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Abstract

We present a method to evaluate the K̄ absorption width in the bound K̄NN system. Most calculations of
this system ignore this channel and only consider the K̄N → πΣ conversion. Other works make a qualitative
calculation using perturbative methods. Since the Λ(1405) resonance is playing a role in the process, the
same resonance is changed by the presence of the absorption channels and we find that a full nonperturbative
calculation is demanded, which we present here. We employ the Fixed Center Approximation to Faddeev
equations to account for K̄ rescattering on the (NN) cluster and we find that the width of the states found
previously for S = 0 and S = 1 increases by about 30 MeV due to the K̄NN absorption, to a total width
of about 80 MeV.
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I. INTRODUCTION

The interaction antikaon (K̄) with nucleon (N) has drawn attention for decades [1–11] since this
interaction provides essential elements to understand the strangeness in nuclear hadron physics.
The K̄N interaction is strongly attractive in the isospin I = 0 and also the πΣ interaction is
attractive at low energies. The K̄N and πΣ are the most important channels for the Λ(1405):
these two channels dynamically generate the quasi bound Λ(1405).

To understand the many body kaonic nuclear system, the K̄NN is the simplest system. The
investigation of this system started in the 60’s [12]. More recently, using the variational approach,
a K̄NN state was found bound by 48 MeV with width of 60 MeV [13]. In [14], the K−pp three
body system was investigated using the variational approach taking the results of K̄N interactions
from a chiral SU(3) model, and they get a much less bound K−pp state with, B=19 MeV and
Γ=40-70 MeV. In a further paper, the same group quantifies the uncertainties and evaluates the
extra with coming from K̄ absorption from the pair of nucleons, with the results of B=20-40 MeV
and Γ as large as 100 MeV with admitted large uncertainties [15] . Coupled channel three body
calculations of the quasi bound K̄NN system were investigated in [16, 17] using Faddeev equations,
and their results for the binding is 50-70 MeV and the width around 100 MeV. The work of [18]
studied three body resonances in the K̄NN system within a framework of the K̄NN → πY N
coupled channel Faddeev equation. In this work they found the binding energy 79 MeV with width
74 MeV. However, in more recent papers [19, 20], where the energy dependence of the potential is
taken from chiral dynamics, the same authors find much smaller binding energies, below 20 MeV.
We also calculated the K̄NN system [21, 22] for the S = 0 and S = 1 case, using the Fixed Center
Approximation (FCA) to the Faddeev equations taking into account πΣN channel explicitly and
also including the charge exchange diagrams. We get the binding 26-35 MeV for S = 0 while
around 9 MeV for S = 1 case. The width are in both cases around 50 MeV. A very recent Faddeev
calculation [23] finds that the S = 0 state is bound by about 16 MeV and the S = 1 by less than
11 MeV. The widths, without including K̄ absorption by a pair of nucleons, are around 40 MeV.

The FCA to the Faddeev equations is an efficient and useful method to investigate many body
systems. There is substantial work to rely on this model. For instance, the three body K̄NK
scattering amplitude [24] was calculated using the FCA to the Faddeev equations and the results of
this work are in good agreement with the other theoretical works [25, 26] evaluated using variational
and Faddeev approaches, respectively. Besides, in [27], using the same model, the authors give a
plausible explanation for the ∆ 5
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+(2000) puzzle. As important as to know the success of the FCA,

it is to know the limitation of this procedure, and it was found in [28] that the approximation
collapses for the study of resonant states, where there is plenty of phase space for the excitation of
intermediate states.

Meson nucleus bound systems are good laboratories to investigate the finite density QCD. The
existence of the K̄ bound states in nuclear systems, which are called kaonic nuclei, is theoretically
expected because of the strong attractive interactions between the K̄ and the nucleon. Models
range from empirical ones with a depth of around 200 MeV at normal nuclear matter density
[29], to those imposing chiral symmetry constraints that lead to an attraction of around 40-50
MeV [30–34]. However there is no experimental evidence on this system. In spite of experimental
claims, which have been proved to be unfounded (see Ref. [35] for a review on the issue). The
large width of the predicted states compared to the binding could justify why such states are not
being found [36]. The K−pp is the prototype of the K̄ nuclei and to observe the kaonic nuclei
in experiments, the precise knowledge of the width of this state is important. In this sense, it
is important to recall that in all previous works of the K̄NN system the source of the width
is only the K̄N → πΣ conversion channel. The absorption channels K̄NN → ΛN, ΣN are not
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considered explicitly, although in some case it is estimated perturbatively [15]. Early experiments
on K−-nucleus absorption at rest were done in the 1970s. A precise measurement of the total
two nucleon absorption of stopped K− mesons in deuterium was reported in [37] using deuterium
bubble chambers. This is the first detailed measurements of two nucleon absorption branching ratio
and these results were compared with the predictions of isospin invariance for strong interaction.
The ratio of the rates R(K−d → Σ−p) and R(K−d → Σ0n) was in good agreement with the results
of isospin invariance for strong interaction. A Similar experiment was done using a helium bubble
chamber [38].

K̄ absorption by two nucleons in nuclei, K̄NN → ΛN, ΣN, Σ∗N , has been considered before
in the selfconsistent evaluation of the K̄ nucleon optical potential of [32, 39]. More recently it has
also been evaluated in a different way in [40]. The K̄ nucleus optical potential evaluated in [32] has
been checked versus kaonic atoms in [36] with good agreement with experiment. The discrepancies
seen for the 4He atom have been revolved recently with very precise measurement in [41, 42] which
agree with the early predictions of [36]. Also a best fit to the data done in [43] showed that a best
fit to the data could be obtained with a potential that differed from the predicted one of [32] at
the level of 20 %. This agreement with data gives us confidence that the input used in [32] for the
K̄NN absorption is realistic and we use this input here to evaluate the absorption width of the
K̄NN state.

The article is organized as follows. In Section II, the calculation of the three body K̄NN
amplitude including the charge exchange mechanisms is summarized using the Faddeev equations
under the FCA. In Section III, The explicit derivation of the K− absorption by two nucleons is
given. The results of the K− absorption both for spin-0 and spin-1 are shown in Section IV.

II. CALCULATION OF THE K̄NN AMPLITUDE

Here we will summarize the derivation of the K̄NN three body amplitude within the framework
of the FCA to the Faddeev equations taking into account the charge exchange contributions. In
order to investigate the three-body amplitude of the K̄NN , we have two possible spin states, S = 0
and S = 1. Let us first concentrate on the calculation of the S = 0 case which is done in detail
in [21]. At the end we want total isospin-1

2 for three-body amplitude. The wave function for this
state is

|K−pp >= −(
1√
3

|3/2, 1/2 > +

√

2

3
|1/2, 1/2 >) (1)

with the basis of |Itot, I3,tot >. For the total amplitude with total isospin-1
2 we have

< 1/2|T |1/2 >=
3

2
(< K−pp|T |K−pp > −1

3
< 3/2|T |3/2 >). (2)

First, we start from the K−pp → K−pp amplitude where a K− interacts with either of the
two protons and the diagrammatic representation of this amplitude is shown in Fig. 1, where the
shaded ellipse includes all multiple scattering of the K− where the K− interacts first with the
first nucleon. We call the result of this diagram Tp and hence the total amplitude including the
diagrams where the K− interacts first with the second nucleon is 2Tp. Looking in detail at the
ellipse in Fig. 1 we have three partition functions (see Fig. 2) that fulfill the following coupled
channel equations

Tp = tp + tpG0Tp + texG0T (p)
ex

T (p)
ex = t

(p)
0 G0T (n)

ex

T (n)
ex = tex + texG0Tp + t

(n)
0 G0T (p)

ex (3)
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FIG. 1: Diagrammatic representation of the K−(pp) interaction. The equivalent diagram where K− first
interacts with the second proton should be added.

where tp = tK−p,K−p, tex = tK−p,K̄0n, t
(p)
0 = tK̄0p,K̄0p, t

(n)
0 = tK̄0n,K̄0n and G0 [44, 45] is

G0 =

∫

d3q

(2π)3
FNN (q)

1

q02 − ~q 2 − m2
K̄

+ iǫ
, (4)

with the factor FNN (q) standing for the form factor of the bound NN cluster. The diagrammatic
representation of the partition functions is shown in Fig. 2. Calculating the three equations in Eq.
(3) we get Tp as below

T (1/2)
p =

tp(1 − t
(n)
0 G0t

(p)
0 G0) + t2

exG0t
(p)
0 G0

(1 − tpG0)(1 − t
(n)
0 G0t

(p)
0 G0) − t2

ext
(p)
0 G3

0

. (5)

Now we need to evaluate the second term of Eq. (2). This term does not have charge exchange
and its diagrammatic representation is shown in Fig. 3. Taking into account the equivalent diagram
where K̄0 interacts first with the second nucleon we obtain

T (3/2)
p = 2

t
(p)
0

1 − G0t
(p)
0

. (6)

Using Eq. (2), the final result of the amplitude for S = 0 case is

T (1/2) = 3Tp − t
(p)
0

1 − G0t
(p)
0

. (7)

In the case of S = 1, the amplitude of the three-body system is calculated in Ref. [22] following
the steps of [46] for the evaluation of the K̄−d scattering length. The resulting amplitude is

TK−d =
tp + tn + (2tptn − t2

x)G0 − 2t2
xtnG2

0

1 − tptnG2
0 + t2

xtnG3
0

(8)

where tx = tex/
√

1 + t
(n)
0 G0.
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FIG. 2: Diagrammatic representation of the partition functions for K−pp → K−pp.
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FIG. 3: Diagrammatic representation of the partition function for I=3/2.
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III. K̄NN ABSORPTION

We are going to formulate the K̄ absorption by two nucleons. The Feynman diagrams for this
process are shown in Fig. 4. The S-matrix elements for these diagrams are given as follows:

S =
1

V 2

∫

d3q

(2π)3

1√
2ωK̄

tK̄N→K̄N

1

q2 − m2
K̄

+ iǫ

×VyZ(H)
A(B) ϕ̃(~q − ~pZ(H) +

~P

2
)(2π)4δ4(pi − pf ) (9)

≡ −iT
1√
2ωK̄

1

V 2
(2π)4δ4(pi − pf ),

where VyZ(H)
A(B) is the meson baryon Yukawa vertex, Z stands for the Λ, Σ0, Σ+ spin-1

2 octet

baryons, H represents the Σ∗0, Σ∗+ spin-3
2 decuplet baryons, A is equal to ~σ~q for the K̄NZ vertex

and B is equal to ~S†~q for the K̄NH vertex where ~S† is the spin transition operator from spin-1
2

to spin-3
2 . Here ϕ̃(~q) is the wave function of the pair of nucleons and pi and pf are the initial and

final momenta, respectively.
Taking the NN system at rest, we can make some approximation for the K̄ propagator as below

1

q2 − m2
K̄

→ 1

(q0)2 − ~p 2
Z(H) − m2

K̄

, (10)

where q0
Z(H) = EZ(H) − EN with EZ(H) = (M2

K̄NN
+ M2

Z(H) − M2
N )/2MK̄NN .

After redefinition of ~q ′ ≡ ~q − ~pZ(H), the square of the total matrix element summed over the
spins of the Z, or H, and averaged over the spin of the nucleons is obtained as

|T |2 = V 2
yZ(H)

CZ(H)~p
2

Z(H)

(

1

(q0)2 − p2
Z(H) − m2

K̄

)2

×
∣

∣

∣

∣

1

2π2

∫

q′2dq′ϕ̃(~q ′)tK̄N,K̄N (
√

s′)

∣

∣

∣

∣

2

. (11)

with CZ = 1 and CH = 2/3. Using the coefficients in Table I and Eq. (14) in Ref. [39], we have
for the coefficients of the Yukawa vertex

VyZ
= − 1√

3

3F + D

2f
for K−p → Λ

=
D − F

2f
for K−p → Σ0

=
√

2
D − F

2f
for K̄0p → Σ+ (12)

with D = 0.795 and F = 0.465. Similarly, for the K̄NH vertex we have

VK̄NH = a
gH

2MN
(13)
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The coefficient a is given in Table 2 in Ref. [39] and the coupling
gH

2MN
is given by,

gH

2MN
=

2
√

6

5

D + F

2f
. (14)

Thus, the coefficients for the K̄NH Yukawa vertices are

VyH
=

2

5

F + D

2f
for K−p → Σ∗0

=
2
√

2

5

D + F

2f
for K̄0p → Σ∗+ (15)

It is useful to relate the T matrix with the cross section. Using the T matrix we calculate the
K̄(NN) cross section as

σabs =
1

2π

MNN MZ(H)MN

M2
K̄NN

pZ(H)

pK̄

|T |2.

Borrowing the optical theorem we rewrite the cross section in terms of the imaginary part of the
K̄(NN) → K̄(NN) amplitude, TK̄(NN), as follow:

Im TK̄(NN) = −pK̄

√
s

MNN
σabs = − 1

2π

MZ(H)MN

MK̄NN

pZ(H)|T |2. (16)

From Eq. (16), the imaginary part of the TK̄(NN) is written as

Im TK̄(NN) = − 1

2π

MN

MK̄NN

MZ(H)pZ(H)|TZ(H)|2. (17)

In analogy to [47], we can convert the absorption diagram of Fig. 4 into the ”many-body” diagram
of Fig. 5 where the nucleon on which the virtual K̄ is absorbed is converted into a ”hole” line.
The purpose of following this path is that we can now include the absorption process by making
a modification of the meson baryon loop function, δG, to include the ”ph” excitation in the K̄
propagator. Then, we can reevaluate the K̄N amplitude in the coupled channels nonperturbative
Bethe Salpeter equations and use the new amplitude in the K̄(NN) amplitudes of Eqs. (7) and
(8) which sum the multiple scattering series of the K̄(NN) system. In this way we perform fully
nonperturbatively the implementation of the K̄(NN) absorption in the K̄(NN) system.

Since we are only concerned about the absorption process it suffices to evaluate Im δG. This
is easy since Im δG is the same as Im TK̄(NN) removing the two tK̄N,K̄N amplitudes in Eq. (11).
Thus we can immediately write

iIm δGK−p = −i
1

2π

MN

MK̄NN

3
∑

i=1

MZ(H)pZ(H)|T̃Z(H)|2. (18)

iIm δGK̄0n = −i
1

2π

MN

MK̄NN

2
∑

i=1

MZ(H)pZ(H)|T̃Z(H)|2. (19)

where the sum for 1-3 of δGK−p runs over Λ, Σ0 for type Z and Σ∗0 for type H, and the sum 1-2
of GK̄0n runs over Σ+ of type Z and Σ∗+ of type H (see Fig. 5).
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FIG. 4: Diagrammatic representation of the the K−(pp) absorption.
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p
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p
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Nh Λ,Σ0,Σ∗0

p

FIG. 5: Representation of the K−(pp) absorption in many-body diagrams.

In Eqs. (18) and (19), |T̃Z(H)|2 is given by

|T̃Z(H)|2 = |ϕ(0)|2V 2
yZ(H)

CZ(H)~p
2

Z(H)

(

1

(q0
i )2 − p2

Z(H) − m2
K̄

)2

. (20)

where VyZ
, VyH

, are given in Eqs. (12) and (15), respectively. Note that when removing the tK̄N,K̄N

amplitude in the integral of Eq. (11), the remaining integral simply gives the wave function in
coordinate space in the origin, ϕ(0).

For ϕ(r) we take the same wave function as in [47] for the NN cluster

ϕ(r) = ae−αr, a =
1

2

(

α3

2π

)
1
2

, ϕ̃(q) =
4πaα

(1
4α2 − q2)2 + q2α2

. (21)
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The momentum of the baryons are given by

pZ(H) =
λ

1
2 (M2

K̄NN
, M2

N , M2
Z(H))

2MK̄NN

(22)

and in order to account for relativistic corrections, ~p 2
Z(H) accompanied by V 2

yZ(H)
is given by

~p 2
Z(H)V

2
yZ(H)

−→ V 2
yZ(H)

1

4M2
Z(H)

(MN + MZ(H))
2~p 2

Z(H) (23)

Since we get different contributions for δG in the K−p or K̄0n intermediate states, we are now
forced to recalculate the K̄N amplitudes using the charge basis of the coupled channels, rather
than the isospin base normally used.

K̄0

K̄0

(a)

K̄0

K̄0 K̄0

K̄0

Nh Σ+,Σ∗+

(b)

p

p

pp p

pp

Σ+,Σ∗+

K̄0

K̄0

FIG. 6: Representation of the K−(pp) absorption for tK̄0p→K̄0p amplitude.

Furthermore, as seen in Eqs. (3), we also need to calculate the tK̄0p→K̄0p amplitude. This is a
channel that has only one Feynman diagram as shown in Fig. 6. In order to calculate the tK̄0p→K̄0p

amplitude we use the same potential with VK−n,K−n [48]. The K̄0p channel is renormalized in the
same way as the K̄0n, as one can see, comparing Fig. 6 (a) with Fig. 4 (b). Hence, one can use
GK̄0p → GK̄0p + iδGK̄0n for the channel K̄0p.

IV. RESULTS

As we mentioned in the Introduction, the Λ(1405) plays a key role in the K̄ ab-
sorption. As mentioned before, we recalculate the K̄N amplitudes in the charge base.
In the case of the Q = 0 and I3 = 0, there are ten coupled channels which are
K−p, K̄0n, π0Λ, π0Σ0, ηΛ, ηΣ0, π+Σ−, π−Σ+, K+Ξ−, K0Ξ0 [48]. As discussed above, we
also need the K̄0p → K̄0p amplitude in pure I = 1. For this we take the I3 = −1 component and
use the six coupled channels, K−n, π0Σ−, π−Σ0, π−Λ, ηΣ−, K0Ξ− [48]. In the coupled channels
reevaluation of the K̄N amplitudes for I3 = 0 we add iδGK−p, iδGK̄0n to GK−p, GK̄0n, respectively.
For I3 = 1 we add iδGK−n to GK−n, but for isospin symmetry reasons iδGK−n ≡ iδGK̄0p which
we have discussed above. In all the channels we use the same numeric value for f , f = 1.123fπ

9



(fπ=93 MeV) as in [48]. For the form factor of Eq. (4) we use the deuteron type form factor with
the reduced size of the two N system found in [15].

In Figs. 7 and 8 we show the absolute squared of the T matrix for K̄ scattering on the NN
cluster, including absorption, for the cases of S = 0 and S = 1. As we can see from Fig. 7 the
most striking thing is a substantial increase in the width, that goes from about 50 MeV to about
80 MeV, and which is due to absorption. The centroid of the distribution is also a bit displaced to
lower energies, but what concerns us now is that the K̄ absorption on two nucleons has increased
the width by about 30 MeV. The order of magnitude is similar to what was estimated in [14, 15],
but here we have done a full nonperturbative evaluation of this magnitude. In the case of S = 1
in Fig. 8 we observe that the shape of the distribution has been distorted considerably due to
the consideration of the K̄ absorption and the centroid has not changed appreciably. From this
distorted shape one can also estimate that the width has increased in about 30 MeV, like in the
previous case.

We should mention that we have also included the effect of the πΣN intermediate states in the
calculation. Here also the K̄N → πΣ amplitudes have been modified due to absorption, since they
come from the coupled channels calculation. The contribution of this channel has been done as in
[45] and its effect is small, like also found there.

2200 2250 2300 2350

s
1/2

[MeV]

0

0.1

0.2

0.3

0.4

|T
|2

FIG. 7: Modulus squared of the T matrix for K̄ scattering on the NN cluster for S = 0.
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0.08

0.1

0.12

0.14

|T
|2

FIG. 8: Modulus squared of the T matrix for K̄ scattering on the NN cluster for S = 1.

V. CONCLUSIONS

We have made a detailed and accurate calculation of the contribution to the width of the bound
K̄NN states from K̄ absorption on two nucleons. The evaluation is done nonperturbatively in
two aspects: First, the K̄N amplitudes are reevaluated in the unitary coupled channels approach
taking into account the absorption of the K̄. Second the resulting K̄N amplitudes are used
in the nonperturbative formula of the Fixed Center Approximation that takes into account the
rescattering of the kaons on the nucleons of the NN cluster.

The result of these calculations is that the width of the states with S = 0, S = 1 is increased
by about 30 MeV to values of the total width of 75-80 MeV. With this large width and the small
values of the binding, 15-30 MeV, to which the different groups are converging [15, 20, 23], we are
facing a situation of states with much larger width than binding, which makes the experimental
observation problematic. Further calculations taking advantage of the steps given in the present
paper, but using different formalisms, would be most welcome.
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