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Abstract

It is shown that the probe-independent charge radius of the neutrino is a physical observable; as

such, it may be extracted from experiment, at least in principle. This is accomplished by expressing

a set of experimental νµ − e cross-sections in terms of the finite charge radius and two additional

gauge- and renormalization-group-invariant quantities, corresponding to the electroweak effective

charge and mixing angle.
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Within the Standard Model the photon (A) does not interact with the neutrino (ν) at

tree-level; however, an effective photon-neutrino vertex Γµ
Aνν̄ is generated through one-loop

radiative corrections, giving rise to a non-zero neutrino charge radius (NCR) [1], which con-

tributes non-trivially to the full electron-neutrino scattering amplitude. Even though the

one-loop computation of the entire S-matrix element describing the aforementioned am-

plitude is conceptually straighforward, the identification of a sub-amplitude, which would

serve as the effective Γµ
Aνν̄ has been faced with serious complications, associated with the

simultaneous reconciliation of crucial requirements such as gauge-invariance, finiteness, and

target-independence [2]. The crux of the problem is that since in non-Abelian gauge theories

individual off-shell Green’s functions are in general unphysical, the definition of quantities

familiar from scalar theories or QED, such as effective charges and form-factors, is in gen-

eral problematic. Thus, whereas a pion form-factor may be defined perfectly well in the

one-photon approximation, the same definition leads to unphysical results in the case of

the NCR. The above difficulties have been conclusively settled in [3], by resorting to the

well-defined electroweak gauge-invariant separation of physical amplitudes into effective self-

energy, vertex and box sub-amplitudes, implemented by the pinch technique formalism [4].

These effective Green’s functions are completely independent of the gauge-fixing parameter

regardless of the gauge-fixing scheme chosen, and satisfy simple, QED-like Ward identi-

ties, instead of the complicated Slavnov-Taylor identities. The NCR obtained in [3] : (i) is

independent of the gauge-fixing parameter; (ii) is ultraviolet finite; (iii) couples electromag-

netically to the target; (iv) it is process (target)-independent and can therefore be considered

as an intrinsic property of the neutrino. In particular, from the gauge-invariant one-loop

proper vertex Γ̂µ
Aνiν̄i

constructed using this method one extracts the dimension-full electro-

magnetic form-factor F̂νi
(q2) as Γ̂µ

Aνiν̄i
= ieq2F̂νi

(q2)γµ(1− γ5) . The NCR, to be denoted by

〈r2
νi
〉, is then defined as 〈r2

νi
〉 = 6F̂νi

(0), and thus one obtains

〈r2
νi
〉 =

GF

4
√

2 π2

[
3 − 2 log

(
m2

i

M2
W

)]
, i = e, µ, τ (1)

where mi denotes the mass of the charged iso-doublet partner of the neutrino under consid-

eration, and GF is the Fermi constant. The numerical values of the NCR given in Eq.(1)

are 〈r2
νe
〉 = 4.1 × 10−33 cm2, 〈r2

νµ
〉 = 2.4 × 10−33 cm2, and 〈r2

ντ
〉 = 1.5 × 10−33 cm2. The

classical definition of the NCR (in the static limit) as the second moment of the spatial

neutrino charge density ρν(r), i.e. 〈r2
ν 〉 = e−1

∫
drr2ρν(r), suggests the heuristic interpre-
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tation of the above numbers as a measure of the “size” of the neutrino νi when probed

electromagnetically.

The unambiguous resolution of the theoretical issues which was accomplished in [3],

together with the definite numerical predictions quoted above, inevitably leads to the next

important questions: Can the NCR be measured, even in principle ? Does it qualify as a

“physical observable” ? In this Letter we will show that the answer to the above questions

is affirmative.

It is important to clarify from the outset what we mean by “measuring” the NCR, es-

pecially in light of the fact that bounds on the NCR already appear in the literature [5].

From our point of view, measuring the entire process f±ν → f±ν does not constitute a

measurement of the NCR, because by changing the target fermions f± one will generally

change the answer, thus introducing a target-dependence into a quantity which (suposs-

edly) constitutes an intrinsic property of the neutrino. Instead, what we want to measure is

the target-independent Standard Model NCR only, stripped of any target dependent con-

tributions. Specifically, as mentioned above, the PT rearrangement of the S-matrix makes

possible the definition of distinct, physically meaningful sub-amplitudes, one of which, Γ̂µ
Aνiν̄i

,

is finite and directly related to the NCR. However, the remaining sub-amplitudes, such as

self-energy, vertex- and box-corrections, even though they do no enter into the definition of

the NCR, still contribute numerically to the entire S-matrix; in fact, some of them com-

bine to form additional physical observables of interest, most notably the effective (running)

electroweak charge and mixing angle. Thus, in order to isolate the NCR, one must conceive

of a combination of experiments and kinematical conditions, such that all contributions not

related to the NCR will be eliminated.

In this paper we propose a set of such (thought) experiments involving neutrinos and

anti-neutrinos. Consider the elastic processes fν → fν and f ν̄ → f ν̄, where f denotes an

electrically charged fermion belonging to a different iso-doublet than the neutrino ν, in order

to eliminate the diagrams mediated by a charged W -boson. The Mandelstam variables are

defined as s = (k1 + p1)
2 = (k2 + p2)

2, t = q2 = (p1 − p2)
2 = (k1 − k2)

2, u = (k1 − p2)
2 =

(k2 − p1)
2, and s + t + u = 0 (see Fig.1). In what follows we will restrict ourselves to the

limit t = q2 → 0 of the above amplitudes, assuming that all external (on-shell) fermions

are massless. As a result of this special kinematic situation we have the following relations:

p2
1 = p2

2 = k2
1 = k2

2 = p1 · p2 = k1 · k2 = 0 and p1 · k1 = p1 · k2 = p2 · k1 = p2 · k2 = s/2. In
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FIG. 1: The universal (a-c) and flavour-dependent (d) contributions to σ

(+)
νf .

the center-of-mass system we have that t = −2EνE
′
ν(1 − x) ≤ 0, where Eν and E ′

ν are the

energies of the neutrino before and after the scattering, respectively, and x ≡ cos θcm, where

θcm is the scattering angle. Clearly, the condition t = 0 corresponds to the exactly forward

amplitude, with θcm = 0, x = 1. Equivalently, in the laboratory frame, where the (massive)

target fermions are at rest, the condition of t = 0 corresponds to the kinematically extreme

case where the target fermion remains at rest after the scattering.

At tree-level the amplitude fν → fν is mediated by an off-shell Z-boson, coupled to the

fermions by means of the bare vertex Γµ

Zff̄
= −i(gw/cw) γµ [vf +afγ5] with vf = s2

wQf − 1
2
T f

z

and af = 1
2
T f

z ; Qf is the electric charge of the fermion f , T f
z its z-component of the weak iso-

spin, cw =
√

1 − s2
w = MW /MZ, the electric charge e is related to the SU(2)L gauge coupling

gw by e = gwsw. At one-loop, the relevant contributions may be unambiguously determined

through the standard pinch technique rearrangement of the amplitude, giving rise to gauge-

independent sub-amplitudes. In particular, the one-loop AZ self-energy Σ̂µν
AZ(q2) obtained

is transverse, for both the fermionic and the bosonic contributions, i.e. it may be written

in terms of the dimension-less scalar function Π̂AZ(q2) as Σ̂µν
AZ(q2) = (q2 gµν − qµqν)Π̂AZ(q2).

Of course, the ZZ self-energy Σ̂µν
ZZ(q2) is not transverse; in what follows we will discard all

longitudinal pieces, since they vanish between the conserved currents of the massless external

fermions, and will keep only the part proportional to gµν , whose dimension-full cofactor will

be denoted by Σ̂ZZ(q2). If the fermion mass m were non-vanishing, the longitudinal pieces

would induce additional terms proportional to positive powers of (m/MW ) and/or (m/
√

s);

the former are naturally suppressed, whereas the latter may be made arbitrarily small, by

adjusting appropriately the value of s. Furthermore, as is well-known, the one-loop vertex

Γ̂µ
ZF F̄

(q, p1, p2), with F = f or F = ν, satisfies a QED-like Ward identity, relating it to the

one-loop inverse fermion propagators Σ̂F , i.e qµΓ̂µ
ZF F̄

(q, p1, p2) = Σ̂F (p1) − Σ̂F (p2). It is then
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easy to show that, in the limit of q2 → 0, Γ̂µ
ZF F̄

∼ q2γµ(c1 + c2γ5); since it is multiplied

by a massive Z boson propagator (q2 − MZ)−1, its contribution to the amplitude vanishes

when q2 → 0. This is to be contrasted with the Γ̂µ
Aνiν̄i

, which is accompanied by a (1/q2)

photon-propagator, thus giving rise to a contact interaction between the target-fermion and

the neutrino, described by the NCR.

We next proceed to eliminate the target-dependent box-contributions; to accomplish this

we resort to the “neutrino–anti-neutrino” method. The basic observation is that the tree-

level amplitudes M(0)
νf as well as the part of the one-loop amplitude M(B)

νf consisting of

the propagator and vertex corrections (the “Born-improved” amplitude), are proportional

to [ūf(k2)γµ(vf + afγ5)uf(k1)][v̄(p1)γµPL v(p2)], and therefore transform differently than the

boxes under the replacement ν → ν̄. In particular, the coupling of the Z boson to a pair

of on-shell anti-neutrinos may be written in terms of on-shell neutrinos provided that one

changes the chirality projector from PL = 1
2
(1 − γ5) to PR = 1

2
(1 + γ5), and supplying a

relative minus sign [6], i.e.

v̄(p1) ΓZν̄ν̄ v(p2) = i
( gw

2cw

)
v̄(p1)γµPL v(p2)

= − i
( gw

2cw

)
ū(p2)γµPR u(p1) (2)

To obtain the above results, we simply use the fact that since the quantities considered are

scalars in the spinor space their values coincide with those of their transposed, and employ

subsequently γT
µ = −CγµC−1, γT

5 = Cγ5C
−1, vT (p)C = ū(p), C−1v̄T (p) = u(p), where C is

the charge conjugation operator. Thus, under the above transformation, M(0)
νf +M(B)

νf reverse

sign once, whereas the box contributions reverse sign twice. These distinct transformation

properties allow for the isolation of the box contributions when judicious combinations of the

forward differential cross-sections (dσνf/dx)x=1 and (dσν̄f/dx)x=1 are formed. In particular,

σ
(+)
νf ≡ (dσνf/dx)x=1 + (dσν̄f/dx)x=1 does not contain boxes, i.e.

σ
(+)
νf =

1

16πs

[
M(0)

νf ∗M(0)†
νf + 2ℜe

(
M(0)

νf ∗M(B)†
νf

)]
(3)

whereas the conjugate combination σ
(−)
νf ≡ (dσνf/dx)x=1 − (dσν̄f/dx)x=1 isolates the contri-

bution of the boxes. The ∗ in the above formulas denotes that the trace over initial and

final fermions must be taken.

Finally, a detailed analysis [7] shows that in the kinematic limit we consider, the
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Bremsstrahlung contribution vanishes, due to a a completely destructive interference be-

tween the two relevant diagrams corresponding to the processes fAν(ν̄) → fν(ν̄) and

fν(ν̄) → fAν(ν̄). The absence of such corrections is consistent with the fact that there

are no infrared divergent contributions from the (vanishing) vertex Γ̂µ
ZFF̄

, to be cancelled

against.

From Eq.(3) and Fig.1 we see that σ
(+)
νf receives contributions from the tree-level exchange

of a Z-boson (Fig.1a), the one-loop contributions from the ultraviolet divergent quantities

Σ̂ZZ(0) and Π̂AZ(0) (Fig.1b and Fig.1c, respectively), and the (finite) NCR, coming from

the proper vertex Γ̂µ
Aνiν̄i

, (Fig.1d). The first three contributions are universal, i.e. common

to all neutrino species, whereas that of the proper vertex Γ̂µ
Aνiν̄i

is flavor-dependent. As a

consequence, the flavor-dependent part of the NCR can be immediately separated out by

taking in σ
(+)
νf the difference for two neutrino species. In particular, for the case of νµ and

ντ , we obtain from Eq.(3)

σ(+)
νµ e − σ(+)

ντ e = λ (1 − 4s2
w)

(
〈r2

νµ
〉 − 〈r2

ντ
〉
)

(4)

where λ ≡ (2
√

2/3)sα GF , α = e2/4π is the fine-structure constant. A priori, the difference

in the forward amplitudes Mνµe − Mντe would contribute to a difference for the neutrino

index of refraction [11] in electron matter; this difference vanishes, however, for ordinary

matter due to its neutrality.

Next we will demonstrate that one can actually do better than that, obtaining from ex-

periment not only the difference but even the absolute value of the NCR for a given neutrino

flavour. To discuss this methodology, the renormalization of Σ̂ZZ(0) and Π̂AZ(0) must be

carried out. It turns out that, by virtue of the Abelian-like Ward-identities enforced after

the pinch technique rearrangement [4], the resulting expressions combine in such a way as

to form manifestly renormalization-group invariant combinations [8, 9]. In particular, after

carrying out the standard re-diagonalization [10], two such quantities may be constructed

(see third paper in [9]):

R̄Z(q2) =
1

4π

(gw

cw

)2[
q2 − M2

Z
+ ℜe {Σ̂ZZ(q2)}

]−1

s̄2
w(q2) = s2

w

(
1 − cw

sw
ℜe {Π̂AZ(q2)}

)
. (5)

where ℜe {...} denotes the real part. These quantities retain the same form when written in

terms of unrenormalized or renormalized quantities, due to the special conditions enforced
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on the renormalization constants, analogous to the text-book QED relation Z1 = Z2 between

the renormalization constants of the vertex and the fermion self-energy. In addition to being

renormalization-group invariant, both quantities defined in Eq.(5) are universal (process-

independent); R̄Z(q2) corresponds to the Z-boson effective charge, while s̄2
w(q2) corresponds

to an effective mixing angle. We emphasize that the renormalized Π̂AZ(0) cannot form part

of the NCR, because it fails to form a renormalization-group invariant quantity on its own.

Thus, if Π̂AZ(0) were to be considered as the “universal” part of the NCR, to be added

to the finite and flavour-dependent contribution comming from the proper vertex, then the

resulting NCR would depend on the subtraction point and scheme chosen to renormalize it,

and would therefore be unphysical. Instead, Π̂AZ(0) must be combined with the appropriate

tree-level contribution (which evidently does not enter into the definition of the NCR, since

it is Z-mediated) in order to form the effective s̄2
w(q2) acting on the electron vertex, whereas

the finite NCR will be determined from the proper neutrino vertex only.

After recasting σ
(+)
νf of Eq.(3) in terms of manifestly renormalization-group invariant

building blocks, one may fix ν = νµ, and then consider three different choices for f : (i)

right-handed electrons, eR; (ii) left-handed electrons, eL, and (iii) neutrinos, νi other than

νµ, i.e. i = e, τ . It is then straighforward to verify from Eq.(3) and Eq.(5) that R̄2(0) is

directly written in terms of the physical cross-section σ
(+)
νµ νi, as

σ(+)
νµ νi

= sπR̄2(0) (6)

This cross-section constitutes a fundamental ingredient for neutrino propagation in a neu-

trino medium [12], and is relevant for astrophysical and cosmological scenarios. Similarly,

for the electron target we obtain the system

σ(+)
νµ eR

= sπR̄2(0) s̄4
w(0) − 2λs2

w 〈r2
νµ
〉

σ(+)
νµ eL

= sπR̄2(0)
(1

2
− s̄2

w(0)
)2

+ λ(1 − 2s2
w) 〈r2

νµ
〉 (7)

At this point one possibility would be to extract indirectly the value of the NCR, using

the precision electroweak predictions for R̄2(0) and s̄2
w(0) [8] as input in Eq.(7). Much

better, there is a second possibility, whereby R̄2(0), s̄2
w(0), and 〈r2

νµ
〉 are treated as three

unknown quantities, to be determined from the above equations. This procedure, although

more involved, allows (at least conceptually) for a direct measurement of NCR. Substituting

sπR̄2(0) → σ
(+)
νµ νi into Eq.(7), we arrive at a system which is linear in the unknown quantity
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〈r2
νµ
〉, and quadratic in s̄2

w(0). The corresponding solutions are given by

s̄2
w(0) = s2

w ± Ω1/2

〈r2
νµ
〉 = λ−1

[(
s2

w − 1

4
± Ω1/2

)
σ(+)

νµ νi
+ σ(+)

νµ eL
− σ(+)

νµ eR

]
(8)

where the discriminant Ω is given by

Ω = (1 − 2s2
w)

(σ
(+)
νµ eR

σ
(+)
νµ νi

− 1

2
s2

w

)
+ 2s2

w

σ
(+)
νµ eL

σ
(+)
νµ νi

(9)

and must satisfy Ω > 0. The actual sign in front of Ω may be chosen by requiring that

it correctly accounts for the sign of the shift of s̄2
w(0) with respect to s2

w predicted by the

theory [8].

To extract the experimental values of the quantities R̄2(0), s̄2
w(0), and 〈r2

νµ
〉, one must

substitute in Eq.(8) and Eq.(9) the experimentally measured values for the differential cross-

sections σ
(+)
νµ eR , σ

(+)
νµ eL, and σ

(+)
νµ νi. This means that to solve the system one would have to

carry out three different pairs of experiments.

The theoretical values of the R̄2(0) and s̄2
w(0) are obtained from Eq.(5). Since (by

construction) these two quantities are renormalization-group invariant, one may choose

any renormalization scheme for computing their value. In the “on-shell” (OS) scheme

[13] the experimental values for the input parameters sw and α are s(OS)
w = 0.231 and

α(OS) = 1/128.7; the renormalized self-energies Σ̂R

ZZ
(q2) and Π̂R

AZ
(q2) are defined as Σ̂R

ZZ
(q2) =

Σ̂ZZ(q2)− Σ̂ZZ(M2
Z)− (q2−M2

Z)Σ̂′
ZZ

(q2)|q2=M2
Z
, where the prime denotes differentiation with

respect to q2, and Π̂R

AZ
(q2) = Π̂AZ(q2) − Π̂AZ(M2

Z). Substituting in the resulting expressions

(see for example [8]) standard values for the quark and lepton masses, and choosing for the

Higgs boson a mass MH = 150 GeV, we obtain R̄2(0) = 1.86× 10−3/M4
Z and s̄2

w(0) = 0.239.

To summarize, we have found that the interaction of νµ’s with other neutrino species and

with left- and right-handed electrons provides at q2 = 0 a definite framework for separat-

ing out the probe-independent NCR from other gauge- and renormalization-group-invariant

quantities, i.e. the effective electroweak charges R̄2(0) and s̄2
w(0). The analysis has used

the symmetric combination of neutrinos and anti-neutrinos to avoid contributions from box-

diagrams. Once the observable character of the NCR has been established, we plan to

extend the method to the entire electromagnetic form-factor analysis by means of the co-

herent neutrino-nuclear scattering [14]. Finally note that, for the Dirac neutrinos that we

consider, the neutrino anapole moment [2] is simply equal to 1
6
〈r2

ν 〉, due to the (1 − γ5)
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character of the vertex. Therefore, all theoretical properties of the NCR, as well as its

observability, carry over automatically to this quantity as well.
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