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Abstract

We present a study of the D∗ρ system made by using the method of QCD sum rules to determine

the mass of possible resonances generated in the same system. Using isospin and spin projectors,

we investigate the different configurations and obtain evidences for three D∗ mesons with isospin

I = 1/2, spin S = 0, 1, 2 and with masses 2500 ± 67 MeV, 2523 ± 60 MeV, and 2439 ± 119 MeV,

respectively. The last state can be associated with D∗
2(2460) (spin 2) listed by the Particle Data

Group, while one of the first two might be related to D∗(2640), with unknown spin-parity. In the

case of I = 3/2 we also find evidences of three states with spin 0, 1 and 2, respectively, with masses

2467±82 MeV, 2420±128 MeV, and 2550±56 MeV. The results for the sector I = 1/2 and S = 0,

1, 2, are intriguingly similar to a previous study of the D∗ρ system based on effective field theories,

supporting in this way a molecular picture for the resonances D∗(2640) and D∗
2(2460), while the

results for I = 3/2 hint towards the existence of exotic mesons since a multiquark configuration is

required to get the quantum numbers of the states found.
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I. INTRODUCTION

Since the discovery of the D and D∗ mesons in the seventies by the Mark I collabo-

ration [1], the interest in the charmed meson spectroscopy has grown exponentially and

the newly developed experimental facilities like Cleo, Belle, BaBar, etc., are continuously

bringing more relevant information about the excited charmed meson states [2–4]. This

information is very useful to elucidate the way the strong interaction works when a heavy

quark is involved. In this aspect, many theoretical efforts have been dedicated to the under-

standing of the properties of the excited meson states in the open as well as in the hidden

charm sectors using different methods based on quark models, QCD sum rules, Lattice QCD,

effective field theories, etc., [5–13].

However, in spite of all the experimental and theoretical works, a rather scarce infor-

mation is available on the properties of the charmed meson resonances like spin, isospin,

parity, etc. The most clear evidence of this fact is the summary of the knowledge on these

particles given by the Particle Data Group (PDG) [14], which lists only six D and five D∗

meson excited states (cataloging separately the neutral and the charged ones) spread over

the energy region of 2400-2750 MeV. Out of them, five D and two D∗ states are omitted

from the summary table due to controversy on their properties. It is also interesting to

notice that the energy region studied experimentally covers a range of only 350 MeV from

the first to the last excited state, while the interaction of a D or a D∗ meson, due to their

heavy mass (around 2000 MeV), with a vector or few pseudoscalar mesons could give rise

to a resonance with a mass close to 3000 MeV. Recently, a theoretical work along this line

was made in Ref. [15], where a system formed of a D meson and the f0(980) resonance was

investigated using two different techniques: one based on effective field theories and other

based on QCD sum rules, and the agreement of both methods was remarkably good. As

a result, a new D meson state with mass around 2900 MeV was predicted. Similarly, with

another recent study of the D∗ρ system in s-wave using effective field theories based on

hidden local symmetry [16] an effort has been made to shed some more light on the nature

of two of the D∗ resonances listed by the PDG: D∗
2(2460) and D∗(2640). In Ref. [16] the

spin-parity of the former state was confirmed to be JP = 2+, and the spin and parity of the

latter one was predicted to be JP = 1+. In addition, a new state with mass close to 2600

MeV and spin 0, thus JP = 0+, was predicted.

2



In this manuscript, with the objective of understanding the properties and nature of the

resonances D∗
2(2460) and D∗(2640), we investigate the D∗ρ system using QCD sum rules to

determine the mass of its possible resonances and compare our results with the ones found

in Ref. [16].

II. FRAMEWORK

We would like to investigate the generation of D∗ρ molecular states using a formalism

based on QCD sum rules, but before we enter into details about how to do this, let us first

summarize the main aspects of the previous study of the D∗ρ system made by the authors

of Ref. [16]. This discussion will be useful while comparing the results obtained in our work

with those reported in Ref. [16].

A. The D∗ρ system in effective field theories

In Ref. [16], the scattering amplitudes of the D∗ρ and D∗ω coupled channel system are

calculated by solving the Bethe-Salpeter equation in its on-shell factorization form [17–20]:

T = (1− V G)−1V. (1)

In Eq. (1), the kernel V corresponds to a 2× 2 matrix whose elements are the lowest order

amplitudes describing the transitions between the channels. These amplitudes are obtained

from a Lagrangian built on the basis of the hidden local symmetry [21]. The 2 × 2 matrix

G in Eq. (1) is a diagonal matrix whose elements correspond to the loop function of the two

hadrons present in each of the channels. As shown in Ref. [16], the kernel V is a function of

the polarization vectors of the vector mesons, ǫµ, where µ is a time-spatial index. Therefore,

to identify resonances arising from the dynamics involved in the interaction of the vector

mesons considered, V needs to be projected on the spin as well as on the isospin bases. We

can have two different isospins, I = 1/2 or 3/2, and three different spins, S = 0, 1, and 2,

for the D∗ρ system. Using the phase convention |ρ+〉 = −|1, 1〉 and |D∗ 0〉 = −|1/2,−1/2〉,

the isospin 1/2 and 3/2 states can be written in terms of the charged particles as

|D∗ρ, I = 1/2, Iz = 1/2〉 = −

√

2

3
|D∗ 0ρ+〉+

√

1

3
|D∗+ρ0〉,

|D∗ρ, I = 3/2, Iz = 3/2〉 = −|D∗+ρ+〉. (2)
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Further, it was shown by the authors of Ref. [16] that, for small momenta of the external

hadrons, the combinations

P (0) =
1

3
ǫiǫiǫjǫj,

P (1) =
1

2
(ǫiǫjǫiǫj − ǫiǫjǫjǫi) , (3)

P (2) =
1

2
(ǫiǫjǫiǫj + ǫiǫjǫjǫi)−

1

3
ǫiǫiǫjǫj,

where i and j are spatial indices, project the kernel V and, thus, the scattering matrix T ,

on spin 0, 1 and 2, respectively.

Using the amplitudes which result from the projection of the kernel V on isospin and

spin to solve Eq. (1), it was found in Ref. [16] that the scattering matrix T shows poles in

the second Riemann sheet with masses and widths compatible with the ones of the states

D∗
2(2460) and D∗(2640), predicting the quantum numbers of the latter one to be JP = 1+.

The coupling of these poles to the D∗ρ channel was found to be much larger than the

corresponding to the D∗ω channel, thus, leading the authors of Ref. [16] to conclude that

the resonances D∗
2(2460) and D∗(2640) can be interpreted as D∗ρ molecular states. In

addition, the existence of a resonance with a mass around 2600 MeV and quantum numbers

JP = 0+ was also predicted as a consequence of the interaction of a D∗ with a ρ.

B. The D∗ρ system in QCD sum rules

In this manuscript, we investigate the interaction of a D∗ and a ρ considering a different

point of view than the one in Ref. [16]: the one of the QCD sum rules. In this case, the

starting point to determine the mass of the possible D∗ρ states is the evaluation of the

two-point correlation function [6, 22–27]

Π(q2) = i

∫

d4x eiqx〈0|T
[

j(x)j†(0)
]

|0〉, (4)

where q is the momentum flowing from 0 to ∞, T [· · · ] represents the T -ordered product

and j is the current associated to the D∗ρ system. The key idea of the QCD sum rule

method is to consider that this correlation function is of dual nature and it depends on

the value of the momentum q. For large momentum, i.e., short distances, the correlation

function represents a quark-antiquark fluctuation and can be calculated using perturbative

QCD. In this case, the current j is written in terms of the quark content of the D∗ and ρ
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mesons. However, since we are ultimately interested in studying the properties of hadrons,

the relevant energies are lower and contributions from quark condensates, gluon condensates,

etc., need to be included in the evaluation of Eq. (4). This can be conveniently accomplished

by using the Wilson operator product expansion (OPE) of the correlation function [28]. In

this case, Eq. (4) is expanded in terms of all local gauge invariant operators expressible in

terms of quark and gluon fields in the form of condensates and a series of coefficients. The

local operators incorporate nonperturbative long-distance effects, while the coefficients, by

construction, include only the short-distance domain and can be determined perturbatively.

This way of evaluating the correlation function is called the “OPE description”. In Table

I we show the values used for the different condensates and quark masses involved in the

OPE description of Eq. (4). Since the quark c is much heavier than the quarks u and d, we

can work in the limit of massless u and d quarks.

TABLE I: Values of the different parameters required for numerical calculations of the

correlation function given by Eq. (4) (see Refs. [6, 26, 27]).

Parameters Values

mc 1.23 ± 0.05 GeV

〈q̄q〉 −(0.23 ± 0.03)3 GeV3

〈g2G2〉 (0.88 ± 0.25) GeV4

〈g3G3〉 (0.58 ± 0.18) GeV6

〈q̄σ ·Gq〉 0.8〈q̄q〉 GeV2

At large distances, or, equivalently, small momentum, the currents j† and j of Eq. (4) can

be interpreted as operators of creation and annihilation of hadrons with the same quantum

numbers as the ones of the current j. In this case, the correlation function is obtained by

inserting a complete set of states with the same quantum numbers as those of the current

under consideration. This manner of determining the correlation function is often referred

to as the “phenomenological description”. The assumption made in the QCD sum rule

method is that there must be a range of q2 values in which both descriptions must be

equivalent. Calculating the correlation function of Eq. (4) using these two approaches and

equating them, it is possible to obtain information about the properties of the hadronic
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states generated in the system.

To determine the correlation function associated to the OPE description we need to

construct interpolating molecular currents for the D∗ρ system. Since both D∗ and ρ are

vector mesons, the simplest current we can use for the D∗ρ system is of the form

jµν(x) =
[

q̄1a(x)γµca(x)
] [

q̄2b (x)γνq
3
b (x)

]

, (5)

with q1(x), q2(x) and q3(x) representing the fields of the light quarks u or d, c(x) is the field

for the quark c, a and b are color indices and γ represents the Dirac matrix. Considering

the isospin relations of Eq. (2), the currents for the D∗ρ system for the cases of total isospin

I = 1/2 and 3/2 are thus,

j1/2µν (x) = −

√

2

3

[

(ūaγµca)(d̄bγνub) ,

−
1

2
(d̄aγµca)(ūbγνub − d̄bγνdb)

]

, (6)

j3/2µν (x) = −(d̄aγµca)(d̄bγνub),

where we have omitted the x dependence of the quark fields for simplicity. Using these

currents, we construct the function

ΠI
µν,αβ = i

∫

d4x eiqx〈0|T
[

jIµν(x)j
I
αβ

†
(0)
]

|0〉. (7)

The currents in Eq. (7) and, thus, ΠI
µν,αβ , do not have a well defined spin and need to be

projected. We will elaborate on the spin projection of Eq. (7) in the next section, which will

lead to a correlation function with a well defined spin, ΠI,S(q2).

Following the standard procedure of the QCD sum rule method, contracting all the quark

anti-quark pairs present in Eq. (7) through the currents in Eq. (6), we can rewrite ΠI
µν,αβ

in terms of the quark propagators, and then we can make the OPE expansion of these

propagators. In terms of the quark propagators, Eq. (7) adopts the form

ΠI
µν,αβ = i

∫

d4x eiqx
∫

d4p

(2π)4
e−ipx

[Tr {γµSc(p)γαSq(−x)} · Tr {γνSq(x)γβSq(−x)}

+AITr {γµSc(p)γαSq(−x)γνSq(x)γβSq(−x)}] , (8)

where Tr{· · · } is the trace operator, Sq represents the propagator of a light quark (u or d),

Sc is the propagator of the quark c and AI is a coefficient whose value is 1/2 for isospin 1/2
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and −1 for 3/2. For convenience, we work in the momentum space for heavy quarks and in

the configuration space for light quarks. The expressions for these propagators, including

the terms related to quark and gluon condensates, can be found in Ref. [6]. Making the OPE

expansion for the propagators involved in Eq. (8), and projecting the result on a particular

spin configuration, we can express the correlation function ΠI,S(q2) in terms of the following

dispersion relation

ΠI,S
OPE(q

2) =

∫ ∞

m2
c

ds
ρI,SOPE(s)

s− q2
, (9)

with ρI,SOPE(s) being the spectral density, which is related to the imaginary part of the cor-

relation function through πρI,SOPE = Im
[

ΠI,S
OPE

]

. In this study of the D∗ρ system we have

considered condensates up to dimension 7 in the OPE description. In this way:

ρI,SOPE = ρI,Spert + ρI,S〈q̄q〉 + ρI,S〈g2G2〉 + ρI,S〈q̄gσGq〉 + ρI,S
〈q̄q〉2

+ ρI,S〈g3G3〉 + ρI,S〈q̄q〉〈g2G2〉. (10)

The first term in Eq. (10) or perturbative term corresponds to dimension 0 in the expansion.

The next term, i.e., the quark condensate contribution (〈q̄q〉) has dimension 3. The two

gluon condensate contribution (〈g2G2〉) corresponds to dimension 4 in the expansion. The

mixed condensate or 〈q̄gσGq〉 term contributes with dimension 5. The two quark and the

three gluon condensates (〈q̄q〉2 and 〈g3G3〉, respectively) have dimension 6 and, finally, the

contribution associated to the condensate 〈q̄q〉〈g2G2〉 has dimension 7. The result for each

of the terms of Eq. (10) for the different isospins and spins can be found in the Appendix of

this manuscript.

In the phenomenological description, the correlation function for the D∗ρ system can be

written in terms of a spectral density as

ΠI,S
phenom(q

2) =

∫ ∞

m2
c

ds
ρI,Sphenom(s)

s− q2
. (11)

All hadrons with the same quantum numbers as the ones associated to the current j of Eq. (4)

contribute to the density of Eq. (11). Therefore, to extract information about the states

we are interested in, the spectral density ρI,Sphenom needs to be parametrized conveniently.

Commonly, the density of Eq. (11) is expressed as a sum of a narrow, sharp state, which

represents the one we are looking for, and a smooth continuum [6, 22–27]

ρI,Sphenom(s) = λ2
I,Sδ(s−m2

I,S) + ρI,Scont(s), (12)
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with λ2
I,S the coupling of the current to the state we are interested in and mI,S its mass.

The density related to the continuum of states is assumed to vanish below a certain value

of s, s0, called continuum threshold. Above this threshold it is common to consider the

ansatz [6, 22–27]

ρcont(s) = ρI,SOPE(s)Θ(s− sI,S0 ). (13)

Therefore, using this parametrization of the spectral density of Eq. (11), the correlation

function in the phenomenological description adopts the form

ΠI,S
phenom(q

2) =
λ2
I,S

m2
I,S − q2

+

∫ ∞

sI,S0

ds
ρI,SOPE(s)

s− q2
. (14)

Ideally, the result from the evaluation of Eqs. (9) and (14) should be same at some range of

q2 at which we could just directly equate both expressions. However, this is not completely

true: the correlation function in Eq. (9) suffers from divergent contributions originated from

long range interactions, while the one in Eq. (14) contains contributions arising from the

continuum. These problems can be solved by applying the Borel transformation to both

correlation functions and then equating them, which gives the relation

λ2
I,Se

−m2
I,S/M

2

=

∫ sI,S0

m2
c

ds ρI,SOPE(s)e
−s/M2

, (15)

where M is the Borel mass parameter. Calculating the derivative of Eq. (15) with respect

to −M−2 and dividing the resulting expression by Eq. (15), we can determine the mass as

m2
I,S =

∫ sI,S0

m2
c

ds sρI,SOPE(s)e
−s/M2

∫ sI,S0

m2
c

ds ρI,SOPE(s)e
−s/M2

. (16)

Once the mass is obtained, we can calculate the coupling λI,S through Eq. (15)

λ2
I,S =

∫ sI,S0

m2
c

ds ρI,SOPE(s)e
−s/M2

e−m2
I,S

/M2
(17)

III. SPIN PROJECTION

Let us discuss now how to make the spin projection of the function ΠI
µν,αβ of Eq. (7).

As we discussed in section IIA, it was shown in Ref. [16] that the expressions given in

Eq. (3) project the scattering matrix on spin 0, 1, and 2 for small momentum of the external
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hadrons. Recalling that in quantum mechanics the Wigner-Eckart theorem establishes that

all vectors (tensors) have the same matrix elements up to a reduced matrix coefficient, it is

possible to show that in the non relativistic limit, taking zero momentum for the quarks, the

~γ matrices present in the currents of Eq. (6) behave as the polarization vectors of Eq. (3).

Therefore, by analogy to the projectors of Eq. (3), the combinations

P(0) =
1

3
δijδkl,

P(1) =
1

2
(δikδjl − δilδjk) , (18)

P(2) =
1

2
(δikδjl + δilδjk)−

1

3
δijδkl,

with δ being the delta of Kronecker, project the currents of Eq. (6) and, thus, the function

ΠI
µν,αβ , on spin 0, 1, and 2 in the limit of zero momentum for the quarks. However, this limit

is not applicable to the present study. It is simple to generalize the projectors of Eq. (18) for

a situation in which the quarks have a nonzero momentum. To do this, we need to establish

the covariant extrapolation of the delta of Kronecker, which we call ∆µν . Since the delta of

Kronecker is symmetric under the exchange of the two indices, ∆µν should also be and to

construct it we just have the metric tensor, gµν, and the four momentum q. Thus, the only

possibility is

δij → ∆µν ≡ −gµν +
qµqν
q2

. (19)

As can be seen, in the limit of ~q → ~0, ∆00 = 0, ∆i0 = 0 and ∆ij = −gij = δij .

In this form, replacing δij for ∆µν in Eq. (18) we arrive to the following projectors:

P
(0)
∆ =

1

3
∆µν∆αβ,

P
(1)
∆ =

1

2

(

∆µα∆νβ −∆µβ∆να
)

, (20)

P
(2)
∆ =

1

2

(

∆µα∆νβ +∆µβ∆να
)

−
1

3
∆µν∆αβ,

which project the currents of Eq. (6) and, therefore, the function ΠI
µν,αβ, on spin 0, 1, and

2 for any value of the four momentum q. Note that ∆µ
ν∆

να = −∆µα, which is, with the

exception of the minus sign, the same normalization as the delta of Kronecker. Therefore,

the normalization of the projectors of Eq. (18) also holds for the projectors of Eq. (20). The

deduction and use of spin projectors in the QCD sum rules method is, up to our knowledge, a

novelty. Although, work in this direction has been done in Ref. [13], where operators choosing

9



the largest spin component of a particle which couples to the corresponding current were

deduced in a study related to the X(3872) state.

It is easy to show, using the phenomenological description of the correlation function,

that the expressions in Eq. (20) indeed project Eq. (7) on spin 0, 1, and 2, respectively.

As mentioned in section IIB , within the phenomenological description, the calculation of

the correlation function is done by inserting intermediate states for the hadron of interest.

In the present case, the current jIµν of Eq. (7) couples to spin 0, 1, and 2 states, with the

respective couplings defined through:

〈0|jµν |S〉 = λ0

(

agµν +
qµqν
q2

)

,

〈0|jµν |V 〉 = λV
1

(

ǫµ
qν
√

q2
+ b ǫν

qµ
√

q2

)

, (21)

〈0|jµν |A〉 = λA
1 ǫµνδλ

qδ
√

q2
ǫλ,

〈0|jµν |T 〉 = λ2ǫµν .

In Eq. (21) |S〉, |V 〉, |A〉 and |T 〉 represent a scalar, a vector, an axial and a tensor state,

respectively, λ0, λ
V
1 , λ

A
1 , λ2 are the couplings of the current to the respective states, ǫµ and

ǫµν are the polarization vectors of the vector, axial and tensor states, respectively, ǫµνδλ the

Levi-Civita tensor and a, b are arbitrary constants. Saturating the function of Eq. (7) with

these states and summing over the polarizations, we get the expression

ΠI
µν,αβ = ΠI,0

(

|a|2gµνgαβ +
qµqνqαqβ

q4
+ agµν

qαqβ
q2

+ a∗gαβ
qµqν
q2

)

+ΠI,1
V

(

∆µα
qνqβ
q2

+ b∗∆µβ
qνqα
q2

+ b∆να
qµqβ
q2

+ |b|2∆νβ
qαqµ
q2

)

+ΠI,1
A ǫµνδλǫαβγσ

qδqγ

q2
∆λσ +ΠI,2

(

1

2
∆µα∆νβ +

1

2
∆µβ∆να −

1

3
∆µν∆αβ

)

, (22)

with ΠI,0, ΠI,1
V , ΠI,1

A , and ΠI,2 being the parts of the correlation function associated with the

scalar, vector, axial and tensor states. Now, it is easy to see that the action of P
(0)
∆ , P

(1)
∆ and

P
(2)
∆ over Eq. (22) selects the scalar, axial and tensor part, respectively, of the correlation

function.

In summary, the correlation function to be used to study the D∗ρ system for a certain

isospin I and spin S is given by

ΠI,S(q2) = P
(S)
∆ ΠI

µν,αβ. (23)
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IV. RESULTS

The masses and couplings calculated with Eqs. (16) and (17), respectively, are functions

of the Borel mass M . Ideally, the results should not depend on the value of the Borel mass

used to determine them. But, in reality, this is not the case and one relies on the existence

of a range of Borel masses (or Borel “window”) in which the results obtained for the mass

and the coupling can be relied upon. The determination of this Borel window is based on

the following constraints: (1) In the phenomenological description, the contribution to the

correlation function arising from the pole term, which represents the state in which we are

interested in, should dominate over the contribution from the continuum of states with the

same quantum numbers. This condition fixes the maximum value for the Borel mass, Mmax,

at which the results obtained for the mass and coupling are meaningful (2). The other

constraint is to guarantee the convergence of the OPE expansion. This fixes the minimum

Borel mass at which the sum rule is reliable, Mmin. Here, in this manuscript, if n is the

maximum dimension taken into account in the OPE expansion, we consider that the right

side of Eq. (15) converges when the relative contribution associated to the condensate of

dimension n− 1, i.e, the result of dividing the contribution to the integral in Eq. (15) of all

terms of the series up to dimension n − 1 by the contribution to the integral associated to

all the terms, differs, in modulus, by no more than 10-25 % (depending on the case) from

the relative contribution to the condensate of dimension n.

Using these conditions, a valid Borel window is established, and the mass and coupling

of the states for the different isospin and spin configurations can be calculated through

Eqs. (16) and (17), respectively. Note that these results, as well as the Borel mass window,

depend on the continuum threshold, sI,S0 . This continuum threshold is a parameter of the

model, but its value is not completely arbitrary. As can be seen in Eq. (13),
√

sI,S0 is related

to the onset of the continuum in the current j under consideration and a reasonable value is

about 450-500 MeV above the mass of the hadron we are looking for [6, 27]. For this case,

where we are searching for possible D∗ρ molecular states of masses 2.450-2.600 GeV, we will

use values for
√

sI,S0 ∼ 3.00− 3.15 GeV.
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FIG. 1: Contributions of the pole (solid line) and the continuum (dashed line) terms

(weighted by their sum) to the correlation function in the phenomenological description for

the case I = 1/2, S = 2 as function of the squared Borel mass. These results are obtained

for a value of the continuum threshold of 3.15 GeV and using the central values of Table I

for the quark masses and condensates.

A. Isospin I = 1/2 configuration

In Fig. 1 we show as a function of the Borel mass and for the phenomenological description

of the correlation function the contributions of the pole term and the continuum, weighted

by their sum, for the case I = 1/2, S = 2, and a value of

√

s
1/2,2
0 = 3.15 GeV. As can be

seen, the pole term dominates over the continuum of states for a value of the squared Borel

mass of 1.87 GeV2, thus, M2
max = 1.87 GeV2. Similarly, for the OPE description of the

correlation function, we show in Fig. 2 the result of the study of the convergence of the OPE

series considering the central values of the quark masses and condensates of Table I. We find

a convergence of the OPE series for a value of the squared Borel mass above 1.07 GeV2,

thus, M2
min = 1.07 GeV2. Once a Borel window is found, we calculate the mass resulting

from Eq. (16), and obtain, as can be seen in Fig. 3, that the mass sum rule is stable and

gives as a result

m1/2,2 = (2.428± 0.151)GeV. (24)

The value shown in Eq. (24) is obtained by averaging the mass over the Borel window

and by calculating the standard deviation to determine the error. Similarly, using Eq. (17),

12
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FIG. 2: Relative contributions of the different terms of the series for the OPE description

of the correlation function for the case I = 1/2 and S = 2 as a function of the squared

Borel mass. These results are obtained for a value of the continuum threshold of 3.15 GeV

and using the central values of Table I for the quark masses and condensates.

we can get the coupling of the state to the current used and we find

λ1/2,2 = (8.10± 2.00)× 10−3GeV5. (25)

To estimate the uncertainty of the results of Eqs. (24) and (25) related to the s
1/2,2
0 value

used and to the quark masses and condensates, we change

√

s
1/2,2
0 in the range 3.00-3.15 GeV

and consider the range for the quark masses and condensates allowed by the error related

to them (shown in Table I). Taking into account all these sources of errors, we obtain

m1/2,2 = (2.439± 0.119)GeV,

λ1/2,2 = (8.14± 1.61)× 10−3GeV5. (26)

Analogously, we repeat this process for the cases I = 1/2 and spin 0 and 1, respectively.

In both cases, we find the valid Borel window considering the dominance of the pole term

over the continuum in the phenomenological description and the convergence of the series

in the OPE description and averaging the results over the Borel window. We also change

the value of the continuum threshold in the range

√

s
1/2,0
0 =

√

s
1/2,1
0 ∼ 3.00-3.15 GeV, and

the quark masses and condensates in the range shown in Table I. The results found for the

13
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FIG. 3: Mass sum rule for the case I = 1/2 and S = 2 as a function of the squared Borel

mass. The crosses in the figure indicate the Borel mass window. This result is found using

a value of the continuum threshold of 3.15 GeV and considering the central values of

Table I for the quark masses and condensates.

masses and couplings are:

m1/2,0 = (2.500± 0.067)GeV,

λ1/2,0 = (3.63± 0.39)× 10−3GeV5,

m1/2,1 = (2.523± 0.060)GeV, (27)

λ1/2,1 = (6.51± 0.61)× 10−3GeV5.

As an example, we show in Figs. 4 and 5 the result of the mass sum rule calculation, for

spin 0 and 1, respectively, for a value of

√

s
1/2,0
0 =

√

s
1/2,1
0 = 3.15 GeV. The Borel mass

window for both cases is indicated by crosses in the figures.

Therefore, we can conclude that three states are found for the case I = 1/2, each with a

different spin S = 0, 1, and 2, with the corresponding masses and couplings given by Eqs.

(26) and (27). It is interesting to note that the coupling of the spin 2 state to the current

is bigger than the respective ones for spin 0 and 1. These results are in striking agreement

with the ones obtained in Ref. [16]. The state found in this manuscript with spin 2 can be

associated with the D∗
2(2450) listed by the PDG. For the states with spin 0 and 1, there is

only one candidate listed by the PDG and that is D∗(2640). However, nothing is known

about the spin and parity of this state. In Ref. [16], the widths related to the resonances

14
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FIG. 4: Mass sum rule for the case I = 1/2 and S = 0 as a function of the squared Borel

mass. The crosses in the figure indicate the Borel mass window. This result corresponds to

a value of the continuum threshold of 3.15 GeV and the central values of Table I for the

quark masses and condensates.
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FIG. 5: Same as Fig. 4 but for I = 1/2 and S = 1.

found were calculated, obtaining a width of around 40 MeV for the state with spin 2, 60

MeV for the state with spin 0 and practically zero width for the state with spin 1. Since the

width listed by the PDG for D∗(2640) is Γ < 15 MeV, the authors of Ref. [16] associated

the state with spin 1 to D∗(2640) and predicted the existence of a state with spin 0 and

a similar mass, but with a much larger width. In this manuscript, we have calculated the

masses and couplings for the different states. To make a proper identification of D∗(2640)

15



with one of the states with spin 0 and 1, a QCD sum rule calculation to determine the width

of each of the states might be helpful. However, this is beyond the scope of the present

manuscript. Thus, with the information at hand, we can only confirm the existence of two

nearly degenerate states with mass around 2500 ± 60 MeV and spin 0 and 1, respectively,

one of which can probably be related to D∗(2640).

B. Isospin I = 3/2 configuration

The study of the D∗ρ system for the case I = 3/2 is particularly interesting, since if

a state its generated, its quantum numbers can not be obtained in terms of a quark and

anti-quark configuration and we can qualify this state as an exotic one. The study made by

the authors of Ref. [16] disfavor the formation of molecular resonances in the D∗ρ system

for total isospin 3/2. This is due to the fact that the kernel which enters in the resolution of

the Bethe-Salpeter equation, Eq. (1), is repulsive for this particular isospin and for the three

possible spins. Actually, this result found for the D∗ρ system is similar to the one found

in the study of other hadronic systems using an approach with the same spirit of Ref. [16].

Thus, in general, in such approaches whenever the system can generate a resonance whose

quantum numbers can not be explained in terms of the constituent quark model, a repulsive

interaction is found, preventing the formation of such a state.

We have studied the configuration I = 3/2 of the D∗ρ system for the three possible spins

using the QCD sum rule approach explained in Sect. II B. In this case, it is possible to find

a valid Borel window and calculate the mass and the coupling of the corresponding states.

Considering the different sources of error and averaging over the Borel window we get

m3/2,0 = (2.467± 0.082)GeV,

λ3/2,0 = (3.48± 0.48)× 10−3GeV5,

m3/2,1 = (2.420± 0.128)GeV,

λ3/2,1 = (5.22± 1.12)× 10−3GeV5,

m3/2,2 = (2.550± 0.056)GeV,

λ3/2,2 = (6.60± 0.62)× 10−3GeV5.

The experimental search of these states will be definitely very useful to clarify the exis-

tence of possible exotic molecular hadron resonances formed due to the interaction of a D∗

16



and a ρ and, at the same time, a test of the QCD sum rule approach used in this manuscript.

V. SUMMARY

Using an approach based on QCD sum rules, we have studied the interaction of a D∗

and a ρ mesons and investigated the existence of resonances for the different isospins and

spins. For the isospin 1/2 case, we have found three states with masses 2.500± 0.067 GeV,

2.523± 0.060 GeV and 2.439± 0.119 GeV and spin 0, 1 and 2, respectively. The state with

spin 2 can be associated with the meson D∗
2(2450) listed by the PDG. One of the other

two resonances with spin 0 or 1 can be related to the meson D∗(2640) of the PDG, whose

spin-parity is unknown. For the case of isospin 3/2, we have obtained three states with

masses 2.467 ± 0.082 GeV, 2.420 ± 0.128 GeV, 2.550 ± 0.056 GeV and spin 0, 1, and 2,

respectively. These states can be considered exotic in the sense that their quantum numbers

can not be obtained from a quark plus antiquark configuration. While the results found for

the isospin 1/2 case are in good agreement with the ones obtained by a previous study (see

Ref. [16]) of the same system with a different approach, the results for the isospin 3/2 sector

are different. The experimental studies of this system will be very relevant to confirm the

results found by the model of Ref. [16] and the one of this manuscript in the isospin 1/2

sector and the possible existence of D∗ρ molecular resonances with isospin 3/2 and spin 0,

1, and 2.
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FIG. 6: Feynman diagrams used in the determination of the contributions up to dimension

6 for the different terms involved in the OPE series.

Appendix: OPE terms of the spectral density

In Figs. 6 and 7 we show the different Feynman diagrams considered to determine the

different contributions to Eq. (10).

The results for the spectral density for a certain isospin I, spin S and dimension D can

be written as:

ρI,SD =
∑

x=α, η

∫ x0

0

dxRI,S
D (x)AI,S

D (x)

(

5
∑

k=1

T I,S
D,k (x)Bk

)

CD, (A.1)

where D = 0, 3, 4, 5, 6, 7 is a number representing the dimension of the terms considered in

the OPE expansion and CD is associated with the condensate of dimension D. In particular,
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FIG. 7: Feynman diagrams used in the determination of the contribution associated to

dimension 7 in the different terms involved in the OPE series.

the dimension D = 0 corresponds to the perturbative term, C0 = 1. The dimension D = 3 is

related to the quark condensate or C3 = 〈q̄q〉 contribution. The two gluon condensate corre-

sponds to D = 4, i.e., C4 = 〈g2G2〉 . The mixed condensate contributes to the dimension 5,

C5 = 〈q̄gσGq〉. For dimension D = 6 we have contributions from the two quark condensate,

〈q̄q〉2, and the three gluon condensate, 〈g3G3〉. The contributions to the dimension D = 7

arise from a quark and a two gluon condensates, C7 = 〈q̄q〉〈g2G2〉. The coefficients Bk are:

B1 = m4
c , B2 = m2

cq
2, B3 = q4, B4 = m2

c and B5 = q2. The functions RI,S
D (x) and coefficients

AI,S
D (x) can be found in Table II, while the T I,S

D,k (x) functions are given in Tables III and IV
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for isospin I = 1/2 and 3/2, respectively. As can be seen in these Tables, we can have two

different integral variables in Eq. (A.1): α, in this case the integral limit x0 = 1 − m2
c/q

2,

and η, for which x0 = 1.

The results for the RI,S
D (x) functions given in Table II are expressed in terms of the

quantities defined as follows:

RI,S
D (x) =







Gi,j,k,l ≡ (mc)
i αj

(α−1)l
[m2

c + (α− 1)q2]
k
, if x = α.

Hi,j,k,l ≡ (mc)
i ηj

(η−1)l(M2)k
e

m2
c

(η−1)M2 , if x = η.

where the indices i, j, k, l are different for each isospin, spin and dimension.

The AI,S
D (x) coefficients, given in Table II, are written in terms of the function defined as

F i,j,k,l ≡
1

5i3j2kπl
.

To write the results for T I,S
D,k (x) we have made used in Tables III and IV of the polynomial

function

Yx
n(a0, · · · , an) ≡

n
∑

i=0

aix
i.
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TABLE II: The RI,S
D (x) and AI,S

D (x) coefficients of Eq. (A.1) for the different isospin and

spin cases.

RI,S
D (x) AI,S

D (x)

I = 1
2 ,

3
2 I = 1

2 I = 3
2

x x x

D OPE term S α η α η α η

0 perturb.

0 G0,3,2,3 0 −F1,2,16,6 0 −F0,2,15,6 0

1 G0,3,3,3 0 −F0,0,13,6 0 −F0,0,13,6 0

2 G0,3,2,3 0 −13F1,2,15,6 0 −F0,2,14,6 0

3 〈q̄q〉

0 G1,2,1,2 0 −F0,0,11,4 0 −F0,0,10,4 0

1 G1,2,1,2 0 −F0,1,10,4 0 −F0,1,9,4 0

2 G1,2,1,2 0 −25F0,1,10,4 0 −5F0,1,9,4 0

4 〈g2G2〉

0 G0,1,0,3 H2,5,0,4 −F1,3,17,6 −13F1,3,14,6 −F0,3,16,6 −F0,3,13,6

1 G0,1,0,3 0 −F0,2,14,6 0 F0,2,13,6 0

2 G0,1,0,3 H2,5,0,4 −F1,3,16,6 −13F0,3,12,6 −F0,3,15,6 −F0,3,12,6

5 〈q̄gσGq〉

0 G1,1,0,1 0 F0,2,11,4 0 F0,2,10,4 0

1 G1,1,0,1 0 F0,0,11,4 0 F0,0,10,4 0

2 G1,1,0,1 0 235F0,2,11,4 0 35F0,2,10,4 0

6

〈g3G3〉

0 G0,3,0,3 H4,4,1,5 −F1,2,18,6 −13F1,3,16,6 F0,2,17,6 −F0,3,15,6

1 G0,3,0,3 H0,4,0,4 −F0,1,15,6 F0,1,13,6 −F0,1,15,6 F0,1,13,6

2 G0,3,0,3 H4,4,1,5
2 −13F1,2,17,6 −13F1,3,15,6 −F0,2,16,6 −F0,3,14,6

〈q̄q〉2

0 1 0 −F0,0,7,2 0 −F0,0,6,2 0

1 1 0 −F0,1,6,2 0 −F0,1,5,2 0

2 1 0 −25F0,1,6,2 0 −5F0,1,5,2 0

7 〈q̄q〉〈g2G2〉

0 G−1,0,0,2 H3,1,1,4 F0,3,13,4 F0,3,13,4 F0,3,12,4 F0,3,12,4

1 G−1,0,0,2 H3,1,1,4 −F0,2,12,4 F0,3,12,4 −F0,2,11,4 F0,3,11,4

2 G−1,0,0,2 H3,1,1,4 5F0,3,12,4 5F0,3,12,4 −5F0,3,11,4 5F0,3,11,4
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TABLE III: The T I,S
D,k (x) coefficients of Eq. (A.1) for the case I = 1/2 and spin S = 0, 1, 2. The absence of x = η terms for a

particular dimension indicates no η dependence.

T I,S
D,k (x)

k

I S D OPE term x 1 2 3 4 5

1
2

0

0 perturb. α Yα
2 (690,−130, 39) 2Yα

3 (−690, 1340,−1001, 351) 3Yα
2 (1,−2, 1)Yα

2 (230,−390, 429) 0 0

3 〈q̄q〉 α 0 0 0 Yα
1 (9, 2) Yα

2 (−9,−1, 10)

4 〈g2G2〉
α Yα

4 (2220,−6450, 8590,−3915, 753) 30Yα
5 (−148, 994,−2306, 2427,−1205, 238) 5Yα

3 (−1, 3,−3, 1)Yα
3 (−444, 3342,−4180, 1575) 0 0

η 1 0 0 0 0

5 〈q̄gσGq〉 α 0 0 0 Yα
1 (79, 17) Yα

2 (−79, 28, 51)

6
〈g3G3〉

α 0 0 0 Yα
2 (690,−130, 39) 5Yα

3 (−46, 72,−39, 13)

η 0 0 0 Yη
1 (0, 2) − Yη

2 (10,−11, 1)M
2

m2
c

0

〈q̄q〉2 α 0 0 0 Yα
1 (3, 2) 3Yα

2 (−1,−1, 2)

7 〈q̄q〉〈g2G2〉
α 0 0 0 Yα

3 (185,−384, 108,−8) 0

η 0 0 0 Yη
2 (0, 0, 12) + Yη

3 (−20, 47,−49, 22)M
2

m2
c

0

1

0 perturb. α 0 0 0 Yα
1 (−2, 1) Yα

2 (2,−11, 9)

3 〈q̄q〉 α 0 0 0 Yα
1 (42, 11) Yα

2 (−42,−13, 55)

4 〈g2G2〉 α Yα
3 (−114, 183,−89, 14) 6Yα

4 (38,−103, 102,−48, 11) Yα
3 (−1, 3,−3, 1)Yα

2 (114,−93, 40) 0 0

5 〈q̄gσGq〉 α 0 0 0 Yα
1 (28, 9) Yα

2 (−28, 1, 27)

6
〈g3G3〉

α 0 0 0 3Yα
1 (−2, 1) Yα

2 (2,−5, 3)

η Yη
4 (0, 0, 0, 0, 1) 0 0 0 0

〈q̄q〉2 α 0 0 0 Yα
1 (10, 13) Yα

2 (−10,−29, 39)

7 〈q̄q〉〈g2G2〉
α 0 0 0 Yα

3 (−98, 231,−120, 40) 0

η 0 0 0 Yη
2 (0, 0, 22) + Yη

3 (−114, 444,−581, 251)M
2

m2
c

0

2

0 perturb. α Yα
2 (30, 5, 3) 2Yα

3 (−30, 5,−2, 27) 3Yα
2 (1,−2, 1)Yα

2 (10, 15, 33) 0 0

3 〈q̄q〉 α 0 0 0 Yα
1 (3, 1) Yα

2 (−3,−2, 5)

4 〈g2G2〉
α Yα

4 (−5700, 5250, 4330,−3645, 753) 60Yα
5 (190,−145,−663, 1094,−595, 119) 25Yα

3 (−1, 3,−3, 1)Yα
3 (228, 546,−860, 315) 0 0

η 1 0 0 0 0

5 〈q̄gσGq〉 α 0 0 0 Yα
1 (2, 1) Yα

2 (−2,−1, 3)

6
〈g3G3〉

α 0 0 0 Yα
2 (30, 5, 3) 5Yα

3 (−2, 1, 0, 1)

η 0 0 0 Yη
1 (0, 2) − Yη

2 (−5, 4, 1)M
2

m2
c

0

〈q̄q〉2 α 0 0 0 Yα
1 (1, 1) Yα

2 (−1,−2, 3)

7 〈q̄q〉〈g2G2〉
α 0 0 0 Yα

3 (109,−261, 156,−64) 0

η 0 0 0 Yη
2 (0, 0, 10) + Yη

3 (−94, 301,−340, 133)M
2

m2
c

0
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TABLE IV: The T I,S
D,k (x) coefficients of Eq. (A.1) for the case I = 3/2 and spin S = 0, 1, 2. The absence of x = η terms for a

particular dimension indicates no η dependence.

T I,S
D,k (x)

k

I S D OPE term x 1 2 3 4 5

3
2

0

0 perturb. α Yα
2 (78,−10, 3) 2Yα

3 (−78, 128,−77, 27) 3Yα
2 (1,−2, 1)Yα

2 (26,−30, 33) 0 0

3 〈q̄q〉 α 0 0 0 Yα
1 (3, 2) Yα

2 (−3,−7, 10)

4 〈g2G2〉
α Yα

4 (−12,−222, 586,−243, 33) 6Yα
5 (4, 230,−718, 759,−325, 50) Yα

3 (−1, 3,−3, 1)Yα
3 (12, 1194,−1220, 315) 0 0

η 1 0 0 0 0

5 〈q̄gσGq〉 α 0 0 0 Yα
1 (29, 37) Yα

2 (−29,−82, 111)

6
〈g3G3〉

α 0 0 0 Yα
2 (−78, 10,−3) Yα

3 (26,−36, 15,−5)

η 0 0 0 Yη
1 (0, 2) − Yη

2 (10,−11, 1)M
2

m2
c

0

〈q̄q〉2 α 0 0 0 Yα
1 (1, 2) Yα

2 (−1,−5, 6)

7 〈q̄q〉〈g2G2〉
α 0 0 0 Yα

3 (139,−372, 324,−136) 0

η 0 0 0 Yη
2 (0, 0, 12) + Yη

3 (−196, 637,−719, 278)M
2

m2
c

0

1

0 perturb. α 0 0 0 Yα
1 (−2, 1) Yα

2 (2,−11, 9)

3 〈q̄q〉 α 0 0 0 Yα
1 (12, 7) Yα

2 (−12,−23, 35)

4 〈g2G2〉 α Yα
3 (48,−60, 10, 5) 3Yα

4 (−32, 64,−18,−27, 13) 4Yα
3 (−1, 3,−3, 1)Yα

2 (−12,−3, 10) 0 0

5 〈q̄gσGq〉 α 0 0 0 Yα
1 (8, 9) Yα

2 (−8,−19, 27)

6
〈g3G3〉

α 0 0 0 3Yα
1 (−2, 1) Yα

2 (2,−5, 3)

η 1 0 0 0 0

〈q̄q〉2 α 0 0 0 Yα
1 (8, 5) Yα

2 (−8,−7, 15)

7 〈q̄q〉〈g2G2〉
α 0 0 0 Yα

3 (−64, 147,−96, 32) 0

η 0 0 0 Yη
2 (0, 0, 14) + Yη

3 (−210, 582,−571, 199)M
2

m2
c

0

2

0 perturb. α Yα
2 (30, 5, 3) 2Yα

3 (−30, 5,−2, 27) 3Yα
2 (1,−2, 1)Yα

2 (10, 15, 33) 0 0

3 〈q̄q〉 α 0 0 0 Yα
1 (3, 1) Yα

2 (−3,−2, 5)

4 〈g2G2〉
α Yα

4 (−372, 354, 250,−189, 33) 12Yα
5 (62,−53,−183, 292,−143, 25) Yα

3 (−1, 3,−3, 1)Yα
3 (372, 834,−1100, 315) 0 0

η 1 0 0 0 0

5 〈q̄gσGq〉 α 0 0 0 Yα
1 (2, 1) Yα

2 (−2,−1, 3)

6 〈g3G3〉
α 0 0 0 Yα

2 (30, 5, 3) 5Yα
3 (−2, 1, 0, 1)

η 0 0 0 Yη
1 (0, 2) − Yη

2 (−5, 4, 1)M
2

m2
c

0

〈q̄q〉2 α 0 0 0 Yα
1 (1, 1) Yα

2 (−1,−2, 3)

7 〈q̄q〉〈g2G2〉
α 0 0 0 Yα

3 (−53, 117,−60, 8) 0

η 0 0 0 Yη
2 (0, 0, 2) + Yη

3 (−14, 41,−44, 17)M
2

m2
c

0
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