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Inherited retinal degenerations affecting both rod and cone photoreceptors constitute one of the causes
of incurable blindness in the developed world. Cyclic guanosine monophosphate (cGMP) is crucial in the
phototransduction and, mutations in genes related to its metabolism are responsible for different retinal
dystrophies. cGMP-degrading phosphodiesterase 6 (PDE6) mutations cause around 4e5% of the retinitis
pigmentosa, a rare form of retinal degeneration. The aim of this study was to evaluate whether phar-
macological PDE6 inhibition induced retinal degeneration in cone-enriched cultures of porcine retina
similar to that found in murine models. PDE6 inhibition was induced in cone-enriched retinal explants
from pigs by Zaprinast. PDE6 inhibition induced cGMP accumulation and triggered retinal degeneration,
as determined by TUNEL assay. Western blot analysis and immunostaining indicated that degeneration
was accompanied by caspase-3, calpain-2 activation and poly (ADP-ribose) accumulation. Oxidative stress
markers, total antioxidant capacity, thiobarbituric acid reactive substances (TBARS) and nitric oxide
measurements revealed the presence of oxidative damage. Elevated TNF-alpha and IL-6, as determined
by enzyme immunoassay, were also found in cone-enriched retinal explants treated with Zaprinast. Our
study suggests that this ex vivo model of retinal degeneration in porcine retina could be an alternative
model for therapeutic research into the mechanisms of photoreceptor death in cone-related diseases,
thus replacing or reducing animal experiments.

� 2013 Published by Elsevier Ltd.
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1. Introduction

Inherited retinal degeneration affecting both rod and cone
photoreceptors constitutes one of the causes of incurable blindness
in the developed world. Several genes causing these genetic dis-
eases have been identified including those involved in visual
phototransduction.

Visual phototransduction is the process by which light is con-
verted into electrical signals in the rod cells, cone cells and
, cyclic guanosine mono-
DP-ribose); PARP, poly (ADP-

go).
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photosensitive ganglion cells of the retina. The phototransduction
cascade occurs via a type of G-protein coupled receptors (GPCR)
called opsins, which contain the chromophore 11-cis retinal. When
struck by a photon, 11-cis retinal undergoes photoisomerization to
all-trans retinal, which changes the conformation of the opsinGPCR,
leading to transducing activation. Active transducing increases 30,
50,-cyclic guanosine monophosphate (cGMP) phosphodiesterase
activity (PDE6), thereby lowering the concentration of cGMP.
Decrease in cGMP concentration leads to the closure of cGMP-
regulated Naþ and Ca2þ ion channels, decreased influx of Naþ and
Ca2þ, hyperpolarization of membrane potential and decreased
glutamate release. Following isomerization and release from the
opsin protein, all-trans retinal generated during phototransduction
is reduced to all-trans retinol in the retinal pigmented epithelium
(RPE) and travels back to the rod outer segment where it can be
., et al., Phosphodiesterase inhibition induces retinal degeneration,
retina, Experimental Eye Research (2013), http://dx.doi.org/10.1016/
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conjugated again to opsin to form a new, functional visual pigment.
Rods and cones recover from excitation and recover their light-
sensitivity by both inactivating the PDE6 cascade and synthetizing
new cGMP by Ca2þ-sensitivemembrane guanylyl cyclases (RetGCs).
RetGCs are controlled by a calcium negative feedback through Ca2þ/
Mg2þ binding proteins, GCAPs (guanylyl cyclase activating proteins)
(Burns et al., 2002; Koch and Stryer, 1988). Alterations in any step of
the phototransduction cascade could lead to photoreceptor cell
death.

Cyclic GMP is essential for the ability of rods and cones to
respond to the light stimuli and the control of its level is critical for
proper functioning of photoreceptors. Mutations in genes involved
in cGMP synthesis (RetGCs and GCAPs) or degradation (PDE6)
(Chang et al., 2009; Dizhoor, 2000; Grau et al., 2011; Piri et al.,
2005; Hunt et al., 2010) can lead to various forms of retinal dys-
trophies such as some types of retinitis pigmentosa (Bowes et al.,
1990; McLaughlin et al., 1993), progressive cone dystrophy
(Thiadens et al., 2009), dominant cone degeneration (Behnen et al.,
2010; Jiang and Baehr, 2010), cone-rod dystrophy (Buch et al., 2011;
Sokal et al., 2005; Tucker et al., 1999) and Leber congenital amau-
rosis (Perrault et al., 2000, 1996).

Retinitis Pigmentosa (RP) is a common form of rod-cone dys-
trophy, constituting the largest Mendelian genetic cause of blind-
ness in the developed world. Patients with RP typically loose night
vision in adolescence, peripheral vision in young adulthood, and
central vision later in life due to progressive loss of rod and cone
photoreceptor cells. Photoreceptor cell death starts with rod
photoreceptor degeneration and eventually cone cell death that is
the major problem affecting RP patients, because it leads to loss of
central vision (Kalloniatis and Fletcher, 2004).

Mutations in genes encoding a and b-subunit of PDE6 have been
reported to cause recessive RP in humans (Corton et al., 2010; Dryja
et al., 1999; Huang et al., 1995; McLaughlin et al., 1995).
PDE6Anmf363/nmf363, PDE6Anmf282/nmf2823 (Sakamoto et al., 2009),
PDE6Brd1 and PDE6Brd10 mice are models of human autosomal
recessive RP that carry mutations on the a or the b-subunit of PDE6
(Bowes et al., 1990; Chang et al., 2002), that triggers photoreceptor
degeneration (Farber and Lolley, 1974; Paquet-Durand et al., 2009).
Others than the available murine models have been reported to
carry mutations in PDE6 subunits such as the canine models rcd1
and rcd2 (Petersen-Jones et al., 1999; Sargan et al., 1994; Suber
et al., 1993; Tuntivanich et al., 2008; Wang et al., 1999).

Although murine models provide invaluable information about
photoreceptor cell death, they present different eye size and
anatomic differences in retinal structures compared to humans; for
example, they lack macula and fovea. This is why the use of large
animal models seems to be critical for the development of retinal
rescue strategies (Stieger et al., 2009). Anatomically, the pig eye is
remarkably similar to the human eye and it is well-endowed with
cones (Gerke et al., 1995) especially, in a large horizontal band
extending across the retina covering the optic disc and horizontal
meridian (Hendrickson and Hicks, 2002). This relative abundance
of cones makes the porcine eye a good model for therapeutic
research into the mechanisms of photoreceptor degeneration in
cone-related diseases.

The mechanisms responsible for photoreceptor cell death still
remain unclear however, increasing evidence suggests that
oxidative stress (Komeima et al., 2006; Shen et al., 2005) and
inflammation (de Kozak et al., 1997; Yang et al., 2007; Yoshida
et al., 2013a,b) contribute to the pathogenesis of RP. Recently,
Yoshida et al. (2013a,b) have been found elevated inflammatory
mediators in the eye of rd10 mice and of patients with RP
including TNF-alpha.

This study investigated whether PDE6 inhibition produced
ex vivo retinal degeneration in cone-enriched cultures of porcine
Please cite this article in press as: Martínez-Fernández de la Cámara, C
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retina similar to the degeneration found in murine models of RP
with non-functional PDE6. Secondly, we assessed whether the
damage was accompanied with oxidative stress and induction of
inflammatory mediators.

We found that PDE6 inhibition triggered retinal degeneration
with caspase-3, calpain-2 activation and PAR accumulation (indi-
cator of PARP activity) and induced oxidative stress and cytokine
induction in cone-enriched cultures of porcine retina. These results
suggest that the cone-enriched organotypic culture of porcine
retina exposed to PDE inhibitor could be a complementary model
for therapeutic research into the mechanisms of retinal degenera-
tion, thus replacing or reducing animal experiments.

2. Materials and methods

2.1. Porcine retinal explant cultures

Sixty eyes (both left and right eye) from small miniature pigs 3e
7 months old were obtained from the local slaughterhouse. Neu-
roretina explants enriched in cones were carried out as previously
described (Fernandez-Bueno et al., 2008) with some modifications.
Briefly, each eyeball was immersed in 70% ethanol and washed in
Dulbecco’s Modified Eagle Medium (DMEM). All extraocular tissues
were removed and the sclera was punctured with a 22 gauge
needle at the ora serrata and bisected, dividing the ocular globe into
anterior and posterior eyecups. The vitreous was removed, and the
posterior eyecup was placed into a dish with phosphate buffer
saline (PBS). A paintbrush was used to mechanically detach the
neuroretina from the RPE, and the optic nerve was cut with
Westcott scissors. The visual streak with a high cone density
(Hendrickson and Hicks, 2002) was cut into 5 � 5 mm explants.
Explants were transferred to Transwell� culture dishes (Corning
Inc., Corning, NY) with photoreceptor side down, containing 1.5 mL
culture medium composed of Neurobasal A medium supplemented
with 2% B-27 (Invitrogen, Life Technologies, Madrid, Spain), 2mM L-
glutamine (Invitrogen, Life Technologies, Madrid, Spain), 100 U/mL
penicillin, and 100 ng/mL streptomycin (Invitrogen, Life Technolo-
gies, Madrid, Spain). Explants were cultured at 37 �C with 5% CO2 in
a humidified atmosphere. The culture medium level was main-
tained in contact with the support membrane beneath the explant.
Treatments were added the day of the culture andmaintained them
for 24 h or 48 h.

To evaluate the effect of PDE6 inhibition we used Zaprinast
(Zhang et al., 2005) (100, 200 and 500 nmol/L). Zaprinast (Sigmae
Aldrich, Madrid, Spain) was prepared in dimethyl sulfoxide (DMSO)
(AppliChem, Darmstadt, Germany). For controls, the same amount
of DMSO was added to the culture medium. Some retinal explants
were also exposed to 2 mmol/L A231187, a calcium ionophore, as
apoptotic inducer (SigmaeAldrich, Madrid, Spain).

Freshly detached neuroretinas were also obtained for normal
morphologic and biochemical evaluation.

2.2. Tissue processing and histology

For morphological characterization retinal explants were
fixed in 4% filtered paraformaldehyde (SigmaeAldrich, Madrid,
Spain) and 2.5% glutaraldehyde (Electron Microscopy Sciences,
Hatfield, UK) in 0.1 M PBS (pH 7.4) for 2 h. Afterwards explants
were post-fixed with 2% osmium tetroxide, rinsed, dehydrated and
embedded in Durcupan resin (Fluka, SigmaeAldrich, Madrid,
Spain). Semi-thin sections were cut at 1.5 mm, mounted on gelatin-
coated slides and stained with 1% toluidine blue. These sections
were examined under an Eclipse 80i microscope (NIKON In-
struments, Badhoevedorp, The Netherlands) and images were
captured with a DS-Qi1 digital camera (NIKON Instruments,
., et al., Phosphodiesterase inhibition induces retinal degeneration,
retina, Experimental Eye Research (2013), http://dx.doi.org/10.1016/
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Badhoevedorp, The Netherlands). ImageJ software was used to
quantify the thickness of the retinal explants. After calibration,
total area of at least three visual fields per retinal explant was
calculated. The total area was expressed as mm2. Data are
expressed as mean � SEM.

To evaluate apoptosis with the terminal deoxynucleotidil
transferase dUTP nick and labeling (TUNEL) assay, retinal explants
were fixed in 4% filtered paraformaldehyde (SigmaeAldrich,
Madrid, Spain) in 0.1 M PBS (pH 7.4) and cryoprotected in a sac-
charose gradient (15e20e30%) (Panreac Química, Barcelona,
Spain). Samples were frozen embedded in Tissue-Tek� O.C.T.�
Compound (Sakura Finetek Europe B.V., Zoeterwoude, The
Netherlands). Next, 10 mm sections were cut with a cryostat (Leica
CM1900, Nussloch, Germany) and placed on Super Frost Ultra Plus
treated slides (Thermo Scientific, Barcelona, Spain).
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2.3. TUNEL assay

The TUNEL assay was performed on 10 mm cryosections by
means of an in situ cell death detection kit conjugated with rhoda-
mine fluorochrome (ApopTag Red In Situ) (Millipore, Schwalbach,
Germany) according to the manufacturer’s instructions. The speci-
mens were examined under a Eclipse 80i microscope (NIKON In-
struments, Badhoevedorp, The Netherlands) and images were
captured with a DS-Qi1 digital camera (NIKON Instruments, Bad-
hoevedorp, The Netherlands). The apoptotic (TUNEL-positive)
nuclei per visual field were counted in at least three visual fields per
each retinal explant using NIS-Elements imaging software (NIKON
Instruments, Badhoevedorp, The Netherlands). The data were ana-
lysed quantitatively and, only cells with red intensity were consid-
ered TUNEL-positive. The number of apoptotic nuclei was
normalised to the SYTOX Green-labelled cell nuclei. Results are
given as percentage of apoptotic nuclei/total nuclei. Data are
expressed as mean � SEM.
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2.4. Immunofluorescence of Caspase-3 and PAR

Immunofluorescence was carried out on 10 mm cryosections.
Sections were post-fixed for 15 min at room temperature in 4%
filtered paraformaldehyde (SigmaeAldrich, Madrid, Spain) in
0.1 M PBS (pH 7.4). Sections were incubated for 1 h in blocking
solution containing 5% normal goat serum, 1% bovine serum al-
bumin and 0.25% Triton X-100. They were then incubated with
primary antibody against cleaved Caspase-3 (1:200, Cell Signaling
Technology, Barcelona, Spain) or PAR (poly-(ADP-ribose) (1:200,
Enzo Life Sicence, Madrid, Spain) overnight at 4 �C in blocking
solution. After washing with PBS three times, samples were
incubated for 1 h at room temperature with the fluorescence-
conjugated secondary antibody Alexa Fluor 647 (Invitrogen, Life
Technologies, Madrid, Spain). After washing with PBS three times,
sections observed under a confocal microscope (Leica TCS SP5
Confocal microscope, Leica Microsistemas S.L.U, Barcelona, Spain).
SYTOX Green (Molecular Probes, Paisley, UK) were used as a
specific nuclear counterstain. Cells were counted 40� magnifica-
tion, and the number of caspase-3 positive cells was counted
manually in four visual fields per each retinal explant. The number
of cells positive for the cleaved caspase-3 immunolabelling was
normalised to the SYTOX Green-labelled cell nuclei. Results are
given as percentage of caspase-3 positive cell/total nuclei. Data are
expressed as mean � SEM.

PAR positive cells were difficult to count in outer nuclear layer
(ONL). For the quantification of PAR immunostaining we used the
following formula to calculate the corrected fluorescence (CF) for
each cell layer: CF ¼ Integrated density of the selected area � (area
Please cite this article in press as: Martínez-Fernández de la Cámara, C
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of selected area�mean fluorescence of background) (Burgess et al.,
2010). Data are expressed as mean � SEM.

For co-localization with cleaved caspase-3 or PAR, staining was
followed by TUNEL staining.
2.5. Cyclic GMP determination

cGMP was measured by using the BIOTRAK cGMP enzyme
immunoassay kit (GE Healthcare Europe GmbH, Barcelona, Spain).
Retinal explants were homogenised in 5% trichloroacetic acid and
neutralized with 2 M potassium bicarbonate. Neutralized super-
natant was used for cGMP determination. Protein content was
measured by the bicinchoninic acid (BCA) protein assay (BCA Kit;
Pierce Scientific, CA). The tissue cGMP levels were expressed as
pmol/mg protein.
2.6. Caspase-3 activity assay

Caspase-3 activity was measured with a colorimetric tetrapep-
tide (DEVD-pNA) cleavage assay kit following the manufacturer’s
instructions (Bio-Vision, Mountain View, CA). Total retinal protein
was extracted from retinal explants and measured by the BCA
protein assay. Caspase-3 activity was expressed as arbitrary units
(au)/mg of protein.
2.7. Nitrites and nitrates (NOX) determination

Intracellular and extracellular nitrites (stable end-product of
NO) and nitrates (NOX) were measured in retinal explants by
spectrophotometric GRIESS reaction (El-Mlili et al., 2008) using
nitrate reductase. The tissue NOX levels were expressed as nmol/
mg protein (intracellular) or nmol/mL (extracellular).
2.8. Oxidative stress evaluation

Retinal explants were assayed for total antioxidant capacity
(TAC) and thiobarbituric acid reactive substances (TBARS) forma-
tion as indicator of malonyldialdehyde (MDA) formation.

Retinal explants were homogenized in 5 mM phosphate buffer
pH 7, 0.9% NaCl, 0.1% glucose, centrifuged at 10,000� g for 15min at
4 �C, and then the supernatants were used to determine TAC and
TBARS. Protein concentrations were measured by the BCA protein
assay.

TAC was measured using a commercial kit (Cayman Chemical,
Ann Arbor, MI) (Kowluru et al., 2006). The tissue TAC levels were
expressed as nmol/mg protein.

MDA levels were detected by a colorimetric method involving
thiobarbituric acid (TBA) adduct formation (Cayman Chemical, Ann
Arbor, MI). Tissue TBARS levels were expressed as nmol/mg protein.
2.9. TNF-alpha and IL-6 measurement

For detection of cytokine levels, retinal explants were homog-
enized in 20 mM TriseHCl pH 7.4, 10 mM EDTA containing protease
inhibitor cocktail (Complete Protease Inhibitor Cocktail; Roche,
Basel, Switzerland) and 200 mM phenylmethylsufloxifluoride
(PMSF). The TNF-a and IL-6 protein levels were estimated with the
corresponding ELISA kit (Diaclone, Besancon, France), according to
the manufacturers’ instructions. Tissue cytokine levels were
expressed as pg/mg protein.

Values for cGMP, caspase-3 activity, NOX, oxidative markers and
cytokines are given as the mean � SEM of at least ten different
cultures. For each experiment samples were measured in duplicate.
., et al., Phosphodiesterase inhibition induces retinal degeneration,
retina, Experimental Eye Research (2013), http://dx.doi.org/10.1016/
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2.10. Western blot

Retinal explants were homogenized in lysis buffer (50 mM Trise
HCl buffer pH 7.4 containing 50 mM NaCl, 5 mM EDTA, 1% SDS,
protease inhibitor cocktail (Complete Protease Inhibitor Cocktail;
Roche, Basel, Switzerland) and 1 mM PMSF). Samples (30 mg) were
subjected to electrophoresis and immunoblotting as described in
Corbalán et al. (2002). The following primary antibodies were used:
cleaved caspase-3 (Asp175) rabbit polyclonal antibody (1:1000, Cell
Signaling Technology, Danvers, MA, USA), calpain-2 rabbit poly-
clonal antibody (1:1000; SigmaeAldrich, Madrid, Spain); and
b-actin mouse monoclonal antibody (1:2000; SigmaeAldrich,
Madrid, Spain). The images were captured using an EPSON SCAN
from EPSON Corporation (EPSON IBERICA, Barcelona, Spain) and
quantified using the Alpha Imager 2200 (version 3.1.2) software
(AlphaInnotech Corporation, San Francisco, CA, USA).

2.11. Statistical analyses

For parametric data, ANOVA followed by NewmaneKeul’s post-
hoc test was used. When only two samples were compared the
Student’s t-test was used.

For non-parametric data, ManneWhitney test was used. Sig-
nificance levels were set at a ¼ 0.05.

3. Results

3.1. PDE inhibition triggers cGMP accumulation in cultured porcine
retina

Retinal explants were cultured for 48 h in the presence or
absence of Zaprinast, a selective PDE5/6 inhibitor which raises
intracellular cGMP levels in a concentration-dependent manner
and causes cGMP-dependent photoreceptor degeneration in small
animals closely resembling the rd1 degeneration (Sahaboglu et al.,
2010).

Successful PDE6 inhibition was confirmed by a significant cGMP
increase at all time points evaluated (Fig. 1). While untreated retina
essentially maintained the same level of cGMP, the Zaprinast-
treated retina showed a strong increase of cGMP accumulation at
24 h in a dose-dependent manner (1.72 � 0.3; 2.04 � 0.2,
2.78 � 0.27 pmol/mg protein at 100, 200 and 500 nmol/L respec-
tively, One-way ANOVA post-hoc NewmaneKeuls p < 0.05). Under
our experimental conditions, the effect of Zaprinast concentration
on cGMP accumulation disappeared at 48 h.

100 nmol/L Zaprinast was the lowest concentration that
induced a significant cGMP accumulation at 24 h and 48 h. In view
Fig. 1. PDE6 inhibition induces cGMP accumulation in cone-enriched cultures of
porcine neuroretina. Control retinal explants (C) or explants treated with 100 (Z100),
200 (Z200) or 500 (Z500) nmol/L Zaprinast were prepared as described in Materials
and methods. The levels of cGMP at different times in culture are shown. Values are
the mean � SEM of twelve cultures. Values significantly different from own control are
indicated by asterisks *p < 0.05, **p < 0.01 (ANOVA NewmaneKeuls post-hoc).
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of these results, 100 nmol/L seemed to be the best concentration of
Zaprinast for further studies.

3.2. Evaluation of organotypic retina cultures

Toluidine blue staining of semi-thin sections demonstrated that
the overall architecture of the cultured retina was maintained
throughout the culture period (Fig. 2A). However, morphometric
analysis revealed that explants treated with 100 nmol/L Zaprinast
were significantly thinner (47,915 � 2938 mm2, ManneWhitney
test, p < 0.01 and 33,129 � 1365 mm2, ManneWhitney test,
p < 0.05), compared with controls (58,940 � 861 mm2 and
42,000 � 2220 mm2) at 24 h and 48 h respectively (Fig. 2B). Zap-
rinast also decreased photoreceptor outer segments (OS) compared
to control explants (Fig. 2A).

3.3. PDE inhibition induces apoptosis in cultured porcine retina

The TUNEL assay was performed to measure the apoptotic cell
death in fresh isolated retinas, control explants and explants
treated with different Zaprinast concentrations (Fig. 3). While fresh
isolated retina did not present any apoptotic nuclei, control ex-
plants showed a few apoptotic nuclei (2.4 � 0.7% of TUNEL-positive
cells) after 24 h in culture.

TUNEL staining demonstrated that inhibition of PDE induced
photoreceptor degeneration overall after 48 h of Zaprinast treat-
ment. As shown in Fig. 3A and Table 1, apoptotic nuclei were found
in outer nuclear layer (ONL), in inner nuclear layer (INL) and also in
the ganglionar layer (GCL) at the lower dose of Zaprinast (100 nmol/
L). The major effect was observed in ONL (4.6 � 1.3% of apoptotic
cells, ManneWhitney test, p< 0.0001). Moreover, Zaprinast caused
significant increase of TUNEL-positive cells (ANOVA test, post-hoc
NewmaneKeuls, p < 0.05) after 24 h in a concentration-
dependent manner (Fig. 3B).

As shown in Fig. 3 control explants showed low numbers of
TUNEL-positive cells after 24 h in culture (2.4 � 0.7% of apoptotic
cells) but, this number increased across the whole retinal explant
(ONL, INL and GCL) after 48 h (6.7� 1.0% of apoptotic cells). This cell
death was consequence of retinal detachment and culturing time.

To further investigate the impact of PDE inhibition on down-
stream effectors of cell death, we analysed the activity of caspase-3,
and activation of calpain-2.

After 24 h, caspase-3 activity (Fig. 4A) and protein content of
cleaved caspase-3 (Fig. 4B) were further up regulated in retina
treated with 100 nmol/L Zaprinast (2.4 � 0.1 au/mg protein and
2.1 � 0.4 fold over control retina respectively, student t-test,
p < 0.05). This up regulation was maintained at 48 h (2.4 � 0.2 au/
mg protein and 2.7 � 0.8 fold over control retina, student t test,
p < 0.05). Immunofluorescence of cleaved caspase-3 revealed
that PDE inhibition significantly up regulated caspase-3 in INL
(2.6 � 0.3% of caspase-3 positive cells, p < 0.0005) and GCL
(1.7 � 0.2% of caspase-3 positive cells, p < 0.01) but not in ONL
(0.3 � 0.1% of caspase-3 positive cells), after 24 h in culture (Table 1
and Fig. 4C). Control explants also showed up regulation of caspase-
3 mainly in GCL after 48 h.

Western blot analysis showed that PDE6 inhibition also induced
calpain-2 activation (Fig. 4D). A Ca2þ ionophore, A231187, was used
to confirm calpain-2 activation.

Strong activation of poly(ADP-ribose) polymerase (PARP) has
been found in animal models of retinal degeneration with subse-
quent accumulation of poly(ADP-ribose) (PAR) polymers (Paquet-
Durand et al., 2007; Kaur et al., 2011). Excessive PARP activation
may contribute to caspase-independent photoreceptor death
(Paquet-Durand et al., 2007; Kaur et al., 2011). To investigate
indirectly PARP activity in Zaprinast-treated explants, we
., et al., Phosphodiesterase inhibition induces retinal degeneration,
retina, Experimental Eye Research (2013), http://dx.doi.org/10.1016/



Fig. 2. PDE6 inhibition reduces retinal thickness of cone-enriched cultures of porcine neuroretina. Control retinal explants or Zaprinast-treated retinal explants were prepared as
described in Materials and methods. (A) Light micrographs from toluidine blue-stained semi-thin sections of control and 100 nmol/L Zaprinast-treated retinal explants. Abbre-
viations: OS (outer segment); outer nuclear layer (ONL); inner nuclear layer (INL); ganglion cell layer (GCL). (B) Quantitative analysis of retinal thickness. Control (C); 100 nmol/L
Zaprinast (Z100). Values are the mean � SEM of six different cultures. Values that are significantly different from own control are indicated by asterisks *p< 0.05 (ANOVA Newmane
Keuls post-hoc).
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performed PAR immunostaining. PDE6 inhibition significantly
increased accumulation of poly(ADP-ribosyl)ated proteins in ONL
(23,744 � 5304 corrected fluorescence, ManneWhitney test,
p < 0.05) compared to control (7497 � 722 corrected fluorescence)
after 24 h in culture (Table 1).

To determine whether cleaved caspase-3 or PAR co-localize with
TUNEL-positive cells, we performed double labelling (Fig. 5). In
Zaprinast-treated explants PAR immunostaining co-localized to a
Please cite this article in press as: Martínez-Fernández de la Cámara, C
oxidative stress and inflammation in cone-enriched cultures of porcine
j.exer.2013.03.015
large extent with TUNEL-positive cells in GCL and ONL. A few
number of cells in INL also co-localizedwith PAR. However, caspase-
3 positive cells did not co-localize with TUNEL-positive cells except
for a subset of cells in INL. Moreover, double-immunostaining of
caspase-3 and PAR reflected co-localization in a subset of cells in GCL
and INL. Caspase-3 activation occurs mainly in INL and it may
partially contribute to cell death in this cell layer.Moreover, caspase-
3 activation also occurs in GCL and could contribute to the future cell
., et al., Phosphodiesterase inhibition induces retinal degeneration,
retina, Experimental Eye Research (2013), http://dx.doi.org/10.1016/



Fig. 3. PDE6 inhibition induces apoptosis in cone-enriched cultures of porcine neuroretina. Control retinal explants or Zaprinast-treated retinal explants were prepared as described
in Materials and methods. (A) Photomicrographs of TUNEL-stained sections visualizing apoptotic photoreceptors (red) and total cell nuclei (green) in control and 100 nmol/L
Zaprinast-treated explants. Scale bar: 50 mm. (B) Zaprinast induced apoptosis in a dose-dependent manner (100, 200, 500 nmol/L) after 24 h in culture. Values are the mean � SEM of
eight different cultures. Values significantly different (p < 0.05) from Z100 are indicated by ‘a’. Values that are significantly different from own control are indicated by asterisks
*p < 0.05 (ANOVA NewmaneKeuls post-hoc). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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death. Taking together, these results suggest that PDE6 inhibition
probably induces cell death by caspase-independent mechanisms
(PARP activity) in ONL and GCL and by caspase-dependent and
caspase-independent mechanisms in INL.

3.4. PDE inhibition induces oxidative stress and cytokine production
in cultured porcine retina

It has been described that cGMP accumulation induces oxidative
stress in murine models of retinal degeneration (Sharma and
Rohrer, 2007). To explore whether PDE inhibition also induced
oxidative damage in cultured porcine retina we measured: intra-
cellular and extracellular nitrites formation (iNOX and eNOX) as
Table 1
Effect of Zaprinast on cell death markers in porcine retinal explants.

Layer TUNEL-positive cells (%) Caspase-3 posi

C Z100 C

ONL 0.43 � 0.13 4.55 � 1.3*** 0.08 � 0.03
INL 0.92 � 0.20 2.40 � 0.40** 0.29 � 0.09
GCL 0.71 � 0.15 2.66 � 0.44** 0.82 � 0.27

Note: ManneWhitney test was used. Values different from control are shown by *p < 0.0
ganglionar nuclear layer; C: control; Z100: 100 nM Zaprinast; CF: corrected fluorescence

Please cite this article in press as: Martínez-Fernández de la Cámara, C
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measurement of nitric oxide, TBARS formation as indicator of lipid
peroxidation and total antioxidant capacity (Fig. 6).

At 24 h, PDE6 inhibition enhanced iNOX levels compared with
control (48 � 4 nmol/mg protein and 30 � 2 nmol/mg protein,
respectively, student t-test, p < 0.05). As culturing time moved for-
ward eNOX level also increased compared to control (47 � 3 nmol/
mL and 36 � 2 nmol/mL, respectively, student t-test, p < 0.05)
(Fig. 6A).

MDA concentration was determined by the thiobarbituric acid
(TBA) assay, which measures the amount of TBA reactivity with
MDA formed during the acid hydrolysis of lipid peroxide com-
pound. Addition of 100 nmol/L Zaprinast caused a rapid increase of
lipid peroxide TBA value compared with control at 24 h
tive cells (%) PAR content (CF)

Z100 C Z100

0.28 � 0.06 7497 � 722 23,744 � 5304*
2.64 � 0.34*** 7019 � 1163 9640 � 2380
1.72 � 0.24** 9891 � 2011 10,413 � 2301

5, **p < 0.01, ***p < 0.0005. ONL: outer nuclear layer; INL: inner nuclear layer; GCL:
.

., et al., Phosphodiesterase inhibition induces retinal degeneration,
retina, Experimental Eye Research (2013), http://dx.doi.org/10.1016/
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Fig. 4. PDE6 inhibition activates caspase-3 and calpain-2 in cone-enriched cultures of porcine neuroretina. Control retinal explants or Zaprinast-treated retinal explants were
prepared as described in Materials and methods. (A) Caspase-3 activity using the substrate DEVD-pNA in homogenates of control retinal explants or explants treated with Zaprinast
(100 nmol/mL). Values are the mean � SEM of twelve cultures. (B and D) Retinal homogenates (30 mg of protein) were subjected to electrophoresis and cleaved caspase-3 (B) and
calpain-2 (D) activation were analysed by immunoblotting. The intensities of the bands were quantified, normalized respect to internal control (b-actin) and the values are rep-
resented as fold over control. Values significantly different from own control are indicated by asterisks *p < 0.05 (paired student t-test). (C) Evaluation of caspase-3 activation with
cleaved caspase-3 staining in frozen sections; scale bar, 50 mm. Q5
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(3.9� 0.4 nmol/mg protein and 2.0� 0.2 nmol/mg protein, student
t-test, p < 0.05), remaining elevated at 48 h (4.8 � 0.5 nmol/mg
protein, student t-test, p < 0.05 (Fig. 6B).

The overall antioxidant capacity of retinal explants treated with
100 nmol/L Zaprinast, decreased at 24 h and 48 h (174�12 mmol/mg
protein and 156 � 9 mmol/mg protein respectively, student t-test,
p < 0.05), compared to control retinal explants (225 � 21 mmol/mg
protein and 192 � 14 mmol/mg protein, respectively) (Fig. 6B).

TNFa and IL-6 are upregulated in several inflammatory ocular
diseases, including AdamantiadeseBehcet disease (Durrani et al.,
2007), retinal vascular tumours (Japiassú et al., 2008), neo-
vascular age-related macular degeneration (Seddon et al., 2005),
uveitis (Murray et al., 1990), and retinitis pigmentosa (Yoshida et al.,
2013a,b).We assessedwhether 100 nmol/L Zaprinast induced these
pro-inflammatory mediators in porcine retinal explants (Fig. 6C).

PDE inhibition induced a significant long-lasting upregulation of
TNF-alpha at 24 h and 48 h (49.6 � 10.2 pg/mg protein and
50.8 � 5.6 pg/mg protein, respectively, student t-test, p < 0.05)
compared to control (26.6 � 3.6 pg/mg protein and 24.5 � 2.9 pg/
mg protein, respectively).

At 24 h PDE inhibition also produced IL-6 up regulation
(6.5 � 1.8 pg/mg protein, student t-test, p < 0.05) compared to
control (3.1 � 0.4 pg/mg protein).

4. Discussion

Mutations in genes related to cGMP metabolism as RetGC,
GCAPs or PDE6 are involved in several retinal dystrophies including
Please cite this article in press as: Martínez-Fernández de la Cámara, C
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j.exer.2013.03.015
retinitis pigmentosa. Between 4 and 5% of patients with retinitis
pigmentosa present PDE6 mutations leading to non-functional
enzyme.

There is a lot of interest in using the pig as a model of retinal
disease and stem cell transplantation therapy due to its resem-
blance to human retina. However, transgenic pigs are expensive
and difficult to manage. Porcine organotypic culture of the retina is
a choice that could allow us to evaluate the effect of new thera-
peutic drugs on some retinal changes faster and cheaper than
in vivo and has the additional advantage of reducing animal ex-
periments. These organotypic cultures were originally developed to
follow cellular and cytoskeletal changes during the culture period
(Allamby et al., 1997; Winkler et al., 2002) and more recently to
study retinal detachment (Fernandez-Bueno, 2008; Fisher and
Lewis, 2003). Here we evaluated whether PDE6 inhibition pro-
duced retinal degeneration in enriched-cone cultures of porcine
retina.

Firstly, we assessed whether this porcine model reproduces the
retinal degeneration observed in small animals after PDE inhibition.
Our results showed that PDE inhibition induced cGMP accumula-
tion accompanied by retinal degeneration. These results corrobo-
rated those found in small animals both in vivo and in vitro
(Sahaboglu et al., 2010; Vallazza-Deschamps et al., 2005).
Sahaboglu et al. (2010) demonstrated that Zaprinast caused cGMP-
dependent photoreceptor degeneration closely resembling the rd1
degeneration observed inmurine retinal explants. In the rd1mouse
the high levels of cGMP increase the number of the cGMP-gated
channels in the open state, thus allowing intracellular calcium
., et al., Phosphodiesterase inhibition induces retinal degeneration,
retina, Experimental Eye Research (2013), http://dx.doi.org/10.1016/



Fig. 5. PDE6 inhibition induced different cell markers in cone-enriched cultures of porcine neuroretina. Double-immunostaining of control retinal explants or explants treated with
Zaprinast (100 nmol/mL) were prepared as described in Materials and methods. (A) Double staining of TUNEL assay and PAR. (B) Double staining of TUNEL assay and cleaved
caspase-3. (C) Double staining of PAR and cleaved caspase-3; scale bar: 50 mm. Images A3, B3 and C3 were obtained after zooming (factor ¼ 3) with Leica TCS SP5 Confocal
microscope.
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(Ca2þ) to rise to toxic levels and leading to rapid photoreceptor
degeneration (Fox et al., 1999). Several studies have pursued
to reverse the effects of PDE6 loss function by blocking cGMP-
gate channel (Vallazza-Deschamps et al., 2005), Ca2þ channel
(Nakazawa, 2011) or PKG activity (Paquet-Durand et al., 2009). All
these treatments reduced photoreceptor cell death.

We reported that sustained elevation of intracellular cGMP in
porcine retinal explants triggered different downstream effectors of
cell death related to caspase-dependent mechanisms (caspase-3)
and caspase-independent mechanisms (calpain-2 and probably
PARP activity, measured as PAR accumulation). In 661W cells in-
hibition of PDE, increases the intracellular Ca2þ that in turns acti-
vates the cysteine protease calpain, which executes apoptosis via
modulation of caspase-3 activity (Sharma and Rohrer, 2004). Cas-
pase activation occurs mainly through the extrinsic and intrinsic
pathways (Bredesen et al., 2006). Although caspase-3 inhibitors
have been transiently effective in delaying retinal degeneration
through inhibition of the apoptosis of photoreceptor cells in rd
gene-carrying mice (Yoshizawa et al., 2002), the role of caspases in
inherited retinal degeneration is controversial (Doonan et al., 2003;
Sanges et al., 2006; Zeiss et al., 2004). Recent studies have shown
that several caspase-independent inducers of cell death such as AIF
(apoptosis-inducing factor), calpains, PARP are activated during
Please cite this article in press as: Martínez-Fernández de la Cámara, C
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retinal degeneration (Kaur et al., 2011; Paquet-Durand et al., 2010;
Sanges et al., 2006). In our model caspase-3 activation seems to be
involved in part of cell death in INL but neither in GCL nor ONL.
However, co-localization of PAR accumulationwith TUNEL-positive
cells suggests that caspase-independent mechanisms are involved
in cell death in ONL and GCL. It is important to highlight that
although TUNEL is used as an apoptotic marker, it also can detect
non-apoptotic DNA fragmentation, e.g. in necrosis (Grasl-Kraupp
et al., 1995). Taken together, these findings suggest the involve-
ment of multiple death signalling mechanisms (caspase-dependent
and caspase-independent mechanisms) in retinal cell death after
PDE6 inhibition in porcine retina.

We have described that PDE inhibition induced the inflamma-
tory mediators TNF-alpha and IL-6 in porcine retina. Elevated levels
of these two inflammatory mediators have been recently described
in the eye of patientswith RP and rd10mice (Yoshida et al., 2013a,b).
TNF-alpha or IL-6 have been also observed in other eye diseases,
including uveitis, proliferative vitreoretinopathy, retinal detach-
ment and age-relatedmacular degeneration (El-Ghrably et al.,1999;
Klein et al., 2008; Nakazawa et al., 2011). TNF-a is likely secreted
from activated macrophages, astrocytes, microglial cells and retinal
Müller glial cells. It has been described that TNF-alpha has cytotoxic
effects on photoreceptors (Nakazawa et al., 2006, 2011). TNF-alpha
., et al., Phosphodiesterase inhibition induces retinal degeneration,
retina, Experimental Eye Research (2013), http://dx.doi.org/10.1016/



Fig. 6. PDE inhibition triggers oxidative stress and cytokine production cone-enriched cultures of porcine neuroretina. Control retinal explants or explants treated with Zaprinast
(100 nmol/mL) were prepared as described in Materials and methods. (A) Effect of Zaprinast on nitric oxide formation (measurement of nitrites and nitrates (NOX)). Intracellular
(iNOX) and extracellular nitrites and nitrates (eNOX) were measured by Griess reaction. (B) Effect of Zaprinast on the total antioxidant capacity and malonyldialdehyde formation
(TBARS formation). (C) Effect of Zaprinast on TNF-alpha and IL-6 content. Each sample was measured in duplicate, and the values are the mean � SEM of twelve cultures. Values
significantly different from own control are indicated by asterisks *p < 0.05, **p < 0.01 (paired student t-test).
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can trigger several well-characterized death-promoting (caspase-
dependent and caspase-independent cell death) and survival-
promoting pathways, depending upon the predominating signal-
ling pathway in the particular cell type (Maianski et al., 2003). TNF-
alpha binding to cell surface receptors such as TNF receptor 1 me-
diates activation of initiator caspases (caspase-8, caspase-10), and
finally triggers cleavage of effector caspases (extrinsic pathway of
cell death) (Nagata, 1997). TNF-alpha binding to cell surface re-
ceptors may also elicit anti-apoptotic responses mediated by the
activation of the NF-kB pathway.

Several evidence shows that TNF-alpha is also involved in the
intrinsic pathway of cell death that is initiated by cellular and DNA
damage and particularly employs mitochondria. TNF-alpha and
other stimuli can reduce the mitochondrial transmembrane
Please cite this article in press as: Martínez-Fernández de la Cámara, C
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potential resulting in release of mitochondrial factors such as cy-
tochrome c or AIF. AIF rapidly translocates frommitochondria to the
nucleus and induces nuclear fragmentation and cell death by
autophagic degeneration (Suo et al., 2010; Munemasa et al., 2010;
Tezel and Yang, 2004; Lorenzo et al., 1999; Daugas et al., 2000). The
translocation of AIF has been implicated in several types of
neuronal death, including photoreceptor and ganglion cell death
(Hisatomi et al., 2001; Mizukoshi et al., 2010; Thapa et al., 2012;
Sanges et al., 2006). Inhibition of nuclear AIF translocation delays
retinal degeneration of RCS rats, a model of retinitis pigmentosa
(Murakami et al., 2008).

PARP-1 activation in response to excessive DNA damage triggers
the release of AIF from mitochondria and promotes PARP-1-
dependent cell death or parthanatos. AIF is a high-affinity PAR-
., et al., Phosphodiesterase inhibition induces retinal degeneration,
retina, Experimental Eye Research (2013), http://dx.doi.org/10.1016/



3

C. Martínez-Fernández de la Cámara et al. / Experimental Eye Research xxx (2013) 1e1210

1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215

1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280

YEXER6134_proof ■ 12 April 2013 ■ 10/12
binding protein. PAR-binding by AIF is required for its release from
the mitochondria, translocation to the nucleus, and cell death
(Wang et al., 2011). PARP activation and PAR accumulation have
been linked to mitochondrial death and AIF translocation to the
nucleus in photoreceptor cell death in rd1 mice (Paquet-Durand
et al., 2007).

The other inflammatory mediator upregulated in these cultures,
IL-6 is a pleiotropic cytokine with a role in inflammation, angio-
genesis, cell differentiation and neuronal survival. In the retina, IL-6
is synthesized by Müller cells and the RPE (Benson et al., 1992;
Yoshida et al., 2001). A neuroprotective role for IL-6 has been
suggested in different animal models of ocular injury, in vitro
studies, retinal vein occlusion, diabetic macular oedema and
experimental glaucoma (Chong et al., 2008; Funatsu et al., 2009;
Noma et al., 2009) suggesting that IL-6 upregulation after injury
may serve to control photoreceptor apoptosis (Chong et al., 2008).

Retinal degeneration induced by PDE inhibition was accompa-
nied by oxidative stress in porcine retina. Retina is normally pro-
tected from oxidative damage by the presence of enzymes such as
superoxide dismutase and catalase (De La Paz et al., 1996). Photo-
receptors, which are the predominant cell type in the retina, are
particularly susceptible to free radical damage or lipid peroxidation
(Osborne and Wood, 2004), because retinal photoreceptor mem-
branes have an unusually high concentration of docosahexaenoic
acid. Oxidative damage is a major factor contributing to cone cell
death after the death of rods has occurred (Komeima et al., 2006;
Shen et al., 2005). The increased levels of oxygen (hyperoxia), after
death of rods result in progressive oxidative damage to cones in a
transgenic pig model of RP and in multiple mouse models,
including models of recessive and dominant RP. Antioxidant
treatments can scavenger reactive oxygen species and promote
cone survival and function (Komeima et al., 2006). In our study, we
demonstrated the elevation of NO (NOX), which may increase
peroxynitrite via the reaction the superoxide radical (Pryor and
Squadrito, 1995). NO is an important regulator of homeostatic
processes in the eye and its over-expression could contribute to
pathological conditions in RP (Komeima et al., 2008).

We hypothesize that cGMP accumulation induces oxidative
stress that probably induces microglial activation, as described in rd
mice, that in turns upregulates TNF-alpha contributing to the cell
death. TNF-alpha can activate different cell death pathways
including caspase-3, and PARP. On the other hand, cGMP accumu-
lation leads to calcium influx and calpain activation. We believe
that PDE6 inhibition activates more than one apoptotic pathway
(caspase-dependent and caspase-independent) as occurs in other
experimental models of retinal degeneration (Gómez-Vicente et al.,
2005; Kaur et al., 2011). Moreover, our findings suggest that
different retinal cell types follow different apoptotic pathways.

In summary, PDE6 mutations induce retinal degeneration in
small animal models (rd1, rd and rd10 mice), but eye size and
anatomic differences suggest that should be useful to have alter-
native models for studying retinal rescue strategies or design new
drugs intended for humans. Porcine eyes are closer in size to human
eyes and have a rich supply of rod and cones. Our organotypic
culture of porcine cone-enriched retina exposed to Zaprinast may
provide a helpful model to design and assay some treatments thus
replacing or reducing animal experiments.

However, this kind of culture has its own limitations. Organo-
typic cell culturing involves transaction of the optic nerve and
mechanical retinal detachment causing photoreceptor loss and
retrograde retinal ganglion cell degeneration. To minimize this
problem, use of detached samples as controls is necessary. In the
future, we aim at improving the viability of organotypic cell cul-
tures, although it is difficult to culture retinal neurons for long
periods perhaps due to the high energy requirements of the retina.
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