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E-46100 Burjassot, València (Spain)
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Abstract

We present a computation of the charge and the magnetic moment of the neu-
trino in the recently developed electro-weak Background Field Method and in the
linear RL

ξ gauge. First, we deduce a formal Ward-Takahashi identity which implies
the immediate cancellation of the neutrino electric charge. This Ward-Takahashi
identity is as simple as that for QED. The computation of the (proper and im-
proper) one loop vertex diagrams contributing to the neutrino electric charge is also
presented in an arbitrary gauge, checking in this way the Ward-Takahashi iden-
tity previously obtained. Finally, the calculation of the magnetic moment of the
neutrino, in the minimal extension of the Standard Model with massive Dirac neu-
trinos, is presented, showing its gauge parameter and gauge structure independence
explicitly.
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1 Introduction

The one-loop calculation of the neutrino electric charge (NEC) and the neutrino magnetic
moment (NMM) in the Standard Model (SM) [1] turns out to be one of the simplest
calculations beyond tree level and consequently a convenient ground where one can test
methods and compare techniques.

The background field method (BFM) was first introduced by DeWitt [2] in the context
of Quantum Gravity as a formalism for quantizing gauge field theories while retaining
explicit gauge invariance at one-loop. The multi-loop extension of the method was given
by ’t Hooft [3], DeWitt [4], Boulware [5], Abbott [6], Rebhan and Wirthumer [7]. Using
this extension of the BFM, explicit two-loop calculations of the β function for pure Yang-
Mills theory were made first in the Feynman gauge by Ichinose and Omote [8], and later
in the general gauge by Capper and MacLean [9].

The electro-weak version of the BFM was introduced by Denner, Weiglein and Dittmaier
[10, 11]. In this version the gauge invariance of the BFM effective action implies simple
(QED-like) Ward-Takahashi (WT) identities for the vertex function which, as a conse-
quence, possess desirable theoretical properties like an improved high-energy behaviour.
The BFM gauge invariance not only admits the usual on-shell renormalization but even
simplifies its technical realization. Moreover, the formalism provides additional advan-
tages such as simplifications in the Feynman rules and the possibility to use different
gauges for tree and loop lines in Feynman diagrams, allowing to reduce the number of
graphs.

For these reasons this paper is devoted to the presentation of the calculation of the
NEC and the NMM in the BFM as well as in the linear RL

ξ with the aim of making a useful
comparison of the two methods. General expressions carrying the full dependence in q2,
masses and gauge parameter are necessary to see how the form factor we are interested
in get rid of divergent (infinite) parts and gauge parameter dependences. The paper is
devoted to the analysis of how the cancellation among the different contributions occur.

The paper is organized as follows. In Section 2 we get the cancellation of the NEC
by building a WT identity in the BFM and using other WT identity which is proved in
Appendix A. In Section 3 we calculate the NEC in the BFM and in the linear RL

ξ gauge
by an explicit calculation of the contributing Feynman diagrams. In Section 4 a similar
calculation is presented for the NMM. This work is part of a most general one in the
search for gauge independent form factors. Appendix B contains news relations between
the scalar three point functions C0 and B0, useful for the calculation.

2 Ward-Takahashi Identity in the BFM

The most general Lorentz invariant decomposition of the ννγ vertex is given by [12, 13, 14]
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Mµ = < νl(p
′ )|Jem

µ |νl(p) > = i ūl(p
′ )

{

FNEC(q2, ξ) γµ − i
FNMM(q2, ξ)

2me

σµνq
ν

}

ul(p) , (1)

where q = p−p′, ξ is the gauge parameter, l refers to one of the leptonic families e, µ, or τ
and FNEC(q2, ξ) and FNMM(q2, ξ) are, respectively, the Dirac and Pauli form factors of the
neutrino. At zero momentum transfer they define the NEC and the NMM, respectively.

In the calculations presented in this paper, ξ is the gauge parameter of the W boson,
ξW
Q in the BFM and ξW in the linear RL

ξ gauge. In both cases this is the only gauge
parameter in our formulas. We explicitly keep track of this gauge parameter in order to
be able to discuss later the problem of defining gauge independent form factors in a more
general context.

We now proceed to consider the one-loop Feynman diagrams that contribute to the
ννγ proper vertex. Using the Feynman rules for the BFM, given in Appendix A of Ref.
[11], one immediately finds that only four diagrams contribute to this vertex (Figs. 1a
to 4a). This is a typical feature of the non-linear structure of the BFM gauge fixing
terms. In the linear RL

ξ gauge there are six proper vertex diagrams as discussed in Ref.
[17]. With the integral expressions for these four diagrams at zero momentum transfer
we derive then a WT identity for the NEC following the analysis made in the non linear
RNL

ξ gauge [15, 16]. The vertex shown in Fig. 1a can be written, in the limit of zero
momentum for the photon, as
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Figure 1: a) Neutrino vertex Λϕll
µ (p, 0, p). b) Neutrino self-energy

∑ϕl(p).

Λϕll
µ (p, 0, p) =

e3m2
l

2s2
W M2

W

∫

d4k

(2π)4
ω+SF (k + p)γµSF (k + p)∆F (k)ω− , (2)

where the superscript labels the particles in the loop, SF (k + p) and ∆F (k) are the
propagators of the fermion and scalar field respectively, and the ω± are the chirality
projectors. Let us now consider the diagram shown in Fig. 1b. The self-energy is given
by
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∑ϕl
(p) =

e2m2
l

2s2
W M2

W

∫

d4k

(2π)4
ω+∆F (k)SF (k + p)ω− . (3)

From Eq. (2) and (3) the identity

− e
∂
∑ϕl(p)

∂pµ
= Λϕll

µ (p, 0, p) , (4)

follows. Similarly, the vertex of diagram 2a is given by

'(k � p) '(k � p)

�
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Figure 2: a) Neutrino vertex Λϕϕl
µ (p, 0, p). b) Neutrino self-energy

∑ϕl(p).

Λϕϕl
µ (p, 0, p) = − e3m2

l

2s2
W M2

W

∫

d4k

(2π)4
ω+∆F (k − p)[2(k − p)µ]∆F (k − p)SF (k)ω− , (5)

and the corresponding self-energy diagram 2b is

∑ϕl
(p) =

e2m2

2s2
WM2

W

∫

d4k

(2π)4
ω+∆F (k − p)SF (k)ω− , (6)

so that they satisfy the identity

e
∂
∑ϕl(p)

∂pµ
= Λϕϕl

µ (p, 0, p) . (7)

Considering Eqs. (4) and (7) we see that the contributions to the vertex function of
diagrams 1a and 2a cancel each other. This is also the case in the RL

ξ gauge, where the
diagrams shown in Fig. 1 and 2 (with the change γB → γ) lead to relations similar to
those of equations (4) and (7).

The other two diagrams that contribute to the vertex involve a W internal line. For
the vertex shown in Fig. 3a we obtain

ΛWll
µ (p, 0, p) = − e3

2s2
W

∫

d4k

(2π)4
γαω−SF (k + p)γµSF (k + p)γβDW

αβ(k)ω− , (8)
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Figure 3: a) Neutrino vertex ΛWll
µ (p, 0, p). b) Neutrino self-energy

∑Wl(p).

where DW
αβ(k) is the propagator of the W boson. The corresponding part of the self-energy

of the neutrino (diagram 3b) is then

∑Wl
(p) = − e2

2s2
W

∫

d4k

(2π)4
γαω−DW

αβ(k)γβSF (k + p)ω− . (9)

From Equations (8) and (9), it is straightforward to get the identity

− e
∂
∑Wl(p)

∂pµ
= ΛWll

µ (p, 0, p) , (10)

which is a relation similar to that obtained in the RL
ξ gauge.

The last contribution to the proper vertex, Fig. 4a, involves the non Abelian vertex
γBWW . It is given by

W (k � p) W (k � p)

�

l

(p) �

l

(p)

l(k)
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Figure 4: a) Neutrino vertex ΛWWl
µ (p, 0, p). b) Neutrino self-energy

∑Wl(p).

ΛWWl
µ (p, 0, p) =

e2

2s2
W

∫

d4k

(2π)4
γαω−ΓWÂW

αβµ (k − p, 0, k − p)γβSF (k)ω− , (11)

where we have defined
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ΓWÂW
αβµ (k − p, 0, k − p) ≡ eDW

αα′(k − p)V WÂW
α′β′µ [−(k − p), 0, (k − p)]DW

ββ′(k − p) , (12)

with V WÂW
αβµ being the ÂWW -coupling of a background field Â with two W’s quantum

fields (its explicit form can be found in Eqs. (A.33) and (A.34) of Ref. [11]). Using the

contracted vertex ΓWÂW
αβµ defined in equation (12) it is possible to prove the WT identity

− e
∂DW

αβ(l)

∂lµ
= ΓWÂW

αβµ (l, 0, l), (13)

where l = k − p. This formula is crucial for the computation because it relates the
quantum W’s fields with the background Â field and can not be obtained by the usual
derivative procedure of the functional generator. Equation (13) is formally the same as
Eq. (5) in Ref. [15] for the non linear RNL

ξ gauge. The proof of this WT identity is given
in Appendix A.

Taking now into account that the corresponding contribution to the self-energy (dia-
gram 4b) is

∑Wl
(p) = − e2

2s2
W

∫

d4k

(2π)4
γα ω−DW

αβ(k − p)γβSF (k)ω− , (14)

with the help of the WT identity (13), it is easy to prove the relation

e
∂
∑Wl(p)

∂pµ
= ΛWWl

µ (p, 0, p) , (15)

so that the contributions of diagrams 3 and 4 cancel each other again. The relation shown
in Eq. (15) doesn’t exist in the linear RL

ξ gauge.
With only these four diagrams the cancellation of the NEC is not obtained in the RL

ξ

gauge. There are two additional diagrams involving the γWϕ vertex plus one improper
diagram (transverse part of γZ self-energy) that should be considered. Only then one

obtains [17] QRL
ξ

ν = 0, in an obvious notation. In the BFM the last self-energy also exists,
but its contribution to the NEC vanishes [see Eq. (34) in Ref. [11]] because the transverse
part of the γBZB self-energy is zero.

In the BFM the four proper vertices at zero momentum transfer, satisfy the relation

Λϕll
µ + Λϕϕl

µ + ΛWll
µ + ΛWWl

µ = 0 , (16)

which implies the vanishing of the NEC,

QBF M

ν = F BF M

NEC

(

0, ξW
Q

)

= 0 . (17)

The proof of the exactly cancellation of the electro-magnetic proper neutrino vertex
at one-loop, is a consequence of the most general WT identity (see Eq. (36) in the Ref.
[11]) valid to all orders in perturbation theory.
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a b

c d

Figure 5: Vertex contributions to the NEC and NMM in the BFM.

3 Neutrino Electric Charge, Explicit Calculation

In this section we present a complete calculation of the neutrino electric charge using:
a) the BFM and b) the usual formulation in the linear RL

ξ gauge . In both cases the
calculation is done for arbitrary q2 of the photon and carrying all the gauge dependence
on the ξ parameter [18, 19]. Cancellation of the gauge dependence, in the q2 → 0 limit,
will be explicitly shown, using an expansion of the different contributions to the Dirac
form factor around q2 = 0.

3.1 Calculation in the BFM

The proper diagrams contributing to the NEC are given in Fig. 5. Using the Feynman
rules of the electroweak BFM [11] and after some algebra one finds for the Dirac form
factor defined in Eq. (1), at q2 = 0, the following contributions:

Qνl

∣

∣

∣

BF M

F ig.5a
= F BF M

NEC

(

q2 = 0, ξW
Q

)∣

∣

∣

F ig.5a
= − αem2

l

64πM2
W s2

W

(

M2
W − m2

l ξ
W
Q

)2
×

{

(

M2

W − m2

l ξ
W
Q

)(

M2

W − 3m2

l ξ
W
Q

)

+ 2
(

ξW
Q

)2

m4

l B0 (0; m2

l , m
2

l )

+2M2

W

(

M2

W − 2m2

l ξ
W
Q

)

B0

(

0;
M2

W

ξW
Q

,
M2

W

ξW
Q

)}

;

(18)
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Qνl

∣

∣

∣

BF M

F ig.5b
= F BF M

NEC

(

q2 = 0, ξW
Q

)∣

∣

∣

F ig.5b
= − αe

32π(m2
l − M2

W )2s2
W ξW

Q

(

M2
W − m2

l ξ
W
Q

)2
×

{

3M2

W m2

l ξ
W
Q

(

M2

W − m2

l ξ
W
Q

)2

B0 (0; M2

W , M2

W )

+m4

l ξ
W
Q

[

− 2ξW
Q m4

l + M2

W

(

− 3
(

ξW
Q

)2

+ 4ξW
Q + 3

)

m2

l + 2M4

W

(

2ξW
Q − 3

)]

B0 (0; m2

l , m
2

l )

−M2

W

(

2M2

W − m2

l ξ
W
Q

)

(m2

l − M2

W )2B0

(

0;
M2

W

ξW
Q

,
M2

W

ξW
Q

)

−
[

−ξW
Q m4

l +M2

W

(

−3
(

ξW
Q

)2

+ ξW
Q +2

)

m2

l +M4

W

(

3ξW
Q −2

)]

(m2

l −M2

W )
(

M2

W −m2

l ξ
W
Q

)

}

;

(19)

Qνl

∣

∣

∣

BF M

F ig.5c
= F BF M

NEC

(

q2 = 0, ξW
Q

)∣

∣

∣

F ig.5c
= −Qνl

∣

∣

∣

BF M

F ig.5a
; (20)

Qνl

∣

∣

∣

BF M

F ig.5d
= F BF M

NEC

(

q2 = 0, ξW
Q

)
∣

∣

∣

F ig.5d
= −Qνl

∣

∣

∣

BF M

F ig.5b
. (21)

Notice that we have kept explicitly the gauge dependence in all equations. From Eqs.
(18-21) it obviously follows that the NEC vanishes,

QBF M

νl
= Qνl

∣

∣

∣

BF M

F ig.5a
+ Qνl

∣

∣

∣

BF M

F ig.5b
+ Qνl

∣

∣

∣

BF M

F ig.5c
+ Qνl

∣

∣

∣

BF M

F ig.5d
= 0, (22)

in agreement with the result (17), obtained using the Ward-Takahashi identity.
Expressions (18-21) have been obtained applying a Taylor expansion, around q2 = 0,

to the complete contribution of each diagram. The complete contribution of all diagrams
to the F BF M

NEC

(

q2, ξW
Q

)

form factor is given in [20]. To obtain these formulae we have made
use of the new relations between scalar three point function, C0, and two point functions
B0, given in Appendix B.

With these formulae it is easy to prove for the complete form factor that again

QBF M

νl
= lim

q2→0

F BF M

NEC

(

q2, ξW
Q

)

= 0 . (23)

7



a b c

d e f

Figure 6: Vertex contributions to the NEC and NMM in the linear RL
ξ gauge.

3.2 Calculation in the linear RL
ξ gauge

The proper vertices contributing to the NEC in the linear RL
ξ gauge are those given in

Fig. 6. Notice that there are two diagrams that do not appear in the BFM. A procedure
similar to that used in the previous subsection leads to the following result:

Qνl

∣

∣

∣

RL
ξ

F ig.6a
= F

RL
ξ

NEC(q2 = 0, ξW )
∣

∣

∣

F ig.6a
= F BF M

NEC

(

q2 = 0, ξW
Q → ξW

)∣

∣

∣

F ig.5a
; (24)

Qνl

∣

∣

∣

RL
ξ

F ig.6b
= F

RL
ξ

NEC(q2 = 0, ξW )
∣

∣

∣

F ig.6b
= F BF M

NEC

(

q2 = 0, ξW
Q → ξW

)∣

∣

∣

F ig.5b
; (25)

Qνl

∣

∣

∣

RL
ξ

F ig.6c
= F

RL
ξ

NEC(q2 = 0, ξW )
∣

∣

∣

F ig.6c
= F BF M

NEC

(

q2 = 0, ξW
Q → ξW

)∣

∣

∣

F ig.5c
; (26)

Qνl

∣

∣

∣

RL
ξ

F ig.6d
= F

RL
ξ

NEC(q2 = 0, ξW )
∣

∣

∣

F ig.6d
=

αe

64π(m2
l − M2

W )2s2
W (M2

W − m2
l ξW )(1 − ξW )ξW

×
{

[5m2

l (ξW + 1) + M2

W (ξW − 5)](m2

l − M2

W )(M2

W − m2

l ξW )(1 − ξW )

+ 6[m2

l (1 + ξW ) − 2M2

W ]m4

l (1 − ξW )ξWB0 (0; m2

l , m
2

l )

8



+ 6[m2

l (1 − 2ξW ) + M2

W ξW ]M2

W (M2

W − m2

l ξW )ξWB0 (0; M2

W , M2

W )

− 6M2

W (m2

l − M2

W )2B0

(

0;
M2

W

ξW

,
M2

W

ξW

)}

; (27)

Qνl

∣

∣

∣

RL
ξ

F ig.6e
= F

RL
ξ

NEC(q2 = 0, ξW )
∣

∣

∣

F ig.6e
=

Qνl

∣

∣

∣

RL
ξ

F ig.6f
= F

RL
ξ

NEC(q2 = 0, ξW )
∣

∣

∣

F ig.6f

=
αe

64π(m2
l − M2

W )s2
W (M2

W − m2
l ξW )2(1 − ξW )

×
{

− m2

l (m
2

l − M2

W )(M2

W − m2

l ξW )(1 − ξW )

+ ξW [m2

l (3ξW + 1) − 4M2

W ]m4

l (1 − ξW )B0 (0; m2

l , m
2

l )

+3ξWm2

l (M
2

W − m2

l ξW )2B0(0; M2

W , M2

W )

+ ξW [m2

l (2ξW + 1) − 3M2

W ]m2

l (m
2

l − M2

W )B0

(

0;
M2

W

ξW

,
M2

W

ξW

)}

. (28)

Therefore, as in the BFM, the contributions from the diagrams 6a and 6c cancel each
other, but the sum of the contributions of the diagrams 6b, 6d, 6e and 6f does not vanish.
However, there exists an important relation between BFM and RL

ξ gauge

F BF M

NEC

(

q2 = 0, ξW
Q → ξW

)
∣

∣

∣

F ig.5d
= F

RL
ξ

NEC(q2 = 0, ξW )
∣

∣

∣

F ig.6d

+ F
RL

ξ

NEC(q2 = 0, ξW )
∣

∣

∣

F ig.6e
+ F

RL
ξ

NEC(q2 = 0, ξW )
∣

∣

∣

F ig.6f
+
∑RL

ξ

γZ

(29)

where
∑

RL
ξ

γZ is the bosonic contribution of the transverse part of the γZ self-energy (im-
proper vertex) [17, 21], shown in Fig. 7 . This self-energy is computed in [20] for arbitrary
q2 and, from there, we obtain

∑RL
ξ

γZ
=

e
∑γZ

T (q2 = 0, ξW )

4sW cWM2
Z

=
αe

64πs2
W ξW (1 − ξW )

×

{

(5ξW + 1)(1 − ξW ) − 6ξ2

WB0(0; M2

W , M2

W ) + 2(2ξW + 1)B0

(

0;
M2

W

ξW

,
M2

W

ξW

)}

.

(30)
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Figure 7: Improper vertex contribution to the NEC in the linear RL
ξ gauge.

Summing up all these contributions one get an equation for the NEC which is formally
the same as that given in Eq. (22), so that

QRL
ξ

νl = Qνl

∣

∣

∣

RL
ξ

F ig.6a
+ Qνl

∣

∣

∣

RL
ξ

F ig.6b
+ Qνl

∣

∣

∣

RL
ξ

F ig.6c

+Qνl

∣

∣

∣

RL
ξ

F ig.6d
+ Qνl

∣

∣

∣

RL
ξ

F ig.6e
+ Qνl

∣

∣

∣

RL
ξ

F ig.6f
+
∑RL

ξ

γZ
= 0 .

(31)

4 Neutrino Magnetic Moment

4.1 Computation in the BFM and the linear RL
ξ gauge

In the minimal extension of the Standard Model (SM), in which a right handed neutrino
for each family is added, a neutrino magnetic moment (NMM) arises naturally. We shall
compute it here, both in the BFM and the RL

ξ gauge, considering massive Dirac neutrinos
with no flavor mixing [22]. It is given by the Pauli form factor of Eq. (1),

µνl
= lim

q2→0

F
BF M;RL

ξ

NMM (q2, mνl
, ξ) . (32)

As in the previous section the contributing diagrams are given in Fig. 5 for the BFM
and in Fig. 6 for the linear RL

ξ gauge. We thus obtain

µνl
|BF M

F ig.5a
= µνl

∣

∣

∣

RL
ξ

F ig.6a
=

emνl
GF

4π2
√

2

{

5ξ

12
x + · · ·

}

, (33)

µνl
|BF M

F ig.5b
= µνl

∣

∣

∣

RL
ξ

F ig.6b
=

emνl
GF

4π2
√

2

{

2

3
+ x

[

5ξ

3
− 1

2
+ ξ

(

log x + log ξ
)

]

+ · · ·
}

, (34)

10



µνl
|BF M

F ig.5c
= µνl

∣

∣

∣

RL
ξ

F ig.6c
=

emνl
GF

4π2
√

2

{

− xξ

[

5

3
+ log x + log ξ

]

+ · · ·
}

, (35)

µνl

∣

∣

∣

RL
ξ

F ig.6d
=

emνl
GF

4π2
√

2

{

1

12

(

7 − 5xξ
)

+ · · ·
}

, (36)

µνl

∣

∣

∣

RL
ξ

F ig.6e
= µνl

∣

∣

∣

RL
ξ

F ig.6f
=

emνl
GF

4π2
√

2

{

1

8

(

1 − x
)

+ · · ·
}

, (37)

µνl
|BF M

F ig.5d
= µνl

∣

∣

∣

RL
ξ

F ig.6d
+ µνl

∣

∣

∣

RL
ξ

F igs.6e+6f
=

emνl
GF

4π2
√

2

{

5

6
− x

[

1

4
+

5ξ

12

]

+ · · ·
}

, (38)

where GF is the Fermi constant, x = m2
l /M

2
W and the expressions are given up to second

order in the x expansion. As we can see, the contributions from diagrams 5a, 5b and 5c
are the same in the BFM and in the linear RL

ξ gauge (just by changing ξW
Q → ξW ), and the

sum of the contributions of diagrams 6d, 6e and 6f is equal to the contribution of figure
5d (with the same substitution in the gauge parameter). The dependence in the gauge
parameter ξ is explicitly shown in the formulae. The cancellation of the gauge parameter
is then obtained after summing up all contributions. However, to leading (first) order
in mν , each diagram separately is finite, as well as gauge parameter and gauge structure
(linear or not linear) independent. In this limit we recover the well know expression of
the neutrino magnetic moment (NMM) [23]

µνl
=

3emνl
GF

8π2
√

2
. (39)

Even in the RL
ξ gauge, there are no contributions to the magnetic anomaly coming from

the γZ self-energy.

The exact expressions for the form factor F
BF M;RL

ξ

NMM (mνl
, ξ) (at q2 = 0) to all orders in

x is given in [20]. From there and using the relations of Appendix B one gets the exact
expression

F
BF M;RL

ξ

NMM (mνl
) =

αe

4π

3mνl

4s2
W (m2

l − M2
W )2

×

{

m4
l − 5m2

l M
4
W + 2M4

W

2M2
W

+
m4

l [B0(0; M2
W , M2

W ) − B0 (0; m2
l , m

2
l )]

m2
l − M2

W

}

,

(40)

where the cancellation of the gauge dependence has been made evident. Using now the
expression of the scalar two point function, B0, one gets [22]

F
BF M;RL

ξ

NMM (mνl
) = −emνl

GF

4π2
√

2

{

3[x3 + 2(log x − 3)x2 + 7x − 2]

4(1 − x)3

}

, (41)

that at leading order in x coincides with Eq. (39).
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5 Conclusions

We have calculated the neutrino electric charge in the background field method and in
the linear RL

ξ gauge for arbitrary values of the gauge fixing parameters. In the BFM
it has been obtained in two different ways: a) making use of the usual Ward-Takahashi
identities for self-energy and vertex one loop diagrams in addition to a new one, deduced
for the non Abelian vertex of a background field Â and two quantum W’s fields (WÂW );
and b) by computing explicitly the contributing diagrams and checking in this way the
WT identities. In the linear RL

ξ gauge more diagrams have to be taken into account,
including the improper vertex. Therefore the BFM enjoys the simplicity of theories with
nonlinear gauge fixing terms: fewer diagrams and simple WT identities. We have found
that, as expected, both methods lead to the same result, namely: the neutrino electric
charge vanishes.

For Dirac massive neutrinos, we have calculated the magnetic moment in both BFM
and RL

ξ gauge, reproducing known results at leading order in ( m1

MW
). We have established

the diagrammatic correspondence between the two methods and the gauge parameter
cancellations. Finally, we showed its gauge parameter and gauge structure independence
explicitly.
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Appendix A. Ward Takahashi identity with a

background photon and two W’s quantum fields

When the momentum of the background photon is zero, the vertex can be written as [see
Eqs. (A.33) 3 from Ref. [11]]

V WÂW
α′β′µ (−l, 0, l) = −ie

[

− 2lµgα′β′ +
(

1 − ξW
Q

)

gµα′ lβ′ +
(

1 − ξW
Q

)

gβ′µlα′

]

. (A.1)

Contracting the vertex tensor (A.1) with the W ′s quantum propagators we get

3NOTE: We make the change ξW
Q → 1/ξW

Q in the original Feynman [11] rules for future applications.
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ΓWÂW
αβµ (l, 0, l) = e











(

1 − ξW
Q

)

(gµαlβ + gβµlα) − 2gαβlµ
(

l2 − M2
W

)2

−
(

1 − ξW
Q

)

θl2(gαµlβ + gµβlα)
(

l2 − M2
W

)2(

l2 − M2
W

ξW
Q

)
+

4θlαlβlµ
(

l2 − M2
W

)2(

l2 − M2
W

ξW
Q

)

−
2
(

1 − ξW
Q

)

θlαlβlµ
(

l2 − M2
W

)2(

l2 − M2
W

ξW
Q

)
− 2ξW

Q θ2l2lαlβlµ
(

l2 − M2
W

)2(

l2 − M2
W

ξW
Q

)2















, (A.2)

where we have defined

θ ≡ 1 − 1

ξW
Q

. (A.3)

On the other hand, the derivative of the boson propagator W is

−e
∂DW

αβ(l)

∂lµ
= e











−θ(lαgµβ + lβgµα)
(

l2 − M2
W

)(

l2 − M2
W

ξW
Q

) − 2lµgαβ
(

l2 − M2
W

)2

+
2θlαlβlµ

(l2 − M2
W )
(

l2 − M2
W

ξW
Q

)







1
(

l2 − M2
W

) +
1

(

l2 − M2
W

ξW
Q

)

















, (A.4)

so that the comparison of (A.2) and (A.4) gives

−e
∂DW

αβ(l)

∂lµ
= ΓWÂW

αβµ (l, 0, l) . (A.5)

Appendix B. Scalar one loop integrals.

We present in this Appendix all the scalar one-loop integrals that we encountered in the
calculation of the NEC and NMM [24, 25]. The one-loop integrals A0, B0 and C0 are not
independent in special kinematical situations [21, 26, 27, 28].

• One-point function:

A0(m
2) = m2

(

∆ − log
m2

µ2
+ 1

)

with ∆ =
2

ǫ
− γE + log 4π , (B.1)

and where γE is the Euler-Mascheroni’s constant.
• Two-point functions:
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B0(0; m2, m2) = ∆ − log
m2

µ2
; B0(0; 0, m2) = B0(0; m2, m2) + 1 ;

B0(0; 0, m2) = B0(m
2; 0, m2) − 1 ; A0(m

2) = m2B0(0; 0, m2) ;

B0(m
2; 0, m2) = B0(0; m2, m2) + 2 ; A0(m

2) = m2[1 + B0(0; m2, m2)] ;

(m2

1 − m2

2)B0(0; m2

1, m
2

2) = A0(m
2

1) − A0(m
2

2) ;

B0(q
2; m2

1, m
2

2) = B0(0; m2

1, m
2

2)

+
q2

2(m2
1 − m2

2)
2

{

(m2

1 + m2

2)[1 + B0(0, m
2

1, m
2

2)] − [A0(m
2

1) + A0(m
2

2)]
}

+
q4

6(m2
1 − m2

2)
4

{

m4

1 + 10m2

1m
2

2 + m4

2

+ 3(m2

1 + m2

2)
{

(m2

1 + m2

2)B0(0; m2

1, m
2

2) − [A0(m
2

1) + A0(m
2

2)]
}

}

+ O(q6) , (B.2)

• Three point functions [29]:

C0(0, q
2, 0; m2, M2, M2) =

1

m2 − M2

{

B0(0; M2, m2) − B0(0; M2, M2)
}

− q2

12M2(m2 − M2)4

{

(m2 − M2)(2m4 + 5M2m2 − M4)

+ 6M2m4
[

B0(0; m2, m2) − B0(0; M2, M2)
]}

− q4

180M4(m2 − M2)6

{

(m2 − M2)(3m8 − 27M2m6 − 47M4m4 + 13M6m2 − 2M8)

− 60M4m6
[

B0(0; m2, m2) − B0(0; M2, M2)
]}

+ O(q6) ;

C0(r
2, 0, r2; m2, M2, M2) =

1

(m2 − M2)2

{

(m2−M2)+m2
(

B0(0; m2, m2)−B0(0; M2, M2)
)}
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+
r2

2(m2 − M2)4

{

5m4 − 4M2m2 −M4 +2(m4 +2M2m2)
[

B0(0; m2, m2)−B0(0; M2, M2)
]}

+
r4

3(m2 − M2)6

{

10m6 + 9M2m4 − 18M4m2 − M6

+3(m6 + 6M2m4 + 3M4m2)
[

B0(0; m2, m2) − B0(0; M2, M2)
]}

+ O(r6) ;

C0(0, q
2, 0; m2

1, m
2

2, m
2

3) =
1

m2
2 − m2

1

{

B0(0; m2

3, m
2

2) − B0(0; m2

3, m
2

1)
}

− q2

2

{

B0(0; m2
1, m

2
1)m

4
1

(m2
1 − m2)2(m2

1 − m2
3)

2
+

m2
1m

2
2 − 2m2

3m
2
2 + m2

1m
2
3

(m2
1 − m2

2)(m
2
1 − m2

3)(m
2
2 − m2

3)
2

− B0(0; m2
2, m

2
2)m

2
2(m

4
2 + m2

3m
2
2 − 2m2

1m
2
3)

(m2
1 − m2

2)
2(m2

2 − m2
3)

3
− B0(0; m2

3, m
2
3)m

2
3(−m4

3 − m2
2m

2
3 + 2m2

1m
2
2)

(m2
1 − m2

3)
2(m2

2 − m2
3)

3

}

+
q4

3

{

B0(0; m2
1, m

2
1)m

6
1

(m2
1 − m2

2)
3(m2

1 − m2
3)

3
− B0(0; m2

2, m
2
2)m

2
2

(m2
1 − m2

2)
3(m2

2 − m2
3)

5

[

m8

2 +(3m4

1−9m2

2m
2

1 +4m4

2)m
2

3m
2

2

+ (3m4

1−3m2

2m
2

1+m4

2)m
4

3

]

+
B0(0; m2

3, m
2
3)m

2
3

(m2
1 − m2

3)
3(m2

2 − m2
3)

5

[

3m2

2(m
2

2+m2

3)m
4

1−3m2

2m
2

3(m
2

2+3m2

3)m
2

1

+ m4

3(m
4

2 +4m2

3m
2

2 +m4

3)
]

− 1

2(m2
1 − m2

2)
2(m2

1 − m2
3)

2(m2
2 − m2

3)
4

[

(m4

2 +10m2

3m
2

2 +m4

3)m
6

1

− 3(m2

2 + m2

3)(m
4

2 + 4m2

3m
2

2 + m4

3)m
4

1 + m2

3(m
6

2 + 40m2

3m
4

2 − 11m4

3m
2

2 + 6m6

3)m
2

1

−2m6

3(10m4

2 − 5m2

3m
2

2 + m4

3)
]

}

+ O(q6) ;

C0(r
2, 0, r2; m2

1, m
2

2, m
2

3) =
m2

1B0(0; m2
1, m

2
1)

(m2
1 − m2

2)(m
2
1 − m2

3)
− m2

2B0(0; m2
2, m

2
2)

(m2
1 − m2

2)(m
2
2 − m2

3)
+

m2
3B0(0; m2

3, m
2
3)

(m2
1 − m2

3)(m
2
2 − m2

3)

+ r2

{

3m4
1 − m2

2m
2
1 − m2

3m
2
1 − m2

2m
2
3

2(m2
1 − m2

2)
2(m2

1 − m2
3)

2
+

m2
1

(m2
2 − m2

3)

[

m2
3B0(0; m2

3, m
2
3)

(m2
1 − m2

3)
3

− m2
2B0(0; m2

2, m
2
2)

(m2
1 − m2

2)
3

]
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+
m2

1

(

m6
1 − 3m2

2m
2
3m

2
1 + m2

2m
4
3 + m4

2m
2
3

)

B0(0; m2
1, m

2
1)

(m2
1 − m2

2)
3(m2

1 − m2
3)

3

}

+ r4

{

m2
1

(m2
2 − m2

3)

[

m2
3(m

2
1 + m2

3)B0(0; m2
3, m

2
3)

(m2
1 − m2

3)
5

− m2
2(m

2
1 + m2

2)B0(0; m2
2, m

2
2)

(m2
1 − m2

2)
5

]

+
m2

1B0(0; m2
1, m

2
1)

(m2
1 − m2

2)
5(m2

1 − m2
3)

5

[

m12

1 + m2

2m
10

1 + m2

3m
10

1 − 15m2

2m
2

3m
8

1

+10m2

2m
4

3m
6

1 + 10m4

2m
2

3m
6

1 − 5m2

2m
6

3m
4

1 + 5m4

2m
4

3m
4

1 − 5m6

2m
2

3m
4

1

+m2

2m
8

3m
2

1 − 4m4

2m
6

3m
2

1 − 4m6

2m
4

3m
2

1 + m8

2m
2

3m
2

1 + m4

2m
8

3 + m6

2m
6

3 + m8

2m
4

3

]

+
1

6(m2
1 − m2

2)
4(m2

1 − m2
3)

4

[

14m10

1 − 5m2

2m
8

1 − 5m2

3m
8

1 + 4m4

2m
6

1 + 4m4

3m
6

1

−60m2

2m
2

3m
6

1 − m6

2m
4

1 − m6

3m
4

1 + 39m2

2m
4

3m
4

1 + 39m4

2m
2

3m
4

1 − 10m2

2m
6

3m
2

1

−6m4

2m
4

3m
2

1 − 10m6

2m
2

3m
2

1 − m4

2m
6

3 − m6

2m
4

3

]

}

+ O(r6) ;

C0(0, q
2, 0; m2, m2, m2) = − 1

2m2

[

1 +
q2

12m2
+

q4

90m4
+ O(q6)

]

;

C0(r
2, 0, r2; m2, m2, m2) = − 1

2m2

[

1 +
r2

6m2
+

r4

30m4
+ O(r6)

]

. (B.3)
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