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abstract

We calculate the prediction for the anomalous weak-magnetic form factor

of the tau lepton at q2 = M2
Z within the Standard Model. With all par-

ticles on-shell, this is a electroweak gauge invariant quantity. Its value is

aw
τ (M2

Z) = − (2.10 + 0.61 i) × 10−6. We show that the transverse and nor-

mal components of the single-tau polarization of tau pairs produced at e+e−

unpolarized collisions are sensitive to the real and absorptive parts of the

anomalous weak-magnetic dipole moment of the tau. The sensitivity one can

achieve at LEP in the measurement of this dipole moment is discussed.

http://arXiv.org/abs/hep-ph/9411289v2


1 Introduction

The anomalous magnetic dipole moments of the electron and muon provide very precise

tests of quantum electrodynamics. The Standard Model predictions can also be con-

fronted with these properties. In particular, τ -physics still offers an open window to

surprises.

In this paper we calculate, within the Standard Model, the one loop anomalous weak-

magnetic moment (AWMM) of the τ lepton at the energy scale of the Z, and find a

way to measure it. We show that for e+ e− −→ τ+τ− unpolarized scattering at the

Z-peak, the transverse (within the collision plane) and normal (to the collision plane)

single τ polarizations are very sensitive to the real and imaginary parts of the anomalous

weak-magnetic (aw
τ (M2

Z)) dipole form factor, respectively. We discuss our results as a

background in order to separate this signal in the search for new physics.

Polarization measurements are accessible for the τ by means of the energy and angular

distribution of its decay products. The angular distribution of the τ -polarization, mea-

sured at LEP [1], contains separate information [2, 3, 4] on both the average polarization,

measuring parity violation in the Z − τ+ − τ− vertex, and the Z-polarization, measuring

parity violation in the Z − e+ − e− vertex. The information on the Z − e+ − e− vertex

is also available from the cross section asymmetry for longitudinally polarized beams [5],

as measured by SLD. This allows a test of neutral current universality and, within the

Standard Model, a precise determination of sin2 θw. No other component of the single

τ -polarization is allowed in the Standard Model for unpolarized beams, in the limit of

zero-mass fermions.

For the e+e− −→ τ+τ− process at the Z-peak, the spin density matrix of the produced

τ pairs has single τ -polarization terms that translate into the energy and angular distri-

bution of the decay products. One can try to isolate a weak-magnetic dipole moment

term, looking for observables sensitive to this property in the spin density matrix of the

τ pairs. This kind of studies was done by the Heidelberg group [6, 7, 8] in order to isolate

the real and absorptive parts of a weak-electric dipole moment from spin correlations in
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e+e− −→ τ+τ− decay products. The τ weak-magnetic moment was also investigated in

[9] by looking to forward and backward transverse asymmetries.

In Ref.[10] it has been demonstrated that the single transverse and normal τ polar-

ization terms contain separate information about the (real part of the) weak-magnetic

and weak-electric dipole moments, respectively.

In this paper, with the help of the angular distribution of the hadronic decay prod-

ucts acting as analyzers of the spin components [11, 12, 13, 14], we explicitly construct

asymmetries that can be used as observables in the measurement of the anomalous weak-

magnetic form factor at q2 = M2
Z . In particular, we show how the transverse and normal

components of the single τ -polarization provide information about the real and imaginary

parts of the weak-magnetic form factor aw
τ (M2

Z).

In section 2 we calculate the Standard Model prediction for the one loop correction

to the τ anomalous weak-magnetic form factor at q2 = M2
Z . This magnitude measures

the weak-magnetic coupling Z − τ − τ . We show that its value is essentially determined

by the ratio of the square of the fermion mass to the weak-boson mass. Furthermore, it

is governed by both kinds of diagrams present and not present in the photon vertex case.

A very tiny dependence on the Higgs mass is obtained.

In section 3 we show that aw
τ (M2

Z) can be measured by using the transverse and

normal polarization of single τ ’s. We extend our previous study on the dipole moments

of Ref.[10], so as to include the absorptive part of AWMM. We find that the normal

polarization of single τ ’s is sensitive to the absorptive part of AWMM. Finally, we discuss

the sensitivity that can be achieved at LEP in the measurement of this form factor. The

appendix contains some of the definitions and formulas we have used in the computation.

2 Anomalous weak-magnetic moment

In this section we calculate the Standard Model prediction for the anomalous weak-

magnetic form factor ( aw
τ (M2

Z) ) of the τ lepton at q2 = M2
Z . This is an order α

electroweak radiative correction to the weak magnetic moment. The matrix element of
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the vector neutral current coupled to the Z is written, using Lorentz covariance, in the

form

ū(p−) V µ(p−, p+) v(p+) = ū(p−)

[

v(q2)γµ

2swcw
+ i

aw
τ (q2)

2mτ
σµηqη

]

v(p+) (1)

where q = p− + p+, e is the proton charge and sw, cw are the weak mixing angle sine

and cosine, respectively. The first term v(q2) is the Dirac vertex (or charge radius) form

factor and it is present at tree level with a value v(q2) = 1

2
− 2 s2

w, whereas the second

form factor only appears due to quantum corrections. Only the on-shell vertex with

q2 = M2
Z is entitled to be electroweak gauge invariant in the Standard Model. aw

τ can

have contributions from both new physics or electroweak radiative corrections to the

Standard Model. We calculate the leading Standard Model contribution to aw
τ . One-

loop contributions are formally of order α, but the magnitude of each diagram is in fact

also governed by the weak-boson or Higgs mass-factors like m2
τ

M2
Z

or m2
τ

M2
Φ

. We compute

τ τ +−

Ζ
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ττ − −

Ζ 0

+

−
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τ τ +−

Ζ
0

σ −+
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+τ τ−
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0

σ+σ
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τ τ−
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+τ τ−
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ν

WW
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−

τ τ +−
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0

ττ − −
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τ τ +−

Ζ
0
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Figure 1: Contributing Feynman diagrams to aw
τ in the t’Hooft-Feynman gauge that

are also present for the anomalous magnetic moment (photon vertex) in the electroweak
theory.

the AWMM in the t’Hooft-Feynman gauge, where no ambiguities in the finite parts are
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present [15]. In principle, there are 14 diagrams to compute, 6 of which are not present

in the photon vertex case. The eight diagrams that have a photon analogue are shown

in figure 1, and the new ones are shown in figure 2. All contributions are written as:

−τ −τ

−τ

0

+τ τ−

Ζ
0

ZΦ

τ τ +−

Ζ
0

ν ν

W
-

τ τ +−

Ζ
0

σ −

ν ν

τ +−

Ζ
0

Z Φ0

τ

τ −

τ τ +

Ζ
0

τ τ +−

Ζ
0

−

Φ Φχ χ

Figure 2: Contributing Feynman diagrams to aw
τ in the t’Hooft-Feynman gauge that are

not present in the anomalous magnetic moment case.

aABC =
α

4π

m2
τ

M2
Z

∑

ij

cijIij
ABC (2)

where A, B and C are the particles circulating in the loop, counting clockwise in

the diagrams from the particle between the two fermion lines, cij are coefficients, and

Iij
ABC ≡ Iij(m

2
τ , q

2, m2
τ , m

2
A, m2

B, m2
C) are scalar, vector or tensor functions defined in

Eqs.(A.4) and (A.5) of the Appendix.

When computing the diagrams we only select the tensor structure related to the

AWMM (which is finite and needs no renormalization), and we also verify the vector

current conservation as a check of our expressions (there is no induced (p− + p′)µ term

in Eq.(1)). The external lines are on the mass shell, i.e. p2
− = m2

τ , p2
+ = m2

τ and
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(p− + p+)2 = M2
Z respectively. We denote by σ± the charged non-physical Higgs and

by χ and Φ the neutral non-physical and physical ones. Some of the diagrams with the

propagation of Higgs or would-be Goldstone bosons particles are suppressed by extra

( m2
τ

M2
Z,Φ

) terms in such a way that the aχττ , aΦττ , aσνν and aσσν contributions to aw
τ are

negligible. Diagrams in which the Higgs and the neutral would-be Goldstone boson

particles couple to the Z only contribute to the axial form factor and not to the magnetic

moment (aτΦχ = aτχΦ = 0). In the following we give the different leading contributions,

where the notation is self-explanatory:

aγττ =
α

4π

m2
τ

M2
Z

4vM2
Z

swcw
[I10 + I22 − I21]

γττ

a
Z ττ

=
α

4π

m2
τ

M2
Z

vM2
Z

s3
wc3

w

[−4a2I00 + (v2 + 11a2)I10 + (v2 + 3a2)(I22 − I21)]Z ττ

aνWW =
α

4π

m2
τ

M2
Z

M2
W

s3
wcw

[I10 + 2I21 − 2I22]νWW

aνW σ = − α

4π

m2
τ

M2
Z

M2
Z

2swcw

I10
νW σ

aνσW = − α

4π

m2
τ

M2
Z

M2
Z

2swcw

I10
νσW

aτΦZ = − α

4π

m2
τ

M2
Z

vM2
Z

2s3
wc3

w

I10
τΦZ

aτ Z Φ = − α

4π

m2
τ

M2
Z

vM2
Z

2s3
wc3

w

I10
τ Z Φ

a
W νν

=
α

4π

m2
τ

M2
Z

M2
W

s3
wc3

w

[I00 − 3I10 − I22 + I21]W νν (3)

where v = −1

2
+ 2s2

w and a = −1

2
are the vector and axial vector Z − τ+ − τ− couplings.

The order of magnitude of each diagram is given basically by the weak boson mass scale:

all are of the same order given by α
4π

m2
τ

M2
Z

.
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The Iij
ABC functions were analytically computed in terms of dilogarithm functions,

and checked with a numerical integration for the mτ → 0 limit. Some details are given

in the Appendix. We then obtain that the numerical contribution of each diagram is:

aγττ = − α

4π

m2
τ

M2
Z

(1.32 − 0.52 i) ≃ (3.12 − 1.23 i) × 10−7

a
Z ττ

=
α

4π

m2
τ

M2
Z

(0.17 + 0.08 i) ≃ (3.92 + 1.88 i) × 10−8

aνWW =
α

4π

m2
τ

M2
Z

(−7.07) ≃ −1.68 × 10−6

aνW σ =
α

4π

m2
τ

M2
Z

0.45 ≃ 1.06 × 10−7

aνσW =
α

4π

m2
τ

M2
Z

0.45 ≃ 1.06 × 10−7

aτΦZ = aτ Z Φ = − α

4π

m2
τ

M2
Z

(0.07 ; 0.03 ; 0.02) ≃ −(0.15 ; 0.07 ; 0.04) × 10−7

a
W νν

=
α

4π

m2
τ

M2
Z

(−4.11 − 2.12 i) ≃ − (0.974 + 0.502 i) × 10−6 (4)

where the values between parenthesis for a τΦZ = a τ Z Φ correspond to MΦ

MZ
= 1, 2, 3

respectively.

Finally, the value of the computed AWMM is

aw
τ (M2

Z) = − (2.10 + 0.61 i) × 10−6 (5)

The Higgs mass only modifies the real part of this result less than a 1%, from the value

− 2.12×10−6 to − 2.10×10−6 for 1 < MΦ

MZ
< 3, and in Eq.(5) we have chosen MΦ = 2MZ .

To our knowledge, no other calculation of this value has been reported up to now.

In Ref.[16] a formal presentation of Feynman amplitudes in the unitary gauge is done,

but no explicit computation is made. There it is argued that the procedure would be

legitimate if a rigorous computation in a renormalizable gauge, as we have done, is made.
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We observe that the form factor has an absorptive part of the same order as the real one.

We should point out that, contrary to the well known electroweak anomalous magnetic

moment, this absorptive part is due to the fact that we compute on the Z mass shell

q2 = M2
Z , not q2 = 0. In fact, one expects a non-vanishing imaginary part coming from

unitarity. We have also shown that the main contribution comes from the diagrams with

W -exchange. Finally we would like to stress that this on shell result is gauge invariant,

as this form factor is a linearly independent Lorentz matrix part of the contribution to

the physical Z −→ τ+τ− decay.

3 Observables related to the AWMM

In this section we show that the aw
τ form factor can be measured by observables related

to the single τ polarization. Keeping only up to linear terms in the spin and in the weak

dipole moments and neglecting terms proportional to the electron mass, the tree level

e+ e− −→ τ+τ− cross section at the Z-peak can be written as:

dσ

dΩτ−

=
dσ0

dΩτ−

+
dσS

dΩτ−

(6)

where the first term collects the spin independent terms, whereas the second one takes

into account the linear terms in the spin:

dσS

dΩτ−

=
α2β

128s3
wc3

w

1

Γ2
Z

[ (s− + s+)xX+ + (s− + s+)yY+ + (s− + s+)zZ++

(s− − s+)yY−] (7)

where s± are the polarization vectors of τ± in the proper reference frame.

In Ref.[10] it is shown that 1) the transverse polarization term (X+) is proportional

to the real part of the AWMM except for a helicity-flip suppressed tree level background

from the Standard Model, 2) the normal polarization term (Y−) is proportional to the

weak-electric form factor dw
τ , and 3) the longitudinal polarization term (Z+) has the well

known Standard Model contribution plus a quantum correction given by the real part of
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the AWMM. The existence of an absorptive part in the weak-magnetic moment induces

a new component Y+ in the normal polarization. These components are:

X+ = a sin θτ−

{

−
[

2v2 + (v2 + a2)β cos θτ−

] v

γswcw
+

2γ
[

2v2(2 − β2) + (v2 + a2)β cos θτ−

]

Re(aw
τ )
}

(8)

Y+ = −2vγβ sin θτ− [2a2 + (v2 + a2)β cos θτ− ] Im(aw
τ ) (9)

Y− = 2aγβ sin θτ−

[

2v2 + (v2 + a2)β cos θτ−

]

(2mτd
w
τ /e) (10)

Z+ = − va

swcw

[

(v2 + a2)β(1 + cos2 θτ−) + 2(v2 + β2a2) cos θτ−

]

+2a
[

4v2 cos θτ− + (v2 + a2)β(1 + cos2 θτ−)
]

Re(aw
τ ) (11)

where α is the fine structure constant, ΓZ is the Z-width, γ = MZ

2mτ
, β = (1− 1

γ2 )
1

2 are the

dilation factor and τ velocity, respectively, and dw
τ is the weak-electric form factor. The

reference frame is chosen such that the outgoing τ− momenta is along the z axis and the

incoming e− momenta is in the x−z plane, and θτ− is the angle determined by these two

momenta. Terms with (s−−s+)x,y,z factors in Eq.(7) carry all the information about the

CP violating pieces of the lagrangean. The normal polarization is even under parity, then

only a ·v2 ·dw
τ or a3 ·dw

τ terms are allowed in Y− (see Eq.(10)), in contrast with the case in

the spin-spin correlation observables, where the leading term is a2 · v · dw
τ . The new term

with (s− + s+)y induced by the Im(aw
τ ) is CP-conserving and it is a time reversal-odd

observable generated by an absorptive part. The dependence with a2 · v · aw
τ or v3 · aw

τ is

associated with the normal polarization being even under parity. Transverse polarization

of a single τ (along the x-axis) is parity-odd and time reversal-even, and it can only arise

from the interference of both helicity conserving and helicity flipping amplitudes. The

first term of X+ in Eq.(8) comes from helicity flipping suppressed ( 1

γ
≡ 2mτ

MZ
) amplitudes

in the Standard Model and the second one comes from the γ-enhanced chirality flipping

weak-magnetic tensorial aw
τ vertex.

From Eqs.(6) and (7) the e+e− → τ+ τ− → h+
1 X h−

2 ντ and h+
1 ν̄τ h−

2 X cross sections

[3, 11] are:
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dσ(e+e− → τ+τ− → h+
1 Xh−

2 ντ )

d(cos θτ−) dφh−

2

= Br(τ− → h−
2 ντ )Br(τ+ → h+

1 X) ×
[

4
dσ0

dΩτ−

+
α2βπ

128s3
wc3

wΓ2
Z

αh−

2
(X+ cos φh−

2
+ (Y− + Y+) sin φh−

2
)

]

(12)

dσ(e+e− → τ+τ− → h+
1 ν̄τh

−
2 X)

d(cos θτ−) dφh+

1

= Br(τ− → h−
2 X)Br(τ+ → h+

1 ν̄τ ) ×
[

4
dσ0

dΩτ−

+
α2βπ

128s3
wc3

wΓ2
Z

αh+

1
(−X+ cos φh+

1
+ (Y− − Y+) sin φh+

1
)

]

(13)

where the angle φh is the azimuthal hadron angle in the frame we have already defined.

All other angles have been integrated out. The longitudinal polarization term (Z+)

disappears when the polar angle θh of the hadron is integrated out. For π and ρ mesons

the magnitude of the parameter αh is απ = 0.97 and αρ = 0.46. The spin correlation

terms give no contribution to the angular distributions Eqs.(12) and (13).

With the τ direction fully reconstructed [17] in semileptonic decays, as shown in

Ref.[10], we can get information about the AWMM, by defining the following asymmetry

of the τ -decay products:

A∓
cc =

σ∓
cc(+) − σ∓

cc(−)

σ∓
cc(+) + σ∓

cc(−)
(14)

with

σ∓
cc(+) =

[

∫ 1

0

d(cos θτ−)
∫ π/2

−π/2

dφh∓ +
∫ 0

−1

d(cos θτ−)
∫ 3

2
π

π/2

dφh∓

]

dσ

d(cos θτ−) dφh∓

(15)

and

σ∓
cc(−) =

[

∫ 1

0

d(cos θτ−)
∫ 3

2
π

π/2

dφh∓ +
∫ 0

−1

d(cos θτ−)
∫ π/2

−π/2

dφh∓

]

dσ

d(cos θτ−) dφh∓

(16)

This asymmetry selects the leading cos θτ− cos φh∓ term of the cross section. After some

algebra one finds

A∓
cc = ∓αh

swcw

4β

v2 + a2

a3

[

− v

γswcw
+ 2γ Re(aw

τ )

]

(17)

with opposite values for τ− and τ+.
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For numerical results we consider 107Z events and one τ decaying into π ντ or ρ ντ

(i.e. h1, h2 = π or ρ in (12) and (13) respectively), while summing up over the π ντ ,

ρ ντ and a1 ντ semileptonic decay channels for the other τ (this amounts to about 52%

of the total decay rate).

Using the asymmetry (17) it is then possible to measure the AWMM. Collecting

events from the decay of both taus, one gets a sensibility (within 1s.d.):

|Re(aw
τ )| ≤ 4 · 10−4 (18)

for the combined data for π and ρ channels.

Let us discuss the possibility of measuring this magnitude using the method outlined

above. There, the analysis was done assuming vanishing absorptive parts in aw
τ . The real

part of this magnitude appears in the transverse polarization. The actual calculation

shows that this is not a very good approximation, and that both real and imaginary

parts are of the same order of magnitude. We have shown that the best sensitivity

one can expect is of the order of 10−4, so the result (5) for the standard weak-magnetic

moment will not be accessible in such an experiment. In order to disentangle the aw
τ term

one has to subtract the tree level helicity-flip term coming from the Standard Model. This

is the first term in the right hand side of Eq.(8) and Eq.(17). Then, if an anomalously

large signal related to the observable persists, it should be attributed to physics beyond

the Standard Model.

While the real part of the AWMM contributes to the transverse polarization, the ab-

sorptive part of the AWMM contributes to the CP-even terms of the normal polarization

Y+, and no mixing of this real and imaginary parts occurs in the polarization terms. The

transverse polarization is then an observable related to the real part of the AWMM while

the normal polarization (in the absence of a CP-violating interaction) is a magnitude

related to the absorptive part. The CP-even part of the normal polarization Y+ is given

by Eq.(9). The analysis is then similar to the one made in Ref.[10] for the weak-electric

form factor. There, the leading dw
τ term is extracted from an asymmetry that picks up

the sin θτ cos θτ sin φh term. However, in this case it is much better ( i.e. , the sensitivity
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is enhanced by a factor 3π/4) to define an asymmetry that picks up the sin φh∓ term

from Y+:

As
∓ =

∫ π

0

dφ∓
h

dσ

dφ∓
h

−
∫ 2π

π
dφ∓

h

dσ

dφ∓
h

∫ π

0

dφ∓
h

dσ

dφ∓
h

+
∫ 2π

π
dφ∓

h

dσ

dφ∓
h

(19)

After some algebra one finds

As
∓ = ∓αh

3πγ

4
cwsw

v

a2
Im(aw

τ ) (20)

Under the same assumptions as for the real part, and collecting events for both

negative and positive tau-decays, we obtain that for the pion channel (i.e. h ≡ π) it is

possible to put the following bounds for the absorptive part of aw
τ :

|Im(aw
τ )| ≤ 1.4 × 10−3 (π channel) (21)

while for the ρ channel we have

|Im(aw
τ )| ≤ 2.0 × 10−3 (ρ channel) (22)

Combining these results one gets a sensibility:

|Im(aw
τ )| ≤ 1.1 × 10−3 (23)

We have shown that the best sensitivity one can expect in the measurement of these

observables is of the order of 10−4, so the result (5) for the real and imaginary AWMM

will not be accessible. Other proposals [9] have the same order of magnitude for the

sensitivity to the real part of the AWMM aw
τ . Thus a measurement of the transverse

and normal polarization of single taus offers an opportunity to put bounds on the weak

moments induced by models beyond the standard theory.
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Appendix

In this Appendix we explicitly show some of the formulas we have used in the computation

of the AWMM.

Current conservation for a vector current V µ implies that

(p− + p+)µ ū(p−) V µ(p−, p+) v(p+) = 0 (A.2)

From the above equation we deduce that the form factor corresponding to (p− + p+)µ

should vanish. Furthermore, the Gordon identity

ū(p−) γµ v(p+) =
1

2m
ū(p−) [iσµν(p+ + p−)ν + (p− − p+)µ] v(p+) (A.3)

leaves only two independent vector form factors: the charge radius and the AWMM.

When computing the loop integral in any of the diagrams of figure 1 or figure 2, one

naturally ends up with a vector and axial tensor structure constructed with the only

vectors available, i.e. the external vectors p− and p+, and the vectors and axial vectors

constructed entirely with the Gamma-matrices and the ū and v spinors. To extract

the contribution to the AWMM one has to select the (p− − p+)µ terms from the tensor

structure of the loop integrals, in the basis of γµ and (p− − p+)µ vectors.

We define the scalar, vector and tensor one-loop 3-point functions as:

{I00 ; Iµ ; Iµν} (p−
2, (p− + p+)2, p+

2, m
A

2, m
B

2, m
C

2) =
1

iπ2
×

∫

dnk
{1 ; kµ ; kµkν}

(k2 − m
A

2)((k − p−)2 − m
B

2)((k + p+)2 − m
C

2)
(A.4)

These functions have the following Lorentz structure:

Iµ = (p− − p+)µI10 + (p− + p+)µI11

Iµν = (p+
µp+

ν + p−
µp−

ν)I21 + (p+
µp−

ν + p−
µp+

ν)I22 +

(p+
µp+

ν − p−
µp−

ν)I2−1 + (p+
µp−

ν − p−
µp+

ν)I2−2 + gµνI20 (A.5)

To extract the contribution to the AWMM one only needs to calculate the I00, I10, I21

and I22 type integrals. Current conservation and the structure of the contractions of
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the Iµν integrals that appears in the calculus (i.e. , Iηνg
ηνγµ and Iµνγ

ν) eliminates I11,

I2−1, I2−2 and I20. These functions can be written in terms of analytic and dilogarithm

functions, as shown in [18]. Furthermore, one can also express all of them in terms of

the I00 function and the 2-point functions. To compute the actual value of the AWMM

we have explicitly done the calculus of these functions for the external momenta on-shell

and for the different masses circulating in the loop, and we have checked these results

in the mτ → 0 limit. In the following we list the results for the Iij functions (in the

mτ → 0 limit) needed for the aABC contributions given in Eq.(3), except for aγττ that it

is proportional to the well known result for the anomalous magnetic moment at q2 = M2
Z .

As all external lines are on the mass shell, the arguments of the Iij are given by the square

of the masses of the particles in the corresponding diagram. For a
Z ττ

they are:

I00 (m2

τ , M
2

Z , m2

τ , M
2

Z , 0, 0) =
1

M2
Z

(

−π2

12
− iπln2

)

I10 (m2

τ , M
2

Z , m2

τ , M
2

Z , 0, 0) =
1

M2
Z

(

−1 +
π2

12
+ iπ(ln2 − 1)

)

I21 (m2

τ , M
2

Z , m2

τ , M
2

Z , 0, 0) =
1

M2
Z

(

3

4
− π2

12
+ iπ

(

1

2
− ln2

)

)

I22 (m2
τ , M

2
Z , m2

τ , M
2
Z , 0, 0) =

1

M2
Z

(

−5

2
+

π2

4
− iπ(2 − 3ln3)

)

(A.6)

For aνWW , aνW σ and aνσW , we define r =
M2

W

M2
Z

, and they are:

I00 (m2

τ , M
2

Z , m2

τ , 0, M
2

W , M2

W ) =
1

M2
Z

(

Li2

(

r

r − r+

)

− Li2

(

r − 1

r − r+

)

+

Li2

(

r

r − r−

)

− Li2

(

r − 1

r − r−

)

+ Li2 (r) + ln(r)ln(1 − r) − 1

2
ln2(r)

)

I10 (m2

τ , M
2

Z , m2

τ , 0, M
2

W , M2

W ) =
1

M2
Z

(

2
√

4r − 1 tan−1

(

1√
4r − 1

)

− 1

)

+ rI00

I21 (m2

τ , M
2

Z , m2

τ , 0, M
2

W , M2

W ) =
1

M2
Z

(

−3

4
− r + (1 + 2r)

√
4r − 1×

tan−1

(

1√
4r − 1

))

+ r2I00
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I22 (m2
τ , M

2
Z , m2

τ , 0, M
2
W , M2

W ) = −1

2

1

M2
Z

− 2rI10 (A.7)

where r± = 1±
√

1−4r
2

and Li2 is the dilogarithm function. For a τΦZ and a τ Z Φ , when

MΦ = 2MZ , they are:

I10 (m2
τ , M

2
Z , m2

τ , 0, M
2
Z , MΦ

2) =
1

M2
Z

1

2

(

−2 − 2

3
π2 + 6ln2 − 4iπln

3

4
− ln22+

4Li2

(

3

4

)

+ 8Li2 (2) − 8Li2

(

3

2

))

(A.8)

For a
W νν

, the functions are:

I00 (m2

τ , M
2

Z , m2

τ , M
2

W , 0, 0) =
1

M2
Z

(

−(iπ + ln(r)) ln
(

1 +
1

r

)

+ Li2

(

−1

r

))

I10 (m2

τ , M
2

Z , m2

τ , M
2

W , 0, 0) =
1

M2
Z

(

−1 − ln(r) − iπ + (iπ + ln(r))rln
(

1 +
1

r

)

−

rLi2

(

−1

r

))

I21 (m2

τ , M
2

Z , m2

τ , M
2

W , 0, 0) =
1

M2
Z

(

−1

4
+ r +

(

r − 1

2

)

ln(r) + iπ
(

r − 1

2

)

−

(iπ + ln(r)) r2 ln
(

1 +
1

r

)

+ r2Li2

(

−1

r

))

I22 (m2

τ , M
2

Z , m2

τ , M
2

W , 0, 0) =
1

M2
Z

(

1

2
+ 2r + 2rln(r) + 2ir2π + (1 + 2r) r×

(

Li2

(

−1

r

)

− (iπ + ln(r)) ln
(

1 +
1

r

)))

(A.9)
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