-
tor Z τ−τ+ couplings. We have neglected terms
proportional to the electron mass and kept up to
linear terms in the weak dipole moments. The
reference frame is chosen such that the outgoing
τ− momenta is along the z axis and the incoming
e− momenta is in the x − z plane, with θτ− the
angle determined by these two momenta. Terms
with (s− − s+)x,y,z factors in Eq.(11) carry all
the information about the CP -violating pieces of
the lagrangean. Normal and transverse τ polar-
izations are zero at tree level in the SM, in the
zero mass limit, due to helicity arguments.

The spin-spin term, dσSS

dΩ
τ−

, of Eq.(6), is not rel-

evant in this calculation due to the fact that we
are going to consider polarization asymmetries of
a single tau only. By summing up over the polar-
ization states of the other tau, it results in erasing
this contribution.

3.1. Normal polarization (PN )
The normal polarization (along y-axis) of a sin-

gle tau (Y± terms of Eq.(11)) is even under parity.
Then, considering the transformation properties
of the dipole moments described in section 2.1,
only a · v2 · dw

τ or a3 · dw
τ (no v suppression, in

this case) terms are allowed in Y− (see Eq.(14)),
in contrast to the case in the spin-spin correlation
observables, where the leading term is a2 · v · dw

τ .
The Y+ term is CP -conserving and time reversal-
odd; it is an observable generated by a T -odd ab-
sorptive part of the magnetic moment,Im(aw

τ )).
The dependence with a2 ·v · Im(aw

τ ) or v3 · Im(aw
τ )

is associated with the fact that the normal polar-
ization is even under parity.

3.2. Transverse polarization (PT )
The transverse polarization (along the x-axis)

of a single τ (X+ term of Eq.(11)) is parity-odd
and time reversal-even. It can only arise from
the interference of both helicity conserving and
helicity flipping amplitudes. The first term of
X+ in Eq.(12) comes from helicity flipping sup-

pressed (1/γ ≡ 2mτ/MZ) amplitudes in the Stan-
dard Model and the second one comes from the
γ-enhanced chirality flipping weak-magnetic ten-
sorial aw

τ vertex. Both contributions must be pro-
portional to an odd number of axial-vector cou-
plings a (a v3 or a3).

If one allows the WEDM dw
τ to have an (absorp-

tive) imaginary part, then there is also a term (let
us say X−) proportional to this T (+) imaginary
part [11]. We are not going to take into account
this contribution because sizeable contributions
coming from new physics at a high Λ scale can
not give any absorptive part at the MZ scale, so
that such terms must be obtained at higher orders
and, in principle, must be much smaller.

4. AZIMUTHAL ASYMMETRIES

At LEP1 τ pairs decay before reaching the de-
tectors and the energies and momenta of their
hadronic decay products can be measured. In
channels where both τ ’s decay semileptonically,
the τ direction can only be reconstructed up to a
two fold ambiguity [17] if no high precision mea-
surement of both charged hadron tracks is made.
It is this ambiguity that destroys the informa-
tion coming from polarization when looking at
the decay products. However, with the help of
micro-vertex detectors, a high resolution recon-
struction of these hadron-tracks is possible, then
the τ direction can be completely reconstructed
[18]. This opens new possibilities to measure the
transverse and normal component of the polar-
ization from the angular distribution of single τ
decay products. Therefore we will only consider
semileptonic decay channels for both taus.

From Eq.(6) and Eq.(11), and following stan-
dard procedures [19], it is straightforward to
get the expression for the e+e− → τ+ τ− →
h+

1 X h−2 ντ and h+
1 ν̄τ h

−
2 X cross sections:

dσ(e+e− → τ+τ− → h+
1 Xh

−
2 ντ )

d(cos θτ−) dφh−

2

= Br(τ− → h−2 ντ )Br(τ+ → h+
1 X)

×

[

4
dσ0

dΩτ−

+
α2βπ

128s3wc
3
wΓ2

Z

αh−

2

(X+ cosφh−

2
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+(Y− + Y+) sinφh−

2

)

]

(16)

dσ(e+e− → τ+τ− → h+
1 ν̄τh

−
2 X)

d(cos θτ−) dφh+

1

= Br(τ− → h−2 X)Br(τ+ → h+
1 ν̄τ )

×

[

4
dσ0

dΩτ−

+
α2βπ

128s3wc
3
wΓ2

Z

αh+

1

(−X+ cosφh+

1

+(Y− − Y+) sinφh+

1

)

]

(17)

where the angle φh is the azimuthal hadron angle
in the frame we have already defined. All other
angles have been integrated out. The longitudinal
polarization term (Z+) disappears when the polar
angle θh of the hadron is integrated out. For π
and ρ mesons the magnitude of the parameter αh

is απ = 0.97 and αρ = 0.46.

4.1. Observables for the AWMDM
With the τ direction fully reconstructed in

semileptonic decays, we can get information
about the real part of the AWMDM, by defining
the following asymmetry of the τ -decay products
[4,16]:

A∓
cc =

σ∓
cc(+) − σ∓

cc(−)

σ∓
cc(+) + σ∓

cc(−)
(18)

where

σ∓
cc(+) =

(

∫ 1

0

d(cos θτ−)

∫ π/2

−π/2

dφh∓+ (19)

∫ 0

−1

d(cos θτ−)

∫ 3π/2

π/2

dφh∓

)

dσ

d(cos θτ−) dφh∓

σ∓
cc(−) =

(

∫ 1

0

d(cos θτ−)

∫ 3π/2

π/2

dφh∓+ (20)

∫ 0

−1

d(cos θτ−)

∫ π/2

−π/2

dφh∓

)

dσ

d(cos θτ−) dφh∓

This asymmetry selects the cos θτ− cosφh∓ term
of the cross section given in Eq.(16) and Eq.(17),
which is the leading one in the anomalous weak-
magnetic moment aw

τ (it comes with the couplings
a3),

A∓
cc = ∓αh

swcw(v2 + a2)

4βa3

×

[

−v

γswcw
+ 2γ Re(aw

τ )

]

(21)

Notice that it changes sign for τ− and τ+.
Similarly, for the imaginary (absorptive) part

of the AWMDM, one can define an asymmetry
that selects the sinφh∓ term from Y+ [4]:

As
∓ =

∫ π

0

dφ∓h
dσ

dφ∓h
−

∫ 2π

π

dφ∓h
dσ

dφ∓h
∫ π

0

dφ∓h
dσ

dφ∓h
+

∫ 2π

π

dφ∓h
dσ

dφ∓h

= ∓αh
3πγ

4
cwsw

v

a2
Im(aw

τ ) (22)

For numerical results we consider 107Z events
and one τ decaying into π ντ or ρ ντ (i.e.
h1, h2 = π or ρ in (16) and (17) respectively),
while summing up over the π ντ , ρ ντ and a1 ντ

semileptonic decay channels of the τ for which
the angular distribution is not observed (this
amounts to about 52% of the total decay rate).
Collecting events from the decay of both taus,
one gets a sensitivity (within 1 s.d.)[4]:

|Re(aw
τ )| ≤ 4 · 10−4 (23)

|Im(aw
τ )| ≤ 1.1 × 10−3 (24)

Comparing these values with the SM predicted
ones (5) it is clear that, if a large signal related to
these observables is found, it should be attributed
to physics beyond the SM.

4.2. Observables for the WEDM
The analysis of the tau-decay products allows

us to select the terms of the cross sections (16)
and (17) which carry the relevant information
about the CP -violating effective coupling dw

τ .
The leading term (the one with a3) is extracted
by the asymmetry:

A∓
sc =

σ∓
sc(+) − σ∓

sc(−)

σ∓
sc(+) + σ∓

sc(−)
(25)
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where σ∓
sc(±) are defined similarly as in Eqs. (19–

20) but changing the φh∓ angular integration to:

σ∓
sc(+) = σ (cos θτ− · sinφh∓ > 0) (26)

σ∓
sc(−) = σ (cos θτ− · sinφh∓ < 0) (27)

From Eqs. (16–17) we finally obtain:

A−
sc = A+

sc = αh
γ

2
swcw

v2 + a2

a3
(2mτd

w
τ /e) (28)

without any background from the Standard
Model. It has the same sign for both τ+ and
τ .

Under the same hypothesis as for the AWMDM
one can get, from this asymmetry, the following
bound to the WEDM [16]:

|dw
τ | ≤ 2.3 · 10−18e · cm (29)

The analysis made so far assumes there is no
mixing among the weak dipole moments in the de-
fined asymmetries. Then, the bounds presented
here are the best one can get from azimuthal
asymmetries. If one takes the complete set of
dipole moments in the calculation of the asymme-
tries one has to either make a complete analysis
with all the asymmetries [20] or construct genuine
CP -conserving (-violating) observables to disen-
tangle the different contributions. For example,
a genuine CP -violating observable is the asym-
metry Asc as compared for the particle and its
antiparticle

ACP
sc ≡

1

2
(A−

sc +A+
sc) (30)

What is tested from the ACP
sc -asymmetry is

whether the normal polarizations of both taus are
different. Within the contributions considered in
this paper, they are opposite. This implies the
equality of the decay-product asymmetries (25),
so ACP

sc = A+
sc = A−

sc and the observable is given
only by the CP -violating term dw

τ , eliminating
the contribution from a (v/a) suppressed Im(aw

τ )
term, coming from the Y+ sector of the normal
polarization (13). A similar CP -even observ-
able can be obtained [11] for the A∓

s asymmetry,
As = (A−

s −A+
s ) /2, which cancels the CP -odd

(again v/a suppressed) dw
τ contribution from the

Y− sector (14) of PN .

5. SPIN-SPIN CORRELATIONS

Bounds on the tau AWMDM can be also ob-
tained by measuring spin correlation asymmetries
in the decay of a Z to τ+ τ−. The CP -violating
weak electric dipole moment (WEDM) has been
considered in Ref. [22] by means of momentum
correlations of the decay products of the τ pair.
For the CP -conserving sector of the interaction
described by lagrangean (3), the spin-spin term of
the e+ e− → τ+τ− cross section, at the Z-peak,
can be written as:

dσSS

dΩτ−

=
α2

128s3wc
3
w

1

Γ2
Z

[

(s+x s
−
x ) XX

+ (s+y s
−
y ) YY + (s+z s

−
z ) ZZ

+ (s+x s
−
y + s+y s

−
x ) XY

+ (s+x s
−
z + s+z s

−
x ) ZX

+ (s+y s
−
z + s+z s

−
y ) ZY

]

(31)

where the coefficients XX , XY , ZX . . . carry
all the information about the Transverse-
Transverse, Transverse-Normal, Longitudinal–
Transverse . . . spin correlations.

Let us fix our attention on the spin correla-
tion involving the transverse (within the produc-
tion plane) and normal (to the production plane)
components, relevant for the AWMDM:

XX ≡ (XX )0 sin2 θτ− (32)

XY ≡ (XY)0 sin2 θτ− (33)

ZX ≡ (ZX )0 sin θτ− + (ZX )1 sin 2θτ− (34)

ZY ≡ (ZY)0 sin θτ− + (ZY)1 sin 2θτ− (35)

with

(XX )0 = (a2 + v2)

×

[

(

2v2 − β2(v2 + a2)
)

2swcw
− 4vRe(aw

τ )

]

(36)

(XY)0 = 2a(a2 + v2)βIm(aw
τ ) (37)

(ZX )0 = 2a2vβ

[

v

swcwγ
− 2γRe(aw

τ )

]
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(ZX )1 = v(a2 + v2)

×

[

v

2swcwγ
− γ(2 − β2)Re(aw

τ )

]

(38)

(ZY)0 = 4γav2β2Im(aw
τ ) (39)

(ZY)1 = γβa(v2 + a2)Im(aw
τ ) (40)

These equations show that Transverse-Normal,
CTN (XY term), and Longitudinal-Normal, CLN

(ZY terms), spin correlations are directly pro-
portional to the T -odd imaginary part of the
tau weak magnetic dipole moment, while the
Longitudinal-Transverse CLT (ZX terms) is pro-
portional (except for a small tree level contribu-
tion) to the real part of the dipole moment (note
that γ ≫ 1). Transverse-Transverse CTT (XX
term) are also sensible to the real part of the
AWMDM but its contribution is not enhanced by
the γ-factor.

In particular the XY spin correlation, CTN , as-
sociated with the Transverse-Normal component
of the tau polarizations

< PTPN >=
(XY )0 sin2 θτ

A0 +A1 cos2 θτ− +A2 cos θτ−

(41)

(with A0, A1 and A2 defined in Eqs. (8–10))
is a parity-odd and time reversal-odd observable
which, being generated by absorptive parts of the
amplitude, must be proportional to the imaginary
part of the AWMM. In the SM it also receives
small contributions from the interference of γ ex-
change with the imaginary Z exchange amplitude
[21]. When this contribution is subtracted from
the definition of CTN , the measured value, from
data collected in 1992-1994 running period, by
ALEPH [23] is:

CTN = −0.08± 0.14(stat) ± 0.02(syst) (42)

Using this data and the expression (41), in the
β → 1 limit,

CTN ≈
(XY )0
A0

=
4A

(V 2 +A2)
cwswIm(aw

τ ) (43)

one gets the following bound on the imaginary
part of the AWMM:

|Im(aw
τ )| < 0.04 (44)

Up to now there is no measurement of the CLT

and CLN correlations, that are sensitive to the
real and imaginary part of the AWMDM.

6. CONCLUSIONS

We have studied the physical content of the
normal and transverse τ polarizations for τ+ τ−

pairs produced from unpolarized e+ e− collisions
at the Z-peak, and shown how their measure-
ment offers an opportunity to put bounds on the
weak dipole moments induced by models beyond
the standard theory. For semileptonic decays,
where the τ direction can be reconstructed, we
have defined appropriate asymmetries in the az-
imuthal distribution of the hadron from which
one can measure the weak dipole moments. We
have shown that the best sensitivity one can ex-
pect in the measurement of these observables is
of the order of 10−4 (10−3), for the real (imagi-
nary) part of the anomalous weak magnetic dipole
moment, and 10−18e · cm for the weak electric
dipole moment. We have also shown an analysis
of the spin-spin correlation terms that may also
provide competitive independent bounds to the
AWMDM. Nowadays sensitivities are below those
required in order to measure the values predicted
from the Standard Model.
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9. M.C. González-Garćıa and S.F. Novaes,



8

Phys. Lett. B389 (1996) 707; J. Bernabéu,
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17. J.H. Kühn, F. Wagner, Nucl. Phys. B236

(1984) 16; W.Bernreuther et al., Zeit. für

Physik C52 (1991) 567.
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