Anomalous top magnetic couplings

G GONZÁLEZ-SPRINBERG¹, R MARTINEZ^{2,*} and JORGE VIDAL³

Abstract. The real and imaginary parts of the one-loop electroweak contributions to the left and right tensorial anomalous couplings of the *tbW* vertex in the Standard Model (SM) are computed.

Keywords. Top; anomalous.

PACS Nos 14.65.Ha; 12.15.Lk

Top quark physics at the Large Hadron Collider (LHC) is an important scenario for testing physics above the electroweak scale [1,2]. Some effects related to the top anomalous couplings, both in the $t \to bW^+$ polarized branching fractions and in single top production at the Tevatron and at the LHC, have already been studied in recent years. One-loop QCD and electroweak contributions to the tbW vertex have been studied in the frame of the Standard Model (SM) [3]. The explicit dependence of the polarized branching fractions on the anomalous couplings have been computed in refs [4,5].

We compute the electroweak SM contribution to the left and right 'magnetic' tensorial couplings of the tbW vertex. We found that the electroweak contribution is also at the level of 10% with respect to the leading gluon exchange. For on-shell particles, the amplitude \mathcal{M}_{tbW} can be written in the following way:

$$\mathcal{M}_{tbW^{+}} = -\frac{e}{\sin \theta_{W} \sqrt{2}} \epsilon^{\mu *} \bar{u}_{b} \left[\frac{i\sigma_{\mu\nu} q^{\nu}}{m_{W}} \left(g_{L} P_{L} + g_{R} P_{R} \right) \right] u_{t}. \tag{1}$$

One-loop QCD gluon exchange contribution to g_R was computed in ref. [6], $g_R^{\rm QCD} = -6.61 \times 10^{-3}$. The sensitivity to g_R will be accessible to the LHC experiments [2,5]. The left tensorial term couples a right *b*-quark and thus it is proportional to m_b . Then, constraints on g_L are stronger than g_R due to the chiral m_L/m_b factor.

Indirect limits on g_L and g_R can be obtained from $b \to s\gamma$ [7]. The results from the analysis given in refs [8] and [9] are given in the first line of table 1; the second and third lines show g_L and g_R limits predicted for the future LHC data [5]. The LHC will improve the sensitivity to g_R by an order of magnitude compared to bounds from $b \to s\gamma$. In the same way as it is done in Tau physics [10], new asymmetry observables derived from

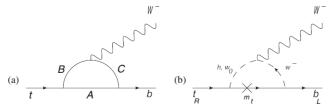
¹Instituto de Física, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay

²Departamento de Física, Universidad Nacional, Bogotá, Colombia

³Departament de Física Teòrica Universitat de València, Burjassot, València, Spain

^{*}Corresponding author. E-mail: remartinezm@unal.edu.co

Reference		$g_{\rm R}$ Bound	$g_{\rm L}$ Bound
bsγ		0	$-0.0015 < g_{\rm L} < 0.0004$
Future LHC data	2σ	$-0.026 \le g_{\rm R} \le 0.031$	$-0.058 \le g_{\rm L} \le 0.026$
Future LHC data	1σ	$-0.012 \le g_{\rm R} \le 0.024$	$-0.16 \le g_{\rm L} \le 0.16$
		g _R Discovery limit	g _L Discovery limit
Helicity fractions of the W	3σ	$ \text{Re}(g_{\text{R}}) \ge 0.056$	$Re(g_L) \ge 0.051 \text{ or } Re(g_L) \le -0.083$
bsγ	3σ	$ \text{Im}(g_R) \ge 0.115$ $\text{Re}(g_R) \ge 0.76$ or $\text{Re}(g_R) \le -0.33$	$ \text{Im}(g_{\rm L}) \ge 0.065$ $\text{Re}(g_{\rm L}) \ge 0.0009 \text{ or}$ $\text{Re}(g_{\rm L}) \le -0.0019$
			$ \mathrm{Im}(g_{\mathrm{L}}) \ge 0.006$


Table 1. Bounds on g_R and g_L .

helicity fractions for polarized W were defined for polarized top decays; the exclusion intervals derived from these observables are shown in the fourth line of table 1. As a reference for the comparison with the LHC, they also derived as 3σ discovery limits from $b \to s\gamma$ in ref. [9]; this is shown in the last line of table 1.

At one loop in the SM, there is only one topology for the diagrams that contribute to the anomalous g_R and g_L : this is shown in figure 1a. For g_R there are two diagrams that have a leading m_t -mass. They are the ones in figure 1b with thW and tw_0W circulating in the loop, where h is the Higgs boson and w_0 is the unphysical Z-boson. These two diagrams have top mass insertions that give a mass dependence which is of the order $1/r_W^2 = 1/(m_W/m_t)^2$ with respect to the other diagrams. Some diagrams, like bWZ for example, contribute to the imaginary part of g_R .

The result for each contribution of the diagrams to g_R and g_L is given in table 2, with $m_h = 150$ GeV. The final result for the one-loop electroweak correction is

$$g_{\rm R}^{\rm EW} = -(0.56 + 1.23i) \times 10^{-3}, \qquad g_{\rm L}^{\rm EW} = -(0.92 + 0.14i) \times 10^{-4}.$$
 (2)

Figure 1. (a) Topology of the one-loop SM Feynman diagrams for the quantum correction to the $t \to bW^+$ decay. (b) Leading order diagrams for g_R in the large m_t limit.

Diagram	$g_{\rm R} \times 10^3$	$g_{\rm L} \times 10^3$
tZW	-1.176	-0.0141
thW	0.220	0
tw^0w^-	0.344	0.0051
hw^-	0.462	-0.0088
tZw^-	-0.050	-0.0012
$t\gamma W + t\gamma w^-$	0.572	-0.0094
bWZ	-0.623 - 0.664i	-0.0201 - 0.0214i
bWh	0	0.0086 - 0.0120i
bw^+w^0	$(1.5 + 11.0i) \times 10^{-4}$	-0.0029 - 0.0167i
bw^+h	$(-4.3 + 8.6i) \times 10^{-4}$	-0.0019 + 0.0111i
bw^+Z	-0.088 - 0.062i	-0.00039 - 0.00028i
$bW\gamma + bw^+\gamma$	0.114 - 0.509i	-0.0270 + 0.0250i
Ztb	-0.397	-0.0067
γtb	0.068	0.0115
w^0tb	-6.8×10^{-4}	-0.0109
htb	-6.2×10^{-4}	-0.0135
$\Sigma(EW)$	-0.56 - 1.23i	-(0.092 + 0.014i)
gtb	-6.61	-1.12

Table 2. Electroweak contributions to g_R and g_L .

We note that for $g_L^{\rm EW}$ is 8% of g_L^g , and also that the CP violation has its origin in the electroweak diagrams. These values are to be compared with the gluon contribution that is the dominant one:

$$g_{\rm R}^{\rm g} = -6.61 \times 10^{-3}, \qquad g_{\rm L}^{\rm g} = -1.12 \times 10^{-3}.$$
 (3)

The final result for the one-loop computation in the SM is the sum of eqs (2) and (3):

$$g_{\rm R}^{\rm SM} = -(7.17 + 1.23i) \times 10^{-3}, \qquad g_{\rm L}^{\rm SM} = -(1.21 + 0.01i) \times 10^{-3}.$$
 (4)

The real part for the one-loop electroweak quantum correction for g_R is 8% of the leading gluon-exchange contribution. Note that the imaginary part is 17% of the one-loop $Re(g_R^{SM})$.

Acknowledgements

This work was supported by ANII-FCE-2986-Uruguay, COLCIENCIAS-Colombia, the Spanish Ministry of Science and Innovation, under grants FPA2008-03373, FPA2008-02878, and by Generalitat Valenciana under grant PROMETEO 2009/128.

References

- [1] M Beneke et al, hep-ph/0003033
- W Bernreuther, J. Phys. GG35, 083001 (2008)
 E Boos, L Dudko and T Ohl, Eur. Phys. J. C11, 473 (1999)
 J A Aguilar-Saavedra, Nucl. Phys. B804, 160 (2008)

G González-Sprinberg, R Martinez and Jorge Vidal

- [3] H S Do et al, Phys. Rev. **D67**, 091501 (2003)
- [4] C R Chen, F Larios and C P Yuan, Phys. Lett. B631, 126 (2005) Gabriel A Gonzalez-Sprinberg, Roberto Martinez and Jorge Vidal, J. High Energy Phys. 1107, 094 (2011)
- [5] F del Águila and J A Aguilar-Saavedra, *Phys. Rev.* D67, 014009 (2003)
 J A Aguilar-Saavedra *et al*, *Eur. Phys. J.* C804, 160 (2008)
 J A Aguilar-Saavedra *et al*, *Eur. Phys. J.* C53, 689 (2008)
 J Bernabéu and J A Aguilar-Saavedra, *Nucl. Phys.* B840, 349 (2010)
- [6] C S Li, R J Oakes and T C Yuan, *Phys. Rev.* **D43**, 3759 (1991)
- [7] M Jezabek and J H Kuhn, *Phys. Rev.* **D48**, 1910 (1993)
 A Czarnecki, *Phys. Lett.* **B252**, 467 (1990)
 C S Li, R J Oakes and T C Yuan, *Phys. Rev.* **D43**, 3759 (1991)
- [8] J Alwall et al, Eur. Phys. J. C49, 791 (2007)
- [9] B Grzadkowski and M Misiak, Phys. Rev. D78, 077501 (2008)
- [10] J Bernabéu, G A González-Sprinberg and J Vidal, *Phys. Lett.* B326, 168 (1994)
 J Bernabéu *et al*, *Nucl. Phys.* B436, 474 (1995)