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abstract

With initial and final particles on-shell, the anomalous weak-magnetic

dipole moments of b and c quarks are electroweak gauge invariant quantities

of the effective couplings Zbb̄ and Zcc̄, respectively, and good candidates to

test the Standard Model and/or new physics. Here we present a complete

computation of these quantities within the Standard Model. We show that

decoupling properties with respect to heavy particles do take place in the

weak magnetic moment. The obtained values, ab(M
2
Z) = (2.98−1.56i)×10−4

and ac(M
2
Z) = (−2.80 + 1.09i) × 10−5 are dominated by one-gluon exchange

diagrams. The electroweak corrections are less than 1% of the total magni-

tude.

http://arxiv.org/abs/hep-ph/9702222v2


1 Introduction

The neutral current sector of the Standard Model (SM) has been subjected to a detailed

precision scrutiny in the past few years [1]. This has led to establish definite quantum

electroweak corrections to an impressive list of physical observables which see their tree-

level values modified at the percent level. The agreement between the experiment and

the theory proves the correctness of the SM and the machinery of renormalization in the

quantum field theory. Although the issue is not still close, it seems [2] that even the

Z-vertex to heavy quarks, which contains non-decoupling effects [3], is in agreement with

the SM. An alternative to this methodology consists in isolating new observables in the

quantum theory which were absent in the tree-level Lagrangian. In this paper we study

the anomalous weak-magnetic moment (AWMM) of heavy quarks.

The anomalous weak-magnetic moment of fermions carries important information

about their interactions with other particles. It may be seen as the coefficient of a

chirality-flipping term in the effective Lagrangian of the Z coupled to fermions. Therefore,

at q2 6= 0, it is expected to be proportional to the mass of the fermion, and only heavy

fermions (leptons or quarks) are good candidates to have a measurable anomalous weak-

magnetic moment. The already mentioned chirality properties indicate that some insight

into the mechanism of mass generation may be obtained from it. These properties have

also been considered in the context of extended models [4]. In previous work [5] we

have studied the case of the tau and shown that it is possible to construct polarization

observables sensitives to the AWMM. In this paper we focus on quarks, in particular on

the AWMM of the b- and c-quarks. In Ref. [6] different strategies to detect polarization

effects for the b-quark are suggested and discussed, so that the observables may become

feasible in the future.

2 Anomalous Weak-Magnetic Moment

As the AWMM is proportional to the mass of the particle, in principle, only heavy

fermions might have a sizeable value for it. The heaviest quark, the top-quark [7], would
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seem to be the perfect candidate. The problem arises there in the electroweak gauge

invariant properties of the defined form factor. As it is already well known [5, 8] only the

on-shell definition of the AWMM is electroweak gauge invariant and free of uncertainties.

Nevertheless, recently some procedures to move off-shell the gauge invariant form factors

have been proposed [9], but their invariant properties and physical significance are still

under discussion [10]. In this paper we concentrate ourselves in the study of the AWMM

for the heavy quarks produced from on-shell Z’s, i.e. bottom b and charm c quarks. This

is of order αs-strong or α-electroweak radiative correction to the Zqq̄ vertex.

Using Lorentz covariance, the matrix element of the i-quark vector neutral current

can be written in the form:

ūi(p)V
µ(p, p̄) vi(p̄) = e ūi(p)

[

vi(q
2)

2swcw
γµ + i

aw
i (q2)

2mi

σµηqη

]

vi(p̄) (1)

where q2 = (p + p̄)2 is the 4-momentum squared in the center of mass frame, e is the

proton charge and sw, cw are the weak mixing angle sine and cosine, respectively. The

first term vi(q
2) is the Dirac vertex (or charge radius of the fermion i) form factor and it

is present at tree level with a value vi(q
2) = Ti 3−2Qi s

2
w, whereas the second form factor,

aw
i (q2), is the AWMM and it appears due to quantum corrections. As already mentioned,

at q2 = M2
Z , it is a linearly independent and gauge invariant form factor of the Lorentz

covariant matrix element, contributing to the physical Z −→ q q̄ decay amplitude.

α

β

δ

Z

q

q

Figure 1: Contributing Feynman diagrams to the anomalous weak magnetic moment.

In the t’Hooft-Feynman gauge, there are 14 diagrams that contribute to aw
i . In Fig.

1 we show the generic one-loop diagram contribution. From now on we denote by qi (qI)

the internal quark in the loop with the same (different) charge as the external quark; α,
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β and δ are the particles circulating in the loop as shown in Fig. 1; χ and Φ are the

neutral would-be Goldstone boson and physical Higgs, and σ± are the charged would-be

Goldstone bosons. Then, all the contributions may be written with the compact notation:

[ai]
αβδ =

α

4π

m2
i

M2
Z

∑

jk

cjkIjk
αβδ(i) (2)

with (αβ δ) standing for: (N q̄i qi), (C± q̄I qI), (qI C
+C−) and (qiN N ′). N and N ′ are

the neutral particles γ, Z, χ, Φ (with N 6= N ′), and C± are the charged bosons W± and

σ±. cjk are coefficients, and

Ijk
αβδ(i) ≡ Ijk(m

2
i , q

2, m2
i , m

2
α, m

2
δ, m

2
β) (3)

are the on-shell (p2 = m2
i , p̄ 2 = m2

i and q2 = (p + p̄)2 = M2
Z ) scalar, vector and tensor

functions defined, from the one-loop 3-point functions

I00; µ; µν (p2, (p+ p̄)2, p̄ 2, m
A

2, m
B

2, m
C

2) =

1

iπ2
×
∫

dnk
{1 ; kµ ; kµkν}

(k2 −m
A

2)((k − p)2 −m
B

2)((k + p̄)2 −m
C

2)
(4)

as [5]:

Iµ = (p− p̄)µI10 + (p+ p̄)µI11

Iµν = (p̄ µp̄ ν + pµpν)I21 + (p̄ µpν + pµp̄ ν)I22 + (p̄ µp̄ ν − pµpν)I2−1 + gµνI20 (5)

We are only interested in the AWMM so that, for each diagram, we have to pick

up only the σµνqν coefficient shown in Eq.(1). Though the AWMM receives its leading

contribution from one loop diagrams (renormalizability excludes ψ̄σµνψ Z
µν terms in the

Lagrangian), it is finite, and can be extracted from them with no need of renormalization.

Notice also that only vertex corrections may contribute to the AWMM, because the

renormalization of the external legs does not change the (V-A) Lorentz structure of the

vertex.

As a test of our calculation we have verified the conservation of the vector current

qµ ū(p)V µ(p, p̄) v(p̄) = 0 (6)
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by explicitly checking that the coefficient of the qµ term of the matrix element (1) van-

ishes. This conservation does not occur on each diagram, but it can be confirmed by

considering cancellations among some of them and, of course, in the overall sum.

In the following, we list all contributions to the AWMM that are written, in a self-

explanatory notation, as:

[aw
b ]γbb = −

(

α

4π

)(

mb

MZ

)2 4vbQ
2
b

swcw
M2

Z [I10 + I22 − I21]
γbb (7)

[aw
b ]Zbb = −

(

α

4π

)(

mb

MZ

)2 vb

s3
wc

3
w

M2
Z

[

v2
b (I22 − I21 + I10) +

a2
b (3I22 − 3I21 + 11I10 − 4I00)

]Zbb
(8)

[aw
b ]χbb = −

(

α

4π

)(

mb

MZ

)2 m2
b

M2
Z

vb

2s3
wc

3
w

M2
Z [I22 − I21]

χbb (9)

[aw
b ]Φbb = −

(

α

4π

)(

mb

MZ

)2 m2
b

M2
Z

vb

2s3
wc

3
w

M2
Z [I22 − I21 + 2I10]

Φbb (10)

[aw
b ]Wtt = −

(

α

4π

)(

mb

MZ

)2 (vt + at)

s3
wcw

|Vtb|
2 M2

Z [I22 − I21 + 3I10 − I00]
Wtt (11)

[aw
b ]σtt = −

(

α

4π

)(

mb

MZ

)2 ( mt

MZ

)2 1

2s3
wc

3
w

|Vtb|
2 M2

Z

[

vt

(

I22 − I21 − I10 +

(

mb

mt

)2

(I22 − I21 + I10)

)

− at

(

1 −
(

mb

mt

)2
)

(I22 − I21 + I10)

]σtt

(12)

[aw
b ]tWW =

(

α

4π

)(

mb

MZ

)2 cw
s3

w

|Vtb|
2 M2

Z [I10 + 2I21 − 2I22]
tWW (13)

[aw
b ]tσσ = −

(

α

4π

)(

mb

MZ

)2 ( mt

MZ

)2 1 − 2c2w
2s3

wc
3
w

|Vtb|
2 M2

Z

[

I00 − I22 + I21 − 3I10 +

(

mb

mt

)2

(I21 − I22 − I10)

]tσσ

(14)

[aw
b ]bZΦ = −

(

α

4π

)(

mb

MZ

)2 vb

2s3
wc

3
w

M2
Z [I11 − I10]

bZΦ (15)
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[aw
b ]bΦZ =

(

α

4π

)(

mb

MZ

)2 vb

2s3
wc

3
w

M2
Z [I11 + I10]

bΦZ (16)

[aw
b ]tWσ = −

(

α

4π

)(

mb

MZ

)2 1

2swcw
|Vtb|

2 M2
Z [I10 − I11]

tWσ (17)

[aw
b ]tσW = −

(

α

4π

)(

mb

MZ

)2 1

2swcw
|Vtb|

2 M2
Z [I10 + I11]

tσW (18)

[aw
b ]bΦχ = [aw

b ]bχΦ = 0 (19)

with ai,I , VIi being the axial vector Zqq̄ coupling, and the Kobayashi-Maskawa qIqi mixing

matrix element, respectively.

Diagrams with the Higgs (Φ) and the neutral would-be Goldstone boson (χ) coupled

to the Z only contribute to the axial form factor and not to the magnetic moment, so

that one gets the result of Eq.(19).

The natural scale of each diagram is
(

mb

MZ,Φ

)2
but those with an exchange of a Higgs

(physical or not) between the two b’s (see [aw
b ]χbb, [aw

b ]Φbb) are suppressed by an extra
(

mb

MZ,Φ

)2
factor coming from the Higgs-b-b coupling. For similar reasons, due to the high

value of the top mass [7] one could then think that those diagrams with Higgs particles

coupled to the t-quark ([aw
b ]σtt, [aw

b ]tσσ) would be the dominant ones. In fact, Eqs. (12)

and (14) show the
(

mt

MZ

)2
expected factor, which should make sizeable the contribution

coming from these diagrams. Nevertheless, contrary to what happens in the charge radius

(γµ) form factor [3], where non-decoupling effects take place, the behaviour with mt of

the Ijk integrals given in Eqs. (12) and (14) prevents the product m2
t Ijk to have a hard

dependence with large mt. An expansion of the scalar functions I tσσ
ij and Iσtt

ij –up to

leading order– in terms of 1/t ≡ (MZ/mt)
2 gives:

M2
Z I

tσσ
00 =

1

t

(

log
c2w
t

+ 2fw − 1

)

+ O

(

1

t2
log

c2w
t

)

(20)

M2
Z I

tσσ
10 =

1

t

(

1

2
log

c2w
t

+ fw −
1

4

)

+ O

(

1

t2
log

c2w
t

)

(21)

M2
Z I

tσσ
21 =

1

t

(

1

3
log

c2w
t

+
2(1 − c2w)

3
fw −

1

9
+

2c2w
3

)

+ O

(

1

t2
log

c2w
t

)

(22)

M2
Z I

tσσ
22 = −

1

t

(

1

6
log

c2w
t

+
1 + 2c2w

3
fw −

2c2w
3

+
1

36

)

+ O

(

1

t2
log

c2w
t

)

(23)
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M2
Z I

σtt
00 = −

1

t
+ O

(

1

t2
log

c2w
t

)

(24)

M2
Z I

σtt
10 = −

1

4t
+ O

(

1

t2
log

c2w
t

)

(25)

M2
Z I

σtt
21 = −

1

9t
+ O

(

1

t2
log

c2w
t

)

(26)

M2
Z I

σtt
22 =

1

18t
+ O

(

1

t2
log

c2w
t

)

(27)

with fw =
√

4c2w − 1 arctan
(

1/
√

4c2w − 1
)

. As can be seen from the previous expressions,

only a mild (MZ/mt)
2 log (mt/MZ)2 dependence is got from the four diagrams that may

give non-decoupling effects with the top-quark mass. The chirality flipping property of

the magnetic moment makes the difference with respect to the charge radius, where non-

decoupling effects are seen. In addition, for the [aw
b ]tWσ and [aw

b ]tσW amplitudes, the

AWMM selects a product of left and right projectors that gives no linear contribution on

m2
t .

Adding all these terms, we end up with the following result:

[aw
b ](σtt)+(tσσ)+(tσW )+(tWσ)

lead.ord.in mt
=

=
(

α

4π

)(

mb

MZ

)2 1

2s3
wc

3
w

|Vtb|
2

[

23

36
−

11c2w
9

+ O

(

M2
Z

m2
t

log

(

M2
Z

m2
t

))]

(28)

and we conclude that the non-decoupling of a heavy top reduces to a constant term for

the AWMM.

The Ijk
αβγ functions are analytically computed in terms of dilogarithm functions. As

a check we confronted the result with a numerical integration in the mb → 0 limit. For

mt = 174 GeV, MZ = 91.19 GeV, s2
w = 0.232, α = 1/127.9 and mb = 4.5 GeV, the

following numerical contributions for each diagram are found:

[aw
b ]γbb ≃

(

α

4π

)(

mb

MZ

)2

(1.10 − 0.57i) = (1.66 − 0.87i) × 10−6 (29)

[aw
b ]Zbb ≃

(

α

4π

)(

mb

MZ

)2

(1.6 + 0.71i) = (2.42 + 1.07i) × 10−6 (30)
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[aw
b ]χbb ≃

(

α

4π

)(

mb

MZ

)2

(0.31 + 4.79i) × 10−4 = (4.69 + 72.5i) × 10−10 (31)

[aw
b ]Φbb ≃

(

α

4π

)(

mb

MZ

)2

(−1.86 − 5.98i; −1.43 − 1.95i; −0.91 − 0.92i) × 10−3 =

(−2.81 − 9.07i; −2.16 − 2.96i; −1.37 − 1.40i) × 10−9 (32)

[aw
b ]Wtt ≃

(

α

4π

)(

mb

MZ

)2

(−0.54) = (−0.81) × 10−6 (33)

[aw
b ]σtt ≃

(

α

4π

)(

mb

MZ

)2

(−0.71) = (−1.07) × 10−6 (34)

[aw
b ]tWW ≃

(

α

4π

)(

mb

MZ

)2

(−2.99) = (−4.53) × 10−6 (35)

[aw
b ]tσσ ≃

(

α

4π

)(

mb

MZ

)2

(−0.81) = (−1.22) × 10−6 (36)

[aw
b ]bZΦ = [aw

b ]bΦZ ≃
(

α

4π

)(

mb

MZ

)2

(0.57; 0.34; 0.22) =

(0.98; 0.52; 0.33) × 10−6 (37)

[aw
b ]tWσ = [aw

b ]tσW ≃
(

α

4π

)(

mb

MZ

)2

(0.17) = (2.59) × 10−7 (38)

where the values between parenthesis in Eqs. (32) and (37) correspond to MΦ

MZ
= 1, 2, 3.

The other values agreee with the result of Ref. [4] for the SM. We have taken the

Kobayashi-Maskawa matrix being unity (VIi = diag(1, 1, 1)) for numerical results.

Finally, the electroweak contribution to the b-AWMM is

aw
b (M2

Z) = [ −(1.1; 2.0; 2.4) + 0.2i] × 10−6, [MΦ = MZ , 2MZ , 3MZ ] (39)

An immediate consequence of these results is that the AWMM contribution to the

total electroweak width is very small. This is easily seen just by considering that the

ratio Γ(aw
b )/Γw

Tree is given by the interference with the AWMM amplitude.

Γ(aw
b )

Γw
Tree

≈ 6
swcwvb

v2
b + a2

b

Re(aw
b ) (40)
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Then, Eq. (39) shows that only approximately 1 over 106 parts of the width is given by

the electroweak contribution to the AWMM.

Contrary to what happened for the tau weak magnetic moment, where the lepton

vector neutral coupling was responsible for the suppression of the Higgs mass dependence,

we observe here that the mass of the physical Higgs has a sizeable effect on the final

electroweak magnetic moment (39) for the b-quark. For the selected range of MΦ, it

changes the real part of the AWMM in more than 100%. This is so because, as can

be seen from Eq. (37), the contribution of the bZΦ diagrams –Eqs. (15) and (16)– are

almost of the same order as the leading ones. Unfortunately, these effects will not be

observable because, as we will show in the following, the magnetic moment is dominated

by the QCD contributions.

In addition to the purely electroweak contributions to the AWMM of the b-quark

given above, we now consider the QCD contributions to ab. To lowest order, there is only

one relevant diagram of the type shown in Fig. 1: the one with α being now a gluon. The

evaluation of that diagram only differs from the γbb̄ diagram (Eq. (7)) in the couplings,

so that it is straightforward to find the result

[

aQCD
b

]gbb
=

αs

α

4

3Q2
b

[aw
b ]γbb =

(

αs

4π

)(

mb

MZ

)2 vb

swcw

8

3β

(

log
1 − β

1 + β
+ iπ

)

= (2.99 − 1.56i) × 10−4 (41)

with β =
√

1 − 4(mb/MZ)2 and αs = 0.117, which is in good agreement with the analyt-

ical expression found in Ref. [11], when expressed in terms of an AWMM.

The final value we get for the weak magnetic moment of the b-quark is then

ab(M
2
Z) = aw

b (M2
Z) + aQCD

b (M2
Z) = (2.98 − 1.56i) × 10−4 (42)

for MΦ = MZ .

Eqs. (39) and (41) show that even though different values of the Higgs mass mod-

ify considerably the purely electroweak AWMM, this effect does not translate into an

appreciable change of the total AWMM (for which only a 0.4% of variation is found if

MΦ moves from MZ to 3MZ) because the electroweak contribution is less than 1% (for

MΦ = 3MZ) of the total one.
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Due to the fact that there is no enhancement of the electroweak contributions coming

from the presence of a heavy top-quark, all the electroweak diagrams (except those already

mentioned with Higgs exchanged between two b’s) are of the same order, in particular

the γbb̄ diagram. Then, Eq. (41) leads to the conclusion that the QCD contribution is

two orders of magnitude bigger than the electroweak one. In fact, the next to leading

order contribution in perturbative QCD would be probably comparable to the computed

leading order in the electroweak sector.

For the c-quark, all the previous discussion holds, and one expects the electroweak

contribution to be of the order α
4π

(

mc

MZ

)2
. That is

aw
c (M2

Z) ≈ O

(

(

mc

mb

)2

aw
b (M2

Z)

)

≈ O
(

10−7
)

(43)

The one-loop QCD contribution will also be dominant, and its magnitude can be

easily computed from the analytic expression of Eq. (41), adapted to the c-quark. For

mc = 1.6 GeV, we get the value:

ac(M
2
Z) ≈ aQCD

c (M2
Z) =

αs

α

4

3Q2
c

[aw
c ]γcc = (−2.80 + 1.09i) × 10−5 (44)

3 Conclusions

We have calculated the electroweak contributions to the anomalous weak magnetic mo-

ment of the b-quark, within the Standard Model, and found that it is of the order 10−6.

One loop QCD contributions to the AWMM are dominant and increase its value to 10−4.

The result tells us that in the magnetic moment form factor: 1) the contributions from

new physics to the electroweak sector are hidden by the dominant strong interaction

contribution, 2) the Zbb̄ width is rather insensitive to electroweak contributions in the

AWMM sector, and 3) contrary to what happens for the charge radius form factor, non-

decoupling effects do not take place in the AWMM. The value of the AWMM for the

c-quark is also computed (up to first order in QCD) and it is, as expected, smaller than

that for the b-quark by a factor (mc/mb)
2 × vc/vb.
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