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Abstract

We obtain the RPA summed one-meson exchange potential between nucleons in symmetric nuclear
matter at zero temperature, from a model which includes ρ, σ, ω and π mesons. The behavior of rho mesons
inside the medium is first discussed using different schemes to extract a finite contribution from the vacuum
polarization. These schemes give qualitatively different results for the in-medium rho mass. The results are
discussed in connection with the non-renormalizability of the model. We next study the modified potential
as density increases. In the intermediate distance range, it is qualitatively modified by matter and vacuum
effects. In the long-distance range (r > 2 fm), one observes the presence of oscillations, which are not present
in free-space. Features on this distance range are insensitive to the renormalization scheme.

PACS: 21.30.Fe,21.65.+f,21.60.Jz

1 Introduction

Quantum Hadrodynamics (QHD) designates a class of models in which nuclear interactions are described
through effective relativistic Lagrangians of nucleons coupled to different kinds of mesons. Such models have
been successfully used during the past decades to study very different situations, such as nucleon-nucleon scat-
tering processes in free space [1] or the nuclear many-body problem [2] (for a recent review of QHD models, see
[3]). In vacuum, the one-boson exchange approximation gives a reasonable approximation to nucleon-nucleon
scattering data.

The situation becomes more complicated in dense nuclear matter since higher-order diagrams have to be
taken into account. It is known for example that short range correlations arise due to the hard repulsive core in
the free potential. An important achievement of the late eighties was the reproduction of saturation properties by
parameter-free, (relativistic) Dirac-Brueckner G-matrix calculations [4, 5]. In this approach, repeated exchange
of free mesons give rise to an effective potential with a smoothened repulsive core. On the other hand, it is
also well-known that effects coming from the Random Phase Approximation (RPA) will modify the two-particle
interaction at high densities.

For example, in QED the lowest-order interaction potential between two static charges is the usual Coulomb
potential. Inside a plasma, RPA effects modify the photon propagator, and correspondingly one obtains a
screened Debye potential. At larger distances, new phenomena appear. If the temperature is sufficiently low,
the potential becomes oscillatory and damped as some power-law of the distance. These are the so-called
Friedel oscillations [6], and are originated by the sharp profile of the Fermi surface at low temperatures. Friedel
oscillations are supported by a large body of experimental evidence in metallic alloys (see e.g. [7]).

Similar screening effects are encountered in a QCD quark-gluon plasma when the quark-antiquark potential
is calculated within the same approximations [8]. Such effects appear also if one considers the spatial dependence
of static meson correlation functions at finite baryon density in the Nambu – Jona – Lasinio model [9]. In a
nuclear plasma, the presence of the medium will also give rise to a modified interaction. The modifications of
the potential due to RPA have been investigated so far in the case of the one-pion exchange [10] and for the
Walecka σ - ω model [11, 12]. In both cases, a screened potential was obtained that differs from the one in
vacuum . At long distances (r ≥ 2 fm), the potential shows also an oscillatory behavior, as in the QED and
QCD cases.
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Our claim is that RPA may give important effects, both quantitative and qualitative, and has to be considered
in many-body calculations of nuclear matter. As a matter of fact, it was shown [13] that RPA corrections give
rise to a modification of the in-medium cross section of the same order of magnitude as Brueckner ones, and
compatible with experimental data available so far. Other examples are the reduction of neutrino opacities
in neutron star matter from RPA corrections of the NN interaction [14, 15] and the measurement of the
electromagnetic response function in quasielastic electron scattering experiments [16].

Of course, both kinds of effects should eventually be considered. Within a diagrammatic perturbation
expansion, they appear as summations of two distinct subsets of diagrams, namely particle-hole loops for the
RPA, and ladder summation for the G-matrix mentioned above. Both are essential ingredients, since RPA
summation is needed in order to describe long-range correlations, and, on the other hand, ladder summations
are needed to create short-range correlations.

It would be desirable to develop some approach to incorporate both kind of summations in a systematic way.
As discussed in [17], however, this can not be done simply by using the RPA modified potential as a driving
term for ladder summation. Such an approach would lead to inconsistencies and double counting, and one has
to look for more elaborated techniques. Parquet resummation [17] is the minimal extension that can accomplish
this purpose, but its extension to relativistic strongly interacting systems still encounters technical difficulties.
Besides theoretical problems, parquet techniques applied to interactions with a simpler structure, (scalar λφ4 or
QED) already lead to very complex results exceeding standard computational resources and tricky convergence
issues. 1

Before embarking on such an attempt, our aim will be more modest. We think that it is useful to check
whether the RPA effects give rise to sizeable corrections in the density and momentum transfer ranges of
interest. Actually, we already know from other contexts that the answer is positive [13, 15, 21]. Here we focus
on the analysis of the modifications of the one-meson exchange potential due to RPA corrections to the meson
propagator inside nuclear matter. We will pay special attention to the comparison of the modified potential,
in contrast to the free-space potential. Keeping in mind the above considerations, since the RPA summation
is not the only effect on the many-body problem, it cannot be used in naive ladder calculations. We insist,
however, that this summation is a necessary (and important) piece of the problem, and deserves further study.
In the course of the calculations, we obtain the modified meson propagator inside the medium, a result which
is interesting by itself, since it allows us to study the effect of the medium on the meson propagation, the
modification of the meson mass, the appearance of new branches, etc.

In this paper, we concentrate on these modifications within a model which includes ρ mesons, in addition to
the π, σ and ω mesons already considered in the previous references. The inclusion of ρ mesons is a necessary
ingredient in determining the proper isospin dependence of the nucleon-nucleon potential within meson exchange
models [1]. Also, obtaining the rho propagator in dense matter will allow us to investigate how its in-medium
mass changes as density increases. This issue has become important in the context of dilepton excess at low
invariant masses observed in heavy ion collisions [22]. As we will show, however, the evolution of the ρ meson
mass with density in this QHD model is very sensitive to the way in which the vacuum terms of the polarization
are treated. This is due to the non-renormalizability of the derivative part of the ρ meson coupling which was
introduced for phenomenological reasons. While renormalizability might not be a requirement in the case of
effective models, one has to provide a prescription to eliminate the divergences that arise in these relativistic
models consistently. As a matter of fact, one finds that, in renormalizable QHD models, vacuum effects eliminate
the pathologies which appear when all vacuum terms are simply left out [23]. We will examine here several
different prescriptions, leading to different consequences for the rho mass in nuclear matter.

This paper is organized as follows. In section 2 we define the model and calculate the corresponding RPA
meson propagators in the medium. In section 3 we discuss how to extract a finite vacuum term from the vacuum
polarization in the case of rho mesons. We give in section 4 general expressions for the one-boson exchange
potential obtained from the modified propagator. In section 5 we discuss the rho-meson dispersion relations
and effective mass in connection with the renormalization procedures discussed in section 3. Results concerning
the in-medium potential are showed in section 6. We first consider only the exchange of rho mesons. After
this, we give some plots which are obtained by adding all kind of mesons present in our model. Mechanisms
which could be responsible for smearing away the Friedel oscillations present in this potential are discussed
in Section 7. Finally, our main results are summarized and commented in Section 8. We have gathered in
Appendix A and B the explicit formulae concerning the matter and vacuum part of the polarization tensor of
rho mesons respectively. Appendix C contains the configuration space contributions from different mesons to

1Interesting attempts in this direction may also be found in a non relativistic formalism in [18, 19, 20].
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the nucleon-nucleon potential.

2 Meson propagators in symmetric nuclear matter.

In this section, we describe the main steps necessary to obtain the meson propagators in the RPA approximation.
The starting point will be a QHD model. For this, we adopt the one described by the following Lagrangian :

L = LN + Lσ + Lω + Lπ + Lρ + LI + LCC (1)

which assumes nucleons interacting with several kinds of mesons : σ, π, ρ and ω. In the latter equation, LN

corresponds to the nucleon Dirac free Lagrangian:

LN = (i/2) [ ψγ · ∂ ψ − (∂ ψ) · γ ψ ] − m ψ ψ (2)

where ψ =

(
ψp

ψn

)
is the nucleon isospin-doublet (protons and neutrons) field with mass m,

Lσ = (1/2) [ (∂ ν σ)(∂ ν σ) − µ 2
σ σ2 ] (3)

Lπ = (1/2) [ (∂ ν ~π)(∂ ν ~π) − µ 2
π ~π2 ] (4)

Lρ = −(1/2) [ (1/2) ~Rµν
ρ · ~R ρµν − µ 2

ρ ~ρ ν · ~ρν ] (5)

Lω = −(1/2) [ (1/2) F µν
ω · Fωµν − µ 2

ω ω ν · ων ] (6)

are the free Lagrangians for the mesons, with masses µi (i=σ, π, ρ and ω). LI gives the meson-nucleon interaction.
We have adopted simple Yukawa couplings for the σ, π and ω mesons. For the ρ-meson we added a tensor term
[1]. Therefore, we have :

LI = gσ ψ σ ψ + gω ψ γµ ωµ ψ − i gπ ψ γ5 ~τ · ~π ψ

+ gρ ψ γµ ~τ · ~ρµ ψ −
fρ

2m
ψ σµν ψ ~τ · ∂ν ~ρµ (7)

with the following notations :
F µ ν

ω = ∂ µ ω ν − ∂ ν ω µ (8)

~R µν
ρ = ∂µ ~ρ ν − ∂ν ~ρ µ (9)

Finally, LCC contains the counterterms necessary to eliminate the divergences from the vacuum polarization.
We will discuss this topic in more detail in the next section .

From Eq. (1) one can derive the equations of motion for the nucleons and mesons. In order to obtain the
meson propagators, we have used the linear response theory around a given ground state of the meson-nucleon
plasma. Our formalism is based on the introduction of Wigner functions. This formalism has been described
in several papers in connection with the nucleon-nucleon interaction in a nuclear medium [11, 23, 24]. We will
give here only the main steps relevant to the model adopted above, and refer the reader to these papers (and
references therein) for a detailed description of the method.

The Wigner function for the nucleons is defined by :

F (x, p) =< F̂ (x, p) >= tr
[
ρ̂E F̂ (x, p)

]
(10)

where F̂ (x, p) represents the nucleon Wigner operator

F̂ (x, p) =
1

(2π)4

∫
d4R e−ipR ψ (x+

R

2
) ⊗ ψ (x−

R

2
) (11)

and ρ̂E is the equilibrium density matrix operator. For a system at a given temperature T allowing for particle
number variation, this is given by the Grand Canonical operator. Given a quantum operator Ô, the statistical
average is defined, as in Eq. (10), by

< Ô >= tr
[
ρ̂E Ô

]
(12)
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(the symbol tr means the trace with respect to the quantum states available to the system).
We assume that equilibrium can be described by the Hartree approximation. Within this approximation,

meson fields are treated as classical fields and replaced by their statistical averages. These are furthermore
restricted by symmetry properties. For symmetric nuclear matter, only < σ > and the time-like component
< ω0 > survive [2] (all other meson mean fields are zero). This means that the nuclear background is described
by the Walecka model. The mean-field values have to be obtained self-consistently, by solving the implicit
equations

µ2
σ < σ > = gσTr

∫
d4p FH(p) (13)

µ2
ω < ω0 > = − gω Tr

∫
d4p γ0FH(p) (14)

Here, Tr stands for the spin-isospin trace. In a spin saturated system, parity conservation implies < π >= 0.
The value of the ρ mean field is related to the difference between neutron and proton densities, and since we
are working in symmetric nuclear matter, we have < ρ >= 0.

The nucleon Wigner function in the Hartree approximation is given by

FH(p) = ( γ · P + M )

(
f(p) 0

0 f(p)

)
(15)

The nucleon effective mass is M = m − gσ < σ >, and Pµ is defined by Pµ = pµ + gω < ωµ > . The
last matrix in Eq. (15) corresponds to the isospin structure of FH(p) , and f(p) is the relativistic distribution
function of nucleons, defined by

f(p) =
1

(2π)3
δ(P 2 − M2) [ Ω+(p0) + Ω−(p0) − H(−P0) ] (16)

where H(x) is the Heaviside step function and Ω+(p0) (Ω−(p0)) are the nucleon (anti-nucleon) occupation
numbers:

Ω±(p0) = H(±P0)
1

[ 1 + e β ( p0 ∓ µ ) ]
(17)

In the latter equation, µ is the nucleon chemical potential and β = 1/T (we take the Boltzmann constant
kB = 1).

The next step in the linear response formalism is made by introducing small perturbations of the meson
fields and the nucleon Wigner function around their Hartree values. Therefore, one has to replace :

σ(x) → < σ > +δ σ(x)

ωµ(x) → < ωµ > +δ ωµ(x)

~π(x) → δ ~π(x)

~ρµ(x) → δ ~ρµ(x)

F (x, p) → FH(p) + δF (x, p) (18)

in the corresponding equations of motion, and consider only terms which are linear in the perturbations (notice
that < ~π >=< ~ρ µ >= 0 , as discussed above). One then obtains a system of coupled equations which can be
solved for δF (x, p) . When substituted in the remaining equations, it gives a system of equations for the meson
sector. For symmetric nuclear matter, the resulting system is considerably simplified. First, the pions and the
rho mesons decouple from the rest. Only the σ and ω mesons are mixed together. However, the corresponding
σ+ω equations are the same that appear in the Walecka model [11, 25]. Similarly, one reproduces for pions the
well-known results [2, 23]. For this reason, we will concentrate here on the rho mesons. In this case, because of
isospin symmetry, the equations of motion are the same for ρ+, ρ− and ρ0, and can be written as :

Dµν(k) δρν ≡
[
−kµkν + ( k2 − µ2

ρ ) gµν + Πµν
ρ (k)

]
δρν = 0 (19)

Here, Πµν
ρ (k) is the ρ-meson polarization tensor due to NN particle-hole loops. Explicitly,

Πµν
ρ =

∫
d4p T r

[
(γ.(p−

k

2
) +M)(gργ

µ +
fρ

2m
σµαkα)(γ.(p+

k

2
) +M)(gργ

ν −
fρ

2m
σνβkβ)

]
×

×
f(p− k/2) − f(p+ k/2)

p.k
(20)
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(Analytical formulae are given in Appendices A and B). This tensor can be decomposed into two terms (we
omit Lorentz indices):

Πρ(k) = Πmat
ρ (k) + Πvac

ρ (k) (21)

The matter polarization, Πmat
ρ (k) vanishes in free space, i.e. at zero density and temperature. The second,

vacuum term Πvac
ρ (k) , gives a non-zero contribution even in free space. It contains divergent integrals from

which one has to extract a finite contribution. This will be discussed in the next section.
The ρ-meson propagator in the medium G(k) can be obtained by analyzing the response of the meson field

against external nuclear sources. This procedure has been described in detail in [11]. As showed in this reference,
the resulting propagator is given, in a matrix form, by

G(k) = − [D(k)]
−1

(22)

and obeys the Dyson equation (also written matricially). This equation, graphically represented in Fig. 1, reads

G(k) = G0(k) +G0(k)Πρ(k)G(k) (23)

where G0(k) is the non-interacting ρ-meson propagator in vacuum. Eq. (19) can be analyzed with more detail

by choosing a particular frame with the z-axis along the direction of ~k , in such a way that kµ = (w, 0, 0, q).
Then, the only non-vanishing components of the polarization are Π00

ρ (k), Π11
ρ (k) = Π22

ρ (k),Π03
ρ (k) = Π30

ρ (k) and
Π33

ρ (k). Eq. (19) then becomes




D00(k) 0 0 D03(k)
0 D11(k) 0 0
0 0 D22(k) 0

D30(k) 0 0 D33(k)


 ×




δρ0(k)
δρ1(k)
δρ2(k)
δρ3(k)


 = 0 (24)

where

D00(k) = − ( q2 + µ2
ρ − Π00

ρ (k) ) (25)

D11(k) = D22(k) = − ( k2 − µ2
ρ − Π11

ρ (k) ) (26)

D33(k) = −w2 + µ2
ρ + Π33

ρ (k) (27)

D03(k) = D30(k) = −wq + Π03
ρ (k) (28)

The dispersion relations can now be obtained by equating to zero the determinant of Eq. (24), which can
be factored out into two terms :

|D(k)| = (D11(k))2.

∣∣∣∣
D00(k) D03(k)
D30(k) D33(k)

∣∣∣∣ = 0 (29)

We obtain two equations, corresponding to transverse and time-longitudinal modes. These are given, respec-
tively, by :

k2 − µ2
ρ − Π11

ρ (k) = 0 (30)

and
k2 − µ2

ρ − k2/q2 Π00
ρ (k) = 0 (31)

It is convenient to give these results in a fully covariant form. The ρ meson polarization can be decomposed
as

Πµν
ρ = −ΠρTT

µν − ΠρLL
µν with

T µν = gµν −
kµkν

k2
−
ηµην

η2
; Lµν =

ηµην

η2
; ηµ = uµ −

k.u

k2
kµ (32)

where uµ is the 4-velocity of the medium. ΠρT and ΠρL are Lorentz scalars representing the transverse and
longitudinal components of the polarization. The dispersion relations read

k2 − µ2
ρ + ΠρT = 0 ; k2 − µ2

ρ + ΠρL = 0 (33)

5



The propagator is obtained by inversion of the dispersion relation, and is given in the general case by

Gµν
ρ = −GρLL

µν −GρTT
µν +

1

µ2
ρ

kµkν

k2
; GρL =

1

k2 − µ2
ρ + ΠρL

; GρT =
1

k2 − µ2
ρ + ΠρT

(34)

In the referential where the fluid is at rest uµ = (1,~0), we have the following relations:

ΠρL = − k2/q2 Π00
ρ (k) ; ΠρT = − Π11

ρ (k) (35)

3 Vacuum polarization

In this section we discuss the procedure to extract a finite contribution from the vacuum polarization tensor.
In the case of the σ and ω, or π mesons with a pseudoscalar coupling, the Lagrangian is renormalizable. This
means that divergences can be eliminated consistently, at all orders, by introducing appropriate counterterms
in the Lagrangian and imposing some physical conditions. This has been discussed in several papers; for a
discussion within the formalism of Wigner functions see [23, 24, 26]. As pointed out in these references, the
vacuum polarization gives an important contribution and eliminates some of the pathologies that appear in
the semi-classical approximation (when all vacuum terms are simply discarded 2). Therefore, one would like to
conserve vacuum effects. Here, however, there is an important difference when considering the rho mesons. As a
matter of fact, due to the derivative coupling appearing in Eq. (7), the Lagrangian becomes non-renormalizable,
which implies that the counterterms needed to compensate the infinities at a given order of approximation will
not be valid at higher orders. Nevertheless, it is still possible to eliminate the divergences at a given order by
the procedure described below.

The method proceeds by dimensional regularization and the introduction of a counterterm Lagrangian.
The vacuum contribution arises from the last term −H(−P0) in Eq. (16). Since the only tensors at our

disposal in vacuum are gµν and kµkν , and Πµν
ρ vac should be orthogonal to kµkν , it must be of the form:

Πµν
ρren(k) = −Qµν I(k)

4π
(36)

where

Qµν(k) =
kµkν

k2
− gµν (37)

After performing the trace, a straightforward calculation leads to

Πρ vac(k) = −
16

3

g2
ρ

(2π)3
I1 −

4

3

g2
ρ

(2π)3
(2M2k2 + k4)I2 −

8

3

(
fρ

2m

)2
k2

(2π)3
I1 −

2

3

(
fρ

2m

)2
k4

(2π)3
(8M2 + k2)I2

−
8Mk4

(2π)3

(
fρ

2m

)
gρI2 (38)

The integrals I1 and I2 diverge. These divergences can be extracted by the procedure of dimensional regular-
ization

I1 =

∫
d4p δ(p2 −M2)H(−p0) ; Ireg

1 = πM2

[
−

1

ǫ
+ ln

(
M

m
Λ1

)]
(39)

I2 =

∫
d4p

δ(p2 −M2)H(−p0)

(p.k)2 − k4/4
; Ireg

2 = −
2π

k2

[
−

1

ǫ
+ ln

(
M

m
Λ2

)
+ θ(k2,M2)

]
(40)

θ(k2,M2) is a known finite function given in Appendix B. Here, ǫ is an infinitesimal quantity and Λ1, Λ2 are
arbitrary finite constants. Therefore, there appear the following divergences in Πρ vac when ǫ→ ∞:

1

ǫ
in the g2

ρ term ,
M

ǫ
in the

fρ

2m
gρ term ,

M2

ǫ
and

k2

ǫ
in the

(
fρ

2m

)2

term (41)

2Moreover, the vacuum contribution depends on the plasma thermodynamical state, so that it can not be simply subtracted in
a fully consistent way.
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At the one-loop level, it is possible to compensate the divergences by adding the following counterterms to the
Lagrangian:

Lρ
CC =

{
(A + B σ + C σ2 ) ~Rµν · ~Rµν + D (∂α

~Rµν) · (∂α ~Rµν)
}

(42)

in which A, B, C, D are constants to be determined by the renormalization procedure. In order to obtain the
finite (renormalized) vacuum polarization, we have followed the same subtraction scheme as we used for the
other mesons [23]. Namely, we first obtain the rho field equation from the generalized Euler equation3

∂L

∂ρν
− ∂µ

(
∂L

∂(∂µρν)

)
+ ∂α∂µ

(
∂L

∂(∂α∂µρν)

)
= 0 (43)

with the full Lagrangian including the counterterms. After linearizing and Fourier transforming, the dispersion
equation (19) reads

[
−kµkν + (k2 − µ2

ρ)g
µν + Πµν

ρ + (A+Bσ + Cσ2 +Dk2)(kµkν − k2gµν)
]
δρν = 0 (44)

Now the vacuum rho polarization can be made finite if A,B,C,D consist of an infinite part cancelling the
divergences we have pointed out in Eq. (41), and a finite part which we now proceed to determine on the basis
of physical arguments. We will have

Πµν
ρ ren = Πµν

ρ vac + (A+Bσ + Cσ2 +Dk2)(kµkν − k2gµν)

=

{
gρ

3π2

[
ln
M

m
+ θ +

2M2

k2
(θ − 1)

]
+

(
fρ

2m

)2
1

6π2

[
6M2 ln

M

m
+ 8M2θ + k2(ln

M

m
+ θ)

]

+
2M

π2

(
fρ

2m

)
gρ

[
ln
M

m
+ θ

]
−
(
α+ β σ + γ σ2 + δk2

)}{
k2gµν − kµkν

}
(45)

with the decomposition

A = α+
g2

ρ

3π2

[
−

1

ǫ
+ ln Λ2 −

1

2

]
+

2m

π2

(
gρ fρ

2m

)[
−

1

ǫ
+ ln Λ2 −

1

2

]
+

(
fρ

2m

)2
m2

3π2

[
−

3

ǫ
+ 4 ln Λ2 − ln Λ1 − 2

]

B = β −
2gσ

π2

(
gρ fρ

2m

)[
−

1

ǫ
+ ln Λ2 −

1

2

]
−

(
fρ

2m

)2
2mgσ

3π2

[
−

3

ǫ
+ 4 ln Λ2 − ln Λ1 − 2

]

C = γ +

(
fρ

2m

)2
g2

σ

3π2

[
−

3

ǫ
+ 4 ln Λ2 − ln Λ1 − 2

]

D = δ +

(
fρ

2m

)2
1

6π2

[
−

1

ǫ
+ ln Λ2 −

1

2

]
(46)

In order to determine the finite constants α, β, γ, δ, some physical constraints have to be imposed. The standard
[25] requirements are that:

* (1) The vacuum polarization has to vanish in free space, when the rho meson is on its mass shell (here,
“shell”={k2 = µ2

ρ,M = m,σ = 0}):

Πρ vac|shell = 0, (47)

* (2) The field equation can be written in the standard form by defining effective coupling constants geff and
feff . Requiring that the effective coupling be equal to the bare one in vacuum leads to the condition

∂Πρ vac

∂k2 |shell
= 0 (48)

* (3) The new couplings σRµνR
µν , σ2RµνR

µν , that we had to introduce in order to subtract the infinities,
should not appear in the dispersion relation on the rho meson mass shell, leading to the conditions

∂Πρ vac

∂σ |shell
= 0 (49)

3The D counterterm makes this generalization necessary
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and
* (4)

∂Πρ vac

∂σ2 |shell
= 0 (50)

This amounts to four relations to determine the four constants α, β, γ, δ.
Alternative sets of conditions can be imposed, leading to different expressions of the vacuum polarization.

In particular, we can recover the renormalization scheme suggested by Shiomi and Hatsuda [27] as a special case
of our general formalism. We have also tried these alternative schemes in our calculations in order to investigate
the influence of the treatment of the vacuum. As we will see in section (5.3), the various schemes predict a
completely different behavior of the in-medium rho meson mass as density increases.

The peculiarities of each scheme, outline of derivation and corresponding analytical expressions are given
in Appendix B. They can be subdivided into two classes: The first class of schemes comprises those which are
designed not to introduce new couplings with the σ mesons (conditions (3) and (4) of the method outlined above).
This is the case of the scheme presented here, labelled “scheme 1” and of a very similar one labelled “scheme 2”.
With a different point of renormalization, the scheme presented in the case of the σ meson in the classical paper
of Kurasawa and Suzuki [28] also belongs to this class. We applied it to the ρ meson and labelled the result
“scheme 6”. The second class of renormalization schemes preserves the structure of the regularized expression,
introducing counterterms α+ βσ + γσ2 so that they can be factorized into αM2/m2 = α(m− gσσ)2/m2. As a
result, conditions (3) and (4) cannot be fulfilled anymore. We called the scheme obtained in this way “scheme
3”. The method of Shiomi and Hatsuda (scheme 5) and a related one used by Sarkar et al. [29] (“scheme 4”)
belong to this class.

The advantages and caveats of the respective renormalization schemes will be further discussed in a forth-
coming work[30].

4 One-boson exchange potential in the medium.

In this section we calculate the one-boson exchange potential obtained after RPA summation. As mentioned
in the previous section, when the background is symmetric nuclear matter, rho mesons (and pions as well)
decouple from the other mesons, whereas σ and ω mesons are coupled together. Therefore, the total potential
shows the following structure :

V = V σ+ω + V π + V π (51)

where V σ+ω ,V π and V π are obtained by σ + ω, one-pion and one-rho exchange, respectively. Our method
follows a similar procedure to the construction of the one-boson exchange potential in vacuum [1]. The essential
difference is that free meson propagators are replaced by in-medium propagators. Also, the external nucleon
lines correspond to in-medium spinors, as they arise by solving the nucleon Dirac equation in the Hartree
approximation. It is important to mention, however, that one arrives to the above result by computing the
energy associated to a pair of interacting nucleons inside the plasma, a result which ensures that no double
counting has been made. The method has been given in detail in [11], and applied to the calculation of Vσ+ω .

As in the free case, we expand the resulting potential in powers of p
M , where p represents the momenta of

the external nucleons, and keep only terms of the order ∼
(

p
M

)2
. This has the advantage to simplify the spin

structure of the nucleon-nucleon potential. For degenerate nuclear matter, one has p ∼ pF , where pF is the
nucleon Fermi momentum. If the density is close to saturation, the next term in the expansion would be a small

correction of the order
(

p
M

)4
∼
(

0.3
0.7

)4
. Of course, if density is much larger, higher order terms in the above

expansion should be taken into account.
In constructing the one-rho potential one has to take into account the diagram shown in Fig. 2, where

the double line represents the in-medium rho-meson propagator, given by Eqs. (22 – 28) and Eq. (34). The
amplitude corresponding to this diagram is given by

Mρ = −

{[
χ†

1′ u(~p′1, s
′
1)
] (

i gρ γ
µ −

fρ

2m
σµβ(p1

′ − p1)β

)
τa
1 [u(~p1, s1)χ1 ]

}

δab Gµν(k)

{[
χ†

2′ u(~p′2, s
′
2)
](

i gρ γ
ν −

fρ

2m
σνα(p2

′ − p2)α

)
τb
2 [ u(~p2, s2) χ2 ]

}
(52)
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In this equation, χ1, χ2 stand for the quantum states of the initial nucleons with four-momenta p1 and p2. They
have associated spinors u(~p1, s1) and u(~p2, s2) . Similarly, the prime indicates the corresponding magnitudes
for final nucleons. The isospin operators τa

1 , τ
b
1 (a, b = +,−, 0) label the associated rho charged fields. From Eq.

(52) we obtain the one-rho exchange potential, by using the procedure outlined above. In the center-of-mass
frame (CM) of the nucleons4, the potential is given by:

Vρ(~q, ~Q) =

{
g2

ρ

[
−GρL

(
1 +

~Q2

2M2
−

~q2

8M2
+

i

2M2
(~q ∧ ~Q).~S

)

+GρT

(
−
~Q2

M2
−

i

M2
(~q ∧ ~Q).~S + (~σ1.~σ2)

~q2

4M2
−

(~σ1.~q)(~σ2.~q)

4M2

)]

+ 4M gρ

(
fρ

2m

) [
−GρL

(
−

~q2

4M2
+

i

2M2
(~q ∧ ~Q).~S

)

+GρT

(
−

i

2M2
(~q ∧ ~Q).~S + (~σ1.~σ2)

~q2

4M2
−

(~σ1.~q)(~σ2.~q)

4M2

)]

+ 4M2

(
fρ

2m

)2 [
GρT

(
(~σ1.~σ2)

~q2

4M2
−

(~σ1.~q)(~σ2.~q)

4M2

)] }
~τ1 · ~τ2 (53)

In the latter equation, ~σi (~τi) represent the spin (isospin) Pauli matrices for the two (i = 1, 2) interacting
nucleons. In the chosen frame, initial nucleons have momenta ~p and −~p , whereas final nucleons are assumed
to have momenta ~p ′ and -~p ′ . We have introduced the notations :

~q = ~p− ~p ′ ; ~Q = (~p+ ~p ′) /2 ;

GρL(0, ~q) =
−1

q2 + µ2
ρ − Π00

ρ (0, ~q)
; GρT (0, ~q) =

−1

q2 + µ2
ρ + Π11

ρ (0, ~q)
(54)

Next we will construct the in-medium (RPA summed) nuclear potential in configuration space. This is done
by Fourier transformation of the corresponding momentum-space magnitudes. Before proceeding, we include a
phenomenological form factor in the nucleon-meson vertices. This amounts to making the replacements :

gα → gα · Fα(q)

fρ → fρ · Fρ(q)

Fα(q) =
Λ2

α − µ2
α

Λ2
α + q2

(55)

(α = σ, ω, π, ρ) in all previous equations in momentum space. After some algebra, the configuration space
potential can be decomposed in the following way [1] :

V (~r ) = Vc(r) −
1

2

(
∇2 VNL(~r ) + VNL(~r )∇2

)

+VLS(r) ~L · ~S + VSS(r) ~σ1 · ~σ2 + VT (r) S12 (56)

with the following notations : ~L is the angular momentum operator, ~S = 1
2 (~σ1 + ~σ2) is the total spin of the

nucleons and S12 the tensor operator. In this way, Vc(r) is the central part of the potential, VLS(r) is the
spin-orbit, VSS(r) is the spin-spin, and VT (r) is the tensor potential. In addition to the spin structure, one has
to include a factor ~τ1 · ~τ2 in the pion and rho contributions (omitted here). The second term in Eq. (56) is
non-local. Its contribution will depend on the explicit form of the two-nucleon wave function and, therefore,
can not be directly plotted. For our analysis in the next section we will not consider this term.

Each one of the pieces in Eq. (56) has contributions from different meson exchanges (σ + ω sector, π or ρ).
Their expressions can be found in Appendix C.

4We consider here the case where the rest frame of the background fluid coincides with the center of mass of the collision. For
the effects due to a relative velocity between both frames, the reader is referred to [31]
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5 Results for the rho-meson propagation

5.1 Choice of parameters

We will analyze the behavior of the in-medium potential as density changes, at zero temperature. Our calcu-
lations include the vacuum and matter polarization in the meson propagators. Since the vacuum contribution
does not vanish at finite ~q in general, we cannot take directly the parameters available in the litterature. Instead,
we must perform a fit anew for each one of renormalization schemes described in Appendix B. We have fitted
the value of the coupling constants gσ, gω, gρ, fρ and cutoff parameters Λσ, Λω, Λπ, Λρ in such a way that, at
zero density, the model reproduces as close as possible the Bonn ’Potential B’ [1] (table A.3 in this reference).
The value of the pion coupling gπ was kept constant since it is well known from experimental data. The values
of meson masses are taken directly from this reference. However, we do not include the δ and η mesons in the
fitting procedure. Since the Bonn potential has been adjusted to reproduce low-energy nucleon scattering data,
we expect that our model can give a reasonable description to these experimental data. We have chosen to
make this fit in the region from 0.5 to 2.5 fm for all mesons. The resulting parameters are given in Table 1, and
the values of the obtained chi-squared for the different pieces of the potential appear in Table 2.

gσ gω gρ fρ/gρ Λσ Λω Λπ Λρ

Bonn B 10.6 17.55 3.36 6.1 1900 1850 1700 1850

set 1A 8.10 16.267 4.216 4.974 1630.55 1562.19 1179.48 1881.93
set 1B 7.55 15.817 3.390 5.115 1558.22 1550.12 729.40 1365.54
set 2A 7.83 15.783 3.718 4.996 1390.92 1493.97 976.30 1797.30
set 2B 7.59 16.091 3.882 4.319 1532.25 1521.51 690.48 1112.22
set 3A 8.54 15.910 3.862 5.811 1080.65 1441.00 1212.30 1638.73
set 3B 8.53 16.377 5.710 4.547 1329.54 1500.82 1150.89 1260.05
set 4A 7.22 14.624 3.303 7.033 1540.38 1629.70 1144.72 1375.11
set 6A 7.57 14.809 3.636 5.731 1626.54 1590.76 1125.17 1711.54

Table 1: Values the coupling constants and cutoffs which adjust the Bonn potential B [1] for each renormalization
scheme

χ2(VC) χ2(VSS) χ2(VT ) χ2(VLS)

set 1A 0.096 0.026 0.014 0.078
set 1B 0.136 0.232 0.019 0.179
set 2A 0.078 0.049 0.056 0.172
set 2B 0.123 0.182 0.061 0.203
set 3A 0.026 0.039 0.035 0.142
set 3B 0.038 0.065 0.031 0.082
set 4A 0.079 0.079 0.054 0.210
set 6A 0.087 0.034 0.069 0.191

Table 2: χ2 values corresponding to the parameter sets given in Table 1, for each component of the NN
potential: central (C), spin-spin (SS), tensor (T ) and spin-orbit (LS)

In these tables, the number labelling each set is determined by the corresponding renormalization scheme
(see Appendix B). The letter A means that the best fit for all components of the potential was looked for. As
will be seen in the next section, the dispersion relation of the ρ meson may display heavy meson modes and,
more annoyingly, zero-sound modes for too high values of the ρ meson cutoff. Therefore we performed the
fit once again, but now with the constraint that a lower cutoff is used for the ρ meson in order to avoid the
appearance of these spurious branches. The letter B corresponds such fits, and due to this restriction they come
with slightly higher χ2 values.
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We do not give parameter sets for renormalization scheme 5, because this scheme was constructed by Shiomi
and Hatsuda in such a way that the vacuum polarization vanishes identically (for all q) in the vacuum. In this
case, the expression of Machleidt [1] is recovered exactly, therefore there is no need of readjusting the parameters
and the original values of Machleidt (Bonn potential B) may be used.

5.2 Rho meson dispersion relations

With the above values of the meson parameters, we have first performed a numerical study of the rho-meson5

dispersion relations defined by Eqs. (30), (31). Vacuum appears through the renormalization scheme discussed
in Section 3. We use the renormalization scheme described in that section (scheme 1 of Appendix B), as well
as alternative schemes described in Appendix B. A sample of the resulting branches are plotted in Figures 3
to 5 for longitudinal and transverse modes, for various values of the nucleon Fermi momentum pF = 0.3, 0.4,
0.5 (all magnitudes are given in units of the nucleon bare mass m). In our model, this correspond to densities
ρ0, 2.37 ρ0 and 4.63 ρ0 with ρ0 being the nuclear saturation density. The variables ω and q are defined by
k = (ω, 0, 0, q), as in Section 2.

We at once observe that the dispersion relation strongly depends on the chosen renormalization scheme,
both directly, and indirectly since it conditions the choice of parameters at the time of fitting the potential
(see Table 1). Let us first discuss the general features of the transverse mode for parameter sets 1A to 6A,
which were obtained by fitting the NN potential without imposing restrictions on the allowed range for each
parameter.

In the timelike region, besides the normal branch, we also have two heavy meson branches in the general
case. This kind of meson branches have been obtained in other models of QHD, and originate from vacuum
effects [23, 24]. Such meson modes are present at densities corresponding to pF ≥ 0.3 for all renormalization
schemes, with the exception of parameter set 4A, corresponding to the renormalization scheme of Sarkar [29].
It must be noted, however, that this parameter set has a value of the ρ meson cutoff appreciably lower than
other A-sets. As will be discussed later, a smaller value of the cutoff has the effect of reducing or eliminating
the heavy meson branches.

At high density, there appears moreover a zero sound branch in the spacelike region. This latter branch
could have especially strong (and unpleasant) effects on our results for the potential, since it appears as a pole
in the propagator. We found such a branch for renormalization schemes belonging to both classes considered in
this work: in the “increasing rho mass” class, with parameter set 2A at pF > 0.4 and also for the “decreasing
rho mass” renormalization scheme of Shiomi and Hatsuda at pF > 0.6. Nevertheless, we will see in the sequel
that this pole can be eliminated by reducing the value of the ρ meson cutoff.

The longitudinal modes have a similar structure in the timelike region, with a normal branch and two heavy
meson branches. In the spacelike region no zero sound branches were found.

In order to eliminate the spurious branches, it was possible to find a second series of parameter sets with
stronger cutoffs for the ρ meson, at the cost of a slightly degraded quality of the fit. We called the resulting
sets 1B, 2B and 3B. This permits to eliminate the zero sound branch at all densities investigated (up to pF =2)
and to reduce or eliminate the heavy meson branches. It was moreover checked that the choice of a lower cutoff
parameter does not affect appreciably the position of the normal branch.

The dispersion relations for parameter set 1B are shown in Figure 3. A moderate cutoff Λρ=1365 MeV
was applied. The zero sound branch is now removed, but we still have heavy meson branches. The left panel
displays the transverse modes. The right panel compares the transverse (thin line) to the longitudinal (thick
line) modes for the normal branch. At q = 0 the transverse and longitudinal modes coincide; for finite q they
differ only slightly. Finally, we note that the intercept of the normal branch with the q = 0 axis goes to higher
frequencies with increasing pF (or densities). This is related to the fact that the effective mass of the ρ meson
increases with this renormalization schemes, as discussed in next section.

The dispersion relations for parameter set 2B are shown in Figure 4, now with a strong cutoff Λρ=1112 MeV.
Only the normal branch remains for the transverse mode. The longitudinal modes are also appreciably cleaned,
with only a persistent heavy meson mode at high momentum transfer. A still lower cutoff would eliminate it,
but would spoil the accuracy of the fit of the NN potential.

In Figure 5 we show the transverse dispersion relation obtained with a renormalization scheme of the second
(“decreasing rho mass”) class. The parameter set used is 3B, with a reasonable ρ cutoff Λρ=1260 MeV, resulting
in a clean dispersion relation: there only remains the normal branch. Moreover, the quality of the fit remains

5The analysis of the σ , ω and π dispersion relations has been performed in [23].
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very good. We do not show the longitudinal modes since we found that longitudinal and transverse modes are
indistinguishable. We note that the intercept of the normal branch with the q = 0 axis is lower at finite density
than in vacuum, and slightly increases from pF =0.3 to pF =0.5, corresponding to the fact that the rho meson
effective mass with this renormalization scheme first decreases with density and reaches a minimum around
pF = 0.35 (see next section).

We also programmed and plotted the dispersion relations obtained with schemes 4 to 6, but chose not to
display them here . Scheme 6 (“Kurasawa-Suzuki”) was found to be essentially similar to other schemes of the
same class (1 and 2) but more problematic when we tried to remove the sound mode and heavy meson branches.
For the dispersion relation obtained with the scheme 5 of Shiomi and Hatsuda [27] with the parameters of
Machleidt Bonn potential B, we have again a normal branch and two heavy meson branches in the longitudinal
as well as in the transverse modes. Moreover, a tiny zero sound branch also appears in the transverse mode
at high enough densities (ρ > 7 ρ0, pF <∼ 0.6). We performed a fit with a lower value of Λρ and found a
parameter set which behaves essentially like case 3B. For the scheme of Sarkar et al. (scheme 4) we obtain only
the normal branch for both transverse and longitudinal modes. This renormalization scheme is free from heavy
meson branches and zero sound modes. This is due in part to the fact that the fit to the potential in vacuum
requires in this case typically lower rho meson cutoffs of the order of 1300 MeV. Still we found this scheme
more robust than the previous ones, since no such branches were found even for extreme values of parameters
adjusting the potential.

5.3 Rho meson effective mass

From the dispersion relations one can obtain the in-medium mass µeff , defined as the solution µeff = ω of the
dispersion relations Eq. (30), (31) at ~q = 0. The transverse and longitudinal modes yield the same effective
mass, since the polarizations are equal in this limit. In Figs. 6-8 we show how µeff evolves, in units of the
vacuum mass µρ, as pF grows (remember that pF /m = 0.3 corresponds to saturation density). In particular, we
wish to investigate the role of the vacuum on its behavior, in connection with the claim of Shiomi and Hatsuda
[27] that the vacuum contribution solves this issue.

We first show in Figure 6 the effective mass obtained by keeping only the matter contribution in the rho
meson polarization (thus neglecting the vacuum term). This figure was obtained with the parameter set of
Machleidt potential B (see table 1). If we would limit ourselves to a moderate density and frequency, it would
appear that the rho meson mass is slightly increasing. A closer inspection reveals, however, that the structure
of the dispersion relation is more complex and has 3 solutions for pF < 0.246 (that is, a density ρ < 0.5ρ0),
corresponding to anomalous branches intermingled with the normal one. At higher density, only the higher
branch survives. This type of behavior is in fact well documented. It was first observed in the case of the ω
meson by Lim and Horowitz [32] and also appears in the case of the pion [33]. Contrarily to a rather widespread
belief, it is not cured by the introduction of a stronger form factor. As a matter of fact, we redraw on the same
figure the rho mass for a low cutoff (1 GeV) and see that the problem, although less acute, is still present.
Moreover, we cannot choose the cutoff as we please, since it was obtained from a fit of the nucleon-nucleon
potential in the vacuum.

In the case of the σ, ω and π mesons, the situation is largely improved by introducing the vacuum term.
There, a lower normal branch cleanly separates from higher heavy meson branches. Without any cutoff, two
heavy meson branches appear at zero density and merge and disappear at high density. The heavy meson
branches can thereafter be removed by the application of a reasonable cutoff. As we will see, the same occurs
in the case of the rho meson.

In figure 7, the on-shell renormalization schemes 1 and 2 of Appendix B were used. The parameters were
chosen so as to obtain the best fit of the nucleon-nucleon potential in each case (parameter sets 1A and 2A
of table 1). We also plotted on the same figure the resulted obtained by adapting the scheme of Kurasawa
and Suzuki for the σ, ω mesons to this case (parameter set 6A). In this figure and the next one, only the
mass corresponding to the lower normal branch is represented. There also exist two branches at higher masses
(typically 3.5 µρ and 7 µρ) which merge and disappear at very high density, which we do not show here. It is a
common feature of all these renormalization schemes that the lower branch gives an in-medium mass which is
larger than in vacuum. In all cases, the increase is quantitatively similar for all the three schemes, and somewhat
stronger for scheme 6 of Kurasawa and Suzuki. On the other hand, the heavy meson branches largely depend
on the value of the cutoff, so that this cutoff can be used to remove these branches altogether. As an example,
we give in Table 1 a parameter set which makes it possible both to obtain a satisfactory fit of the potential and
to remove the heavy meson branches (set 2B).
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On the other hand, if one makes use of the renormalization scheme proposed by Shiomi and Hatsuda in
[27], one then obtains a rho mass which decreases with density. We have re-derived the formulae given in this
reference using our own methods (scheme 5 of Appendix B) and checked that our result is in agreement with
theirs. The resulting effective mass is plotted in Figure 8. As advertised, the rho meson mass decreases until
pF = 0.35 (or ρ = 1.6ρ0), and then slowly increases. We note that there also appear heavy meson branches.
We plotted on the same figure the result obtained from a similar scheme used by Sarkar et al. [29] (scheme 4 of
Appendix B). While Shiomi and Hatsuda subtract the vacuum at all momenta k, Sarkar et al. set the vacuum
to zero at k2 = µ2

ρ in a way similar to our condition Eq. (47). The normal branch obtained from scheme 4 is
quantitatively very similar to the result of Shiomi and Hatsuda.

These results are tantalizing since they are in agreement with the currently accepted concept of a decreasing
rho meson mass based on other models and experimental data. Now, in order to interpret the contradiction
which appears between schemes 1,2,6 on one hand, and 4,5 on the other hand, we have developped a further
scheme (scheme 3). As further explained in Appendix B, the introduction of counterterms (A + B σ + C σ2)
does not preserve in general the original structure of the diverging term proportional to M2 = (m− gσσ)2. It
can be required that this M2 structure be preserved by dropping conditions (49,50). The resulting effective
mass is also plotted on Figure 8, and we see that it actually decreases as well.

The idea of a decreasing rho mass in the medium was popularized by the Brown and Rho scaling conjecture
[34] as a result of chiral symmetry restoration. It allows to parametrize the in-medium mass of vector mesons
as

µeff

µρ
≈ 1 − (0.18 ± 0.05)

ρ

ρ0
(57)

as a function of the density ρ (written in units of the nuclear saturation density ρ0). For example, as a
consequence of QCD sum rules, Hatsuda and Lee [35] or Leinweber and Jin [36] obtain a decreasing mass.
The use of QCD sum rules, however, was criticized for containing some uncertainties and inconsistencies with
chiral perturbation theory [37]. Another caveat is the parametrization of the spectral function used in these
calculations [38, 39], which further reduces the predictive power of QCD sum rules arguments. Finally, recent
QCD sum rules calculations with an improved vacuum subtraction [40] further contributed mitigating the simple
Brown-Rho decreasing mass picture.

Other calculations, based on chiral approaches (see e.g. [41], and [42] for a review) or quark-meson coupling
models [43] also predict a slight lowering of the rho meson mass. In chiral models including a ρππ interac-
tion piece (see also the brief discussion in this work, section 7.1), the rho mass is only slightly modified, the
important effect there is the broadening of its spectral function. It is interesting to note that, depending on
the renormalization scheme, the position of the maximum of the spectral function is shifted up- or downwards
depending on the choice of the renormalization procedure ([44] vs. [45]). The theoretical situation is far to be
settled, and there is a possibility for the rho mass to increase, rather to decrease, due to medium effects (see
also e.g. [46, 47]).

There are a number of experiments in which it has been claimed that one can extract information about the
vector mesons in a nuclear medium. In heavy-ion collisions experiments as HELIOS-3 [48] and CERES [49],
the excess of dilepton production at invariant masses lower than the bare rho meson mass might be explained
in the framework of the vector dominance model by assuming a dropping of the in medium rho-meson mass
[22, 50, 51]. This interpretation is sometimes called, for short, the B/R (Brown-Rho) scenario. However, it has
been pointed out that keeping a constant rho mass and introducing a medium modification of its width [52, 53]
could also explain the dilepton excess. Friman and Pirner [54] have also argued that the contribution of higher
resonances (∗N(1720)) to the rho-meson self energy in matter plays an important role in shifting the strength
to lower invariant masses. The ‘broadening scenario’ sometimes receives the name of R/W (Rapp-Wambach
[53]) scenario.

For some time, measurements of polarization-transfer experiments with polarized protons seemed to favor
the dropping-mass hypothesis as well [55, 56, 57]. New analyses of the results with a better treatment of
relativistic effects, however, concluded that the data could be explained without this assumption [58].

In summary, the problem of how medium effects will modify the rho-meson properties is still not well settled,
both from the theoretical and experimental points of view, although the possibility that its mass will be smaller
at higher densities seems to be more favored. Future experiments, like HADES at GSI, will hopefully help
clarifying this issue.

In our hadronic model, we have seen that the inclusion of the vacuum contribution largely affects the meson
propagation in matter. Vacuum renormalization still allows for a increasing, as well as for a decreasing meson
mass, and does not by itself settle the issue. If we believe that the rho meson mass should be decreasing, then a
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renormalization scheme which preserves the original dependence in the nucleon effective mass should be chosen.
But then, in order to be coherent, the same procedure has to be used for the σ, π and ω mesons as well [30] 6.

In view of this situation, we have made some comparisons using the two classes of renormalization schemes
described above, each one of them giving a different behavior of the rho meson inside the nuclear medium.

6 Results for the RPA effective potential in the medium.

We shall now analyze the different components of the in-medium potential in position space, obtained in section
4, as density changes at T = 0 . As discussed in that section, the mixing terms of the ρ-meson polarization with
other mesons vanish if one considers symmetric nuclear matter, a circumstance which will allow us to consider
first the contribution to the potential of this meson alone. Later, we shall add the contributions of the σ, ω and
π mesons.

In performing the present analysis, it is useful to make the following division in the distance variable r, as
was made in [11]:

a) In the short-range region 0 ≤ r ≤ 1 fm, relativistic effects (beyond the quadratic approximation considered
above) become essential. Also, in this distance range the extended structure of the nucleon must be properly
taken into account. The introduction of form factors allows to simulate this effect for not-too-short distances,
such as 0.5 ≤ r ≤ 0.8 fm. For shorter distances, calculations from our model will not be reliable.

b) The intermediate region will be defined as the distance range 1 ≤ r ≤ 2 fm. Within this range, the
vacuum potential becomes quantitatively modified by medium and vacuum effects, as compared to the free-
space potential.

c) In the long-range region : r ≥ 2 fm, matter polarization dominates, and one can observe qualitatively
new features.

6.1 Rho-meson exchange

On the left upper panel of Fig. 9, we show the contribution of one-rho meson exchange to the central component
of the potential. We compare the results obtained for the in-medium potential at pF /m = 0.4 (corresponding to
a density ρ = 2.37ρ0) to the free-space potential (dotted curve), which was calculated setting pF = 0. Vacuum
polarization effects are kept in all cases. We made the calculation for three types of renormalization schemes, one
of the first “increasing rho mass” class (scheme 1 with parameter set 1B), and two of the “decreasing rho mass”
class (scheme 5=Shiomi-Hatsuda with Machleidt’s Bonn B parameters and scheme 3=ours with parameter set
3A).

From this comparison, we observe that the use of a screened interaction in matter can bring appreciable
modifications to the potential described by the exchange of free mesons in the vacuum. In particular, in the long-
range region, the interaction is qualitatively different from vacuum. Instead of the usual exponential damping,
at non-zero density the potential becomes oscillatory due to the presence of Friedel and Yukawa oscillations.
This behavior is obtained whatever renormalization procedure is chosen.

Friedel oscillations arise because the analytically-continued matter polarization shows branch cuts starting
at q = ±2pF in the complex q-plane. This phenomenon was first discovered for a QED plasma [6] and was
also evidenced in the case of a QCD plasma [8]. The corresponding analysis for a nucleon plasma in different
models was performed in [10, 12, 11]. On the other hand, Yukawa oscillations appear when the analytically-
continued boson propagator has a pole (in the complex q-plane) away from the real and imaginary axis. Such
a phenomenon has been found so far for a nucleon plasma in the one-pion exchange approximation, and for
a quark-gluon plasma when one-gluon exchange is considered [59]. In order to separate Friedel from Yukawa
effects for rho mesons, one needs to perform the analytical continuation of the meson propagator and to study
the evolution of the Yukawa pole as density and temperature evolves. This will be the subject of a future work.

These oscillating phenomena can have consequences if one goes beyond the Hartree approximation, by
including the polarization contribution into the ground-state energy. In the case of Friedel oscillations, it
has been found that a periodic-density configuration, with period equal to the characteristic period of Friedel
oscillations, has a lower energy than a constant-density configuration [60]. This can be interpreted as a transition
to a spatially-structured configuration.

For a fixed renormalization scheme, we obtained that the repulsive core extends farther when density in-
creases. On the other hand, for a given value of the density, the first minimum occurs earlier for renormalization

6Preliminary studies indicate however that this would spoil the behavior of the σ and π effective masses [30].
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schemes of the first “increasing rho mass” class than for schemes of the second class. In the long-range zone,
the period of oscillation is seen to be the same for all renormalization schemes, and depends only on the density,
as expected from the physical origin of Friedel oscillations.

Matter polarization dominates the potential qualitative features at large distances. The choice of a renor-
malization scheme can, however, introduce some quantitative changes on these features. The amplitude of the
oscillations depends indirectly on the renormalization scheme. For example, to each scheme, there corresponds
a parameter set with different values of the couplings and cutoffs. The amplitude can be enhanced by the
presence of a dip in the dispersion relation of the transverse modes, indicating the proximity of a zero sound
mode, even when no pole actually appears. On the other hand we found that the appearance of such a branch
depends on the renormalization procedure, the second class of renormalization schemes being less liable to the
appearance of zero sound modes. Nevertheless, we would like to stress that the oscillations themselves are not
a consequence of possible zero sound modes, since we found them also in the renormalization scheme of Sarkar,
where no zero sound was obtained even for extreme choices of the parameters and density.

Similar features can be observed in the remaining components (spin-spin, tensor and spin-orbit) of the
potential. They are plotted in the three remaining panels of Fig. 9). They all show an oscillatory behavior. In
all cases, the amplitude of oscillations increases with density.

6.2 Combined-meson potential

We will now present some results which are obtained by adding the contribution of the σ + ω sector and the π
exchange to the potential given above7. For the central component there is no pion contribution, and one has :

Vc(r) = V σ+ω
c (r) + V ρ

c (r) (58)

The result is plotted in Fig. 10 in vacuum (solid curve) and at finite densities pF = 0.3, 0.4, 0.5 (dashed, dot-
dashed and dotted lines respectively). In this figure the renormalization scheme 1 was chosen with parameter
set B. The free-space potential (which includes vacuum polarization with on-shell renormalization, scheme 1)
has a potential well with a minimum at r ∼ 1.5 fm. At finite density, the position of the first minimum is
displaced towards shorter distances: at saturation density (pF = 0.3) it corresponds to r ∼ 1.25 fm, whereas
for pF = 0.5 it is located at r ∼ 0.95 fm. There also appear secondary minima which depth can be significant.
In the example chosen, at pF = 0.5 (ρ = 4.63 ρ0), the second minimum is situated at r ∼ 2.1fm with a depth
of -8 MeV. The right panel of Fig. 10 focusses on the long-range oscillatory behavior. Here it can be seen that
the period of the oscillation decreases and its amplitude increases with increasing density.

We also studied the spin-spin, tensor and spin-orbit components of the potential. The results are not shown
here; basically the same features as already mentioned in the case of the rho component were observed.

7 Mechanisms reducing the amplitude of oscillations

In this section we discuss the mechanisms which could suppress the oscillations found in the in-medium NN
potential.

We will first investigate the contribution of meson loops to the ρ-meson self energy. As is well known, the
spectral function of the rho meson acquires an important contribution of the ρππ loop (see eg. [44]). A meson
with a mass distribution, such as the σ or the ρ, could smear away some features in the potential by merging
contributions with different ranges. As we will see, the effect on the potential is negligible. For consequences
on the dilepton production in the vector dominance model, we refer the reader to the vast litterature devoted
to this subject (see eg. [44, 45, 61, 62] and references therein).

A second and more effective mechanism is the rounding off of the edge of the Fermi momentum distribution
function introduced by short-range correlations or by a finite temperature. This will be investigated in the
second part of this section.

7.1 Meson loops

We have up to now studied the contribution of nucleon-hole loops to the ρ meson polarization. On the other
hand, the ρ meson also couples to the pion, a fact which is at the origin of the decay width of the ρ meson. Let

7The contribution from δ and η mesons is not included here since they introduce only a small modification to the vacuum
potential of [1]
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us add to the Lagrangian a piece

Lρππ = gρππ(∂µ~π × ~π).~ρµ +
1

2
g2

ρππ(~ρµ × ~π).(~ρµ × ~π) (59)

At the first order of the linear expansion method of [24], meson loops do not appear. It would be necessary
to go to higher orders in the cluster expansion, so that meson-meson correlators appear. We would like here
to estimate the correction brought by the ρππ polarization loop. From Green function techniques, one obtains
[29, 44, 63]

Πρππ = ig2
ρππ

∫
d4p

(2π)4
(2p− k)µ(2p− k)νDπ(p)Dπ(p− k) − 2ig2

ρππ

∫
d4p

(2π)4
gµνDπ(p) (60)

In general, the pion propagator also includes medium effects. In order to keep things simple however, we will
keep here the free pion propagator D0

π(k) = 1/(k2 − µ2
π + iǫ).

The coupling constant gρππ is determined by fixing the imaginary part of the polarization on the ρ meson
mass shell and in the rest frame to its experimental value

Γρππ = −
1

µρ
ImΠρππ(ω = µρ, ~q = 0) =

g2
ρππ

48πµ2
ρ

(µ2
ρ − 4µ2

π)3/2 (61)

Putting Γρππ ≃ 151.5 MeV, one finds g2
ρππ/(4π) ≃ 2.9 The real part of the polarization can be expressed in

terms of the divergent integrals (40)

ReΠµν
ρππ = −

2

3

g2
ρππ

(2π)2

[
2I1 + k2(µ2

π −
k2

4
)I2

](
gµν −

kµkν

k2

)
(62)

After performing dimensional regularization,

ReΠµν
ρππ = −

2

3

g2
ρππ

(2π)2

(
gµν −

kµkν

k2

)[
(
k2

4
− µ2

π)θ(k2, µ2
π) −

k2

ǫ

]
(63)

The infinity is cancelled by a counterterm of the form AρππR
µνRµν , that is to say, the renormalization proceeds

exactly as in the unambiguous case of the NN loop contribution to the ω meson. The finite result is:

ReΠµν
ρππ = −

2

3

g2
ρππ

(2π)2

(
gµν −

kµkν

k2

)[
µ2

π

µ2
ρ

(µ2
ρ − k2)

(
1 − θ(µ2

ρ, µ
2
π)
)

+ (µ2
π −

k2

4
)
(
θ(µ2

ρ, µ
2
π) − θ(k2, µ2

π)
)]

(64)

The imaginary part is given by

ImΠµν
ρππ =

g2
ρππ

48π
k2

(
1 − 4

µ2
π

µ2
ρ

)3/2

θ(k2 − 4µ2
π) (65)

In the calculation of the potential, the imaginary part will not contribute since the polarizations entering
the formulae are to be taken at ω = 0 while the imaginary part should be an odd function of ω so that the
Onsager relations be fulfilled. The real part of the polarization yields a small shift to the dispersion relation.
We have checked that its effect on the potential is negligible. At the level of approximation considered here,
the shift is q-dependent but does not depend on thermodynamical conditions. It would if we introduced the
modification of the pion propagator by N∆ loops or a bath of thermal pions (see eg. [61]).

7.2 Effect of short range correlations

A second mechanism which can attenuate the long range oscillatory behavior of the in-medium potential is the
rounding-off of the momentum distribution by short-range correlations of the Brueckner type. As commented in
the introduction, a fully consistent calculation at the level of parquet approximation would be required. Here, in
order to estimate the order of magnitude of this effect, we will simply introduce such a momentum distribution
instead of the Fermi-Dirac one in the calculation of the polarizations.

Among the results available in the literature we chose two: a non relativistic Brueckner-Hartree-Fock cal-
culation of Baldo et al. starting from a separable Paris interaction [64], and a Dirac-Brueckner-Hartree-Fock
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calculation by de Jong and Malfliet [65]. It seems more appropriate to use the calculation of de Jong and
Malfliet since it is fully relativistic and was obtained starting from the Bonn potential. Moreover, these authors
checked explicitly that the thermodynamical consistency be optimally fulfilled. On the other hand, comparison
with experimental data seems to favor the larger depletion and smaller discontinuity found in nonrelativistic
calculations such as that of Baldo et al., so that we also present results with this distribution.

We found that the data published by de Jong and Malfliet was well reproduced by the following fit at
saturation density:

FDBHF (k) =





0.91 − 0.055

(
k

pF

)
− 0.07

(
1 −

k

pF

)
log

(
1 −

k

pF

)
if k < pF

0.035

k/pF − 0.94
exp

(
− 1.2

k

pF

)
if pF < k < 1.5pF

0.3693 exp

(
− 2.4

k

pF

)
if k > 1.5pF

(66)

For the data of Baldo et al., we used

FNRBHF (k) =






0.79 − 0.13

(
k

pF

)
− 0.19

(
1.−

k

pF

)
log

(
1 −

k

pF

)
if k < pF

16. exp

(
− 4.5

k

pF

)
if pF < k < 1.5pF

0.2127 exp

(
− 1.6

k

pF

)
if k > 1.5pF

(67)

We now calculate the polarizations at vanishing temperature as

ΠBHF (k) =

∫ ∞

0

d3p
∂Π

(T=0)
FD (k, p)

∂p
FBHF (p) (68)

where Π
(T=0)
FD is the polarization which would have been obtained with a Fermi Dirac step function θ(pF − p)

and is given in Appendix A. Next we introduce these polarizations in the expression of the potentials given
in Appendix C. Figure 11 compares the central potential as obtained with parameter set 1B at vanishing
temperature and saturation density for the Fermi-Dirac momentum distribution (dashed line), the relativistic
DBHF distribution of de Jong and Malfliet (full line) and the nonrelativistic BHF distribution of Baldo et al.
(dotted line). It is seen that the oscillations are damped by Brueckner correlations as was to be expected. The
effect is however not very severe and the oscillations persist.

7.3 Effect of finite temperature

A similar damping of the oscillations is produced by a non-vanishing temperature. We found that the Brueckner
modification of the momentum distribution had the same effect as a temperature of ∼ 10 MeV with a Fermi-
Dirac distribution. It can be seen on Figure 12 that Friedel oscillations are rather robust against temperature
and are not washed out for temperatures as high as 30 MeV.

As a by-product, we obtained the behavior of the ρ effective mass as a function of temperature for all
renormalization schemes. At saturation density, it was found that µeff (calculated as in section 5.3) slightly
decreases with temperature for renormalization schemes of the first class 1, 2 and 6, whereas it slightly increases
for renormalization schemes of the second class 3, 4 and 5. At four times the saturation density, µeff was found
to decrease for all renormalization schemes. The results are well described by a linear law for temperatures
T ∈ [0 − 100] MeV:

µeff

µρ
(ρ, T ) =

µeff

µρ
(ρ, 0)

(
1 − a

T

m

)
(69)

with
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a = 0.4 for ρ = ρ0 renorm. scheme= 1 or 2
a = 0.35 ” ” ” ” 6
a = −0.12 ” ” ” ” 3, 4 or 5

a = 1.5 for ρ = 4 ρ0 renorm. scheme= 1 or 2
a = 0.8 ” ” ” ” 6
a = 0.55 ” ” ” ” 3, 4 or 5

8 Discussion and Conclusions

In this paper we have discussed RPA effects on the nucleon-nucleon potential obtained within the one-boson
exchange approximation in symmetric nuclear matter at zero temperature. The model we used for our calcu-
lations includes σ , ω , π and ρ mesons interacting with nucleons via Yukawa couplings. The Wigner function
technique and linear response analysis were used to obtain the meson propagation in medium. The lowest order
of this scheme is the mean-field approximation. When vacuum effects are properly renormalized, it becomes
the Hartree approximation. The next order of this approximation has been shown to be equivalent to Green’s
function calculations of the meson propagators at one-loop order[23].

In our calculations, medium effects appear in two ways. First, in the nucleon legs of the one-boson exchange
diagram the nucleon effective mass appears. Secondly, the meson propagators are calculated including nucleon-
hole loops and vacuum polarization effects.

It is legitimate to ask whether one should consider other loops involving mesons or resonances [54]. Only
a brief discussion concerning pion-pion loops was given, since several thorough studies exist in the litterature
[44, 63, 61]. Loops involving resonances can be expected to have a smaller but sizeable contribution of similar
characteristics to the nucleon loop taken into account in this work. A serious study with renormalization would,
however, go beyond the scope of this paper.

In symmetric nuclear matter, rho mesons decouple from other mesons. Therefore, it is possible to study
one-ρ exchange alone and simply add the contribution of σ , ω and π to the nucleon-nucleon potential at the
end. We have first studied the dispersion relations which describe the propagation of rho-mesons in matter as
density changes. One observes the presence of two types of branches : a normal branch, which is the analogous
of the free-space mass-shell condition, and several heavy-meson branches. The latter appear as a consequence
of vacuum effects, in all the QHD meson models that have been investigated [23, 24, 66]. Here, due to the
derivative coupling of the rho-mesons to the nucleons, the Lagrangian is non-renormalizable. Yet, it is possible
to extract a finite contribution from the vacuum at each order in the cluster expansion8. This procedure,
however, contains some arbitrariness in the case of non-renormalizable Lagrangians.

In view of this, we have compared the results arising from two different classes of renormalization schemes.
The first one is analogous to the one usually employed in previous works [25, 28, 10] and is designed to remove,
as far as possible, the spurious new couplings to the sigma field which have to be introduced in the counterterm
Lagrangian. The renormalization procedure suggested in [27] has also been used for comparison. We found that
it belongs to a second class of procedures, where the new couplings to the sigma field are not minimized, but
instead the original structure of the expression of the vacuum contribution is preserved.

By using the first scheme, we find that the effective mass of rho-mesons grows with density, a feature which
is disfavored by most of present theoretical approaches and by the interpretation of dilepton production data
in heavy-ion collisions. The second method gives the opposite behavior : the in-medium rho-meson mass drops
as density grows, more in agreement with present ideas. However, it is recognized that large uncertainties
are contained both in the theoretical calculations [46, 37] and the analysis of experiments mentioned above
[52, 42, 62]. We have kept for these reasons these two schemes in our calculations.

Next, we investigated the RPA nucleon-nucleon potential obtained by the exchange of one rho meson. At
short and intermediate distances, it shows a repulsive behavior. In the long-range it contains new qualitative
features, as compared to the free-space potential. It becomes oscillatory, with an amplitude which decreases
with distance, due to the combination of Yukawa-like and Friedel oscillations. The appearance of this oscilla-
tory behavior might give rise to a new phase of dense matter, characterized by a spatially structured density
distribution. We have verified that the qualitative features within this distance range are not sensitive to the
renormalization scheme used. One then expects that they are to be found in other models describing rho-meson
propagation in dense nuclear matter.

8We use the word renormalization in a wide sense to describe this procedure, in spite of the non-renormalizability of the model.
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When other mesons are added into the potential, we find a similar behavior. The potential is repulsive
at short distances and attractive at intermediate distances. In the long-range, r ≥ 2 fm, we find again an
oscillatory behavior in all components of the potential, with the same origin as above. The amplitude of these
oscillations increase with density.

The robustness of these oscillations against several possible damping mechanisms has been tested. We first
discussed the influence of pion-pion loops. In the spacelike zone explored by the potential, we found that it
should not have a decisive impact on the results presented. This does not enter in contradiction with the large
body of publications for which the spectral function is needed in the timelike region.

We also investigated the amount of smoothing of the Friedel oscillations to be expected from modifications
to the Fermi surface. In particular, we discussed the effect of the temperature and short-range correlations.
We performed a calculation with a momentum distribution rounded off by short range correlations of the
Brueckner type, and found they have the same consequences as a temperature of about 10 MeV, namely, that
the oscillations experiment a moderate damping, and are seen discernible. They only disappear for temperatures
higher than 30 MeV.

One has to exert some care when considering the applicability to the above results to actual nuclear-matter
calculations. The RPA summation concerns only a class of many-body diagrams, so that the addition of
different diagrams, such as ladder diagrams, might modify our results (one would expect, however, that in the
long-distance range the RPA results would hold). The obtained potential can not be used naively to perform
more elaborated calculations (such as ladder resummation) since it would result in double counting of diagrams.
Our results rather have to be interpreted as an indication of a new qualitative effect that one might find.

To summarize, screening effects can appreciably modify the nature of nuclear interactions in a medium.
Vacuum effects also compete to modify the interaction, so that it is important to design a procedure which
incorporates them in a consistent way. However, the appearance of singular behaviors, as Friedel and Yukawa-
like oscillations seems to be a rather general property of the nuclear interaction.
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Appendix A: Polarization, matter part

We give here the complete formulae for the matter part of the rho-meson polarization tensor in symmetric
nuclear matter. The vacuum contribution is given in Appendix B. This tensor can be written as :

Πµν
ρ (k) = −

∫
d4p Iµν(p, k) J(p, k) (1)

where

Iµν(p, k) = g2
ρ

[ (
4M2 + k2 − 4 p2

)
gµν − 2 kµkν + 8 pµpν

]

+

(
fρ

2m

)2 [ (
4M2k2 + k4 + 4 p2k2 − 8 (p.k)2

)
gµν −

(
k2 + 4M2 − 4 p2

)
kµkν

+8 (p.k) (kµpν + pµkν) − 8 k2pµpν

]

+

(
fρ

2m

)
gρ

[
8M

(
k2gµν − kµkν

) ]
(2)

In this equation, M is the nucleon effective mass, and m its free mass. We have introduced :

J(p, k) =
f(p+ k/2)− f(p− k/2)

k · p
(3)

The nucleon distribution functions, as they arise from the relativistic Hartree approximation, are the same for
protons and neutrons (in symmetric nuclear matter). They are given by

f(p) =
δ( p2 −M2 )

(2π)3

[
H(p0 )

e β (p0−µeff ) + 1
+

H(p0 )

e β (p0+µeff ) + 1
− H(−p0 )

]
(4)
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Here, µeff = µ+ gω < ω0 > is the nucleon effective chemical potential, µ is the true chemical potential and β
is the inverse temperature. The time-like mean field value < ω0 > of the ω meson is also calculated within the
Hartree approximation. Finally, H(x) is the Heaviside step function.

At zero temperature, it is possible to perform the integrals in Eq. (1) analytically. Moreover, in order
to obtain the nucleon-nucleon potential, within the approximations discussed in this work, we only need to
calculate the matter polarization on the k0 = 0 axis. In this case, one gets more compact expressions. We give
here these formulae. By defining q = |~k|, ε =

√
M2 + (q/2)2 and the nucleon Fermi energy EF =

√
M2 + p2

F ,
we can introduce the notations

A(q) =
q − 2pF

q + 2pF
, B(q) =

q EF + 2 pF ε

q EF − 2 pF ε
(5)

One finds, after some algebra:

ΠρL(0, q) = Π00
ρ (0, q)

=
g2

ρ

π2

[
−

4

3
EF pF +

q2

3
ln

(
EF + pF

M

)
−
EF

2

(
q −

4

3

E2
F

q

)
lnA(q) −

ε

2

(
q −

4

3

ε2

q

)
lnB(q)

]

+

(
fρ

2m

)2
q2

π2

[
−

1

3
EF pF +

(
M2 −

q2

6

)
ln

(
EF + pF

M

)
+ 2

EF

q

(
E2

F

3
−M2

)
lnA(q)

+2
ε

q

(
ε2

3
−M2

)
lnB(q)

]

+

(
fρ

2m

)
gρ

2Mq2

π2

[
ln

(
EF + pF

M

)
−
EF

q
lnA(q) −

ε

q
lnB(q)

]
(6)

(7)

for the longitudinal part, and

ΠρT (0, q) = −Π11
ρ (0, q)

= −
g2

ρ

2π2

[
2

3
EF pF −

2

3
q2 ln

(
EF + pF

M

)
− EF

(
2
ε2

q
−

2

3

E2
F

q
− q

)
lnA(q) − ε

(
4

3

ε2

q
− q

)
lnB(q)

]

−

(
fρ

2m

)2
q2

2π2

[
−

4

3
EF pF +

(
q2

3
− 2M2

)
ln

(
EF + pF

M

)
+ 2

EF

q

(
E2

F

3
+ ε2

)
lnA(q)

+
8

3

ε3

q
lnB(q)

]

+

(
fρ

2m

)
gρ

2Mq2

π2

[
ln

(
EF + pF

M

)
−
EF

q
lnA(q) −

ε

q
lnB(q)

]
(8)

for the transverse part.

Appendix B: Polarization, vacuum contribution

The vacuum contribution arises from the −H(−p0) term in the distribution function f(p). This contribution
is divergent and has to be renormalized. After performing a dimensional regularization and subtracting the
appropriate counterterms, we obtained in section III a finite expression for the vacuum polarization:

Πµν
ρ vac =

{
g2

ρ

3π2

[
ln

(
M

m

)
+ θ(k2,M2) +

2M2

k2

(
θ(k2,M2) − 1

)]

+

(
fρ

2m

)2
1

6π2

[
6M2 ln

(
M

m

)
+ 8M2θ(k2,M2) + k2

(
ln

(
M

m

)
+ θ(k2,M2)

)]

+
2

π2

(
fρ

2m

)
gρM

[
ln

(
M

m

)
+ θ(k2,M2)

]
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+α+ β
(m−M)

gσ
+ γ

(m−M)2

g2
σ

+ δk2

}{
k2gµν − kµkν

}
(1)

with the function

θ(k2,M2) = θ(y) ≡ y

∫ ∞

0

dx[
(x2 + y).

√
(x2 + 1)

] (2)

where y ≡ 1 − k2/(4M2).
The choice of conditions to be imposed on the polarization to determine the finite constants α, β, γ, δ

determine various renormalization schemes.
In order to shorten the notations, we define

θρ = θ(µ2
ρ,m

2) , θρm =
∂θ(k2,M2)

∂M

θρk =
∂θ(k2,M2)

∂k2 , θρmm =
∂2θ(k2,M2)

∂M2 (3)

All these derivatives are to be evaluated in the point k2 = µ2
ρ, M = m.

We will note θ = θ(k2,M2). Finally, we will work in units of the nucleon free mass, i.e. we set m = 1 in all
expressions given in this Appendix.

Scheme 1

When the full set of conditions (47 – 50) is applied to the total regularized vacuum polarization of the ρ
meson, the following expression is obtained

Πµν
ρ vac(1) =

{
g2

ρ

3π2

[
lnM + θ +

2M2

k2
(θ − 1) −

1

µ2
ρ

(
(2 + µ2

ρ) θρ − 2
)

+(1 −M)

(
1 + θρm +

4

µ2
ρ

(θρ − 1) +
2

µ2
ρ

θρm

)

−
1

2
(1 −M)2

(
−1 + θρmm +

4

µ2
ρ

(θρ − 1) +
8

µ2
ρ

θρm +
2

µ2
ρ

θρmm

)

−(k2 − µ2
ρ)

(
1 +

2

µ2
ρ

θρk −
2

µ4
ρ

(θρ − 1)

)]

+

(
fρ

2m

)2
1

6π2

[
6M2 lnM + 8M2θ + k2(lnM + θ) − (8 + µ2

ρ)θρ

+(1 −M)
(
6 + 16 θρ + 8 θρm + µ2

ρ(1 + θρm)
)

−
1

2
(1 −M)2

(
18 + 16 θρ + 32 θρm + 8θρmm + µ2

ρ(−1 + θρmm)
)

−(k2 − µ2
ρ)
(
(8 + µ2

ρ) θρk + θρ

) ]

+
2

π2

(
fρ

2m

)
gρ

[
M(lnM + θ) − θρ + (1 −M) (θρ + 1 + θρm)

−
1

2
(1 −M)2 (1 + 2 θρm + θρmm) − (k2 − µ2

ρ) θρk

]}{
k2gµν − kµkν

}
(4)

Scheme 2

The former scheme has the drawback that we do not recover the expression of the vacuum polarization of
the ω meson when we take the limit fρ → 0 and replace gρ by gω. The reason is that the structure of the
infinities is not the same for the different couplings. By renormalizing all contributions together we are in fact
introducing spurious counterterms where they need not be. For example, in the (fρ/2m)2 contribution we have
both M2/ǫ and k2/ǫ, needing all sets of counterterms to cancel them, whereas in the g2

ρ contribution we have a
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1/ǫ which requires only the A ~Rµν · ~Rµν counterterm. This can easily be cured by splitting the counterterms as
follows A = Agg +Afg +Aff , B = Bfg +Bff , C = Cff , D = Dff , (where Afg, Bfg mean terms proportional
to gρ fρ, and so on) and renormalized separately each contribution. We obtain

Πµν
ρ vac(2) =

{
g2

ρ

3π2

[
lnM + θ +

2M2

k2
(θ − 1) −

1

µ2
ρ

(
(2 + µ2

ρ) θρ − 2
) ]

+

(
fρ

2m

)2
1

6π2

[
6M2 lnM + 8M2θ + k2(lnM + θ) − (8 + µ2

ρ) θρ

+(1 −M)
(
6 + 16 θρ + 8 θρm + µ2

ρ(1 + θρm)
)

−
1

2
(1 −M)2

(
18 + 16 θρ + 32 θρm + 8 θρmm + µ2

ρ(−1 + θρmm)
)

−(k2 − µ2
ρ)
(
(8 + µ2

ρ) θρk + θρ

) ]

+
2

π2

(
fρ

2m

)
gρ

[
M(lnM + θ) − θρ + (1 −M) (θρ + 1 + θρm)

]}{
k2gµν − kµkν

}
(5)

Scheme 3

We observe that there appear infinities which can be written as depending on M (rather than on σ), as for
example M2/ǫ. After absorbing the infinities, the finite part of the counterterms is aff + bffσ + cffσ

2. The
constants aff , bff , cff which are calculated by imposing the conditions (47) and (49,50) cannot be cast any
more in a form proportional to M2. One would like to require that the M2 structure be preserved by dropping
conditions (49,50). Proceeding in this way, we obtain

Πµν
ρ vac(3) =

{
g2

ρ

3π2

[
lnM + θ +

2M2

k2
(θ − 1) −

1

µ2
ρ

(
(2 + µ2

ρ) θρ − 2
) ]

+

(
fρ

2m

)2
1

6π2

[
6M2 lnM + 8M2θ + k2(lnM + θ) − (8 + µ2

ρ) θρ

−(k2 − µ2
ρ)
(
(8 + µ2

ρ) θρk + θρ

)
+ (M2 − 1)

(
µ2

ρ(8 + µ2
ρ) θρk − 8θρ

) ]

+
2

π2

(
fρ

2m

)
gρ

[
M(lnM + θ − θρ)

]}{
k2gµν − kµkν

}
(6)

Scheme 4

We show in this section and the next how the results of Shiomi and Hatsuda [27] and Sarkar et al. [29] can
be recovered. We first observe that the regularized vacuum polarization can be written as follows:

Πµν
ρ vac =

{
g2

ρA + (
fρ

2m
)2
[
k2

2
A +

M2

2
B

]
+ gρ(

fρ

2m
)MB

}(
gµν −

kµkν

k2

)
(7)

with

A =
2

(2π)3
1

k2

[
−16I1/3 − 2/3k2(2M2 + k2)I2

]

B =
2

(2π)3
[
−4k2I2

]

If we now impose that this structure be kept after the renormalization, with A and B substituted by finite
Ã and B̃ after extracting the infinities, we can determine the constants by imposing that Ã and B̃ vanish on
the mass shell. By so doing we obtain
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Ã =
1

3π2

[
ln(M) + θ +

2M2

k2
(θ − 1) −

1

µ2
ρ

(
(2 + µ2

ρ)θρ − 2
)]

B̃ =
2k2

π2
[ln(M) + θ − θρ]

and

Πµν
ρ vac(4) =

{
g2

ρ

3π2

[
lnM + θ +

2M2

k2
(θ − 1) −

1

µ2
ρ

(
(2 + µ2

ρ)θρ − 2
)]

+

(
fρ

2m

)2
1

6π2

[
6M2 lnM + 8M2θ + k2(lnM + θ) − 2M2 − 6M2θρ

−
k2

µ2
ρ

(
(2 + µ2

ρ)θρ − 2
)]

+
2

π2

(
fρ

2m

)
gρ [M(lnM + θ − θρ)]

}{
k2gµν − kµkν

}
(8)

We now use the fact that our function θ is related to the integrals appearing in the expressions of Shiomi
and Hatsuda and Sarkar et al..

∫ 1

0

dx ln[M2 − k2x(1 − x)] = −2 + 2 ln(M) + 2θ

∫ 1

0

dxx(1 − x) ln[M2 − k2x(1 − x)] = −
5

8
−

2

3

M2

k2
+

1

3
ln(M) −

1

3

(2M2 + k2)

k2
θ

With these relations, it is straightforward to check that Eq. (8) coincides with the expression of Sarkar et al.

Scheme 5

The expression of Shiomi and Hatsuda can be recovered by the following recipe: First, one should subtract
from the expressions of the functions A, B from the preceding paragraph their values in the true vacuumM = m,
and then, replace them in the expression9 Eq. (7). In terms of our θ functions, one has

Πµν
ρ vac(5) = Πµν

ρ vac(S&H) =

{
g2

ρ

3π2

[
lnM + θ +

2M2

k2
(θ − 1) −

2

k2
(θ0 − 1) − θ0

]

+

(
fρ

2m

)2
1

6π2

[
6M2 lnM + 8M2θ + k2(lnM + θ) − 2(M2 − 1) − (6M2 + k2 + 2)θ0

]

+
2M

π2

(
fρ

2m

)
gρ [(lnM + θ − θ0)]

}{
k2gµν − kµkν

}
(9)

Scheme 6

Another standard renormalization scheme is that used by Kurasawa and Suzuki [28] in the case of the σ
and ω mesons. In this scheme, the conditions Eqs. (47,48) are applied at the physical mass k2 = µ2

ρ whereas
conditions (49,50) are taken at k2 = 0. The following expression is obtained

Πµν
ρ vac(6) =

{
g2

ρ

3π2

[
lnM + θ +

2M2

k2
(θ − 1) −

1

µ2
ρ

(
(2 + µ2

ρ) θρ − 2
) ]

+

(
fρ

2m

)2
1

6π2

[
6M2 lnM + 8M2θ + k2(lnM + θ) − (8 + µ2

ρ)θρ

9We note that this is not simply the same as subtracting the true vacuum from the total polarization, since the effective mass

appears outside of Ã, B̃ in Eq. (7)
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−(k2 − µ2
ρ)
(
(8 + µ2

ρ) θρk + θρ

)
+ 5 + 12M − 17M2

]

+
2

π2

(
fρ

2m

)
gρ

[
M(lnM + θ) − θρ + 2(1 −M)

]}{
k2gµν − kµkν

}
(10)

Appendix C: Interaction potential in spatial coordinates

In this appendix, we give explicit expressions for the different meson contributions to the several pieces of the
potential, as they appear in Eq. (56) : central, spin-orbit, spin-spin, tensor, and the nonlocal potential VNL(r).

A subscript will label these components, while the superscript indicates the meson which gives this contri-
bution.

These expressions are valid when the rest frame of the background fluid coincides with the center of mass
of the interacting particles.

Rho meson

V (ρ)
c (r) =

1

2π2r

∫ ∞

0

dq q sin(qr)F2
ρ

{
−g2

ρ Gρ L

(
1 −

q2

4M

)
+ gρ

(
fρ

2m

)
Gρ L

(
q2

M

)

+g2
ρ Gρ T

(
q2

4M2

)}
(1)

V
(ρ)
SS (r) =

[
gρ + 2M

(
fρ

2m

)]2
1

12π2M2 r

∫ ∞

0

dq q3 sin(qr)F2
ρ Gρ T (2)

V
(ρ)
T (r) =

[
gρ + 2M

(
fρ

2m

)]2
1

24π2M2r

∫ ∞

0

dq sin(qr)F2
ρ

[
3q

r2
− q3

]
Gρ T

−

[
gρ + 2M

(
fρ

2m

)]2
1

8π2M2r2

∫ ∞

0

dq q2 cos(qr)F2
ρ Gρ T (3)

V
(ρ)
LS (r) =

1

2π2M2r3

∫ ∞

0

dq q sin(qr)F2
ρ

{
g2

ρ

[
Gρ L

2
+Gρ T

]
+ 2M gρ

(
fρ

2m

)
[Gρ L +Gρ T ]

}

−
1

2π2M2r2

∫ ∞

0

dq q2 cos(qr)F2
ρ

{
g2

ρ

[
Gρ L

2
+Gρ T

]
+ 2M gρ

(
fρ

2m

)
[Gρ L +Gρ T ]

}
(4)

V
(ρ)
NL(r) = −

g2
ρ

2 π2M2 r

∫ ∞

0

dq q sin(qr)F2
ρ

[
Gρ L

2
+Gρ T

]
(5)

with the following notations

GρL = −G00
ρ (q) =

−1

q2 + µ2
ρ − Π00

ρ (0, q)
, GρT = G11

ρ (q) =
−1

q2 + µ2
ρ + Π11

ρ (0, q)

Sigma and omega mesons

The mixed σ-ω sector gives

V (σω)
c (r) =

1

2π2r

∫ ∞

0

dq q sin(qr)

{
g2

σF
2
σ Gσ

(
1 +

q2

4M2

)
− g2

ωF
2
ω Gω L

(
1 −

q2

4M2

)

+g2
ω F2

ω Gω T

(
q2

4M2

)
− 2gσgω FωFσ Gσω

}
(6)
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V
(σω)
LS (r) =

1

2π2M2r3

∫ ∞

0

dq q sin(qr)

{
g2

σ F2
σ

Gσ

2
+ g2

ω F2
ω

[
Gω L

2
+Gω T

]}

−
1

2π2M2r2

∫ ∞

0

dq q2 cos(qr)

{
g2

σ F2
σ

Gσ

2
+ g2

ω F2
ω

[
Gω L

2
+Gω T

]}
(7)

V
(σω)
NL (r) = −

1

2π2M2r

∫ ∞

0

dq q sin(qr)

{
g2

σ F2
σ

Gσ

2
+ g2

ω F2
ω

[
Gω L

2
+Gω T

]}
(8)

V
(σω)
SS (r) =

g2
ω

12π2M2r

∫ ∞

0

dq q3 sin(qr)F2
ω Gω T (9)

V
(σω)
T (r) =

g2
ω

24π2M2r

∫ ∞

0

dq sin(qr)F2
ω

[
3q

r2
− q3

]
Gω T

−
g2

ω

8π2M2r2

∫ ∞

0

dq q2 cos(qr)F2
ω Gω T (10)

In the above formulae, one has

Gσ = −
q2 + µ2

ω − Π00
ω (0, q)

(q2 + µ2
σ + Πσ(0, q)) (q2 + µ2

ω − Π00
ω (0, q)) + (Π0

ωσ(0, q))
2

Gσω = −
Π0

ωσ(0, q)

(q2 + µ2
σ + Πσ(0, q)) (q2 + µ2

ω − Π00
ω (0, q)) + (Π0

ωσ(0, q))
2

Gω L = −
q2 + µ2

σ + Πσ(0, q)

(q2 + µ2
σ + Πσ(0, q)) (q2 + µ2

ω − Π00
ω (0, q)) + (Π0

ωσ(0, q))2

Gω T = −
1

q2 + µ2
ω + Π11

ω (0, q)

Pi meson

Finally, the one-pion exchange only contributes to the spin-spin and tensor components :

V π
SS(r) =

g2
π

24π2M2r

∫ ∞

0

dq q3 sin(qr)F2
π Gπ (11)

V π
T (r) =

−g2
π

24π2M2r

∫ ∞

0

dq

[
3q

r2
− q3

]
sin(qr)F2

π Gπ

+
g2

π

8π2M2r2

∫ ∞

0

dq q2 cos(qr)F2
π Gπ (12)

where :

Gπ(q) =
−1

q2 + µ2
π + Ππ(0, q)
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0G G GG Π0

Figure 1: Schematic representation of the Schwinger-Dyson equation for the meson propagators.
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Figure 2: Diagram for one-rho meson exchange. The double line represents the in-medium rho meson propagator.
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Figure 3: Rho-meson dispersion relations for parameter set 1B. The solid line correspond to vacuum density,
and the dashed, dot-dashed and dotted lines to finite density with a value of Fermi momentum pF /m=0.3, 0.4,
0.5 respectively. The left panel shows transverse modes. There are normal and heavy meson branches. The
right panel compares longitudinal (thick lines) to transverse modes (thin lines) for the normal branch. We use
the same conventions as in the left panel to represent various densities. Magnitudes are given in units of the
free nucleon mass m.
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Figure 4: Rho-meson dispersion relations for parameter set 2B. The left panel shows the transverse branch at
various density with the same conventions as in Fig. 3. Only the normal branch remains in this case. The
longitudinal branches are represented in the right panel. Besides the normal branch, we have a remnant of the
heavy meson modes at high density.
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Figure 5: Rho-meson dispersion relation for parameter set 3B. Only the transverse branch is shown. The
longitudinal branch almost coincides with the transverse one so that it could not be distinguished by eye from
the former. Only normal branches are present in this case
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Figure 6: In-medium ρ-meson mass as a function of the nuclear Fermi momentum, when the vacuum term is
discarded. For small densities, it would appear that the effective rho mass increases; however neglecting of
vacuum fluctuations is at the origin of an unpleasant cusp, which cannot be removed even by very low values
of the cutoff parameter in the form factor
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Figure 7: In-medium ρ-meson mass as a function of the nuclear Fermi momentum. Vacuum polarization is
included according to the first class of renormalization schemes 1, 2 and 6 (= “Kurasawa-Suzuki”).
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Figure 8: In-medium ρ-meson mass as a function of the nuclear Fermi momentum. Vacuum polarization
is included according to the second class of renormalization schemes 3, 4 (= “ Sarkar”) and 5 (= “Shiomi-
Hatsuda”).
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Figure 9: One-rho exchange component of the potential at 2.4 times saturation density (pF =0.4) for various
renormalization schemes: scheme 1 with parameter set 1B (solid line), scheme 3 with parameter set 3A (dashed
line) and scheme 5 (= “Shiomi-Hatsuda”) with the parameter set of Machleidt Bonn-B potential (dot-dashed
line). The potential in vacuum is also shown for reference (dotted line). The left upper panel shows the central
component, the right upper panel displays the spin-spin component, the left lower panel corresponds to the
tensor part. Finally the spin-orbit component is represented in the right lower panel.
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Figure 10: Central component of the potential including all (σ, ω, ρ, π) mesons in the medium, using parameter
set 1B with renormalization scheme 1. We use the same conventions as in the left panel to represent various
densities. The left panel represents the short range part of the potential. The right panel illustrates the
oscillatory behavior in the long range part.
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Figure 11: Influence of the rounding off of the momentum distribution function on the amplitude of Friedel
oscillations. We show the central component of the potential including all mesons at saturation density and
vanishing temperature, using parameter set 1B with renormalization scheme 1. The solid line was obtained for
a Fermi-Dirac distribution (as in previous figures). The dashed line uses the parametrization of the result of a
(relativistic) Dirac-Brueckner-Hartree Fock calculation by de Jong and Malfliet [58]. The dash-dotted line uses
the parametrization of the result of a (nonrelativistic) Brueckner-Hartree Fock calculation by Baldo et al. [57].
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Figure 12: Influence of temperature on the amplitude of oscillations. We show the central component of the
potential including all mesons at saturation density, using parameter set 1B. The solid, dashed, dot-dashed and
dotted lines correspond to temperatures T=0, 10, 30, 50 MeV respectively.
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