arXiv:1211.3985v1 [hep-lat] 16 Nov 2012

On ambiguities of sign determination of the S-matrix from energy levels in a finite
box.

E. Oset
Departamento de Fisica Tedrica and IFIC, Centro Mixto Universidad de Valencia-CSIC,
Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia, Spain.
(Dated: November 19, 2012)

In a recent paper the authors make a study on the determination of the S-matrix elements for
scattering of particles in the infinite volume from the energy levels in the finite box for the case of
multiple channels. The study is done with a toy model in 141 dimension and the authors find that
there is some ambiguity in the sign of nondiagonal matrix elements, casting doubts on whether the
needed observables in the infinite volume can be obtained from the energy levels of the box. In
this paper I present an easy derivation, confirming the ambiguity of the sign and argue that this,
however, does not put restrictions in the determination of observables.

PACS numbers:

I. INTRODUCTION

The determination of scattering amplitudes and
hadron spectra is one of the challenging tasks of Lat-
tice QCD and many efforts are being devoted to this
problem [1H26]. For the case of one channel scattering,
and resonances decaying in just one channels, Liischer’s
approach is often used [27, 28]. The method allows to
reproduce the phase shifts from the discrete energy lev-
els in the box. This method has been recently simplified
and improved in Ref. [29] by keeping the full relativis-
tic two body propagator (Liischer’s approach keeps the
imaginary part of this propagator exactly but makes ap-
proximations on the real part) and extending the method
to two or more coupled channels. The method has also
been applied in Ref. [30] to obtain finite volume results
from the Jiilich model for meson baryon interaction and
in Ref. [31] to determine the strategy to find the two poles
of the A(1405) from lattice QCD simulations. Further ap-
plications and references to works done along these lines
can be seen in [32].

The extension of Liischer’s approach to coupled chan-
nels has been addressed in several works [29, 133, 134, 136,
55). In the work of Ref. [29], the inverse problem of get-
ting phase shifts and resonances from lattice results using
two channels was addressed, paying special attention to
the evaluation of errors and the precision needed on the
lattice results to obtain phase shifts and resonance prop-
erties with a desired accuracy.

In a recent paper [37] a coupled channel study of this
inverse problem is done with two channels, using a toy
model in 141 dimension and it is concluded that the de-
termination of the S-matrix in the case of T-invariance
(we only consider this case) has an ambiguity in the sign
of the nondiagonal matrix element. Due to this, doubts
are cast that in a realistic case this does not pose prob-
lems in the determination of needed observables.

In the present paper we present a derivation of this
inverse problem in the realistic case and conclude that
indeed this ambiguity arises. However, we also argue
that this ambiguity, tied to an arbitrary phase in the

wave function of one channel with respect to the other,
has no repercussion in the determination of observables.

II. FORMALISM

In the chiral unitary approach the scattering matrix in
coupled channels is given by the Bethe-Salpeter equation
in its factorized form [38]. We assume just s-waves for
simplicity (see generalization to other waves in [39]) and
we have

T=N1-VG'v=v"'-a (1)

where V' is the matrix for the transition potentials be-
tween the channels and G is a diagonal matrix with the
i*? element, G, given by the loop function of two prop-
agators (we shall use two mesons), which is defined as
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where m; and M, are the masses of the pair of mesons
and P the four-momentum of the global meson-baryon
system.

The loop function in Eq. (@) needs to be regularized
and this can be accomplished either with dimensional
regularization or with a three-momentum cutoff. The
equivalence of both methods was shown in Refs. [40, 41].

In the cut off method a cutoff in three momentum is
used once the p° integration is analytically performed
[38], and one gets
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with my, ms corresponding to m; and M; of Eq. ().
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When one wants to obtain the energy levels in the fi-
nite box, instead of integrating over the energy states of
the continuum, with p being a continuous variable as in
Eq. @), one must sum over the discrete momenta allowed
in a finite box of side L with periodic boundary condi-
tions. We then have to replace G by G = diag (G1, G2)
(in two channels), where
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This is the procedure followed in Ref. [29]. The
eigenenergies of the box correspond to energies that pro-
duce poles in the T matrix, Eq. (), which in the finite

box correspond to zeros of the determinant of 1 — V(N?,
det(1 - V@) =0. (5)

For the case of two coupled channels Eq. (@) can be writ-
ten as

det(l — Vé) =1- ‘/11@1 — ‘/22(;2
+ (V11 Va2 — V122)é1é2
=0. (6)

One can already see there that Vj2 appears squared,
hence, a change of sign in it will not change the spectra
of levels in the box. We shall see that this is also the case
in the inverse problem and we can only determine T3,
However, this will not prevent us from determining the
three scattering magnitudes in this case, the two phase
shifts and the inelasticity.

III. THE INVERSE PROBLEM

The inverse problem of obtaining 7;; from the energy
levels in the box is most efficiently written in terms of
0G defined as

G=G -G, (7)

the magnitude used in [42], which is finite in the limit of
Pmaz — 00, the limit taken in [31], |42], and proportional
to the Liischer function |29, |43].

Let us start from Eq. () that gives the 7' matrix in the
infinite volume and write the correspondent scattering
matrix in the finite volume, T

T=V"1 -G (8)

Note that for the case of one channel the poles of G
provide V! —G = 0 and, thus, V! = G for the eigenen-
ergies of the box. Then we can recast Eq. (I]) as

and this is the formulation of Liischer’s formula in [29].

Coming back to the multichannel problem and using
Egs. @) and (8), as done in [31], we get

T =T71'—6G=T"1-T6G, (10)
Hence,
T=[1-T56G)'T. (11)

which allows us to get T directly in term of T, without
going through an intermediate potential. One can note
that this formula is like the one of Eq. (), or Eq. (&)
for T, substituting V' — T and G — 0G. Hence, the
condition to obtain the energy levels in the box, det(T) =
0, leads to the analogous secular equation of Eq. (@) in
terms of T" and §G substituting V' and G, respectively,

(1 =Ty, 8G11)(1 — Ta2dGh) — TH8G16Go =0,  (12)

or equivalently,

T116G11 + T926Go — (T11T22 — T122)5G15G2 =1. (13)

It is clear that with just one energy eigenvalue for a
given L, Eq. (I3) cannot provide the full T;; matrix.
In [29] different methods were used to get T' from the
eigenenergies of the box. The simplest conceptually is to
take a certain energy from three levels, which correspond
to three different values of L, and then determine the
three values of Tj;. Actually, what one determines is
T11, Too and T122. So, we can see in a realistic case that
we only obtain TZ,. However, this is not a problem to
determine the observables. This indetermination should
be there because a change of relative sign of the wave
function for the states 1 and 2 leaves 111, T2 unchanged
but it changes the sign of T}, and the physics cannot
depend on this sign. To make this more explicit we write
explicitly the S-matrix in terms of the observables in the
next subsection.

A. Phase shifts and Inelasticities:

In order to obtain the phase shifts and inelasticities we
use the two-channel S matrix [44]

2481 . 2 1/2 1(61+52)
_ | me i(L—n*)'e
5= i(1 — 1)1/ 2ei(Br+52) p2ids (14)
where d1, d2 are the phase shifts for the 1 and 2 channels
and 7 is the inelasticity. The elements in the S matrix
are related to our amplitudes via:
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It is interesting to recall that the first two equations
allow us to determine 1,2 and n while the third equa-
tion allows us to determine §; + d2 and 1. The S-matrix
should be unitary and one can see that this is the case
even if we change the sign of S12. In fact the choice of
the positive sign in the square root of (1 —7?) is a matter
of convention. One may argue that if we change the sign
of Si5 and use Eq. (), one would obtain e*(?11%2) with
opposite sign to what one would get from using the same
matrix element before changing the sign. This reflects
the arbitrariness of 7 in the phase shifts. In view of this
arbitrariness in the sign, the quantities that should be
used are |Ty2|?, which determines (1 — n?) and then TZ
which determines (1 —n?)e?(91+92) and allows one to get
01 + d2, independently of the sign of Tis.

IV. CONCLUSIONS

In this paper we have done a derivation of the inverse
method to get the scattering matrix from the energy lev-
els of the system in a finite box. We observe, in agreement
with the findings with the toy model of [37], that for the
case of two channels studied in [37], the sign of the off
diagonal matrix element 775 is not defined. Yet, we could
see that this had not repercussion in the determination
of the observables d1, d2 and 7, although given the ambi-
guity on this sign, tied to an arbitrary relative phase in
the wave functions of the states, a particular algorithm
must be taken to determine the phase shifts from T7s.

The two channel system that we had in mind was the
one of two physical states that couple, say 7w and KK,
studied for instance in [29]. One may think of other cou-
pled channels systems, like one physical state with two
coupled partial waves, where signs and interference are

important in angular distributions (the authors of [31]
might have such and idea going beyond the toy model
used). An example of this is the deuteron or dineutron
system in the presence of a tensor force [45]. The issue
of partial wave mixing is an interesting one in finite vol-
ume because a square box breaks rotational invariance
and this leads invariably to partial wave mixing. So, the
problem is well documented [28]. Closer to the case of ex-
plicit L mixing caused by particular external forces is the
case of the L mixing in the moving frame. Here one still
has a central potential but the imposition of the bound-
ary conditions in a frame where the total momentum of
the system is not zero leads to partial wave mixing. This
problem has also received much attention [39, 46-517].
The exposition and solution of the problem is made in
a relatively simple and pedagogical way in [39], where L
mixing and physical coupled channels are considered si-
multaneously. There one can see that the equations and
strategies that allow one to obtain the different partial
ways and their relative signs are far more involved than
the simple equations used in the present work or in [37].
The result of these works is that the inverse problem has
solution without ambiguities and realistic cases are even
solved explicitly in [39].

Whether in some finite volume topic ambiguities ap-
pear in the inverse problem is an open issue. What is
clear is that the ambiguity found in the present work
dealing with just one partial wave, or in |37] in the 1+1
toy model, where partial waves cannot be defined, poses
no problem for any of the works done with finite volume
so far.
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