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Abstract

We compute the real and imaginary parts of the one-loop electroweak contributions to the

left and right tensorial anomalous couplings of thetbW vertex in the Standard Model (SM).

For both tensorial couplings we find that the real part of the electroweak SM correction is

close to 10% of the leading contribution given by the QCD gluon exchange. We also find

that the electroweak real and imaginary parts for the anomalous right coupling are almost

of the same order of magnitude. The one loop SM prediction forthe real part of the left

coupling is close to the 3σ discovery limit derived fromb→ sγ. Besides, taking into account

that the predictions of new physics interactions are also atthe level of a few percents when

compared with the one loop QCD gluon exchange, these electroweak corrections should be

taken into account in order to disentangle new physics effects from the standard ones. These

anomalous tensorial couplings of the top quark will be investigated at the LHC in the near

future where sensitivity to these contributions may be achieved.
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1 Introduction

Top quark physics at the Large Hadron Collider (LHC) is an important scenario for testing

physics above the electroweak scale. No deviation from the predictions of the Standard

Model (SM) is found in top data [1], nowadays dominated by theTevatron experiments.

This situation may change with the LHC already running and taking data. The SM dominant

decay modet → bW+ will be precisely measured at the LHC and sensitivity beyondtree level

SM will be achieved. It is generally believed that, due to itslarge mass, physics of the top

quark will be useful to probe new theories above the electroweak scale [2, 3]. At the LHC,

top new physics may show up in new top quark decay channels or in the measurement of

the top standard and anomalous couplings [3, 4]. In renormalizable theories, the anomalous

couplings appear as quantum corrections, as it is the case for the SM, and also in many new

physics theories. In a model independent approach there aretwo ways of parameterize the

unknown physics at high scales. One is the effective Lagrangian method [5] which is a way

to describe low energy physics effects originated at a higher energy scale. These effects

are parameterized with non-renormalized terms invariant under the SM gauge symmetry

SU(3)c×SU(2)L×U(1)Y and written in terms of the low energy (standard) particle spectrum

fields. It is assumed that the new particles spectrum lies at an energy scale well above

the electroweak scale. The other way is just by assuming the most general form of the

Lorentz structure for thetbW amplitude. There are many terms in the effective Lagrangian

that may give contributions to the same Lorentz structure inthe vertex, in particular to the

tensorial couplings we are interested in. Besides, some of those terms can be rewritten by

using the equations of motion, so the identification of the effective Lagrangian terms with

the form factors is not direct nor unique. In this paper we will use the second approach,

parameterizing in the most general way thetbW amplitude. This approach has the advantage,

over the effective Lagrangian approach, that it does not break down even if any relatively

light particles, as new scalars, for example, come into the game.

Some effects related to the top anomalous couplings, both inthet → bW+ polarized branch-

ing fractions –for the three helicity W possibilities– and in single top production at the Teva-

tron and at the LHC, have already been studied in the recent years [3, 6]. However, at the

LHC it will be possible to have new suitable observables in order to perform precise mea-

surements of the anomalous couplings. Some aspect of this top quark physics have also been

investigated in models with an extended Higgs sector, technicolor models, supersymmetry

models and Little Higgs models [7].

The anomalous couplings are gauge invariant quantities so one can think of testing the SM

predictions and new theories through observables that are directly sensitive to them. In fact,
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not only top branching fractions and cross sections are predictions of the models to be con-

fronted with data but, in the same way as in the past the anomalous magnetic moment for the

electron gave the first success of quantum field theory, also thesetbW gauge invariant tenso-

rial couplings can be used to check the predictions of new physics theories. One loop QCD

and electroweak contributions to the top branching fractions for polarized W’s have been

studied in the frame of the SM [8]. These contributions, and the corresponding measure-

ments, have no special sensitivity to the anomalous couplings which enter in the observables

as small corrections. The explicit dependence of the polarized branching fractions on the

anomalous couplings have been computed in [9, 10], where also the sensitivity to them has

been considered. Specific observables that are directly proportional to the tensorial couplings

have been studied in [6,10–12] and more recently new observables were presented in [13].

In this paper we compute the electroweak SM contribution to the left and right “magnetic”

tensorial couplings of thetbWvertex and we discuss their observable effects; we also com-

pare this contributions with some new physics predictions considered in the literature. These

CP-conserving pieces of thetbW vertex are different from zero only at one loop in the SM

and the same is true in many extended models. The QCD gluon-exchange contribution to the

tensorial couplings is the dominant one and has been reported in the literature only for the

right coupling [14,15]. The left tensorial coupling is proportional to the bottom quark-mass

due to the chirality flipping property of this coupling and bythe fact that it only couples to

a right b-quark. For these reasons it is suppressed and it is generally assumed to be negligi-

ble. However, the measurement of both of them appears as feasible in dedicated observables

computed for top production at the LHC.

For the right tensorialtbW coupling the comparison with the SM is usually performed in the

literature by taking as a reference only the one loop QCD contribution. The most promising

new physics models predict a few percents deviation from this QCD-value. However, as

it is shown in this paper, we found that the electroweak contribution is also at the level of

10% with respect to the leading gluon exchange, and should betaken into account when

comparing with data. Detailed studies will be necessary in order to disentangle new physics

contributions from the electroweak standard ones.

In section 2 we define the anomalous couplings and we review the theoretical as well as the

experimental status for the physics for which they are involved. In section 3 our computation

is presented and in the final section we present our conclusions.

2



2 The tensorialtbW vertex: experiment, SM and beyond

For on-shell particles, the most general amplitudeM tbW for the decayt(p)→ b(k)W+(q)

can be written in the following way:

M tbW+ =− e

sinθW
√

2
εµ∗ ūb

[

γµ (VL PL+VRPR)+
iσµνqν

mW
(gL PL +gRPR)

]

ut , (1)

with PL,R= (1∓γ5)/2; p, k andq= p−k denote the top, bottom andW boson four momenta,

respectively. The tensorial left and right magnetic moments aregL andgR respectively. The

tree level SM couplings areVR = 0, VL = Vtb (the Cabibbo-Kobayashi-Maskawa, CKM,

matrix element),gR = 0 andgL = 0. This expression for the amplitude, written in terms

of the most general form factors, is appropriate for a model independent analysis of the tbW

amplitude. The anomalous form factorsgR andgL are chirality flipping and dimensionless

functions ofq2. For all particles on-shell, as can be assumed for the top decay, we have

q2 = M2
W. Besides, these dipole moments are gauge independent quantities and may be

measured with appropriate observables.

These form factors are generated by quantum corrections in the SM. In renormalizable the-

ories, such as some extensions of the SM,VR can appear at tree-level while tensor couplings

gR andgL, are induced as one loop quantum corrections. Values of|VL| different from the

ones given by the global fit [16] in the SMVtb ≃ 1, that we assume, are not experimentally

excluded [17] and they are still an open window to test new physics. This issue (and also

possible deviations ofVR= 0) will not be the object of our work, where we concentrate only

ongR andgL.

In renormalizable theories, the tensorial couplings are finite quantum corrections quantities

that do not receive contributions from renormalization counter-terms at one loop. In addition,

contrary to what happens for theVR form factor, the tensorsgL,R couplings are infrared safe

quantities. One loop QCD corrections generate the leading contribution to the tensorial

couplingsgR andgL. This one loop QCD gluon exchange contribution togR was computed

in [15] and they found the valuegQCD
R = −6.61×10−3. Direct observables with sensitivity

to gR will be accessible to the LHC experiments as was discussed in[11]. The left tensorial

coupling term couples a right b-quark and thus it is proportional tomb. For this reason, it

is generally believed that the SM value forgL is much smaller than the one forgR. We will

show that this in not exactly the case.

New physics signals can also show up in the analysis of the topdecayt → bW+. In particular,

significant deviations from the SM predictions forgR andgL may be found. However, the

SM values are only known forgR up to one loop in QCD while the prediction forgL is not
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published. Moreover, most of the analysis frequently assume real values forgR andgL. The

quantum corrections coming from the SM should be under knownin order to discriminate

the SM and new physics contributions from data.

Let us briefly review the experimental status for the constraints on these tensor couplings.

Indirect limits ongL andgR can be obtained fromb → sγ in the measured branching ratio

B(B̄→ Xsγ). The results from a recent analysis [18] are given in the firstline of Table 1.

Table 1: Bounds ongR andgL. The first line shows the indirect limits fromb → sγ. The

second and third lines are limits obtained from simulationsfor the LHC. The last two lines

show 3σ discovery limits intervals: fourth line limits are from simulations for the LHC and

the last one is fromb→ sγ.

Reference gR bound gL bound

[18] 95%C.L. −0.15< gR< 0.57 −0.0015< gL < 0.0004

[12] 2σ −0.026≤ gR≤ 0.031 −0.058≤ gL ≤ 0.026

[6] 1σ −0.012≤ gR≤ 0.024 −0.16≤ gL ≤ 0.16

gR discovery limit gL discovery limit

Re(gL)≥ 0.051 or

[13] 3σ
|Re(gR)| ≥ 0.056

Re(gL)≤−0.083

|Im(gR)| ≥ 0.115 |Im(gL)| ≥ 0.065

Re(gR)≥ 0.76 Re(gL)≥ 0.0009 or

[13,18] 3σ or Re(gL)≤−0.0019

Re(gR)≤−0.33 |Im(gL)| ≥ 0.006

The constraints ongL are much stronger than those ongR due to the chiralmt/mb enhance-

ment factor which comes together with thegL coupling in theB-meson decay amplitude.

These bounds are obtained assuming that all anomalous couplings are real and that only one

of them is non zero at a time.

The top widthΓt is an observable which is sensitive to the absolute strengthof thetbW vertex

but with no particular sensitivity to the anomalous couplings. Another test of the Lorentz

structure of thetbW amplitude is the measurement of the polarized decay fractionsBr(t →
bW+

λ ) into W+ bosons of helicityλ = 0,∓1.The SM values for this W-polarized widths

are known up to one loop QCD and electroweak corrections [8] and the contribution to the

helicity fractions from the anomalous couplings defined in Eq.[1] were computed in [9, 10].

However, these fractions are sensitive only to ratios of thecouplings. Other observables can

be obtained from the single top production at the LHC [6]. From a combined analysis of
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the single top cross section and the three helicity fractions, the four anomalous couplings

in Eq.[1] can be determined. Also,gR could be measured from the energy and angular

distributions for polarized semi-leptonic and hadronic top-quark decays as was studied in

[19].

The Tevatron found no deviation from the SM in top quark physics. It has also investigated

the anomalous couplings based on the single top quark production cross section [20]. These

are the first direct experimental bounds but they are not competitive with the indirect ones

already mentioned. In the near future the LHC high statistics data on top quark decays will

allow the direct determination of the tensor couplingsgL andgR within a few percent level.

In particular, in simulations fortt̄ production and decay in dileptonic [21] and lepton plus jets

channels [12,19,21], forward-backward asymmetries [12] and a double angular distribution

in t-quark decay [19] were studied. In [12], with only one non standard coupling different

from zero at a time, intervals for detection or exclusion at two standard deviations (both

statistical and systematic uncertainties included) forgL andgR were predicted for the future

LHC data; they are shown in the second line of Table 1. The LHC will possibly improve

the sensitivity togR by an order of magnitude when compared to the indirect boundsfrom

b→ sγ. A combined fit, using the four couplingsVL, VR, gR andgL as parameters, and taking

into account the expected uncertainties at the LHC for top-quark decay was presented in [6]

and it is shown in the third line of Table 1. The sensitivity togR shown in the second and

third lines of Table 1 is similar to the results of [19, 21] where tt̄ production and decay into

leptonic and dileptonic decay channels were analyzed.

Recently, new helicity fractions of the W where defined and investigated for polarized top

decays. The spin matrix for polarized top decays was obtained in [13]; they also considered

new observables derived from the normal and transverseW+ polarization fractions. A similar

approach in asymmetry observables was also studied in Tau physics in recent years [22]. The

three different sets of W helicity fractions defined for the polarized top quark were shown to

open the possibility of new observables particularly sensitives to both the real and imaginary

parts of the tensor couplings. They compute the 3σ discovery limits forgR andgL assuming

that they are either real or purely imaginary and allowing only one coupling to be different

from zero at a time. The exclusion intervals are shown in Table 1 in the fourth line. As a

reference for the comparison of the potential of the LHC theyalso derived the 3σ discovery

limits from b→ sγ in [18]; this is shown in the last line of Table 1.

It is generally believed that beyond the SM theories will be probed in top quark physics.

These theories, in general, not only will induce non zero values ofgR andgL but also may

be responsible for new exotic decay modes. The top dominant decay mode,t → bW+, was

investigated in many extension of the SM. In particular, thedecay rate and polarized decay
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fractions were studied in many theories such as the Two HiggsDoublet Model (2HDM),

the minimal supersymmetric SM (MSMM) and top-color assisted technicolor (TC2). These

results were reviewed in [7] where some of the anomalous couplings were computed for

these models. For the first two of them they found the general feature that|gR| ≫ |gL| and

|Re(gR)| ≫ |Im (gL)|. Besides, they found that values ofgR up to 0.5×10−3 are possible for

low tanβ, while only 0.2×10−3 is expected for higher values of tanβ. Notice that these two

last figures represent 8% and 3%, respectively, of the leading one loop gluon contribution.

For TC2 models they showed that values forgR as big as 0.01 can be expected, and this

represents 150% of the one loop gluon contribution. The general feature|gR| ≫ |gL| and

|Re(gR)| ≫ |Im(gL)| is also true for the SM, as it will be shown in the following sections.

3 Electroweak corrections to the anomalous couplingsgR

and gL

In the SM, at one loop, there is only one topology for the vertex correction diagrams that

contribute to the anomalousgR and gL couplings. This is shown in Figure 1(a) and we

will denote this diagram as ABC using the name of the particles circulating in the loop.

The QCD one loop gluon contribution (ABC= gtb) dominates the standard contribution in

both thegR andgL dipole moments. All these diagrams, 19 as a whole, can be classified

according to their dependence on the quark masses. As already mentioned, the tensorial

A

B C

t
R L

_

m
t

(a) (b)

Figure 1: a. Topology of the one-loop SM Feynman diagrams forthe quantum correction to

the decayt → bW+. b. Leading order diagrams forgR in the largemt limit.

anomalous couplings we are interested in are chirality flipping magnitudes so, in general, a

mass insertion is needed in order for the diagram to contribute. All contributions togR need a

mt mass insertion while the contributions togL need amb mass insertion. The different mass

insertions for each diagram is shown in Figure 2. Besides, some of the vertex have also a

mass dependence. For all these diagrams there are three massdependencies that are different

for the case ofgR and for gL. We use this fact in order to classify all the contributions
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coming from all the diagrams. ForgR there are two diagrams that have a leadingmt-mass

L
b

W

tR
tR

L
b

W

tR
tR

L
b

W

tR

tR

R

W

tR L
b

L
b

R
b

W

R
b

W

b

W

tL

tL

tL

L
b

L
b

L
b

Figure 2: Mass insertions for the diagrams: in the left we cansee the case forgR where a

factormt is present for each diagram while the ones at the right are forgL and proportional

to mb.

dependence, with non-decoupling in themt mass [23]. They are the ones withthW andtw0W

circulating in the loop, whereh is the Higgs boson andw0 is the unphysical Z-boson; they

are shown in Figure 1(b). These two diagrams have top mass-insertions that, together with

the mass coming from the vertex, finally gives a mass dependence that is of the order 1/r2
w,

wherer2
w = (mW/mt)

2, with respect to the other diagrams. Next, there are 12 diagrams that

also have a top mass insertion but do not have this 1/r2
w enhancement factor; all of them

have a similar mass dependence. The QCD gluon exchange diagram also needs a top mass

insertion forgR. The remaining four diagrams do not have the 1/r2
w enhancement factor

but a suppression factorr2
b = (mb/mt)

2 coming from the mass dependence of the vertex

and from a b-quark mass insertion. The particles circulating in the loop for these diagrams

are bw+w0, bw+h, htb and w0tb, wherew± are the unphysical W-bosons. All these last

diagrams turn out to be numerically insignificant as the small rb coefficient may suggest.

Finally, the diagrams that dominate the final value for this electroweak correction are the

ones of the first two classes we have already presented. In thecomputation we find that

there is no numerical domination of the first ones with themt non-decoupling effect over the

ones without this effect. ThegR coupling is finite and, up to one loop, the calculation needs

no renormalization. However, not all the diagrams are infrared finite: some cancellation
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occurs among some groups of them in such a way as to end up with afinite value. This

fact was used as a check of our results. This is the case for thediagramstγW andtWγ and

also forbγW andbWγ. There are no singularities when we sum each pair together for the

computation. Some diagrams, likebWZ for example, contribute to the imaginary part of

gR. In these cases we also used the Cutkosky rules and compared the result with the direct

computation as a double check of our numerical calculation.Besides, some of the integrals

can be done analytically up to the end and we verified the numerical evaluation of these

results with the numerical evaluation of the Feynman integrals. This check was possible

for the diagrams with a gluon or a photon circulating in the loop. All these facts allow for

a multiple check of our calculations. As already anticipated, we can read in Table 2 that

the value of the four diagrams with ther2
b factor are numerical negligible. Each diagram

Table 2: Electroweak contributions togR andgL.

Diagram gR ×103 gL ×103

tZW −1.176 −0.0141

thW 0.220 0

tw0w− 0.344 0.0051

thw− 0.462 −0.0088

tZw− −0.050 −0.0012

tγW + tγw− 0.572 −0.0094

bWZ −0.623−0.664i −0.0201−0.0214i

bWh 0 0.0086−0.0120i

bw+w0 (1.5+11.0i)×10−4 −0.0029−0.0167i

bw+h (−4.3+8.6i)×10−4 −0.0019+0.0111i

bw+Z −0.088−0.062i −0.00039−0.00028i

bWγ + bw+γ 0.114−0.509i −0.0270+0.0250i

Ztb −0.397 −0.0067

γtb 0.068 0.0115

w0tb −6.8×10−4 −0.0109

htb −6.2×10−4 −0.0135

Σ(EW) −0.56−1.23i −(0.092+0.014i)

g t b −6.61 −1.12

Total −7.17−1.23i −1.212−0.014i

contributes with a different sign to the final result so finally many of them are numerically
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responsible for the final numerical value that can not be anticipating without an explicit and

careful computation of all of them. The figures for each contribution of the diagrams togR

andgL is given in Table 2, where we take the Higgs mass valuemh = 150 GeV. We can read

in the Appendix A the expressions for each of the diagrams as well as the analytical results

(Appendix B) for some of the diagrams for which it was feasible. We also show, in Appendix

B, the limit mb → 0 for these last formulas. This was also used as a check of our numerical

evaluation of the integrals. The results are rather insensitive to the Higgs mass value in the

experimental allowed Higgs mass interval [16]. The final result for the one loop electroweak

correction for the magnetic right anomalous coupling is:

gEW
R =−(0.56+1.23i)×10−3. (2)

Note that we have real and imaginary parts in this dipole moment and that the last is more

than double of the first. These values are to be compared with the gluon contribution that is

the dominant one:

gg
R=−6.61×10−3. (3)

This last result agrees with the one given in reference [15] if we put the numerical values for

masses and couplings used at that time. The final result for the one loop computation in the

SM is the sum of the last two values given in Eqs.[2] and [3]:

gSM
R =−(7.17+1.23i)×10−3. (4)

The real part for the one loop electroweak quantum correction for gR is 8% of the leading

gluon-exchange contribution. The CP-even imaginary absorptive part, generated by elec-

troweak corrections, may be measured with a similar set of observables as those considered

in the literature to measuregR and, more specifically,Re(gR). Note that this imaginary part

is 17% of the one loopRe(gSM
R ).

The one loop electroweak correction for thegL coupling can be obtained in a similar way as

in the previous calculation, however a b-quark mass insertion is present in all the diagrams

becausegL couples to a right b-quark. This factor dominates the numerical value of the final

result for thegL electroweak contributions. As in the previous computation, there are also

IR divergences in the same diagrams as in the preceding calculation and again they sum up

to a finite result. The same checks we already explained before for gR have been used. We

also find that an imaginary part for the electroweak contribution to gL shows up, so the final

result is:

gEW
L =−(0.92+0.14i)×10−4. (5)
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This is to be compared and summed with the gluon contribution, that is real and the dominant

one, in order to obtain the one loop result:

gg
L =−1.12×10−3. (6)

The final result for the one loop computation in the SM is then:

gSM
L =−(1.21+0.01i)×10−3. (7)

We note that forgL the electroweak contribution is again 8% of the gluon contribution for

gL, and the CP-even imaginary part has its origin in the electroweak diagrams.

4 Conclusions

We have computed the one loop electroweak values of the anomalous form factorsgR and

gL for the decayt → bW+. Both of them have real and imaginary parts. The imaginary

parts come from the electroweak correction and, forgR, it is almost three times the real

part, while forgL, it is 15% of the real one. Contrary to what happens in extended models,

where the imaginary part are usually negligible if the new particles involved have higher

mass scale than the top, we found that the absorptive parts ofthe dipole moments, which

are induced in the SM byCP-invariant final-state re-scattering, has to be taken into account

and may have physical effects that could be detected in the future through the observables

proposed in the literature. Note that thegR coupling will be measured at the LHC and its

absorptive contribution may be accessible in data and in thenew observables defined in [13],

for example. For the SM one loopgR coupling, the imaginary part is about 17% of the real

one while, forgL, it is only 1%. The value of thegL dipole moment, although proportional

to mb, is only about one order of magnitude smaller thangR. The SM prediction for the

real part ofgL is Re(gL)≃−0.0012 and is very close to the estimated 3σ indirect discovery

limit, Re(gL) ≤ −0.0019, obtained fromb → sγ in [13] based on the results of [18], so

any contribution coming from new physics that may show up maybe in conflict with these

bounds. Besides, the value of the electroweak corrections for these dipole moments, first

published in this paper can, by themselves, explain deviations up to a few percent level in the

observables, that are frequently discussed in the literature in connection to extended models.
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A Expressions for the diagrams

For thegR andgL couplings the contribution coming from each of the diagramsare written

with the help of the following denominators:

AZ = x2(((y−1)r2
b+1

)

y− r2
w(y−1)

)

− r2
z(x−1)

BZ = x
((

(x(y−1)+1)r2
b+x−1

)

y− r2
z(y−1)

)

− r2
w(x−1)(x(y−1)+1)

CZ = (x−1)(xy−1)r2
b− r2

w(x−1)x(y−1)+ r2
zxy+x(y−1)(xy−1)

{

Aγ,Bγ,Cγ
}

= {AZ,BZ,CZ}(rz→ 0)

{AH ,BH ,CH}= {AZ,BZ,CZ}(rz→ rh)

The contribution of each diagram togL is:

gtZW
L =

e2V∗
tb rw rb

128π2s2
w

×
∫ 1

0
dx

∫ 1

0
dy

−2(at +vt)x
(

2(y−1)yx2−2yx+x+1
)

AZ

gtγW
L =

e2QtV∗
tb rw rb

32π2 ×
∫ 1

0
dx

∫ 1

0
dy

−2x
(

2(y−1)yx2−2yx+x+1
)

Aγ

gthW
L = 0

gtw0w−
L =− e2V∗

tb rb

128π2rws2
w
×

∫ 1

0
dx

∫ 1

0
dy

−2x3y2

AZ

gthw−
L =− e2V∗

tb rb

128π2rws2
w
×

∫ 1

0
dx

∫ 1

0
dy

2x2(x(y−2)+2)y
AH

gtZw−
L =

e2V∗
tb rw rb

128c2
wπ2 ×

∫ 1

0
dx

∫ 1

0
dy

2(at +vt)(x−1)x
AZ

gtγw−

L =−e2QtV∗
tb rw rb

32π2 ×
∫ 1

0
dx

∫ 1

0
dy

2x(x−1)
Aγ

gbWZ
L =

e2V∗
tb rw rb

128π2sw
×

∫ 1

0
dx

∫ 1

0
dy

2x
BZ

[

ab
(

2(y−1)yx2−5yx+x+4
)

+

vb
(

2(y−1)yx2+(y+1)x−2
)

]
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gbWγ
L =

e2QbV∗
tb rw rb

32π2 ×
∫ 1

0
dx

∫ 1

0
dy

2x
(

2(y−1)yx2+(y+1)x−2
)

Bγ

gbWh
L =

e2V∗
tb rw rb

64π2s2
w

×
∫ 1

0
dx

∫ 1

0
dy

−2(x−1)x
BH

gbw+w0
L =− e2V∗

tb rb

128π2rws2
w
×

∫ 1

0
dx

∫ 1

0
dy

2x2
(

(x(y−1)+1)r2
b+x−1

)

y

BZ

gbw+h
L =− e2V∗

tb rb

128π2rws2
w
×

∫ 1

0
dx

∫ 1

0
dy

2x2
(

(x(y−1)−1)r2
b−x+1

)

y

BH

gbw+Z
L =

e2V∗
tbcwrw rb

128c2
wπ2 ×

∫ 1

0
dx

∫ 1

0
dy

−2(ab−vb)x2(y−1)
BZ

gbw+γ
L =−e2QbV∗

tb rw rb

32π2 ×
∫ 1

0
dx

∫ 1

0
dy

2x2(y−1)
Bγ

gZtb
L =− e2V∗

tb rw rb

512π2c2
ws2

w
×

∫ 1

0
dx

∫ 1

0
dy

−4(at +vt)x2y
CZ

[vb(x−1)+ab(x+1)]

gγtb
L =−e2QbQtV∗

tb rw rb

32π2 ×
∫ 1

0
dx

∫ 1

0
dy

−4(x−1)x2y
Cγ

gw0tb
L =

e2V∗
tb rb

128π2rws2
w
×

∫ 1

0
dx

∫ 1

0
dy

−2x2(y−1)(xy−1)
CZ

ghtb
L =

e2V∗
tb rb

128π2rws3
w
×

∫ 1

0
dx

∫ 1

0
dy

2x2(y−1)(xy+1)
CH

while for gR we have:

gtZW
R =

e2V∗
tb rw

128π2s2
w
×

∫ 1

0
dx

∫ 1

0
dy

2x
(

vt
(

−2yx2+x+1
)

+at
(

−2yx2+6yx+x−5
))

AZ

gtγW
R =

e2QtV∗
tb rw

32π2 ×
∫ 1

0
dx

∫ 1

0
dy

2x
(

−2yx2+x+1
)

Aγ

gthW
R =

e2V∗
tb rw

64π2s2
w
×

∫ 1

0
dx

∫ 1

0
dy

2x2(1−y)
AH

gtw0w−
R =− e2V∗

tb

128π2rws2
w
×

∫ 1

0
dx

∫ 1

0
dy

2x3
(

−(y−1)r2
b−1

)

y

AZ

gthw−
R =− e2V∗

tb

128π2rws2
w
×

∫ 1

0
dx

∫ 1

0
dy

2x2
(

x
(

1− r2
b(y−1)

)

−2
)

y

AH

gtZw−
R =

e2V∗
tb rw

128c2
wπ2 ×

∫ 1

0
dx

∫ 1

0
dy

2(at −vt)(x−1)x
AZ

gtγw−
R =−e2QtV∗

tb rw

32π2 ×
∫ 1

0
dx

∫ 1

0
dy

−2x(x−1)
Aγ

(diverge)
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gbWZ
R =

e2V∗
tb rw

128π2sw
×

∫ 1

0
dx

∫ 1

0
dy

2(ab+vb)x
(

2yx2− (3y+1)x+2
)

BZ

gbWγ
R =

e2QbV∗
tb rw

32π2 ×
∫ 1

0
dx

∫ 1

0
dy

2x
(

2yx2− (3y+1)x+2
)

Bγ

gbWh
R =

e2rbV∗
tb rw

64π2s2
w

×0= 0

gbw+w0
R =− e2rbV∗

tb

128π2rws2
w
×

∫ 1

0
dx

∫ 1

0
dy

2rbx3y2

BZ

gbw+h
R =− e2rbV∗

tb rw

128π2r2
ws2

w
×

∫ 1

0
dx

∫ 1

0
dy

−2rbx3(y−2)y
BH

gbw+Z
R =

e2V∗
tbsw rw

128c2
wπ2 ×

∫ 1

0
dx

∫ 1

0
dy

−2(ab+vb)x2(y−1)
BZ

gbw+γ
R =−e2QbV∗

tb rw

32π2 ×
∫ 1

0
dx

∫ 1

0
dy

−2x2(y−1)
Bγ

gZtb
R =− e2V∗

tb rw

512c2
wπ2s2

w
×

∫ 1

0
dx

∫ 1

0
dy

−4(ab+vb)x2(at(x(y−1)+2)+vtx(y−1))y
CZ

gγtb
R =−e2QbQtV∗

tb rw

32π2 ×
∫ 1

0
dx

∫ 1

0
dy

−4x3(y−1)y
Cγ

gw0tb
R =

e2V∗
tb rb

128π2rws2
w
×

∫ 1

0
dx

∫ 1

0
dy

−2rb(x−1)x(xy−1)
CZ

ghtb
R =

e2V∗
tb rb

128π2rws2
w
×

∫ 1

0
dx

∫ 1

0
dy

2rb(x−1)x(xy+1)
CH

B Some exact results

The following integrals, corresponding to diagrams with a photon or gluon circulating in the

loop,tγW, tγw−, bWγ, bw+γ, γtb andgtb, can be done analytically. Using the notation

gABC
L,R =

e2V∗
tb rw

32π2 Q× IABC
L,R

we have:

I tγW+tγw−
R =

4
∆

[((

1+
1− r2

w− r2
b+∆

4r2
b

)

log

(

1− r2
w+ r2

b+∆
1− r2

w− r2
b+∆

))

−
(

∆ →−∆
)]

I tγW+tγw−
L =

2
rb

[

1−
(

(

1− r2
w+ r2

b+∆
)(

1− r2
w+3r2

b+∆
)

4r2
b ∆

log

(

1− r2
w+ r2

b+∆
1− r2

w− r2
b+∆

))

−
(

∆ →−∆
)]

13



I tWγ+tw+γ
R = −2iπ

∆
[

2−3r2
w+ r4

w+ r4
b+ r2

b(1−2r2
w)
]

−2+2(2− r2
w+ r2

b) log(2r2
b)+

4r2
b

∆

[(

1− r2
w+3r2

b+∆
(1− r2

w+ r2
b+∆)2

log(1− r2
w− r2

b+∆)
)

−
(

∆ →−∆
)]

I tWγ+tw+γ
L =

2rb

∆

[(

1− r2
w+3r2

b+∆
1− r2

w+ r2
b+∆

log
(

1− r2
w− r2

b+∆
)

)

−
(

∆ →−∆
)]

−

2rb log(2r2
b)+

2iπrb

∆
(3− r2

w+ r2
b)

I γtb
R =

2
∆

[(

1− r2
w+ r2

b+∆
1+ r2

w− r2
b−∆

log

(

2

1− r2
w+ r2

b+∆

))

−
(

∆ →−∆
)]

I γtb
L =

4rb

∆

[(

1

1+ r2
w− r2

b+∆
log

(

2

1− r2
w+ r2

b−∆

))

−
(

∆ →−∆
)]

with ∆ =
√

1−2(r2
w+ r2

b)+(r2
b− r2

w)
2. These expressions can be written, in themb → 0

limit, as:

I tγW+tγw−
R ≈ 2

1− r2
w

[

1+
(2− r2

w)

1− r2
w

log(r2
w)

]

+

r2
b

(1− r2
w)

4

[

3(r4
w−4r2

w+3)+2(2+2r2
w− r4

w) log(r2
w)
]

+O (r4
b)

I tγW+tγw−
L ≈ rb

(1− r2
w)

3

[

8r2
w−3r4

w−5+2(r2
w−2) log(r2

w)
]

+

4r3
b

3(1− r2
w)

5

[

9r2
w− r6

w−8+3(r4
w−2r2

w−1) log(r2
w)
]

+O (r5
b)

I tWγ+tw+γ
R ≈ −2iπ

[

2− r2
w+

r2
b

(1− r2
w)

2(3−2r2
w+ r4

w)

]

−2

[

1+(2− r2
w) log

r2
w

1− r2
w

]

−

2r2
b

(1− r2
w)

2

[

log(r2
b)− (3−2r2

w+ r4
w) log(1− r2

w)+(2−2r2
w+ r4

w) log(r2
w)
]

+

O (r4
b)

I tWγ+tw+γ
L ≈ 2iπ

rb

1− r2
w

(

3− r2
w+

4r2
b

(1− r2
w)

2

)

+

2rb

1− r2
w

[

log(r2
b)+(2− r2

w) log(r2
w)− (3− r2

w) log(1− r2
w)
]

−

2r3
b

(1− r2
w)

3

[

1+2log(r2
b)+2log(r2

w)−4log(1− r2
w)
]

+O (r5
b)

I γtb
R ≈ − 2

r2
w

log(1− r2
w)+

2r2
b

(1− r2
w)

2

[

1+ log(r2
b)−2log(1− r2

w)
]

+O (r4
b)

I γtb
L ≈ −2rb

1− r2
w

[

log(r2
b)−

1+ r2
w

r2
w

log(1− r2
w)

]

−

2r3
b

(1− r2
w)

3

[

1+2log(r2
b)−4log(1− r2

w)
]

+O (r5
b)
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